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From Feynman Heuristics to Brownian Motion

In the physics literature one often finds the following informal expression,

1 T (1)]?
T)e—%JoT‘W (n)] TDrw” for w e W, (1.1)

dpr (W) = *—

where Wr is the set of continuous paths, w : [0,7] — R (or RY), such that
w(0) =0,

Drw =« H m (dw (t))” (m is Lebesgue measure here)
0<t<T

and Z (T') is a normalization constant such that pr (Wr) = 1.
We begin by giving meaning to this expression. For 0 < s <t < T let

t
/ 2
Epgq (w) ::/ |’ (7)|” d.

If we decompose w (7) as o (7) + 7y (1) where

T—S

(W(t) —w(s)) and v () == w(r) =0 (7),

o(1):=w(s)+ —

w(t)—w(s)
t—s

then we have, o/ (1) = , v (s) =v(t) =0, and hence

/:0’(7')~'y’(7')d7'—/:a’(7')~’y'(7')d7'

=029 )~y ) =0
Thus it follows that
Efo () = o (0) + Ejog (7) = |2 (ti — : ) (t—s)+ Epqg ()
= RO g . (12)

Thus if f (w)=F (w|[07s},w (t)) , we will have,

1 1
7 F (w|[075}7w (t)) e 2B@)ID,y
t t
1
=— [ F(wlpg,w(®) e dECHEa@lp,,
Zt W,

and now fixing w/jo s and w (¢) and then doing the integral over w|(s ;) implies,

/F (w|[0,5]a w (t)) e_%[ES(M)—’_E[“](W)]D(SJ)M

By ()+ 120220 L g ()
[ ] D(s,t)’y

N

_1
— [ Fleloge®)e
,lEs(w) _ 2

e _1]e®=w(s)]
= C(S,t) /F (w|[07s],w (t)) ﬂe 2 t—s

Multiplying this equation by Z%Dw[o}s] - dw (t) and integrating the result then
implies,

t/me¢wmmmw
Wy

o[ re

_ C (s,t) / { Flw.y) ozl dy] die ().
Zt \%% R4

1
_1ly—e®® e~ 28 (w)
y:| Dw[O,s]

[o,s]yy)e 2t ﬂ

Taking F' =1 in this equation then implies,

1:70(‘9’”/ U = dy} dps (w)
Zy  Jw, L/re

— %tt) /WS [(27r (t— s))d/z} dps (W) = C(Zst, t) (2r (¢ — 5)) /2.

Thus the heuristic expression in Eq. (1.1]) leads to the following Markov prop-
erty for u;, namely.

Proposition 1.1 (Heuristic). Suppose that F : Wy x R? — R is a reasonable
function, then for any t > s we have
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[ F oo ©) din @)
Wy

_ /WS [ [ Penpec6) dy] Qs ().

where

pa (2,1) = (277(1))/ R (13)

t—s

Corollary 1.2 (Heuristic). If 0 = sop < 51 < 83 < -+~
(Rd)n — R is a reasonable function, then

< 8, =T and f :

n

(Sn))duT ((.U) :/( a) ylu"'vyn H Ps;—s;_1 yz layz)dyz)
R4)™ i=1
(1.4)

flw(s1),...,w

Wr

where by convention, yg = 0.

Theorem 1.3 (Wiener 1923). For all t > 0 there exists a unique probabil-
ity measure, [y, on Wy, such that Eq. holds for all n and all bounded
measurable f : (Rd)n — R.

Definition 1.4. Let B; (w) :=
is called Brownian motion. We further write Ef for fWT f(w

w(t). Then {Bi}o<,p as a process on (Wr, pr)
) dpr ().

The following lemma is useful for computational purposes involving Brow-
nian motion and follows readily form from Eq. (|1.4)).

Lemma 1.5. Suppose that 0 = sg < 51 < 83 < --- < 8, =t and f; : R? - R

are reasonable functions, then

Hfz Si 571)

=TIELfi (B — B, )] (15)

E[f (Bt — Bs)] =E[f (Bt—s)] (1.6)
and

E[f(B)] = Bf (ViB1). (1.7)

As an example let us observe that
EB; = /ypt (y)dy =0,

EB} = tEB} Zt/zfpl (y)dy=t-1,

Page: 6 job: prob

macro: svmonob.cls

and for s < t,
E[B;B,] =E[(B; — B,) Bs] + EB> =E(B; — B,) -EB; + s =5

and
E[|B; — B,f’] = |t — s|"*E[|Bi|") = Cp |t — s/ (1.8)

1.1 Construction and basic properties of Brownian motion

In this section we sketch one method of constructing Wiener measure ore equiv-
alently Brownian motion. We begin Wlth the existence of a measure vy on the
Wr = HO<s<TR which satisfies Eq. where R is a compactification of R

— for example either one point compactlﬁcatom so that R = S™.

Theorem 1.6 (Kolmogorov’s EXlstence Theorem) There exists a proba-
bility measure, vy, on Wr such that Eq. holds.

Proof. For a function F (w) := f (w(s1),...
define

,w(sn)) where f € C (R",R),

) = /Rn Fnsesyn) [ Psisies (Wim1,w) dus) -

Using the semi-group property;

/Rd Pt (2, y) ps (Y, 2) dy = psyt (v, 2)

along with the fact that [, p;(x,y)dy = 1 for all ¢ > 0, one shows that
I(F) is well defined independently of how we represent F' as a “finitely based”
continuous function.

By Tychonoff’s Theorem Wiy is a compact Hausdorff space. By the Stone
Weierstrass Theorem, the finitely based continuous functions are dense inside

of C (WT) . Since |I(F)| < || F || for all finitely based continuous functions, we

may extend I uniquely to a positive continuous linear functional on C (WT)

An application of the Riesz Markov theorem now gives the existence of the
desired measure, vp. [

Theorem 1.7 (Kolmogorov’s Continuity Criteria). Suppose that
(2, F, P) is a probability space and X, : 2 — S is a process fort € [0, T] where
(S, p) is a complete metric space. Assume there exists positive constants, e, (3,
and C, such that

Elp(X;, X.)7] < C lt — |+ (1.9)
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for all s,t € [0,T]. Then for any « € (0,5/¢) there is a modification, X, of X
(i.e. P (Xt = Xt) =1 for all t) which is a—Holder continuous. Moreover, there

is a random variable K, such that,
p(Xi, Xs) < Ko |t — s|* for all s,t € [0,T) (1.10)

and EKP < oo for allp < % (For the proof of this theorem see Section 77
below.)

Corollary 1.8. Let By : W — R be the projection map, By (w) = w (t). Then
there is a modifications, { B} of {Bt} for which t — By is a — Holder contin-

uwous vy — almost surely for any o € (0,1/2).

Proof. Applying Theorem u with ¢ := p and 8 := p/2 — 1 for any p €
(2,00) shows there is a modification {B:}, of {Bt which is almost surely «

— Hoélder continuous for any

a e (0,8/¢) = (o,p/?p_l) —(0,1/2-1/p).

Letting p — oo shows that {B;},- is almost surely oo — Holder continuous for
all v < 1/2. |

We will see shortly that these Brownian paths are very rough. Before we
do this we will pause to develope a quatitative measurement of roughness of a
continuous path.



2

p — Variations and Controls

Let (F,d) be a metric space which will usually be assumed to be complete.

Definition 2.1. Let 0 < a < b < o0. Given a partition II :=
{a=to <ty <--- <ty =0} of [a,b] and a function Z € C(|a,b],E), let
(ti)_ = ti—1, (ti), = tiy1, with the convention that t_y = to = a and
tny1 :=t, = T. Furthermore for 1 <p < oo let

1/p

n 1/p
Vo (Z:00) = | Y d’ (Z,, 2, _,) (Zd”(Zt,Zt_)> L (21)

tell

Furthermore, let P (a,b) denote the collection of partitions of [a,b]. Also let
mesh (IT) := maxseyr [t — t—| be the mesh of the partition, II.

Definition 2.2. and Z € C ([a,b], E). For 1 < p < oo, the p - variation of
Z is;

1/p
n
Vo (Z):= sup V,(Z:I)= sup > d"(Z,,%,_,) . (22
1IeP(a,b) nepap) \ ;5
Moreover if Z € C([0,T],FE) and 0 <a <b<T, we let
wzp (a,b) == 1 (Z\[a_yb])]p = sup d" (Zy;. 2y, ) - (2.3)

11eP(ab) 5

Remark 2.3. We can define V, (Z) for p € (0,1) as well but this is not so inter-
esting. Indeed if 0 < s < T and IT € P(0,7T) is a partition such that s € I,

then
d(Z(s),Z(0) <Y d(Z(1),Z(t-)) =D d"P(Z(1),Z(t-)d"(Z(t),Z (t-))
tell tell
< ft%ag{dl_p (Z(t),Z(to))- VP (Z: 1)
< rgg;{dl”’ (Z(t),Z(t-))-Vy(Z).

Using the uniform continuity of Z (or d (Z (s), Z (t)) if you wish) we know that
lim ;7)o maxyer d* 7P (Z (t), Z (t—)) = 0 and hence that,

A(Z().20) < Tim mad! ™" (Z(2).2 (1)) VE (2) =0,

Thus we may conclude Z (s) = Z (0), i.e. Z must be constant.

Lemma 2.4. Let {a; > 0},_, , then
n 1/p
(Z af) s decreasing in p and
i=1
n
o(p):==In (Z af) is convez in p.
i=1

Proof. Let f (i) = a; and p({i}) = 1 be counting measure so that

> al = p(f7) and ¢ (p) =Inp (f7).

i=1

Using%f” = fP1In f, it follows that and

p(fPIn f)

T
po k(P f)  Tp(fPingf))?
() = (f7) { w (fP) } '

Thus if we let EX := u (f?X) /pu (fP), we have shown, ¢’ (p) = E[In f] and

¢ (p) =E [In® f] — (E[In f])* = Var (In f) > 0

which shows that ¢ is convex in p.
Now let us shows that || f]| , 18 decreasing in in p. To this end we compute,
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= 11, = 5 20 0)] =3¢ 0) - o)

= Sy P T ) = p () (7))

(

1 P Py _ ) In p
:W[u(f In f7) — p (f7) Inpu (7))

1

(

e | m) )

Up to now our computation has been fairly general. The point where p being
counting measure comes in is that in this case u (fP) > fP everywhere and

therefore In (fp < 0 and therefore, 7; [ln ||f||p} < 0 as desired.
Alternative proof that ||f||p is decreasing in p. If we let ¢ = p + r, then

la] = Zap”(maxaj) Za”<|\an lall? = fla]2,

wherein we have used,

A

1/p n
max g; = (mjaxa?) < Za? = |al|,, .

Remark 2.5. It is not too hard to see that the convexity of ¢ is equivalent to
the interpolation inequality,

1—s £
o <AL A1,
where 0 < s <1, 1 < pg,p1, and

1 1
—=(1=-8)— +s—.
Ps Po P

This interpolation inequality may be proved via Hoélder’s inequality.

Corollary 2.6. The function V, (Z) is a decreasing function of p and In'V, (Z)*
is a convex function of p where they are finite. Moreover, for all pg > 1,

lim V,, (Z) =V, (2). (2.4)

plpo

and p — V, (Z) is continuous on the set of p’s where V,, (Z) is finite.

Page: 10 job: prob

Proof. Given Lemma it suffices to prove Eq. (2.4) and the conti-
nuity assertion on p — V,(Z). Since p — V,(Z) is a decreasing function,
we know that limpqp, Vp (Z) and limy,,, V;, (Z) always exists and also that
limy,,, Vp, (Z) = sup,,s,,, supyy Vi (Z @ 1) . Therefore,

lim V,, (Z) = sup supV,, (Z : II) = sup sup V,, (Z : H)fsupV;,o(Z I =V, (Z)
plpo p>po IT II p>po
which proves Eq. 1) The continuity of V, (Z) = exp (% InV, (Z)p) follows

directly from the fact that In'V, (Z)” is convex in p and that convex functions
are continuous (where finite).

Here is a proof for this case. Let ¢ (p) :==In'V, (2)”, 1 < py < p such that
Vo (Z) < 00, and ps := (1 — s) po + sp1, then

¢ (ps) < (1—5)@(po) +sp(p1)-

Letting s 1 1 then implies ps T p1 and ¢ (p1—) < ¢ (p1), ie. V- <V, <
Vp,—. Therefore V,,, - = V,, and along with Eq. (2.4) proves the continuity of
p—V,(Z). ]

2.1 Computing V,, (x)

How do we actually compute V, (z) := V,(2;0,T) for a given path = €
C ([0,7],R), even a very simple one? Suppose z is piecewise linear, with cor-
ners at the points 0 = sg, S1,...,8m = 1. Intuitively it would seem that the
p-variation should be given by choosing the corners to be the partition points.
That is, if S = {so,...,S,} is the partition of corner points, we might think
that V,, (z) = V,(x; S). Well, first we would have to leave out any corner which
is not a local extremum (because of Lemma below). But even then, this is
not generally true as is seen in Example 2.9 below.

Lemma 2.7. For all a,b >0 and p > 1,
(a+b)P >a? + 0 (2.5)
and the inequality is strict if a,b >0 and p > 1.
Proof. Observe that (a + b)? > aof + bP happens iff

a P b P
1> —_
_(a+b) +(a+b>

which obviously holds since

a p+ b p< a n b _
a+b a+b) ~a+b a+b

Moreover the latter inequality is strict if if a,b > 0 and p > 1. [

macro: svmonob.cls date/time: 4-Feb-2009/14:07



Lemma 2.8. Let x be a path, and D = {tg,...,t,} be a partition. Suppose
x is monotone increasing (decreasing) on [ti—1,t;11]. Then if D' = D\{t;},
Vp(z: D) >V, (x: D). If x is strictly increasing and p > 1, the inequality is
strict.

Proof. From Eq. (2.5) it follows

Vo (@ :DNP =V, (2 : D)’ = (x(tivr) — @(tim1))? — (@(tivr) — ()" — (2(t;) — x(ti=1))”

= (Atix + Ati+1$)p — (Atll')p — (Ati+1.r)p > 0

and the inequality is strict if Ay, x >0, Ay, ;2 >0and p > 1. |
In other words, on any monotone increasing segment, we should not include
any intermediate points, because they can only hurt us.

Ezample 2.9. Consider a path like the following: If we partition [0,7] at the

1/2+e€

1/2-€

corner points, then

Volw: S)" = (5 + e + 26 + (5 +e ~ 23 <1

by taking e small. On the other hand, taking the trivial partition D = {0,T},
Vp(z:D) =1,80 Vp(x:85) <1< V,(x) and in this case using all of local
minimum and maximum does not maximize the p — variation.

The clean proof of the following theorem is due to Thomas Laetsch.

Theorem 2.10. If z : [0,T7] — R having only finitely many local extremum in
(0,T) located at {s1 < --- < sp_1}. Then

Vp () =sup{V, (z:D):{0,T} Cc D C S},

where S={0=sy<s1 <+ <s, =T}

Page: 11 job: prob

2.1 Computing V, (z) 11

Proof. Let D ={0 =ty <t <--- <t, =T} € P(0,T) be an arbitrary
partition of [0, 7). We are going to prove by induction that there is a partition
II C S such that V,, (z: D) < V, (z: II). The proof will be by induction on
n:=#(D\S).If n =0 there is nothing to prove. So let us now suppose that
the theorem holds at some level n > 0 and suppose that # (D \ S) = n+1. Let
1 < k < r be chosen so that ¢, € D\ S. If x (t)) is between x (tx—1) and = (tx41)
(i.e. (z (tk—1),z (tx),x (tx+1)) is a monotonic triple), then according Lemma
2.8/ we will have V,, (z : D) <V, (z: D\ {tx}) and since # [(D \ {tx}) \ S] = n,
the induction hypothesis implies there exists a partition, IT C S such that

Vp(z: D) <Vp(z: D\ {tp}) <Vp(2: ).

Hence we may now assume that either z () < min (z (tx—1),2 (tk+1)) or
x (tg) > max (¢ (tk—1), = (tk41)) . In the first case we let ¢} € (tp—1,tp+1) be a
point where x|, , ;... has a minimum and in the second let ¢ € (tx—1,tx+1)
be a point where x|, _, 1,,,] has a maximum. In either case if D* := (D \ {t;})U
{t;} we will have V,, (z : D) < V,, (x : D*) and # (D*\ S) = n. So again the
induction hypothesis implies there exists a partition IT C .S such that

Vp(x:D)<V,(z:D") <V, (z:1II).
From these considerations it follows that
Vp(x: D) <sup{V,(x:II):II €P(0,T) st. II CS}
and therefore

Vp () =sup{V,(x:D): DeP(0,T)}
<sup{Vp(z:I):II € P(0,T) st. I C S} <V, (x).

[

Let us now suppose that z is (say) monotone increasing (not strictly) on
[s0, $1], monotone decreasing on [s1, s2], and so on. Thus sg, s2,... are local
minima, and $1, 83, ... are local maxima. (If you want the reverse, just replace

x with —z, which of course has the same p-variation.)

Definition 2.11. Say that s € [0,T] is a forward mazimum for x if z(s) >
x(t) for all t > s. Similarly, s is a forward minimum if x(s) < x(t) for all
t>s.

Definition 2.12. Suppose x is piecewise monotone, as above, with extrema
{50, 51,...}. Suppose further that sq,s4,... are not only local minima but also
forward minima, and that s1,ss,... are both local and forward maxima. Then
we will say that x is jog-free.

Note that sy = 0 does not have to be a forward extremum. This is in order
to admit a path with x(0) = 0 which can change signs.
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So

Here is an example.

Remark 2.13. Here is another way to state the jog-free condition. Let x be
piecewise monotone with extrema sg, s1,.... Let & = |z(si+1) — x(s;)|. Then
x is jog-free iff & > & > .... The idea is that the oscillations are shrinking.
(Notice that we don’t need &y > &;; this is because so = 0 is not required to be
a forward extremum.)

Remark 2.14. It is also okay if s1,s9,... are backwards extrema; this corre-
sponds to the oscillations getting larger. Just reverse time, replacing z(t) by
z(T — t), which again doesn’t change the p-variation. Note that if & are as
above, this corresponds to having & < & < & < ... (note that & is included
now, but &,,—; would not be). This case seems less useful, however.

Lemma 2.15. Let © be jog-free with extrema so,...,Sm. Let D = {to,...,tn}
be any partition not containing all the s;. Then there is some s; ¢ D such that
if D'=DU{s;}, V, (z:Dr) >V, (x: D).

Proof. Let s; be the first extremum not contained in D (note sg =0 € D
already, so j is at least 1 and s; is also a forward extremum). Let ¢; be the last
element of D less than s;. Note that s;_; <#; < s; <{t41.

Now « is monotone on [s;_1,s;]; say WLOG it’s monotone increasing, so
that s; is a local maximum and also a forward maximum. Since t; € [s;_1, s;],
where z is monotone increasing, x(s;) > «(t;). And since s; is a forward maxi-
mum, z(s;) > x(ti+1).

Therefore we have

x(s;) — a(t:) = w(tiyr) — x(t:)
2(s5) = x(tir1) = x(t:) — x(titr).

One of the quantities on the right is equal to |z (t;1+1) — z(¢;)|, and so it follows
that

Page: 12 job: prob

|2(s5) — 2 ()" + |2(s;) — 2(tiva)|” = |2(tisa) — z(t:)[”
since one of the terms on the left is already > the term on the right. This shows
that V,, (z : DN)* >V, (z : D)P. [
In other words, we should definitely include the extreme points, because
they can only help.
Putting these together yields the desired result.

Proposition 2.16. If x is jog-free with extrema S = {so, ..., Sm}, then Vp(z) =
Vp(z:8) = (€)M

Proof. Fix € > 0, and let D be a partition such that V,, (x : D) > V,(x) —e.
By repeatedly applying Lemma we can add the points of S to D one
by one (in some order), and only increase the p-variation. So V, (x : DU S) >
Vp (z : D). Now, if ¢ € D\S, it is inside some interval [s;, s;41] on which z is
monotone, and so by Lemma t can be removed from D U S to increase the
p-variation. Removing all such points one by one (in any order), we find that
Vo(z:8) >V, (x:DUS). Thus we have V,, (z:S) > V, (x: D) > Vy(z) — ¢
since € was arbitrary we are done. ]

Notice that we only considered the case of jog-free paths with only finitely
many extrema. Of course, in order to get infinite p-variation for any p we would
need infinitely many extrema. Let’s just check that the analogous result holds
there.

Proposition 2.17. Suppose we have a sequence Sg,S1,... increasing to T,
where x is alternately monotone increasing and decreasing on the intervals
[sj,8j+1]. Suppose also that the s; are forward extrema for x. Letting & =
|z(sj+1) — z(s;)| as before, we have

1/p

Vp(z) = Z ff
3=0
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Actually, the extreme points s; can converge to some earlier time than T,
but z will have to be constant after that time.

Proof. For any m, we have Z;n:o {? =V, (x: D)’ for D ={s0,...,8m+1},
so Vy(z)P > 377 €. Passing to the limit, V,,(z)P > 3272 €.

For the reverse inequality, let D = {0 = ¢o,t1,...,t, = T} be a partition
with V, (z : D) > V,(x) — €. Choose m so large that s, > t,—1. Let § =
{50, -+, 8m, T}, then by the same argument as in Proposition we find that
Vp (z: S) >V, (x : D). (Previously, the only way we used the assumption that S
contained all extrema s;was in order to have every ¢; € D\S contained in some
monotone interval [s;, s;+1]. That is still the case here; we just take enough s;’s
to ensure that we can surround each ;. We do not need to surround ¢, = T,
since it is already in S.)

But V, (z: S)" = 2?2_01 €7 < 37720 &}, and so we have that

1/p

D 2V(w: D)2 Vy(r) —e
j=0

€ was arbitrary and we are done. ]

2.2 Brownian Motion in the Rough

Corollary 2.18. For allp >2 and T < o0, V), (B\[O,T]) < 00 a.s. (We will see
later that V, (BI[O,T]) =00 a.s. for allp < 2.)

Proof. By Corollary [I.8] there exists K, < oo a.s. such that
|B; — By| < K, |t — s|"/? for all 0 < s,¢t < T. (2.6)

Thus we have
\P
Z |A;BIP < Z (Kp |t; — ti_l\l/") < ZK;; lt; —tio1| = KPT
i i i

and therefore, V), (B|[07T}) < KJT < o0 as. [

Proposition 2.19 (Quadratic Variation). Let {II,,}~_, be a sequence of
partition of [0, T] such that lim,, .o |II,,| = 0 and define Q,,, :== V2 (B : II,,,).
Then

Tim E (@ —T)*] =0 (2.7)
and if Y oo_ mesh (II,;,) < oo then limy, oo Qm, = T’ a.s. This result is often
abbreviated by the writing, dB? = dt.

Page: 13 job: prob

2.2 Brownian Motion in the Rough 13
Proof. Let N be an N(0, 1) random variable, At :=t—t_, A;B := B;—B;_
and observe that A;B ~ v AtN. Thus we have,
EQm= Y E(AB)= Y At=T.
tel,, tel,,
Let us define
Cov (A,B) :=E[AB] —EA-EB and
Var (A) := Cov (A4, A) = EA> — (EA)? = E [(A - IEA)Z] .

and observe that
Var (Z AZ-) = ZVar (Ai) + Z Cov (A;, 4;) .
i=1 i=1 i£]

As Cov (A;B,AsB) = 0 if s # t, we may use the above computation to con-
clude,

Var(Q,) = Z Var((A;B)?) = Z Var(At - N?)

tell tell

= Var(N?) Y "(At)? < Var(N?) [II,,| > At
tell tell
=T -Var(N?) |I,,| — 0 as m — oo.

(By explicit Gaussian integral computations,
Var(N?) = EN* — (EN?)* =3 -1=2 < c0.)
Thus we have shown

lim E [(Qm —T)Q} — lim E [(Qm —EQ)ﬂ = Tim Var(Qm) =0.

m—00 m— 00

If >0 |[1I,,] < oo, then

E lz (Qm —T)°

m=1

S E(Qm-T)°=> Var(Qm)
m=1

m=1

Var(N?)-T - Z mesh(I1,,) < co

m=1

IN

from which it follows that Y>>, (Q, — T)? < o a.s. In particular (Q,, —T) —
0 almost surely. ]
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14 2 p — Variations and Controls

Proposition 2.20. If p > ¢ > 1 and V, (Z) < oo, then lim oV, (Z : II) =
0.

Proof. Let IT € P(0,T), then

O)=Y% d"(Z(t),Z(t-) =) d"1(Z(t),Z(t-)d" (Z(t), Z(t-))

tell tell
< max " (Z(1), 7 (1)) an (Z(1),2 (1)
< max 1 (Z (1), 72 (t))- Vi (2 1T)
< maxd” 1 (Z (1), Z(t-)) - Vi (Z).

Thus, by the uniform continuity of Z|jg. 1) we have

limsupV, (Z : II) < limsupmaxd”~?(Z (t),Z (t-)) - V1 (Z) = 0.
1710 -0 tell

Corollary 2.21. If p < 2, then V, (B|jo,1]) = o0 a.s.

Proof. Choose partitions, {II,,}, of [0,T] such that lim,, o @m = T a.s.
where Q,, := VZ (B : II,,) and let 2y := {lim,, oo @, = T} so that P (§2¢) =
1. If V, (Blo,r) (w)) < oo for then by Proposition

lim @, (w) = W}E)noo Vv22 (B(w): M) =0

m—00

and hence w ¢ (2o, ie. {Vp (B‘[O,T] ()) <OO} C £2§. Therefore 2y C
{Vp (B|[0,T] ()) = OO} and hence

P ({V, (Bljo,r (1)) = o0}) = P(2) = 1.

Fact 2.22 If {B:},5 is a Brownian motion, then

P(VZ,(B)<OO):{(1)Z£2;.

See for example [, Exercise 1.14 on p. 36].

Corollary 2.23 (Roughness of Brownian Paths). A Brownian motion,
{Bt}i>0 18 not almost surely o — Hélder continuous for any o > 1/2.

Page: 14 job: prob

Proof. According to Proposition we may choose partition, I1,,, such
that mesh (IT,,) — 0 and Q,, — T a.s. If B were o — Holder continuous for
some « > 1/2; then

Qm= Y (4B <C Y (A < Cmax ([Ag™7") 3 At

= t€ll,, t€l,,
<O ** ' T —0as m — oo

which contradicts the fact that Q,, — T as m — oo. ]

2.3 The Bounded Variation Obstruction

Proposition 2.24. Suppose that Z (t) is a real continuous function such that
Zo = 0 for simplicity. Define

/de

whenever f is a C' — function. If there exists, C < oo such that

/f dr+ (1) Z ()]

(1)dZ ()| < €+ max |F (7). (28)

then V1 (Z) < oo (See Deﬁm'tz'on above) and the best possible choice for C
in Eq. (2.8) is V1 (Z)

Proof. Given a partition, IT := {0 =ty < t; < --- < t, = T’} be a partition
of [0,T7], {ak}zz1 CR, and f(¢):= arlgoy + ZZ:l arle,_ 6 Choose f, (t)
in C([0,T],R) “well approximating” f (¢) as in Figure It then is fairly

ol ols £ ld)

Ly=T
| t1 +y 1
{
%y X
l-.f
easy to show,
macro: svmonob.cls date/time: 4-Feb-2009/14:07



T n—1
/0 fn () Z (t)d7 — > (kg1 — k) Z (tr)
k=1
and therefore,
T n—1
Jim [ f (0)dZ (1) = = 3 (e — 0n) Z (1) + 0 Z (1) — 0 Z (t0)
0 k=1

Zak Z (tr-1))-

Therefore we have,

/fm )dZ (r)

< C-limsup omax [ fm (T )\:kaax|ak|.

m— 00

m— 00

Zak (Z (ty) — Z (tg—1 ‘ = lim
k=1

Taking o = sgn(Z(ty) — Z(tx—1)) for each k, then shows
Yoreq1Z (k) — Z (tk—1)] < C. Since this holds for any partition II, it
follows that V4 (Z) < C.

If Vi (Z) < o0, then

/ fmZ(t)dT:—/ FW)drz () + F(O)Z@0)[F
0 0

where Az is the Lebesgue Stieltjes measure associated to Z. From this identity
and integration by parts for such finite variation functions, it follows that

/de /fd)\z

) s/o ROTIEYI0
max | (7)] - Azl (0, 7)) = Vi (2) - max |f (7)

0<r<T 0<r<T

and

t)dZ (t) t)dz (

IN

Therefore C' can be taken to be V; (Z) in Eq. and hence V; (Z) is the best
possible constant to use in this equation. [

Combining Fact with Proposition explains why we are going to
have trouble defining fo fsdBs when B is a Brownian motion. However, one
might hope to use Young’s integral in this setting.

Page: 15 job: prob

2.4 Controls 15

Theorem 2.25 (L. C. Young 1936). Suppose that p,q > 0 with %—l—% =:0>
1. Then there exists a constant, C (8) < oo such that

t)dz (1)) < C0) ([ fllse + Vo (1)) - Vi (2)

for all f € C'. Thus if V,,(Z) < oo the integral extends to those f € C ([0,T])
such that Vg (f) < oc.

Unfortunately, Young’s integral is still not sufficiently general to allow us to
solve the typical SDE that we would like to consider. For example, consider the
“simple” SDE,

y(t) = B(t) B (t) with y(0) = 0.

The solution to this equation should be,

y (T) =/0 B (t)dB (1)

which still does not make sense as a Young’s integral when B is a Brownian
motion because for any p > 2, % + % =: ¢ < 1. For more on this point view see
the very interesting work of Terry Lyons on “rough path analysis,” [4].

2.4 Controls

Notation 2.26 (Controls) Let
A={(s,t): 0<s<t<T}
A control, is a continuous function w: A — [0,00) such that

1. w(t,t) =0 for all t € [0,T],
2. w is super-additive, i.e., for all s <t < v we have

w(s,t) + w(t,v) <w(s,v). (2.9)
Remark 2.27. If w is a control then and w (s, t) is increasing in ¢ and decreasing
in s for (s,t) € A. For example if s < o <t, then w(s,0) +w(0,t) < w(s,t)
and therefore, w (o,t) < w (s,t). Similarly if s <t < 7, then w (s,t) + w (¢, 7) <
w (s,7) and therefore w (s,t) < w (s, 7).

Lemma 2.28. Ifw is a control and ¢ € C ([0,00) — [0,00)) such that ¢ (0) =0
and ¢ is conver and increasingﬂ then ¢ ow is also a control.

! The assumption that ¢ is increasing is redundant here since we are assuming ¢’ > 0
and we may deduce that ¢’ (0) > 0, it follows that ¢’ () > 0 for all z. This assertion

also follows from Eq. (2.11).
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16 2 p — Variations and Controls

Proof. We must show ¢ o w is still superaditive. and this boils down to
showing if 0 < a, b, c with a + b < ¢, then

p(a)+e(b) <p(c).

As ¢ is increasing, it suffices to show,

p(a)+¢ () <patb). (2.10)
Making use of the convexity of ¢, we have,
a
b) = 04+ — b
? () <p<a+b G )>
<o)+t b) = 2 plat)
—(a =——ovla
=a+b” ) T arb? atb”
and interchanging the roles of a and b gives,
a
< — b). 2.11
pla) £ —op(ath) (211)
Adding these last two inequalities then proves Eq. (2.10). ]

Ezample 2.29. Suppose that u (t) is any increasing continuous function of ¢,
then w (s,t) :=u (t) — u(s) is a control which is in fact additive, i.e.

w(s,t) + w(t,v) = w(s,v) for all s <t < w.

So for example w (s,t) = t— s is an additive control and for any p > 1, w (s,t) =
(t — s)? or more generally, w (s,t) = (u (t) — u(s))” is a control.

Lemma 2.30. Suppose that w is a control, p € [1,00), and Z € C ([0,T], E) is
a function satisfying,

d(Zs,2Z;) < w (s, )7 for all (s,t) € A,
then VP (Z) <w(0,T) < oo. More generally,
wp.z (s,t) = VY (Zljs,q) S w(s,t) forall (s,t) € A.

Proof. Let (s,t) € A and IT € P ([s,t]), then using the superadditivity of
w we find
VP (2l : ) = d" (20,2, ) <> w(ZiZi) Sw(s,t).
tell tell

Therefore,

wp,z (s,t) ==V} (Z|[s,t]) = Heiu(l[) ) vy (Z|[s,t] : H) Sw(st).

Page: 16 job: prob

Notation 2.31 Given o€ E and p € [1,00), let
Co([0,T],E) :={Z € C([0,T],E):V,(Z) < o0} and
Con((0,T), B) = {Z € Cy([0,T], B) : Z(0) = o}
Theorem 2.32. Let p: A — [0,00) be a function and define,

w(s,t)=w,(s,t):= sup Vi(p:II), (2.12)
ITeP(s,t)

where for any IT € P (s,t),
Vi(p:I) = p(t_,t1). (2.13)
tell

We now assume:

1. p is continuous,

2. p(t,t) =0 for allt € [0, T] (This condition is redundant since next condition
would fail if it were violated.), and

3. Vi(p)==w(0,T) :=supgepor Vi(p: ) < oco.

Under these assumptions, w : A — [0,00) is a control.

We will give the proof of Theorem after a corollary and a few prepara-
tory lemmas.

Corollary 2.33 (The variation control). Let p € [1,00) and suppose that
Z € Cp([0,T],E). Then wzy : A — [0,00) defined in Eq. 18 a control
satisfying, d(Z (s),Z (t)) < wz,p (s,t)l/p for all (s,t) € A.

Proof. Apply Theorem with p(s,t) := dP (Z (s),Z (t)) and observe
that with this definition, wz , = w,. |

Lemma 2.34. Let p: A — [0,00) satisfy the hypothesis in Theorem then
w=w, (defined in Eq. ) 1s superadditive.

Proof. If 0 < u < s < v < T and I} € P(u,s), I € P(s,v), then
I, UII; € P (u,v). Thus we have,

Vilp:IL)+Vi(p: 1) =Vy(p: [ UIL) <w(u,v).
Taking the supremum over all 177 and Ils then implies,
w(u,s) +w(s,v) <w (u,v) for all u < s < v,

i.e. w is superaditive. [
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Lemma 2.35. Let Z € C,([0,T],E) for some p € [1,00) and let w := wz :
A — [0,00) defined in Eq. . Then w is superadditive. Furthermore if p =1,
w is additive, i.e. Equality holds in Fq. (@)

Proof. The superadditivity of wz, follows from Lemma and since
wzp(s,t) = w,(s,t) where p(s,t) :=d?(Z(s),Z(t)). In the case p = 1, it is
easily seen using the triangle inequality that if ITy, ITs € P (s,t) and II; C Ils,
then V; (X : II;) < Vi (X, II3) . Thus in computing the supremum of Vi (X : IT)
over all partition in P (s,t) it never hurts to add more points to a partition.
Using this remark it is easy to show,

w(u,s)+w(s,v)= sup Vi (X : )+ V1 (X : )]

11, €P(u,s),l12€P(s,v)

= sup V1 (X IH1UH2)

I, €P(u,s),[I2€P(s,v)

= sup Vi (X:I)=w(uv)
IIeP(u,v)

as desired. [ ]

Lemma 2.36. Let p: A — [0,00) and w = w), be as in Theorem . Further
suppose (a,b) € A, IT € P(a,b), and let

e:=w(a,b) —Vi(p:II) > 0.
Then for any II' € P (a,b) with IT' C II, we have

Y wtt) = Vi(p: TNt 1)) <e. (2.14)

tell’
In particular, if (o, 3) € ANII? then
wla, B) <Vi(p:HN[a,B]) +e. (2.15)

Proof. Equation (??) is a simple consequence of the superadditivity of w
(Lemma [2.34)) and the identity,

S Vilp: It t]) =Vi(p: )

tell’

where t_ :=t_ (II'). Indeed, using these properties we find,

S ) = Vilp: N[ )] = 3 wlt_,t) = Vilp: )

tell’ tell’
<wl(a,b) —=Vi(p: II) =e.
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Lemma 2.37. Suppose that p : A — [0,00) is a continuous function such that
p(t,t) =0 for allt € [0,T] and € > 0 is given. Then there exists 6 > 0 such
that, for every I CC [0,T] and u € [0,T] such that dist (u, IT) < 6 we have,

Vi(p:II)=Vi(p: TU{u})| <e.

Proof. By the uniform continuity of p, there exists § > 0 such that
lp(s,t) — p(u,v)] < &/2 provided |(s,t) — (u,v)] < 4. Suppose that II =
{to<t1 <---<t,} C[0,7T] and w € [0,T] such that dist (u,I) < §. There
are now three case to consider, u € (tg,t,), u < top and u > t;. In the first
case, suppose that t,_1 < u < t; and that (for the sake of definiteness) that
[t; —u| < §, then

Vi(p: ) = Vi (p: ITU{u})] = | (tims,ts) — p(timr,w) — p (1)

<lp(tizits) — p(tim, u)| + |p (uts) — p (Lis t)| < e

The second and third case are similar. For example if u < tg, we will have,

Vi(p: L U{u}) = Vi(p: )| = p(u,to) = p(uto) — p(to, to) < /2.

]

With these lemmas as preparation we are now ready to complete the proof
of Theorem 2.32

Proof. Proof of Theorem Let w (s,t) := w, (s,t) be as in Theorem
It is clear by the definition of w, the w (¢,¢) = 0 for all ¢ and we have
already seen in Lemma that w is superadditive. So to finish the proof we
must show w is continuous.

Using Remark we know that w(s,t) is increasing in ¢ and decreas-
ing in s and therefore w(u+,v—) = limgjypow(s,t) and w(u—v+) =
limg 14t w (s, 1) exists and satisfies,

w(ut,v—) <w (u,v) <w(u—,v+). (2.16)

The main crux of the continuity proof is to show that the inequalities in Eq.
(2.16)) are all equalities.

1. Suppose that € > 0 is given and § > 0 is chosen as in Lemma [2.37 and
suppose that u < s < ¢ < v with |s—u| < § and |v—¢| < 4. Further let
IT € P (u,v) be a partition of [u,v], then according to Lemma [2.37]

Vi(p: ) <Vi(p: ITU{s,t})+ 2
=p(u,8)+pt,v)+Vi(p: IN[s,t]U{s,t}) + 2¢
<pu,s)+p(t,v)+w(st)+ 2.

Letting s | w and ¢ T v in this inequality shows,
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18 2 p — Variations and Controls
Vi(p: ) <w(ut,v—)+ 2

and then taking the supremum over IT € P (u,v) and then letting € | 0 shows
w(u,v) < w(u+,v—). Combined this with the first inequality in Eq.
shows, w (u+,v—) = w (u,v).

2. We will now show w (u,v) = w (u—, v+) by showing w (u—, v+) < w (u,v).
Let € > 0 and 6 > 0 be as in Lemma [2.37] and suppose that s < w and ¢ > v
with |u — s| < d§ and [t — v| < J. Let us now choose a partition IT € P (s,t) such
that

w(s,t) <Vi(p: ) +e.

Then applying Lemma [2.37] gives,
w(s,t) <Vi(p:II)+ 3

where II} = IT U {u,v}. As above, let u_ and v, be the elements in IT; just
before v and just after v respectively. An application of Lemma then shows,
wu—v+) <w (u_,vy) <Vi(p: I Nju_,vy]) + 3¢
Vi Iy O [uyo]) + p () + p (0,04) + 3
< w (u,v) + de.
As e > 0 was arbitrary we may conclude w (u—,v+) < w (u, v) which completes
the proof that w (u—,v+) = w (u,v) .
I now claim all the other limiting directions follow easily from what we have
proved. For example,
w(u,v) <w (u,v+) <w (u—,v+) =w(u,v) = w(u,v+) =w(u,v),
w(u,v) =w(ut,v—) <w (y,v—) <w(u,v) = w(u,v—) =w (u,v),
and similarly, w (u£,v) = w (u,v) . We also have,

w (u,v) =w (ut,v—) < liminf w(s,t) < limsup w(s,t) <w (u—,v+) = w (u,v)

s lu, t v s lu, t v
which shows w (u+,v+) = w (u,v) and

w(u,v) =w (u+,v—) < liminf w(s,t) < liminf w(s,t) <w (u—,v+) = w (u,v)
s Tu, t Tv s Tu, t Tv

so that w (u—,v—) = w (u,v). ]

Proposition 2.38 (See [2, Proposition 5.15 from p. 83.]). Let (E,d) be
a metric space, and let © : [0,T] — E be a continuous path. Then x is of
finite p-variation if and only if there exists a continuous increasing (i.e. non
— decreasing) function h : [0,T] — [0,VP(Z)] and a 1/p — Hélder path g :
[O, %3 (Z)] — F such that such that x = g o h. More explicitly we have,

d(gv),g ) <|v-— u|1/p for all u,v € [0, %5 (2)]. (2.17)
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Proof. Let w (s,t) := wp o (s,t) = VP (2|[s,4) be the control associated to x
and define h (t) := w (0,t) . Observe that h is increasing and for 0 < s <t < T
that h(s) + w(s,t) < h(t), ie.

w(s,t) <h()—h(s) foral 0 <s<t<T.

Let g : [0,h(T)] — E be defined by g (h(t)) := x(¢). This is well defined
since if s <t and h(s) = h(t), then w(s,t) = 0 and hence x|} is constant
and in particular z (s) = =z (t). Moreover it now follows for s < t such that
u:=h(s) < h(t) =:v, that

from which Eq. (2.17) easily follows. ]

2.5 Banach Space Structures

This section needs more work and may be moved later.

To put a metric on Holder spaces seems to require some extra structure on
the metric space, F. What is of interest here is the case £ = G is a group
with a left (right) invariant metric, d. In this case suppose that we consider p -
variation paths, = and y starting at e € G in which case we define,

1/p
dp—var (x,y) = sup | D d” (A, Ary)
neP(0.1) \jzqr

where Az = xt__lmt for all ¢ € II. The claim is that this should now be a
complete metric space.

Lemma 2.39. (Cy,(A,T™ (V)),d,) is a metric space.

Proof. For each fixed partition D and each 1 <i < |p], we have

r p/i ir
UlD(X) = (Z ‘Xzf—ltl )
=1

is a semi-norm on Cy (A, 7™ (V)) and in particular satisfies the triangle in-
equality. Moreover,

V(X +Y) < SBP[UiD(X) +vh (V)] < sup v (X) + sup vl (V)
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and therefore . ' 4
supvp (X +Y) < supvp(X) + supvp(Y)
D D D

which shows sup v, (X) still satisfies the triangle inequality. (i.e., the supremum
D
of a family of semi-norms is a semi-norm). Thus we have

dp(X) = max sup v (X)

is also a semi-norm on Cy ,(A, T™ (V). Thus d,(X,Y) = d,(X —Y) satisfies
the triangle inequality. Moreover we have d,(X,Y’) = 0 implies that

X5, — Vi =0 v 1<i<|p]

and (s,t) € A, ie., X' =Y for all 1 <4 < |p] and we have verified d,(X,Y)

is a metric. [ ]



3

The Bounded Variation Theory

3.1 Integration Theory

Let T € (0, 00) be fixed,
S:={(a,0]:0<a<b<TIU{[0,))NR:0<b<T}. (3.1)

Further let A be the algebra generated by S. Since S is an elementary set,
A may be described as the collection of sets which are finite disjoint unions of
subsets from S. Given any function, Z : [0,7] — V with V being a vector define
pz S —V via,

uz((a,b}) = beZa and uz([O,b]):beZovogagbgT.

With this definition we are asserting that 1z ({0}) = 0. Another common choice
is to take uz ({0}) = Zp which would be implemented by taking pz ([0,b]) = Z,
instead of Z, — Zj.

Lemma 3.1. uyz is finitely additive on S and hence extends to a finitely additive
measure on A.

Proof. See Chapter 7?7 and in particular make the minor necessary modifi-
cations to Examples 7?7, 7?7, and Proposition 77. [

Let W be another vector space and f : [0,7] — End (V,W) be an A —
simple function, i.e. f([0,7]) is a finite set and f~1(\) € A for all X\ €
End (V, W) . For such functions we define,

f(t)dZ (t) = fduz = Y duz(f=NeW (3.2)
[0,T] [0,T] AEEnd(V, W)~

The basic linearity properties of this integral are explained in Proposition 77.
For later purposes, it will be useful to have the following substitution formula
at our disposal.

Theorem 3.2 (Substitution formula). Suppose that f and Z are as above
and Yy = f[o . fduz € W. Further suppose that g : R, — End (W, U) is another
A — simple function with finite support. Then

/ gduy:/ gfdpz.
[0,7] [0,7]

Proof. By definition of these finitely additive integrals,

py ((a,0]) =Y, =Y, = fdpz — fduz
[0,b] [0,a]

= / (Ljo,0) — Lo,a)) fdpz = / L fduz.
(0,77 (0,77

)

Therefore, it follows by the finite additivity of gy and linearity f[o 7 (1) dpz,
that

wy (A):/ fduZ:/ lafduz for all A € A.
A (0,7

Therefore,

/ gdpy
[0,T]

Z Ay (g =A) = Z /\/[o . Lig=xyfduz

A€End(W,U) ¥ A€End (W, U)X
:/ > 1{g=>\})‘fdﬂZ:/ gfdpz
OT) xeEnd(w,0) [0.7]

as desired. [ ]
Let us observe that

F@Wazi < > Mz (F =M

AEEnd(V,W)

(0,77

Let us now define,

izl (@, 8]) := Vi (Z]ja,8))

n
= sup ZHZ”—Z“;IH:a:t0<t1<---<tn=bandn€N
j=1

be the variation measure associated to .

Lemma 3.3. If ||uz|| ((0,T]) < oo, then ||uz| is a finitely additive measure
on S and hence extends to a finitely additive measure on A. Moreover for all

A € A we have,
iz (A < llnzll (A). (3-3)
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Proof. The additivity on S was already verified in Lemma [2:34] Here is the
proof again for sake of convenience.

Suppose that IT = {a =ty <t; <--- <t, =0}, s € (ti—1,%) for some I,
and [T’ := IT U {s}. Then

ez ™ Z 1Ze; = Zi, |

n

= Z Hth B thfl H + HZtl —Zs+ Zs — Ztl—l”
J=Ll

< N N2y~ Ze, o | 120 — Zoll + || Ze = Zu |
J=1:j#1

=llnz™ ((a,8]) < lzll (@, 5)) + |zl ((s,8]).

Hence it follows that

1zl ((a,0]) = s%plluzlln ((a,8]) < [lpz | ((a; s]) + |1zl ((s,0]) -

Conversely if II; is a partition of (a,s] and IIs is a partition of (s,b], then
IT := I1, U II, is a partition of (a,b]. Therefore,

izl ™ (@, s]) + izl ™ ((s,8)) = luzll™ ((a,b]) < lluzl| ((a,b])

and therefore,

ezl (e, s]) + ezl ((s,6]) < [zl ((a;0]) -

Lastly if A € A, then A is the disjoint union of intervals, J; from S and we
have,

lpz (A)]| = ‘

< Z Iz (Ji)] < Z luzll (Ji) = [zl (A) .

Corollary 3.4. If Z has finite variation on [0,T), then we have

Proof. Simply observe that |z (A)|| < ||z (A) for all A € Ar and hence
from Eq. (3.2)) and the bound in Eq. (3.3) we have

f(t)dz,

(0,77

S/[ ]Hf(/\)H 1zl (dA) < I flloe - Izl ([0, 1) -

)
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‘ f(t)dz, S IMluz (F =N
(0,71 A€End(V,W)
< Azl (f =A) = 1Lf M) lz ]l (dX)
AeEr%(:V,W) ’ /[O,T] z
< £l - llpezll ([0, 77) -

Notation 3.5 In the future we will often write |dZ|| for d ||uz]| -

Theorem 3.6. If V and W are Banach spaces and V1 (Z) = ||uz|| ([0,T]) < oo
we may extend the integral, f[o 7] f () dZs, by continuity to all functions which
are in the uniform closure of the A — simple functions. In fact we may extend

the integral to L' (||uz||) — closure of the A — simple functions. In particular,
if f:]0,T) — Hom (V,W) is a continuous function,

ft)dz () = hm Zf Z(t)). (3.4)

(0,77 Orer

Proof. These results are elemetary soft analysis except possibly for the
last assertion for the statement in Eq. (3.4). To prove this, to any partition,
IIeP(0,T), let

fH—Zf ) Le_ g+ f(0) Loy

Tell
in which case,

Zf(t—)(Z(f)*Z(t—)): frn (t)dZ (t).
tell [0,7]

This completes the proof since f;; — f uniformly on [0,7] as |II| — 0 by the
uninform continuity of f. [

Theorem 3.7 (Substitution formula II). Let Z : [0,T] — V be a finite
variation process, f : [0,T] — End (V,W) and g : [0,T] — End (W,U) be
continuous maps and define,

Y, = fdz € W.
[0.]

Then Y is a continuous finite variation process and the following substitution

formula holds,
/ gdY = / gfdZ. (3.5)
[0,7] [0,7]

In short, dY = fdZ.
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Proof. First off observe that

t
A / 171142 ] = w (s, 1)

where the right side is a continuous control. This follows from the fact that
[dZ]| is a continuous measure. Therefore

T
Vi(Y) < / 1]l 1d2]] < oo.

If g = A (q,p) with A € End (W, U), then

b b T
/ gdy:)\(yb_ya):)\/ de:/ >\de:/ gfdz.
(0,17 a a 0

Thus Eq. (3.5]) holds for all A — simple functions and hence also for all uniform
limits of simple functions. In particular this includes all continuous g : [0,7] —
End (W,U). ]

Remark 3.8. If we keep the same hypothesis as in Theorem but now take
Y, = ftT fdZ instead. In this case we have,

/ gdY = —/ gfdZ.
[0,7] [0,7]

To prove this just observe that Y; = Wpr — W, where W; := fg fdZ. Tt is now
easy to see that
dYy =d(-Wy) = —dW; = — fdZ

and the claim follows.

3.2 The Fundamental Theorem of Calculus

As above, let V and W be Banach spaces and 0 <a < b < T.

Proposition 3.9. Suppose that f : [a,b] — V is a continuous function such
that f(t) exists and is equal to zero for t € (a,b). Then f is constant.

Proof. First Proof. For { € V*, we have f, := Lo f : [a,b] — R with
fe(t) =0 for all t € (a,b). Therefore by the mean value theory, it follows that
fe(t) is constant, ie. £(f(t) — f(a)) = 0 for all t € [a,b]. Since £ € V* is
arbitrary, it follows from the Hahn — Banach theorem that f (t) — f (a) = 0, i.e.
f () = f (a) independent of t.
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Second Proof (with out Hahn — Banach). Let ¢ > 0 and « € (a,b)
be given. (We will later let ¢ | 0.) By the definition of the derivative, for all
7 € (a,b) there exists §, > 0 such that

1F®) = S = |[£0) = £() = f)e = m)| el =7l if |t =7l < 5. (36)

Let
A={telob]:|f(t) = fla)] <et—a)} (3.7)
and tg be the least upper bound for A. We will now use a standard argument
which is sometimes referred to as continuous induction to show tg = b. Eq.
with 7 = a shows ¢y > a and a simple continuity argument shows ty € A,
ie.
1f (o) = fle)]| < e(to — o). (3.8)
For the sake of contradiction, suppose that to < b. By Eqgs. and ,

1£(8) = F(@) < [1F () = f(to)ll + [1f (t0) — f(a)]
<e(to—a)t+e(t—ty) =e(t—a)

for 0 <t — ¢y < d;, which violates the definition of ¢, being an upper bound.
Thus we have shown b € A and hence

1£(0) = f(@)]| < &(b—a).

Since € > 0 was arbitrary we may let £ | 0 in the last equation to conclude
f(b) = f(«). Since « € (a,b) was arbitrary it follows that f(b) = f («) for all
a € (a,b] and then by continuity for all « € [a, b], i.e. f is constant. ]

Theorem 3.10 (Fundamental Theorem of Calculus). Suppose that [ €
C([a,b],V), Then

1.4 [T f(r)dr = f(t) for all t € (a,b).

2. Now assume that F' € C([a,b], V'), F is continuously differentiable on (a,b)
(i.e. F'(t) exists and is continuous for t € (a,b)) and F extends to a con-
tinuous function on [a,b] which is still denoted by F. Then

b
/ F(t)dt = F(b) — F(a). (3.9)
Proof. Let A > 0 be a small number and consider

t+h t t+h
/ f(r)dr — / f(r)dr — f(t)h / (F(r) — f(t)) dr

t+h
< / I(f(r) — £t dr < he(h),
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24 3 The Bounded Variation Theory

where €(h) := max ¢ 44 [|(f(7) = f(t))||. Combining this with a similar com-
putation when A < 0 shows, for all h € R sufficiently small, that

/ - / ' fr)dr — F(o)h

where now e(h) := max cp_|n|,t+n) |(f(7) = f(t))]. By continuity of f at ¢,
e(h) — 0 and hence % ft f(r)dr cxists and is equal to f(t).
For the second item, set G = f F(r)dr — F(t). Then G is continu-

ous by Lemma ?? and G(t) = O for all t € (a,b) by item 1. An application
of Proposition shows G is a constant and in particular G(b) = G(a), i.e.

J; E(r)dr — F(b) = —F(a),
Alternatlve proof of Eq. . It is easy to show

e(/ F(t)dt)z/ eoF(t)dtz/ %(ZoF)(t)dtforallfGV*.

Moreover by the real variable fundamental theorem of calculus we have,

< [hle(n),

b
/ ;lt(EoF)(t)dtonF(b)—KoF(a) forall ¢ € V*.

Combining the last two equations implies,

b
e(/ F(t)dt—F(b)+F(a)> =0forall V"

Equation (3.9)) now follows from these identities after an application of the Hahn
— Banach theorem. n

Corollary 3.11 (Mean Value Inequality). Suppose that f : [a,b] — V is
a continuous function such that f(t) exists for t € (a,b) and f extends to a
continuous function on [a,b]. Then

1£0) - )l < [ Ol < -0 Hme. (3.10)

Proof. By the fundamental theorem of calculus, f(b) f f
and then (by the triangle inequality for integrals)

/ LF @)t

ol ae= 0o,

1£(b) = fla)ll = f t)dt
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Corollary 3.12 (Change of Variable Formula). Suppose that
f e C(la,b,V) and T : [c,d] — (a,b) is a continuous function such that
T (s) is continuously differentiable for s € (c,d) and T'(s) extends to a
continuous function on [c,d]. Then

/ (T )ds_/T:)d)f(t)dt.

Proof. For t € (a,b) define F (t fT (o f (T)dr. Then F € C' ((a,b),V)
and by the fundamental theorem of Calculus and the chain rule,

d

S (T () = F'(T ()T (s) = [ (T (s)) T (5).
Integrating this equation on s € [¢,d] and using the chain rule again gives
d T(d)

/ F(T(s))T" (s)ds = F(T'(d)) — F (T (c)) :/ f(t)dt.

T(c)

Exercise 3.1 (Fundamental Theorem of Calculus II). Prove the funda-
mental theorem of calculus in this context. That is; if f : V — W be a C!
— function and {Z;},., is a V' — valued function of locally bounded variation,
then forall 0 <a < b < T,

b
F ()~ [(Za) = / peaz = [ gz

where f’(2) € End (V, W) is defined by, f’ (z)v := %o f (2 + tv) . In particular
it follows that f (Z (¢)) has finite variation and

df (Z (1)) = f'(Z(t)dZ (t).

Solution to Exercise (3.1). Let IT € P (0,7T). Then by a telescoping series
argument,

f(Zy) - => Af(Z
tell
where
Mf(Z)=F(Z0) = [(Zi) =F(Z +AZ) [ (%)
1
= / P (2 +sMZYMZ ds = [ (2 ) A Z +ef' A Z
0
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and

Thus we have,

Za)ZZf/(Zt,)AtZ—HSH:/ f/(Zt

tell [a,b]

f(Z) = f( )dZ (t)+ 6 (3.11)

where 07 := Y,y el Ay Z. Since,

[0l < D llet Az < 3 [l [ 140 2] < maxc [ - 3 (14 2]
tell tell tell

< max |<F'[| - VA (2).

and
Jef = [ N (4 5802) - £ (2 )] s

Since g (s,7,t) :== |[f' (Z: +s(Z, — Z;)) — f' (Z;)]|| is a continuous function
ins e [0,1] and 7,¢t € [0,T] with g(s,t,t) = 0 for all s and ¢, it follows by
uniform continuity arguments that g (s,7,t) is small whenever \t — 7| is small.
Therefore, lim| 7o Hsf H = 0. Moreover, again by a uniform continuity argu-
ment, f’ (Z;_) — f'(Z;) uniformly as |II| — 0. Thus we may pass to the limit
as |[II| — 0 in Eq. to complete the proof.

3.3 Calculus Bounds

For the exercises to follow we suppose that u is a positive o — finite measure
n ([0,00), Bo,o0)) such that u is continuous, i.e. pu({s}) = 0 for all s € [0, 00).

We will further write,
/ £ (s) (s / £ (s) (s
0,t

/f ) dpe (s

wherein the second equality holds since g is continuous. Although it is not
necessary, you may use Exercise with Z; := 1 ([0,¢]) to solve the following
problems.

Exercise 3.2. Show for all 0 < a < b < oo and n € N that
n!

B (B) ;:/ A (s1) . dp (s) = 22D (3.12)
<51<52<---<5,<b
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Solution to Exercise (3.2]). First solution. Let us observe that h (t) :=
hi (t) = 1 ([a,t]) and h, (t) satisfies the recursive relation,

n+1 / h d/”'

Now let H, (t) := ;h"(t), by an application of Exercise with f(z) =

"1/ (n + 1)! implies,
h(r) = / H, (v)dh (7)

and therefore it follows that H,, (t) = hy, (t) for all ¢ > a and n € N.
Second solution. If i # j, it follows by Fubini’s theorem that

1 ({(s1, ..., 5n) € [a,b]™ : 5; = 5;})

=) [ i) o)

/h Ydh (s) for all t > a.

Hoor (1) = Hopr (8) = Hop ( / I

= 1 (la, )" /[ (s dnts) =0

From this observation it follows that

— ®n
$n) = Y la<spi<spaso<somss — 1P~ ae,

ocES,

1[a,b]n’ (817 RN}

where o ranges over the permutations, S,, of {1,2,...,n}. Integrating this
equation relative with respect to 4®" and then using Fubini’s theorem gives,

:u([avb])n = N®n ([avb]n) = Z

®
La<s,1<spa< <son<bdpt™" (8)

oceS,
Z/ <551 <592 < <son<bdit (51) ... dp(sn)
o€eS,
= Z/ dp(s1) ... dp(sp)
cES, a<s1<52<--<5,<b

:n!/ dp(s1) ... du(sy) .
a<s1<s2<: <8, <b

Exercise 3.3 (Gronwall’s Lemma). If £ (¢) and f (¢) are continuous non-
negative functions such that

+ [ s, (3.13)

macro: svmonob.cls date/time: 4-Feb-2009/14:07



26 3 The Bounded Variation Theory

then .
f@) <e(t)+ / eI We (1) dp (1) . (3.14)
0
If we further assume that ¢ is increasing, then
f(t) <e(t) e, (3.15)

Solution to Exercise ([3.3)). Feeding Eq. - ) back into itself implies

F) <+ /{ /f ) dpu (s }du()

—c(t)+ / (51) dps (1) + /  Fs)dusn) d(s)

<)+ | e o) dp (1) / [ (o) + [ ; f(83)du(83)] dps (1) dya (s2)

—e0+ [ endun) [ el dutenduts)

+ / F (53) dpt (s1) s (s2) da (53)
0<s53<s55<s5,<t

Continuing in this manner inductively shows,
N

FH<m+Y / e (sk)dp(s1) . du(sx) + Ry () (3.16)

=1V 0S8k < <s2<s1<t

where, using Exercise [3.2]
Ry ()= [ F (k1) dp (51) - dpa (1) it (511)
0<sp41<-<s52<s51<t

([0,
< pax SO =N o

So passing to the limit in Eq. (3.16]) and again making use of Exercise[3.2|shows,

— 0as N — oo.

o0

OERCES | (o) dp (1) dn(sy)  (317)
k—1 0<s5,<---<52<51 <t
= i
043 [ et
— M(Tvt
/5 ; = dp (1)

+/e“(”)e (7).
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S/ﬁt])

Wdﬂ(sk)

+

(=)

(=)

If we further assume that e is increasing, then from Eq. (3.17) and Exercise
we have

o0

fo<e@+e0y [ A (1) - dp (s5)
k=1 0<5,<-+-<52<51 <t

o~ ([0, 1)"
(1)) = =)D,
=1
Alternatively if we let Z, := 1 ([0,¢]), then

t t
/ Mgy (1) = ~Zrq7. :/ d. (_ezt—z,)
0

0 0
= (—eZ‘_ZT)g =% — 1.

Therefore,
F@) <e(t)+e(t) (e —1) =e(t)e?.

Exercise 3.4. Suppose that {e, (t)},-, is a sequence of non-negative continu-
ous functions such that

¢
Ena (t) < / en (T)dp (1) for all n >0 (3.18)
0
and § (t) = maxo<,<¢ €0 (7). Show
en (1) <d(1) M for all n > 0.
n!

Solution to Exercise ([3.4). By iteration of Eq. (3.18) we find,

a(t)g/o 80(T)dM(T)S5(t)/O< _dn(s).

20 < | ey (s9) du () < 5(1) / t I L (50) (5
=50 | (s,

sn(t)gé(t)/(K o <td,u(51)...du(sn).

The result now follows directly from Exercise
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3.4 Bounded Variation Ordinary Differential Equations

In this section we begin by reviewing some of the basic theory of ordinary
differential equations — O.D.E.s for short. Throughout this chapter we will let
X and Y be Banach spaces, U C, Y an opensubset of Y, and yo € U, z : [0,T] —
X is a continuous process of bounded variation, and F' : [0,T]xU — End (X,Y)
is a continuous function. (We will make further assumptions on F' as we need
them.) Our goal here is to investigate the “ordinary differential equation,”

§(t) = F (t,y(t)) & (t) with y(0) =yo € U. (3.19)

Since z is only of bounded variation, to make sense of this equation we will
interpret it in its integrated form,

t
v =w+ [ Fry(m)de(r). (320)

0
Proposition 3.13 (Continuous dependence on the data). Suppose that
G :[0,T] x U — End (X,Y) is another continuous function, z : [0,T] — X

is another continuous function with bounded variation, and w : [0,T] — U
satisfies the differential equation,

w(t) = wo + /0 G (rw (7)) dz () (3.21)

for some wo € U. Further assume there exists a continuous function, K (t) > 0
such that F satisfies the Lipschitz condition,

|EF (t,y) — F (t,w)|| < K (t) |ly —w|| for all0<t¢t<T andy,w e U. (3.22)

Then
ly () —w )] <e(t)exp (/0 K (1) ||dx (T)II) : (3.23)

where
e (t) := |lyo — wo| +/O [F (r,w (7)) = G (r,w (7))]] [|dz (1)
+/ |G (r,w (D) |d (z = =) (7)] (3.24)
0

Proof. Let 6 (t) := y (t) — w (¢), so that y = w + §. We then have,
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5(t)—yo—wo+/F7'y ) dx (7 /GT’LU )dz (1)

—yo—wo+/FTw()+5 Ydx (T /GTw ) dz (1)

:yo—wo+/o [F(T,U](T))—G(T,w(T))]dx(T)—F/O G(r,w(r)d(x—2) (1)
+/ [F(m,w(T) +6 (7)) — F(m,w(7))]dz (7).
0

Crashing through this identity with norms shows,

Bl e+ [ K@ 156 e @]

where € (t) is given in Eq. (3.24]). The estimate in Eq. (3.23)) is now a consequence
of this inequality and Exercise [3.3| with dy (7) := K (7) ||dz (7)]| . |

Corollary 3.14 (Uniquness of solutions). If F satisfies the Lipschitz hy-
pothesis in Eq. , then there is at most one solution to the ODE in Ejq.
15.20)).

Proof. Simply apply Proposition with F'= G, yo = wp, and z = z. In
this case € = 0 and the result follows. ]

Proposition 3.15 (An apriori growth bound). Suppose that U =Y, T =
00, and there are continuous functions, a (t) > 0 and b(t) > 0 such that

I1E (t,9)|| <a(t)+b(t)|y|]| forallt >0 andy €Y.

Then

@ < (ol + [ a@ v oo ([ sarm), where @25
(1) = s (0,1) = 3]y (1) (3.26)

Proof. From Eq. (3.20)) we have,

ly @)1 < llyoll +/O 1 (7, y (7))l dv (7)

N

< ||y0|\+/0 (a(m) +0(7) lly (7)) dv (7)

+ / Iy (7)1 dis (7)
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28 3 The Bounded Variation Theory
where

e (t) == llyoll +/0 a(T)dv(7) and du (1) :=b(7)dv (7).

Hence we may apply Exercise to learn ||y ()| < e (t) e*(%1) which is the
same as Eq. (3.25). ]

Theorem 3.16 (Global Existence). Let us now suppose U = X and F sat-
isfies the Lipschitz hypothesis in Eq. . Then there is a unique solution,

y (t) to the ODE in Eq. (3.20).

Proof. We will use the standard method of Picard iterates. Namely let
yo (t) € W be any continuous function and then define y, (¢) inductively by,

Ynir (1) = yo + / F (r,yn (7)) da (7). (3.27)

Then from our assumptions and the definition of y, (¢), we find for n > 1 that

/F ™y (7)) da (7)

lmss (8) = v ||—H/Fryn ) de (7

< / IF (7,ya (7)) —
< / K (7) lyn (7) —

max [[yo (7) — yo||+/0 1E (7, o)l |d (7)I| = 6 ().,

0<r<t

F (7, yn—1 (7))l l|dz (7)]]

Yn—1 ()l [|dz (7)]]

Since,

o )= w0 @01 = o0+ [ F (ran () o ()~ (t)”

IN

it follows by an application of Exercise with

S P T S—
that
lss (8) — (O] <50 (/ K (7) |z (v |) o (3.28)

Since the right side of this equation is increasing in ¢, we may conclude by
summing Eq. (3.28) that

o0
ST sup lynsr (8) = ya (1)) < 8(T) o KOOI < o,
0<t<T
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Therefore, it follows that y, (¢) is uniformly convergent on compact subsets of
[0,00) and therefore y (t) := lim,, oo Y (t) exists and is a continuous function.
Moreover, we may now pass to the limit in Eq. to learn this function y
satisfies Eq. . Indeed,

/ F (7,yn (7)) dz (7) — / F (r,y (7)) dz ()
0 0
< / IF (7,4 (7)) — F (r,y (1) d (7)]
0

< /0 KA(7) lyn (1) =y (1)l [|dz (7)]]

< sup |lyn (1) —
0<r<t

y /0 K (7) |ldz ()] — 0 as n — oo,

Remark 3.17 (Independence of initial guess). In the above proof, we were al-
lowed to choose yq (t) as we pleased. In all cases we ended up with a solution to
the ODE which we already knew to be unique if it existed. Therefore all initial
guesses give rise to the same solution. This can also be see directly. Indeed, if
2o (t) is another continuous path in W and z, (¢) is defined inductively by,

Znt1 (t) == yo —l—/o F (7,2, (7)) dx (1) for n > 0.

Then .
Zn41 (8) = Ynt1 () = /0 [F (7,20 (7)) = F (7, yn (7)) da (7)

and therefore,
[2n+1 (1) = Yns1 @) < /0 1E' (7,20 (7)) = F (7,40 (7)) [|de (7) |
S/O K (1) lzn (1) = yn (7)1 dz (7)] -

Thus it follows from Exercise [3.4] that

oo = @01 < o ([ K@ 12 @) g o0 (1) = o ()] 0 05 o

3.5 Some Linear ODE Results

In this section we wish to consider linear ODE of the form,
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y(t) = / d (7)y () + £ (t) (3.29)

where z (t) € End (W) and f (t) € W are finite variation paths. To put this
in the form considered above, let V := End (W) and define, for y € W, F (y) :
V x W — W by,

F(y)(z, f):=ay+ f forall (z,f) eV xW =End(W) x W.

Then the above equation may be written as,

Notice that

IE () = F )] (@ Pl = llz (y =) < 1l - [ly = o/l
and therefore,
1F(y) = F @) < lly =l

where we use any reasonable norm on V' x W, for example ||(z,w)| = ||z| +
||w]| or ||(z,w)] := max (||z], ||w]|) . Thus the theory we have developed above
guarantees that Eq. has a unique solution which we can construct via
the method of Picard iterates.

Theorem 3.18. The unique solution to Eq. is given by

o0

vO=1O+ X [ ) Ga) ) e ) ),
More generally if 0 < s <t < T, then the unique solution to
t
y(t):/ de (T)y (1) + f(t) fors<t<T (3.30)
is given by
y@)=f@t)+ ,;1 /sgngmgmgt dx (15) dx (Tp—1) dx (Th—2) ... dx (1) f (11) .

(3.31)

Proof. Let us first find the formula for y (¢). To this end, let
t
() () = [ de(r)y (7).
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Then Eq. (3.29) may be written as y — Ay = f or equivalently as,

(I—-A)y=1/

Thus the solution to this equation should be given by,
y=I-A)"f=> A"f. (3.32)
n=0
But

(A7) (t) = / dz (r,) (A" ) () = / dz () / " e (ra1) (AP F) ()

_ /:dx o) [ e [ tr s [ e s )

N /< <o<ra<t dz () dz (Tp—1) dz (T—2) ... dz (1) f (1) (3.33)

and therefore, Eq. (3.31)) now follows from Eq. (3.32) and (3.33).

For those not happy with this argument one may use Picard iterates instead.
So we begin by setting yo (t) = f (t) and then define y, (¢) inductively by,

0=+ [ F () d (. ) (7)
S ' (1) yn () + ()]
= [ @m0,
Therefore,

n (t) =/ dz (7) £ (r) + £ (1

Yo (t) = /:td?ﬂ (m2) y1 (m2) + f (1)
= [arw [ ["ar s+ 1]+ 0

:/< ) <tdx(7'2)dx(7'1)f(7'1)+/ dx (12) f (12) + f (1)
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30 3 The Bounded Variation Theory

and likewise,
ys3 () = / dx (13) dx (12) dz (1) f (T1)
5<71 <12 <713<1
t
TR AT RICE

So by induction it follows that

Yn (1) = Z
k=1

/< e <tdx(7k)~~d$(71)f(71)+f(t).

Letting n — oo making use of the fact that

/ dx (1) .. .dx (11)
s<T1 < <7 <t

< / ldz ()] .- e (1)
s<T1 < <71, <t

n

1 t
i ([ 1ast) (334
we find as before, that
yi) =m0 =10+ [ da (70) .. dw (r) f ().
nee b1V s<m < <<t
| ]

Definition 3.19. For 0 < s <t < T, let Ty (t,s) =1,

7 (t,s) = / dx (1) dz (Th—1) dz (Th—2) ... dx (11) ,and  (3.35)
s<T1 << <t

T (t,8) = T, (t,s) = I+
P PSP B

(3.36)
Ezample 3.20. Suppose that x (t) = tA where A € End (V) , then

/ dz (1) dx (Th—1) dx (Th—2) ... dx (T1)
s<mSoSr, <t

:A"/ AT dTp—1dTp—o...dm
s<T << <t

n!
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dx (1) dx (Tp—1) dx (Th—2) ... dx (11) .

and therefore we may conclude in this case that T (t,s) = e(*=%)4 where

e}

tA tn
—— n
et = E —n!A .

n=0

Theorem 3.21 (Duhamel’s principle I). As a function of t € [s,T] or
s € 10,t], T (¢,s) is of bounded variation and T (t,s) := T7 (t,s) satisfies the
ordinary differential equations,

T (dt,s) =dx ()T (t,s) withT (s,8) =1 (int>s), (3.37)
and
T (t,s) = =T (t,s)dz(s) with T (t,t) =1 (in0<s<t). (3.38)
Moreover, T, obeys the semi-group propertifl]
T(t,s)T (s,u) =T (t,u) forall0 <u<s<t<T,
and the solution to Fq. s given by
v =10 [T s, (339)
In particular when f (t) = yo is a constant we have,
y(t) =yo— T (t,7) yol7=5 = T (t,5) Yo (3.40)

Proof. 1. One may directly conclude that T (¢, s) solves Eq. by ap-
plying Theorem with y (¢) and f (t) now taking values in End (V') with
f(t) = I. Then Theorem asserts the solution to dy (t) = dx (t) y (t) with
y (0) = I is given by T% (¢, s) with T% (¢, s) as in Eq. . Alternatively it is
possible to use the definition of T* (¢, s) in Eq. to give a direct proof the
Eq. holds. We will carry out this style of proof for Eq. and leave
the similar proof of Eq. to the reader if they so desire to do it.

2. Proof of the semi-group property. Simply observe that both ¢ —
T(t,s)T (s,u) and t — T (¢, u) solve the same differential equation, namely,

dy (t) =dx (t)y (t) with y(s) =T (s,u) € End(V),

hence by our uniqueness results we know that T'(¢,s) T (s,u) = T (t,u).
3. Proof of Eq. (3.38). Let T,, (t,s) := T2 (t,s) and observe that

! This is a key algebraic idenitity that we must demand in the rough path theory to
come later.
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t
T, (t,s) = / Ty 1 (t,0) dz (o) for n > 1. (3.41)
Thus if let
N N
TN (t,5) =Y To(t,s) =T+ Tnl(ts),
n=0 n=1

it follows that

N t
TN (¢,s) =T+ Z/ Tp1 (t,0) dz (o)

+ N—1

Sy / ST (to)de(o) =1+ / IO (1,0 di (o). (342
S n=0 s

We already now that TV (¢, s) — T (t, s) uniformly in (¢, s) which also follows
from the estimate in Eq. (3.34]) as well. Passing to the limit in Eq. (3.42) as
N — oo then implies,

T(t,s)z[—i—/tT(t,a)dx(a)

which is the integrated form of Eq. (3.38)) owing to the fundamental theorem
of calculus which asserts that

t
d, / T(t,0)dz (o) = —T (1, 5) dz (s).
S
4. Proof of Eq. (3.39). From Eq. and Eq. (3.41) which reads in

differential form as, T}, (t,do) = —T,—1 (¢, )dx( ), we have,

Z/ (t,do) f (o)

[e.°]

02

/ S T (,0) da (o) £ (o)
n=1

=f(t)—/ T (t.do) f (o).

/ w1 (o) dz (o) £ (o)

3

Page: 31 job: prob

3.5 Some Linear ODE Results 31

Corollary 3.22 (Duhamel’s principle II). Fquation may also be ex-
pressed as,

t
YO =T (t5) f(5)+ [ T () df 1) (3.4
which is one of the standard forms of Duhamel’s principle. In words it says,

£ = solution to the homogeneous eq.
10 = (a2 (0 w30 = 7))

" /t ( solution to the homogeneous eq. )
s \dy(t) =dz(t)y(t) withy(r)=df () )"

Proof. This follows from Eq. (3.39) by integration by parts (you should
modify Exercise below as necessary);

y(t) = F(t) = T* (t,7) f (1) [1=% + / T (t,7) df ()

t
= T (t,5) f (s) + / T (t,7)df (7). (3.44)
]
Exercise 3.5 (Product Rule). Suppose that V is a Banach space and z :

[0,7] — End (V) and y : [0,T7] — End (V) are continuous finite 1 — variation
paths. Show for all 0 < s < t < T that,

t t
sO1(0) 2@y = [ dey@+ [a@drr).  (6a5)
Alternatively, one may interpret this an an integration by parts formula;

/:w(f)dy(r)=x(f)y(r) ::z—/:dxmy(r)

Solution to Exercise (3.5]). For IT € P (s,t) we have,

Tell

=D ) +4m) (y(7-) + Ary) =z (7-) y (7-)]
Tell

=) () Ay + (Arz)y (7-) + (Arz) Aryl. (3.46)

The last term is easy to estimate as,
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32 3 The Bounded Variation Theory

Z (Arzx) Ay

Tell

<> Al 1ALyl < max || Az - > 14l

Tell Tell
< mz?;HATxH -Vi(y) — 0as |II| — 0.
TE

So passing to the limit as |II| — 0 in Eq. (3.46) gives Eq. (3.45)).

Exercise 3.6 (Inverses). Let V be a Banach space and z : [0,7] — End (V)
be a continuous finite 1 — variation paths. Further suppose that S (t,s) €
End (V) is the unique solution to,

S(dt,s) =—S(t,s)dx (t) with S(s,s) =1 € End (V).
Show
S(t,s)T® (t,s) =I=T7%(t,s)S(t,s) foral0 < s <t<T,

that is to say T (t,s) is invertible and T (¢, s)~' may be described as the
unique solution to the ODE,

T% (dt,s)” " = —=T% (dt,s)” " dx (t) with T (s,s)"" = I. (3.47)
Solution to Exercise . Using the product rule we find,
di[S(t, )T (t,s)] = —S(t,s)dx ()T (t,s) + S (t,s)dz (t) T* (t,s) = 0.

Since S (s,s)T* (s,s) = I, it follows that S (t,s)T* (t,s) = I for all 0 < s <
t<T.
For opposite product, let g (¢t) :=T% (t,s) S (¢, ) € End (V) so that

de[g ()] = de [T7 (¢,5) S (¢, 8)] = =T (t,5) S (t,8)dx (t) + dz (t) T" (t,5) S (L, 5)
=dx(t)g(t) — g (t)dx (t) with g(s) = 1.
Observe that g (t) = I solves this ODE and therefore by uniqueness of solu-

tions to such linear ODE we may conclude that ¢ (¢) must be equal to I, i.e.
T (t,8) S (t,s) = 1.

As usual we say that A, B € End (V) commute if
0=[A,B]:= AB — BA. (3.48)

Exercise 3.7 (Commute). Suppose that V is a Banach space and x : [0,T] —
End (V) is a continuous finite 1 — variation paths and f : [0,7] — End (V)
is continuous. If A € End (V) commutes with {z (¢), f(¢t): 0<t <T}, then
A commutes with f;f(T) dx (7) for all 0 < s < t < T. Also show that
[A,T* (s,t)] =0forall 0 <s <t <T.
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Exercise 3.8 (Abelian Case). Suppose that [z (s),z (t)] = 0forall 0 < s,¢ <
T, show
T (t,5) = e@O=2()), (3.49)

Solution to Exercise (3.8]). By replacing x (t) by z (¢t) — x (s) if necessary,
we may assume that x (s) = 0. Then by the product rule and the assumed
commutativity,

dw’;%t) = dz (t) ?n(tz ol

or in integral form, )
x™(t ¢ x (T

n$ : :/s dz (7) (7§>1)!

which shows that ;2" (t) satisfies the same recursion relations as T (t,s).
Thus we may conclude that T (¢,s) = (z (t) — z (s))" /n! and thus,

=1
— il _ n _ (z(t)—=z(s))
T(ts) =) ) —a(s) =e
n=0
as desired.

Exercise 3.9 (Abelian Factorization Property). Suppose that V is a Ba-
nach space and x : [0,7] — End (V) and y : [0,7] — End (V) are continuous
finite 1 — variation paths such that [z (s),y (¢)] =0 for all 0 < s,¢ < T, then

T (5,1) =T (s,t) TY (s,t) forall 0 < s <t < T. (3.50)

Hint: show both sides satisfy the same ordinary differential equations — see the
next problem.

Exercise 3.10 (General Factorization Property). Suppose that V is a Ba-
nach space and z : [0,7] — End (V) and y : [0,7] — End (V) are continuous
finite 1 — variation paths. Show

T*HY (s,t) = T" (s,1) T (s,1),
where .
2= [ 17 ) dy ()T (5,7)
Hint: see the hint for Exercise 3.9

Solution to Exercise (3.10). Let g (t) := T (s,t) " 7% (s,t). Then mak-
ing use of Exercise [3.6] we have,
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dg (t) = T% (s,t)" " (dx (t) + dy (£)) T* Y (s,8) — T" (s,t)" " da (¢) T*HY (s, 1)
=T (s,8) " dy (t) T*FY (s,t)
_ (Tw (s,) " dy () T* (s, t)) T (s,8) " T%+Y (s, 1)
=dz(t)g(t) with g(s) = 1.

Remark 3.23.1f g (t) € End (V) is a C! — path such that g (£)~" is invertible
)"

for all ¢, then t — g (£)~" is invertible and

Lo =g a0

Exercise 3.11. Suppose that ¢ (t) € Aut (V) is a continuous finite variation
path. Show ¢ (£)~" € Aut (V) is again a continuous path with finite variation
and that

dg ()" = —g (1) " dg (1) g ()" (3.51)

Hint: recall that the invertible elements, Aut (V) C End (V), is an open set
and that Aut (V) 2> g — g~! € Aut (V) is a smooth map.

Solution to Exercise . Let V (t) := g(t)"" which is again a finite
variation path by the fundamental theorem of calculus and the fact that
Aut (V) 3 g — g7! € Aut(V) is a smooth map. Moreover we know that
V (t) g (t) = I for all ¢ and therefore by the product rule (dV') g+ Vdg = dI = 0.
Making use of the substitution formula we then find,

Vo =vor [ o= [avinemem ™ == [ viodmem
Replacing V (¢) by ¢ (t)*1 in this equation then shows,

gw*—wm*z—Agwwﬂﬂuﬂ*

which is the integrated form of Eq. (3.51).

Exercise 3.12. Suppose now that B is a Banach algebra and z (t) € B is a
continuous finite variation path. Let

(oo}
X (s,t):= X" (s,8) =1+ Y _ X7 (s,1),
n=1

where

X7 (s,t) := / dx (11) ...dx (1)
s<m <o <t
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Show t — X (s,t) is the unique solution to the ODE,
X (s,dt) = X (s,t)dzx (t) with X (s,s) =1
and that
X (s,t) X (t,u) = X (s,u) forall 0 <s<t<u<T.

Solution to Exercise ([3.12)). This can be deduced from what we have al-
ready done. In order to do this, let y () := R,(;) € End (B) so that for a € B,

oo

Ty(t,s)a:a+2/< 3 dy (1) ...dy(m)a

n=1 ST <t

oo

=a+ ; /sgngmgmgt adz (11) ...dz (1)
=aX (s,t).
Therefore, taking a = 1, we find,
X (s,dt) =TY (dt,s) 1 =dy () TY (t,8) 1 =dy (t) X (s,t) = X (s,t) dz (1)
with X (s,s) =T (s,s)1 = 1. Moreover we also have,

X (s,t) X (t,u) =TY (u,t) X (s,8) =T (u, ) TY (t,5) 1 =T (u,s) 1 = X (s,u).

Alternatively: one can just check all the statements as we did for T (¢, s) .
The main point is that if g (¢) solves dg (t) = g (t) dz (t), then ag (¢) also solves
the same equation.

Remark 3.24. Let A € R or C as the case may be and define,
X2 (s,t) := X (s,t) and X)) (s,t) := X" (5,t) = A"X,, (s,1) . (3.52)

Then the identity in Eq. (3.52) becomes,

o0
Z N X, (s,u) = X2 (s,u) = X2 (s,t) X (¢, u)
n=0
= > MNAX (s,) X, (t,u)
k,l1=0
=D NN Xk (s, 1) Xi (t,u)
n=0 k+l=n
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from which we conclude,
X (s,u) =Y Xi (5,) X (t,u) for n=0,1,2,... (3.53)
k=0

Terry. Lyons refers the identities in Eq. (3.53)) as Chen’s identities. These iden-
tities may be also be deduced directly by looking at the multiple integral ex-
pressions defining X, (s,t) .
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