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1

From Feynman Heuristics to Brownian Motion

In the physics literature one often finds the following informal expression,

dµT (ω) = “
1

Z (T )
e−

1
2

∫ T
0 |ω′(τ)|

2
dτDTω” for ω ∈WT , (1.1)

where WT is the set of continuous paths, ω : [0, T ] → R (or Rd), such that
ω (0) = 0,

DTω = “
∏

0<t≤T

m (dω (t)) ” (m is Lebesgue measure here)

and Z (T ) is a normalization constant such that µT (WT ) = 1.
We begin by giving meaning to this expression. For 0 ≤ s ≤ t ≤ T, let

E[s,t] (ω) :=
∫ t

s

|ω′ (τ)|2 dτ.

If we decompose ω (τ) as σ (τ) + γ (τ) where

σ (τ) := ω (s) +
τ − s
t− s

(ω (t)− ω (s)) and γ (τ) := ω (τ)− σ (τ) ,

then we have, σ′ (τ) = ω(t)−ω(s)
t−s , γ (s) = γ (t) = 0, and hence∫ t

s

σ′ (τ) · γ′ (τ) dτ =
∫ t

s

σ′ (τ) · γ′ (τ) dτ

=
ω (t)− ω (s)

t− s
· (γ (t)− γ (s)) = 0.

Thus it follows that

E[s,t] (ω) = E[s,t] (σ) + E[s,t] (γ) =
∣∣∣∣ω (t)− ω (s)

t− s

∣∣∣∣2 (t− s) + E[s,t] (γ)

=
|ω (t)− ω (s)|2

t− s
+ E[s,t] (γ) . (1.2)

Thus if f (ω) = F
(
ω|[0,s], ω (t)

)
, we will have,

1
Zt

∫
Wt

F
(
ω|[0,s], ω (t)

)
e−

1
2Et(ω)Dtω

=
1
Zt

∫
Wt

F
(
ω|[0,s], ω (t)

)
e−

1
2 [Es(ω)+E[s,t](ω)]Dtω

and now fixing ω|[0,s] and ω (t) and then doing the integral over ω|(s,t) implies,∫
F
(
ω|[0,s], ω (t)

)
e−

1
2 [Es(ω)+E[s,t](ω)]D(s,t)ω

=
∫
F
(
ω|[0,s], ω (t)

)
e
− 1

2

[
Es(ω)+

|ω(t)−ω(s)|2
t−s +E[s,t](γ)

]
D(s,t)γ

= C (s, t)
∫
F
(
ω|[0,s], ω (t)

) e− 1
2Es(ω)

Z (s)
e−

1
2
|ω(t)−ω(s)|2

t−s .

Multiplying this equation by 1
Zt
Dω[0,s] · dω (t) and integrating the result then

implies,∫
Wt

F
(
ω|[0,s], ω (t)

)
dµt (ω)

=
C (s, t)
Zt

∫ [∫
Rd
F
(
ω|[0,s], y

)
e−

1
2
|y−ω(s)|2

t−s dy

]
e−

1
2Es(ω)

Z (s)
Dω[0,s]

=
C (s, t)
Zt

∫
Ws

[∫
Rd
F (ω, y) e−

1
2
|y−ω(s)|2

t−s dy

]
dµs (ω) .

Taking F ≡ 1 in this equation then implies,

1 =
C (s, t)
Zt

∫
Ws

[∫
Rd
e−

1
2
|y−ω(s)|2

t−s dy

]
dµs (ω)

=
C (s, t)
Zt

∫
Ws

[
(2π (t− s))d/2

]
dµs (ω) =

C (s, t)
Zt

(2π (t− s))d/2 .

Thus the heuristic expression in Eq. (1.1) leads to the following Markov prop-
erty for µt, namely.

Proposition 1.1 (Heuristic). Suppose that F : Ws ×Rd → R is a reasonable
function, then for any t ≥ s we have
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Wt

F
(
ω|[0,s], ω (t)

)
dµt (ω)

=
∫
Ws

[∫
Rd
F (ω, y) pt−s (ω (s) , y) dy

]
dµs (ω) ,

where

ps (x, y) :=
(

1
2π (t− s)

)d/2
e−

1
2
|y−x|2
t−s . (1.3)

Corollary 1.2 (Heuristic). If 0 = s0 < s1 < s2 < · · · < sn = T and f :(
Rd
)n → R is a reasonable function, then∫

WT

f (ω (s1) , . . . , ω (sn)) dµT (ω) =
∫

(Rd)n
f (y1, . . . , yn)

n∏
i=1

(
psi−si−1 (yi−1, yi) dyi

)
(1.4)

where by convention, y0 = 0.

Theorem 1.3 (Wiener 1923). For all t > 0 there exists a unique probabil-
ity measure, µt, on Wt, such that Eq. (1.4) holds for all n and all bounded
measurable f :

(
Rd
)n → R.

Definition 1.4. Let Bt (ω) := ω (t) . Then {Bt}0≤t≤T as a process on (WT , µT )
is called Brownian motion. We further write Ef for

∫
WT

f (ω) dµT (ω) .

The following lemma is useful for computational purposes involving Brow-
nian motion and follows readily form from Eq. (1.4).

Lemma 1.5. Suppose that 0 = s0 < s1 < s2 < · · · < sn = t and fi : Rd → R
are reasonable functions, then

E

[
n∏
i=1

fi
(
Bsi −Bsi−1

)]
=

n∏
i=1

E
[
fi
(
Bsi −Bsi−1

)]
, (1.5)

E [f (Bt −Bs)] = E [f (Bt−s)] , (1.6)

and
E [f (Bt)] = Ef

(√
tB1

)
. (1.7)

As an example let us observe that

EBt =
∫
ypt (y) dy = 0,

EB2
t = tEB2

1 = t

∫
y2p1 (y) dy = t · 1,

and for s < t,

E [BtBs] = E [(Bt −Bs)Bs] + EB2
s = E (Bt −Bs) · EBs + s = s

and
E [|Bt −Bs|p] = |t− s|p/2 E [|B1|p] = Cp |t− s|p/2 . (1.8)

1.1 Construction and basic properties of Brownian motion

In this section we sketch one method of constructing Wiener measure ore equiv-
alently Brownian motion. We begin with the existence of a measure νT on the
W̃T :=

∏
0≤s≤T R̄ which satisfies Eq. (1.4) where R̄ is a compactification of R

– for example either one point compactificatoin so that R̄ ∼= S1.

Theorem 1.6 (Kolmogorov’s Existence Theorem). There exists a proba-
bility measure, νT , on W̃T such that Eq. (1.4) holds.

Proof. For a function F (ω) := f (ω (s1) , . . . , ω (sn)) where f ∈ C
(
R̄n,R

)
,

define

I (F ) :=
∫

Rn
f (y1, . . . , yn)

n∏
i=1

(
psi−si−1 (yi−1, yi) dyi

)
.

Using the semi-group property;∫
Rd
pt (x, y) ps (y, z) dy = ps+t (x, z)

along with the fact that
∫

Rd pt (x, y) dy = 1 for all t > 0, one shows that
I (F ) is well defined independently of how we represent F as a “finitely based”
continuous function.

By Tychonoff’s Theorem W̃T is a compact Hausdorff space. By the Stone
Weierstrass Theorem, the finitely based continuous functions are dense inside
of C

(
W̃T

)
. Since |I(F )| ≤ ‖F‖∞ for all finitely based continuous functions, we

may extend I uniquely to a positive continuous linear functional on C
(
W̃T

)
.

An application of the Riesz Markov theorem now gives the existence of the
desired measure, νT .

Theorem 1.7 (Kolmogorov’s Continuity Criteria). Suppose that
(Ω,F , P ) is a probability space and X̃t : Ω → S is a process for t ∈ [0, T ] where
(S, ρ) is a complete metric space. Assume there exists positive constants, ε, β,
and C, such that

E[ρ(X̃t, X̃s)ε] ≤ C |t− s|1+β (1.9)
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for all s, t ∈ [0, T ] . Then for any α ∈ (0, β/ε) there is a modification, X, of X̃
(i.e. P

(
Xt = X̃t

)
= 1 for all t) which is α–Hölder continuous. Moreover, there

is a random variable Kα such that,

ρ(Xt, Xs) ≤ Kα |t− s|α for all s, t ∈ [0, T ] (1.10)

and EKp
α < ∞ for all p < β−αε

1−α . (For the proof of this theorem see Section ??
below.)

Corollary 1.8. Let B̃t : W̃T → R be the projection map, B̃t (ω) = ω (t) . Then
there is a modifications, {Bt} of

{
B̃t

}
for which t→ Bt is α – Hölder contin-

uous νT – almost surely for any α ∈ (0, 1/2) .

Proof. Applying Theorem 1.7 with ε := p and β := p/2 − 1 for any p ∈
(2,∞) shows there is a modification {Bt}t≥0 of

{
B̃t

}
which is almost surely α

– Hölder continuous for any

α ∈ (0, β/ε) =
(

0,
p/2− 1

p

)
= (0, 1/2− 1/p) .

Letting p→∞ shows that {Bt}t≥0 is almost surely α – Hölder continuous for
all α < 1/2.

We will see shortly that these Brownian paths are very rough. Before we
do this we will pause to develope a quatitative measurement of roughness of a
continuous path.



2

p – Variations and Controls

Let (E, d) be a metric space which will usually be assumed to be complete.

Definition 2.1. Let 0 ≤ a < b < ∞. Given a partition Π :=
{a = t0 < t1 < · · · < tn = b} of [a, b] and a function Z ∈ C ([a, b] , E) , let
(ti)− := ti−1, (ti)+ := ti+1, with the convention that t−1 := t0 = a and
tn+1 := tn = T. Furthermore for 1 ≤ p <∞ let

Vp (Z : Π) :=

 n∑
j=1

dp
(
Ztj , Ztj−1

)1/p

=

(∑
t∈Π

dp
(
Zt, Zt−

))1/p

. (2.1)

Furthermore, let P (a, b) denote the collection of partitions of [a, b] . Also let
mesh (Π) := maxt∈Π |t− t−| be the mesh of the partition, Π.

Definition 2.2. and Z ∈ C ([a, b] , E) . For 1 ≤ p < ∞, the p - variation of
Z is;

Vp (Z) := sup
Π∈P(a,b)

Vp (Z : Π) = sup
Π∈P(a,b)

 n∑
j=1

dp
(
Ztj , Ztj−1

)1/p

. (2.2)

Moreover if Z ∈ C ([0, T ] , E) and 0 ≤ a ≤ b ≤ T, we let

ωZ,p (a, b) :=
[
νp
(
Z|[a,b]

)]p = sup
Π∈P(a,b)

n∑
j=1

dp
(
Ztj , Ztj−1

)
. (2.3)

Remark 2.3. We can define Vp (Z) for p ∈ (0, 1) as well but this is not so inter-
esting. Indeed if 0 ≤ s ≤ T and Π ∈ P (0, T ) is a partition such that s ∈ Π,
then

d (Z (s) , Z (0)) ≤
∑
t∈Π

d (Z (t) , Z (t−)) =
∑
t∈Π

d1−p (Z (t) , Z (t−)) dp (Z (t) , Z (t−))

≤ max
t∈Π

d1−p (Z (t) , Z (t−)) · V pp (Z : Π)

≤ max
t∈Π

d1−p (Z (t) , Z (t−)) · V pp (Z) .

Using the uniform continuity of Z (or d (Z (s) , Z (t)) if you wish) we know that
lim|Π|→0 maxt∈Π d1−p (Z (t) , Z (t−)) = 0 and hence that,

d (Z (s) , Z (0)) ≤ lim
|Π|→0

max
t∈Π

d1−p (Z (t) , Z (t−)) · V pp (Z) = 0.

Thus we may conclude Z (s) = Z (0) , i.e. Z must be constant.

Lemma 2.4. Let {ai > 0}ni=1 , then(
n∑
i=1

api

)1/p

is decreasing in p and

ϕ (p) := ln

(
n∑
i=1

api

)
is convex in p.

Proof. Let f (i) = ai and µ ({i}) = 1 be counting measure so that

n∑
i=1

api = µ (fp) and ϕ (p) = lnµ (fp) .

Using d
dpf

p = fp ln f, it follows that and

ϕ′ (p) =
µ (fp ln f)
µ (fp)

and

ϕ′′ (p) =
µ
(
fp ln2 f

)
µ (fp)

−
[
µ (fp ln f)
µ (fp)

]2
.

Thus if we let EX := µ (fpX) /µ (fp) , we have shown, ϕ′ (p) = E [ln f ] and

ϕ′′ (p) = E
[
ln2 f

]
− (E [ln f ])2 = Var (ln f) ≥ 0

which shows that ϕ is convex in p.
Now let us shows that ‖f‖p is decreasing in in p. To this end we compute,
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d

dp

[
ln ‖f‖p

]
=

d

dp

[
1
p
ϕ (p)

]
=

1
p
ϕ′ (p)− 1

p2
ϕ (p)

=
1

p2µ (fp)
[pµ (fp ln f)− µ (fp) lnµ (fp)]

=
1

p2µ (fp)
[µ (fp ln fp)− µ (fp) lnµ (fp)]

=
1

p2µ (fp)

[
µ

(
fp ln

fp

µ (fp)

)]
.

Up to now our computation has been fairly general. The point where µ being
counting measure comes in is that in this case µ (fp) ≥ fp everywhere and
therefore ln fp

µ(fp) ≤ 0 and therefore, d
dp

[
ln ‖f‖p

]
≤ 0 as desired.

Alternative proof that ‖f‖p is decreasing in p. If we let q = p+ r, then

‖a‖qq =
n∑
j=1

ap+rj ≤
(

max
j
aj

)r
·
n∑
j=1

apj ≤ ‖a‖
r
p · ‖a‖

p
p = ‖a‖qp ,

wherein we have used,

max
j
aj =

(
max
j
apj

)1/p

≤

 n∑
j=1

apj

1/p

= ‖a‖p .

Remark 2.5. It is not too hard to see that the convexity of ϕ is equivalent to
the interpolation inequality,

‖f‖ps ≤ ‖f‖
1−s
p0
· ‖f‖sp1 ,

where 0 ≤ s ≤ 1, 1 ≤ p0, p1, and

1
ps

:= (1− s) 1
p0

+ s
1
p1
.

This interpolation inequality may be proved via Hölder’s inequality.

Corollary 2.6. The function Vp (Z) is a decreasing function of p and lnVp (Z)p

is a convex function of p where they are finite. Moreover, for all p0 > 1,

lim
p↓p0

Vp (Z) = Vp0 (Z) . (2.4)

and p→ Vp (Z) is continuous on the set of p’s where Vp (Z) is finite.

Proof. Given Lemma 2.4, it suffices to prove Eq. (2.4) and the conti-
nuity assertion on p → Vp (Z) . Since p → Vp (Z) is a decreasing function,
we know that limp↑p0 Vp (Z) and limp↓p0 Vp (Z) always exists and also that
limp↓p0 Vp (Z) = supp>p0 supΠ Vp (Z : Π) . Therefore,

lim
p↓p0

Vp (Z) = sup
p>p0

sup
Π
Vp (Z : Π) = sup

Π
sup
p>p0

Vp (Z : Π) = sup
Π
Vp0 (Z : Π) = Vp0 (Z)

which proves Eq. (2.4). The continuity of Vp (Z) = exp
(

1
p lnVp (Z)p

)
follows

directly from the fact that lnVp (Z)p is convex in p and that convex functions
are continuous (where finite).

Here is a proof for this case. Let ϕ (p) := lnVp (Z)p , 1 ≤ p0 < p1 such that
Vp0 (Z) <∞, and ps := (1− s) p0 + sp1, then

ϕ (ps) ≤ (1− s)ϕ (p0) + sϕ (p1) .

Letting s ↑ 1 then implies ps ↑ p1 and ϕ (p1−) ≤ ϕ (p1) , i.e. Vp1− ≤ Vp1 ≤
Vp1−. Therefore Vp1− = Vp1 and along with Eq. (2.4) proves the continuity of
p→ Vp (Z) .

2.1 Computing Vp (x)

How do we actually compute Vp (x) := Vp (x; 0, T ) for a given path x ∈
C ([0, T ] ,R), even a very simple one? Suppose x is piecewise linear, with cor-
ners at the points 0 = s0, s1, . . . , sm = T. Intuitively it would seem that the
p-variation should be given by choosing the corners to be the partition points.
That is, if S = {s0, . . . , sn} is the partition of corner points, we might think
that Vp (x) = Vp(x;S). Well, first we would have to leave out any corner which
is not a local extremum (because of Lemma 2.8 below). But even then, this is
not generally true as is seen in Example 2.9 below.

Lemma 2.7. For all a, b ≥ 0 and p ≥ 1,

(a+ b)p ≥ ap + bp (2.5)

and the inequality is strict if a, b > 0 and p > 1.

Proof. Observe that (a+ b)p ≥ ap + bp happens iff

1 ≥
(

a

a+ b

)p
+
(

b

a+ b

)p
which obviously holds since(

a

a+ b

)p
+
(

b

a+ b

)p
≤ a

a+ b
+

b

a+ b
= 1.

Moreover the latter inequality is strict if if a, b > 0 and p > 1.
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2.1 Computing Vp (x) 11

Lemma 2.8. Let x be a path, and D = {t0, . . . , tn} be a partition. Suppose
x is monotone increasing (decreasing) on [ti−1, ti+1]. Then if D′ = D\{ti},
Vp (x : D′) ≥ Vp (x : D). If x is strictly increasing and p > 1, the inequality is
strict.

Proof. From Eq. (2.5) it follows

Vp (x : D′)p − Vp (x : D)p = (x(ti+1)− x(ti−1))p − (x(ti+1)− x(ti))p − (x(ti)− x(ti−1))p

=
(
∆tix+∆ti+1x

)p − (∆tix)p −
(
∆ti+1x

)p ≥ 0

and the inequality is strict if ∆tix > 0, ∆ti+1x > 0 and p > 1.
In other words, on any monotone increasing segment, we should not include

any intermediate points, because they can only hurt us.

Example 2.9. Consider a path like the following: If we partition [0, T ] at the

corner points, then

Vp (x : S)p = (
1
2

+ ε)p + (2ε)p + (
1
2

+ ε)p ≈ 2(
1
2

)p < 1

by taking ε small. On the other hand, taking the trivial partition D = {0, T},
Vp (x : D) = 1, so Vp (x : S) < 1 ≤ Vp(x) and in this case using all of local
minimum and maximum does not maximize the p – variation.

The clean proof of the following theorem is due to Thomas Laetsch.

Theorem 2.10. If x : [0, T ] → R having only finitely many local extremum in
(0, T ) located at {s1 < · · · < sn−1} . Then

Vp (x) = sup {Vp (x : D) : {0, T} ⊂ D ⊂ S} ,

where S = {0 = s0 < s1 < · · · < sn = T}.

Proof. Let D = {0 = t0 < t1 < · · · < tr = T} ∈ P (0, T ) be an arbitrary
partition of [0, T ] . We are going to prove by induction that there is a partition
Π ⊂ S such that Vp (x : D) ≤ Vp (x : Π) . The proof will be by induction on
n := # (D \ S) . If n = 0 there is nothing to prove. So let us now suppose that
the theorem holds at some level n ≥ 0 and suppose that # (D \ S) = n+ 1. Let
1 ≤ k < r be chosen so that tk ∈ D\S. If x (tk) is between x (tk−1) and x (tk+1)
(i.e. (x (tk−1) , x (tk) , x (tk+1)) is a monotonic triple), then according Lemma
2.8 we will have Vp (x : D) ≤ Vp (x : D \ {tk}) and since # [(D \ {tk}) \ S] = n,
the induction hypothesis implies there exists a partition, Π ⊂ S such that

Vp (x : D) ≤ Vp (x : D \ {tk}) ≤ Vp (x : Π) .

Hence we may now assume that either x (tk) < min (x (tk−1) , x (tk+1)) or
x (tk) > max (x (tk−1) , x (tk+1)) . In the first case we let t∗k ∈ (tk−1, tk+1) be a
point where x|[tk−1,tk+1] has a minimum and in the second let t∗k ∈ (tk−1, tk+1)
be a point where x|[tk−1,tk+1] has a maximum. In either case ifD∗ := (D \ {tk})∪
{t∗k} we will have Vp (x : D) ≤ Vp (x : D∗) and # (D∗ \ S) = n. So again the
induction hypothesis implies there exists a partition Π ⊂ S such that

Vp (x : D) ≤ Vp (x : D∗) ≤ Vp (x : Π) .

From these considerations it follows that

Vp (x : D) ≤ sup {Vp (x : Π) : Π ∈ P (0, T ) s.t. Π ⊂ S}

and therefore

Vp (x) = sup {Vp (x : D) : D ∈ P (0, T )}
≤ sup {Vp (x : Π) : Π ∈ P (0, T ) s.t. Π ⊂ S} ≤ Vp (x) .

Let us now suppose that x is (say) monotone increasing (not strictly) on
[s0, s1], monotone decreasing on [s1, s2], and so on. Thus s0, s2, . . . are local
minima, and s1, s3, . . . are local maxima. (If you want the reverse, just replace
x with −x, which of course has the same p-variation.)

Definition 2.11. Say that s ∈ [0, T ] is a forward maximum for x if x(s) ≥
x(t) for all t ≥ s. Similarly, s is a forward minimum if x(s) ≤ x(t) for all
t ≥ s.

Definition 2.12. Suppose x is piecewise monotone, as above, with extrema
{s0, s1, . . . }. Suppose further that s2, s4, . . . are not only local minima but also
forward minima, and that s1, s3, . . . are both local and forward maxima. Then
we will say that x is jog-free.

Note that s0 = 0 does not have to be a forward extremum. This is in order
to admit a path with x(0) = 0 which can change signs.
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Here is an example.

Remark 2.13. Here is another way to state the jog-free condition. Let x be
piecewise monotone with extrema s0, s1, . . . . Let ξi = |x(si+1)− x(si)| . Then
x is jog-free iff ξ1 ≥ ξ2 ≥ . . . . The idea is that the oscillations are shrinking.
(Notice that we don’t need ξ0 ≥ ξ1; this is because s0 = 0 is not required to be
a forward extremum.)

Remark 2.14. It is also okay if s1, s2, . . . are backwards extrema; this corre-
sponds to the oscillations getting larger. Just reverse time, replacing x(t) by
x(T − t), which again doesn’t change the p-variation. Note that if ξi are as
above, this corresponds to having ξ0 ≤ ξ1 ≤ ξ2 ≤ . . . (note that ξ0 is included
now, but ξm−1 would not be). This case seems less useful, however.

Lemma 2.15. Let x be jog-free with extrema s0, . . . , sm. Let D = {t0, . . . , tn}
be any partition not containing all the sj. Then there is some sj /∈ D such that
if D′ = D ∪ {sj}, Vp (x : D′) ≥ Vp (x : D).

Proof. Let sj be the first extremum not contained in D (note s0 = 0 ∈ D
already, so j is at least 1 and sj is also a forward extremum). Let ti be the last
element of D less than sj . Note that sj−1 ≤ ti < sj < ti+1.

Now x is monotone on [sj−1, sj ]; say WLOG it’s monotone increasing, so
that sj is a local maximum and also a forward maximum. Since ti ∈ [sj−1, sj ],
where x is monotone increasing, x(sj) ≥ x(ti). And since sj is a forward maxi-
mum, x(sj) ≥ x(ti+1).

Therefore we have

x(sj)− x(ti) ≥ x(ti+1)− x(ti)
x(sj)− x(ti+1) ≥ x(ti)− x(ti+1).

One of the quantities on the right is equal to |x(ti+1)− x(ti)|, and so it follows
that

|x(sj)− x(ti)|p + |x(sj)− x(ti+1)|p ≥ |x(ti+1)− x(ti)|p

since one of the terms on the left is already ≥ the term on the right. This shows
that Vp (x : D′)p ≥ Vp (x : D)p.

In other words, we should definitely include the extreme points, because
they can only help.

Putting these together yields the desired result.

Proposition 2.16. If x is jog-free with extrema S = {s0, . . . , sm}, then Vp(x) =
Vp (x : S) = (

∑
ξpi )1/p.

Proof. Fix ε > 0, and let D be a partition such that Vp (x : D) ≥ Vp(x)− ε.
By repeatedly applying Lemma 2.15, we can add the points of S to D one
by one (in some order), and only increase the p-variation. So Vp (x : D ∪ S) ≥
Vp (x : D). Now, if t ∈ D\S, it is inside some interval [sj , sj+1] on which x is
monotone, and so by Lemma 2.8 t can be removed from D ∪ S to increase the
p-variation. Removing all such points one by one (in any order), we find that
Vp (x : S) ≥ Vp (x : D ∪ S). Thus we have Vp (x : S) ≥ Vp (x : D) ≥ Vp(x) − ε;
since ε was arbitrary we are done.

Notice that we only considered the case of jog-free paths with only finitely
many extrema. Of course, in order to get infinite p-variation for any p we would
need infinitely many extrema. Let’s just check that the analogous result holds
there.

Proposition 2.17. Suppose we have a sequence s0, s1, . . . increasing to T ,
where x is alternately monotone increasing and decreasing on the intervals
[sj , sj+1]. Suppose also that the sj are forward extrema for x. Letting ξj =
|x(sj+1)− x(sj)| as before, we have

Vp(x) =

 ∞∑
j=0

ξpj

1/p

.
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2.2 Brownian Motion in the Rough 13

Actually, the extreme points sj can converge to some earlier time than T ,
but x will have to be constant after that time.

Proof. For any m, we have
∑m
j=0 ξ

p
j = Vp (x : D)p for D = {s0, . . . , sm+1},

so Vp(x)p ≥
∑m
j=0 ξ

p
j . Passing to the limit, Vp(x)p ≥

∑∞
j=0 ξ

p
j .

For the reverse inequality, let D = {0 = t0, t1, . . . , tn = T} be a partition
with Vp (x : D) ≥ Vp(x) − ε. Choose m so large that sm > tn−1. Let S =
{s0, . . . , sm, T}, then by the same argument as in Proposition 2.16 we find that
Vp (x : S) ≥ Vp (x : D). (Previously, the only way we used the assumption that S
contained all extrema sjwas in order to have every ti ∈ D\S contained in some
monotone interval [sj , sj+1]. That is still the case here; we just take enough sj ’s
to ensure that we can surround each ti. We do not need to surround tn = T ,
since it is already in S.)

But Vp (x : S)p =
∑m−1
j=0 ξpj ≤

∑∞
j=0 ξ

p
j , and so we have that ∞∑

j=0

ξpj

1/p

≥ Vp (x : D) ≥ Vp(x)− ε.

ε was arbitrary and we are done.

2.2 Brownian Motion in the Rough

Corollary 2.18. For all p > 2 and T <∞, Vp
(
B|[0,T ]

)
<∞ a.s. (We will see

later that Vp
(
B|[0,T ]

)
=∞ a.s. for all p < 2.)

Proof. By Corollary 1.8, there exists Kp <∞ a.s. such that

|Bt −Bs| ≤ Kp |t− s|1/p for all 0 ≤ s, t ≤ T. (2.6)

Thus we have∑
i

|∆iB|p ≤
∑
i

(
Kp |ti − ti−1|1/p

)p
≤
∑
i

Kp
p |ti − ti−1| = Kp

pT

and therefore, Vp
(
B|[0,T ]

)
≤ Kp

pT <∞ a.s.

Proposition 2.19 (Quadratic Variation). Let {Πm}∞m=1 be a sequence of
partition of [0, T ] such that limm→∞ |Πm| = 0 and define Qm := V 2

2 (B : Πm) .
Then

lim
m→∞

E
[
(Qm − T )2

]
= 0 (2.7)

and if
∑∞
m=1 mesh (Πm) < ∞ then limm→∞Qm = T a.s. This result is often

abbreviated by the writing, dB2
t = dt.

Proof. Let N be an N(0, 1) random variable, ∆t := t−t−, ∆tB := Bt−Bt−
and observe that ∆tB ∼

√
∆tN. Thus we have,

EQm =
∑
t∈Πm

E (∆tB)2 =
∑
t∈Πm

∆t = T.

Let us define

Cov (A,B) := E [AB]− EA · EB and

Var (A) := Cov (A,A) = EA2 − (EA)2 = E
[
(A− EA)2

]
.

and observe that

Var

(
n∑
i=1

Ai

)
=

n∑
i=1

Var (Ai) +
∑
i 6=j

Cov (Ai, Aj) .

As Cov (∆tB,∆sB) = 0 if s 6= t, we may use the above computation to con-
clude,

Var(Qm) =
∑
t∈Π

Var((∆tB)2) =
∑
t∈Π

Var(∆t ·N2)

= Var(N2)
∑
t∈Π

(∆t)2 ≤ Var(N2) |Πm|
∑
t∈Π

∆t

= T ·Var(N2) |Πm| → 0 as m→∞.

(By explicit Gaussian integral computations,

Var(N2) = EN4 −
(
EN2

)2
= 3− 1 = 2 <∞.)

Thus we have shown

lim
m→∞

E
[
(Qm − T )2

]
= lim
m→∞

E
[
(Qm − EQ)2

]
= lim
m→∞

Var(Qm) = 0.

If
∑∞
m=1 |Πm| <∞, then

E

[ ∞∑
m=1

(Qm − T )2
]

=
∞∑
m=1

E (Qm − T )2 =
∞∑
m=1

Var(Qm)

≤ Var(N2) · T ·
∞∑
m=1

mesh(Πm) <∞

from which it follows that
∑∞
m=1 (Qm − T )2 <∞ a.s. In particular (Qm−T )→

0 almost surely.
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14 2 p – Variations and Controls

Proposition 2.20. If p > q ≥ 1 and Vq (Z) < ∞, then lim|Π|→0 Vp (Z : Π) =
0.

Proof. Let Π ∈ P (0, T ) , then

V pp (Z : Π) =
∑
t∈Π

dp (Z (t) , Z (t−)) =
∑
t∈Π

dp−q (Z (t) , Z (t−)) dq (Z (t) , Z (t−))

≤ max
t∈Π

dp−q (Z (t) , Z (t−)) ·
∑
t∈Π

dq (Z (t) , Z (t−))

≤ max
t∈Π

dp−q (Z (t) , Z (t−)) · V qq (Z : Π)

≤ max
t∈Π

dp−q (Z (t) , Z (t−)) · V qq (Z) .

Thus, by the uniform continuity of Z|[0,T ] we have

lim sup
|Π|→0

Vp (Z : Π) ≤ lim sup
|Π|→0

max
t∈Π

dp−q (Z (t) , Z (t−)) · V qq (Z) = 0.

Corollary 2.21. If p < 2, then Vp
(
B|[0,T ]

)
=∞ a.s.

Proof. Choose partitions, {Πm} , of [0, T ] such that limm→∞Qm = T a.s.
where Qm := V 2

2 (B : Πm) and let Ω0 := {limm→∞Qm = T} so that P (Ω0) =
1. If Vp

(
B|[0,T ] (ω)

)
<∞ for then by Proposition 2.20,

lim
m→∞

Qm (ω) = lim
m→∞

V 2
2 (B (ω) : Πm) = 0

and hence ω /∈ Ω0, i.e.
{
Vp
(
B|[0,T ] (·)

)
<∞

}
⊂ Ωc0. Therefore Ω0 ⊂{

Vp
(
B|[0,T ] (·)

)
=∞

}
and hence

P
({
Vp
(
B|[0,T ] (·)

)
=∞

})
≥ P (Ω) = 1.

Fact 2.22 If {Bt}t≥0 is a Brownian motion, then

P (Vp (B) <∞) =
{

1 if p > 2
0 if p ≤ 2 .

See for example [7, Exercise 1.14 on p. 36].

Corollary 2.23 (Roughness of Brownian Paths). A Brownian motion,
{Bt}t≥0 , is not almost surely α – Hölder continuous for any α > 1/2.

Proof. According to Proposition 2.19 we may choose partition, Πm, such
that mesh (Πm) → 0 and Qm → T a.s. If B were α – Hölder continuous for
some α > 1/2, then

Qm =
∑
t∈Πm

(∆tB)2 ≤ C
∑
t∈Πm

(∆t)2α ≤ C max
(

[∆t]2α−1
) ∑
t∈Πm

∆t

≤ C [|Πm|]2α−1
T → 0 as m→∞

which contradicts the fact that Qm → T as m→∞.

2.3 The Bounded Variation Obstruction

Proposition 2.24. Suppose that Z (t) is a real continuous function such that
Z0 = 0 for simplicity. Define∫ T

0

f (τ) dZ (τ) := −
∫ T

0

ḟ (τ)Z (t) dτ + f (t)Z (t) |T0

whenever f is a C1 – function. If there exists, C <∞ such that∣∣∣∣∣
∫ T

0

f (τ) dZ (τ)

∣∣∣∣∣ ≤ C · max
0≤τ≤T

|f (τ)| , (2.8)

then V1 (Z) < ∞ (See Definition 2.2 above) and the best possible choice for C
in Eq. (2.8) is V1 (Z) .

Proof. Given a partition, Π := {0 = t0 < t1 < · · · < tn = T} be a partition
of [0, T ] , {αk}nk=1 ⊂ R, and f (t) := α11{0} +

∑n
k=1 αk1(tk−1,tk]. Choose fm (t)

in C1 ([0, T ] ,R) “well approximating” f (t) as in Figure 2.3. It then is fairly

easy to show,
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2.4 Controls 15∫ T

0

ḟm (τ)Z (t) dτ →
n−1∑
k=1

(αk+1 − αk)Z (tk)

and therefore,

lim
m→∞

∫ T

0

fm (t) dZ (t) = −
n−1∑
k=1

(αk+1 − αk)Z (tk) + αnZ (tn)− α1Z (t0)

=
n∑
k=1

αk (Z (tk)− Z (tk−1)) .

Therefore we have,∣∣∣∣∣
n∑
k=1

αk (Z (tk)− Z (tk−1))

∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣
∫ T

0

fm (τ) dZ (τ)

∣∣∣∣∣
≤ C · lim sup

m→∞
max

0≤τ≤T
|fm (τ)| = C max

k
|αk| .

Taking αk = sgn(Z (tk) − Z (tk−1)) for each k, then shows∑n
k=1 |Z (tk)− Z (tk−1)| ≤ C. Since this holds for any partition Π, it

follows that V1 (Z) ≤ C.
If V1 (Z) <∞, then∫ T

0

ḟ (τ)Z (t) dτ = −
∫ T

0

f (t) dλZ (t) + f (t)Z (t) |T0

where λZ is the Lebesgue Stieltjes measure associated to Z. From this identity
and integration by parts for such finite variation functions, it follows that∫ T

0

f (t) dZ (t) =
∫ T

0

f (t) dλZ (t)

and ∣∣∣∣∣
∫ T

0

f (t) dZ (t)

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

f (t) dλZ (t)

∣∣∣∣∣ ≤
∫ T

0

|f (t)| d ‖λZ‖ (t)

≤ max
0≤τ≤T

|f (τ)| · ‖λZ‖ ([0, T ]) = V1 (Z) · max
0≤τ≤T

|f (τ)|

Therefore C can be taken to be V1 (Z) in Eq. (2.8) and hence V1 (Z) is the best
possible constant to use in this equation.

Combining Fact 2.22 with Proposition 2.24 explains why we are going to
have trouble defining

∫ t
0
fsdBs when B is a Brownian motion. However, one

might hope to use Young’s integral in this setting.

Theorem 2.25 (L. C. Young 1936). Suppose that p, q > 0 with 1
p + 1

q =: θ >
1. Then there exists a constant, C (θ) <∞ such that∣∣∣∣∣

∫ T

0

f (t) dZ (t)

∣∣∣∣∣ ≤ C (θ) (‖f‖∞ + Vq (f)) · Vp (Z)

for all f ∈ C1. Thus if Vp (Z) < ∞ the integral extends to those f ∈ C ([0, T ])
such that Vq (f) <∞.

Unfortunately, Young’s integral is still not sufficiently general to allow us to
solve the typical SDE that we would like to consider. For example, consider the
“simple” SDE,

ẏ (t) = B (t) Ḃ (t) with y (0) = 0.

The solution to this equation should be,

y (T ) =
∫ T

0

B (t) dB (t)

which still does not make sense as a Young’s integral when B is a Brownian
motion because for any p > 2, 1

p + 1
p =: θ < 1. For more on this point view see

the very interesting work of Terry Lyons on “rough path analysis,” [4].

2.4 Controls

Notation 2.26 (Controls) Let

∆ = {(s, t) : 0 ≤ s ≤ t ≤ T}.

A control, is a continuous function ω : ∆→ [0,∞) such that

1. ω(t, t) = 0 for all t ∈ [0, T ],
2. ω is super-additive, i.e., for all s ≤ t ≤ v we have

ω(s, t) + ω(t, v) ≤ ω(s, v). (2.9)

Remark 2.27. If ω is a control then and ω (s, t) is increasing in t and decreasing
in s for (s, t) ∈ ∆. For example if s ≤ σ ≤ t, then ω (s, σ) + ω (σ, t) ≤ ω (s, t)
and therefore, ω (σ, t) ≤ ω (s, t) . Similarly if s ≤ t ≤ τ, then ω (s, t) +ω (t, τ) ≤
ω (s, τ) and therefore ω (s, t) ≤ ω (s, τ) .

Lemma 2.28. If ω is a control and ϕ ∈ C ([0,∞)→ [0,∞)) such that ϕ (0) = 0
and ϕ is convex and increasing1, then ϕ ◦ ω is also a control.
1 The assumption that ϕ is increasing is redundant here since we are assuming ϕ′′ ≥ 0

and we may deduce that ϕ′ (0) ≥ 0, it follows that ϕ′ (x) ≥ 0 for all x. This assertion
also follows from Eq. (2.11).
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16 2 p – Variations and Controls

Proof. We must show ϕ ◦ ω is still superaditive. and this boils down to
showing if 0 ≤ a, b, c with a+ b ≤ c, then

ϕ (a) + ϕ (b) ≤ ϕ (c) .

As ϕ is increasing, it suffices to show,

ϕ (a) + ϕ (b) ≤ ϕ (a+ b) . (2.10)

Making use of the convexity of ϕ, we have,

ϕ (b) = ϕ

(
a

a+ b
· 0 +

b

a+ b
(a+ b)

)
≤ a

a+ b
ϕ (0) +

b

a+ b
ϕ (a+ b) =

b

a+ b
ϕ (a+ b)

and interchanging the roles of a and b gives,

ϕ (a) ≤ a

a+ b
ϕ (a+ b) . (2.11)

.

Adding these last two inequalities then proves Eq. (2.10).

Example 2.29. Suppose that u (t) is any increasing continuous function of t,
then ω (s, t) := u (t)− u (s) is a control which is in fact additive, i.e.

ω(s, t) + ω(t, v) = ω(s, v) for all s ≤ t ≤ v.

So for example ω (s, t) = t−s is an additive control and for any p > 1, ω (s, t) =
(t− s)p or more generally, ω (s, t) = (u (t)− u (s))p is a control.

Lemma 2.30. Suppose that ω is a control, p ∈ [1,∞), and Z ∈ C ([0, T ] , E) is
a function satisfying,

d (Zs, Zt) ≤ ω (s, t)1/p for all (s, t) ∈ ∆,

then V pp (Z) ≤ ω (0, T ) <∞. More generally,

ωp,Z (s, t) := V pp
(
Z|[s,t]

)
≤ ω (s, t) for all (s, t) ∈ ∆.

Proof. Let (s, t) ∈ ∆ and Π ∈ P ([s, t]) , then using the superadditivity of
ω we find

V pp
(
Z|[s,t] : Π

)
=
∑
t∈Π

dp
(
Zt, Zt−

)
≤
∑
t∈Π

ω
(
Zt, Zt−

)
≤ ω (s, t) .

Therefore,

ωp,Z (s, t) := V pp
(
Z|[s,t]

)
= sup
Π∈P([s,t])

V pp
(
Z|[s,t] : Π

)
≤ ω (s, t) .

Notation 2.31 Given o ∈ E and p ∈ [1,∞), let

Cp([0, T ] , E) := {Z ∈ C ([0, T ] , E) : Vp (Z) <∞} and

C0,p([0, T ] , E) := {Z ∈ Cp([0, T ] , E) : Z (0) = o} .

Lemma 2.32. Let Z ∈ Cp([0, T ] , E) for some p ∈ [1,∞) and let ω := ωZ,p :
∆→ [0,∞) defined in Eq. (2.3). Then ω is superadditive. Furthermore if p = 1,
ω is additive, i.e. Equality holds in Eq. (2.9).

Proof. If 0 ≤ u ≤ s ≤ v ≤ T and Π1 ∈ P (u, s) , Π2 ∈ P (s, v) , then
Π1 ∪Π2 ∈ P (u, v) . Thus we have,

V pp (X : Π1) + V pp (X : Π2) = V pp (X : Π1 ∪Π2) ≤ ω (u, v) .

Taking the supremum over all Π1 and Π2 then implies,

ω (u, s) + ω (s, v) ≤ ω (u, v) for all u ≤ s ≤ v,

i.e. ω is superaditive.
In the case p = 1, it is easily seen using the triangle inequality that if

Π1, Π2 ∈ P (s, t) and Π1 ⊂ Π2, then V1 (X : Π1) ≤ V1 (X,Π2) . Thus in co-
muting the sup of V1 (X : Π) over all partition in P (s, t) it never hurts to add
more points to a partition. Using this remark it is easy to show,

ω (u, s) + ω (s, v) = sup
Π1∈P(u,s),Π2∈P(s,v)

[V1 (X : Π1) + V1 (X : Π2)]

= sup
Π1∈P(u,s),Π2∈P(s,v)

V1 (X : Π1 ∪Π2)

= sup
Π∈P(u,v)

V1 (X : Π) = ω (u, v)

as desired.

Lemma 2.33. Let Z ∈ Cp([0, T ] , E) for some p ∈ [1,∞), ω := ωZ,p : ∆ →
[0,∞) defined in Eq. (2.3), (a, b) ∈ ∆, Π ∈ P (a, b) , and

ε := ω(a, b)− V pp (Z : Π) ≥ 0.

Then for any Π ′ ∈ P (a, b) with Π ′ ⊂ Π, we have∑
t∈Π′

[
ω (t−, t)− V pp (Z : Π ∩ [t , t])

]
≤ ε. (2.12)

In particular, if (α, β) ∈ ∆ ∩Π2 then

ω(α, β) ≤ V pp (Z : Π ∩ [α, β]) + ε. (2.13)
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2.4 Controls 17

Proof. Equation (2.12) is a simple consequence of the superadditivity of ω
(Lemma 2.32) and the identity,∑

t∈Π′
V pp (Z : Π ∩ [t , t]) = V pp (Z : Π).

Indeed, using these properties we find,∑
t∈Π′

[
ω (t−, t)− V pp (Z : Π ∩ [t , t])

]
=
∑
t∈Π′

ω (t−, t)− V pp (Z : Π)

≤ ω (a, b)− V pp (Z : Π) = ε.

Lemma 2.34. Suppose that Z ∈ Cp([0, T ] , E) for some p ∈ [1,∞) and ε > 0 is
given. Then there exists δ > 0 such that, for every Π ⊂⊂ [0, T ] and u ∈ [0, T ]
such that dist (u,Π) < δ we have,∣∣V pp (Z : Π)− V pp (Z : Π ∪ {u})

∣∣ < ε.

Proof. Let ρ (s, t) := dp (Z (s) , Z (t)) and choose (by the uniform continu-
ity of ρ) δ > 0 such that |ρ (s, t)− ρ (u, v)| < ε/2 provided |(s, t)− (u, v)| < δ.
Suppose that Π = {t0 < t1 < · · · < tn} ⊂ [0, T ] and u ∈ [0, T ] such that
dist (u,Π) < δ. There are now three case to consider, u ∈ (t0, tn) , u < t0
and u > t1. In the first case, suppose that ti−1 < u < ti and that (for the sake
of definiteness) that |ti − u| < δ, then∣∣V pp (Z : Π)− V pp (Z : Π ∪ {u})

∣∣ = |ρ (ti−1, ti)− ρ (ti−1, u)− ρ (u, ti)|
≤ |ρ (ti−1, ti)− ρ (ti−1, u)|+ |ρ (u, ti)− ρ (ti, ti)| < ε.

The second and third case are similar. For example if u < t0, we will have,∣∣V pp (Z : Π ∪ {u})− V pp (Z : Π)
∣∣ = ρ (u, t0) = ρ (u, t0)− ρ (t0, t0) < ε/2.

Theorem 2.35 (The variation control). Let p ∈ [1,∞) and suppose that
Z ∈ Cp([0, T ] , E). Then ωZ,p : ∆ → [0,∞) defined in Eq. (2.3) is a control
satisfying, d (Z (s) , Z (t)) ≤ ωZ,p (s, t)1/p for all (s, t) ∈ ∆.

Proof. Let ω (s, t) := ωZ,p (s, t) and ρ (s, t) := dp (Z (s) , Z (t)) . It is clear
by the definition of ω, the ω (t, t) = 0 for all t and we have already seen in
Lemma 2.32 that ω is superadditive. So to finish the proof we must show ω is
continuous.

Using Remark 2.27, we know that ω (s, t) is increasing in t and decreas-
ing in s and therefore ω (u+, v−) = lims↓u,t↑v ω (s, t) and ω (u−, v+) =
lims ↑u,,t↓v ω (s, t) exists and satisfies,

ω (u+, v−) ≤ ω (u, v) ≤ ω (u−, v+) . (2.14)

The main crux of the continuity proof is to show that the inequalities in Eq.
(2.14) are all equalities.

1. Suppose that ε > 0 is given and δ > 0 is chosen as in Lemma 2.34 and
suppose that u < s < t < v with |s− u| < δ and |v − t| < δ. Further let
Π ∈ P (u, v) be a partition of [u, v] , then according to Lemma 2.34,

V pp (Z : Π) ≤ V pp (Z : Π ∪ {s, t}) + 2ε

= ρ (u, s) + ρ (t, v) + V pp (Z : Π ∩ [s, t] ∪ {s, t}) + 2ε

≤ ρ (u, s) + ρ (t, v) + ω (s, t) + 2ε.

Letting s ↓ u and t ↑ v in this inequality shows,

V pp (Z : Π) ≤ ω (u+, v−) + 2ε

and then taking the supremum over Π ∈ P (u, v) and then letting ε ↓ 0 shows
ω (u, v) ≤ ω (u+, v−) . Combined this with the first inequality in Eq. (2.14)
shows, ω (u+, v−) = ω (u, v) .

2. We will now show ω (u, v) = ω (u−, v+) by showing ω (u−, v+) ≤ ω (u, v) .
Let ε > 0 and δ > 0 be as in Lemma 2.34 and suppose that s < u and t > v
with |u− s| < δ and |t− v| < δ. Let us now choose a partition Π ∈ P (s, t) such
that

ω (s, t) ≤ V pp (Z : Π) + ε.

Then applying Lemma 2.34 gives,

ω (s, t) ≤ V pp (Z : Π1) + 3ε

where Π1 = Π ∪ {u, v} . As above, let u− and v+ be the elements in Π1 just
before u and just after v respectively. An application of Lemma 2.33 then shows,

ω (u−, v+) ≤ ω (u−, v+) ≤ V pp (Z : Π1 ∩ [u−, v+]) + 3ε

= V pp (Z : Π1) + ρ (u−, u) + ρ (v, v+) + 3ε

≤ ω (u, v) + 5ε.

As ε > 0 was arbitrary we may conclude ω (u−, v+) ≤ ω (u, v) which completes
the proof that ω (u−, v+) = ω (u, v) .

I now claim all the other limiting directions follow easily from what we have
proved. For example,
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18 2 p – Variations and Controls

ω (u, v) ≤ ω (u, v+) ≤ ω (u−, v+) = ω (u, v) =⇒ ω (u, v+) = ω (u, v) ,
ω (u, v) = ω (u+, v−) ≤ ω (u, v−) ≤ ω (u, v) =⇒ ω (u, v−) = ω (u, v) ,

and similarly, ω (u±, v) = ω (u, v) . We also have,

ω (u, v) = ω (u+, v−) ≤ lim inf
s ↓u, t ↓v

ω (s, t) ≤ lim sup
s ↓u, t ↓v

ω (s, t) ≤ ω (u−, v+) = ω (u, v)

which shows ω (u+, v+) = ω (u, v) and

ω (u, v) = ω (u+, v−) ≤ lim inf
s ↑u, t ↑v

ω (s, t) ≤ lim inf
s ↑u, t ↑v

ω (s, t) ≤ ω (u−, v+) = ω (u, v)

so that ω (u−, v−) = ω (u, v) .

Proposition 2.36 (See [2, Proposition 5.15 from p. 83.]). Let (E, d) be
a metric space, and let x : [0, T ] → E be a continuous path. Then x is of
finite p-variation if and only if there exists a continuous increasing (i.e. non
– decreasing) function h : [0, T ] →

[
0, V pp (Z)

]
and a 1/p – Hölder path g :[

0, V pp (Z)
]
→ E such that such that x = g ◦ h. More explicitly we have,

d (g (v) , g (u)) ≤ |v − u|1/p for all u, v ∈
[
0, V pp (Z)

]
. (2.15)

Proof. Let ω (s, t) := ωp,x (s, t) = V pp
(
x|[s,t]

)
be the control associated to x

and define h (t) := ω (0, t) . Observe that h is increasing and for 0 ≤ s ≤ t ≤ T
that h (s) + ω (s, t) ≤ h (t) , i.e.

ω (s, t) ≤ h (t)− h (s) for all 0 ≤ s ≤ t ≤ T.

Let g : [0, h (T )] → E be defined by g (h (t)) := x (t) . This is well defined
since if s ≤ t and h (s) = h (t) , then ω (s, t) = 0 and hence x|[s,t] is constant
and in particular x (s) = x (t) . Moreover it now follows for s < t such that
u := h (s) < h (t) =: v, that

dp (g (v) , g (u)) = dp (g (h (t)) , g (h (s))) = dp (x (t) , x (s))
≤ ω (s, t) ≤ h (t)− h (s) = v − u

from which Eq. (2.15) easily follows.

2.5 Banach Space Structures

This section needs more work and may be moved later.
To put a metric on Hölder spaces seems to require some extra structure on

the metric space, E. What is of interest here is the case E = G is a group

with a left (right) invariant metric, d. In this case suppose that we consider p -
variantion paths, x and y starting at e ∈ G in which case we define,

dp−var (x, y) := sup
Π∈P(0,T )

(∑
t∈Π

dp (∆tx,∆ty)

)1/p

where ∆tx := x−1
t− xt for all t ∈ Π. The claim is that this should now be a

complete metric space.

Lemma 2.37. (C0,p(∆,T (n) (V )), dp) is a metric space.

Proof. For each fixed dissection D and each 1 ≤ i ≤ bpc, we have

viD(X) =

(
r∑
`=1

∣∣∣Xi
t`−1t`

∣∣∣p/i)i/p

is a semi-norm on C0,p(∆,T (n) (V )) and in particular satisfies the triangle in-
equality. Moreover,

viD(X + Y ) ≤ sup
D′

[viD(X) + viD′(Y )] ≤ sup
D′

viD′(X) + sup
D′

viD′(Y )

and therefore
sup
D
viD(X + Y ) ≤ sup

D
viD(X) + sup

D
viD(Y )

which shows sup
D
viD(X) still satisfies the triangle inequality. (i.e., the supremum

of a family of semi-norms is a semi-norm). Thus we have

dp(X) := max
1≤i≤bpc

sup
D
viD(X)

is also a semi-norm on C0,p(∆,T (n) (V )). Thus dp(X,Y ) = dp(X − Y ) satisfies
the triangle inequality. Moreover we have dp(X,Y ) = 0 implies that∣∣Xi

st − Y ist
∣∣p/i = 0 ∀ 1 ≤ i ≤ bpc

and (s, t) ∈ ∆, i.e., Xi = Y i for all 1 ≤ i ≤ bpc and we have verified dp(X,Y )
is a metric.
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3

The Bounded Variation Theory

3.1 Integration Theory for Simple Functions

Let T ∈ (0,∞) be fixed,

S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {[0, b] ∩ R : 0 ≤ b ≤ T} . (3.1)

Further let A be the algebra generated by S. Since S is an elementary set,
A may be described as the collection of sets which are finite disjoint unions of
subsets from S. Given any function, Z : [0, T ]→ V with V being a vector define
µZ : S → V via,

µZ ((a, b]) := Zb − Za and µZ ([0, b]) = Zb − Z0 ∀ 0 ≤ a ≤ b ≤ T.

Lemma 3.1. µZ is finitely additive on S and hence extends to a finitely additive
measure on A.

Proof. See Chapter ?? and in particular make the minor necessary modifi-
cations to Examples ??, ??, and Proposition ??.

Let W be another vector space and f : [0, T ] → End (V,W ) be an A –
simple function, i.e. f ([0, T ]) is a finite set and f−1 (λ) ∈ A for all λ ∈
End (V,W ) . For such functions we define,∫

[0,T ]

f (t) dZ (t) :=
∫

[0,T ]

fdµZ =
∑

λ∈End(V,W )×

λµZ (f = λ) ∈W. (3.2)

The basic linearity properties of this integral are explained in Proposition ??.
For later purposes, it will be useful to have the following substitution formula
at our disposal.

Theorem 3.2 (Substitution formula). Suppose that f and Z are as above
and Yt =

∫
[0,t]

fdµZ ∈W. Further suppose that g : R+ → End (W,U) is another
A – simple function with finite support. Then∫

[0,T ]

gdµY =
∫

[0,T ]

gfdµZ .

Proof. By definition of these finitely additive integrals,

µY ((a, b]) = Yb − Ya =
∫

[0,b]

fdµZ −
∫

[0,a]

fdµZ

=
∫

[0,T ]

(
1[0,b] − 1[0,a]

)
fdµZ =

∫
[0,T ]

1(a,b]fdµZ .

Therefore, it follows by the finite additivity of µY and linearity
∫
[0,T ]

(·) dµZ ,
that

µY (A) =
∫
A

fdµZ =
∫

[0,T ]

1AfdµZ for all A ∈ A.

Therefore,∫
[0,T ]

gdµY =
∑

λ∈End(W,U)×

λµY (g = λ) =
∑

λ∈End(W,U)×

λ

∫
[0,T ]

1{g=λ}fdµZ

=
∫

[0,T ]

∑
λ∈End(W,U)×

1{g=λ}λfdµZ =
∫

[0,T ]

gfdµZ

as desired.
Let us observe that∥∥∥∥∥

∫
[0,T ]

f (t) dZt

∥∥∥∥∥ ≤ ∑
λ∈End(V,W )

‖λ‖ ‖µZ (f = λ)‖ .

Let us now define,

‖µZ‖ ((a, b]) := V1

(
Z|[a,b]

)
= sup


n∑
j=1

∥∥Ztj − Ztj−1

∥∥ : a = t0 < t1 < · · · < tn = b and n ∈ N


be the variation measure associated to µZ .

Lemma 3.3. If ‖µZ‖ ((0, T ]) <∞, then ‖µZ‖ is a finitely additive measure on
S and hence extends to a finitely additive measure on A.
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Proof. The additivity on S was already verified in Lemma 2.32. Here is the
proof again for sake of convenience.

Suppose that Π = {a = t0 < t1 < · · · < tn = b} , s ∈ (tl−1, tl) for some l,
and Π ′ := Π ∪ {s} . Then

‖µZ‖Π ((a, b]) :=
n∑
j=1

∥∥Ztj − Ztj−1

∥∥
=

n∑
j=1:j 6=l

∥∥Ztj − Ztj−1

∥∥+
∥∥Ztl − Zs + Zs − Ztl−1

∥∥
≤

n∑
j=1:j 6=l

∥∥Ztj − Ztj−1

∥∥+ ‖Ztl − Zs‖+
∥∥Zs − Ztl−1

∥∥
= ‖µZ‖Π

′
((a, b]) ≤ ‖µZ‖ ((a, s]) + ‖µZ‖ ((s, b]) .

Hence it follows that

‖µZ‖ ((a, b]) = sup
Π
‖µZ‖Π ((a, b]) ≤ ‖µZ‖ ((a, s]) + ‖µZ‖ ((s, b]) .

Conversely if Π1 is a partition of (a, s] and Π2 is a partition of (s, b], then
Π := Π1 ∪Π2 is a partition of (a, b]. Therefore,

‖µZ‖Π1 ((a, s]) + ‖µZ‖Π2 ((s, b]) = ‖µZ‖Π ((a, b]) ≤ ‖µZ‖ ((a, b])

and therefore,

‖µZ‖ ((a, s]) + ‖µZ‖ ((s, b]) ≤ ‖µZ‖ ((a, b]) .

Corollary 3.4. If Z has finite variation on [0, T ] , then we have∥∥∥∥∥
∫

[0,T ]

f (t) dZt

∥∥∥∥∥ ≤
∫

[0,T ]

‖f (λ)‖ ‖µZ‖ (dλ) ≤ ‖f‖∞ · ‖µZ‖ ([0, T ]) .

Proof. Simply observe that ‖µZ (A)‖ ≤ ‖µZ‖ (A) for all A ∈ AT and hence
from Eq. (3.2) we have∥∥∥∥∥

∫
[0,T ]

f (t) dZt

∥∥∥∥∥ ≤ ∑
λ∈End(V,W )

‖λ‖ ‖µZ (f = λ)‖

≤
∑

λ∈End(V,W )

‖λ‖ ‖µZ‖ (f = λ) =
∫

[0,T ]

‖f (λ)‖ ‖µZ‖ (dλ)

≤ ‖f‖∞ · ‖µZ‖ ([0, T ]) .

Notation 3.5 In the future we will often write ‖dZ‖ for d ‖µZ‖ .

Thus is we are in the Banach space setting and Z has finite variation on
[0, T ] we may define the integral,

∫
[0,T ]

f (t) dZt for any function f which is in
the uniform closure of the End (V,W ) – valued simple functions. This space
contains all of the continuous functions, f : [0, T ]→ End (V,W ) .

Exercise 3.1 (Fundamental Theorem of Calculus). Prove the fundamen-
tal theorem of calculus in this context. That is; if f : V →W be a C1 – function
and {Zt}t≥0 is a V – valued function of locally bounded variation, then for all
0 ≤ a < b ≤ T,

f (Zb)− f (Za) =
∫ b

a

f ′ (Zτ ) dZτ :=
∫

[a,b]

f ′ (Zτ ) dZτ ,

where f ′ (z) ∈ End (V,W ) is defined by, f ′ (z) v := d
dt |0f (z + tv) .

Solution to Exercise (3.1). Let Π ∈ P (0, T ) . Then by a telescoping series
argument,

f (Zb)− f (Za) =
∑
t∈Π

∆tf (Z·)

where

∆tf (Z·) = f (Zt)− f
(
Zt−

)
= f

(
Zt− +∆tZ

)
− f

(
Zt−

)
=
∫ 1

0

f ′
(
Zt− + s∆tZ

)
∆tZ ds = f ′

(
Zt−

)
∆tZ + εΠt ∆tZ

and

εΠt :=
∫ 1

0

[
f ′
(
Zt− + s∆tZ

)
− f ′

(
Zt−

)]
ds.

Thus we have,

f (Zb)− f (Za) =
∑
t∈Π

f ′
(
Zt−

)
∆tZ + δΠ =

∫
[a,b]

f ′
(
Zt−

)
dZ (t) + δΠ (3.3)

where δΠ :=
∑
t∈Π ε

Π
t ∆tZ. Since,

‖δΠ‖ ≤
∑
t∈Π

∥∥εΠt ∆tZ
∥∥ ≤∑

t∈Π

∥∥εΠt ∥∥ ‖∆tZ‖ ≤ max
t∈Π

∥∥εΠt ∥∥ ·∑
t∈Π
‖∆tZ‖

≤ max
t∈Π

∥∥εΠt ∥∥ · V1 (Z) ,

and
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3.2 Calculus Bounds 21∥∥εΠt ∥∥ :=
∫ 1

0

∥∥[f ′ (Zt− + s∆tZ
)
− f ′

(
Zt−

)]∥∥ ds.
Since g (s, τ, t) := ‖[f ′ (Zτ + s (Zt − Zτ ))− f ′ (Zτ )]‖ is a continuous function
in s ∈ [0, 1] and τ, t ∈ [0, T ] with g (s, t, t) = 0 for all s and t, it follows by
uniform continuity arguments that g (s, τ, t) is small whenever |t− τ | is small.
Therefore, lim|Π|→0

∥∥εΠt ∥∥ = 0. Moreover, again by a uniform continuity argu-
ment, f ′

(
Zt−

)
→ f ′ (Zt) uniformly as |Π| → 0. Thus we may pass to the limit

as |Π| → 0 in Eq. (3.3) to complete the proof.

3.2 Calculus Bounds

For the exercises to follow we suppose that µ is a positive σ – finite measure
on
(
[0,∞),B[0,∞)

)
such that µ is continuous, i.e. µ ({s}) = 0 for all s ∈ [0,∞).

We will further write,∫ t

0

f (s) dµ (s) :=
∫

[0,t]

f (s) dµ (s) =
∫

(0,t)

f (s) dµ (s) ,

wherein the second equality holds since µ is continuous. Although it is not
necessary, you may use Exercise 3.1 with Zt := µ ([0, t]) to solve the following
problems.

Exercise 3.2. Show for all 0 ≤ a < b <∞ and n ∈ N that

hn (b) :=
∫
a≤s1≤s2≤···≤sn≤b

dµ (s1) . . . dµ (sn) =
µ ([a, b])n

n!
. (3.4)

Solution to Exercise (3.2). First solution. Let us observe that h (t) :=
h1 (t) = µ ([a, t]) and hn (t) satisfies the recursive relation,

hn+1 (t) :=
∫ t

a

hn (s) dµ (s) =
∫ t

a

hn (s) dh (s) for all t ≥ a.

Now let Hn (t) := 1
n!h

n (t) , by an application of Exercise 3.1 with f (x) =
xn+1/ (n+ 1)! implies,

Hn+1 (t) = Hn+1 (t)−Hn+1 (a) =
∫ t

a

f ′ (h (τ)) dh (τ) =
∫ t

a

Hn (τ) dh (τ)

and therefore it follows that Hn (t) = hn (t) for all t ≥ a and n ∈ N.
Second solution. If i 6= j, it follows by Fubini’s theorem that

µ⊗n ({(s1, . . . , sn) ∈ [a, b]n : si = sj})

= µ ([a, b])n−2 ·
∫

[a,b]2
1si=sjdµ (si) dµ (sj)

= µ ([a, b])n−2 ·
∫

[a,b]

µ ({sj}) dµ (sj) = 0.

From this observation it follows that

1[a,b]n (s1, . . . , sn) =
∑
σ∈Sn

1a≤sσ1≤sσ2≤···≤sσn≤b – µ⊗n – a.e.,

where σ ranges over the permutations, Sn, of {1, 2, . . . , n} . Integrating this
equation relative with respect to µ⊗n and then using Fubini’s theorem gives,

µ ([a, b])n = µ⊗n ([a, b]n) =
∑
σ∈Sn

∫
1a≤sσ1≤sσ2≤···≤sσn≤bdµ

⊗n (s)

=
∑
σ∈Sn

∫
1a≤sσ1≤sσ2≤···≤sσn≤bdµ (s1) . . . dµ (sn)

=
∑
σ∈Sn

∫
a≤s1≤s2≤···≤sn≤b

dµ (s1) . . . dµ (sn)

= n!
∫
a≤s1≤s2≤···≤sn≤b

dµ (s1) . . . dµ (sn) .

Exercise 3.3 (Gronwall’s Lemma). If ε (t) and f (t) are continuous non-
negative functions such that

f (t) ≤ ε (t) +
∫ t

0

f (τ) dµ (τ) , (3.5)

then

f (t) ≤ ε (t) +
∫ t

0

eµ([τ,t])ε (τ) dµ (τ) . (3.6)

If we further assume that ε is increasing, then

f (t) ≤ ε (t) eµ([0,t]). (3.7)

Solution to Exercise (3.3). Feeding Eq. (3.5) back into itself implies
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22 3 The Bounded Variation Theory

f (t) ≤ ε (t) +
∫ t

0

[
ε (τ) +

∫ τ

0

f (s) dµ (s)
]
dµ (τ)

= ε (t) +
∫ t

0

ε (s1) dµ (s1) +
∫

0≤s2≤s1≤t
f (s2) dµ (s1) dµ (s2)

≤ ε (t) +
∫ t

0

ε (s1) dµ (s1) +
∫

0≤s2≤s1≤t

[
ε (s2) +

∫ s2

0

f (s3) dµ (s3)
]
dµ (s1) dµ (s2)

= ε (t) +
∫ t

0

ε (s1) dµ (s1) +
∫

0≤s2≤s1≤t
ε (s2) dµ (s1) dµ (s2)

+
∫

0≤s3≤s2≤s1≤t
f (s3) dµ (s1) dµ (s2) dµ (s3) .

Continuing in this manner inductively shows,

f (t) ≤ ε (t) +
N∑
k=1

∫
0≤sk≤···≤s2≤s1≤t

ε (sk) dµ (s1) . . . dµ (sk) +RN (t) (3.8)

where, using Exercise 3.2,

RN (t) :=
∫

0≤sk+1≤···≤s2≤s1≤t
f (sk+1) dµ (s1) . . . dµ (sk) dµ (sk+1)

≤ max
0≤s≤t

f (t) · µ ([0, t])N+1

(N + 1)!
→ 0 as N →∞.

So passing to the limit in Eq. (3.8) and again making use of Exercise 3.2 shows,

f (t) ≤ ε (t) +
∞∑
k=1

∫
0≤sk≤···≤s2≤s1≤t

ε (sk) dµ (s1) . . . dµ (sk) (3.9)

= ε (t) +
∞∑
k=1

∫ t

0

ε (sk)
µ ([sk, t])

k−1

(k − 1)!
dµ (sk)

= ε (t) +
∫ t

0

ε (τ) ·
∞∑
k=1

µ ([τ, t])k−1

(k − 1)!
dµ (τ)

= ε (t) +
∫ t

0

eµ([τ,t])ε (τ) dµ (τ) .

If we further assume that ε is increasing, then from Eq. (3.9) and Exercise 3.2
we have

f (t) ≤ ε (t) + ε (t)
∞∑
k=1

∫
0≤sk≤···≤s2≤s1≤t

dµ (s1) . . . dµ (sk)

= ε (t) + ε (t)
∞∑
k=1

µ ([0, t])k

k!
= ε (t) eµ([0,t]).

Alternatively if we let Zt := µ ([0, t]) , then∫ t

0

eµ([τ,t])dµ (τ) =
∫ t

0

eZt−Zτ dZτ =
∫ t

0

dτ
(
−eZt−Zτ

)
=
(
−eZt−Zτ

)t
0

= eZt − 1.

Therefore,
f (t) ≤ ε (t) + ε (t)

(
eZt − 1

)
= ε (t) eZt .

Exercise 3.4. Suppose that {εn (t)}∞n=0 is a sequence of non-negative continu-
ous functions such that

εn+1 (t) ≤
∫ t

0

εn (τ) dµ (τ) for all n ≥ 0 (3.10)

and δ (t) = max0≤τ≤t ε0 (τ) . Show

εn (t) ≤ δ (t)
µ ([0, t])n

n!
for all n ≥ 0.

Solution to Exercise (3.4). By iteration of Eq. (3.10) we find,

ε1 (t) ≤
∫ t

0

ε0 (τ) dµ (τ) ≤ δ (t)
∫

0≤s1≤t
dµ (s1) ,

ε2 (t) ≤
∫ t

0

ε1 (s2) dµ (s2) ≤ δ (t)
∫ t

0

[∫
0≤s1≤t

dµ (s1)
]
dµ (s2)

= δ (t)
∫

0≤s2≤s1≤t
dµ (s1) dµ (s2) ,

...

εn (t) ≤ δ (t)
∫

0≤sn≤···≤s1≤t
dµ (s1) . . . dµ (sn) .

The result now follows directly from Exercise 3.2.

3.3 Bounded Variation Ordinary Differential Equations

In this section we begin by reviewing some of the basic theory of ordinary
differential equations – O.D.E.s for short. Throughout this chapter we will let
X and Y be Banach spaces, U ⊂o Y an open subset of Y, and y0 ∈ U, x : [0, T ]→
X is a continuous process of bounded variation, and F : [0, T ]×U → End (X,Y )
is a continuous function. (We will make further assumptions on F as we need
them.) Our goal here is to investigate the “ordinary differential equation,”
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3.3 Bounded Variation Ordinary Differential Equations 23

ẏ (t) = F (t, y (t)) ẋ (t) with y (0) = y0 ∈ U. (3.11)

Since x is only of bounded variation, to make sense of this equation we will
interpret it in its integrated form,

y (t) = y0 +
∫ t

0

F (τ, y (τ)) dx (τ) . (3.12)

Proposition 3.6 (Continuous dependence on the data). Suppose that G :
[0, T ] × U → End (X,Y ) is another continuous function, z : [0, T ] → X is
another continuous function with bounded variation, and w : [0, T ]→ U satisfies
the differential equation,

w (t) = w0 +
∫ t

0

G (τ, w (τ)) dz (τ) (3.13)

for some w0 ∈ U. Further assume there exists a continuous function, K (t) ≥ 0
such that F satisfies the Lipschitz condition,

‖F (t, y)− F (t, w)‖ ≤ K (t) ‖y − w‖ for all 0 ≤ t ≤ T and y, w ∈ U. (3.14)

Then

‖y (t)− w (t)‖ ≤ ε (t) exp
(∫ t

0

K (τ) ‖dx (τ)‖
)
. (3.15)

where

ε (t) := ‖y0 − w0‖+
∫ t

0

‖F (τ, w (τ))−G (τ, w (τ))‖ ‖dx (τ)‖+
∫ t

0

‖G (τ, w (τ))‖ ‖d (x− z) (τ)‖

(3.16)

Proof. Let δ (t) := y (t)− w (t) , so that y = w + δ. We then have,

δ (t) = y0 − w0 +
∫ t

0

F (τ, y (τ)) dx (τ)−
∫ t

0

G (τ, w (τ)) dz (τ)

= y0 − w0 +
∫ t

0

F (τ, w (τ) + δ (τ)) dx (τ)−
∫ t

0

G (τ, w (τ)) dz (τ)

= y0 − w0 +
∫ t

0

[F (τ, w (τ))−G (τ, w (τ))] dx (τ) +
∫ t

0

G (τ, w (τ)) d (x− z) (τ)

+
∫ t

0

[F (τ, w (τ) + δ (τ))− F (τ, w (τ))] dx (τ) .

Crashing through this identity with norms shows,

‖δ (t)‖ ≤ ε (t) +
∫ t

0

K (τ) ‖δ (τ)‖ ‖dx (τ)‖

where ε (t) is given in Eq. (3.16). The estimate in Eq. (3.15) is now a consequence
of this inequality and Exercise 3.3 with dµ (τ) := K (τ) ‖dx (τ)‖ .

Corollary 3.7 (Uniquness of solutions). If F satisfies the Lipschitz hypoth-
esis in Eq. (3.14), then there is at most one solution to the ODE in Eq. (3.12).

Proof. Simply apply Proposition 3.6 with F = G, y0 = w0, and x = z. In
this case ε ≡ 0 and the result follows.

Proposition 3.8 (An apriori growth bound). Suppose that U = Y, T =∞,
and there are continuous functions, a (t) ≥ 0 and b (t) ≥ 0 such that

‖F (t, y)‖ ≤ a (t) + b (t) ‖y‖ for all t ≥ 0 and y ∈ Y.

Then

‖y (t)‖ ≤
(
‖y0‖+

∫ t

0

a (τ) dν (τ)
)

exp
(∫ t

0

b (τ) dν (τ)
)
. (3.17)

Proof. Let ν (t) := ωx,1 (0, t) = ‖s‖1-Var (t) . From Eq. (3.12) we have,

‖y (t)‖ ≤ ‖y0‖+
∫ t

0

‖F (τ, y (τ))‖ dν (τ)

≤ ‖y0‖+
∫ t

0

(a (τ) + b (τ) ‖y (τ)‖) dν (τ)

= ε (t) +
∫ t

0

‖y (τ)‖ dµ (τ)

where

ε (t) := ‖y0‖+
∫ t

0

a (τ) dν (τ) and dµ (τ) := b (τ) dν (τ) .

Hence we may apply Exercise 3.3 to learn ‖y (t)‖ ≤ ε (t) eµ([0,t]) which is the
same as Eq. (3.17).

Theorem 3.9 (Global Existence). Let us now suppose U = X and F satis-
fies the Lipschitz hypothesis in Eq. (3.14). Then there is a unique solution, y (t)
to the ODE in Eq. (3.12).

Proof. We will use the standard method of Picard iterates. Namely, define
y0 (t) := y0 and then define yn (t) inductively by,

yn+1 (t) := x+
∫ t

0

F (τ, yn (τ)) dx (τ) . (3.18)

Then from our assumptions and the definition of yn (t) , we find for n ≥ 1 that

Page: 23 job: prob macro: svmonob.cls date/time: 23-Jan-2009/9:16



‖yn+1 (t)− yn (t)‖ =
∥∥∥∥∫ t

0

F (τ, yn (τ)) dx (τ)−
∫ t

0

F (τ, yn−1 (τ)) dx (τ)
∥∥∥∥

≤
∫ t

0

‖F (τ, yn (τ))− F (τ, yn−1 (τ))‖ ‖dx (τ)‖

≤
∫ t

0

K (τ) ‖yn (τ)− yn−1 (τ)‖ ‖dx (τ)‖ .

Since,

‖y1 (t)− y0 (t)‖ =
∥∥∥∥∫ t

0

F (τ, x) dx (τ)
∥∥∥∥ ≤ ∫ t

0

‖F (τ, x)‖ ‖dx (τ)‖ =: δ (t) ,

it follows by an application of Exercise 3.4 with

εn (t) := ‖yn+1 (t)− yn (t)‖

that

‖yn+1 (t)− yn (t)‖ ≤
∫ t

0

‖F (τ, x)‖ ‖dx (τ)‖·
(∫ t

0

K (τ) ‖dx (τ)‖
)n

/n!. (3.19)

Since the right side of this equation is increasing in t, we may conclude by
summing Eq. (3.19) that

∞∑
n=0

sup
0≤t≤T

‖yn+1 (t)− yn (t)‖ ≤

(∫ T

0

‖F (τ, x)‖ dx (τ)

)
e
∫ T
0 K(τ)‖dx(τ)‖ <∞.

Therefore, it follows that yn (t) is uniformly convergent on compact subsets of
[0,∞) and therefore y (t) := limn→∞ yn (t) exists and is a continuous function.
Moreover, we may now pass to the limit in Eq. (3.18) to learn this function y
satisfies Eq. (3.12). Indeed,∥∥∥∥∫ t

0

F (τ, yn (τ)) dx (τ)−
∫ t

0

F (τ, y (τ)) dx (τ)
∥∥∥∥

≤
∫ t

0

‖F (τ, yn (τ))− F (τ, y (τ))‖ ‖dx (τ)‖

≤
∫ t

0

K (τ) ‖yn (τ)− y (τ)‖ ‖dx (τ)‖

≤ sup
0≤τ≤t

‖yn (τ)− y (τ)‖ ·
∫ t

0

K (τ) ‖dx (τ)‖ → 0 as n→∞.
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Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 5, 835–847. MR MR2348055
(2008h:60229)

6. Terry J. Lyons, Michael Caruana, and Thierry Lévy, Differential equations driven
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