Rough Path Analysis

Here are a few suggested references for this course, $[3,6,1]$. The latter two references are downloadable if you are logging into MathSci net through your UCSD account. For a proof that all p-variation paths have some extension to a rough path see, [5] and also see [2, Theorem 9.12 and Remark 9.13].

From Feynman Heuristics to Brownian Motion

In the physics literature one often finds the following informal expression,

$$
\begin{equation*}
d \mu_{T}(\omega)=" \frac{1}{Z(T)} e^{-\frac{1}{2} \int_{0}^{T}\left|\omega^{\prime}(\tau)\right|^{2} d \tau} \mathcal{D}_{T} \omega " \text { for } \omega \in W_{T} \tag{1.1}
\end{equation*}
$$

where W_{T} is the set of continuous paths, $\omega:[0, T] \rightarrow \mathbb{R}\left(\right.$ or $\left.\mathbb{R}^{d}\right)$, such that $\omega(0)=0$,

$$
\mathcal{D}_{T} \omega=" \prod_{0<t \leq T} m(d \omega(t)) "(m \text { is Lebesgue measure here })
$$

and $Z(T)$ is a normalization constant such that $\mu_{T}\left(W_{T}\right)=1$.
We begin by giving meaning to this expression. For $0 \leq s \leq t \leq T$, let

$$
E_{[s, t]}(\omega):=\int_{s}^{t}\left|\omega^{\prime}(\tau)\right|^{2} d \tau
$$

If we decompose $\omega(\tau)$ as $\sigma(\tau)+\gamma(\tau)$ where

$$
\sigma(\tau):=\omega(s)+\frac{\tau-s}{t-s}(\omega(t)-\omega(s)) \text { and } \gamma(\tau):=\omega(\tau)-\sigma(\tau)
$$

then we have, $\sigma \prime(\tau)=\frac{\omega(t)-\omega(s)}{t-s}, \gamma(s)=\gamma(t)=0$, and hence

$$
\begin{aligned}
\int_{s}^{t} \sigma^{\prime}(\tau) \cdot \gamma^{\prime}(\tau) d \tau & =\int_{s}^{t} \sigma^{\prime}(\tau) \cdot \gamma^{\prime}(\tau) d \tau \\
& =\frac{\omega(t)-\omega(s)}{t-s} \cdot(\gamma(t)-\gamma(s))=0
\end{aligned}
$$

Thus it follows that

$$
\begin{align*}
E_{[s, t]}(\omega) & =E_{[s, t]}(\sigma)+E_{[s, t]}(\gamma)=\left|\frac{\omega(t)-\omega(s)}{t-s}\right|^{2}(t-s)+E_{[s, t]}(\gamma) \\
& =\frac{|\omega(t)-\omega(s)|^{2}}{t-s}+E_{[s, t]}(\gamma) \tag{1.2}
\end{align*}
$$

Thus if $f(\omega)=F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right)$, we will have,

$$
\begin{aligned}
& \frac{1}{Z_{t}} \int_{W_{t}} F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) e^{-\frac{1}{2} E_{t}(\omega)} \mathcal{D}_{t} \omega \\
& \quad=\frac{1}{Z_{t}} \int_{W_{t}} F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) e^{-\frac{1}{2}\left[E_{s}(\omega)+E_{[s, t]}(\omega)\right]} \mathcal{D}_{t} \omega
\end{aligned}
$$

and now fixing $\left.\omega\right|_{[0, s]}$ and $\omega(t)$ and then doing the integral over $\left.\omega\right|_{(s, t)}$ implies,

$$
\begin{aligned}
& \int F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) e^{-\frac{1}{2}\left[E_{s}(\omega)+E_{[s, t]}(\omega)\right]} \mathcal{D}_{(s, t)} \omega \\
& =\int F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) e^{-\frac{1}{2}\left[E_{s}(\omega)+\frac{|\omega(t)-\omega(s)|^{2}}{t-s}+E_{[s, t]}(\gamma)\right]} \mathcal{D}_{(s, t)} \gamma \\
& =C(s, t) \int F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) \frac{e^{-\frac{1}{2} E_{s}(\omega)}}{Z(s)} e^{-\frac{1}{2} \frac{|\omega(t)-\omega(s)|^{2}}{t-s}} .
\end{aligned}
$$

Multiplying this equation by $\frac{1}{Z_{t}} \mathcal{D} \omega_{[0, s]} \cdot d \omega(t)$ and integrating the result then implies,

$$
\begin{array}{rl}
\int_{W_{t}} & F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) d \mu_{t}(\omega) \\
& =\frac{C(s, t)}{Z_{t}} \int\left[\int_{\mathbb{R}^{d}} F\left(\left.\omega\right|_{[0, s]}, y\right) e^{-\frac{1}{2} \frac{|y-\omega(s)|^{2}}{t-s}} d y\right] \frac{e^{-\frac{1}{2} E_{s}(\omega)}}{Z(s)} \mathcal{D} \omega_{[0, s]} \\
& =\frac{C(s, t)}{Z_{t}} \int_{W_{s}}\left[\int_{\mathbb{R}^{d}} F(\omega, y) e^{-\frac{1}{2} \frac{|y-\omega(s)|^{2}}{t-s}} d y\right] d \mu_{s}(\omega)
\end{array}
$$

Taking $F \equiv 1$ in this equation then implies,

$$
\begin{aligned}
1 & =\frac{C(s, t)}{Z_{t}} \int_{W_{s}}\left[\int_{\mathbb{R}^{d}} e^{-\frac{1}{2} \frac{|y-\omega(s)|^{2}}{t-s}} d y\right] d \mu_{s}(\omega) \\
& =\frac{C(s, t)}{Z_{t}} \int_{W_{s}}\left[(2 \pi(t-s))^{d / 2}\right] d \mu_{s}(\omega)=\frac{C(s, t)}{Z_{t}}(2 \pi(t-s))^{d / 2}
\end{aligned}
$$

Thus the heuristic expression in Eq. 1.1) leads to the following Markov property for μ_{t}, namely.
Proposition 1.1 (Heuristic). Suppose that $F: W_{s} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a reasonable function, then for any $t \geq s$ we have

$$
\begin{array}{rl}
\int_{W_{t}} & F\left(\left.\omega\right|_{[0, s]}, \omega(t)\right) d \mu_{t}(\omega) \\
& =\int_{W_{s}}\left[\int_{\mathbb{R}^{d}} F(\omega, y) p_{t-s}(\omega(s), y) d y\right] d \mu_{s}(\omega)
\end{array}
$$

where

$$
\begin{equation*}
p_{s}(x, y):=\left(\frac{1}{2 \pi(t-s)}\right)^{d / 2} e^{-\frac{1}{2} \frac{|y-x|^{2}}{t-s}} \tag{1.3}
\end{equation*}
$$

Corollary 1.2 (Heuristic). If $0=s_{0}<s_{1}<s_{2}<\cdots<s_{n}=T$ and f : $\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$ is a reasonable function, then
$\int_{W_{T}} f\left(\omega\left(s_{1}\right), \ldots, \omega\left(s_{n}\right)\right) d \mu_{T}(\omega)=\int_{\left(\mathbb{R}^{d}\right)^{n}} f\left(y_{1}, \ldots, y_{n}\right) \prod_{i=1}^{n}\left(p_{s_{i}-s_{i-1}}\left(y_{i-1}, y_{i}\right) d y_{i}\right)$
where by convention, $y_{0}=0$.
Theorem 1.3 (Wiener 1923). For all $t>0$ there exists a unique probability measure, μ_{t}, on W_{t}, such that Eq. (1.4) holds for all n and all bounded measurable $f:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$.

Definition 1.4. Let $B_{t}(\omega):=\omega(t)$. Then $\left\{B_{t}\right\}_{0 \leq t \leq T}$ as a process on $\left(W_{T}, \mu_{T}\right)$ is called Brownian motion. We further write $\mathbb{E} f$ for $\int_{W_{T}} f(\omega) d \mu_{T}(\omega)$.

The following lemma is useful for computational purposes involving Brownian motion and follows readily form from Eq. 1.4.

Lemma 1.5. Suppose that $0=s_{0}<s_{1}<s_{2}<\cdots<s_{n}=t$ and $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are reasonable functions, then

$$
\begin{align*}
\mathbb{E}\left[\prod_{i=1}^{n} f_{i}\left(B_{s_{i}}-B_{s_{i-1}}\right)\right] & =\prod_{i=1}^{n} \mathbb{E}\left[f_{i}\left(B_{s_{i}}-B_{s_{i-1}}\right)\right] \tag{1.5}\\
\mathbb{E}\left[f\left(B_{t}-B_{s}\right)\right] & =\mathbb{E}\left[f\left(B_{t-s}\right)\right] \tag{1.6}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[f\left(B_{t}\right)\right]=\mathbb{E} f\left(\sqrt{t} B_{1}\right) \tag{1.7}
\end{equation*}
$$

As an example let us observe that

$$
\begin{aligned}
\mathbb{E} B_{t} & =\int y p_{t}(y) d y=0 \\
\mathbb{E} B_{t}^{2} & =t \mathbb{E} B_{1}^{2}=t \int y^{2} p_{1}(y) d y=t \cdot 1
\end{aligned}
$$

and for $s<t$,

$$
\mathbb{E}\left[B_{t} B_{s}\right]=\mathbb{E}\left[\left(B_{t}-B_{s}\right) B_{s}\right]+\mathbb{E} B_{s}^{2}=\mathbb{E}\left(B_{t}-B_{s}\right) \cdot \mathbb{E} B_{s}+s=s
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\left|B_{t}-B_{s}\right|^{p}\right]=|t-s|^{p / 2} \mathbb{E}\left[\left|B_{1}\right|^{p}\right]=C_{p}|t-s|^{p / 2} \tag{1.8}
\end{equation*}
$$

1.1 Construction and basic properties of Brownian motion

In this section we sketch one method of constructing Wiener measure ore equivalently Brownian motion. We begin with the existence of a measure ν_{T} on the $\tilde{W}_{T}:=\prod_{0 \leq s \leq T} \overline{\mathbb{R}}$ which satisfies Eq. 1.4 where $\overline{\mathbb{R}}$ is a compactification of \mathbb{R} - for example either one point compactificatoin so that $\overline{\mathbb{R}} \cong S^{1}$.

Theorem 1.6 (Kolmogorov's Existence Theorem). There exists a probability measure, ν_{T}, on \tilde{W}_{T} such that Eq. (1.4) holds.

Proof. For a function $F(\omega):=f\left(\omega\left(s_{1}\right), \ldots, \omega\left(s_{n}\right)\right)$ where $f \in C\left(\overline{\mathbb{R}}^{n}, \mathbb{R}\right)$, define

$$
I(F):=\int_{\mathbb{R}^{n}} f\left(y_{1}, \ldots, y_{n}\right) \prod_{i=1}^{n}\left(p_{s_{i}-s_{i-1}}\left(y_{i-1}, y_{i}\right) d y_{i}\right)
$$

Using the semi-group property;

$$
\int_{\mathbb{R}^{d}} p_{t}(x, y) p_{s}(y, z) d y=p_{s+t}(x, z)
$$

along with the fact that $\int_{\mathbb{R}^{d}} p_{t}(x, y) d y=1$ for all $t>0$, one shows that $I(F)$ is well defined independently of how we represent F as a "finitely based" continuous function.

By Tychonoff's Theorem \tilde{W}_{T} is a compact Hausdorff space. By the Stone Weierstrass Theorem, the finitely based continuous functions are dense inside of $C\left(\tilde{W}_{T}\right)$. Since $|I(F)| \leq\|F\|_{\infty}$ for all finitely based continuous functions, we may extend I uniquely to a positive continuous linear functional on $C\left(\tilde{W}_{T}\right)$. An application of the Riesz Markov theorem now gives the existence of the desired measure, ν_{T}.

Theorem 1.7 (Kolmogorov's Continuity Criteria). Suppose that (Ω, \mathcal{F}, P) is a probability space and $\tilde{X}_{t}: \Omega \rightarrow S$ is a process for $t \in[0, T]$ where (S, ρ) is a complete metric space. Assume there exists positive constants, ε, β, and C, such that

$$
\begin{equation*}
\mathbb{E}\left[\rho\left(\tilde{X}_{t}, \tilde{X}_{s}\right)^{\varepsilon}\right] \leq C|t-s|^{1+\beta} \tag{1.9}
\end{equation*}
$$

for all $s, t \in[0, T]$. Then for any $\alpha \in(0, \beta / \varepsilon)$ there is a modification, X, of \tilde{X} (i.e. $P\left(X_{t}=\tilde{X}_{t}\right)=1$ for all t) which is α-Hölder continuous. Moreover, there is a random variable K_{α} such that,

$$
\begin{equation*}
\rho\left(X_{t}, X_{s}\right) \leq K_{\alpha}|t-s|^{\alpha} \text { for all } s, t \in[0, T] \tag{1.10}
\end{equation*}
$$

and $\mathbb{E} K_{\alpha}^{p}<\infty$ for all $p<\frac{\beta-\alpha \varepsilon}{1-\alpha}$. (For the proof of this theorem see Section ?? below.)
Corollary 1.8. Let $\tilde{B}_{t}: \tilde{W}_{T} \rightarrow \mathbb{R}$ be the projection map, $\tilde{B}_{t}(\omega)=\omega(t)$. Then there is a modifications, $\left\{B_{t}\right\}$ of $\left\{\tilde{B}_{t}\right\}$ for which $t \rightarrow B_{t}$ is α-Hölder continuous ν_{T} - almost surely for any $\alpha \in(0,1 / 2)$.

Proof. Applying Theorem 1.7 with $\varepsilon:=p$ and $\beta:=p / 2-1$ for any $p \in$ $(2, \infty)$ shows there is a modification $\left\{B_{t}\right\}_{t \geq 0}$ of $\left\{\tilde{B}_{t}\right\}$ which is almost surely α - Hölder continuous for any

$$
\alpha \in(0, \beta / \varepsilon)=\left(0, \frac{p / 2-1}{p}\right)=(0,1 / 2-1 / p)
$$

Letting $p \rightarrow \infty$ shows that $\left\{B_{t}\right\}_{t \geq 0}$ is almost surely α - Hölder continuous for all $\alpha<1 / 2$.

We will see shortly that these Brownian paths are very rough. Before we do this we will pause to develope a quatitative measurement of roughness of a continuous path.

p - Variations and Controls

Let (E, d) be a metric space which will usually be assumed to be complete.
Definition 2.1. Let $0 \leq a<b<\infty$. Given a partition $\Pi:=$ $\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ of $[a, b]$ and a function $Z \in C([a, b], E)$, let $\left(t_{i}\right)_{-}:=t_{i-1},\left(t_{i}\right)_{+}:=t_{i+1}$, with the convention that $t_{-1}:=t_{0}=a$ and $t_{n+1}:=t_{n}=T$. Furthermore for $1 \leq p<\infty$ let

$$
\begin{equation*}
V_{p}(Z: \Pi):=\left(\sum_{j=1}^{n} d^{p}\left(Z_{t_{j}}, Z_{t_{j-1}}\right)\right)^{1 / p}=\left(\sum_{t \in \Pi} d^{p}\left(Z_{t}, Z_{t_{-}}\right)\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

Furthermore, let $\mathcal{P}(a, b)$ denote the collection of partitions of $[a, b]$. Also let $\operatorname{mesh}(\Pi):=\max _{t \in \Pi}\left|t-t_{-}\right|$be the mesh of the partition, Π.

Definition 2.2. and $Z \in C([a, b], E)$. For $1 \leq p<\infty$, the \boldsymbol{p} - variation of Z is;

$$
\begin{equation*}
V_{p}(Z):=\sup _{\Pi \in \mathcal{P}(a, b)} V_{p}(Z: \Pi)=\sup _{\Pi \in \mathcal{P}(a, b)}\left(\sum_{j=1}^{n} d^{p}\left(Z_{t_{j}}, Z_{t_{j-1}}\right)\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

Moreover if $Z \in C([0, T], E)$ and $0 \leq a \leq b \leq T$, we let

$$
\begin{equation*}
\omega_{Z, p}(a, b):=\left[\nu_{p}\left(\left.Z\right|_{[a, b]}\right)\right]^{p}=\sup _{\Pi \in \mathcal{P}(a, b)} \sum_{j=1}^{n} d^{p}\left(Z_{t_{j}}, Z_{t_{j-1}}\right) \tag{2.3}
\end{equation*}
$$

Remark 2.3. We can define $V_{p}(Z)$ for $p \in(0,1)$ as well but this is not so interesting. Indeed if $0 \leq s \leq T$ and $\Pi \in \mathcal{P}(0, T)$ is a partition such that $s \in \Pi$, then

$$
\begin{aligned}
d(Z(s), Z(0)) & \leq \sum_{t \in \Pi} d\left(Z(t), Z\left(t_{-}\right)\right)=\sum_{t \in \Pi} d^{1-p}\left(Z(t), Z\left(t_{-}\right)\right) d^{p}\left(Z(t), Z\left(t_{-}\right)\right) \\
& \leq \max _{t \in \Pi} d^{1-p}\left(Z(t), Z\left(t_{-}\right)\right) \cdot V_{p}^{p}(Z: \Pi) \\
& \leq \max _{t \in \Pi} d^{1-p}\left(Z(t), Z\left(t_{-}\right)\right) \cdot V_{p}^{p}(Z) .
\end{aligned}
$$

Using the uniform continuity of Z (or $d(Z(s), Z(t))$ if you wish) we know that $\lim _{|\Pi| \rightarrow 0} \max _{t \in \Pi} d^{1-p}\left(Z(t), Z\left(t_{-}\right)\right)=0$ and hence that,

$$
d(Z(s), Z(0)) \leq \lim _{|\Pi| \rightarrow 0} \max _{t \in \Pi} d^{1-p}\left(Z(t), Z\left(t_{-}\right)\right) \cdot V_{p}^{p}(Z)=0
$$

Thus we may conclude $Z(s)=Z(0)$, i.e. Z must be constant.
Lemma 2.4. Let $\left\{a_{i}>0\right\}_{i=1}^{n}$, then

$$
\begin{gathered}
\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p} \text { is decreasing in } p \text { and } \\
\varphi(p):=\ln \left(\sum_{i=1}^{n} a_{i}^{p}\right) \text { is convex in } p .
\end{gathered}
$$

Proof. Let $f(i)=a_{i}$ and $\mu(\{i\})=1$ be counting measure so that

$$
\sum_{i=1}^{n} a_{i}^{p}=\mu\left(f^{p}\right) \text { and } \varphi(p)=\ln \mu\left(f^{p}\right)
$$

Using $\frac{d}{d p} f^{p}=f^{p} \ln f$, it follows that and

$$
\begin{aligned}
\varphi^{\prime}(p) & =\frac{\mu\left(f^{p} \ln f\right)}{\mu\left(f^{p}\right)} \text { and } \\
\varphi^{\prime \prime}(p) & =\frac{\mu\left(f^{p} \ln ^{2} f\right)}{\mu\left(f^{p}\right)}-\left[\frac{\mu\left(f^{p} \ln f\right)}{\mu\left(f^{p}\right)}\right]^{2} .
\end{aligned}
$$

Thus if we let $\mathbb{E} X:=\mu\left(f^{p} X\right) / \mu\left(f^{p}\right)$, we have shown, $\varphi^{\prime}(p)=\mathbb{E}[\ln f]$ and

$$
\varphi^{\prime \prime}(p)=\mathbb{E}\left[\ln ^{2} f\right]-(\mathbb{E}[\ln f])^{2}=\operatorname{Var}(\ln f) \geq 0
$$

which shows that φ is convex in p.
Now let us shows that $\|f\|_{p}$ is decreasing in in p. To this end we compute,

$$
\begin{aligned}
\frac{d}{d p}\left[\ln \|f\|_{p}\right] & =\frac{d}{d p}\left[\frac{1}{p} \varphi(p)\right]=\frac{1}{p} \varphi^{\prime}(p)-\frac{1}{p^{2}} \varphi(p) \\
& =\frac{1}{p^{2} \mu\left(f^{p}\right)}\left[p \mu\left(f^{p} \ln f\right)-\mu\left(f^{p}\right) \ln \mu\left(f^{p}\right)\right] \\
& =\frac{1}{p^{2} \mu\left(f^{p}\right)}\left[\mu\left(f^{p} \ln f^{p}\right)-\mu\left(f^{p}\right) \ln \mu\left(f^{p}\right)\right] \\
& =\frac{1}{p^{2} \mu\left(f^{p}\right)}\left[\mu\left(f^{p} \ln \frac{f^{p}}{\mu\left(f^{p}\right)}\right)\right]
\end{aligned}
$$

Up to now our computation has been fairly general. The point where μ being counting measure comes in is that in this case $\mu\left(f^{p}\right) \geq f^{p}$ everywhere and therefore $\ln \frac{f^{p}}{\mu\left(f^{p}\right)} \leq 0$ and therefore, $\frac{d}{d p}\left[\ln \|f\|_{p}\right] \leq 0$ as desired.

Alternative proof that $\|f\|_{p}$ is decreasing in p. If we let $q=p+r$, then

$$
\|a\|_{q}^{q}=\sum_{j=1}^{n} a_{j}^{p+r} \leq\left(\max _{j} a_{j}\right)^{r} \cdot \sum_{j=1}^{n} a_{j}^{p} \leq\|a\|_{p}^{r} \cdot\|a\|_{p}^{p}=\|a\|_{p}^{q}
$$

wherein we have used,

$$
\max _{j} a_{j}=\left(\max _{j} a_{j}^{p}\right)^{1 / p} \leq\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{1 / p}=\|a\|_{p}
$$

Remark 2.5. It is not too hard to see that the convexity of φ is equivalent to the interpolation inequality,

$$
\|f\|_{p_{s}} \leq\|f\|_{p_{0}}^{1-s} \cdot\|f\|_{p_{1}}^{s}
$$

where $0 \leq s \leq 1,1 \leq p_{0}, p_{1}$, and

$$
\frac{1}{p_{s}}:=(1-s) \frac{1}{p_{0}}+s \frac{1}{p_{1}} .
$$

This interpolation inequality may be proved via Hölder's inequality.
Corollary 2.6. The function $V_{p}(Z)$ is a decreasing function of p and $\ln V_{p}(Z)^{p}$ is a convex function of p where they are finite. Moreover, for all $p_{0}>1$,

$$
\begin{equation*}
\lim _{p \downarrow p_{0}} V_{p}(Z)=V_{p_{0}}(Z) \tag{2.4}
\end{equation*}
$$

and $p \rightarrow V_{p}(Z)$ is continuous on the set of p 's where $V_{p}(Z)$ is finite.

Proof. Given Lemma 2.4 , it suffices to prove Eq. (2.4) and the continuity assertion on $p \rightarrow V_{p}(Z)$. Since $p \rightarrow V_{p}(Z)$ is a decreasing function, we know that $\lim _{p \uparrow p_{0}} V_{p}(Z)$ and $\lim _{p \downarrow p_{0}} V_{p}(Z)$ always exists and also that $\lim _{p \downarrow p_{0}} V_{p}(Z)=\sup _{p>p_{0}} \sup _{\Pi} V_{p}(Z: \Pi)$. Therefore,
$\lim _{p \downarrow p_{0}} V_{p}(Z)=\sup _{p>p_{0}} \sup _{\Pi} V_{p}(Z: \Pi)=\sup _{\Pi} \sup _{p>p_{0}} V_{p}(Z: \Pi)=\sup _{\Pi} V_{p_{0}}(Z: \Pi)=V_{p_{0}}(Z)$ which proves Eq. 2.4. The continuity of $V_{p}(Z)=\exp \left(\frac{1}{p} \ln V_{p}(Z)^{p}\right)$ follows directly from the fact that $\ln V_{p}(Z)^{p}$ is convex in p and that convex functions are continuous (where finite).

Here is a proof for this case. Let $\varphi(p):=\ln V_{p}(Z)^{p}, 1 \leq p_{0}<p_{1}$ such that $V_{p_{0}}(Z)<\infty$, and $p_{s}:=(1-s) p_{0}+s p_{1}$, then

$$
\varphi\left(p_{s}\right) \leq(1-s) \varphi\left(p_{0}\right)+s \varphi\left(p_{1}\right)
$$

Letting $s \uparrow 1$ then implies $p_{s} \uparrow p_{1}$ and $\varphi\left(p_{1}-\right) \leq \varphi\left(p_{1}\right)$, i.e. $V_{p_{1}-} \leq V_{p_{1}} \leq$ $V_{p_{1}-}$. Therefore $V_{p_{1}-}=V_{p_{1}}$ and along with Eq. (2.4) proves the continuity of $p \rightarrow V_{p}(Z)$.

2.1 Computing $V_{p}(x)$

How do we actually compute $V_{p}(x):=V_{p}(x ; 0, T)$ for a given path $x \in$ $C([0, T], \mathbb{R})$, even a very simple one? Suppose x is piecewise linear, with corners at the points $0=s_{0}, s_{1}, \ldots, s_{m}=T$. Intuitively it would seem that the p-variation should be given by choosing the corners to be the partition points. That is, if $S=\left\{s_{0}, \ldots, s_{n}\right\}$ is the partition of corner points, we might think that $V_{p}(x)=V_{p}(x ; S)$. Well, first we would have to leave out any corner which is not a local extremum (because of Lemma 2.8 below). But even then, this is not generally true as is seen in Example 2.9 below.

Lemma 2.7. For all $a, b \geq 0$ and $p \geq 1$,

$$
\begin{equation*}
(a+b)^{p} \geq a^{p}+b^{p} \tag{2.5}
\end{equation*}
$$

and the inequality is strict if $a, b>0$ and $p>1$.
Proof. Observe that $(a+b)^{p} \geq a^{p}+b^{p}$ happens iff

$$
1 \geq\left(\frac{a}{a+b}\right)^{p}+\left(\frac{b}{a+b}\right)^{p}
$$

which obviously holds since

$$
\left(\frac{a}{a+b}\right)^{p}+\left(\frac{b}{a+b}\right)^{p} \leq \frac{a}{a+b}+\frac{b}{a+b}=1
$$

Moreover the latter inequality is strict if if $a, b>0$ and $p>1$.

Lemma 2.8. Let x be a path, and $D=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition. Suppose x is monotone increasing (decreasing) on $\left[t_{i-1}, t_{i+1}\right]$. Then if $D^{\prime}=D \backslash\left\{t_{i}\right\}$, $V_{p}\left(x: D^{\prime}\right) \geq V_{p}(x: D)$. If x is strictly increasing and $p>1$, the inequality is strict.

Proof. From Eq. 2.5 it follows

$$
\begin{aligned}
V_{p}(x: D \prime)^{p}-V_{p}(x: D)^{p} & =\left(x\left(t_{i+1}\right)-x\left(t_{i-1}\right)\right)^{p}-\left(x\left(t_{i+1}\right)-x\left(t_{i}\right)\right)^{p}-\left(x\left(t_{i}\right)-x\left(t_{i-1}\right)\right)^{p} \\
& =\left(\Delta_{t_{i}} x+\Delta_{t_{i+1}} x\right)^{p}-\left(\Delta_{t_{i}} x\right)^{p}-\left(\Delta_{t_{i+1}} x\right)^{p} \geq 0
\end{aligned}
$$

and the inequality is strict if $\Delta_{t_{i}} x>0, \Delta_{t_{i+1}} x>0$ and $p>1$.
In other words, on any monotone increasing segment, we should not include any intermediate points, because they can only hurt us.

Example 2.9. Consider a path like the following: If we partition $[0, T]$ at the

corner points, then

$$
V_{p}(x: S)^{p}=\left(\frac{1}{2}+\epsilon\right)^{p}+(2 \epsilon)^{p}+\left(\frac{1}{2}+\epsilon\right)^{p} \approx 2\left(\frac{1}{2}\right)^{p}<1
$$

by taking ϵ small. On the other hand, taking the trivial partition $D=\{0, T\}$, $V_{p}(x: D)=1$, so $V_{p}(x: S)<1 \leq V_{p}(x)$ and in this case using all of local minimum and maximum does not maximize the p - variation.

The clean proof of the following theorem is due to Thomas Laetsch.
Theorem 2.10. If $x:[0, T] \rightarrow \mathbb{R}$ having only finitely many local extremum in $(0, T)$ located at $\left\{s_{1}<\cdots<s_{n-1}\right\}$. Then

$$
V_{p}(x)=\sup \left\{V_{p}(x: D):\{0, T\} \subset D \subset S\right\}
$$

where $S=\left\{0=s_{0}<s_{1}<\cdots<s_{n}=T\right\}$.

Proof. Let $D=\left\{0=t_{0}<t_{1}<\cdots<t_{r}=T\right\} \in \mathcal{P}(0, T)$ be an arbitrary partition of $[0, T]$. We are going to prove by induction that there is a partition $\Pi \subset S$ such that $V_{p}(x: D) \leq V_{p}(x: \Pi)$. The proof will be by induction on $n:=\#(D \backslash S)$. If $n=0$ there is nothing to prove. So let us now suppose that the theorem holds at some level $n \geq 0$ and suppose that $\#(D \backslash S)=n+1$. Let $1 \leq k<r$ be chosen so that $t_{k} \in D \backslash S$. If $x\left(t_{k}\right)$ is between $x\left(t_{k-1}\right)$ and $x\left(t_{k+1}\right)$ (i.e. $\left(x\left(t_{k-1}\right), x\left(t_{k}\right), x\left(t_{k+1}\right)\right)$ is a monotonic triple), then according Lemma 2.8 we will have $V_{p}(x: D) \leq V_{p}\left(x: D \backslash\left\{t_{k}\right\}\right)$ and since $\#\left[\left(D \backslash\left\{t_{k}\right\}\right) \backslash S\right]=n$, the induction hypothesis implies there exists a partition, $\Pi \subset S$ such that

$$
V_{p}(x: D) \leq V_{p}\left(x: D \backslash\left\{t_{k}\right\}\right) \leq V_{p}(x: \Pi)
$$

Hence we may now assume that either $x\left(t_{k}\right)<\min \left(x\left(t_{k-1}\right), x\left(t_{k+1}\right)\right)$ or $x\left(t_{k}\right)>\max \left(x\left(t_{k-1}\right), x\left(t_{k+1}\right)\right)$. In the first case we let $t_{k}^{*} \in\left(t_{k-1}, t_{k+1}\right)$ be a point where $\left.x\right|_{\left[t_{k-1}, t_{k+1}\right]}$ has a minimum and in the second let $t_{k}^{*} \in\left(t_{k-1}, t_{k+1}\right)$ be a point where $\left.x\right|_{\left[t_{k-1}, t_{k+1}\right]}$ has a maximum. In either case if $D^{*}:=\left(D \backslash\left\{t_{k}\right\}\right) \cup$ $\left\{t_{k}^{*}\right\}$ we will have $V_{p}(x: D) \leq V_{p}\left(x: D^{*}\right)$ and $\#\left(D^{*} \backslash S\right)=n$. So again the induction hypothesis implies there exists a partition $\Pi \subset S$ such that

$$
V_{p}(x: D) \leq V_{p}\left(x: D^{*}\right) \leq V_{p}(x: \Pi)
$$

From these considerations it follows that

$$
V_{p}(x: D) \leq \sup \left\{V_{p}(x: \Pi): \Pi \in \mathcal{P}(0, T) \text { s.t. } \Pi \subset S\right\}
$$

and therefore

$$
\begin{aligned}
V_{p}(x) & =\sup \left\{V_{p}(x: D): D \in \mathcal{P}(0, T)\right\} \\
& \leq \sup \left\{V_{p}(x: \Pi): \Pi \in \mathcal{P}(0, T) \text { s.t. } \Pi \subset S\right\} \leq V_{p}(x) .
\end{aligned}
$$

Let us now suppose that x is (say) monotone increasing (not strictly) on $\left[s_{0}, s_{1}\right]$, monotone decreasing on $\left[s_{1}, s_{2}\right]$, and so on. Thus s_{0}, s_{2}, \ldots are local minima, and s_{1}, s_{3}, \ldots are local maxima. (If you want the reverse, just replace x with $-x$, which of course has the same p-variation.)

Definition 2.11. Say that $s \in[0, T]$ is a forward maximum for x if $x(s) \geq$ $x(t)$ for all $t \geq s$. Similarly, s is a forward minimum if $x(s) \leq x(t)$ for all $t \geq s$.

Definition 2.12. Suppose x is piecewise monotone, as above, with extrema $\left\{s_{0}, s_{1}, \ldots\right\}$. Suppose further that s_{2}, s_{4}, \ldots are not only local minima but also forward minima, and that s_{1}, s_{3}, \ldots are both local and forward maxima. Then we will say that x is jog-free.

Note that $s_{0}=0$ does not have to be a forward extremum. This is in order to admit a path with $x(0)=0$ which can change signs.

Here is an example.
Remark 2.13. Here is another way to state the jog-free condition. Let x be piecewise monotone with extrema s_{0}, s_{1}, \ldots. Let $\xi_{i}=\left|x\left(s_{i+1}\right)-x\left(s_{i}\right)\right|$. Then x is jog-free iff $\xi_{1} \geq \xi_{2} \geq \ldots$. The idea is that the oscillations are shrinking. (Notice that we don't need $\xi_{0} \geq \xi_{1}$; this is because $s_{0}=0$ is not required to be a forward extremum.)
Remark 2.14. It is also okay if s_{1}, s_{2}, \ldots are backwards extrema; this corresponds to the oscillations getting larger. Just reverse time, replacing $x(t)$ by $x(T-t)$, which again doesn't change the p-variation. Note that if ξ_{i} are as above, this corresponds to having $\xi_{0} \leq \xi_{1} \leq \xi_{2} \leq \ldots$ (note that ξ_{0} is included now, but ξ_{m-1} would not be). This case seems less useful, however.
Lemma 2.15. Let x be jog-free with extrema s_{0}, \ldots, s_{m}. Let $D=\left\{t_{0}, \ldots, t_{n}\right\}$ be any partition not containing all the s_{j}. Then there is some $s_{j} \notin D$ such that if $D^{\prime}=D \cup\left\{s_{j}\right\}, V_{p}\left(x: D^{\prime}\right) \geq V_{p}(x: D)$.

Proof. Let s_{j} be the first extremum not contained in D (note $s_{0}=0 \in D$ already, so j is at least 1 and s_{j} is also a forward extremum). Let t_{i} be the last element of D less than s_{j}. Note that $s_{j-1} \leq t_{i}<s_{j}<t_{i+1}$.

Now x is monotone on $\left[s_{j-1}, s_{j}\right]$; say WLOG it's monotone increasing, so that s_{j} is a local maximum and also a forward maximum. Since $t_{i} \in\left[s_{j-1}, s_{j}\right]$, where x is monotone increasing, $x\left(s_{j}\right) \geq x\left(t_{i}\right)$. And since s_{j} is a forward maximum, $x\left(s_{j}\right) \geq x\left(t_{i+1}\right)$.

Therefore we have

$$
\begin{aligned}
x\left(s_{j}\right)-x\left(t_{i}\right) & \geq x\left(t_{i+1}\right)-x\left(t_{i}\right) \\
x\left(s_{j}\right)-x\left(t_{i+1}\right) & \geq x\left(t_{i}\right)-x\left(t_{i+1}\right) .
\end{aligned}
$$

One of the quantities on the right is equal to $\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right|$, and so it follows that

Actually, the extreme points s_{j} can converge to some earlier time than T, but x will have to be constant after that time.

Proof. For any m, we have $\sum_{j=0}^{m} \xi_{j}^{p}=V_{p}(x: D)^{p}$ for $D=\left\{s_{0}, \ldots, s_{m+1}\right\}$, so $V_{p}(x)^{p} \geq \sum_{j=0}^{m} \xi_{j}^{p}$. Passing to the limit, $V_{p}(x)^{p} \geq \sum_{j=0}^{\infty} \xi_{j}^{p}$.

For the reverse inequality, let $D=\left\{0=t_{0}, t_{1}, \ldots, t_{n}=T\right\}$ be a partition with $V_{p}(x: D) \geq V_{p}(x)-\epsilon$. Choose m so large that $s_{m}>t_{n-1}$. Let $S=$ $\left\{s_{0}, \ldots, s_{m}, T\right\}$, then by the same argument as in Proposition 2.16 we find that $V_{p}(x: S) \geq V_{p}(x: D)$. (Previously, the only way we used the assumption that S contained all extrema s_{j} was in order to have every $t_{i} \in D \backslash S$ contained in some monotone interval $\left[s_{j}, s_{j+1}\right.$]. That is still the case here; we just take enough s_{j} 's to ensure that we can surround each t_{i}. We do not need to surround $t_{n}=T$, since it is already in S.)

But $V_{p}(x: S)^{p}=\sum_{j=0}^{m-1} \xi_{j}^{p} \leq \sum_{j=0}^{\infty} \xi_{j}^{p}$, and so we have that

$$
\left(\sum_{j=0}^{\infty} \xi_{j}^{p}\right)^{1 / p} \geq V_{p}(x: D) \geq V_{p}(x)-\epsilon
$$

ϵ was arbitrary and we are done.

2.2 Brownian Motion in the Rough

Corollary 2.18. For all $p>2$ and $T<\infty, V_{p}\left(\left.B\right|_{[0, T]}\right)<\infty$ a.s. (We will see later that $V_{p}\left(\left.B\right|_{[0, T]}\right)=\infty$ a.s. for all $p<2$.)

Proof. By Corollary 1.8, there exists $K_{p}<\infty$ a.s. such that

$$
\begin{equation*}
\left|B_{t}-B_{s}\right| \leq K_{p}|t-s|^{1 / p} \text { for all } 0 \leq s, t \leq T \tag{2.6}
\end{equation*}
$$

Thus we have

$$
\sum_{i}\left|\Delta_{i} B\right|^{p} \leq \sum_{i}\left(K_{p}\left|t_{i}-t_{i-1}\right|^{1 / p}\right)^{p} \leq \sum_{i} K_{p}^{p}\left|t_{i}-t_{i-1}\right|=K_{p}^{p} T
$$

and therefore, $V_{p}\left(\left.B\right|_{[0, T]}\right) \leq K_{p}^{p} T<\infty$ a.s.
Proposition 2.19 (Quadratic Variation). Let $\left\{\Pi_{m}\right\}_{m=1}^{\infty}$ be a sequence of partition of $[0, T]$ such that $\lim _{m \rightarrow \infty}\left|\Pi_{m}\right|=0$ and define $Q_{m}:=V_{2}^{2}\left(B: \Pi_{m}\right)$. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mathbb{E}\left[\left(Q_{m}-T\right)^{2}\right]=0 \tag{2.7}
\end{equation*}
$$

and if $\sum_{m=1}^{\infty}$ mesh $\left(\Pi_{m}\right)<\infty$ then $\lim _{m \rightarrow \infty} Q_{m}=T$ a.s. This result is often abbreviated by the writing, $d B_{t}^{2}=d t$.

Proof. Let N be an $N(0,1)$ random variable, $\Delta t:=t-t_{-}, \Delta_{t} B:=B_{t}-B_{t_{-}}$ and observe that $\Delta_{t} B \sim \sqrt{\Delta t} N$. Thus we have,

$$
\mathbb{E} Q_{m}=\sum_{t \in \Pi_{m}} \mathbb{E}\left(\Delta_{t} B\right)^{2}=\sum_{t \in \Pi_{m}} \Delta t=T
$$

Let us define

$$
\begin{aligned}
\operatorname{Cov}(A, B) & :=\mathbb{E}[A B]-\mathbb{E} A \cdot \mathbb{E} B \text { and } \\
\quad \operatorname{Var}(A) & :=\operatorname{Cov}(A, A)=\mathbb{E} A^{2}-(\mathbb{E} A)^{2}=\mathbb{E}\left[(A-\mathbb{E} A)^{2}\right]
\end{aligned}
$$

and observe that

$$
\operatorname{Var}\left(\sum_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(A_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(A_{i}, A_{j}\right)
$$

As $\operatorname{Cov}\left(\Delta_{t} B, \Delta_{s} B\right)=0$ if $s \neq t$, we may use the above computation to conclude,

$$
\begin{aligned}
\operatorname{Var}\left(Q_{m}\right) & =\sum_{t \in \Pi} \operatorname{Var}\left(\left(\Delta_{t} B\right)^{2}\right)=\sum_{t \in \Pi} \operatorname{Var}\left(\Delta t \cdot N^{2}\right) \\
& =\operatorname{Var}\left(N^{2}\right) \sum_{t \in \Pi}(\Delta t)^{2} \leq \operatorname{Var}\left(N^{2}\right)\left|\Pi_{m}\right| \sum_{t \in \Pi} \Delta t \\
& =T \cdot \operatorname{Var}\left(N^{2}\right)\left|\Pi_{m}\right| \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

(By explicit Gaussian integral computations,

$$
\left.\operatorname{Var}\left(N^{2}\right)=\mathbb{E} N^{4}-\left(\mathbb{E} N^{2}\right)^{2}=3-1=2<\infty .\right)
$$

Thus we have shown

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\left(Q_{m}-T\right)^{2}\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\left(Q_{m}-\mathbb{E} Q\right)^{2}\right]=\lim _{m \rightarrow \infty} \operatorname{Var}\left(Q_{m}\right)=0
$$

If $\sum_{m=1}^{\infty}\left|\Pi_{m}\right|<\infty$, then

$$
\begin{aligned}
\mathbb{E}\left[\sum_{m=1}^{\infty}\left(Q_{m}-T\right)^{2}\right] & =\sum_{m=1}^{\infty} \mathbb{E}\left(Q_{m}-T\right)^{2}=\sum_{m=1}^{\infty} \operatorname{Var}\left(Q_{m}\right) \\
& \leq \operatorname{Var}\left(N^{2}\right) \cdot T \cdot \sum_{m=1}^{\infty} \operatorname{mesh}\left(\Pi_{m}\right)<\infty
\end{aligned}
$$

from which it follows that $\sum_{m=1}^{\infty}\left(Q_{m}-T\right)^{2}<\infty$ a.s. In particular $\left(Q_{m}-T\right) \rightarrow$ 0 almost surely.
$142 p$-Variations and Controls
Proposition 2.20. If $p>q \geq 1$ and $V_{q}(Z)<\infty$, then $\lim _{|\Pi| \rightarrow 0} V_{p}(Z: \Pi)=$ 0 .

Proof. Let $\Pi \in \mathcal{P}(0, T)$, then

$$
\begin{aligned}
V_{p}^{p}(Z: \Pi) & =\sum_{t \in \Pi} d^{p}\left(Z(t), Z\left(t_{-}\right)\right)=\sum_{t \in \Pi} d^{p-q}\left(Z(t), Z\left(t_{-}\right)\right) d^{q}\left(Z(t), Z\left(t_{-}\right)\right) \\
& \leq \max _{t \in \Pi} d^{p-q}\left(Z(t), Z\left(t_{-}\right)\right) \cdot \sum_{t \in \Pi} d^{q}\left(Z(t), Z\left(t_{-}\right)\right) \\
& \leq \max _{t \in \Pi} d^{p-q}\left(Z(t), Z\left(t_{-}\right)\right) \cdot V_{q}^{q}(Z: \Pi) \\
& \leq \max _{t \in \Pi} d^{p-q}\left(Z(t), Z\left(t_{-}\right)\right) \cdot V_{q}^{q}(Z) .
\end{aligned}
$$

Thus, by the uniform continuity of $\left.Z\right|_{[0, T]}$ we have

$$
\limsup _{|\Pi| \rightarrow 0} V_{p}(Z: \Pi) \leq \limsup _{|\Pi| \rightarrow 0} \max _{t \in \Pi} d^{p-q}\left(Z(t), Z\left(t_{-}\right)\right) \cdot V_{q}^{q}(Z)=0
$$

Corollary 2.21. If $p<2$, then $V_{p}\left(\left.B\right|_{[0, T]}\right)=\infty$ a.s.
Proof. Choose partitions, $\left\{\Pi_{m}\right\}$, of $[0, T]$ such that $\lim _{m \rightarrow \infty} Q_{m}=T$ a.s. where $Q_{m}:=V_{2}^{2}\left(B: \Pi_{m}\right)$ and let $\Omega_{0}:=\left\{\lim _{m \rightarrow \infty} Q_{m}=T\right\}$ so that $P\left(\Omega_{0}\right)=$ 1. If $V_{p}\left(\left.B\right|_{[0, T]}(\omega)\right)<\infty$ for then by Proposition 2.20 ,

$$
\lim _{m \rightarrow \infty} Q_{m}(\omega)=\lim _{m \rightarrow \infty} V_{2}^{2}\left(B(\omega): \Pi_{m}\right)=0
$$

and hence $\omega \notin \Omega_{0}$, i.e. $\left\{V_{p}\left(\left.B\right|_{[0, T]}(\cdot)\right)<\infty\right\} \subset \Omega_{0}^{c}$. Therefore $\Omega_{0} \subset$ $\left\{V_{p}\left(\left.B\right|_{[0, T]}(\cdot)\right)=\infty\right\}$ and hence

$$
P\left(\left\{V_{p}\left(\left.B\right|_{[0, T]}(\cdot)\right)=\infty\right\}\right) \geq P(\Omega)=1
$$

Fact 2.22 If $\left\{B_{t}\right\}_{t \geq 0}$ is a Brownian motion, then

$$
P\left(V_{p}(B)<\infty\right)=\left\{\begin{array}{l}
1 \text { if } p>2 \\
0 \text { if } p \leq 2
\end{array}\right.
$$

See for example [7, Exercise 1.14 on p. 36].
Corollary 2.23 (Roughness of Brownian Paths). A Brownian motion, $\left\{B_{t}\right\}_{t \geq 0}$, is not almost surely α - Hölder continuous for any $\alpha>1 / 2$.

Proof. According to Proposition 2.19 we may choose partition, Π_{m}, such that mesh $\left(\Pi_{m}\right) \rightarrow 0$ and $Q_{m} \rightarrow T$ a.s. If B were α - Hölder continuous for some $\alpha>1 / 2$, then

$$
\begin{aligned}
Q_{m} & =\sum_{t \in \Pi_{m}}\left(\Delta_{t} B\right)^{2} \leq C \sum_{t \in \Pi_{m}}(\Delta t)^{2 \alpha} \leq C \max \left([\Delta t]^{2 \alpha-1}\right) \sum_{t \in \Pi_{m}} \Delta t \\
& \leq C\left[\left|\Pi_{m}\right|\right]^{2 \alpha-1} T \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

which contradicts the fact that $Q_{m} \rightarrow T$ as $m \rightarrow \infty$.

2.3 The Bounded Variation Obstruction

Proposition 2.24. Suppose that $Z(t)$ is a real continuous function such that $Z_{0}=0$ for simplicity. Define

$$
\int_{0}^{T} f(\tau) d Z(\tau):=-\int_{0}^{T} \dot{f}(\tau) Z(t) d \tau+\left.f(t) Z(t)\right|_{0} ^{T}
$$

whenever f is a C^{1} - function. If there exists, $C<\infty$ such that

$$
\begin{equation*}
\left|\int_{0}^{T} f(\tau) d Z(\tau)\right| \leq C \cdot \max _{0 \leq \tau \leq T}|f(\tau)| \tag{2.8}
\end{equation*}
$$

then $V_{1}(Z)<\infty$ (See Definition 2.2 above) and the best possible choice for C in $E q$. 2.8) is $V_{1}(Z)$.

Proof. Given a partition, $\Pi:=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=T\right\}$ be a partition of $[0, T],\left\{\alpha_{k}\right\}_{k=1}^{n} \subset \mathbb{R}$, and $f(t):=\alpha_{1} 1_{\{0\}}+\sum_{k=1}^{n} \alpha_{k} 1_{\left(t_{k-1, t_{k}}\right]}$. Choose $f_{m}(t)$ in $C^{1}([0, T], \mathbb{R})$ "well approximating" $f(t)$ as in Figure 2.3 . It then is fairly

easy to show,

$$
\int_{0}^{T} \dot{f}_{m}(\tau) Z(t) d \tau \rightarrow \sum_{k=1}^{n-1}\left(\alpha_{k+1}-\alpha_{k}\right) Z\left(t_{k}\right)
$$

and therefore,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \int_{0}^{T} f_{m}(t) d Z(t) & =-\sum_{k=1}^{n-1}\left(\alpha_{k+1}-\alpha_{k}\right) Z\left(t_{k}\right)+\alpha_{n} Z\left(t_{n}\right)-\alpha_{1} Z\left(t_{0}\right) \\
& =\sum_{k=1}^{n} \alpha_{k}\left(Z\left(t_{k}\right)-Z\left(t_{k-1}\right)\right) .
\end{aligned}
$$

Therefore we have,

$$
\begin{aligned}
\left|\sum_{k=1}^{n} \alpha_{k}\left(Z\left(t_{k}\right)-Z\left(t_{k-1}\right)\right)\right| & =\lim _{m \rightarrow \infty}\left|\int_{0}^{T} f_{m}(\tau) d Z(\tau)\right| \\
& \leq C \cdot \limsup _{m \rightarrow \infty} \max _{0 \leq \tau \leq T}\left|f_{m}(\tau)\right|=C \max _{k}\left|\alpha_{k}\right|
\end{aligned}
$$

Taking $\alpha_{k}=\operatorname{sgn}\left(Z\left(t_{k}\right)-Z\left(t_{k-1}\right)\right)$ for each k, then shows $\sum_{k=1}^{n}\left|Z\left(t_{k}\right)-Z\left(t_{k-1}\right)\right| \leq C$. Since this holds for any partition Π, it follows that $V_{1}(Z) \leq C$.

If $V_{1}(Z)<\infty$, then

$$
\int_{0}^{T} \dot{f}(\tau) Z(t) d \tau=-\int_{0}^{T} f(t) d \lambda_{Z}(t)+\left.f(t) Z(t)\right|_{0} ^{T}
$$

where λ_{Z} is the Lebesgue Stieltjes measure associated to Z. From this identity and integration by parts for such finite variation functions, it follows that

$$
\int_{0}^{T} f(t) d Z(t)=\int_{0}^{T} f(t) d \lambda_{Z}(t)
$$

and

$$
\begin{aligned}
\left|\int_{0}^{T} f(t) d Z(t)\right| & =\left|\int_{0}^{T} f(t) d \lambda_{Z}(t)\right| \leq \int_{0}^{T}|f(t)| d\left\|\lambda_{Z}\right\|(t) \\
& \leq \max _{0 \leq \tau \leq T}|f(\tau)| \cdot\left\|\lambda_{Z}\right\|([0, T])=V_{1}(Z) \cdot \max _{0 \leq \tau \leq T}|f(\tau)|
\end{aligned}
$$

Therefore C can be taken to be $V_{1}(Z)$ in Eq. 2.8) and hence $V_{1}(Z)$ is the best possible constant to use in this equation.

Combining Fact 2.22 with Proposition 2.24 explains why we are going to have trouble defining $\int_{0}^{\tau} f_{s} d B_{s}$ when B is a Brownian motion. However, one might hope to use Young's integral in this setting.

Proof. We must show $\varphi \circ \omega$ is still superaditive. and this boils down to showing if $0 \leq a, b, c$ with $a+b \leq c$, then

$$
\varphi(a)+\varphi(b) \leq \varphi(c)
$$

As φ is increasing, it suffices to show,

$$
\begin{equation*}
\varphi(a)+\varphi(b) \leq \varphi(a+b) \tag{2.10}
\end{equation*}
$$

Making use of the convexity of φ, we have,

$$
\begin{aligned}
\varphi(b) & =\varphi\left(\frac{a}{a+b} \cdot 0+\frac{b}{a+b}(a+b)\right) \\
& \leq \frac{a}{a+b} \varphi(0)+\frac{b}{a+b} \varphi(a+b)=\frac{b}{a+b} \varphi(a+b)
\end{aligned}
$$

and interchanging the roles of a and b gives,

$$
\begin{equation*}
\varphi(a) \leq \frac{a}{a+b} \varphi(a+b) \tag{2.11}
\end{equation*}
$$

Adding these last two inequalities then proves Eq. 2.10.
Example 2.29. Suppose that $u(t)$ is any increasing continuous function of t, then $\omega(s, t):=u(t)-u(s)$ is a control which is in fact additive, i.e.

$$
\omega(s, t)+\omega(t, v)=\omega(s, v) \text { for all } s \leq t \leq v
$$

So for example $\omega(s, t)=t-s$ is an additive control and for any $p>1, \omega(s, t)=$ $(t-s)^{p}$ or more generally, $\omega(s, t)=(u(t)-u(s))^{p}$ is a control.
Lemma 2.30. Suppose that ω is a control, $p \in[1, \infty)$, and $Z \in C([0, T], E)$ is a function satisfying,

$$
d\left(Z_{s}, Z_{t}\right) \leq \omega(s, t)^{1 / p} \text { for all }(s, t) \in \Delta
$$

then $V_{p}^{p}(Z) \leq \omega(0, T)<\infty$. More generally,

$$
\omega_{p, Z}(s, t):=V_{p}^{p}\left(\left.Z\right|_{[s, t]}\right) \leq \omega(s, t) \text { for all }(s, t) \in \Delta
$$

Proof. Let $(s, t) \in \Delta$ and $\Pi \in \mathcal{P}([s, t])$, then using the superadditivity of ω we find

$$
V_{p}^{p}\left(\left.Z\right|_{[s, t]}: \Pi\right)=\sum_{t \in \Pi} d^{p}\left(Z_{t}, Z_{t_{-}}\right) \leq \sum_{t \in \Pi} \omega\left(Z_{t}, Z_{t_{-}}\right) \leq \omega(s, t)
$$

Therefore,

$$
\omega_{p, Z}(s, t):=V_{p}^{p}\left(\left.Z\right|_{[s, t]}\right)=\sup _{\Pi \in \mathcal{P}([s, t])} V_{p}^{p}\left(\left.Z\right|_{[s, t]}: \Pi\right) \leq \omega(s, t)
$$

Notation 2.31 Given $o \in E$ and $p \in[1, \infty)$, let

$$
\begin{gathered}
C_{p}([0, T], E):=\left\{Z \in C([0, T], E): V_{p}(Z)<\infty\right\} \text { and } \\
C_{0, p}([0, T], E):=\left\{Z \in C_{p}([0, T], E): Z(0)=o\right\} .
\end{gathered}
$$

Lemma 2.32. Let $Z \in C_{p}([0, T], E)$ for some $p \in[1, \infty)$ and let $\omega:=\omega_{Z, p}$: $\Delta \rightarrow[0, \infty)$ defined in Eq. (2.3). Then ω is superadditive. Furthermore if $p=1$, ω is additive, i.e. Equality holds in Eq. 2.9.

Proof. If $0 \leq u \leq s \leq v \leq T$ and $\Pi_{1} \in \mathcal{P}(u, s), \Pi_{2} \in \mathcal{P}(s, v)$, then $\Pi_{1} \cup \Pi_{2} \in \mathcal{P}(u, v)$. Thus we have,

$$
V_{p}^{p}\left(X: \Pi_{1}\right)+V_{p}^{p}\left(X: \Pi_{2}\right)=V_{p}^{p}\left(X: \Pi_{1} \cup \Pi_{2}\right) \leq \omega(u, v)
$$

Taking the supremum over all Π_{1} and Π_{2} then implies,

$$
\omega(u, s)+\omega(s, v) \leq \omega(u, v) \text { for all } u \leq s \leq v
$$

i.e. ω is superaditive.

In the case $p=1$, it is easily seen using the triangle inequality that if $\Pi_{1}, \Pi_{2} \in \mathcal{P}(s, t)$ and $\Pi_{1} \subset \Pi_{2}$, then $V_{1}\left(X: \Pi_{1}\right) \leq V_{1}\left(X, \Pi_{2}\right)$. Thus in comuting the sup of $V_{1}(X: \Pi)$ over all partition in $\mathcal{P}(s, t)$ it never hurts to add more points to a partition. Using this remark it is easy to show,

$$
\begin{aligned}
\omega(u, s)+\omega(s, v) & =\sup _{\Pi_{1} \in \mathcal{P}(u, s), \Pi_{2} \in \mathcal{P}(s, v)}\left[V_{1}\left(X: \Pi_{1}\right)+V_{1}\left(X: \Pi_{2}\right)\right] \\
& =\sup _{\Pi_{1} \in \mathcal{P}(u, s), \Pi_{2} \in \mathcal{P}(s, v)} V_{1}\left(X: \Pi_{1} \cup \Pi_{2}\right) \\
& =\sup _{\Pi \in \mathcal{P}(u, v)} V_{1}(X: \Pi)=\omega(u, v)
\end{aligned}
$$

as desired.
Lemma 2.33. Let $Z \in C_{p}([0, T], E)$ for some $p \in[1, \infty)$, $\omega:=\omega_{Z, p}: \Delta \rightarrow$ $[0, \infty)$ defined in Eq. 2.3), $(a, b) \in \Delta, \Pi \in \mathcal{P}(a, b)$, and

$$
\varepsilon:=\omega(a, b)-V_{p}^{p}(Z: \Pi) \geq 0
$$

Then for any $\Pi^{\prime} \in \mathcal{P}(a, b)$ with $\Pi^{\prime} \subset \Pi$, we have

$$
\begin{equation*}
\sum_{t \in \Pi^{\prime}}\left[\omega\left(t_{-}, t\right)-V_{p}^{p}\left(Z: \Pi \cap\left[t_{-}, t\right]\right)\right] \leq \varepsilon \tag{2.12}
\end{equation*}
$$

In particular, if $(\alpha, \beta) \in \Delta \cap \Pi^{2}$ then

$$
\begin{equation*}
\omega(\alpha, \beta) \leq V_{p}^{p}(Z: \Pi \cap[\alpha, \beta])+\varepsilon \tag{2.13}
\end{equation*}
$$

Proof. Equation (2.12) is a simple consequence of the superadditivity of ω (Lemma 2.32) and the identity,

$$
\sum_{t \in \Pi^{\prime}} V_{p}^{p}\left(Z: \Pi \cap\left[t_{-}, t\right]\right)=V_{p}^{p}(Z: \Pi)
$$

Indeed, using these properties we find,

$$
\begin{aligned}
\sum_{t \in \Pi^{\prime}}\left[\omega\left(t_{-}, t\right)-V_{p}^{p}\left(Z: \Pi \cap\left[t_{-}, t\right]\right)\right] & =\sum_{t \in \Pi^{\prime}} \omega\left(t_{-}, t\right)-V_{p}^{p}(Z: \Pi) \\
& \leq \omega(a, b)-V_{p}^{p}(Z: \Pi)=\varepsilon
\end{aligned}
$$

Lemma 2.34. Suppose that $Z \in C_{p}([0, T], E)$ for some $p \in[1, \infty)$ and $\varepsilon>0$ is given. Then there exists $\delta>0$ such that, for every $\Pi \subset \subset[0, T]$ and $u \in[0, T]$ such that dist $(u, \Pi)<\delta$ we have,

$$
\left|V_{p}^{p}(Z: \Pi)-V_{p}^{p}(Z: \Pi \cup\{u\})\right|<\varepsilon
$$

Proof. Let $\rho(s, t):=d^{p}(Z(s), Z(t))$ and choose (by the uniform continuity of $\rho) \delta>0$ such that $|\rho(s, t)-\rho(u, v)|<\varepsilon / 2$ provided $|(s, t)-(u, v)|<\delta$. Suppose that $\Pi=\left\{t_{0}<t_{1}<\cdots<t_{n}\right\} \subset[0, T]$ and $u \in[0, T]$ such that dist $(u, \Pi)<\delta$. There are now three case to consider, $u \in\left(t_{0}, t_{n}\right), u<t_{0}$ and $u>t_{1}$. In the first case, suppose that $t_{i-1}<u<t_{i}$ and that (for the sake of definiteness) that $\left|t_{i}-u\right|<\delta$, then

$$
\begin{aligned}
\left|V_{p}^{p}(Z: \Pi)-V_{p}^{p}(Z: \Pi \cup\{u\})\right| & =\left|\rho\left(t_{i-1}, t_{i}\right)-\rho\left(t_{i-1}, u\right)-\rho\left(u, t_{i}\right)\right| \\
& \leq\left|\rho\left(t_{i-1}, t_{i}\right)-\rho\left(t_{i-1}, u\right)\right|+\left|\rho\left(u, t_{i}\right)-\rho\left(t_{i}, t_{i}\right)\right|<\varepsilon
\end{aligned}
$$

The second and third case are similar. For example if $u<t_{0}$, we will have,

$$
\left|V_{p}^{p}(Z: \Pi \cup\{u\})-V_{p}^{p}(Z: \Pi)\right|=\rho\left(u, t_{0}\right)=\rho\left(u, t_{0}\right)-\rho\left(t_{0}, t_{0}\right)<\varepsilon / 2
$$

Theorem 2.35 (The variation control). Let $p \in[1, \infty)$ and suppose that $Z \in C_{p}([0, T], E)$. Then $\omega_{Z, p}: \Delta \rightarrow[0, \infty)$ defined in Eq. 2.3) is a control satisfying, $d(Z(s), Z(t)) \leq \omega_{Z, p}(s, t)^{1 / p}$ for all $(s, t) \in \Delta$.

Proof. Let $\omega(s, t):=\omega_{Z, p}(s, t)$ and $\rho(s, t):=d^{p}(Z(s), Z(t))$. It is clear by the definition of ω, the $\omega(t, t)=0$ for all t and we have already seen in Lemma 2.32 that ω is superadditive. So to finish the proof we must show ω is continuous.

Using Remark 2.27, we know that $\omega(s, t)$ is increasing in t and decreasing in s and therefore $\omega(u+, v-)=\lim _{s \downarrow u, t \uparrow v} \omega(s, t)$ and $\omega(u-, v+)=$ $\lim _{s}^{\uparrow u, t \downarrow v} \mid$

$$
\begin{equation*}
\omega(u+, v-) \leq \omega(u, v) \leq \omega(u-, v+) \tag{2.14}
\end{equation*}
$$

The main crux of the continuity proof is to show that the inequalities in Eq. 2.14) are all equalities.

1. Suppose that $\varepsilon>0$ is given and $\delta>0$ is chosen as in Lemma 2.34 and suppose that $u<s<t<v$ with $|s-u|<\delta$ and $|v-t|<\delta$. Further let $\Pi \in \mathcal{P}(u, v)$ be a partition of $[u, v]$, then according to Lemma 2.34,

$$
\begin{aligned}
V_{p}^{p}(Z: \Pi) & \leq V_{p}^{p}(Z: \Pi \cup\{s, t\})+2 \varepsilon \\
& =\rho(u, s)+\rho(t, v)+V_{p}^{p}(Z: \Pi \cap[s, t] \cup\{s, t\})+2 \varepsilon \\
& \leq \rho(u, s)+\rho(t, v)+\omega(s, t)+2 \varepsilon
\end{aligned}
$$

Letting $s \downarrow u$ and $t \uparrow v$ in this inequality shows,

$$
V_{p}^{p}(Z: \Pi) \leq \omega(u+, v-)+2 \varepsilon
$$

and then taking the supremum over $\Pi \in \mathcal{P}(u, v)$ and then letting $\varepsilon \downarrow 0$ shows $\omega(u, v) \leq \omega(u+, v-)$. Combined this with the first inequality in Eq. 2.14) shows, $\omega(u+, v-)=\omega(u, v)$.
2. We will now show $\omega(u, v)=\omega(u-, v+)$ by showing $\omega(u-, v+) \leq \omega(u, v)$. Let $\varepsilon>0$ and $\delta>0$ be as in Lemma 2.34 and suppose that $s<u$ and $t>v$ with $|u-s|<\delta$ and $|t-v|<\delta$. Let us now choose a partition $\Pi \in \mathcal{P}(s, t)$ such that

$$
\omega(s, t) \leq V_{p}^{p}(Z: \Pi)+\varepsilon
$$

Then applying Lemma 2.34 gives,

$$
\omega(s, t) \leq V_{p}^{p}\left(Z: \Pi_{1}\right)+3 \varepsilon
$$

where $\Pi_{1}=\Pi \cup\{u, v\}$. As above, let u_{-}and v_{+}be the elements in Π_{1} just before u and just after v respectively. An application of Lemma 2.33 then shows,

$$
\begin{aligned}
\omega(u-, v+) & \leq \omega\left(u_{-}, v_{+}\right) \leq V_{p}^{p}\left(Z: \Pi_{1} \cap\left[u_{-}, v_{+}\right]\right)+3 \varepsilon \\
& =V_{p}^{p}\left(Z: \Pi_{1}\right)+\rho\left(u_{-}, u\right)+\rho\left(v, v_{+}\right)+3 \varepsilon \\
& \leq \omega(u, v)+5 \varepsilon
\end{aligned}
$$

As $\varepsilon>0$ was arbitrary we may conclude $\omega(u-, v+) \leq \omega(u, v)$ which completes the proof that $\omega(u-, v+)=\omega(u, v)$.

I now claim all the other limiting directions follow easily from what we have proved. For example,

$$
\begin{aligned}
& \omega(u, v) \leq \omega(u, v+) \leq \omega(u-, v+)=\omega(u, v) \Longrightarrow \omega(u, v+)=\omega(u, v), \\
& \omega(u, v)=\omega(u+, v-) \leq \omega(u, v-) \leq \omega(u, v) \Longrightarrow \omega(u, v-)=\omega(u, v),
\end{aligned}
$$

and similarly, $\omega(u \pm, v)=\omega(u, v)$. We also have,
$\omega(u, v)=\omega(u+, v-) \leq \liminf _{s \downarrow u, t \downarrow v} \omega(s, t) \leq \limsup _{s \downarrow u, t \downarrow v} \omega(s, t) \leq \omega(u-, v+)=\omega(u, v)$
which shows $\omega(u+, v+)=\omega(u, v)$ and
$\omega(u, v)=\omega(u+, v-) \leq \liminf _{s \uparrow u, t \uparrow v} \omega(s, t) \leq \liminf _{s \uparrow u, t \uparrow v} \omega(s, t) \leq \omega(u-, v+)=\omega(u, v)$
so that $\omega(u-, v-)=\omega(u, v)$.
Proposition 2.36 (See [2, Proposition 5.15 from p. 83.]). Let (E, d) be a metric space, and let $x:[0, T] \rightarrow E$ be a continuous path. Then x is of finite p-variation if and only if there exists a continuous increasing (i.e. non - decreasing) function $h:[0, T] \rightarrow\left[0, V_{p}^{p}(Z)\right]$ and a $1 / p$ - Hölder path g : $\left[0, V_{p}^{p}(Z)\right] \rightarrow E$ such that such that $x=g \circ h$. More explicitly we have,

$$
\begin{equation*}
d(g(v), g(u)) \leq|v-u|^{1 / p} \text { for all } u, v \in\left[0, V_{p}^{p}(Z)\right] \tag{2.15}
\end{equation*}
$$

Proof. Let $\omega(s, t):=\omega_{p, x}(s, t)=V_{p}^{p}\left(\left.x\right|_{[s, t]}\right)$ be the control associated to x and define $h(t):=\omega(0, t)$. Observe that h is increasing and for $0 \leq s \leq t \leq T$ that $h(s)+\omega(s, t) \leq h(t)$, i.e.

$$
\omega(s, t) \leq h(t)-h(s) \text { for all } 0 \leq s \leq t \leq T .
$$

Let $g:[0, h(T)] \rightarrow E$ be defined by $g(h(t)):=x(t)$. This is well defined since if $s \leq t$ and $h(s)=h(t)$, then $\omega(s, t)=0$ and hence $\left.x\right|_{[s, t]}$ is constant and in particular $x(s)=x(t)$. Moreover it now follows for $s<t$ such that $u:=h(s)<h(t)=: v$, that

$$
\begin{aligned}
d^{p}(g(v), g(u)) & =d^{p}(g(h(t)), g(h(s)))=d^{p}(x(t), x(s)) \\
& \leq \omega(s, t) \leq h(t)-h(s)=v-u
\end{aligned}
$$

from which Eq. 2.15 easily follows.

The Bounded Variation Theory

3.1 Integration Theory for Simple Functions

Let $T \in(0, \infty)$ be fixed,

$$
\begin{equation*}
\mathcal{S}:=\{(a, b]: 0 \leq a \leq b \leq T\} \cup\{[0, b] \cap \mathbb{R}: 0 \leq b \leq T\} \tag{3.1}
\end{equation*}
$$

Further let \mathcal{A} be the algebra generated by \mathcal{S}. Since \mathcal{S} is an elementary set, \mathcal{A} may be described as the collection of sets which are finite disjoint unions of subsets from \mathcal{S}. Given any function, $Z:[0, T] \rightarrow V$ with V being a vector define $\mu_{Z}: \mathcal{S} \rightarrow V$ via,

$$
\mu_{Z}((a, b]):=Z_{b}-Z_{a} \text { and } \mu_{Z}([0, b])=Z_{b}-Z_{0} \forall 0 \leq a \leq b \leq T
$$

Lemma 3.1. μ_{Z} is finitely additive on \mathcal{S} and hence extends to a finitely additive measure on \mathcal{A}.

Proof. See Chapter ?? and in particular make the minor necessary modifications to Examples ??, ??, and Proposition ??

Let W be another vector space and $f:[0, T] \rightarrow \operatorname{End}(V, W)$ be an \mathcal{A} simple function, i.e. $f([0, T])$ is a finite set and $f^{-1}(\lambda) \in \mathcal{A}$ for all $\lambda \in$ End (V, W). For such functions we define,

$$
\begin{equation*}
\int_{[0, T]} f(t) d Z(t):=\int_{[0, T]} f d \mu_{Z}=\sum_{\lambda \in \operatorname{End}(V, W)^{\times}} \lambda \mu_{Z}(f=\lambda) \in W \tag{3.2}
\end{equation*}
$$

The basic linearity properties of this integral are explained in Proposition ??. For later purposes, it will be useful to have the following substitution formula at our disposal.

Theorem 3.2 (Substitution formula). Suppose that f and Z are as above and $Y_{t}=\int_{[0, t]} f d \mu_{Z} \in W$. Further suppose that $g: \mathbb{R}_{+} \rightarrow \operatorname{End}(W, U)$ is another \mathcal{A} - simple function with finite support. Then

$$
\int_{[0, T]} g d \mu_{Y}=\int_{[0, T]} g f d \mu_{Z}
$$

Proof. By definition of these finitely additive integrals,

$$
\begin{aligned}
\mu_{Y}((a, b]) & =Y_{b}-Y_{a}=\int_{[0, b]} f d \mu_{Z}-\int_{[0, a]} f d \mu_{Z} \\
& =\int_{[0, T]}\left(1_{[0, b]}-1_{[0, a]}\right) f d \mu_{Z}=\int_{[0, T]} 1_{(a, b]} f d \mu_{Z} .
\end{aligned}
$$

Therefore, it follows by the finite additivity of μ_{Y} and linearity $\int_{[0, T]}(\cdot) d \mu_{Z}$, that

$$
\mu_{Y}(A)=\int_{A} f d \mu_{Z}=\int_{[0, T]} 1_{A} f d \mu_{Z} \text { for all } A \in \mathcal{A} .
$$

Therefore,

$$
\begin{aligned}
\int_{[0, T]} g d \mu_{Y} & =\sum_{\lambda \in \operatorname{End}(W, U)^{\times}} \lambda \mu_{Y}(g=\lambda)=\sum_{\lambda \in \operatorname{End}(W, U)^{\times}} \lambda \int_{[0, T]} 1_{\{g=\lambda\}} f d \mu_{Z} \\
& =\int_{[0, T]} \sum_{\lambda \in \operatorname{End}(W, U)^{\times}} 1_{\{g=\lambda\}} \lambda f d \mu_{Z}=\int_{[0, T]} g f d \mu_{Z}
\end{aligned}
$$

as desired.
Let us observe that

$$
\left\|\int_{[0, T]} f(t) d Z_{t}\right\| \leq \sum_{\lambda \in \operatorname{End}(V, W)}\|\lambda\|\left\|\mu_{Z}(f=\lambda)\right\|
$$

Let us now define,

$$
\begin{aligned}
\left\|\mu_{Z}\right\|((a, b]) & :=V_{1}\left(\left.Z\right|_{[a, b]}\right) \\
& =\sup \left\{\sum_{j=1}^{n}\left\|Z_{t_{j}}-Z_{t_{j-1}}\right\|: a=t_{0}<t_{1}<\cdots<t_{n}=b \text { and } n \in \mathbb{N}\right\}
\end{aligned}
$$

be the variation measure associated to μ_{Z}.
Lemma 3.3. If $\left\|\mu_{Z}\right\|((0, T])<\infty$, then $\left\|\mu_{Z}\right\|$ is a finitely additive measure on \mathcal{S} and hence extends to a finitely additive measure on \mathcal{A}.

3 The Bounded Variation Theory
Proof. The additivity on \mathcal{S} was already verified in Lemma 2.32. Here is the proof again for sake of convenience.

Suppose that $\Pi=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}, s \in\left(t_{l-1}, t_{l}\right)$ for some l, and $\Pi^{\prime}:=\Pi \cup\{s\}$. Then

$$
\begin{aligned}
\left\|\mu_{Z}\right\|^{\Pi}((a, b]): & =\sum_{j=1}^{n}\left\|Z_{t_{j}}-Z_{t_{j-1}}\right\| \\
& =\sum_{j=1: j \neq l}^{n}\left\|Z_{t_{j}}-Z_{t_{j-1}}\right\|+\left\|Z_{t_{l}}-Z_{s}+Z_{s}-Z_{t_{l-1}}\right\| \\
& \leq \sum_{j=1: j \neq l}^{n}\left\|Z_{t_{j}}-Z_{t_{j-1}}\right\|+\left\|Z_{t_{l}}-Z_{s}\right\|+\left\|Z_{s}-Z_{t_{l-1}}\right\| \\
& =\left\|\mu_{Z}\right\|^{\Pi^{\prime}}((a, b]) \leq\left\|\mu_{Z}\right\|((a, s])+\left\|\mu_{Z}\right\|((s, b])
\end{aligned}
$$

Hence it follows that

$$
\left\|\mu_{Z}\right\|((a, b])=\sup _{\Pi}\left\|\mu_{Z}\right\|^{\Pi}((a, b]) \leq\left\|\mu_{Z}\right\|((a, s])+\left\|\mu_{Z}\right\|((s, b]) .
$$

Conversely if Π_{1} is a partition of $(a, s]$ and Π_{2} is a partition of $(s, b]$, then $\Pi:=\Pi_{1} \cup \Pi_{2}$ is a partition of $(a, b]$. Therefore,

$$
\left\|\mu_{Z}\right\|^{\Pi_{1}}((a, s])+\left\|\mu_{Z}\right\|^{\Pi_{2}}((s, b])=\left\|\mu_{Z}\right\|^{\Pi}((a, b]) \leq\left\|\mu_{Z}\right\|((a, b])
$$

and therefore,

$$
\left\|\mu_{Z}\right\|((a, s])+\left\|\mu_{Z}\right\|((s, b]) \leq\left\|\mu_{Z}\right\|((a, b])
$$

Corollary 3.4. If Z has finite variation on $[0, T]$, then we have

$$
\left\|\int_{[0, T]} f(t) d Z_{t}\right\| \leq \int_{[0, T]}\|f(\lambda)\|\left\|\mu_{Z}\right\|(d \lambda) \leq\|f\|_{\infty} \cdot\left\|\mu_{Z}\right\|([0, T])
$$

Proof. Simply observe that $\left\|\mu_{Z}(A)\right\| \leq\left\|\mu_{Z}\right\|(A)$ for all $A \in \mathcal{A}_{T}$ and hence from Eq. 3.2 we have

$$
\begin{aligned}
\left\|\int_{[0, T]} f(t) d Z_{t}\right\| & \leq \sum_{\lambda \in \operatorname{End}(V, W)}\|\lambda\|\left\|\mu_{Z}(f=\lambda)\right\| \\
& \leq \sum_{\lambda \in \operatorname{End}(V, W)}\|\lambda\|\left\|\mu_{Z}\right\|(f=\lambda)=\int_{[0, T]}\|f(\lambda)\|\left\|\mu_{Z}\right\|(d \lambda) \\
& \leq\|f\|_{\infty} \cdot\left\|\mu_{Z}\right\|([0, T])
\end{aligned}
$$

Notation 3.5 In the future we will often write $\|d Z\|$ for $d\left\|\mu_{Z}\right\|$.
Thus is we are in the Banach space setting and Z has finite variation on $[0, T]$ we may define the integral, $\int_{[0, T]} f(t) d Z_{t}$ for any function f which is in the uniform closure of the $\operatorname{End}(V, W)$ - valued simple functions. This space contains all of the continuous functions, $f:[0, T] \rightarrow \operatorname{End}(V, W)$.

Exercise 3.1 (Fundamental Theorem of Calculus). Prove the fundamental theorem of calculus in this context. That is; if $f: V \rightarrow W$ be a C^{1} - function and $\left\{Z_{t}\right\}_{t \geq 0}$ is a V - valued function of locally bounded variation, then for all $0 \leq a<b \leq T$,

$$
f\left(Z_{b}\right)-f\left(Z_{a}\right)=\int_{a}^{b} f^{\prime}\left(Z_{\tau}\right) d Z_{\tau}:=\int_{[a, b]} f^{\prime}\left(Z_{\tau}\right) d Z_{\tau}
$$

where $f^{\prime}(z) \in \operatorname{End}(V, W)$ is defined by, $f^{\prime}(z) v:=\left.\frac{d}{d t}\right|_{0} f(z+t v)$.
Solution to Exercise (3.1). Let $\Pi \in \mathcal{P}(0, T)$. Then by a telescoping series argument,

$$
f\left(Z_{b}\right)-f\left(Z_{a}\right)=\sum_{t \in \Pi} \Delta_{t} f(Z .)
$$

where

$$
\begin{aligned}
\Delta_{t} f(Z .) & =f\left(Z_{t}\right)-f\left(Z_{t_{-}}\right)=f\left(Z_{t_{-}}+\Delta_{t} Z\right)-f\left(Z_{t_{-}}\right) \\
& =\int_{0}^{1} f^{\prime}\left(Z_{t_{-}}+s \Delta_{t} Z\right) \Delta_{t} Z d s=f^{\prime}\left(Z_{t_{-}}\right) \Delta_{t} Z+\varepsilon_{t}^{\Pi} \Delta_{t} Z
\end{aligned}
$$

and

$$
\varepsilon_{t}^{\Pi}:=\int_{0}^{1}\left[f^{\prime}\left(Z_{t_{-}}+s \Delta_{t} Z\right)-f^{\prime}\left(Z_{t_{-}}\right)\right] d s
$$

Thus we have,

$$
\begin{equation*}
f\left(Z_{b}\right)-f\left(Z_{a}\right)=\sum_{t \in \Pi} f^{\prime}\left(Z_{t_{-}}\right) \Delta_{t} Z+\delta_{\Pi}=\int_{[a, b]} f^{\prime}\left(Z_{t_{-}}\right) d Z(t)+\delta_{\Pi} \tag{3.3}
\end{equation*}
$$

where $\delta_{\Pi}:=\sum_{t \in \Pi} \varepsilon_{t}^{\Pi} \Delta_{t} Z$. Since,

$$
\begin{aligned}
\left\|\delta_{\Pi}\right\| & \leq \sum_{t \in \Pi}\left\|\varepsilon_{t}^{\Pi} \Delta_{t} Z\right\| \leq \sum_{t \in \Pi}\left\|\varepsilon_{t}^{\Pi}\right\|\left\|\Delta_{t} Z\right\| \leq \max _{t \in \Pi}\left\|\varepsilon_{t}^{\Pi}\right\| \cdot \sum_{t \in \Pi}\left\|\Delta_{t} Z\right\| \\
& \leq \max _{t \in \Pi}\left\|\varepsilon_{t}^{\Pi}\right\| \cdot V_{1}(Z)
\end{aligned}
$$

and

$$
\left\|\varepsilon_{t}^{\Pi}\right\|:=\int_{0}^{1}\left\|\left[f^{\prime}\left(Z_{t_{-}}+s \Delta_{t} Z\right)-f^{\prime}\left(Z_{t_{-}}\right)\right]\right\| d s
$$

Since $g(s, \tau, t):=\left\|\left[f^{\prime}\left(Z_{\tau}+s\left(Z_{t}-Z_{\tau}\right)\right)-f^{\prime}\left(Z_{\tau}\right)\right]\right\|$ is a continuous function in $s \in[0,1]$ and $\tau, t \in[0, T]$ with $g(s, t, t)=0$ for all s and t, it follows by uniform continuity arguments that $g(s, \tau, t)$ is small whenever $|t-\tau|$ is small. Therefore, $\lim _{|\Pi| \rightarrow 0}\left\|\varepsilon_{t}^{\Pi}\right\|=0$. Moreover, again by a uniform continuity argument, $f^{\prime}\left(Z_{t_{-}}\right) \rightarrow f^{\prime}\left(Z_{t}\right)$ uniformly as $|\Pi| \rightarrow 0$. Thus we may pass to the limit as $|\Pi| \rightarrow 0$ in Eq. (3.3) to complete the proof.

3.2 Calculus Bounds

For the exercises to follow we suppose that μ is a positive σ - finite measure on $\left([0, \infty), \mathcal{B}_{[0, \infty)}\right)$ such that μ is continuous, i.e. $\mu(\{s\})=0$ for all $s \in[0, \infty)$. We will further write,

$$
\int_{0}^{t} f(s) d \mu(s):=\int_{[0, t]} f(s) d \mu(s)=\int_{(0, t)} f(s) d \mu(s)
$$

wherein the second equality holds since μ is continuous. Although it is not necessary, you may use Exercise 3.1 with $Z_{t}:=\mu([0, t])$ to solve the following problems.

Exercise 3.2. Show for all $0 \leq a<b<\infty$ and $n \in \mathbb{N}$ that

$$
\begin{equation*}
h_{n}(b):=\int_{a \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n} \leq b} d \mu\left(s_{1}\right) \ldots d \mu\left(s_{n}\right)=\frac{\mu([a, b])^{n}}{n!} \tag{3.4}
\end{equation*}
$$

Solution to Exercise (3.2). First solution. Let us observe that $h(t):=$ $h_{1}(t)=\mu([a, t])$ and $h_{n}(t)$ satisfies the recursive relation,

$$
h_{n+1}(t):=\int_{a}^{t} h_{n}(s) d \mu(s)=\int_{a}^{t} h_{n}(s) d h(s) \text { for all } t \geq a
$$

Now let $H_{n}(t):=\frac{1}{n!} h^{n}(t)$, by an application of Exercise 3.1 with $f(x)=$ $x^{n+1} /(n+1)$! implies,

$$
H_{n+1}(t)=H_{n+1}(t)-H_{n+1}(a)=\int_{a}^{t} f^{\prime}(h(\tau)) d h(\tau)=\int_{a}^{t} H_{n}(\tau) d h(\tau)
$$

and therefore it follows that $H_{n}(t)=h_{n}(t)$ for all $t \geq a$ and $n \in \mathbb{N}$.
Second solution. If $i \neq j$, it follows by Fubini's theorem that

$$
\begin{aligned}
\mu^{\otimes n} & \left(\left\{\left(s_{1}, \ldots, s_{n}\right) \in[a, b]^{n}: s_{i}=s_{j}\right\}\right) \\
& =\mu([a, b])^{n-2} \cdot \int_{[a, b]^{2}} 1_{s_{i}=s_{j}} d \mu\left(s_{i}\right) d \mu\left(s_{j}\right) \\
& =\mu([a, b])^{n-2} \cdot \int_{[a, b]} \mu\left(\left\{s_{j}\right\}\right) d \mu\left(s_{j}\right)=0 .
\end{aligned}
$$

From this observation it follows that

$$
1_{[a, b]^{n}}\left(s_{1}, \ldots, s_{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} 1_{a \leq s_{\sigma 1} \leq s_{\sigma 2} \leq \cdots \leq s_{\sigma n} \leq b}-\mu^{\otimes n}-\text { a.e. }
$$

where σ ranges over the permutations, \mathcal{S}_{n}, of $\{1,2, \ldots, n\}$. Integrating this equation relative with respect to $\mu^{\otimes n}$ and then using Fubini's theorem gives,

$$
\begin{aligned}
\mu([a, b])^{n} & =\mu^{\otimes n}\left([a, b]^{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \int 1_{a \leq s_{\sigma_{1}} \leq s_{\sigma_{2}} \leq \cdots \leq s_{\sigma n} \leq b} d \mu^{\otimes n}(\mathbf{s}) \\
& =\sum_{\sigma \in \mathcal{S}_{n}} \int 1_{a \leq s_{\sigma_{1}} \leq s_{\sigma_{2}} \leq \cdots \leq s_{\sigma n} \leq b} d \mu\left(s_{1}\right) \ldots d \mu\left(s_{n}\right) \\
& =\sum_{\sigma \in \mathcal{S}_{n}} \int_{a \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n} \leq b} d \mu\left(s_{1}\right) \ldots d \mu\left(s_{n}\right) \\
& =n!\int_{a \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n} \leq b} d \mu\left(s_{1}\right) \ldots d \mu\left(s_{n}\right) .
\end{aligned}
$$

Exercise 3.3 (Gronwall's Lemma). If $\varepsilon(t)$ and $f(t)$ are continuous nonnegative functions such that

$$
\begin{equation*}
f(t) \leq \varepsilon(t)+\int_{0}^{t} f(\tau) d \mu(\tau) \tag{3.5}
\end{equation*}
$$

then

$$
\begin{equation*}
f(t) \leq \varepsilon(t)+\int_{0}^{t} e^{\mu([\tau, t])} \varepsilon(\tau) d \mu(\tau) \tag{3.6}
\end{equation*}
$$

If we further assume that ε is increasing, then

$$
\begin{equation*}
f(t) \leq \varepsilon(t) e^{\mu([0, t])} \tag{3.7}
\end{equation*}
$$

Solution to Exercise (3.3). Feeding Eq. (3.5) back into itself implies

$$
\begin{aligned}
f(t) \leq & \leq(t)+\int_{0}^{t}\left[\varepsilon(\tau)+\int_{0}^{\tau} f(s) d \mu(s)\right] d \mu(\tau) \\
= & \varepsilon(t)+\int_{0}^{t} \varepsilon\left(s_{1}\right) d \mu\left(s_{1}\right)+\int_{0 \leq s_{2} \leq s_{1} \leq t} f\left(s_{2}\right) d \mu\left(s_{1}\right) d \mu\left(s_{2}\right) \\
\leq & \varepsilon(t)+\int_{0}^{t} \varepsilon\left(s_{1}\right) d \mu\left(s_{1}\right)+\int_{0 \leq s_{2} \leq s_{1} \leq t}\left[\varepsilon\left(s_{2}\right)+\int_{0}^{s_{2}} f\left(s_{3}\right) d \mu\left(s_{3}\right)\right] d \mu\left(s_{1}\right) d \mu\left(s_{2}\right) \\
= & \varepsilon(t)+\int_{0}^{t} \varepsilon\left(s_{1}\right) d \mu\left(s_{1}\right)+\int_{0 \leq s_{2} \leq s_{1} \leq t} \varepsilon\left(s_{2}\right) d \mu\left(s_{1}\right) d \mu\left(s_{2}\right) \\
& +\int_{0 \leq s_{3} \leq s_{2} \leq s_{1} \leq t} f\left(s_{3}\right) d \mu\left(s_{1}\right) d \mu\left(s_{2}\right) d \mu\left(s_{3}\right) .
\end{aligned}
$$

Continuing in this manner inductively shows,

$$
\begin{equation*}
f(t) \leq \varepsilon(t)+\sum_{k=1}^{N} \int_{0 \leq s_{k} \leq \cdots \leq s_{2} \leq s_{1} \leq t} \varepsilon\left(s_{k}\right) d \mu\left(s_{1}\right) \ldots d \mu\left(s_{k}\right)+R_{N}(t) \tag{3.8}
\end{equation*}
$$

where, using Exercise 3.2,

$$
\begin{aligned}
R_{N}(t) & :=\int_{0 \leq s_{k+1} \leq \cdots \leq s_{2} \leq s_{1} \leq t} f\left(s_{k+1}\right) d \mu\left(s_{1}\right) \ldots d \mu\left(s_{k}\right) d \mu\left(s_{k+1}\right) \\
& \leq \max _{0 \leq s \leq t} f(t) \cdot \frac{\mu([0, t])^{N+1}}{(N+1)!} \rightarrow 0 \text { as } N \rightarrow \infty
\end{aligned}
$$

So passing to the limit in Eq. 3.8 and again making use of Exercise 3.2 shows,

$$
\begin{align*}
f(t) & \leq \varepsilon(t)+\sum_{k=1}^{\infty} \int_{0 \leq s_{k} \leq \cdots \leq s_{2} \leq s_{1} \leq t} \varepsilon\left(s_{k}\right) d \mu\left(s_{1}\right) \ldots d \mu\left(s_{k}\right) \tag{3.9}\\
& =\varepsilon(t)+\sum_{k=1}^{\infty} \int_{0}^{t} \varepsilon\left(s_{k}\right) \frac{\mu\left(\left[s_{k}, t\right]\right)^{k-1}}{(k-1)!} d \mu\left(s_{k}\right) \\
& =\varepsilon(t)+\int_{0}^{t} \varepsilon(\tau) \cdot \sum_{k=1}^{\infty} \frac{\mu([\tau, t])^{k-1}}{(k-1)!} d \mu(\tau) \\
& =\varepsilon(t)+\int_{0}^{t} e^{\mu([\tau, t])} \varepsilon(\tau) d \mu(\tau) .
\end{align*}
$$

If we further assume that ε is increasing, then from Eq. (3.9) and Exercise 3.2 we have

$$
\begin{aligned}
f(t) & \leq \varepsilon(t)+\varepsilon(t) \sum_{k=1}^{\infty} \int_{0 \leq s_{k} \leq \cdots \leq s_{2} \leq s_{1} \leq t} d \mu\left(s_{1}\right) \ldots d \mu\left(s_{k}\right) \\
& =\varepsilon(t)+\varepsilon(t) \sum_{k=1}^{\infty} \frac{\mu([0, t])^{k}}{k!}=\varepsilon(t) e^{\mu([0, t])} .
\end{aligned}
$$

Alternatively if we let $Z_{t}:=\mu([0, t])$, then

$$
\begin{aligned}
\int_{0}^{t} e^{\mu([\tau, t])} d \mu(\tau) & =\int_{0}^{t} e^{Z_{t}-Z_{\tau}} d Z_{\tau}=\int_{0}^{t} d_{\tau}\left(-e^{Z_{t}-Z_{\tau}}\right) \\
& =\left(-e^{Z_{t}-Z_{\tau}}\right)_{0}^{t}=e^{Z_{t}}-1
\end{aligned}
$$

Therefore,

$$
f(t) \leq \varepsilon(t)+\varepsilon(t)\left(e^{Z_{t}}-1\right)=\varepsilon(t) e^{Z_{t}}
$$

Exercise 3.4. Suppose that $\left\{\varepsilon_{n}(t)\right\}_{n=0}^{\infty}$ is a sequence of non-negative continuous functions such that

$$
\begin{equation*}
\varepsilon_{n+1}(t) \leq \int_{0}^{t} \varepsilon_{n}(\tau) d \mu(\tau) \text { for all } n \geq 0 \tag{3.10}
\end{equation*}
$$

and $\delta(t)=\max _{0 \leq \tau \leq t} \varepsilon_{0}(\tau)$. Show

$$
\varepsilon_{n}(t) \leq \delta(t) \frac{\mu([0, t])^{n}}{n!} \text { for all } n \geq 0
$$

Solution to Exercise (3.4). By iteration of Eq. (3.10) we find,

$$
\begin{aligned}
\varepsilon_{1}(t) & \leq \int_{0}^{t} \varepsilon_{0}(\tau) d \mu(\tau) \leq \delta(t) \int_{0 \leq s_{1} \leq t} d \mu\left(s_{1}\right) \\
\varepsilon_{2}(t) & \leq \int_{0}^{t} \varepsilon_{1}\left(s_{2}\right) d \mu\left(s_{2}\right) \leq \delta(t) \int_{0}^{t}\left[\int_{0 \leq s_{1} \leq t} d \mu\left(s_{1}\right)\right] d \mu\left(s_{2}\right) \\
& =\delta(t) \int_{0 \leq s_{2} \leq s_{1} \leq t} d \mu\left(s_{1}\right) d \mu\left(s_{2}\right), \\
& \vdots \\
\varepsilon_{n}(t) & \leq \delta(t) \int_{0 \leq s_{n} \leq \cdots \leq s_{1} \leq t} d \mu\left(s_{1}\right) \ldots d \mu\left(s_{n}\right) .
\end{aligned}
$$

The result now follows directly from Exercise 3.2

3.3 Bounded Variation Ordinary Differential Equations

In this section we begin by reviewing some of the basic theory of ordinary differential equations - O.D.E.s for short. Throughout this chapter we will let X and Y be Banach spaces, $U \subset_{o} Y$ an open subset of Y, and $y_{0} \in U, x:[0, T] \rightarrow$ X is a continuous process of bounded variation, and $F:[0, T] \times U \rightarrow \operatorname{End}(X, Y)$ is a continuous function. (We will make further assumptions on F as we need them.) Our goal here is to investigate the "ordinary differential equation,"

$$
\begin{equation*}
\dot{y}(t)=F(t, y(t)) \dot{x}(t) \text { with } y(0)=y_{0} \in U \tag{3.11}
\end{equation*}
$$

Since x is only of bounded variation, to make sense of this equation we will interpret it in its integrated form,

$$
\begin{equation*}
y(t)=y_{0}+\int_{0}^{t} F(\tau, y(\tau)) d x(\tau) \tag{3.12}
\end{equation*}
$$

Proposition 3.6 (Continuous dependence on the data). Suppose that G : $[0, T] \times U \rightarrow \operatorname{End}(X, Y)$ is another continuous function, $z:[0, T] \rightarrow X$ is another continuous function with bounded variation, and $w:[0, T] \rightarrow U$ satisfies the differential equation,

$$
\begin{equation*}
w(t)=w_{0}+\int_{0}^{t} G(\tau, w(\tau)) d z(\tau) \tag{3.13}
\end{equation*}
$$

for some $w_{0} \in U$. Further assume there exists a continuous function, $K(t) \geq 0$ such that F satisfies the Lipschitz condition,

$$
\begin{equation*}
\|F(t, y)-F(t, w)\| \leq K(t)\|y-w\| \text { for all } 0 \leq t \leq T \text { and } y, w \in U \tag{3.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|y(t)-w(t)\| \leq \varepsilon(t) \exp \left(\int_{0}^{t} K(\tau)\|d x(\tau)\|\right) \tag{3.15}
\end{equation*}
$$

where
$\varepsilon(t):=\left\|y_{0}-w_{0}\right\|+\int_{0}^{t}\|F(\tau, w(\tau))-G(\tau, w(\tau))\|\|d x(\tau)\|+\int_{0}^{t}\|G(\tau, w(\tau))\|\|d(x-z)(\tau)\|$
Corollary 3.7 (Uniquness of solutions). If F satisfies the Lipschitz hypothesis in Eq. (3.14), then there is at most one solution to the ODE in Eq. (3.12).

Proof. Simply apply Proposition 3.6 with $F=G, y_{0}=w_{0}$, and $x=z$. In this case $\varepsilon \equiv 0$ and the result follows.

Proposition 3.8 (An apriori growth bound). Suppose that $U=Y, T=\infty$, and there are continuous functions, $a(t) \geq 0$ and $b(t) \geq 0$ such that

$$
\|F(t, y)\| \leq a(t)+b(t)\|y\| \text { for all } t \geq 0 \text { and } y \in Y
$$

Then

$$
\begin{equation*}
\|y(t)\| \leq\left(\left\|y_{0}\right\|+\int_{0}^{t} a(\tau) d \nu(\tau)\right) \exp \left(\int_{0}^{t} b(\tau) d \nu(\tau)\right) \tag{3.17}
\end{equation*}
$$

Proof. Let $\nu(t):=\omega_{x, 1}(0, t)=\|s\|_{1-\operatorname{Var}}(t)$. From Eq. 3.12 we have,

$$
\begin{aligned}
\|y(t)\| & \leq\left\|y_{0}\right\|+\int_{0}^{t}\|F(\tau, y(\tau))\| d \nu(\tau) \\
& \leq\left\|y_{0}\right\|+\int_{0}^{t}(a(\tau)+b(\tau)\|y(\tau)\|) d \nu(\tau) \\
& =\varepsilon(t)+\int_{0}^{t}\|y(\tau)\| d \mu(\tau)
\end{aligned}
$$

Proof. Let $\delta(t):=y(t)-w(t)$, so that $y=w+\delta$. We then have,

$$
\begin{aligned}
\delta(t) & =y_{0}-w_{0}+\int_{0}^{t} F(\tau, y(\tau)) d x(\tau)-\int_{0}^{t} G(\tau, w(\tau)) d z(\tau) \\
& =y_{0}-w_{0}+\int_{0}^{t} F(\tau, w(\tau)+\delta(\tau)) d x(\tau)-\int_{0}^{t} G(\tau, w(\tau)) d z(\tau) \\
& =y_{0}-w_{0}+\int_{0}^{t}[F(\tau, w(\tau))-G(\tau, w(\tau))] d x(\tau)+\int_{0}^{t} G(\tau, w(\tau)) d(x-z)(\tau) \\
& +\int_{0}^{t}[F(\tau, w(\tau)+\delta(\tau))-F(\tau, w(\tau))] d x(\tau)
\end{aligned}
$$

Crashing through this identity with norms shows,

$$
\|\delta(t)\| \leq \varepsilon(t)+\int_{0}^{t} K(\tau)\|\delta(\tau)\|\|d x(\tau)\|
$$

where $\varepsilon(t)$ is given in Eq. (3.16). The estimate in Eq. 3.15) is now a consequence of this inequality and Exercise 3.3 with $d \mu(\tau):=K(\tau)\|d x(\tau)\|$.
where

$$
\begin{equation*}
\varepsilon(t):=\left\|y_{0}\right\|+\int_{0}^{t} a(\tau) d \nu(\tau) \text { and } d \mu(\tau):=b(\tau) d \nu(\tau) \tag{3.16}
\end{equation*}
$$

Hence we may apply Exercise 3.3 to learn $\|y(t)\| \leq \varepsilon(t) e^{\mu([0, t])}$ which is the same as Eq. (3.17).

Theorem 3.9 (Global Existence). Let us now suppose $U=X$ and F satisfies the Lipschitz hypothesis in Eq. (3.14). Then there is a unique solution, $y(t)$ to the ODE in Eq. (3.12).

Proof. We will use the standard method of Picard iterates. Namely, define $y_{0}(t):=y_{0}$ and then define $y_{n}(t)$ inductively by,

$$
\begin{equation*}
y_{n+1}(t):=x+\int_{0}^{t} F\left(\tau, y_{n}(\tau)\right) d x(\tau) \tag{3.18}
\end{equation*}
$$

Then from our assumptions and the definition of $y_{n}(t)$, we find for $n \geq 1$ that

$$
\begin{aligned}
\left\|y_{n+1}(t)-y_{n}(t)\right\| & =\left\|\int_{0}^{t} F\left(\tau, y_{n}(\tau)\right) d x(\tau)-\int_{0}^{t} F\left(\tau, y_{n-1}(\tau)\right) d x(\tau)\right\| \\
& \leq \int_{0}^{t}\left\|F\left(\tau, y_{n}(\tau)\right)-F\left(\tau, y_{n-1}(\tau)\right)\right\|\|d x(\tau)\| \\
& \leq \int_{0}^{t} K(\tau)\left\|y_{n}(\tau)-y_{n-1}(\tau)\right\|\|d x(\tau)\|
\end{aligned}
$$

Since,

$$
\left\|y_{1}(t)-y_{0}(t)\right\|=\left\|\int_{0}^{t} F(\tau, x) d x(\tau)\right\| \leq \int_{0}^{t}\|F(\tau, x)\|\|d x(\tau)\|=: \delta(t)
$$

it follows by an application of Exercise 3.4 with

$$
\varepsilon_{n}(t):=\left\|y_{n+1}(t)-y_{n}(t)\right\|
$$

that

$$
\left\|y_{n+1}(t)-y_{n}(t)\right\| \leq \int_{0}^{t}\|F(\tau, x)\|\|d x(\tau)\| \cdot\left(\int_{0}^{t} K(\tau)\|d x(\tau)\|\right)^{n} / n!
$$

Since the right side of this equation is increasing in t, we may conclude by summing Eq. (3.19) that

$$
\sum_{n=0}^{\infty} \sup _{0 \leq t \leq T}\left\|y_{n+1}(t)-y_{n}(t)\right\| \leq\left(\int_{0}^{T}\|F(\tau, x)\| d x(\tau)\right) e^{\int_{0}^{T} K(\tau)\|d x(\tau)\|}<\infty
$$

Therefore, it follows that $y_{n}(t)$ is uniformly convergent on compact subsets of $[0, \infty)$ and therefore $y(t):=\lim _{n \rightarrow \infty} y_{n}(t)$ exists and is a continuous function. Moreover, we may now pass to the limit in Eq. 3.18) to learn this function y satisfies Eq. (3.12). Indeed,

$$
\begin{aligned}
& \left\|\int_{0}^{t} F\left(\tau, y_{n}(\tau)\right) d x(\tau)-\int_{0}^{t} F(\tau, y(\tau)) d x(\tau)\right\| \\
& \quad \leq \int_{0}^{t}\left\|F\left(\tau, y_{n}(\tau)\right)-F(\tau, y(\tau))\right\|\|d x(\tau)\| \\
& \quad \leq \int_{0}^{t} K(\tau)\left\|y_{n}(\tau)-y(\tau)\right\|\|d x(\tau)\| \\
& \quad \leq \sup _{0 \leq \tau \leq t}\left\|y_{n}(\tau)-y(\tau)\right\| \cdot \int_{0}^{t} K(\tau)\|d x(\tau)\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

References

1. A. M. Davie, Differential equations driven by rough paths: an approach via discrete approximation, Appl. Math. Res. Express. AMRX (2007), no. 2, Art. ID abm009, 40. MR MR2387018
2. Peter Friz and Nicolas Victoir, Multidimensional stochastic processes as rough paths: Theory and applications, Springer ??, 2008.
3. Terry Lyons and Zhongmin Qian, System Control and Rough Paths, Oxford University Press, 2002, Oxford Mathematical Monographs.
4. \qquad , System control and rough paths, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2002, Oxford Science Publications. MR MR2036784 (2005f:93001)
5. Terry Lyons and Nicolas Victoir, An extension theorem to rough paths, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 5, 835-847. MR MR2348055 (2008h:60229)
6. Terry J. Lyons, Michael Caruana, and Thierry Lévy, Differential equations driven by rough paths, Lecture Notes in Mathematics, vol. 1908, Springer, Berlin, 2007, Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004, With an introduction concerning the Summer School by Jean Picard. MR MR2314753
7. Peter Mrters, Yuval Peres with appendix by Schramm, and Werner, Brownian motion, http://people.bath.ac.uk/maspm/book.pdf, 2006.
