2. TEST 1 SOLUTIONS: MATH 240A (DRIVER) MIDTERM: 3
MonpAY 11/03/03

Solution to 1. Let z; T 1 as & — oo, then by the monotone
convergence theorem,
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Solution to 2.
(1) |Tf| = 1f ()| <|fll, with equality when f is constant, there-
fore, ||| = 1.
(2)
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and equality occurs when f = 1, therefore ||T| = 2.
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Solution to 3.

(1) For any = € X there exists z,, € A such that z = lim,,_, z,.
Since F' and G are continuous, it follows that

(2) Let f () = —=. This is continuous on R\ {7} and hence on Q
but not on R.
|
Solution to 4. Given x € X, there exists =, € A such
that * = lim, .. z,. Now because f is uniformly continuous,
d(f(xzn), f(zm)) — 0 as m,n — oco. Since Y is complete, it follows
that lim,, ... f (z,) =: F(x) exists. If §, € A such that z = lim,,_,, &,
then by uniform continuity again, lim, . d (f (x,), f (£,)) = 0 so that
F (x) is well defined. Finally to see that F is continuous, let ¢ > 0 and
0 > 0 be as in the definition of uniform continuity. Suppose z,z € X
with p(x,z) < § and z,,2, € A with z, — x and 2, — z. Since
limy, 00 p (X, 2n) = p (x, 2) < 9§, eventually p (x,, z,) < d. Therefore,

d(f(xn), f(z,)) <eforaa. n

and by passing to the limit we learn that
d(F(z),F(y) <e
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Solution to 5.

(1) Using the fundamental theorem of calculus and basic properties
of the Riemann integral,
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(2) Since S2°°, f, (t) and 3%, f, (t) are absolutely convergent,
F(t) and the proposed formula for F'(t) are well defined. For
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By the triangle inequality and item 1.,
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and therefore by the D.C.T. (along with the usual sequence
argument) and the continuity of the norm,
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form which it follows that
lim F(t+ h
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i.e. F(t)is differtiable and F (t) = 3%, £, (t).
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