
32. Test 1 Solutions: Math 240A (Driver) Midterm:
Monday 11/03/03

Solution to 1. Let xk ↑ 1 as k → ∞, then by the monotone
convergence theorem,
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Solution to 2.
(1) |Tf | = |f (1)| ≤ kfk∞ with equality when f is constant, there-

fore, kTk = 1.
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and equality occurs when f = 1, therefore kTk = 4
π
.

Solution to 3.
(1) For any x ∈ X there exists xn ∈ A such that x = limn→∞ xn.

Since F and G are continuous, it follows that

F (x) = lim
n→∞

F (xn) = lim
n→∞

G (xn) = G (x) .

(2) Let f (x) = 1
x−π . This is continuous on R \ {π} and hence on Q

but not on R.

Solution to 4. Given x ∈ X, there exists xn ∈ A such
that x = limn→∞ xn. Now because f is uniformly continuous,
d (f (xn) , f (xm)) → 0 as m,n → ∞. Since Y is complete, it follows
that limn→∞ f (xn) =: F (x) exists. If ξn ∈ A such that x = limn→∞ ξn,
then by uniform continuity again, limn→∞ d (f (xn) , f (ξn)) = 0 so that
F (x) is well defined. Finally to see that F is continuous, let ε > 0 and
δ > 0 be as in the definition of uniform continuity. Suppose x, z ∈ X
with ρ (x, z) < δ and xn, zn ∈ A with xn → x and zn → z. Since
limn→∞ ρ (xn, zn) = ρ (x, z) < δ, eventually ρ (xn, zn) < δ. Therefore,

d (f (xn) , f (zn)) < ε for a.a. n

and by passing to the limit we learn that

d (F (x) , F (y)) ≤ ε.



4 Solution to 5.
(1) Using the fundamental theorem of calculus and basic properties

of the Riemann integral,°°°°fn (t+ h)− fn (t)
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n=1 ḟn (t) are absolutely convergent,
F (t) and the proposed formula for Ḟ (t) are well defined. For
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− ḟn (t)

¸°°°°°
≤

∞X
n=1

°°°°fn (t+ h)− fn (t)

h
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By the triangle inequality and item 1.,
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and therefore by the D.C.T. (along with the usual sequence
argument) and the continuity of the norm,
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form which it follows that

lim
h→0

°°°°°F (t+ h)− F (t)

h
−

∞X
n=1
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i.e. F (t) is differtiable and Ḟ (t) =
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