
1. Math 240B (Driver) Final Exam: Wednesday 04/17/04

Directions: No open notes or books on this exam. However you
may quote results from the notes and the homework problems. Clearly
explain and justify your steps, i.e. indicate the “substantial” theorems
that you are using in solving the problem. The test has 7 problems.
Problems 1-6 are each worth 10 points while problem 7 is worth 20
points.

1. Find the value of the following iterated integral.∫
[0,∞)

(∫
[0,∞)

2x
√

y exp(−x2√y − y)dy

)
dx.

2. If u ∈ C
(
Rd, R

)
satisfies the mean value property, i.e.

u (x) =
1

σ (Sd−1)

∫
Sd−1

u (x + rω) dσ (ω) ∀ x ∈ Rd and r ≥ 0,

then u ∈ C∞ (
Rd, R

)
. Hint: show u = u ∗ φ where φ (x) := g

(
|x|2

)
and g ∈ C∞

c (R, [0,∞)) is chosen so that
∫

Rd φ (x) dx = 1.

3. Suppose that (X,M, µ) is a measure space with µ (X) = 1 and
f : X → C \ {0} is a measurable function. Show

1∫
X
|f |2 dµ

≤
∫

X

1

|f |2
dµ.

Hint: the inequality if equivalent to showing

1 = µ (X) ≤
∫

X

1

|f |2
dµ ·

∫
X

|f |2 dµ.

4. Suppose k ∈ C
(
[0, 1]2 , R

)
and for f ∈ C ([0, 1] , R) , let

Kf (x) :=

∫ 1

0

k (x, y) f (y) dy for all x ∈ [0, 1] .

Show K is a compact operator on (C ([0, 1] , R) , ‖·‖∞) .
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5. Let f ∈ L1([1,∞), m) where m is Lebesgue measure. Suppose that

(1)

∫ ∞

1

f(x)x−ndm(x) = 0

for all n = 2, 4, 6, 8, . . . . Show that f = 0 a.e.

6. Let (H, 〈·|·〉) be a Hilbert space and suppose that {Pn}∞n=1 is a
sequence of orthogonal projection operators on H such that Pn(H) ⊂
Pn+1(H) for all n. Let M := ∪∞n=1Pn(H) (a subspace of H) and let P
denote orthogonal projection onto M.

Show limn→∞ Pnx = Px for all x ∈ H.
Hint: first prove the result for x ∈ M⊥, then for x ∈ M and then

for x ∈ M.

7 (On pointwise convergence of Fourier series). Let

dλ (θ) :=
dθ

2π
, H := L2 ([−π, π] , dλ) ,

〈u|v〉 =

∫ π

−π

u (θ) v̄ (θ) dλ (θ)

and ek (θ) := eikθ. As we already know, {ek : k ∈ Z} is an orthonormal
basis for the Hilbert space, H.

Suppose that u ∈ C1 (R, C) and u is 2π - periodic, i.e.

u (θ + 2π) = u (θ) for all θ ∈ R.

Show:

(1) 〈u′|ek〉 = ik〈u|ek〉 where u′ (θ) := d
dθ

u (θ) .
(2) Making use of item 1., show∑

k∈Z

|〈u|ek〉| < ∞.

(3) Verify that the sum,

s (θ) :=
∑
k∈Z

〈u|ek〉eikθ,

is convergent for every θ and that the function s (θ) so defined
in continuous.

(4) Prove that

u (θ) = s (θ) =
∑
k∈Z

〈u|ek〉eikθ for all θ ∈ R.



32. Final Exam Solutions: Math 240B (Driver) Wednesday
04/17/04

The solutions below are brief. Your solutions should contain a little
more detail. I will just outline the key points.

Solution to 1. Since the integrand is positive Tonelli’s theorem
implies, ∫

[0,∞)

(∫
[0,∞)

2x
√

y exp(−x2√y − y)dy

)
dx

=

∫
[0,∞)

(∫
[0,∞)

2x
√

y exp(−x2√y − y)dx

)
dy

=

∫
[0,∞)

(∫
[0,∞)

[
− d

dx
exp(−x2√y − y)

]
dx

)
dy

=

∫
[0,∞)

e−ydy = 1.

I have also implicitly used the monotone convergence theorem and the
fundamental theorem of calculus.

Solution to 2. Here we use abstract polar coordinates to find

u ∗ φ (x) =

∫
Rd

u (x− y) φ (y) dy =

∫
Rd

u (x + y) φ (−y) dy

=

∫
Rd

u (x + y) φ (y) dy

=

∫ ∞

0

dr

∫
Sd−1

u (x + rω) g
(
r2

)
rd−1dσ (ω)

= σ
(
Sd−1

)
u (x)

∫
g

(
r2

)
rd−1dr = u (x)

as desired. This shows u is smooth since we have seen that Dα (u ∗ φ) =
u ∗Dαφ.

Solution to 3. Integrating 1 = |f | · |f−1| and using Hölder’s in-
equality with p = q = 2, gives

1 =

(∫
X

|f | ·
∣∣f−1

∣∣ dµ

)2

≤
∫

X

|f |2 dµ ·
∫

X

1

|f |2
dµ.

Alternatively you could use Jensen’s inequality with φ (x) = x−2.
Solution to 4. By the dominated convergence theorem, Kf ∈

C ([0, 1] , R) for all f ∈ C ([0, 1] , R) and by the basic properties of the
integral K is linear. Moreover, K is bounded, because

|Kf (x)| ≤
∫ 1

0

|k (x, y)| |f (y)| dy ≤ ‖k‖∞ ‖f‖∞

which shows that K is a bounded operator. By uniform continuity of
k, for every ε > 0 there exists a δ > 0 such that |k (x, y)− k (x′, y′)| < ε



4if |(x, y)− (x′, y′)| < δ. Therefore if ‖f‖∞ ≤ 1 and |x− x′| < δ we have

|Kf (x)−Kf (x′)| ≤
∫ 1

0

|k (x, y)− k (x′, y)| |f (y)| dy ≤ ε

which shows {Kf : ‖f‖∞ ≤ 1} is pointwise bounded and equicontin-
uous. Therefore by the Ascoli-Arzela Theorem, {Kf : ‖f‖∞ ≤ 1} is
precompact in C ([0, 1] , R) and hence K is a compact operator.

Solution to 5. If Eq. (1) holds, then by the Stone Weierstrass
theorem (notice that x−2 separates points and is positive on [0,∞))
and DCT,

(2)

∫ ∞

1

f(x)g (x) dm(x) = 0

for all g ∈ C0([1,∞)) and in particular of all g ∈ Cc([1,∞)). We now
give 3 methods to finish the problem.

(1) Just refer to a theorem in the notes to see f ≡ 0. We give proofs
of this statement in 2. and 3. below.

(2) Let dµ (x) := |f (x)| dm (x) . Then µ is a finite measure and
we know Cc([1,∞)) is dense in L1 (µ) . Choose gn ∈ Cc([1,∞))

such that gn → sgn(f) in L1 (µ) . Then∣∣∣∣∫ ∞

1

|f | dm−
∫ ∞

1

gnsgn(f)dµ

∣∣∣∣ =

∣∣∣∣∫ ∞

1

1dµ−
∫ ∞

1

gnsgn(f)dµ

∣∣∣∣
≤

∫ ∞

1

|1− gnsgn(f)| dµ

=

∫ ∞

1

∣∣∣[sgn(f)− gn

]
sgn(f)

∣∣∣ dµ

≤
∫ ∞

1

∣∣∣sgn(f)− gn

∣∣∣ dµ → 0.

Since∫ ∞

1

gnsgn(f)dµ =

∫ ∞

1

gnsgn(f) |f | dm =

∫ ∞

1

gnfdm = 0,

it follows that
∫∞

1
|f | dm = 0 and hence f = 0 a.e..

(3) Let H denote the bounded measurable functions, g, on [1,∞)
such that Eq. (2) holds. Then it is easily seen that H is a
vector space closed under bounded convergence (use DCT) and
contains C0([1,∞)). So by the multiplicative system theorem,
H consists of all bounded σ (C0([1,∞))) = B[0,∞) measurable

functions. Now take g = sgn(f) in Eq. (2) to lean that∫ ∞

1

|f | dm =

∫ ∞

1

f(x)sgn(f)dm(x) = 0.

Remark: A couple of people started this problem by making the
change of variables x = u−1 in Eq. (2) and in this way tried to reduce
the problem to one on [0, 1]. This will work as well, the proof would go



5similarly except now one only needs the compact version of the Stone
W. theorem.

Solution to 6. If x ∈ M⊥, then x ∈ Pn(H)⊥ for all n and therefore,
Pnx = 0 for all n. If x ∈ M, we have Pnx = x for all sufficiently large
n and therefore, limn→∞ Pnx = x = Px. If x ∈ M̄ and y ∈ M, then

‖Pnx− x‖ ≤ ‖Pnx− Pny‖+ ‖Pny − y‖+ ‖y − x‖
≤ 2 ‖y − x‖+ ‖Pny − y‖

and therefore

lim sup
n→∞

‖Pnx− x‖ ≤ 2 ‖y − x‖+ lim sup
n→∞

‖Pny − y‖ = 2 ‖y − x‖

and the latter term goes to zero as y → x. Hence limn→∞ Pnx = 0 =
Px.

For general x ∈ H, we write x = y + z with y ∈ M̄ and z ∈ M⊥,
then

Pnx = Pny + Pnz = Pny → y = Px as n →∞.

Solution to 7.

(1) By integration by parts,

〈u′|ek〉 =

∫ π

−π

u′ (θ) e−ikθdθ = −
∫ π

−π

u (θ)
d

dθ
e−ikθdθ

= ik〈u|ek〉.

There are no boundary terms since all functions involved are
2π -periodic.

(2) From item 1. and Hölder’s inequality with p = q = 2,∑
k∈Z\{0}

|〈u|ek〉| =
∑

k∈Z\{0}

∣∣∣∣1k 〈u′|ek〉
∣∣∣∣ ≤ √ ∑

k∈Z\{0}

1

k2

√ ∑
k∈Z\{0}

|〈u′|ek〉|2

=

√ ∑
k∈Z\{0}

1

k2
‖u′‖2 < ∞.

(3) The sum, s (θ) :=
∑

k∈Z〈u|ek〉eikθ, is absolutely convergence
since ∑

k∈Z

∣∣〈u|ek〉eikθ
∣∣ =

∑
k∈Z

|〈u|ek〉| < ∞.

It follows by the dominated convergence theorem that s (θ) is
continuous.

(4) By Fourier analysis, we know that sN :=
∑

|k|≤N〈u|ek〉ek con-

verges to u in L2 and hence by passing to a subsequence, we
may assume the convergence holds for a.e. θ as well. This com-
bined with item 3. shows s (θ) = u (θ) for a.e. θ. By continuity
it follows that s ≡ u.



6 Alternatively: Since∑
k∈Z

∫ π

−π

∣∣〈u|ek〉eikθe−inθ
∣∣ dλ (θ) =

∑
k∈Z

|〈u|ek〉| < ∞

it follows that

〈s|en〉 =

∫ π

−π

∑
k∈Z

〈u|ek〉eikθe−inθdλ (θ) = 〈u|en〉

and hence (s− u) is perpendicular to the orthonormal basis
{ek : k ∈ Z} and therefore s− u = 0 in L2 (dλ) , i.e. s = u a.e.
Since both s− u is continuous, it must be zero.


