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Part I

Background Material





1

Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.
a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c) Integration relative to different weights or densities including singular

weights.
d) Characterization of dual spaces.
e) Completeness.

2. Infinite dimensional Linear algebra.
3. ODE and PDE.
4. Harmonic and Fourier Analysis.
5. Probability Theory





2

Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative inte-
gers and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter 3 below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 .
If X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote
f ∈ Y N by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 2.2 More generally if {Xα : α ∈ A} is a collection of non-empty
sets, let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map

defined by πα(x) = xα. If If Xα = X for some fixed space X, then we will
write

∏
α∈A

Xα as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice (See Appendix 38.)
states that XA 6= ∅ provided that Xα 6= ∅ for each α ∈ A.

Notation 2.3 Given a set X, let 2X denote the power set of X – the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
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Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = A ∩Bc.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the
union and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 2.4 We will also write
∐
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For
example let {An}∞n=1 be a sequence of subsets from X and define

{An i.o.} := {x ∈ X : # {n : x ∈ An} =∞} and
{An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.

Definition 2.5. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
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3. A non-empty set X is countable iff there exists a surjective map, g : N→
X.

4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = minΛ \ {f(1), . . . , f(n)} .

Since Λ is infinite the process continues indefinitely. The function f : N→ Λ
defined this way is a bijection. 3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item 2. (taking Λ = f(X))
shows X is countable. Conversely if f : X → N is injective let x0 ∈ X be
a fixed point and define g : N → X by g(n) = f−1(n) for n ∈ f (X) and
g(n) = x0 otherwise. 4. Let us first construct a bijection, h, from N to N×N.
To do this put the elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3), etc. etc. If f : N→X and g : N→Y are
surjective functions, then the function (f × g) ◦ h : N→X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N. 5. If A = ∅ then A
is countable by definition so we may assume A 6= ∅. With out loss of generality
we may assume A1 6= ∅ and by replacing Am by A1 if necessary we may also
assume Am 6= ∅ for all m. For each m ∈ N let am : N→Am be a surjective
function and then define f : N × N → ∪∞m=1Am by f(m,n) := am(n). The
function f is surjective and hence so is the composition, f ◦ h : N → X × Y,
where h : N→ N×N is the bijection defined above. 6. Let us begin by showing
2N = {0, 1}N is uncountable. For sake of contradiction suppose f : N→ {0, 1}N
is a surjection and write f (n) as (f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈
{0, 1}N by an := 1 − fn(n). By construction fn (n) 6= an for all n and so
a /∈ f (N) . This contradicts the assumption that f is surjective and shows 2N

is uncountable. For the general case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y,
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if Y X0 is uncountable then so is Y X . In this way we may assume Y0 is a two
point set which may as well be Y0 = {0, 1} . Moreover, since X is an infinite
set we may find an injective map x : N → X and use this to set up an
injection, i : 2N → 2X by setting i (a) (xn) = an for all n ∈ N and i (a) (x) = 0
if x /∈ {xn : n ∈ N} . If 2X were countable we could find a surjective map
f : 2X → N in which case f ◦ i : 2N → N would be surjective as well. However
this is impossible since we have already seed that 2N is uncountable.

We end this section with some notation which will be used frequently in
the sequel.

Notation 2.7 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 2.8. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A → X be
the inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

2.1 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of
Y, verify the following assertions.

Exercise 2.1. (∩i∈IAi)c = ∪i∈IAci .

Exercise 2.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 2.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 2.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 2.5. Find a counter example which shows that f(C ∩D) = f(C)∩
f(D) need not hold.
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3

A Brief Review of Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R, nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q =
{m
n

: m,n ∈ Z : n 6= 0
}
.

As usual, for q ∈ Q, we define

|q| =
{
q if q ≥ 0
−q if q ≤ 0.

Notice that if q ∈ Q and |q| ≤ 1
n for all n, then q = 0. Indeed q 6= 0 then

|q| = m
n for some m,n ∈ N and hence |q| ≥ 1

n . A similar argument shows
q ≥ 0 iff q ≥ − 1

n for all n ∈ N. These trivial remarks will be used in the future
without further reference.

Definition 3.1. A sequence {qn}∞n=1 ⊂ Q converges to q ∈ Q if |q − qn| → 0
as n→∞, i.e. if for all N ∈ N, |q − qn| ≤ 1

N for a.a. n. As usual if {qn}∞n=1

converges to q we will write qn → q as n→∞ or q = limn→∞ qn.

Definition 3.2. A sequence {qn}∞n=1 ⊂ Q is Cauchy if |qn − qm| → 0 as
m,n→∞. More precisely we require for each N ∈ N that |qm − qn| ≤ 1

N for
a.a. pairs (m,n) .

Exercise 3.1. Show that all convergent sequences {qn}∞n=1 ⊂ Q are Cauchy
and that all Cauchy sequences {qn}∞n=1 are bounded – i.e. there exists M ∈ N
such that

|qn| ≤M for all n ∈ N.

Exercise 3.2. Suppose {qn}∞n=1 and {rn}∞n=1 are Cauchy sequences in Q.
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1. Show {qn + rn}∞n=1 and {qn · rn}∞n=1 are Cauchy.
Now assume that {qn}∞n=1 and {rn}∞n=1 are convergent sequences in Q.

2. Show {qn + rn}∞n=1 {qn · rn}
∞
n=1 are convergent in Q and

lim
n→∞

(qn + rn) = lim
n→∞

qn + lim
n→∞

rn and

lim
n→∞

(qnrn) = lim
n→∞

qn · lim
n→∞

rn.

3. If we further assume qn ≤ rn for all n, show limn→∞ qn ≤ limn→∞ rn. (It
suffices to consider the case where qn = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
3.14 below, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{qn}∞n=1 ⊂ Q which is not convergent in Q.

1. Recall that there is no element q ∈ Q such that q2 = 2.1 To each n ∈ N
let mn ∈ N be chosen so that

m2
n

n2
< 2 <

(mn + 1)2

n2
(3.1)

and let qn := mn

n .
2. Verify that q2n → 2 as n → ∞ and that {qn}∞n=1 is a Cauchy sequence in
Q.

3. Show {qn}∞n=1 does not have a limit in Q.

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ Q and say
a, b ∈ C are equivalent (write a ∼ b) iff limn→∞ |an − bn| = 0. (The reader
should check that “ ∼ ” is an equivalence relation.)

Definition 3.3. A real number is an equivalence class, ā := {b ∈ C : b ∼ a}
associated to some element a ∈ C. The collection of real numbers will be
denoted by R. For q ∈ Q, let i (q) = ā where a is the constant sequence an = q
for all n ∈ N. We will simply write 0 for i (0) and 1 for i (1) .

Exercise 3.4. Given ā, b̄ ∈ R show that the definitions

−ā = (−a), ā+ b̄ := (a+ b) and ā · b̄ := a · b
1 This fact also shows that the intermediate value theorem, (See Theorem 13.50

below.) fails when working with continuous functions defined over Q.
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3.1 The Real Numbers 11

are well defined. Here −a, a + b and a · b denote the sequences {−an}∞n=1 ,
{an + bn}∞n=1 and {an · bn}∞n=1 respectively. Further verify that with these op-
erations, R becomes a field and the map i : Q→ R is injective homomorphism
of fields. Hint: if ā 6= 0 show that ā may be represented by a sequence a ∈ C
with |an| ≥ 1

N for all n and some N ∈ N. For this representative show the
sequence a−1 :=

{
a−1
n

}∞
n=1
∈ C. The multiplicative inverse to ā may now be

constructed as: 1
ā = ā−1 :=

{
a−1
n

}∞
n=1

.

Definition 3.4. Let ā, b̄ ∈ R. Then

1. ā > 0 if there exists an N ∈ N such that an > 1
N for a.a. n.

2. ā ≥ 0 iff either ā > 0 or ā = 0. Equivalently (as the reader should verify),
ā ≥ 0 iff for all N ∈ N, an ≥ − 1

N for a.a. n.
3. Write ā > b̄ or b̄ < ā if ā− b̄ > 0
4. Write ā ≥ b̄ or b̄ ≤ ā if ā− b̄ ≥ 0.

Exercise 3.5. Show “ ≥ ” make R into a linearly ordered field and the map
i : Q→ R preserves order. Namely if ā, b̄ ∈ R then

1. exactly one of the following relations hold: ā < b̄ or ā > b̄ or ā = b̄.
2. If ā ≥ 0 and b̄ ≥ 0 then ā+ b̄ ≥ 0 and ā · b̄ ≥ 0.
3. If q, r ∈ Q then q ≤ r iff i (q) ≤ i (r) .

The absolute value of a real number ā is defined analogously to that of
a rational number by

|ā| =
{
ā if ā ≥ 0
−ā if ā < 0 .

Observe this definition is consistent with our previous definition of the abso-
lute value on Q, namely i (|q|) = |i (q)| . Also notice that ā = 0 (i.e. a ∼ 0
where 0 denotes the constant sequence of all zeros) iff for all N ∈ N, |an| ≤ 1

N
for a.a. n. This is equivalent to saying |ā| ≤ i

(
1
N

)
for all N ∈ N iff ā = 0.

Exercise 3.6. Given ā, b̄ ∈ R show∣∣āb̄∣∣ = |ā| ∣∣b̄∣∣ and
∣∣ā+ b̄

∣∣ ≤ |ā|+ ∣∣b̄∣∣ .
The latter inequality being referred to as the triangle inequality.

By exercise 3.6,

|ā| =
∣∣ā− b̄+ b̄

∣∣ ≤ ∣∣ā− b̄∣∣+ ∣∣b̄∣∣
and hence

|ā| −
∣∣b̄∣∣ ≤ ∣∣ā− b̄∣∣

and by reversing the roles of ā and b̄ we also have

−
(
|ā| −

∣∣b̄∣∣) =
∣∣b̄∣∣− |ā| ≤ ∣∣b̄− ā∣∣ = ∣∣ā− b̄∣∣ .
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12 3 A Brief Review of Real and Complex Numbers

Therefore
∣∣|ā| − ∣∣b̄∣∣∣∣ ≤ ∣∣ā− b̄∣∣ and in particular if {ān}∞n=1 ⊂ R converges to

ā ∈ R then
||ān| − |ā|| ≤ |ān − ā| → 0 as n→∞.

Definition 3.5. A sequence {ān}∞n=1 ⊂ R converges to ā ∈ R if |ā− ān| →
0 as n → ∞, i.e. if for all N ∈ N, |ā− ān| ≤ i

(
1
N

)
for a.a. n. As before if

{ān}∞n=1 converges to ā we will write ān → ā as n→∞ or ā = limn→∞ ān.

Remark 3.6. The field i (Q) is dense in R in the sense that if ā ∈ R there
exists {qn}∞n=1 ⊂ Q such that i (qn) → ā as n → ∞. Indeed, simply let
qn = an where a represents ā. Since a is a Cauchy sequence, to any N ∈ N
there exits M ∈ N such that

− 1
N
≤ am − an ≤

1
N

for all m,n ≥M

and therefore

−i
(

1
N

)
≤ i (am)− ā ≤ i

(
1
N

)
for all m ≥M.

This shows

|i (qm)− ā| = |i (am)− ā| ≤ i
(

1
N

)
for all m ≥M

and since N is arbitrary that i (qm)→ ā as m→∞.

Definition 3.7. A sequence {ān}∞n=1 ⊂ R is Cauchy if |ān − ām| → 0 as
m,n→∞. More precisely we require for each N ∈ N that |ām − ān| ≤ i

(
1
N

)
for a.a. pairs (m,n) .

Exercise 3.7. The analogues of the results in Exercises 3.1 and 3.2 hold with
Q replaced by R. (We now say a subset Λ ⊂ R is bounded if there exists
M ∈ N such that |λ| ≤ i (M) for all λ ∈ Λ.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Proof. Suppose that {ā (m)}∞m=1 is a Cauchy sequence in R. By Remark
3.6, we may choose qm ∈ Q such that

|ā (m)− i (qm)| ≤ i
(
m−1

)
for all m ∈ N.

Given N ∈ N, choose M ∈ N such that |ā (m)− ā (n)| ≤ i
(
N−1

)
for all

m,n ≥M. Then
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3.1 The Real Numbers 13

|i (qm)− i (qn)| ≤ |i (qm)− ā (m)|+ |ā (m)− ā (n)|+ |ā (n)− i (qn)|
≤ i
(
m−1

)
+ i
(
n−1

)
+ i
(
N−1

)
and therefore

|qm − qn| ≤ m−1 + n−1 +N−1 for all m,n ≥M.

It now follows that q = {qm}∞m=1 ∈ C and therefore q represents a point q̄ ∈ R.
Using Remark 3.6 and the triangle inequality,

|ā (m)− q̄| ≤ |ā (m)− i (qm)|+ |i (qm)− q̄|
≤ i
(
m−1

)
+ |i (qm)− q̄| → 0 as m→∞

and therefore limm→∞ ā (m) = q̄.

Definition 3.9. A number M ∈ R is an upper bound for a set Λ ⊂ R if
λ ≤ M for all λ ∈ Λ and a number m ∈ R is an lower bound for a set
Λ ⊂ R if λ ≥ m for all λ ∈ Λ. Upper and lower bounds need not exist. If Λ
has upper (lower) bound, Λ is said to be bounded from above (below).

Theorem 3.10. To each non-empty set Λ ⊂ R which is bounded from above
(below) there is a unique least upper bound denoted by supΛ ∈ R (respec-
tively greatest lower bound denoted by inf Λ ∈ R).

Proof. Suppose Λ is bounded from above and for each n ∈ N, let mn ∈ Z
be the smallest integer such that i

(
mn

2n

)
is an upper bound for Λ. The sequence

qn := mn

2n is Cauchy because qm ∈ [qn − 2−n, qn] ∩Q for all m ≥ n, i.e.

|qm − qn| ≤ 2−min(m,n) → 0 as m,n→∞.

Passing to the limit, n → ∞, in the inequality i (qn) ≥ λ, which is valid for
all λ ∈ Λ implies

q̄ = lim
n→∞

i (qn) ≥ λ for all λ ∈ Λ.

Thus q̄ is an upper bound for Λ. If there were another upper bound M ∈ R for
Λ such that M < q̄, it would follow that M ≤ i (qn) < q̄ for some n. But this
is a contradiction because {qn}∞n=1 is a decreasing sequence, i (qn) ≥ i (qm)
for all m ≥ n and therefore i (qn) ≥ q̄ for all n. Therefore q̄ is the unique least
upper bound for Λ. The existence of lower bounds is proved analogously.

Proposition 3.11. If {an}∞n=1 ⊂ R is an increasing (decreasing) sequence
which is bounded from above (below), then {an}∞n=1 is convergent and

lim
n→∞

an = sup {an : n ∈ N} ( lim
n→∞

an = inf {an : n ∈ N}).

If Λ ⊂ R is a set bounded from above then there exists {λn} ⊂ Λ such that
λn ↑M := supΛ, as n→∞, i.e. {λn} is increasing and limn→∞ λn = M.
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14 3 A Brief Review of Real and Complex Numbers

Proof. Let M := sup {an : n ∈ N} , then for each N ∈ N there must exist
m ∈ N such that M − i

(
N−1

)
< am ≤ M. Since an is increasing, it follows

that
M − i

(
N−1

)
< an ≤M for all n ≥ m.

From this we conclude that lim an exists and lim an = M. If M = supΛ, for
each n ∈ N we may choose λn ∈ Λ such that

M − i
(
n−1

)
< λn ≤M. (3.2)

By replacing λn by max {λ1, . . . , λn}2 if necessary we may assume that λn is
increasing in n. It now follows easily from Eq. (3.2) that limn→∞ λn = M.

3.1.1 The Decimal Representation of a Real Number

Let α ∈ R or α ∈ Q, m, n ∈ Z and S :=
∑m
k=n α

k. If α = 1 then
∑m
k=n α

k =
m− n+ 1 while for α 6= 1,

αS − S = αm+1 − αn

and solving for S gives the important geometric summation formula,

m∑
k=n

αk =
αm+1 − αn

α− 1
if α 6= 1. (3.3)

Taking α = 10−1 in Eq. (3.3) implies

m∑
k=n

10−k =
10−(m+1) − 10−n

10−1 − 1
=

1
10n−1

1− 10−(m−n)

9

and in particular, for all M ≥ n,

lim
m→∞

m∑
k=n

10−k =
1

9 · 10n−1
≥

M∑
k=n

10−k.

Let D denote those sequences α ∈ {0, 1, 2, . . . , 9}Z with the following prop-
erties:

1. there exists N ∈ N such that α−n = 0 for all n ≥ N and
2. αn 6= 0 for some n ∈ Z.
2 The notation, maxΛ, denotes supΛ along with the assertion that supΛ ∈ Λ.

Similarly, minΛ = inf Λ along with the assertion that inf Λ ∈ Λ.

Page: 14 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



3.1 The Real Numbers 15

Associated to each α ∈ D is the sequence a = a (α) defined by

an :=
n∑

k=−∞

αk10−k.

Since for m > n,

|am − an| =

∣∣∣∣∣
m∑

k=n+1

αk10−k
∣∣∣∣∣ ≤ 9

m∑
k=n+1

10−k ≤ 9
1

9 · 10n
=

1
10n

,

it follows that

|am − an| ≤
1

10min(m,n)
→ 0 as m,n→∞.

Therefore a = a (α) ∈ C and we may define a map D : {±1}×D→ R defined
by D (ε, α) = εa (α). As is customary we will denote D (ε, α) = εa (α) as

ε · αm . . . α0.α1α2 . . . αn . . . (3.4)

where m is the largest integer in Z such that αk = 0 for all k < m. If m > 0
the expression in Eq. (3.4) should be interpreted as

ε · 0.0 . . . 0αmαm+1 . . . .

An element α ∈ D has a tail of all 9’s starting at N ∈ N if αn = 9 and for
all n ≥ N and αN−1 6= 9. If α has a tail of 9’s starting at N ∈ N, then for
n > N,

an (α) =
N−1∑
k=−∞

αk10−k + 9
n∑

k=N

10−k

=
N−1∑
k=−∞

αk10−k +
9

10N−1
· 1− 10−(n−N)

9

→
N−1∑
k=−∞

αk10−k + 10−(N−1) as n→∞.

If α′ is the digits in the decimal expansion of
∑N−1
k=−∞ αk10−k + 10−(N−1),

then
α′ ∈ D′ := {α ∈ D : α does not have a tail of all 9’s} .

and we have just shown that D (ε, α) = D (ε, α′) . In particular this implies

D ({±1} × D′) = D ({±1} × D) . (3.5)
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16 3 A Brief Review of Real and Complex Numbers

Theorem 3.12 (Decimal Representation). The map

D : {±1} × D′→ R\ {0}

is a bijection.

Proof. Suppose D (ε, α) = D (δ, β) for some (ε, α) and (δ, β) in {±1}×D.
Since D (ε, α) > 0 if ε = 1 and D (ε, α) < 0 if ε = −1 it follows that ε = δ. Let
a = a (α) and b = a (β) be the sequences associated to α and β respectively.
Suppose that α 6= β and let j ∈ Z be the position where α and β first
disagree, i.e. αn = βn for all n < j while αj 6= βj . For sake of definiteness
suppose βj > αj . Then for n > j we have

bn − an = (βj − αj) 10−j +
n∑

k=j+1

(βk − αk) 10−k

≥ 10−j − 9
n∑

k=j+1

10−k ≥ 10−j − 9
1

9 · 10j
= 0.

Therefore bn−an ≥ 0 for all n and lim (bn − an) = 0 iff βj = αj+1 and βk = 9
and αk = 0 for all k > j. In summary, D (ε, α) = D (δ, β) with α 6= β implies
either α or β has an infinite tail of nines which shows that D is injective when
restricted to {±1} × D′. To see that D is surjective it suffices to show any
b̄ ∈ R with 0 < b̄ < 1 is in the range of D. For each n ∈ N, let an = .α1 . . . αn
with αi ∈ {0, 1, 2, . . . , 9} such that

i (an) < b̄ ≤ i (an) + i
(
10−n

)
. (3.6)

Since an+1 = an+αn+110−(n+1) for some αn+1 ∈ {0, 1, 2, . . . , 9} , we see that
an+1 = .α1 . . . αnαn+1, i.e. the first n digits in the decimal expansion of an+1

are the same as in the decimal expansion of an. Hence this defines αn uniquely
for all n ≥ 1. By setting αn = 0 when n ≤ 0, we have constructed from b̄ an
element α ∈ D. Because of Eq. (3.6), D (1, α) = b̄.

Notation 3.13 From now on we will identify Q with i (Q) ⊂ R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form m10−n for some m ∈ Z and n ∈ N) has a unique decimal expansion.

Corollary 3.14. The set (0, 1) := {a ∈ R : 0 < a < 1} is uncountable while
Q ∩ (0, 1) is countable.

Proof. By Theorem 3.12, the set {0, 1, 2 . . . , 8}N can be mapped injectively
into (0, 1) and therefore it follows from Lemma 2.6 that (0, 1) is uncountable.
For each m ∈ N, let Am :=

{
n
m : n ∈ N with n < m

}
. Since Q ∩ (0, 1) =

∪∞m=1Am and # (Am) <∞ for all m, another application of Lemma 2.6 shows
Q ∩ (0, 1) is countable.
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3.2 The Complex Numbers 17

3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R2 equipped with multipli-
cation rule

(a, b)(c, d) := (ac− bd, bc+ ad) (3.7)

and the usual rule for vector addition. As is standard we will write 0 = (0, 0) ,
1 = (1, 0) and i = (0, 1) so that every element z of C may be written as
z = x1 + yi which in the future will be written simply as z = x + iy. If
z = x+ iy, let Re z = x and Im z = y.

Writing z = a + ib and w = c + id, the multiplication rule in Eq. (3.7)
becomes

(a+ ib)(c+ id) := (ac− bd) + i(bc+ ad) (3.8)

and in particular 12 = 1 and i2 = −1.

Proposition 3.16. The complex numbers C with the above multiplication
rule satisfies the usual definitions of a field. For example wz = zw and
z (w1 + w2) = zw1 + zw2, etc. Moreover if z 6= 0, z has a multiplicative
inverse given by

z−1 =
a

a2 + b2
− i b

a2 + b2
. (3.9)

Proof. The proof is a straightforward verification. Only the last assertion
will be verified here. Suppose z = a+ ib 6= 0, we wish to find w = c+ id such
that zw = 1 and this happens by Eq. (3.8) iff

ac− bd = 1 and (3.10)
bc+ ad = 0. (3.11)

Solving these equations for c and d gives c = a
a2+b2 and d = − b

a2+b2 as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a + ib with a, b ∈ R
let z̄ = a− ib and

|z| :=
√
zz̄ =

√
a2 + b2 =

√
|Re z|2 + |Im z|2.

See Exercise 3.8 for the existence of the square root as a positive real number.

Notice that

Re z =
1
2

(z + z̄) and Im z =
1
2i

(z − z̄) . (3.12)

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1. z̄ = z,
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18 3 A Brief Review of Real and Complex Numbers

2. zw = z̄w̄ and z̄ + w̄ = z + w.
3. |z̄| = |z|
4. |zw| = |z| |w| and in particular |zn| = |z|n for all n ∈ N.
5. |Re z| ≤ |z| and |Im z| ≤ |z|
6. |z + w| ≤ |z|+ |w| .
7. z = 0 iff |z| = 0.
8. If z 6= 0 then z−1 := z̄

|z|2 (also written as 1
z ) is the inverse of z.

9.
∣∣z−1

∣∣ = |z|−1 and more generally |zn| = |z|n for all n ∈ Z.

Proof. All of these properties are direct computations except for possibly
the triangle inequality in item 6 which is verified by the following computation;

|z + w|2 = (z + w) (z + w) = |z|2 + |w|2 + wz̄ + w̄z

= |z|2 + |w|2 + wz̄ + wz̄

= |z|2 + |w|2 + 2 Re (wz̄) ≤ |z|2 + |w|2 + 2 |z| |w|

= (|z|+ |w|)2 .

Definition 3.19. A sequence {zn}∞n=1 ⊂ C is Cauchy if |zn − zm| → 0 as
m,n → ∞ and is convergent to z ∈ C if |z − zn| → 0 as n → ∞. As usual
if {zn}∞n=1 converges to z we will write zn → z as n→∞ or z = limn→∞ zn.

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if zn = an + ibn ∈ C, then

1. {zn}∞n=1 ⊂ C is Cauchy iff {an}∞n=1 ⊂ R and {bn}∞n=1 ⊂ R are Cauchy
and

2. zn → z = a+ ib as n→∞ iff an → a and bn → b as n→∞.

3.3 Exercises

Exercise 3.8. Show to every a ∈ R with a ≥ 0 there exists a unique number
b ∈ R such that b ≥ 0 and b2 = a. Of course we will call b =

√
a. Also show

that a→
√
a is an increasing function on [0,∞). Hint: To construct b =

√
a

for a > 0, to each n ∈ N let mn ∈ N0 be chosen so that

m2
n

n2
< a ≤ (mn + 1)2

n2
i.e. i

(
m2
n

n2

)
< a ≤ i

(
(mn + 1)2

n2

)

and let qn := mn

n . Then show b = {qn}∞n=1 ∈ R satisfies b > 0 and b2 = a.
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4

Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞
while ∞ − ∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞
(−∞) if for all M ∈ R there exists m ∈ N such that an ≥ M (an ≤ M) for
all n ≥ m.

Lemma 4.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for a.a. n then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R̄, limn→∞ (can) = c limn→∞ an.
3. If {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (4.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (4.2)

provided the right hand side is not of the for ∞ · 0.

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
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lim
n→∞

an + lim
n→∞

bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (4.1) is not of form
∞ − ∞ is necessary in Lemma 4.2. Similarly by considering the examples
an = n and bn = n−α with α > 0 shows the necessity for assuming right hand
side of Eq. (4.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (4.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1.,

suppose b =∞ in which case we must assume a > −∞. In this case, for every
M > 0, there exists N such that bn ≥ M and an ≥ a − 1 for all n ≥ N and
this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → b = ∞. The cases
where b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for
every ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since n is arbitrary, it follows that limn→∞ (an + bn) = a+ b.
Proof of Eq. (4.2). It will be left to the reader to prove the case

where lim an and lim bn exist in R. I will only consider the case where
a = limn→∞ an 6= 0 and limn→∞ bn = ∞ here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let α := min

(
a
2 , 1
)
. Given

any M <∞, there exists N ∈ N such that an ≥ α and bn ≥M for all n ≥ N
and for this choice of N, anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and
M is arbitrary it follows that limn→∞ (anbn) =∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ =∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 4.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (4.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (4.4)

We will also write lim for lim inf and lim for lim sup .

Remark 4.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R̄ and
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4.1 Limsups, Liminfs and Extended Limits 21

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 4.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim supn→∞ an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank
}∞k=1 of {an}∞n=1 such that limk→∞ ank

=
lim supn→∞ an.

3.
lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn (4.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (4.6)

provided the right hand side of (4.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. Item 1. will be proved here leaving the remaining items as an
exercise to the reader. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim supn→∞ an = a ∈ R. Then for all
ε > 0, there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an =∞. The case where lim supn→∞ an = −∞ is handled
similarly.
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22 4 Limits and Sums

Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for
every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε),
i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim supn→∞ an. If A = ∞, then for all M > 0
there exists N(M) such that an ≥ M for all n ≥ N(M). This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A =∞ case.

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
α ⊂⊂ X to denote that α is a finite subset of X and write 2Xf for those
α ⊂⊂ X.

Definition 4.6. Suppose that a : X → [0,∞] is a function and F ⊂ X is a
subset, then

∑
F

a =
∑
x∈F

a(x) := sup

{∑
x∈α

a(x) : α ⊂⊂ F

}
.

Remark 4.7. Suppose that X = N = {1, 2, 3, . . . } and a : X → [0,∞], then

∑
N
a =

∞∑
n=1

a(n) := lim
N→∞

N∑
n=1

a(n).

Indeed for all N,
∑N
n=1 a(n) ≤

∑
N a, and thus passing to the limit we learn

that
∞∑
n=1

a(n) ≤
∑

N
a.

Conversely, if α ⊂⊂ N, then for all N large enough so that α ⊂ {1, 2, . . . , N},
we have

∑
α a ≤

∑N
n=1 a(n) which upon passing to the limit implies that
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4.2 Sums of positive functions 23

∑
α

a ≤
∞∑
n=1

a(n).

Taking the supremum over α in the previous equation shows

∑
N
a ≤

∞∑
n=1

a(n).

Remark 4.8. Suppose a : X → [0,∞] and
∑
X a <∞, then {x ∈ X : a(x) > 0}

is at most countable. To see this first notice that for any ε > 0, the set
{x : a(x) ≥ ε} must be finite for otherwise

∑
X a =∞. Thus

{x ∈ X : a(x) > 0} =
⋃

∞
k=1{x : a(x) ≥ 1/k}

which shows that {x ∈ X : a(x) > 0} is a countable union of finite sets and
thus countable by Lemma 2.6.

Lemma 4.9. Suppose that a, b : X → [0,∞] are two functions, then∑
X

(a+ b) =
∑
X

a+
∑
X

b and∑
X

λa = λ
∑
X

a

for all λ ≥ 0.

I will only prove the first assertion, the second being easy. Let α ⊂⊂ X be
a finite set, then ∑

α

(a+ b) =
∑
α

a+
∑
α

b ≤
∑
X

a+
∑
X

b

which after taking sups over α shows that∑
X

(a+ b) ≤
∑
X

a+
∑
X

b.

Similarly, if α, β ⊂⊂ X, then∑
α

a+
∑
β

b ≤
∑
α∪β

a+
∑
α∪β

b =
∑
α∪β

(a+ b) ≤
∑
X

(a+ b).

Taking sups over α and β then shows that∑
X

a+
∑
X

b ≤
∑
X

(a+ b).
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24 4 Limits and Sums

Lemma 4.10. Let X and Y be sets, R ⊂ X × Y and suppose that a : R→ R̄
is a function. Let xR := {y ∈ Y : (x, y) ∈ R} and Ry := {x ∈ X : (x, y) ∈ R} .
Then

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y) = sup
y∈Y

sup
x∈Ry

a(x, y) and

inf
(x,y)∈R

a(x, y) = inf
x∈X

inf
y∈xR

a(x, y) = inf
y∈Y

inf
x∈Ry

a(x, y).

(Recall the conventions: sup ∅ = −∞ and inf ∅ = +∞.)

Proof. Let M = sup(x,y)∈R a(x, y), Nx := supy∈xR a(x, y). Then a(x, y) ≤
M for all (x, y) ∈ R implies Nx = supy∈xR a(x, y) ≤M and therefore that

sup
x∈X

sup
y∈xR

a(x, y) = sup
x∈X

Nx ≤M. (4.7)

Similarly for any (x, y) ∈ R,

a(x, y) ≤ Nx ≤ sup
x∈X

Nx = sup
x∈X

sup
y∈xR

a(x, y)

and therefore
M = sup

(x,y)∈R
a(x, y) ≤ sup

x∈X
sup
y∈xR

a(x, y) (4.8)

Equations (4.7) and (4.8) show that

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y).

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function −a.

Fig. 4.1. The x and y – slices of a set R ⊂ X × Y.
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4.2 Sums of positive functions 25

Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that fn : X → [0,∞] is an increasing sequence of functions and

f(x) := lim
n→∞

fn(x) = sup
n
fn(x).

Then
lim
n→∞

∑
X

fn =
∑
X

f

Proof. We will give two proves.
First proof. Let

2Xf := {A ⊂ X : A ⊂⊂ X}.

Then

lim
n→∞

∑
X

fn = sup
n

∑
X

fn = sup
n

sup
α∈2X

f

∑
α

fn = sup
α∈2X

f

sup
n

∑
α

fn

= sup
α∈2X

f

lim
n→∞

∑
α

fn = sup
α∈2X

f

∑
α

lim
n→∞

fn

= sup
α∈2X

f

∑
α

f =
∑
X

f.

Second Proof. Let Sn =
∑
X fn and S =

∑
X f. Since fn ≤ fm ≤ f for all

n ≤ m, it follows that
Sn ≤ Sm ≤ S

which shows that limn→∞ Sn exists and is less that S, i.e.

A := lim
n→∞

∑
X

fn ≤
∑
X

f. (4.9)

Noting that
∑
α fn ≤

∑
X fn = Sn ≤ A for all α ⊂⊂ X and in particular,∑

α

fn ≤ A for all n and α ⊂⊂ X.

Letting n tend to infinity in this equation shows that∑
α

f ≤ A for all α ⊂⊂ X

and then taking the sup over all α ⊂⊂ X gives∑
X

f ≤ A = lim
n→∞

∑
X

fn (4.10)

which combined with Eq. (4.9) proves the theorem.
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26 4 Limits and Sums

Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that fn : X → [0,∞]
is a sequence of functions, then∑

X

lim inf
n→∞

fn ≤ lim inf
n→∞

∑
X

fn.

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∑
X

gk ≤
∑
X

fn for all n ≥ k

and therefore ∑
X

gk ≤ lim inf
n→∞

∑
X

fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∑
X

lim inf
n→∞

fn =
∑
X

lim
k→∞

gk
MCT= lim

k→∞

∑
X

gk ≤ lim inf
n→∞

∑
X

fn.

Remark 4.13. If A =
∑
X a < ∞, then for all ε > 0 there exists αε ⊂⊂ X

such that
A ≥

∑
α

a ≥ A− ε

for all α ⊂⊂ X containing αε or equivalently,∣∣∣∣∣A−∑
α

a

∣∣∣∣∣ ≤ ε (4.11)

for all α ⊂⊂ X containing αε. Indeed, choose αε so that
∑
αε
a ≥ A− ε.

4.3 Sums of complex functions

Definition 4.14. Suppose that a : X → C is a function, we say that∑
X

a =
∑
x∈X

a(x)

exists and is equal to A ∈ C, if for all ε > 0 there is a finite subset αε ⊂ X
such that for all α ⊂⊂ X containing αε we have∣∣∣∣∣A−∑

α

a

∣∣∣∣∣ ≤ ε.
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4.3 Sums of complex functions 27

The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a, b : X → C are two functions such that
∑
X a

and
∑
X b exist, then

∑
X(a+ λb) exists for all λ ∈ C and∑
X

(a+ λb) =
∑
X

a+ λ
∑
X

b.

Definition 4.16 (Summable). We call a function a : X → C summable if∑
X

|a| <∞.

Proposition 4.17. Let a : X → C be a function, then
∑
X a exists iff∑

X |a| <∞, i.e. iff a is summable. Moreover if a is summable, then∣∣∣∣∣∑
X

a

∣∣∣∣∣ ≤∑
X

|a| .

Proof. If
∑
X |a| < ∞, then

∑
X (Re a)± < ∞ and

∑
X (Im a)± < ∞

and hence by Remark 4.13 these sums exists in the sense of Definition 4.14.
Therefore by Lemma 4.15,

∑
X a exists and

∑
X

a =
∑
X

(Re a)+ −
∑
X

(Re a)− + i

(∑
X

(Im a)+ −
∑
X

(Im a)−
)
.

Conversely, if
∑
X |a| = ∞ then, because |a| ≤ |Re a| + |Im a| , we must

have ∑
X

|Re a| =∞ or
∑
X

|Im a| =∞.

Thus it suffices to consider the case where a : X → R is a real function. Write
a = a+ − a− where

a+(x) = max(a(x), 0) and a−(x) = max(−a(x), 0). (4.12)

Then |a| = a+ + a− and

∞ =
∑
X

|a| =
∑
X

a+ +
∑
X

a−

which shows that either
∑
X a

+ =∞ or
∑
X a

− =∞. Suppose, with out loss
of generality, that

∑
X a

+ =∞. Let X ′ := {x ∈ X : a(x) ≥ 0}, then we know
that

∑
X′ a = ∞ which means there are finite subsets αn ⊂ X ′ ⊂ X such

that
∑
αn
a ≥ n for all n. Thus if α ⊂⊂ X is any finite set, it follows that

limn→∞
∑
αn∪α a = ∞, and therefore

∑
X a can not exist as a number in R.

Finally if a is summable, write
∑
X a = ρeiθ with ρ ≥ 0 and θ ∈ R, then
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28 4 Limits and Sums∣∣∣∣∣∑
X

a

∣∣∣∣∣ = ρ = e−iθ
∑
X

a =
∑
X

e−iθa

=
∑
X

Re
[
e−iθa

]
≤
∑
X

(
Re
[
e−iθa

])+
≤
∑
X

∣∣Re
[
e−iθa

]∣∣ ≤∑
X

∣∣e−iθa∣∣ ≤∑
X

|a| .

Alternatively, this may be proved by approximating
∑
X a by a finite sum and

then using the triangle inequality of |·| .

Remark 4.18. Suppose that X = N and a : N→ C is a sequence, then it is
not necessarily true that

∞∑
n=1

a(n) =
∑
n∈N

a(n). (4.13)

This is because
∞∑
n=1

a(n) = lim
N→∞

N∑
n=1

a(n)

depends on the ordering of the sequence a where as
∑
n∈N a(n) does not. For

example, take a(n) = (−1)n/n then
∑
n∈N |a(n)| = ∞ i.e.

∑
n∈N a(n) does

not exist while
∑∞
n=1 a(n) does exist. On the other hand, if

∑
n∈N
|a(n)| =

∞∑
n=1

|a(n)| <∞

then Eq. (4.13) is valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that fn : X → C is a sequence of functions on X such that f(x) =
limn→∞ fn(x) ∈ C exists for all x ∈ X. Further assume there is a dominat-
ing function g : X → [0,∞) such that

|fn(x)| ≤ g(x) for all x ∈ X and n ∈ N (4.14)

and that g is summable. Then

lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

f(x). (4.15)

Proof. Notice that |f | = lim |fn| ≤ g so that f is summable. By con-
sidering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,
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4.3 Sums of complex functions 29∑
X

(g ± f) =
∑
X

lim inf
n→∞

(g ± fn) ≤ lim inf
n→∞

∑
X

(g ± fn)

=
∑
X

g + lim inf
n→∞

(
±
∑
X

fn

)
.

Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,∑
X

g ±
∑
X

f ≤
∑
X

g +
{

lim infn→∞
∑
X fn

− lim supn→∞
∑
X fn

and therefore

lim sup
n→∞

∑
X

fn ≤
∑
X

f ≤ lim inf
n→∞

∑
X

fn.

This shows that lim
n→∞

∑
X fnexists and is equal to

∑
X f.

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that |f | ≤
g and in particular that f is summable. Given ε > 0, let α ⊂⊂ X such that∑

X\α

g ≤ ε.

Then for β ⊂⊂ X such that α ⊂ β,∣∣∣∣∣∣
∑
β

f −
∑
β

fn

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
β

(f − fn)

∣∣∣∣∣∣
≤
∑
β

|f − fn| =
∑
α

|f − fn|+
∑
β\α

|f − fn|

≤
∑
α

|f − fn|+ 2
∑
β\α

g

≤
∑
α

|f − fn|+ 2ε.

and hence that ∣∣∣∣∣∣
∑
β

f −
∑
β

fn

∣∣∣∣∣∣ ≤
∑
α

|f − fn|+ 2ε.

Since this last equation is true for all such β ⊂⊂ X, we learn that∣∣∣∣∣∑
X

f −
∑
X

fn

∣∣∣∣∣ ≤∑
α

|f − fn|+ 2ε

which then implies that
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lim sup
n→∞

∣∣∣∣∣∑
X

f −
∑
X

fn

∣∣∣∣∣ ≤ lim sup
n→∞

∑
α

|f − fn|+ 2ε

= 2ε.

Because ε > 0 is arbitrary we conclude that

lim sup
n→∞

∣∣∣∣∣∑
X

f −
∑
X

fn

∣∣∣∣∣ = 0.

which is the same as Eq. (4.15).

Remark 4.20. Theorem 4.19 may easily be generalized as follows. Suppose
fn, gn, g are summable functions onX such that fn → f and gn → g pointwise,
|fn| ≤ gn and

∑
X gn →

∑
X g as n→∞. Then f is summable and Eq. (4.15)

still holds. For the proof we use Fatou’s Lemma to again conclude∑
X

(g ± f) =
∑
X

lim inf
n→∞

(gn ± fn) ≤ lim inf
n→∞

∑
X

(gn ± fn)

=
∑
X

g + lim inf
n→∞

(
±
∑
X

fn

)
and then proceed exactly as in the first proof of Theorem 4.19.

4.4 Iterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that a : X → C is function and F ⊂ X is a subset
such that a(x) = 0 for all x /∈ F. Then

∑
F a exists iff

∑
X a exists and when

the sums exists, ∑
X

a =
∑
F

a.

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose that a : X×Y →
[0,∞], then ∑

X×Y
a =

∑
X

∑
Y

a =
∑
Y

∑
X

a.

Proof. It suffices to show, by symmetry, that∑
X×Y

a =
∑
X

∑
Y

a

Let Λ ⊂⊂ X × Y. The for any α ⊂⊂ X and β ⊂⊂ Y such that Λ ⊂ α× β, we
have
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4.4 Iterated sums and the Fubini and Tonelli Theorems 31∑
Λ

a ≤
∑
α×β

a =
∑
α

∑
β

a ≤
∑
α

∑
Y

a ≤
∑
X

∑
Y

a,

i.e.
∑
Λ a ≤

∑
X

∑
Y a. Taking the sup over Λ in this last equation shows∑

X×Y
a ≤

∑
X

∑
Y

a.

For the reverse inequality, for each x ∈ X choose βxn ⊂⊂ X such that βxn ↑ as
n ↑ and ∑

y∈Y
a(x, y) = lim

n→∞

∑
y∈βx

n

a(x, y).

If α ⊂⊂ X is a given finite subset of X, then∑
y∈Y

a(x, y) = lim
n→∞

∑
y∈βn

a(x, y) for all x ∈ α

where βn := ∪x∈αβxn ⊂⊂ X. Hence∑
x∈α

∑
y∈Y

a(x, y) =
∑
x∈α

lim
n→∞

∑
y∈βn

a(x, y) = lim
n→∞

∑
x∈α

∑
y∈βn

a(x, y)

= lim
n→∞

∑
(x,y)∈α×βn

a(x, y) ≤
∑
X×Y

a.

Since α is arbitrary, it follows that∑
x∈X

∑
y∈Y

a(x, y) = sup
α⊂⊂X

∑
x∈α

∑
y∈Y

a(x, y) ≤
∑
X×Y

a

which completes the proof.

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that a : X ×
Y → C is a summable function, i.e. by Theorem 4.22 any one of the following
equivalent conditions hold:

1.
∑
X×Y |a| <∞,

2.
∑
X

∑
Y |a| <∞ or

3.
∑
Y

∑
X |a| <∞.

Then ∑
X×Y

a =
∑
X

∑
Y

a =
∑
Y

∑
X

a.

Proof. If a : X → R is real valued the theorem follows by applying
Theorem 4.22 to a± – the positive and negative parts of a. The general result
holds for complex valued functions a by applying the real version just proved
to the real and imaginary parts of a.
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32 4 Limits and Sums

4.5 Exercises

Exercise 4.1. Now suppose for each n ∈ N := {1, 2, . . .} that fn : X → R is
a function. Let

D := {x ∈ X : lim
n→∞

fn(x) = +∞}

show that
D = ∩∞M=1 ∪∞N=1 ∩n≥N{x ∈ X : fn(x) ≥M}. (4.16)

Exercise 4.2. Let fn : X → R be as in the last problem. Let

C := {x ∈ X : lim
n→∞

fn(x) exists in R}.

Find an expression for C similar to the expression for D in (4.16). (Hint: use
the Cauchy criteria for convergence.)

4.5.1 Limit Problems

Exercise 4.3. Show lim infn→∞(−an) = − lim supn→∞ an.

Exercise 4.4. Suppose that lim supn→∞ an = M ∈ R̄, show that there is a
subsequence {ank

}∞k=1 of {an}∞n=1 such that limk→∞ ank
= M.

Exercise 4.5. Show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (4.17)

provided that the right side of Eq. (4.17) is well defined, i.e. no ∞ −∞ or
−∞+∞ type expressions. (It is OK to have∞+∞ =∞ or −∞−∞ = −∞,
etc.)

Exercise 4.6. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ N. Show

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (4.18)

provided the right hand side of (4.18) is not of the form 0 · ∞ or ∞ · 0.

Exercise 4.7. Prove Lemma 4.15.

Exercise 4.8. Prove Lemma 4.21.

Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
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4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 For u0 ∈ Rn and δ > 0, let Bu0(δ) := {x ∈ Rn : |x− u0| < δ}
be the ball in Rn centered at u0 with radius δ.

Exercise 4.9. Suppose U ⊂ Rn is a set and u0 ∈ U is a point such that
U ∩ (Bu0(δ) \ {u0}) 6= ∅ for all δ > 0. Let G : U \ {u0} → C be a function
on U \ {u0}. Show that limu→u0 G(u) exists and is equal to λ ∈ C,1 iff for all
sequences {un}∞n=1 ⊂ U \ {u0} which converge to u0 (i.e. limn→∞ un = u0)
we have limn→∞G(un) = λ.

Exercise 4.10. Suppose that Y is a set, U ⊂ Rn is a set, and f : U ×Y → C
is a function satisfying:

1. For each y ∈ Y, the function u ∈ U → f(u, y) is continuous on U.2

2. There is a summable function g : Y → [0,∞) such that

|f(u, y)| ≤ g(y) for all y ∈ Y and u ∈ U.

Show that
F (u) :=

∑
y∈Y

f(u, y) (4.19)

is a continuous function for u ∈ U.

Exercise 4.11. Suppose that Y is a set, J = (a, b) ⊂ R is an interval, and
f : J × Y → C is a function satisfying:

1. For each y ∈ Y, the function u→ f(u, y) is differentiable on J,
2. There is a summable function g : Y → [0,∞) such that∣∣∣∣ ∂∂uf(u, y)

∣∣∣∣ ≤ g(y) for all y ∈ Y and u ∈ J.

3. There is a u0 ∈ J such that
∑
y∈Y |f(u0, y)| <∞.

Show:

a) for all u ∈ J that
∑
y∈Y |f(u, y)| <∞.

1 More explicitly, limu→u0 G(u) = λ means for every every ε > 0 there exists a
δ > 0 such that

|G(u)− λ| < ε whenerver u ∈ U ∩ (Bu0(δ) \ {u0}) .

2 To say g := f(·, y) is continuous on U means that g : U → C is continuous relative
to the metric on Rn restricted to U.
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34 4 Limits and Sums

b) Let F (u) :=
∑
y∈Y f(u, y), show F is differentiable on J and that

Ḟ (u) =
∑
y∈Y

∂

∂u
f(u, y).

(Hint: Use the mean value theorem.)

Exercise 4.12 (Differentiation of Power Series). Suppose R > 0 and
{an}∞n=0 is a sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for

all r ∈ (0, R). Show, using Exercise 4.11, f(x) :=
∑∞
n=0 anx

n is continuously
differentiable for x ∈ (−R,R) and

f ′(x) =
∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1.

Exercise 4.13. Show the functions

ex :=
∞∑
n=0

xn

n!
, (4.20)

sinx :=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
and (4.21)

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
(4.22)

are infinitely differentiable and they satisfy

d

dx
ex = ex with e0 = 1

d

dx
sinx = cosx with sin (0) = 0

d

dx
cosx = − sinx with cos (0) = 1.

Exercise 4.14. Continue the notation of Exercise 4.13.

1. Use the product and the chain rule to show,

d

dx

[
e−xe(x+y)

]
= 0

and conclude from this, that e−xe(x+y) = ey for all x, y ∈ R. In particular
taking y = 0 this implies that e−x = 1/ex and hence that e(x+y) = exey.
Use this result to show ex ↑ ∞ as x ↑ ∞ and ex ↓ 0 as x ↓ −∞.
Remark: since ex ≥

∑N
n=0

xn

n! when x ≥ 0, it follows that limx→∞
xn

ex = 0
for any n ∈ N, i.e. ex grows at a rate faster than any polynomial in x as
x→∞.
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2. Use the product rule to show

d

dx

(
cos2 x+ sin2 x

)
= 0

and use this to conclude that cos2 x+ sin2 x = 1 for all x ∈ R.

Exercise 4.15. Let {an}∞n=−∞ be a summable sequence of complex numbers,
i.e.

∑∞
n=−∞ |an| <∞. For t ≥ 0 and x ∈ R, define

F (t, x) =
∞∑

n=−∞
ane

−tn2
einx,

where as usual eix = cos(x) + i sin(x), this is motivated by replacing x in Eq.
(4.20) by ix and comparing the result to Eqs. (4.21) and (4.22).

1. F (t, x) is continuous for (t, x) ∈ [0,∞)×R.Hint: Let Y = Z and u = (t, x)
and use Exercise 4.10.

2. ∂F (t, x)/∂t, ∂F (t, x)/∂x and ∂2F (t, x)/∂x2 exist for t > 0 and x ∈ R.
Hint: Let Y = Z and u = t for computing ∂F (t, x)/∂t and u = x for
computing ∂F (t, x)/∂x and ∂2F (t, x)/∂x2. See Exercise 4.11.

3. F satisfies the heat equation, namely

∂F (t, x)/∂t = ∂2F (t, x)/∂x2 for t > 0 and x ∈ R.
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5

`p – spaces, Minkowski and Holder Inequalities

In this chapter, let µ : X → (0,∞) be a given function. Let F denote either
R or C. For p ∈ (0,∞) and f : X → F, let

‖f‖p := (
∑
x∈X
|f(x)|p µ(x))1/p

and for p =∞ let
‖f‖∞ = sup {|f(x)| : x ∈ X} .

Also, for p > 0, let

`p(µ) = {f : X → F : ‖f‖p <∞}.

In the case where µ(x) = 1 for all x ∈ X we will simply write `p(X) for `p(µ).

Definition 5.1. A norm on a vector space Z is a function ‖·‖ : Z → [0,∞)
such that

1. (Homogeneity) ‖λf‖ = |λ| ‖f‖ for all λ ∈ F and f ∈ Z.
2. (Triangle inequality) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ Z.
3. (Positive definite) ‖f‖ = 0 implies f = 0.

A function p : Z → [0,∞) satisfying properties 1. and 2. but not necessarily
3. above will be called a semi-norm on Z.

A pair (Z, ‖·‖) where Z is a vector space and ‖·‖ is a norm on Z is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.2. For p ∈ [1,∞], (`p(µ), ‖ · ‖p) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is
the content of Minkowski’s Inequality proved in Theorem 5.8 below.
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Proposition 5.3. Let f : [0,∞)→ [0,∞) be a continuous strictly increasing
function such that f(0) = 0 (for simplicity) and lim

s→∞
f(s) =∞. Let g = f−1

and for s, t ≥ 0 let

F (s) =
∫ s

0

f(s′)ds′ and G(t) =
∫ t

0

g(t′)dt′.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t)

and equality holds iff t = f(s).

Proof. Let

As := {(σ, τ) : 0 ≤ τ ≤ f(σ) for 0 ≤ σ ≤ s} and
Bt := {(σ, τ) : 0 ≤ σ ≤ g(τ) for 0 ≤ τ ≤ t}

then as one sees from Figure 5.1, [0, s]× [0, t] ⊂ As ∪Bt. (In the figure: s = 3,
t = 1, A3 is the region under t = f(s) for 0 ≤ s ≤ 3 and B1 is the region to
the left of the curve s = g(t) for 0 ≤ t ≤ 1.) Hence if m denotes the area of a
region in the plane, then

st = m ([0, s]× [0, t]) ≤ m(As) +m(Bt) = F (s) +G(t).

As it stands, this proof is a bit on the intuitive side. However, it will become
rigorous if one takes m to be Lebesgue measure on the plane which will be
introduced later. We can also give a calculus proof of this theorem under the
additional assumption that f is C1. (This restricted version of the theorem is
all we need in this section.) To do this fix t ≥ 0 and let

h(s) = st− F (s) =
∫ s

0

(t− f(σ))dσ.

If σ > g(t) = f−1(t), then t− f(σ) < 0 and hence if s > g(t), we have

h(s) =
∫ s

0

(t− f(σ))dσ =
∫ g(t)

0

(t− f(σ))dσ +
∫ s

g(t)

(t− f(σ))dσ

≤
∫ g(t)

0

(t− f(σ))dσ = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s ∈ (0, t] and hence at a point where 0 = h′(s) = t − f(s). The only
solution to this equation is s = g(t) and we have thus shown

st− F (s) = h(s) ≤
∫ g(t)

0

(t− f(σ))dσ = h(g(t))

Page: 38 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



5 `p – spaces, Minkowski and Holder Inequalities 39

with equality when s = g(t). To finish the proof we must show
∫ g(t)
0

(t −
f(σ))dσ = G(t). This is verified by making the change of variables σ = g(τ)
and then integrating by parts as follows:∫ g(t)

0

(t− f(σ))dσ =
∫ t

0

(t− f(g(τ)))g′(τ)dτ =
∫ t

0

(t− τ)g′(τ)dτ

=
∫ t

0

g(τ)dτ = G(t).

Fig. 5.1. A picture proof of Proposition 5.3.

Definition 5.4. The conjugate exponent q ∈ [1,∞] to p ∈ [1,∞] is q := p
p−1

with the conventions that q =∞ if p = 1 and q = 1 if p =∞. Notice that q is
characterized by any of the following identities:

1
p

+
1
q

= 1, 1 +
q

p
= q, p− p

q
= 1 and q(p− 1) = p. (5.1)

Lemma 5.5. Let p ∈ (1,∞) and q := p
p−1 ∈ (1,∞) be the conjugate exponent.

Then
st ≤ sp

p
+
tq

q
for all s, t ≥ 0

with equality if and only if tq = sp.

Proof. Let F (s) = sp

p for p > 1. Then f(s) = sp−1 = t and g(t) = t
1

p−1 =
tq−1, wherein we have used q − 1 = p/ (p− 1) − 1 = 1/ (p− 1) . Therefore
G(t) = tq/q and hence by Proposition 5.3,

st ≤ sp

p
+
tq

q
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with equality iff t = sp−1, i.e. tq = sq(p−1) = sp. For those who do not want
to use Proposition 5.3, here is a direct calculus proof. Fix t > 0 and let

h (s) := st− sp

p
.

Then h (0) = 0, lims→∞ h (s) = −∞ and h′ (s) = t − sp−1 which equals zero
iff s = t

1
p−1 . Since

h
(
t

1
p−1

)
= t

1
p−1 t− t

p
p−1

p
= t

p
p−1 − t

p
p−1

p
= tq

(
1− 1

p

)
=
tq

q
,

it follows from the first derivative test that

maxh = max
{
h (0) , h

(
t

1
p−1

)}
= max

{
0,
tq

q

}
=
tq

q
.

So we have shown

st− sp

p
≤ tq

q
with equality iff t = sp−1.

Theorem 5.6 (Hölder’s inequality). Let p, q ∈ [1,∞] be conjugate expo-
nents. For all f, g : X → F,

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (5.2)

If p ∈ (1,∞) and f and g are not identically zero, then equality holds in Eq.
(5.2) iff (

|f |
‖f‖p

)p
=
(
|g|
‖g‖q

)q
. (5.3)

Proof. The proof of Eq. (5.2) for p ∈ {1,∞} is easy and will be left to
the reader. The cases where ‖f‖q = 0 or ∞ or ‖g‖p = 0 or ∞ are easily dealt
with and are also left to the reader. So we will assume that p ∈ (1,∞) and
0 < ‖f‖q, ‖g‖p <∞. Letting s = |f (x)| /‖f‖p and t = |g|/‖g‖q in Lemma 5.5
implies

|f (x) g (x)|
‖f‖p‖g‖q

≤ 1
p

|f (x)|p

‖f‖p
+

1
q

|g (x)|q

‖g‖q

with equality iff
|f (x)|p

‖f‖p
= sp = tq =

|g (x)|q

‖g‖q
. (5.4)

Multiplying this equation by µ (x) and then summing on x gives

‖fg‖1
‖f‖p‖g‖q

≤ 1
p

+
1
q

= 1

with equality iff Eq. (5.4) holds for all x ∈ X, i.e. iff Eq. (5.3) holds.
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Definition 5.7. For a complex number λ ∈ C, let

sgn(λ) =
{ λ
|λ| if λ 6= 0
0 if λ = 0.

For λ, µ ∈ C we will write sgn(λ) $ sgn(µ) if either λµ = 0 or λµ 6= 0 and
sgn(λ) = sgn(µ).

Theorem 5.8 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ `p(µ)
then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (5.5)

Moreover, assuming f and g are not identically zero, equality holds in Eq.
(5.5) iff

sgn(f) $ sgn(g) when p = 1 and
f = cg for some c > 0 when p ∈ (1,∞).

Proof. For p = 1,

‖f + g‖1 =
∑
X

|f + g|µ ≤
∑
X

(|f |µ+ |g|µ) =
∑
X

|f |µ+
∑
X

|g|µ

with equality iff

|f |+ |g| = |f + g| ⇐⇒ sgn(f) $ sgn(g).

For p =∞,

‖f + g‖∞ = sup
X
|f + g| ≤ sup

X
(|f |+ |g|)

≤ sup
X
|f |+ sup

X
|g| = ‖f‖∞ + ‖g‖∞.

Now assume that p ∈ (1,∞). Since

|f + g|p ≤ (2max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p)

it follows that
‖f + g‖pp ≤ 2p

(
‖f‖pp + ‖g‖pp

)
<∞.

Eq. (5.5) is easily verified if ‖f + g‖p = 0, so we may assume ‖f + g‖p > 0.
Multiplying the inequality,

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1 (5.6)

by µ, then summing on x and applying Holder’s inequality two times gives∑
X

|f + g|pµ ≤
∑
X

|f | |f + g|p−1µ+
∑
X

|g| |f + g|p−1µ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q. (5.7)
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Since q(p− 1) = p, as in Eq. (5.1),

‖|f + g|p−1‖qq =
∑
X

(|f + g|p−1)qµ =
∑
X

|f + g|pµ = ‖f + g‖pp. (5.8)

Combining Eqs. (5.7) and (5.8) shows

‖f + g‖pp ≤ (‖f‖p + ‖g‖p) ‖f + g‖p/qp (5.9)

and solving this equation for ‖f + g‖p (making use of Eq. (5.1)) implies Eq.
(5.5). Now suppose that f and g are not identically zero and p ∈ (1,∞) .
Equality holds in Eq. (5.5) iff equality holds in Eq. (5.9) iff equality holds in
Eq. (5.7) and Eq. (5.6). The latter happens iff

sgn(f) $ sgn(g) and(
|f |
‖f‖p

)p
=
|f + g|p

‖f + g‖pp
=
(
|g|
‖g‖p

)p
. (5.10)

wherein we have used (
|f + g|p−1

‖|f + g|p−1‖q

)q
=
|f + g|p

‖f + g‖pp
.

Finally Eq. (5.10) is equivalent |f | = c |g| with c = (‖f‖p/‖g‖p) > 0 and this
equality along with sgn(f) $ sgn(g) implies f = cg.

5.1 Exercises

Exercise 5.1. Generalize Proposition 5.3 as follows. Let a ∈ [−∞, 0] and
f : R ∩ [a,∞)→ [0,∞) be a continuous strictly increasing function such that
lim
s→∞

f(s) =∞, f(a) = 0 if a > −∞ or lims→−∞ f(s) = 0 if a = −∞. Also let

g = f−1, b = f(0) ≥ 0,

F (s) =
∫ s

0

f(s′)ds′ and G(t) =
∫ t

0

g(t′)dt′.

Then for all s, t ≥ 0,

st ≤ F (s) +G(t ∨ b) ≤ F (s) +G(t)

and equality holds iff t = f(s). In particular, taking f(s) = es, prove Young’s
inequality stating

st ≤ es + (t ∨ 1) ln (t ∨ 1)− (t ∨ 1) ≤ es + t ln t− t.

Hint: Refer to Figures 5.2 and 5.3..
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Fig. 5.2. Comparing areas when t ≥ b goes the same way as in the text.

Fig. 5.3. When t ≤ b, notice that g(t) ≤ 0 but G(t) ≥ 0. Also notice that G(t) is
no longer needed to estimate st.
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6

Metric Spaces

Definition 6.1. A function d : X ×X → [0,∞) is called a metric if

1. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X
2. (Non-degenerate) d(x, y) = 0 if and only if x = y ∈ X
3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

As primary examples, any normed space (X, ‖·‖) (see Definition 5.1) is a
metric space with d(x, y) := ‖x− y‖ . Thus the space `p(µ) (as in Theorem
5.2) is a metric space for all p ∈ [1,∞]. Also any subset of a metric space
is a metric space. For example a surface Σ in R3 is a metric space with the
distance between two points on Σ being the usual distance in R3.

Definition 6.2. Let (X, d) be a metric space. The open ball B(x, δ) ⊂ X
centered at x ∈ X with radius δ > 0 is the set

B(x, δ) := {y ∈ X : d(x, y) < δ}.

We will often also write B(x, δ) as Bx(δ). We also define the closed ball
centered at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.

Definition 6.3. A sequence {xn}∞n=1 in a metric space (X, d) is said to be
convergent if there exists a point x ∈ X such that limn→∞ d(x, xn) = 0. In
this case we write limn→∞ xn = x of xn → x as n→∞.

Exercise 6.1. Show that x in Definition 6.3 is necessarily unique.

Definition 6.4. A set E ⊂ X is bounded if E ⊂ B (x,R) for some x ∈ X
and R < ∞. A set F ⊂ X is closed iff every convergent sequence {xn}∞n=1

which is contained in F has its limit back in F. A set V ⊂ X is open iff V c

is closed. We will write F @ X to indicate the F is a closed subset of X and
V ⊂o X to indicate the V is an open subset of X. We also let τd denote the
collection of open subsets of X relative to the metric d.
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Definition 6.5. A subset A ⊂ X is a neighborhood of x if there exists an
open set V ⊂o X such that x ∈ V ⊂ A. We will say that A ⊂ X is an open
neighborhood of x if A is open and x ∈ A.

Exercise 6.2. Let F be a collection of closed subsets of X, show ∩F :=
∩F∈FF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fk}nk=1 are closed sets then ∪nk=1Fk is closed. (By taking complements, this
shows that the collection of open sets, τd, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 6.6. For any non empty subset A ⊂ X, let dA(x) := inf{d(x, a)|a ∈
A}, then

|dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X (6.1)

and in particular if xn → x in X then dA (xn)→ dA (x) as n→∞. Moreover
the set Fε := {x ∈ X|dA(x) ≥ ε} is closed in X.

Proof. Let a ∈ A and x, y ∈ X, then

d(x, a) ≤ d(x, y) + d(y, a).

Take the inf over a in the above equation shows that

dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

Therefore, dA(x)−dA(y) ≤ d(x, y) and by interchanging x and y we also have
that dA(y)− dA(x) ≤ d(x, y) which implies Eq. (6.1). If xn → x ∈ X, then by
Eq. (6.1),

|dA(x)− dA(xn)| ≤ d(x, xn)→ 0 as n→∞

so that limn→∞ dA (xn) = dA (x) . Now suppose that {xn}∞n=1 ⊂ Fε and
xn → x in X, then

dA (x) = lim
n→∞

dA (xn) ≥ ε

since dA (xn) ≥ ε for all n. This shows that x ∈ Fε and hence Fε is closed.

Corollary 6.7. The function d satisfies,

|d(x, y)− d(x′, y′)| ≤ d(y, y′) + d(x, x′).

In particular d : X × X → [0,∞) is “continuous” in the sense that d(x, y)
is close to d(x′, y′) if x is close to x′ and y is close to y′. (The notion of
continuity will be developed shortly.)
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Proof. By Lemma 6.6 for single point sets and the triangle inequality for
the absolute value of real numbers,

|d(x, y)− d(x′, y′)| ≤ |d(x, y)− d(x, y′)|+ |d(x, y′)− d(x′, y′)|
≤ d(y, y′) + d(x, x′).

Example 6.8. Let x ∈ X and δ > 0, then Cx (δ) and Bx (δ)c are closed subsets
of X. For example if {yn}∞n=1 ⊂ Cx (δ) and yn → y ∈ X, then d (yn, x) ≤ δ for
all n and using Corollary 6.7 it follows d (y, x) ≤ δ, i.e. y ∈ Cx (δ) . A similar
proof shows Bx (δ)c is open, see Exercise 6.3.

Exercise 6.3. Show that V ⊂ X is open iff for every x ∈ V there is a δ > 0
such that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and
δ > 0. Hint: by definition V is not open iff V c is not closed.

Lemma 6.9 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and Fε := {x ∈ X|dA(x) ≥ ε} @ X
be as in Lemma 6.6. Then Fε ↑ Ac as ε ↓ 0.

Proof. It is clear that dA(x) = 0 for x ∈ A so that Fε ⊂ Ac for each ε > 0
and hence ∪ε>0Fε ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 6.3
there exists an ε > 0 such that Bx(ε) ⊂ Ac, i.e. d(x, y) ≥ ε for all y ∈ A.
Hence x ∈ Fε and we have shown that Ac ⊂ ∪ε>0Fε. Finally it is clear that
Fε ⊂ Fε′ whenever ε′ ≤ ε.

Definition 6.10. Given a set A contained a metric space X, let Ā ⊂ X be
the closure of A defined by

Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = lim
n→∞

xn}.

That is to say Ā contains all limit points of A. We say A is dense in X if
Ā = X, i.e. every element x ∈ X is a limit of a sequence of elements from A.

Exercise 6.4. Given A ⊂ X, show Ā is a closed set and in fact

Ā = ∩{F : A ⊂ F ⊂ X with F closed}. (6.2)

That is to say Ā is the smallest closed set containing A.

6.1 Continuity

Suppose that (X, ρ) and (Y, d) are two metric spaces and f : X → Y is a
function.
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50 6 Metric Spaces

Definition 6.11. A function f : X → Y is continuous at x ∈ X if for all
ε > 0 there is a δ > 0 such that

d(f(x), f(x′)) < ε provided that ρ(x, x′) < δ. (6.3)

The function f is said to be continuous if f is continuous at all points x ∈ X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 6.12 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined in a neighborhood
of a point x ∈ X. Then the following are equivalent:

1. f is continuous at x ∈ X.
2. For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.
3. For all sequences {xn}∞n=1 ⊂ X such that x = limn→∞ xn, {f(xn)} is

convergent in Y and

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof. 1 =⇒ 2. If A ⊂ Y is a neighborhood of f (x) , there exists ε > 0
such that Bf(x) (ε) ⊂ A and because f is continuous there exists a δ > 0 such
that Eq. (6.3) holds. Therefore

Bx (δ) ⊂ f−1
(
Bf(x) (ε)

)
⊂ f−1 (A)

showing f−1 (A) is a neighborhood of x. 2 =⇒ 3. Suppose that {xn}∞n=1 ⊂ X
and x = limn→∞ xn. Then for any ε > 0, Bf(x) (ε) is a neighborhood of f (x)
and so f−1

(
Bf(x) (ε)

)
is a neighborhood of x which must containing Bx (δ)

for some δ > 0. Because xn → x, it follows that xn ∈ Bx (δ) ⊂ f−1
(
Bf(x) (ε)

)
for a.a. n and this implies f (xn) ∈ Bf(x) (ε) for a.a. n, i.e. d(f(x), f (xn)) < ε
for a.a. n. Since ε > 0 is arbitrary it follows that limn→∞ f (xn) = f (x) .
3. =⇒ 1. We will show not 1. =⇒ not 3. If f is not continuous at x, there
exists an ε > 0 such that for all n ∈ N there exists a point xn ∈ X with
ρ (xn, x) < 1

n yet d (f (xn) , f (x)) ≥ ε. Hence xn → x as n → ∞ yet f (xn)
does not converge to f (x) .

Here is a global version of the previous lemma.

Lemma 6.13 (Global Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined on all of X. Then
the following are equivalent:

1. f is continuous.
2. f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.
3. f−1(C) is closed in X if C is closed in Y.
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6.2 Completeness in Metric Spaces 51

4. For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof. Since f−1 (Ac) =
[
f−1 (A)

]c
, it is easily seen that 2. and 3. are

equivalent. So because of Lemma 6.12 it only remains to show 1. and 2. are
equivalent. If f is continuous and V ⊂ Y is open, then for every x ∈ f−1 (V ) ,
V is a neighborhood of f (x) and so f−1 (V ) is a neighborhood of x. Hence
f−1 (V ) is a neighborhood of all of its points and from this and Exercise
6.3 it follows that f−1 (V ) is open. Conversely if x ∈ X and A ⊂ Y is a
neighborhood of f (x) , then there exists V ⊂o X such that f (x) ∈ V ⊂ A.
Hence x ∈ f−1 (V ) ⊂ f−1 (A) and by assumption f−1 (V ) is open showing
f−1 (A) is a neighborhood of x. Therefore f is continuous at x and since x ∈ X
was arbitrary, f is continuous.

Example 6.14. The function dA defined in Lemma 6.6 is continuous for each
A ⊂ X. In particular, if A = {x} , it follows that y ∈ X → d(y, x) is continuous
for each x ∈ X.

Exercise 6.5. Use Example 6.14 and Lemma 6.13 to recover the results of
Example 6.8.

The next result shows that there are lots of continuous functions on a
metric space (X, d) .

Lemma 6.15 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a
metric space and suppose that A and B are two disjoint closed subsets of X.
Then

f(x) =
dB(x)

dA(x) + dB(x)
for x ∈ X (6.4)

defines a continuous function, f : X → [0, 1], such that f(x) = 1 for x ∈ A
and f(x) = 0 if x ∈ B.

Proof. By Lemma 6.6, dA and dB are continuous functions on X. Since
A and B are closed, dA(x) > 0 if x /∈ A and dB(x) > 0 if x /∈ B. Since
A∩B = ∅, dA(x)+dB(x) > 0 for all x and (dA + dB)−1 is continuous as well.
The remaining assertions about f are all easy to verify.

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F ⊂ V ⊂ X with F being closed and V being open, then there exists f ∈
C (X, [0, 1])) such that f = 1 on F while f = 0 on V c. This of course follows
from Lemma 6.15 by taking A = F and B = V c.

6.2 Completeness in Metric Spaces

Definition 6.16 (Cauchy sequences). A sequence {xn}∞n=1 in a metric
space (X, d) is Cauchy provided that
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lim
m,n→∞

d(xn, xm) = 0.

Exercise 6.6. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of ratio-
nal numbers and d(x, y) = |x − y|. Choose a sequence {xn}∞n=1 ⊂ Q which
converges to

√
2 ∈ R, then {xn}∞n=1 is (Q, d) – Cauchy but not (Q, d) – con-

vergent. The sequence does converge in R however.

Definition 6.17. A metric space (X, d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 6.7. Let (X, d) be a complete metric space. Let A ⊂ X be a subset
of X viewed as a metric space using d|A×A. Show that (A, d|A×A) is complete
iff A is a closed subset of X.

Example 6.18. Examples 2. – 4. of complete metric spaces will be verified in
Chapter 7 below.

1. X = R and d(x, y) = |x− y|, see Theorem 3.8 above.
2. X = Rn and d(x, y) = ‖x− y‖2 =

∑n
i=1(xi − yi)2.

3. X = `p(µ) for p ∈ [1,∞] and any weight function µ : X → (0,∞).
4. X = C([0, 1],R) – the space of continuous functions from [0, 1] to R and

d(f, g) := max
t∈[0,1]

|f(t)− g(t)|.

This is a special case of Lemma 7.3 below.
5. Let X = C([0, 1],R) and

d(f, g) :=
∫ 1

0

|f(t)− g(t)| dt.

You are asked in Exercise 7.11 to verify that (X, d) is a metric space which
is not complete.

Exercise 6.8 (Completions of Metric Spaces). Suppose that (X, d) is
a (not necessarily complete) metric space. Using the following outline show
there exists a complete metric space

(
X̄, d̄

)
and an isometric map i : X → X̄

such that i (X) is dense in X̄, see Definition 6.10.

1. Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ X. Given
two element a, b ∈ C show

dC (a, b) := lim
n→∞

d (an, bn) exists,

dC (a, b) ≥ 0 for all a, b ∈ C and dC satisfies the triangle inequality,

dC (a, c) ≤ dC (a, b) + dC (b, c) for all a, b, c ∈ C.

Thus (C, dC) would be a metric space if it were true that dC(a, b) = 0 iff
a = b. This however is false, for example if an = bn for all n ≥ 100, then
dC(a, b) = 0 while a need not equal b.

Page: 52 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



6.3 Supplementary Remarks 53

2. Define two elements a, b ∈ C to be equivalent (write a ∼ b) whenever
dC(a, b) = 0. Show “ ∼ ” is an equivalence relation on C and that
dC (a′, b′) = dC (a, b) if a ∼ a′ and b ∼ b′. (Hint: see Corollary 6.7.)

3. Given a ∈ C let ā := {b ∈ C : b ∼ a} denote the equivalence class contain-
ing a and let X̄ := {ā : a ∈ C} denote the collection of such equivalence
classes. Show that d̄

(
ā, b̄
)

:= dC (a, b) is well defined on X̄ × X̄ and verify(
X̄, d̄

)
is a metric space.

4. For x ∈ X let i (x) = ā where a is the constant sequence, an = x for all n.
Verify that i : X → X̄ is an isometric map and that i (X) is dense in X̄.

5. Verify
(
X̄, d̄

)
is complete. Hint: if {ā(m)}∞m=1 is a Cauchy sequence in X̄

choose bm ∈ X such that d̄ (i (bm) , ā(m)) ≤ 1/m. Then show ā(m) → b̄
where b = {bm}∞m=1 .

6.3 Supplementary Remarks

6.3.1 Word of Caution

Example 6.19. Let (X, d) be a metric space. It is always true that Bx(ε) ⊂
Cx(ε) since Cx(ε) is a closed set containing Bx(ε). However, it is not always
true that Bx(ε) = Cx(ε). For example let X = {1, 2} and d(1, 2) = 1, then
B1(1) = {1} , B1(1) = {1} while C1(1) = X. For another counter example,
take

X =
{
(x, y) ∈ R2 : x = 0 or x = 1

}
with the usually Euclidean metric coming from the plane. Then

B(0,0)(1) =
{
(0, y) ∈ R2 : |y| < 1

}
,

B(0,0)(1) =
{
(0, y) ∈ R2 : |y| ≤ 1

}
, while

C(0,0)(1) = B(0,0)(1) ∪ {(0, 1)} .

In spite of the above examples, Lemmas 6.20 and 6.21 below shows that
for certain metric spaces of interest it is true that Bx(ε) = Cx(ε).

Lemma 6.20. Suppose that (X, |·|) is a normed vector space and d is the
metric on X defined by d(x, y) = |x− y| . Then

Bx(ε) = Cx(ε) and
bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}.

where the boundary operation, bd(·) is defined in Definition 13.29 below.

Proof. We must show that C := Cx(ε) ⊂ Bx(ε) =: B̄. For y ∈ C, let
v = y − x, then

|v| = |y − x| = d(x, y) ≤ ε.
Let αn = 1 − 1/n so that αn ↑ 1 as n → ∞. Let yn = x + αnv, then
d(x, yn) = αnd(x, y) < ε, so that yn ∈ Bx(ε) and d(y, yn) = 1 − αn → 0 as
n→∞. This shows that yn → y as n→∞ and hence that y ∈ B̄.
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Fig. 6.1. An almost length minimizing curve joining x to y.

6.3.2 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 6.21. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(x, y) = inf {`(σ) : σ(0) = x and σ(1) = y}

where `(σ) is the length of the curve σ. We define `(σ) = ∞ if σ is not
piecewise smooth.

Then

Bx(ε) = Cx(ε) and
bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}

where the boundary operation, bd(·) is defined in Definition 13.29 below.

Proof. Let C := Cx(ε) ⊂ Bx(ε) =: B̄. We will show that C ⊂ B̄ by
showing B̄c ⊂ Cc. Suppose that y ∈ B̄c and choose δ > 0 such that By(δ) ∩
B̄ = ∅. In particular this implies that

By(δ) ∩Bx(ε) = ∅.

We will finish the proof by showing that d(x, y) ≥ ε + δ > ε and hence
that y ∈ Cc. This will be accomplished by showing: if d(x, y) < ε + δ then
By(δ) ∩Bx(ε) 6= ∅. If d(x, y) < max(ε, δ) then either x ∈ By(δ) or y ∈ Bx(ε).
In either case By(δ) ∩ Bx(ε) 6= ∅. Hence we may assume that max(ε, δ) ≤
d(x, y) < ε+ δ. Let α > 0 be a number such that

max(ε, δ) ≤ d(x, y) < α < ε+ δ

and choose a curve σ from x to y such that `(σ) < α. Also choose 0 < δ′ < δ
such that 0 < α−δ′ < ε which can be done since α−δ < ε. Let k(t) = d(y, σ(t))
a continuous function on [0, 1] and therefore k([0, 1]) ⊂ R is a connected
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set which contains 0 and d(x, y). Therefore there exists t0 ∈ [0, 1] such that
d(y, σ(t0)) = k(t0) = δ′. Let z = σ(t0) ∈ By(δ) then

d(x, z) ≤ `(σ|[0,t0]) = `(σ)− `(σ|[t0,1]) < α− d(z, y) = α− δ′ < ε

and therefore z ∈ Bx(ε) ∩Bx(δ) 6= ∅.

Remark 6.22. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(x, y) = inf {`(σ) : σ(0) = x and σ(1) = y} .

Let σ be a curve from x to y and let ε = `(σ)− d(x, y). Then for all 0 ≤ u <
v ≤ 1,

d(σ(u), σ(v)) ≤ `(σ|[u,v]) + ε.

So if σ is within ε of a length minimizing curve from x to y that σ|[u,v] is
within ε of a length minimizing curve from σ(u) to σ(v). In particular if
d(x, y) = `(σ) then d(σ(u), σ(v)) = `(σ|[u,v]) for all 0 ≤ u < v ≤ 1, i.e. if σ
is a length minimizing curve from x to y that σ|[u,v] is a length minimizing
curve from σ(u) to σ(v).

To prove these assertions notice that

d(x, y) + ε = `(σ) = `(σ|[0,u]) + `(σ|[u,v]) + `(σ|[v,1])
≥ d(x, σ(u)) + `(σ|[u,v]) + d(σ(v), y)

and therefore

`(σ|[u,v]) ≤ d(x, y) + ε− d(x, σ(u))− d(σ(v), y)
≤ d(σ(u), σ(v)) + ε.

6.4 Exercises

Exercise 6.9. Let (X, d) be a metric space. Suppose that {xn}∞n=1 ⊂ X is a
sequence and set εn := d(xn, xn+1). Show that for m > n that

d(xn, xm) ≤
m−1∑
k=n

εk ≤
∞∑
k=n

εk.

Conclude from this that if
∞∑
k=1

εk =
∞∑
n=1

d(xn, xn+1) <∞

then {xn}∞n=1 is Cauchy. Moreover, show that if {xn}∞n=1 is a convergent
sequence and x = limn→∞ xn then

d(x, xn) ≤
∞∑
k=n

εk.
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Exercise 6.10. Show that (X, d) is a complete metric space iff every sequence
{xn}∞n=1 ⊂ X such that

∑∞
n=1 d(xn, xn+1) < ∞ is a convergent sequence in

X. You may find it useful to prove the following statements in the course of
the proof.

1. If {xn} is Cauchy sequence, then there is a subsequence yj := xnj such
that

∑∞
j=1 d(yj+1, yj) <∞.

2. If {xn}∞n=1 is Cauchy and there exists a subsequence yj := xnj
of {xn}

such that x = limj→∞ yj exists, then limn→∞ xn also exists and is equal
to x.

Exercise 6.11. Suppose that f : [0,∞) → [0,∞) is a C2 – function such
that f(0) = 0, f ′ > 0 and f ′′ ≤ 0 and (X, ρ) is a metric space. Show that
d(x, y) = f(ρ(x, y)) is a metric on X. In particular show that

d(x, y) :=
ρ(x, y)

1 + ρ(x, y)

is a metric on X. (Hint: use calculus to verify that f(a+ b) ≤ f(a) + f(b) for
all a, b ∈ [0,∞).)

Exercise 6.12. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=∏∞
n=1Xn, and for x = (x(n))∞n=1 and y = (y(n))∞n=1 in X let

d(x, y) =
∞∑
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

Show:

1. (X, d) is a metric space,
2. a sequence {xk}∞k=1 ⊂ X converges to x ∈ X iff xk(n) → x(n) ∈ Xn as
k →∞ for each n ∈ N and

3. X is complete if Xn is complete for all n.

Exercise 6.13. Suppose (X, ρ) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if F : X → Y and G : X → Y are two continuous functions
such that F = G on A then F = G on X. Hint: consider the set C :=
{x ∈ X : F (x) = G (x)} .

2. Suppose f : A → Y is a function which is uniformly continuous, i.e. for
every ε > 0 there exists a δ > 0 such that

d (f (a) , f (b)) < ε for all a, b ∈ A with ρ (a, b) < δ.

Show there is a unique continuous function F : X → Y such that F = f on
A. Hint: each point x ∈ X is a limit of a sequence consisting of elements
from A.

3. Let X = R = Y and A = Q ⊂ X, find a function f : Q→ R which is
continuous on Q but does not extend to a continuous function on R.
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Banach Spaces

Let (X, ‖·‖) be a normed vector space and d (x, y) := ‖x− y‖ be the asso-
ciated metric on X. We say {xn}∞n=1 ⊂ X converges to x ∈ X (and write
limn→∞ xn = x or xn → x) if

0 = lim
n→∞

d (x, xn) = lim
n→∞

‖x− xn‖ .

Similarly {xn}∞n=1 ⊂ X is said to be a Cauchy sequence if

0 = lim
m,n→∞

d (xm, xn) = lim
m,n→∞

‖xm − xn‖ .

Definition 7.1 (Banach space). A normed vector space (X, ‖·‖) is a Ba-
nach space if the associated metric space (X, d) is complete, i.e. all Cauchy
sequences are convergent.

Remark 7.2. Since ‖x‖ = d (x, 0) , it follows from Lemma 6.6 that ‖·‖ is a
continuous function on X and that

|‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.

It is also easily seen that the vector addition and scalar multiplication are
continuos on any normed space as the reader is asked to verify in Exercise
7.5. These facts will often be used in the sequel without further mention.

7.1 Examples

Lemma 7.3. Suppose that X is a set then the bounded functions, `∞(X), on
X is a Banach space with the norm

‖f‖ = ‖f‖∞ = sup
x∈X
|f(x)| .

Moreover if X is a metric space (more generally a topological space, see Chap-
ter 13) the set BC(X) ⊂ `∞(X) = B(X) is closed subspace of `∞(X) and
hence is also a Banach space.
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Proof. Let {fn}∞n=1 ⊂ `∞(X) be a Cauchy sequence. Since for any x ∈ X,
we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ (7.1)

which shows that {fn(x)}∞n=1 ⊂ F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, f(x) := limn→∞ fn(x) exists for all x ∈ X. Passing
to the limit n→∞ in Eq. (7.1) implies

|f(x)− fm(x)| ≤ lim inf
n→∞

‖fn − fm‖∞

and taking the supremum over x ∈ X of this inequality implies

‖f − fm‖∞ ≤ lim inf
n→∞

‖fn − fm‖∞ → 0 as m→∞

showing fm → f in `∞(X). For the second assertion, suppose that {fn}∞n=1 ⊂
BC(X) ⊂ `∞(X) and fn → f ∈ `∞(X). We must show that f ∈ BC(X), i.e.
that f is continuous. To this end let x, y ∈ X, then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 ‖f − fn‖∞ + |fn(x)− fn(y)| .

Thus if ε > 0, we may choose n large so that 2 ‖f − fn‖∞ < ε/2 and
then for this n there exists an open neighborhood Vx of x ∈ X such that
|fn(x)− fn(y)| < ε/2 for y ∈ Vx. Thus |f(x)− f(y)| < ε for y ∈ Vx showing
the limiting function f is continuous.

Here is an application of this theorem.

Theorem 7.4 (Metric Space Tietze Extension Theorem). Let (X, d)
be a metric space, D be a closed subset of X, −∞ < a < b < ∞ and f ∈
C(D, [a, b]). (Here we are viewing D as a metric space with metric dD :=
dD×D.) Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof.

1. By scaling and translation (i.e. by replacing f by (b− a)−1 (f − a)), it
suffices to prove Theorem 7.4 with a = 0 and b = 1.

2. Suppose α ∈ (0, 1] and f : D → [0, α] is continuous function. Let A :=
f−1([0, 1

3α]) andB := f−1([ 23α, α]). By Lemma 6.15 there exists a function
g̃ ∈ C(X, [0, α/3]) such that g̃ = 0 on A and g̃ = 1 on B. Letting g := α

3 g̃,
we have g ∈ C(X, [0, α/3]) such that g = 0 on A and g = α/3 on B.
Further notice that

0 ≤ f(x)− g(x) ≤ 2
3
α for all x ∈ D.

3. Now suppose f : D → [0, 1] is a continuous function as in step 1. Let
g1 ∈ C(X, [0, 1/3]) be as in step 2, see Figure 7.1. with α = 1 and let
f1 := f − g1|D ∈ C(D, [0, 2/3]). Apply step 2. with α = 2/3 and f = f1 to
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find g2 ∈ C(X, [0, 1
3

2
3 ]) such that f2 := f − (g1 + g2) |D ∈ C(D, [0,

(
2
3

)2]).
Continue this way inductively to find gn ∈ C(X, [0, 1

3

(
2
3

)n−1]) such that

f −
N∑
n=1

gn|D =: fN ∈ C(D, [0,
(

2
3

)N
]). (7.2)

4. Define F :=
∑∞
n=1 gn. Since

∞∑
n=1

‖gn‖∞ ≤
∞∑
n=1

1
3

(
2
3

)n−1

=
1
3

1
1− 2

3

= 1,

the series defining F is uniformly convergent so F ∈ C(X, [0, 1]). Passing
to the limit in Eq. (7.2) shows f = F |D.

Fig. 7.1. Reducing f by subtracting off a globally defined function g1 ∈
C

(
X, [0, 1

3
]
)
.

Theorem 7.5 (Completeness of `p(µ)). Let X be a set and µ : X → (0,∞)
be a given function. Then for any p ∈ [1,∞], (`p(µ), ‖·‖p) is a Banach space.

Proof. We have already proved this for p = ∞ in Lemma 7.3 so we now
assume that p ∈ [1,∞). Let {fn}∞n=1 ⊂ `p(µ) be a Cauchy sequence. Since for
any x ∈ X,

|fn(x)− fm(x)| ≤ 1
µ(x)

‖fn − fm‖p → 0 as m,n→∞

it follows that {fn(x)}∞n=1 is a Cauchy sequence of numbers and f(x) :=
limn→∞ fn(x) exists for all x ∈ X. By Fatou’s Lemma,
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‖fn − f‖pp =
∑
X

µ · lim
m→∞

inf |fn − fm|p ≤ lim
m→∞

inf
∑
X

µ · |fn − fm|p

= lim
m→∞

inf ‖fn − fm‖pp → 0 as n→∞.

This then shows that f = (f − fn) + fn ∈ `p(µ) (being the sum of two `p –

functions) and that fn
`p−→ f.

Remark 7.6. Let X be a set, Y be a Banach space and `∞(X,Y ) denote the
bounded functions f : X → Y equipped with the norm

‖f‖ = ‖f‖∞ = sup
x∈X
‖f(x)‖Y .

If X is a metric space (or a general topological space, see Chapter 13), let
BC(X,Y ) denote those f ∈ `∞(X,Y ) which are continuous. The same proof
used in Lemma 7.3 shows that `∞(X,Y ) is a Banach space and that BC(X,Y )
is a closed subspace of `∞(X,Y ). Similarly, if 1 ≤ p <∞ we may define

`p (X,Y ) =

f : X → Y : ‖f‖p =

(∑
x∈X
‖f (x)‖pY

)1/p

<∞

 .

The same proof as in Theorem 7.5 would then show that
(
`p (X,Y ) , ‖·‖p

)
is

a Banach space.

7.2 Bounded Linear Operators Basics

Definition 7.7. Let X and Y be normed spaces and T : X → Y be a linear
map. Then T is said to be bounded provided there exists C < ∞ such that
‖T (x)‖ ≤ C‖x‖X for all x ∈ X. We denote the best constant by ‖T‖, i.e.

‖T‖ = sup
x6=0

‖T (x)‖
‖x‖

= sup
x6=0
{‖T (x)‖ : ‖x‖ = 1} .

The number ‖T‖ is called the operator norm of T.

Proposition 7.8. Suppose that X and Y are normed spaces and T : X → Y
is a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(c) T is bounded.

Proof. (a)⇒ (b) trivial. (b)⇒ (c) If T continuous at 0 then there exist δ >
0 such that ‖T (x)‖ ≤ 1 if ‖x‖ ≤ δ. Therefore for any x ∈ X, ‖T (δx/‖x‖) ‖ ≤ 1
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which implies that ‖T (x)‖ ≤ 1
δ ‖x‖ and hence ‖T‖ ≤ 1

δ < ∞. (c) ⇒ (a) Let
x ∈ X and ε > 0 be given. Then

‖Ty − Tx‖ = ‖T (y − x)‖ ≤ ‖T‖ ‖y − x‖ < ε

provided ‖y − x‖ < ε/‖T‖ := δ.
For the next three exercises, let X = Rn and Y = Rm and T : X → Y

be a linear transformation so that T is given by matrix multiplication by an
m× n matrix. Let us identify the linear transformation T with this matrix.

Exercise 7.1. Assume the norms on X and Y are the `1 – norms, i.e. for
x ∈ Rn, ‖x‖ =

∑n
j=1 |xj | . Then the operator norm of T is given by

‖T‖ = max
1≤j≤n

m∑
i=1

|Tij | .

Exercise 7.2. Suppose that norms on X and Y are the `∞ – norms, i.e. for
x ∈ Rn, ‖x‖ = max1≤j≤n |xj | . Then the operator norm of T is given by

‖T‖ = max
1≤i≤m

n∑
j=1

|Tij | .

Exercise 7.3. Assume the norms on X and Y are the `2 – norms, i.e. for
x ∈ Rn, ‖x‖2 =

∑n
j=1 x

2
j . Show ‖T‖2 is the largest eigenvalue of the matrix

T trT : Rn → Rn. Hint: Use the spectral theorem for orthogonal matrices.

Notation 7.9 Let L(X,Y ) denote the bounded linear operators from X to Y
and L (X) = L (X,X) . If Y = F we write X∗ for L(X,F) and call X∗ the
(continuous) dual space to X.

Lemma 7.10. Let X,Y be normed spaces, then the operator norm ‖·‖ on
L(X,Y ) is a norm. Moreover if Z is another normed space and T : X → Y
and S : Y → Z are linear maps, then ‖ST‖ ≤ ‖S‖‖T‖, where ST := S ◦ T.

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A,B ∈ L(X,Y ) then the triangle inequality is verified as follows:

‖A+B‖ = sup
x6=0

‖Ax+Bx‖
‖x‖

≤ sup
x6=0

‖Ax‖+ ‖Bx‖
‖x‖

≤ sup
x6=0

‖Ax‖
‖x‖

+ sup
x6=0

‖Bx‖
‖x‖

= ‖A‖+ ‖B‖ .

For the second assertion, we have for x ∈ X, that

‖STx‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖.
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From this inequality and the definition of ‖ST‖, it follows that ‖ST‖ ≤
‖S‖‖T‖.

The reader is asked to prove the following continuity lemma in Exercise
7.9.

Lemma 7.11. Let X, Y and Z be normed spaces. Then the maps

(S, x) ∈ L(X,Y )×X −→ Sx ∈ Y

and
(S, T ) ∈ L(X,Y )× L(Y,Z) −→ ST ∈ L(X,Z)

are continuous relative to the norms

‖(S, x)‖L(X,Y )×X := ‖S‖L(X,Y ) + ‖x‖X and

‖(S, T )‖L(X,Y )×L(Y,Z) := ‖S‖L(X,Y ) + ‖T‖L(Y,Z)

on L(X,Y )×X and L(X,Y )× L(Y, Z) respectively.

Proposition 7.12. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y ), ‖ · ‖op) is a Banach space. In particular the dual
space X∗ is always a Banach space.

Proof. Let {Tn}∞n=1 be a Cauchy sequence in L(X,Y ). Then for each
x ∈ X,

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖ ‖x‖ → 0 as m,n→∞
showing {Tnx}∞n=1 is Cauchy in Y. Using the completeness of Y, there exists
an element Tx ∈ Y such that

lim
n→∞

‖Tnx− Tx‖ = 0.

The map T : X → Y is linear map, since for x, x′ ∈ X and λ ∈ F we have

T (x+ λx′) = lim
n→∞

Tn (x+ λx′) = lim
n→∞

[Tnx+ λTnx
′] = Tx+ λTx′,

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

‖Tx− Tnx‖ ≤ ‖Tx− Tmx‖+ ‖Tmx− Tnx‖ ≤ ‖Tx− Tmx‖+ ‖Tm − Tn‖ ‖x‖

and therefore

‖Tx− Tnx‖ ≤ lim inf
m→∞

(‖Tx− Tmx‖+ ‖Tm − Tn‖ ‖x‖)

= ‖x‖ · lim inf
m→∞

‖Tm − Tn‖ .

Hence
‖T − Tn‖ ≤ lim inf

m→∞
‖Tm − Tn‖ → 0 as n→∞.

Thus we have shown that Tn → T in L(X,Y ) as desired.
The following characterization of a Banach space will sometimes be useful

in the sequel.
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Theorem 7.13. A normed space (X, ‖ · ‖) is a Banach space iff for every

sequence {xn}∞n=1 such that
∞∑
n=1
‖xn‖ <∞ implies limN→∞

N∑
n=1

xn = s exists

in X (that is to say every absolutely convergent series is a convergent series

in X.) As usual we will denote s by
∞∑
n=1

xn.

Proof. This is very similar to Exercise 6.10. (⇒)If X is complete and
∞∑
n=1
‖xn‖ <∞ then sequence sN :=

N∑
n=1

xn for N ∈ N is Cauchy because (for

N > M)

‖sN − sM‖ ≤
N∑

n=M+1

‖xn‖ → 0 as M,N →∞.

Therefore s =
∞∑
n=1

xn := limN→∞
N∑
n=1

xn exists in X. (⇐=) Suppose that

{xn}∞n=1 is a Cauchy sequence and let {yk = xnk
}∞k=1 be a subsequence of

{xn}∞n=1 such that
∞∑
n=1
‖yn+1 − yn‖ <∞. By assumption

yN+1 − y1 =
N∑
n=1

(yn+1 − yn)→ s =
∞∑
n=1

(yn+1 − yn) ∈ X as N →∞.

This shows that limN→∞ yN exists and is equal to x := y1 + s. Since {xn}∞n=1

is Cauchy,

‖x− xn‖ ≤ ‖x− yk‖+ ‖yk − xn‖ → 0 as k, n→∞

showing that limn→∞ xn exists and is equal to x.

Example 7.14. Here is another proof of Theorem 7.12 which makes use of
Proposition 7.12. Suppose that Tn ∈ L(X,Y ) is a sequence of operators such

that
∞∑
n=1
‖Tn‖ <∞. Then

∞∑
n=1

‖Tnx‖ ≤
∞∑
n=1

‖Tn‖ ‖x‖ <∞

and therefore by the completeness of Y, Sx :=
∞∑
n=1

Tnx = limN→∞ SNx exists

in Y, where SN :=
N∑
n=1

Tn. The reader should check that S : X → Y so defined

is linear. Since,

‖Sx‖ = lim
N→∞

‖SNx‖ ≤ lim
N→∞

N∑
n=1

‖Tnx‖ ≤
∞∑
n=1

‖Tn‖ ‖x‖ ,
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S is bounded and

‖S‖ ≤
∞∑
n=1

‖Tn‖. (7.3)

Similarly,

‖Sx− SMx‖ = lim
N→∞

‖SNx− SMx‖

≤ lim
N→∞

N∑
n=M+1

‖Tn‖ ‖x‖ =
∞∑

n=M+1

‖Tn‖ ‖x‖

and therefore,

‖S − SM‖ ≤
∞∑

n=M

‖Tn‖ → 0 as M →∞.

For the remainder of this section let X be an infinite set, µ : X → (0,∞)
be a given function and p, q ∈ [1,∞] such that q = p/ (p− 1) . it will also be
convenient to define δx : X → R for x ∈ X by

δx (y) =
{

1 if y = x
0 if y 6= x.

Notation 7.15 Let c0 (X) denote those functions f ∈ `∞ (X) which “vanish
at ∞,” i.e. for every ε > 0 there exists a finite subset Λε ⊂ X such that
|f (x)| < ε whenever x /∈ Λε. Also let cf (X) denote those functions f : X → F
with finite support, i.e.

cf (X) := {f ∈ `∞ (X) : # ({x ∈ X : f (x) 6= 0}) <∞} .

Exercise 7.4. Show cf (X) is a dense subspace of the Banach spaces(
`p (µ) , ‖·‖p

)
for 1 ≤ p < ∞, while the closure of cf (X) inside the Ba-

nach space, (`∞ (X) , ‖·‖∞) is c0 (X) . Note from this it follows that c0 (X)
is a closed subspace of `∞ (X) . (See Proposition 15.23 below where this last
assertion is porved in a more general context.)

Theorem 7.16. Let X be any set, µ : X → (0,∞) be a function, p ∈ [1,∞],
q := p/ (p− 1) be the conjugate exponent and for f ∈ `q (µ) define φf :
`p (µ)→ F by

φf (g) :=
∑
x∈X

f (x) g (x)µ (x) .

Then

1. φf (g) is well defined and φf ∈ `p (µ)∗ .
2. The map

f ∈ `q (µ)
φ→ φf ∈ `p (µ)∗ (7.4)

is a isometric linear map of Banach spaces.
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3. If p ∈ [1,∞), then the map in Eq. (7.4) is also surjective and hence,
`p (µ)∗ is isometrically isomorphic to `q (µ) .

4. When p =∞, the map

f ∈ `1 (µ)→ φf ∈ c0 (X)∗

is an isometric and surjective, i.e. `1 (µ) is isometrically isomorphic to
c0 (X)∗ .

(See Theorem 25.13 below for a continuation of this theorem.)

Proof.

1. By Holder’s inequality,∑
x∈X
|f (x)| |g (x)|µ (x) ≤ ‖f‖q ‖g‖p

which shows that φf is well defined. The φf : `p (µ) → F is linear by the
linearity of sums and since

|φf (g)| =

∣∣∣∣∣∑
x∈X

f (x) g (x)µ (x)

∣∣∣∣∣ ≤∑
x∈X
|f (x)| |g (x)|µ (x) ≤ ‖f‖q ‖g‖p ,

we learn that
‖φf‖`p(µ)∗ ≤ ‖f‖q . (7.5)

Therefore φf ∈ `p (µ)∗ .
2. The map φ in Eq. (7.4) is linear in f by the linearity properties of infinite

sums. For p ∈ (1,∞) , define g (x) = sgn(f (x)) |f (x)|q−1 where

sgn(z) :=
{ z
|z| if z 6= 0
0 if z = 0.

Then

‖g‖pp =
∑
x∈X
|f (x)|(q−1)p

µ (x) =
∑
x∈X
|f (x)|(

p
p−1−1)p µ (x)

=
∑
x∈X
|f (x)|q µ (x) = ‖f‖qq

and

φf (g) =
∑
x∈X

f (x) sgn(f (x)) |f (x)|q−1
µ (x) =

∑
x∈X
|f (x)| |f (x)|q−1

µ (x)

= ‖f‖q(
1
q + 1

p )
q = ‖f‖q ‖f‖

q
p
q = ‖f‖q ‖g‖p .
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Hence ‖φf‖`p(µ)∗ ≥ ‖f‖q which combined with Eq. (7.5) shows ‖φf‖`p(µ)∗ =

‖f‖q . For p =∞, let g (x) = sgn(f (x)), then ‖g‖∞ = 1 and

|φf (g)| =
∑
x∈X

f (x) sgn(f (x))µ (x)

=
∑
x∈X
|f (x)|µ (x) = ‖f‖1 ‖g‖∞

which shows ‖φf‖`∞(µ)∗ ≥ ‖f‖`1(µ) . Combining this with Eq. (7.5) shows
‖φf‖`∞(µ)∗ = ‖f‖`1(µ) . For p = 1,

|φf (δx)| = µ (x) |f (x)| = |f (x)| ‖δx‖1

and therefore ‖φf‖`1(µ)∗ ≥ |f (x)| for all x ∈ X. Hence ‖φf‖`1(µ)∗ ≥ ‖f‖∞
which combined with Eq. (7.5) shows ‖φf‖`1(µ)∗ = ‖f‖∞ .

3. Suppose that p ∈ [1,∞) and λ ∈ `p (µ)∗ or p = ∞ and λ ∈ c0 (X)∗ .
We wish to find f ∈ `q (µ) such that λ = φf . If such an f exists, then
λ (δx) = f (x)µ (x) and so we must define f (x) := λ (δx) /µ (x) . As a
preliminary estimate,

|f (x)| = |λ (δx)|
µ (x)

≤
‖λ‖`p(µ)∗ ‖δx‖`p(µ)

µ (x)

=
‖λ‖`p(µ)∗ [µ (x)]

1
p

µ (x)
= ‖λ‖`p(µ)∗ [µ (x)]−

1
q .

When p = 1 and q =∞, this implies ‖f‖∞ ≤ ‖λ‖`1(µ)∗ <∞. If p ∈ (1,∞]
and Λ ⊂⊂ X, then

‖f‖q`q(Λ,µ) :=
∑
x∈Λ
|f (x)|q µ (x) =

∑
x∈Λ

f (x) sgn(f (x)) |f (x)|q−1
µ (x)

=
∑
x∈Λ

λ (δx)
µ (x)

sgn(f (x)) |f (x)|q−1
µ (x)

=
∑
x∈Λ

λ (δx) sgn(f (x)) |f (x)|q−1

= λ

(∑
x∈Λ

sgn(f (x)) |f (x)|q−1
δx

)

≤ ‖λ‖`p(µ)∗

∥∥∥∥∥∑
x∈Λ

sgn(f (x)) |f (x)|q−1
δx

∥∥∥∥∥
p

.

Since
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x∈Λ

sgn(f (x)) |f (x)|q−1
δx

∥∥∥∥∥
p

=

(∑
x∈Λ
|f (x)|(q−1)p

µ (x)

)1/p

=

(∑
x∈Λ
|f (x)|q µ (x)

)1/p

= ‖f‖q/p`q(Λ,µ)

which is also valid for p =∞ provided ‖f‖1/∞`1(Λ,µ) := 1. Combining the last
two displayed equations shows

‖f‖q`q(Λ,µ) ≤ ‖λ‖`p(µ)∗ ‖f‖
q/p
`q(Λ,µ)

and solving this inequality for ‖f‖q`q(Λ,µ) (using q − q/p = 1) implies
‖f‖`q(Λ,µ) ≤ ‖λ‖`p(µ)∗ Taking the supremum of this inequality on Λ ⊂⊂ X
shows ‖f‖`q(µ) ≤ ‖λ‖`p(µ)∗ , i.e. f ∈ `q (µ) . Since λ = φf agree on cf (X)
and cf (X) is a dense subspace of `p (µ) for p < ∞ and cf (X) is dense
subspace of c0 (X) when p =∞, it follows that λ = φf .

7.3 General Sums in Banach Spaces

Definition 7.17. Suppose X is a normed space.

1. Suppose that {xn}∞n=1 is a sequence in X, then we say
∑∞
n=1 xn converges

in X and
∑∞
n=1 xn = s if

lim
N→∞

N∑
n=1

xn = s in X.

2. Suppose that {xα : α ∈ A} is a given collection of vectors in X. We say
the sum

∑
α∈A xα converges in X and write s =

∑
α∈A xα ∈ X if for all

ε > 0 there exists a finite set Γε ⊂ A such that
∥∥s−∑α∈Λ xα

∥∥ < ε for
any Λ ⊂⊂ A such that Γε ⊂ Λ.

Warning: As usual if
∑
α∈A ‖xα‖ < ∞ then

∑
α∈A xα exists in X, see

Exercise 7.13. However, unlike the case of real valued sums the existence of∑
α∈A xα does not imply

∑
α∈Λ ‖xα‖ <∞. See Proposition 8.19 below, from

which one may manufacture counter-examples to this false premise.

Lemma 7.18. Suppose that {xα ∈ X : α ∈ A} is a given collection of vectors
in a normed space, X.
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1. If s =
∑
α∈A xα ∈ X exists and T : X → Y is a bounded linear map

between normed spaces, then
∑
α∈A Txα exists in Y and

Ts = T
∑
α∈A

xα =
∑
α∈A

Txα.

2. If s =
∑
α∈A xα exists in X then for every ε > 0 there exists Γε ⊂⊂ A

such that
∥∥∑

α∈Λ xα
∥∥ < ε for all Λ ⊂⊂ A \ Γε.

3. If s =
∑
α∈A xα exists in X, the set Γ := {α ∈ A : xa 6= 0} is at most

countable. Moreover if Γ is infinite and {αn}∞n=1 is an enumeration of Γ,
then

s =
∞∑
n=1

xαn
:= lim

N→∞

N∑
n=1

xαn
. (7.6)

4. If we further assume that X is a Banach space and suppose for all ε > 0
there exists Γε ⊂⊂ A such that

∥∥∑
α∈Λ xα

∥∥ < ε whenever Λ ⊂⊂ A \ Γε,
then

∑
α∈A xα exists in X.

Proof.

1. Let Γε be as in Definition 7.17 and Λ ⊂⊂ A such that Γε ⊂ Λ. Then∥∥∥∥∥Ts−∑
α∈Λ

Txα

∥∥∥∥∥ ≤ ‖T‖
∥∥∥∥∥s−∑

α∈Λ
xα

∥∥∥∥∥ < ‖T‖ ε
which shows that

∑
α∈Λ Txα exists and is equal to Ts.

2. Suppose that s =
∑
α∈A xα exists and ε > 0. Let Γε ⊂⊂ A be as in

Definition 7.17. Then for Λ ⊂⊂ A \ Γε,∥∥∥∥∥∑
α∈Λ

xα

∥∥∥∥∥ =

∥∥∥∥∥ ∑
α∈Γε∪Λ

xα −
∑
α∈Γε

xα

∥∥∥∥∥
≤

∥∥∥∥∥ ∑
α∈Γε∪Λ

xα − s

∥∥∥∥∥+

∥∥∥∥∥∑
α∈Γε

xα − s

∥∥∥∥∥ < 2ε.

3. If s =
∑
α∈A xα exists in X, for each n ∈ N there exists a finite subset

Γn ⊂ A such that
∥∥∑

α∈Λ xα
∥∥ < 1

n for all Λ ⊂⊂ A \ Γn. Without loss of
generality we may assume xα 6= 0 for all α ∈ Γn. Let Γ∞ := ∪∞n=1Γn – a
countable subset of A. Then for any β /∈ Γ∞, we have {β} ∩ Γn = ∅ and
therefore

‖xβ‖ =

∥∥∥∥∥∥
∑
α∈{β}

xα

∥∥∥∥∥∥ ≤ 1
n
→ 0 as n→∞.

Let {αn}∞n=1 be an enumeration of Γ and define γN := {αn : 1 ≤ n ≤ N} .
Since for any M ∈ N, γN will eventually contain ΓM for N sufficiently
large, we have
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7.4 Inverting Elements in L(X) 69

lim sup
N→∞

∥∥∥∥∥s−
N∑
n=1

xαn

∥∥∥∥∥ ≤ 1
M
→ 0 as M →∞.

Therefore Eq. (7.6) holds.
4. For n ∈ N, let Γn ⊂⊂ A such that

∥∥∑
α∈Λ xα

∥∥ < 1
n for all Λ ⊂⊂ A \ Γn.

Define γn := ∪nk=1Γk ⊂ A and sn :=
∑
α∈γn

xα. Then for m > n,

‖sm − sn‖ =

∥∥∥∥∥∥
∑

α∈γm\γn

xα

∥∥∥∥∥∥ ≤ 1/n→ 0 as m,n→∞.

Therefore {sn}∞n=1 is Cauchy and hence convergent in X, because X is a
Banach space. Let s := limn→∞ sn. Then for Λ ⊂⊂ A such that γn ⊂ Λ,
we have∥∥∥∥∥s−∑

α∈Λ
xα

∥∥∥∥∥ ≤ ‖s− sn‖+

∥∥∥∥∥∥
∑

α∈Λ\γn

xα

∥∥∥∥∥∥ ≤ ‖s− sn‖+
1
n
.

Since the right side of this equation goes to zero as n→∞, it follows that∑
α∈A xα exists and is equal to s.

7.4 Inverting Elements in L(X)

Definition 7.19. A linear map T : X → Y is an isometry if ‖Tx‖Y = ‖x‖X
for all x ∈ X. T is said to be invertible if T is a bijection and T−1 is bounded.

Notation 7.20 We will write GL(X,Y ) for those T ∈ L(X,Y ) which are
invertible. If X = Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 7.21. Suppose X is a Banach space and Λ ∈ L(X) := L(X,X)

satisfies
∞∑
n=0
‖Λn‖ <∞. Then I − Λ is invertible and

(I − Λ)−1 = “
1

I − Λ
” =

∞∑
n=0

Λn and
∥∥(I − Λ)−1

∥∥ ≤ ∞∑
n=0

‖Λn‖.

In particular if ‖Λ‖ < 1 then the above formula holds and∥∥(I − Λ)−1
∥∥ ≤ 1

1− ‖Λ‖
.
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Proof. Since L(X) is a Banach space and
∞∑
n=0
‖Λn‖ <∞, it follows from

Theorem 7.13 that

S := lim
N→∞

SN := lim
N→∞

N∑
n=0

Λn

exists in L(X). Moreover, by Lemma 7.11,

(I − Λ)S = (I − Λ) lim
N→∞

SN = lim
N→∞

(I − Λ)SN

= lim
N→∞

(I − Λ)
N∑
n=0

Λn = lim
N→∞

(I − ΛN+1) = I

and similarly S (I − Λ) = I. This shows that (I −Λ)−1 exists and is equal to
S. Moreover, (I − Λ)−1 is bounded because

∥∥(I − Λ)−1
∥∥ = ‖S‖ ≤

∞∑
n=0

‖Λn‖.

If we further assume ‖Λ‖ < 1, then ‖Λn‖ ≤ ‖Λ‖n and

∞∑
n=0

‖Λn‖ ≤
∞∑
n=0

‖Λ‖n =
1

1− ‖Λ‖
<∞.

Corollary 7.22. Let X and Y be Banach spaces. Then GL(X,Y ) is an open
(possibly empty) subset of L(X,Y ). More specifically, if A ∈ GL(X,Y ) and
B ∈ L(X,Y ) satisfies

‖B −A‖ < ‖A−1‖−1 (7.7)

then B ∈ GL(X,Y )

B−1 =
∞∑
n=0

[
IX −A−1B

]n
A−1 ∈ L(Y,X), (7.8)

∥∥B−1
∥∥ ≤ ‖A−1‖ 1

1− ‖A−1‖ ‖A−B‖
(7.9)

and ∥∥B−1 −A−1
∥∥ ≤ ‖A−1‖2 ‖A−B‖

1− ‖A−1‖ ‖A−B‖
. (7.10)

In particular the map

A ∈ GL(X,Y )→ A−1 ∈ GL(Y,X) (7.11)

is continuous.
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Proof. Let A and B be as above, then

B = A− (A−B) = A
[
IX −A−1(A−B))

]
= A(IX − Λ)

where Λ : X → X is given by

Λ := A−1(A−B) = IX −A−1B.

Now

‖Λ‖ =
∥∥A−1(A−B))

∥∥ ≤ ‖A−1‖ ‖A−B‖ < ‖A−1‖‖A−1‖−1 = 1.

Therefore I−Λ is invertible and hence so is B (being the product of invertible
elements) with

B−1 = (IX − Λ)−1A−1 =
[
IX −A−1(A−B))

]−1
A−1.

Taking norms of the previous equation gives∥∥B−1
∥∥ ≤ ∥∥(IX − Λ)−1

∥∥ ‖A−1‖ ≤ ‖A−1‖ 1
1− ‖Λ‖

≤ ‖A−1‖
1− ‖A−1‖ ‖A−B‖

which is the bound in Eq. (7.9). The bound in Eq. (7.10) holds because∥∥B−1 −A−1
∥∥ =

∥∥B−1 (A−B)A−1
∥∥ ≤ ∥∥B−1

∥∥∥∥A−1
∥∥ ‖A−B‖

≤ ‖A−1‖2 ‖A−B‖
1− ‖A−1‖ ‖A−B‖

.

For an application of these results to linear ordinary differential equations,
see Section 10.3.

7.5 Exercises

Exercise 7.5. Let (X, ‖·‖) be a normed space over F (R or C). Show the map

(λ, x, y) ∈ F×X ×X → x+ λy ∈ X

is continuous relative to the norm on F×X ×X defined by

‖(λ, x, y)‖F×X×X := |λ|+ ‖x‖+ ‖y‖ .

(See Exercise 13.25 for more on the metric associated to this norm.) Also show
that ‖·‖ : X → [0,∞) is continuous.
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72 7 Banach Spaces

Exercise 7.6. Let X = N and for p, q ∈ [1,∞) let ‖·‖p denote the `p(N) –
norm. Show ‖·‖p and ‖·‖q are inequivalent norms for p 6= q by showing

sup
f 6=0

‖f‖p
‖f‖q

=∞ if p < q.

Exercise 7.7. Suppose that (X, ‖·‖) is a normed space and S ⊂ X is a linear
subspace.

1. Show the closure S̄ of S is also a linear subspace.
2. Now suppose that X is a Banach space. Show that S with the inherited

norm from X is a Banach space iff S is closed.

Exercise 7.8. Folland Problem 5.9. Showing Ck([0, 1]) is a Banach space.

Exercise 7.9. Suppose that X,Y and Z are Banach spaces and Q : X×Y →
Z is a bilinear form, i.e. we are assuming x ∈ X → Q (x, y) ∈ Z is linear for
each y ∈ Y and y ∈ Y → Q (x, y) ∈ Z is linear for each x ∈ X. Show Q is
continuous relative to the product norm, ‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y , on
X × Y iff there is a constant M <∞ such that

‖Q (x, y)‖Z ≤M ‖x‖X · ‖y‖Y for all (x, y) ∈ X × Y. (7.12)

Then apply this result to prove Lemma 7.11.

Exercise 7.10. Let d : C(R)× C(R)→ [0,∞) be defined by

d(f, g) =
∞∑
n=1

2−n
‖f − g‖n

1 + ‖f − g‖n
,

where ‖f‖n := sup{|f(x)| : |x| ≤ n} = max{|f(x)| : |x| ≤ n}.

1. Show that d is a metric on C(R).
2. Show that a sequence {fn}∞n=1 ⊂ C(R) converges to f ∈ C(R) as n→∞

iff fn converges to f uniformly on bounded subsets of R.
3. Show that (C(R), d) is a complete metric space.

Exercise 7.11. Let X = C([0, 1],R) and for f ∈ X, let

‖f‖1 :=
∫ 1

0

|f(t)| dt.

Show that (X, ‖·‖1) is normed space and show by example that this space is
not complete. Hint: For the last assertion find a sequence of {fn}∞n=1 ⊂ X
which is “trying” to converge to the function f = 1[ 12 ,1]

/∈ X.

Exercise 7.12. Let (X, ‖·‖1) be the normed space in Exercise 7.11. Compute
the closure of A when
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1. A = {f ∈ X : f (1/2) = 0} .
2. A =

{
f ∈ X : supt∈[0,1] f (t) ≤ 5

}
.

3. A =
{
f ∈ X :

∫ 1/2

0
f (t) dt = 0

}
.

Exercise 7.13. Suppose {xα ∈ X : α ∈ A} is a given collection of vectors in
a Banach space X. Show

∑
α∈A xα exists in X and∥∥∥∥∥∑
α∈A

xα

∥∥∥∥∥ ≤∑
α∈A
‖xα‖

if
∑
α∈A ‖xα‖ < ∞. That is to say “absolute convergence” implies con-

vergence in a Banach space.

Exercise 7.14. Suppose X is a Banach space and {fn : n ∈ N} is a sequence
in X such that limn→∞ fn = f ∈ X. Show sN := 1

N

∑N
n=1 fn for N ∈ N is

still a convergent sequence and

lim
N→∞

1
N

N∑
n=1

fn = lim
N→∞

sN = f.

Exercise 7.15 (Dominated Convergence Theorem Again). Let X be a
Banach space, A be a set and suppose fn : A→ X is a sequence of functions
such that f (α) := limn→∞ fn (α) exists for all α ∈ A. Further assume there
exists a summable function g : A → [0,∞) such that ‖fn (α)‖ ≤ g (α) for all
α ∈ A. Show

∑
α∈A f (α) exists in X and

lim
n→∞

∑
α∈A

fn (α) =
∑
α∈A

f (α) .
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8

Hilbert Space Basics

Definition 8.1. Let H be a complex vector space. An inner product on H is
a function, 〈·|·〉 : H ×H → C, such that

1. 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉 i.e. x→ 〈x|z〉 is linear.
2. 〈x|y〉 = 〈y|x〉.
3. ‖x‖2 := 〈x|x〉 ≥ 0 with equality ‖x‖2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x→ 〈z|x〉 is conjugate
linear for fixed z ∈ H, i.e.

〈z|ax+ by〉 = ā〈z|x〉+ b̄〈z|y〉.

The following identity will be used frequently in the sequel without further
mention,

‖x+ y‖2 = 〈x+ y|x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x|y〉+ 〈y|x〉
= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉. (8.1)

Theorem 8.2 (Schwarz Inequality). Let (H, 〈·|·〉) be an inner product
space, then for all x, y ∈ H

|〈x|y〉| ≤ ‖x‖‖y‖

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0 and
observe; if x = αy for some α ∈ C, then 〈x|y〉 = α ‖y‖2 and hence

|〈x|y〉| = |α| ‖y‖2 = ‖x‖‖y‖.

Now suppose that x ∈ H is arbitrary, let z := x − ‖y‖−2〈x|y〉y. (So z is the
“orthogonal projection” of x onto y, see Figure 8.1.) Then
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Fig. 8.1. The picture behind the proof of the Schwarz inequality.

0 ≤ ‖z‖2 =
∥∥∥∥x− 〈x|y〉‖y‖2

y

∥∥∥∥2

= ‖x‖2 +
|〈x|y〉|2

‖y‖4
‖y‖2 − 2Re〈x| 〈x|y〉

‖y‖2
y〉

= ‖x‖2 − |〈x|y〉|
2

‖y‖2

from which it follows that 0 ≤ ‖y‖2‖x‖2 − |〈x|y〉|2 with equality iff z = 0 or
equivalently iff x = ‖y‖−2〈x|y〉y.

Corollary 8.3. Let (H, 〈·|·〉) be an inner product space and ‖x‖ :=
√
〈x|x〉.

Then the Hilbertian norm, ‖·‖, is a norm on H. Moreover 〈·|·〉 is continuous
on H ×H, where H is viewed as the normed space (H, ‖·‖).

Proof. If x, y ∈ H, then, using the Schwarz’s inequality,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x|y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle in-
equality.

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If x, x′y, y′ ∈ H, then

|〈x|y〉 − 〈x′|y′〉| = |〈x− x′|y〉+ 〈x′|y − y′〉|
≤ ‖y‖‖x− x′‖+ ‖x′‖‖y − y′‖
≤ ‖y‖‖x− x′‖+ (‖x‖+ ‖x− x′‖) ‖y − y′‖
= ‖y‖‖x− x′‖+ ‖x‖‖y − y′‖+ ‖x− x′‖‖y − y′‖

from which it follows that 〈·|·〉 is continuous.

Definition 8.4. Let (H, 〈·|·〉) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff 〈x|y〉 = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A (write x ⊥ A) iff 〈x|y〉 = 0 for all y ∈ A. Let
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A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if x ⊥ y for all distinct elements x, y ∈ S. If S further
satisfies, ‖x‖ = 1 for all x ∈ S, then S is said to be orthonormal set.

Proposition 8.5. Let (H, 〈·|·〉) be an inner product space then

1. (Parallelogram Law)

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (8.2)

for all x, y ∈ H.
2. (Pythagorean Theorem) If S ⊂ H is a finite orthogonal set, then∥∥∥∥∥∑

x∈S
x

∥∥∥∥∥
2

=
∑
x∈S
‖x‖2. (8.3)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Remark 8.6. See Proposition 8.47 for the “converse” of the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

‖x+ y‖2 + ‖x− y‖2

= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉+ ‖x‖2 + ‖y‖2 − 2Re〈x|y〉
= 2‖x‖2 + 2‖y‖2,

and ∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

= 〈
∑
x∈S

x|
∑
y∈S

y〉 =
∑
x,y∈S

〈x|y〉

=
∑
x∈S
〈x|x〉 =

∑
x∈S
‖x‖2.

Item 3. is a consequence of the continuity of 〈·|·〉 and the fact that

A⊥ = ∩x∈A Nul(〈·|x〉)

where Nul(〈·|x〉) = {y ∈ H : 〈y|x〉 = 0} – a closed subspace of H.

Definition 8.7. A Hilbert space is an inner product space (H, 〈·|·〉) such
that the induced Hilbertian norm is complete.

Example 8.8. Suppose X is a set and µ : X → (0,∞) , then H := `2 (µ) is a
Hilbert space when equipped with the inner product,

〈f |g〉 :=
∑
x∈X

f (x) ḡ (x)µ (x) .

In Exercise 8.7 you will show every Hilbert spaceH is “equivalent” to a Hilbert
space of this form with µ ≡ 1.
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More example of Hilbert spaces will be given later after we develop the
Lebesgue integral, see Example 23.1 below.

Definition 8.9. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 8.10 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M ⊂ H is a closed convex subset of H. Then for any x ∈ H
there exists a unique y ∈M such that

‖x− y‖ = d(x,M) = inf
z∈M
‖x− z‖.

Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x− y) ⊥M.

Proof. Uniqueness. By replacing M by M − x := {m− x : m ∈M} we
may assume x = 0. Let δ := d(0,M) = infm∈M ‖m‖ and y, z ∈M, see Figure
8.2.

Fig. 8.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

2‖y‖2 + 2‖z‖2 = ‖y + z‖2 + ‖y − z‖2

= 4
∥∥∥∥y + z

2

∥∥∥∥2

+ ‖y − z‖2 ≥ 4δ2 + ‖y − z‖2. (8.4)

Hence if ‖y‖ = ‖z‖ = δ, then 2δ2 +2δ2 ≥ 4δ2 +‖y− z‖2, so that ‖y− z‖2 = 0.
Therefore, if a minimizer for d(0, ·)|M exists, it is unique.

Existence. Let yn ∈ M be chosen such that ‖yn‖ = δn → δ ≡ d(0,M).
Taking y = ym and z = yn in Eq. (8.4) shows

2δ2m + 2δ2n ≥ 4δ2 + ‖yn − ym‖2.
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Passing to the limit m,n→∞ in this equation implies,

2δ2 + 2δ2 ≥ 4δ2 + lim sup
m,n→∞

‖yn − ym‖2,

i.e. lim supm,n→∞ ‖yn − ym‖2 = 0. Therefore, by completeness of H, {yn}∞n=1

is convergent. Because M is closed, y := lim
n→∞

yn ∈M and because the norm
is continuous,

‖y‖ = lim
n→∞

‖yn‖ = δ = d(0,M).

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and x ∈ H. Let y ∈ M be the

closest point in M to x. Then for w ∈M, the function

g(t) := ‖x− (y + tw)‖2 = ‖x− y‖2 − 2tRe〈x− y|w〉+ t2‖w‖2

has a minimum at t = 0 and therefore 0 = g′(0) = −2Re〈x − y|w〉. Since
w ∈M is arbitrary, this implies that (x− y) ⊥M.

Finally suppose y ∈ M is any point such that (x− y) ⊥ M. Then for
z ∈M, by Pythagorean’s theorem,

‖x− z‖2 = ‖x− y + y − z‖2 = ‖x− y‖2 + ‖y − z‖2 ≥ ‖x− y‖2

which shows d(x,M)2 ≥ ‖x− y‖2. That is to say y is the point in M closest
to x.

Definition 8.11. Suppose that A : H → H is a bounded operator. The
adjoint of A, denote A∗, is the unique operator A∗ : H → H such that
〈Ax|y〉 = 〈x|A∗y〉. (The proof that A∗ exists and is unique will be given in
Proposition 8.16 below.) A bounded operator A : H → H is self - adjoint or
Hermitian if A = A∗.

Definition 8.12. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H onto M is the function PM : H → H such that
for x ∈ H, PM (x) is the unique element in M such that (x− PM (x)) ⊥M.

Theorem 8.13 (Projection Theorem). Let H be a Hilbert space and M ⊂
H be a closed subspace. The orthogonal projection PM satisfies:

1. PM is linear and hence we will write PMx rather than PM (x).
2. P 2

M = PM (PM is a projection).
3. P ∗M = PM , (PM is self-adjoint).
4. Ran(PM ) = M and Nul(PM ) = M⊥.

Proof.

1. Let x1, x2 ∈ H and α ∈ F, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
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2. Obviously Ran(PM ) = M and PMx = x for all x ∈ M . Therefore P 2
M =

PM .
3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

〈PMx|y〉 = 〈PMx|PMy + y − PMy〉 = 〈PMx|PMy〉
= 〈PMx+ (x− PMx)|PMy〉 = 〈x|PMy〉.

4. We have already seen, Ran(PM ) = M and PMx = 0 iff x = x− 0 ∈ M⊥,
i.e. Nul(PM ) = M⊥.

Corollary 8.14. If M ⊂ H is a proper closed subspace of a Hilbert space H,
then H = M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x − y ∈ M⊥. Then x =
y+ (x− y) ∈M +M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. ‖x‖2 = 〈x|x〉 = 0. So
M ∩M⊥ = {0} .

Exercise 8.1. Suppose M is a subset of H, then M⊥⊥ = span(M).

Theorem 8.15 (Riesz Theorem). Let H∗ be the dual space of H (Notation
7.9). The map

z ∈ H j−→ 〈·|z〉 ∈ H∗ (8.5)

is a conjugate linear1 isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x, z ∈ H,

|〈x|z〉| ≤ ‖x‖ ‖z‖ for all x ∈ H

with equality when x = z. This implies that ‖jz‖H∗ = ‖〈·|z〉‖H∗ = ‖z‖ .
Therefore j is isometric and this implies j is injective. To finish the proof we
must show that j is surjective. So let f ∈ H∗ which we assume, with out
loss of generality, is non-zero. Then M =Nul(f) – a closed proper subspace
of H. Since, by Corollary 8.14, H = M ⊕M⊥, f : H/M ∼= M⊥ → F is a
linear isomorphism. This shows that dim(M⊥) = 1 and hence H = M ⊕ Fx0

where x0 ∈ M⊥ \ {0} .2 Choose z = λx0 ∈ M⊥ such that f(x0) = 〈x0|z〉, i.e.
λ = f̄(x0)/ ‖x0‖2 . Then for x = m+ λx0 with m ∈M and λ ∈ F,

f(x) = λf(x0) = λ〈x0|z〉 = 〈λx0|z〉 = 〈m+ λx0|z〉 = 〈x|z〉

which shows that f = jz.

1 Recall that j is conjugate linear if

j (z1 + αz2) = jz1 + ᾱjz2

for all z1, z2 ∈ H and α ∈ C.
2 Alternatively, choose x0 ∈ M⊥ \ {0} such that f(x0) = 1. For x ∈ M⊥ we have
f(x − λx0) = 0 provided that λ := f(x). Therefore x − λx0 ∈ M ∩M⊥ = {0} ,
i.e. x = λx0. This again shows that M⊥ is spanned by x0.
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Proposition 8.16 (Adjoints). Let H and K be Hilbert spaces and A : H →
K be a bounded operator. Then there exists a unique bounded operator A∗ :
K → H such that

〈Ax|y〉K = 〈x|A∗y〉H for all x ∈ H and y ∈ K. (8.6)

Moreover, for all A,B ∈ L(H,K) and λ ∈ C,

1. (A+ λB)∗ = A∗ + λ̄B∗,
2. A∗∗ := (A∗)∗ = A,
3. ‖A∗‖ = ‖A‖ and
4. ‖A∗A‖ = ‖A‖2 .
5. If K = H, then (AB)∗ = B∗A∗. In particular A ∈ L (H) has a bounded

inverse iff A∗ has a bounded inverse and (A∗)−1 =
(
A−1

)∗
.

Proof. For each y ∈ K, the map x → 〈Ax|y〉K is in H∗ and therefore
there exists, by Theorem 8.15, a unique vector z ∈ H such that

〈Ax|y〉K = 〈x|z〉H for all x ∈ H.

This shows there is a unique map A∗ : K → H such that 〈Ax|y〉K =
〈x|A∗(y)〉H for all x ∈ H and y ∈ K.

To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

〈Ax|y1 + λy2〉K = 〈Ax|y1〉K + λ̄〈Ax|y2〉K
= 〈x|A∗(y1)〉K + λ̄〈x|A∗(y2)〉K
= 〈x|A∗(y1) + λA∗(y2)〉K

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y).
Since

〈A∗y|x〉H = 〈x|A∗y〉H = 〈Ax|y〉K = 〈y|Ax〉K
it follows that A∗∗ = A. The assertion that (A+ λB)∗ = A∗+ λ̄B∗ is Exercise
8.2.

Items 3. and 4. Making use of the Schwarz inequality (Theorem 8.2), we
have

‖A∗‖ = sup
k∈K:‖k‖=1

‖A∗k‖

= sup
k∈K:‖k‖=1

sup
h∈H:‖h‖=1

|〈A∗k|h〉|

= sup
h∈H:‖h‖=1

sup
k∈K:‖k‖=1

|〈k|Ah〉| = sup
h∈H:‖h‖=1

‖Ah‖ = ‖A‖
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so that ‖A∗‖ = ‖A‖ . Since

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
h∈H:‖h‖=1

‖Ah‖2 = sup
h∈H:‖h‖=1

|〈Ah|Ah〉|

= sup
h∈H:‖h‖=1

|〈h|A∗Ah〉| ≤ sup
h∈H:‖h‖=1

‖A∗Ah‖ = ‖A∗A‖ (8.7)

we also have ‖A∗A‖ ≤ ‖A‖2 ≤ ‖A∗A‖ which shows ‖A‖2 = ‖A∗A‖ .
Alternatively, from Eq. (8.7),

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖ ‖A∗‖ (8.8)

which then implies ‖A‖ ≤ ‖A∗‖ . Replacing A by A∗ in this last inequality
shows ‖A∗‖ ≤ ‖A‖ and hence that ‖A∗‖ = ‖A‖ . Using this identity back in
Eq. (8.8) proves ‖A‖2 = ‖A∗A‖ .

Now suppose that K = H. Then

〈ABh|k〉 = 〈Bh|A∗k〉 = 〈h|B∗A∗k〉

which shows (AB)∗ = B∗A∗. If A−1 exists then(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I and

A∗
(
A−1

)∗
=
(
A−1A

)∗
= I∗ = I.

This shows that A∗ is invertible and (A∗)−1 =
(
A−1

)∗
. Similarly if A∗ is

invertible then so is A = A∗∗.

Exercise 8.2. Let H,K,M be Hilbert spaces, A,B ∈ L(H,K), C ∈ L(K,M)
and λ ∈ C. Show (A+ λB)∗ = A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈ L(M,H).

Exercise 8.3. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. 〈z|w〉H = z ·w̄ for z, w ∈ H. Let A be an m×n matrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Lemma 8.17. Suppose A : H → K is a bounded operator, then:

1. Nul(A∗) = Ran(A)⊥.
2. Ran(A) = Nul(A∗)⊥.
3. if K = H and V ⊂ H is an A – invariant subspace (i.e. A(V ) ⊂ V ), then
V ⊥ is A∗ – invariant.

Proof. An element y ∈ K is in Nul(A∗) iff 0 = 〈A∗y|x〉 = 〈y|Ax〉
for all x ∈ H which happens iff y ∈ Ran(A)⊥. Because, by Exercise 8.1,
Ran(A) = Ran(A)⊥⊥, and so by the first item, Ran(A) = Nul(A∗)⊥. Now
suppose A(V ) ⊂ V and y ∈ V ⊥, then

〈A∗y|x〉 = 〈y|Ax〉 = 0 for all x ∈ V

which shows A∗y ∈ V ⊥.
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8.1 Hilbert Space Basis

Proposition 8.18 (Bessel’s Inequality). Let T be an orthonormal set, then
for any x ∈ H, ∑

v∈T
|〈x|v〉|2 ≤ ‖x‖2 for all x ∈ H. (8.9)

In particular the set Tx := {v ∈ T : 〈x|v〉 6= 0} is at most countable for all
x ∈ H.

Proof. Let Γ ⊂ T be any finite set. Then

0 ≤ ‖x−
∑
v∈Γ
〈x|v〉v‖2 = ‖x‖2 − 2Re

∑
v∈Γ
〈x|v〉 〈v|x〉+

∑
v∈Γ
|〈x|v〉|2

= ‖x‖2 −
∑
v∈Γ
|〈x|v〉|2

showing that
∑
v∈Γ
|〈x|v〉|2 ≤ ‖x‖2. Taking the supremum of this inequality over

Γ ⊂⊂ T then proves Eq. (8.9).

Proposition 8.19. Suppose T ⊂ H is an orthogonal set. Then s =
∑
v∈T v

exists in H (see Definition 7.17) iff
∑
v∈T ‖v‖2 < ∞. (In particular T must

be at most a countable set.) Moreover, if
∑
v∈T ‖v‖2 <∞, then

1. ‖s‖2 =
∑
v∈T ‖v‖

2 and
2. 〈s|x〉 =

∑
v∈T 〈v|x〉 for all x ∈ H.

Similarly if {vn}∞n=1 is an orthogonal set, then s =
∞∑
n=1

vn exists in H

iff
∞∑
n=1
‖vn‖2 < ∞. In particular if

∞∑
n=1

vn exists, then it is independent of

rearrangements of {vn}∞n=1.

Proof. Suppose s =
∑
v∈T v exists. Then there exists Γ ⊂⊂ T such that

∑
v∈Λ
‖v‖2 =

∥∥∥∥∥∑
v∈Λ

v

∥∥∥∥∥
2

≤ 1

for all Λ ⊂⊂ T \ Γ, wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such Λ shows that

∑
v∈T\Γ ‖v‖

2 ≤ 1 and
therefore ∑

v∈T
‖v‖2 ≤ 1 +

∑
v∈Γ
‖v‖2 <∞.

Conversely, suppose that
∑
v∈T ‖v‖2 <∞. Then for all ε > 0 there exists

Γε ⊂⊂ T such that if Λ ⊂⊂ T \ Γε,
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v∈Λ

v

∥∥∥∥∥
2

=
∑
v∈Λ
‖v‖2 < ε2. (8.10)

Hence by Lemma 7.18,
∑
v∈T v exists.

For item 1, let Γε be as above and set sε :=
∑
v∈Γε

v. Then

|‖s‖ − ‖sε‖| ≤ ‖s− sε‖ < ε

and by Eq. (8.10),

0 ≤
∑
v∈T
‖v‖2 − ‖sε‖2 =

∑
v/∈Γε

‖v‖2 ≤ ε2.

Letting ε ↓ 0 we deduce from the previous two equations that ‖sε‖ → ‖s‖ and
‖sε‖2 →

∑
v∈T ‖v‖2 as ε ↓ 0 and therefore ‖s‖2 =

∑
v∈T ‖v‖2.

Item 2. is a special case of Lemma 7.18. For the final assertion, let

sN :=
N∑
n=1

vn and suppose that limN→∞ sN = s exists in H and in partic-

ular {sN}∞N=1 is Cauchy. So for N > M.

N∑
n=M+1

‖vn‖2 = ‖sN − sM‖2 → 0 as M,N →∞

which shows that
∞∑
n=1
‖vn‖2 is convergent, i.e.

∞∑
n=1
‖vn‖2 <∞.

Alternative proof of item 1. We could use the last result to prove
Item 1. Indeed, if

∑
v∈T ‖v‖2 <∞, then T is countable and so we may write

T = {vn}∞n=1 . Then s = limN→∞ sN with sN as above. Since the norm, ‖·‖ ,
is continuous on H,

‖s‖2 = lim
N→∞

‖sN‖2 = lim
N→∞

∥∥∥∥∥
N∑
n=1

vn

∥∥∥∥∥
2

= lim
N→∞

N∑
n=1

‖vn‖2

=
∞∑
n=1

‖vn‖2 =
∑
v∈T
‖v‖2.

Corollary 8.20. Suppose H is a Hilbert space, β ⊂ H is an orthonormal set
and M = span β. Then

PMx =
∑
u∈β

〈x|u〉u, (8.11)

∑
u∈β

|〈x|u〉|2 = ‖PMx‖2 and (8.12)

∑
u∈β

〈x|u〉〈u|y〉 = 〈PMx|y〉 (8.13)

for all x, y ∈ H.
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Proof. By Bessel’s inequality,
∑
u∈β |〈x|u〉|

2 ≤ ‖x‖2 for all x ∈ H and
hence by Proposition 8.18, Px :=

∑
u∈β〈x|u〉u exists in H and for all x, y ∈ H,

〈Px|y〉 =
∑
u∈β

〈〈x|u〉u|y〉 =
∑
u∈β

〈x|u〉〈u|y〉. (8.14)

Taking y ∈ β in Eq. (8.14) gives 〈Px|y〉 = 〈x|y〉, i.e. that 〈x− Px|y〉 = 0 for
all y ∈ β. So (x− Px) ⊥ span β and by continuity we also have (x− Px) ⊥
M = span β. Since Px is also in M, it follows from the definition of PM that
Px = PMx proving Eq. (8.11). Equations (8.12) and (8.13) now follow from
(8.14), Proposition 8.19 and the fact that 〈PMx|y〉 = 〈P 2

Mx|y〉 = 〈PMx|PMy〉
for all x, y ∈ H.

Exercise 8.4. Let (H, 〈·|·〉) be a Hilbert space and suppose that {Pn}∞n=1

is a sequence of orthogonal projection operators on H such that Pn(H) ⊂
Pn+1(H) for all n. Let M := ∪∞n=1Pn(H) (a subspace of H) and let P denote
orthonormal projection onto M̄. Show limn→∞ Pnx = Px for all x ∈ H.Hint:
first prove the result for x ∈M⊥, then for x ∈M and then for x ∈ M̄.

Definition 8.21 (Basis). Let H be a Hilbert space. A basis β of H is a
maximal orthonormal subset β ⊂ H.

Proposition 8.22. Every Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If Φ ⊂ F is linearly ordered then ∪Φ is an upper bound. By Zorn’s
Lemma (see Theorem 38.7) there exists a maximal element β ∈ F .

An orthonormal set β ⊂ H is said to be complete if β⊥ = {0} . That is
to say if 〈x|u〉 = 0 for all u ∈ β then x = 0.

Lemma 8.23. Let β be an orthonormal subset of H then the following are
equivalent:

1. β is a basis,
2. β is complete and
3. span β = H.

Proof. (1. ⇐⇒ 2.) If β is not complete, then there exists a unit vector
x ∈ β⊥ \ {0} . The set β ∪{x} is an orthonormal set properly containing β, so
β is not maximal. Conversely, if β is not maximal, there exists an orthonormal
set β1 ⊂ H such that β & β1. Then if x ∈ β1 \ β, we have 〈x|u〉 = 0 for all
u ∈ β showing β is not complete.

(2. ⇐⇒ 3.) If β is not complete and x ∈ β⊥ \ {0} , then span β ⊂ x⊥

which is a proper subspace of H. Conversely if span β is a proper subspace
of H, β⊥ = span β

⊥
is a non-trivial subspace by Corollary 8.14 and β is not

complete.
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Theorem 8.24. Let β ⊂ H be an orthonormal set. Then the following are
equivalent:

1. β is complete, i.e. β is an orthonormal basis for H.
2. x =

∑
u∈β
〈x|u〉u for all x ∈ H.

3. 〈x|y〉 =
∑
u∈β
〈x|u〉 〈u|y〉 for all x, y ∈ H.

4. ‖x‖2 =
∑
u∈β
|〈x|u〉|2 for all x ∈ H.

Proof. Let M = span β and P = PM .
(1) ⇒ (2) By Corollary 8.20,

∑
u∈β
〈x|u〉u = PMx. Therefore

x−
∑
u∈β

〈x|u〉u = x− PMx ∈M⊥ = β⊥ = {0} .

(2) ⇒ (3) is a consequence of Proposition 8.19.
(3) ⇒ (4) is obvious, just take y = x.
(4) ⇒ (1) If x ∈ β⊥, then by 4), ‖x‖ = 0, i.e. x = 0. This shows that β is

complete.
Suppose Γ := {un}∞n=1 is a collection of vectors in an inner product space

(H, 〈·|·〉) . The standard Gram-Schmidt process produces from Γ an or-
thonormal subset, β = {vn}∞n=1, such that every element un ∈ Γ is a finite
linear combination of elements from β. Recall the procedure is to define vn
inductively by setting

ṽn+1 := vn+1 −
n∑
j=1

〈un+1|vj〉vj = vn+1 − Pnvn+1

where Pn is orthogonal projection onto Mn := span({vk}nk=1). If vn+1 := 0, let
ṽn+1 = 0, otherwise set vn+1 := ‖ṽn+1‖−1

ṽn+1. Finally re-index the resulting
sequence so as to throw out those vn with vn = 0. The result is an orthonormal
subset, β ⊂ H, with the desired properties.

Definition 8.25. As subset, Γ, of a normed space X is said to be total if
span(Γ ) is dense in X.

Remark 8.26. Suppose that {un}∞n=1 is a total subset of H. Let {vn}∞n=1 be
the vectors found by performing Gram-Schmidt on the set {un}∞n=1. Then
β := {vn}∞n=1 is an orthonormal basis for H. Indeed, if h ∈ H is orthogonal
to β then h is orthogonal to {un}∞n=1 and hence also span {un}∞n=1 = H. In
particular h is orthogonal to itself and so h = 0.

Proposition 8.27. A Hilbert space H is separable (BRUCE: has separable
been defined yet?) iff H has a countable orthonormal basis β ⊂ H. Moreover,
if H is separable, all orthonormal bases of H are countable. (See Proposition
4.14 in Conway’s, “A Course in Functional Analysis,” for a more general
version of this proposition.)
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Proof. Let D ⊂ H be a countable dense set D = {un}∞n=1. By Gram-
Schmidt process there exists β = {vn}∞n=1 an orthonormal set such that
span{vn : n = 1, 2 . . . , N} ⊇ span{un : n = 1, 2 . . . , N}. So if 〈x|vn〉 = 0 for
all n then 〈x|un〉 = 0 for all n. Since D ⊂ H is dense we may choose {wk} ⊂ D
such that x = limk→∞ wk and therefore 〈x|x〉 = limk→∞〈x|wk〉 = 0. That is to
say x = 0 and β is complete. Conversely if β ⊂ H is a countable orthonormal
basis, then the countable set

D =

∑
u∈β

auu : au ∈ Q+ iQ : #{u : au 6= 0} <∞


is dense in H. Finally let β = {un}∞n=1 be an orthonormal basis and β1 ⊂ H
be another orthonormal basis. Then the sets

Bn = {v ∈ β1 : 〈v|un〉 6= 0}

are countable for each n ∈ N and hence B :=
∞⋃
n=1

Bn is a countable subset

of β1. Suppose there exists v ∈ β1 \ B, then 〈v|un〉 = 0 for all n and since
β = {un}∞n=1 is an orthonormal basis, this implies v = 0 which is impossible
since ‖v‖ = 1. Therefore β1 \B = ∅ and hence β1 = B is countable.

Proposition 8.28. Suppose X and Y are sets and µ : X → (0,∞) and ν :
Y → (0,∞) are give weight functions. For functions f : X → C and g : Y → C
let f ⊗ g : X × Y → C be defined by f ⊗ g (x, y) := f (x) g (y) . If β ⊂ `2 (µ)
and γ ⊂ `2 (ν) are orthonormal bases, then

β ⊗ γ := {f ⊗ g : f ∈ β and g ∈ γ}

is an orthonormal basis for `2 (µ⊗ ν) .

Proof. Let f, f ′ ∈ `2 (µ) and g, g′ ∈ `2 (ν) , then by the Tonelli’s Theorem
4.22 for sums and Hölder’s inequality,∑
X×Y

|f ⊗ g · f ′ ⊗ g′|µ⊗ ν =
∑
X

|ff ′|µ ·
∑
Y

|gg′| ν

≤ ‖f‖`2(µ) ‖f
′‖`2(µ) ‖g‖`2(ν) ‖g

′‖`2(ν) = 1 <∞.

So by Fubini’s Theorem 4.23 for sums,

〈f ⊗ g|f ′ ⊗ g′〉`2(µ⊗ν) =
∑
X

ff̄ ′µ ·
∑
Y

gḡ′ν

= 〈f |f ′〉`2(µ)〈g|g′〉`2(ν) = δf,f ′δg,g′ .

Therefore, β ⊗ γ is an orthonormal subset of `2(µ⊗ ν). So it only remains to
show β⊗γ is complete. We will give two proofs of this fact. Let F ∈ `2(µ⊗ν).
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In the first proof we will verify item 4. of Theorem 8.24 while in the second
we will verify item 1 of Theorem 8.24.

First Proof. By Tonelli’s Theorem,∑
x∈X

µ (x)
∑
y∈Y

ν (y) |F (x, y)|2 = ‖F‖2`2(µ⊗ν) <∞

and since µ > 0, it follows that∑
y∈Y
|F (x, y)|2 ν (y) <∞ for all x ∈ X,

i.e. F (x, ·) ∈ `2(ν) for all x ∈ X. By the completeness of γ,∑
Y

|F (x, y)|2 ν (y) = 〈F (x, ·) |F (x, ·)〉`2(ν) =
∑
g∈γ

∣∣〈F (x, ·) |g〉`2(ν)
∣∣2

and therefore,

‖F‖2`2(µ⊗ν) =
∑
x∈X

µ (x)
∑
y∈Y

ν (y) |F (x, y)|2

=
∑
x∈X

∑
g∈γ

∣∣〈F (x, ·) |g〉`2(ν)
∣∣2 µ (x) . (8.15)

and in particular, x→ 〈F (x, ·) |g〉`2(ν) is in `2 (µ) . So by the completeness of
β and the Fubini and Tonelli theorems, we find

∑
X

∣∣〈F (x, ·) |g〉`2(ν)
∣∣2 µ (x) =

∑
f∈β

∣∣∣∣∣∑
X

〈F (x, ·) |g〉`2(ν)f̄ (x)µ (x)

∣∣∣∣∣
2

=
∑
f∈β

∣∣∣∣∣∑
X

(∑
Y

F (x, y) ḡ (y) ν (y)

)
f̄ (x)µ (x)

∣∣∣∣∣
2

=
∑
f∈β

∣∣∣∣∣ ∑
X×Y

F (x, y) f ⊗ g (x, y)µ⊗ ν (x, y)

∣∣∣∣∣
2

=
∑
f∈β

∣∣〈F |f ⊗ g〉`2(µ⊗ν)∣∣2 .
Combining this result with Eq. (8.15) shows

‖F‖2`2(µ⊗ν) =
∑

f∈β, g∈γ

∣∣〈F |f ⊗ g〉`2(µ⊗ν)∣∣2
as desired.

Second Proof. Suppose, for all f ∈ β and g ∈ γ that 〈F |f ⊗ g〉 = 0, i.e.

Page: 88 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



8.2 Some Spectral Theory 89

0 = 〈F |f ⊗ g〉`2(µ⊗ν) =
∑
x∈X

µ (x)
∑
y∈Y

ν (y)F (x, y)f̄(x)ḡ(y)

=
∑
x∈X

µ (x) 〈F (x, ·)|g〉`2(ν)f̄(x). (8.16)

Since∑
x∈X

∣∣〈F (x, ·)|g〉`2(ν)
∣∣2 µ (x) ≤

∑
x∈X

µ (x)
∑
y∈Y
|F (x, y)|2 ν (y) <∞, (8.17)

it follows from Eq. (8.16) and the completeness of β that 〈F (x, ·)|g〉`2(ν) = 0
for all x ∈ X. By the completeness of γ we conclude that F (x, y) = 0 for all
(x, y) ∈ X × Y.

Definition 8.29. A linear map U : H → K is an isometry if ‖Ux‖K =
‖x‖H for all x ∈ H and U is unitary if U is also surjective.

Exercise 8.5. Let U : H → K be a linear map, show the following are
equivalent:

1. U : H → K is an isometry,
2. 〈Ux|Ux′〉K = 〈x|x′〉H for all x, x′ ∈ H, (see Eq. (8.33) below)
3. U∗U = idH .

Exercise 8.6. Let U : H → K be a linear map, show the following are
equivalent:

1. U : H → K is unitary
2. U∗U = idH and UU∗ = idK .
3. U is invertible and U−1 = U∗.

Exercise 8.7. Let H be a Hilbert space. Use Theorem 8.24 to show there
exists a set X and a unitary map U : H → `2(X). Moreover, if H is separable
and dim(H) = ∞, then X can be taken to be N so that H is unitarily
equivalent to `2 = `2(N).

8.2 Some Spectral Theory

For this section let H and K be two Hilbert space over C.

Exercise 8.8. Suppose A : H → H is a bounded self-adjoint operator. Show:

1. If λ is an eigenvalue of A, i.e. Ax = λx for some x ∈ H \ {0} , then λ ∈ R.
2. If λ and µ are two distinct eigenvalues of A with eigenvectors x and y

respectively, then x ⊥ y.
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90 8 Hilbert Space Basics

Unlike in finite dimensions, it is possible that an operator on a complex
Hilbert space may have no eigenvalues, see Example 8.35 and Lemma 8.36
below for a couple of examples. For this reason it is useful to generalize the
notion of an eigenvalue as follows.

Definition 8.30. Suppose X is a Banach space over F (F = R or C) and
A ∈ L (X) . We say λ ∈ F is in the spectrum of A if A−λI does not have a
bounded3 inverse. The spectrum will be denoted by σ (A) ⊂ F. The resolvent
set for A is ρ (A) := F\σ (A) .

Remark 8.31. If λ is an eigenvalue of A, then A−λI is not injective and hence
not invertible. Therefore any eigenvalue of A is in the spectrum of A. If H
is a Hilbert space ant A ∈ L (H) , it follows from item 5. of Proposition 8.16
that λ ∈ σ (A) iff λ̄ ∈ σ (A∗) , i.e.

σ (A∗) =
{
λ̄ : λ ∈ σ (A)

}
.

Exercise 8.9. Suppose X is a complex Banach space and A ∈ GL (X) . Show

σ
(
A−1

)
= σ (A)−1 :=

{
λ−1 : λ ∈ σ (A)

}
.

If we further assume A is both invertible and isometric, i.e. ‖Ax‖ = ‖x‖ for
all x ∈ X, then show

σ (A) ⊂ S1 := {z ∈ C : |z| = 1} .

Hint: working formally,(
A−1 − λ−1

)−1
=

1
1
A −

1
λ

=
1

λ−A
Aλ

=
Aλ

λ−A

from which you might expect that
(
A−1 − λ−1

)−1 = −λA (A− λ)−1 if λ ∈
ρ (A) .

Exercise 8.10. Suppose X is a Banach space and A ∈ L (X) . Use Corollary
7.22 to show σ (A) is a closed subset of

{
λ ∈ F : |λ| ≤ ‖A‖ := ‖A‖L(X)

}
.

Lemma 8.32. Suppose that A ∈ L(H) is a normal operator, i.e. [A,A∗] = 0.
Then λ ∈ σ(A) iff

inf
‖ψ‖=1

‖(A− λ1)ψ‖ = 0. (8.18)

In other words, λ ∈ σ (A) iff there is an “approximate sequence of eigen-
vectors” for (A, λ) , i.e. there exists ψn ∈ H such that ‖ψn‖ = 1 and
Aψn − λψn → 0 as n→∞.
3 It will follow by the open mapping Theorem 25.19 or the closed graph Theorem

25.22 that the word bounded may be omitted from this definition.
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Proof. By replacing A by A−λI we may assume that λ = 0. If 0 /∈ σ(A),
then

inf
‖ψ‖=1

‖Aψ‖ = inf
‖Aψ‖
‖ψ‖

= inf
‖ψ‖
‖A−1ψ‖

= 1/
∥∥A−1

∥∥ > 0.

Now suppose that inf‖ψ‖=1 ‖Aψ‖ = ε > 0 or equivalently we have

‖Aψ‖ ≥ ε ‖ψ‖

for all ψ ∈ H. Because A is normal,

‖Aψ‖2 = 〈A∗Aψ|ψ〉 = 〈AA∗ψ|ψ〉 = 〈A∗ψ|A∗ψ〉 = ‖A∗ψ‖2 .

Therefore we also have

‖A∗ψ‖ = ‖Aψ‖ ≥ ε ‖ψ‖ ∀ ψ ∈ H. (8.19)

This shows in particular that A and A∗ are injective, Ran(A) is closed and
hence by Lemma 8.17

Ran(A) = Ran(A) = Nul(A∗)⊥ = {0}⊥ = H.

Therefore A is algebraically invertible and the inverse is bounded by Eq.
(8.19).

Lemma 8.33. Suppose that A ∈ L(H) is self-adjoint (i.e. A = A∗) then

σ(A) ⊂
[
−‖A‖op , ‖A‖op

]
⊂ R.

Proof. Writting λ = α+ iβ with α, β ∈ R, then

‖(A+ α+ iβ)ψ‖2 = ‖(A+ α)ψ‖2 + |β|2 ‖ψ‖2 + 2 Re((A+ α)ψ, iβψ)

= ‖(A+ α)ψ‖2 + |β|2 ‖ψ‖2 (8.20)

wherein we have used

Re [iβ((A+ α)ψ,ψ)] = β Im((A+ α)ψ,ψ) = 0

since
((A+ α)ψ,ψ) = (ψ, (A+ α)ψ) = ((A+ α)ψ,ψ).

Eq. (8.20) along with Lemma 8.32 shows that λ /∈ σ(A) if β 6= 0, i.e. σ(A) ⊂ R.
The fact that σ (A) is now contained in

[
−‖A‖op , ‖A‖op

]
is a consequence of

Exercise 8.9.

Remark 8.34. It is not true that σ(A) ⊂ R implies A = A∗. For example let

A =
(

0 1
0 0

)
on H = C2, then σ(A) = {0} yet A 6= A∗.
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92 8 Hilbert Space Basics

Example 8.35. Let S ∈ L(H) be a (not necessarily) normal operator. The
proof of Lemma 8.32 gives λ ∈ σ(S) if Eq. (8.18) holds. However the converse
is not always valid unless S is normal. For example, let S : `2 → `2 be the shift,
S(ω1, ω2, . . . ) = (0, ω1, ω2, . . . ). Then for any λ ∈ D := {z ∈ C : |z| < 1} ,

‖(S − λ)ψ‖ = ‖Sψ − λψ‖ ≥ |‖Sψ‖ − |λ| ‖ψ‖| = (1− |λ|) ‖ψ‖

and so there does not exists an approximate sequence of eigenvectors for
(S, λ) . However, as we will now show, σ (S) = D̄.

To prove this it suffices to show by Remark 8.31 and Exercise 8.9 that
D ⊂ σ (S∗) . For if this is the cae then D̄ ⊂ σ (S∗) ⊂ D̄ and hence σ (S) = D̄
since D̄ is invariant under complex conjugation.

A simple computation shows,

S∗(ω1, ω2, . . . ) = (ω2, ω3, . . . )

and ω = (ω1, ω2, . . . ) is an eigenvector for S∗ with eigenvalue λ ∈ C iff

0 = (S∗ − λI) (ω1, ω2, . . . ) = (ω2 − λω1, ω3 − λω2, . . . ).

Solving these equation shows

ω2 = λω1, ω3 = λω2 = λ2ω1 , . . . , ωn = λn−1ω1.

Hence if λ ∈ D, we may let ω1 = 1 above to find

S∗(1, λ, λ2, . . . ) = λ(1, λ, λ2, . . . )

where (1, λ, λ2, . . . ) ∈ `2. Thus we have shown λ is an eigenvalue for S∗ for
all λ ∈ D and hence D ⊂ σ(S∗).

Lemma 8.36. Let H = `2 (Z) and let A : H → H be defined by

Af (k) = i (f (k + 1)− f (k − 1)) for all k ∈ Z.

Then:

1. A is a bounded self-adjoint operator.
2. A has no eigenvalues.
3. σ (A) = [−2, 2] .

Proof. For another (simpler) proof of this lemma, see Exercise 23.8 below.
1. Since

‖Af‖2 ≤ ‖f (·+ 1)‖2 + ‖f (· − 1)‖2 = 2 ‖f‖2 ,

‖A‖op ≤ 2 <∞. Moreover, for f, g ∈ `2 (Z) ,
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〈Af |g〉 =
∑
k

i (f (k + 1)− f (k − 1)) ḡ (k)

=
∑
k

if (k) ḡ (k − 1)−
∑
k

if (k) ḡ (k + 1)

=
∑
k

f (k)Ag (k) = 〈f |Ag〉,

which shows A = A∗.
2. From Lemma 8.33, we know that σ (A) ⊂ [−2, 2] . If λ ∈ [−2, 2] and

f ∈ H satisfies Af = λf, then

f (k + 1) = −iλf (k) + f (k − 1) for all k ∈ Z. (8.21)

This is a second order difference equations which can be solved analogously
to second order ordinary differential equations. The idea is to start by looking
for a solution of the form f (k) = αk. Then Eq. (8.21) beocmes, αk+1 =
−iλαk + αk−1 or equivalently that

α2 + iλα− 1 = 0.

So we will have a solution if α ∈ {α±} where

α± =
−iλ±

√
4− λ2

2
.

For |λ| 6= 2, there are two distinct roots and the general solution to Eq. (8.21)
is of the form

f (k) = c+α
k
+ + c−α

k
− (8.22)

for some constants c± ∈ C and |λ| = 2, the general solution has the form

f (k) = cαk+ + dkαk+ (8.23)

Since in all cases, |α±| = 1
4

(
λ2 + 4− λ2

)
= 1, it follows that neither of these

functions, f, will be in `2 (Z) unless they are identically zero. This shows that
A has no eigenvalues.

3. The above argument suggest a method for constructing approximate
eigenfucntions. Namely, let λ ∈ [−2, 2] and define fn (k) := 1|k|≤nαk where
α = α+. Then a simple computation shows

lim
n→∞

‖(A− λI) fn‖2
‖fn‖2

= 0 (8.24)

and therefore λ ∈ σ (A) .

Exercise 8.11. Verify Eq. (8.24). Also show by explicit computations that

lim
n→∞

‖(A− λI) fn‖2
‖fn‖2

6= 0

if λ /∈ [−2, 2] .
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94 8 Hilbert Space Basics

The next couple of results will be needed for the next section.

Theorem 8.37 (Rayleigh quotient). Suppose T ∈ L(H) := L(H,H) is a
bounded self-adjoint operator, then

‖T‖ = sup
f 6=0

|〈f |Tf〉|
‖f‖2

.

Moreover if there exists a non-zero element g ∈ H such that

|〈Tg|g〉|
‖g‖2

= ‖T‖,

then g is an eigenvector of T with Tg = λg and λ ∈ {±‖T‖}.
Proof. Let

M := sup
f 6=0

|〈f |Tf〉|
‖f‖2

.

We wish to show M = ‖T‖. Since

|〈f |Tf〉| ≤ ‖f‖‖Tf‖ ≤ ‖T‖‖f‖2,

we see M ≤ ‖T‖. Conversely let f, g ∈ H and compute

〈f + g|T (f + g)〉 − (f − g|T (f − g)〉
= 〈f |Tg〉+ 〈g|Tf〉+ 〈f |Tg〉+ 〈g|Tf〉

= 2[〈f |Tg〉+ 〈Tg|f〉] = 2[〈f |Tg〉+ 〈f |Tg〉]
= 4Re〈f |Tg〉.

Therefore, if ‖f‖ = ‖g‖ = 1, it follows that

|Re〈f |Tg〉| ≤ M

4
{
‖f + g‖2 + ‖f − g‖2

}
=
M

4
{
2‖f‖2 + 2‖g‖2

}
= M.

By replacing f be eiθf where θ is chosen so that eiθ〈f |Tg〉 is real, we find

|〈f |Tg〉| ≤M for all ‖f‖ = ‖g‖ = 1.

Hence
‖T‖ = sup

‖f‖=‖g‖=1

|〈f |Tg〉| ≤M.

If g ∈ H \ {0} and ‖T‖ = |〈Tg|g〉|/‖g‖2 then, using the Cauchy Schwarz
inequality,

‖T‖ =
|〈Tg|g〉|
‖g‖2

≤ ‖Tg‖
‖g‖

≤ ‖T‖. (8.25)

This implies |〈Tg|g〉| = ‖Tg‖‖g‖ and forces equality in the Cauchy Schwarz
inequality. So by Theorem 8.2, Tg and g are linearly dependent, i.e. Tg = λg
for some λ ∈ C. Substituting this into (8.25) shows that |λ| = ‖T‖. Since T
is self-adjoint,

λ‖g‖2 = 〈λg|g〉 = 〈Tg|g〉 = 〈g|Tg〉 = 〈g|λg〉 = λ̄〈g|g〉,

which implies that λ ∈ R and therefore, λ ∈ {±‖T‖}.
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8.3 Compact Operators on a Hilbert Space 95

8.3 Compact Operators on a Hilbert Space

In this section let H and B be Hilbert spaces and U := {x ∈ H : ‖x‖ < 1}
be the unit ball in H. Recall from Definition 14.16 that a bounded operator,
K : H → B, is compact iff K(U) is compact in B. Equivalently, for all
bounded sequences {xn}∞n=1 ⊂ H, the sequence {Kxn}∞n=1 has a convergent
subsequence in B. Because of Theorem 14.15, if dim(H) =∞ and K : H → B
is invertible, then K is not compact.

Definition 8.38. K : H → B is said to have finite rank if Ran(K) ⊂ B is
finite dimensional.

The following result is a simple consequence of Corollaries 14.13 and 14.14.

Corollary 8.39. If K : H → B is a finite rank operator, then K is compact.
In particular if either dim(H) <∞ or dim(B) <∞ then any bounded operator
K : H → B is finite rank and hence compact.

Lemma 8.40. Let K := K(H,B) denote the compact operators from H to
B. Then K(H,B) is a norm closed subspace of L(H,B).

Proof. The fact that K is a vector subspace of L(H,B) will be left to the
reader. To finish the proof, we must show that K ∈ L(H,B) is compact if
there exists Kn ∈ K(H,B) such that limn→∞ ‖Kn −K‖op = 0.

First Proof. Given ε > 0, choose N = N(ε) such that ‖KN −K‖ < ε.
Using the fact that KNU is precompact, choose a finite subset Λ ⊂ U such
that minx∈Λ ‖y −KNx‖ < ε for all y ∈ KN (U) . Then for z = Kx0 ∈ K(U)
and x ∈ Λ,

‖z −Kx‖ = ‖(K −KN )x0 +KN (x0 − x) + (KN −K)x‖
≤ 2ε+ ‖KNx0 −KNx‖.

Therefore minx∈Λ ‖z −KNx‖ < 3ε, which shows K(U) is 3ε bounded for all
ε > 0, K(U) is totally bounded and hence precompact.

Second Proof. Suppose {xn}∞n=1 is a bounded sequence in H. By com-
pactness, there is a subsequence

{
x1
n

}∞
n=1

of {xn}∞n=1 such that
{
K1x

1
n

}∞
n=1

is convergent in B. Working inductively, we may construct subsequences

{xn}∞n=1 ⊃
{
x1
n

}∞
n=1
⊃
{
x2
n

}∞
n=1
· · · ⊃ {xmn }

∞
n=1 ⊃ . . .

such that {Kmx
m
n }

∞
n=1 is convergent in B for each m. By the usual Cantor’s

diagonalization procedure, let yn := xnn, then {yn}∞n=1 is a subsequence of
{xn}∞n=1 such that {Kmyn}∞n=1 is convergent for all m. Since

‖Kyn −Kyl‖ ≤ ‖(K −Km) yn‖+ ‖Km(yn − yl)‖+ ‖(Km −K) yl)‖
≤ 2 ‖K −Km‖+ ‖Km(yn − yl)‖ ,

lim sup
n,l→∞

‖Kyn −Kyl‖ ≤ 2 ‖K −Km‖ → 0 as m→∞,

which shows {Kyn}∞n=1 is Cauchy and hence convergent.
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Proposition 8.41. A bounded operator K : H → B is compact iff there exists
finite rank operators, Kn : H → B, such that ‖K −Kn‖ → 0 as n→∞.

Proof. Since K(U) is compact it contains a countable dense subset and
from this it follows that K (H) is a separable subspace of B. Let {φn} be an
orthonormal basis for K (H) ⊂ B and

PNy =
N∑
n=1

〈y|φn〉φn

be the orthogonal projection of y onto span{φn}Nn=1. Then limN→∞ ‖PNy −
y‖ = 0 for all y ∈ K(H). Define Kn := PnK – a finite rank operator on H.
For sake of contradiction suppose that

lim sup
n→∞

‖K −Kn‖ = ε > 0,

in which case there exists xnk
∈ U such that ‖(K −Knk

)xnk
‖ ≥ ε for all nk.

Since K is compact, by passing to a subsequence if necessary, we may assume
{Kxnk

}∞nk=1 is convergent in B. Letting y := limk→∞Kxnk
,

‖(K −Knk
)xnk
‖ = ‖(1− Pnk

)Kxnk
‖

≤ ‖(1− Pnk
)(Kxnk

− y)‖+ ‖(1− Pnk
)y‖

≤ ‖Kxnk
− y‖+ ‖(1− Pnk

)y‖ → 0 as k →∞.

But this contradicts the assumption that ε is positive and hence we must
have limn→∞ ‖K −Kn‖ = 0, i.e. K is an operator norm limit of finite rank
operators. The converse direction follows from Corollary 8.39 and Lemma
8.40.

Corollary 8.42. If K is compact then so is K∗.

Proof. First Proof. Let Kn = PnK be as in the proof of Proposition
8.41, then K∗

n = K∗Pn is still finite rank. Furthermore, using Proposition
8.16,

‖K∗ −K∗
n‖ = ‖K −Kn‖ → 0 as n→∞

showing K∗ is a limit of finite rank operators and hence compact.
Second Proof. Let {xn}∞n=1 be a bounded sequence in B, then

‖K∗xn −K∗xm‖2 = (xn − xm,KK∗ (xn − xm)) ≤ 2C ‖KK∗ (xn − xm)‖
(8.26)

where C is a bound on the norms of the xn. Since {K∗xn}∞n=1 is also a bounded
sequence, by the compactness of K there is a subsequence {x′n} of the {xn}
such that KK∗x′n is convergent and hence by Eq. (8.26), so is the sequence
{K∗x′n} .
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8.3.1 The Spectral Theorem for Self Adjoint Compact Operators

For the rest of this section, K ∈ K(H) := K(H,H) will be a self-adjoint
compact operator or S.A.C.O. for short. Because of Proposition 8.41, we
might expect compact operators to behave very much like finite dimensional
matrices. This is typically the case as we will see below.

Example 8.43 (Model S.A.C.O.). Let H = `2 and K be the diagonal matrix

K =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . . . . .

 ,

where limn→∞ |λn| = 0 and λn ∈ R. Then K is a self-adjoint compact opera-
tor. This assertion was proved in Example 14.17 above.

The main theorem (Theorem 8.45) of this subsection states that up to
unitary equivalence, Example 8.43 is essentially the most general example of
an S.A.C.O.

Proposition 8.44. Let K be a S.A.C.O., then either λ = ‖K‖ or λ = −‖K‖
is an eigenvalue of K.

Proof. Without loss of generality we may assume that K is non-zero since
otherwise the result is trivial. By Theorem 8.37, there exists un ∈ H such that
‖un‖ = 1 and

|〈un|Kun〉|
‖un‖2

= |〈un|Kun〉| −→ ‖K‖ as n→∞. (8.27)

By passing to a subsequence if necessary, we may assume that λ :=
limn→∞〈un|Kun〉 exists and λ ∈ {±‖K‖}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that Kun
is convergent as well. We now compute:

0 ≤ ‖Kun − λun‖2 = ‖Kun‖2 − 2λ〈Kun|un〉+ λ2

≤ λ2 − 2λ〈Kun|un〉+ λ2

→ λ2 − 2λ2 + λ2 = 0 as n→∞.

Hence
Kun − λun → 0 as n→∞ (8.28)

and therefore
u := lim

n→∞
un =

1
λ

lim
n→∞

Kun

exists. By the continuity of the inner product, ‖u‖ = 1 6= 0. By passing to the
limit in Eq. (8.28) we find that Ku = λu.
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Theorem 8.45 (Compact Operator Spectral Theorem). Suppose that
K : H → H is a non-zero S.A.C.O., then

1. there exists at least one eigenvalue λ ∈ {±‖K‖}.
2. There are at most countable many non-zero eigenvalues, {λn}Nn=1, where
N = ∞ is allowed. (Unless K is finite rank (i.e. dim Ran (K) < ∞), N
will be infinite.)

3. The λn’s (including multiplicities) may be arranged so that |λn| ≥ |λn+1|
for all n. If N =∞ then limn→∞ |λn| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {φn}Nn=1 can be chosen to be an O.N. set such that H =
span{φn} ⊕Nul(K).

5. Using the {φn}Nn=1 above,

Kf =
N∑
n=1

λn〈f |φn〉φn for all f ∈ H. (8.29)

6. The spectrum of K is, σ(K) = {0} ∪ {λn : n < N + 1} .

Proof. We will find λn’s and φn’s recursively. Let λ1 ∈ {±‖K‖} and
φ1 ∈ H such that Kφ1 = λ1φ1 as in Proposition 8.44.

Take M1 = span(φ1) so K(M1) ⊂ M1. By Lemma 8.17, KM⊥
1 ⊂ M⊥

1 .
Define K1 : M⊥

1 → M⊥
1 via K1 = K|M⊥

1
. Then K1 is again a compact

operator. If K1 = 0, we are done. If K1 6= 0, by Proposition 8.44 there exists
λ2 ∈ {±‖K1‖} and φ2 ∈ M⊥

1 such that ‖φ2‖ = 1 and K1φ2 = Kφ2 = λ2φ2.
Let M2 := span(φ1, φ2).

Again K (M2) ⊂M2 and hence K2 := K|M⊥
2

: M⊥
2 →M⊥

2 is compact and
if K2 = 0 we are done. When K2 6= 0, we apply Proposition 8.44 again to find
λ3 ∈ {±‖K‖2} and φ3 ∈M⊥

2 such that ‖φ3‖ = 1 and K2φ3 = Kφ3 = λ3φ3.
Continuing this way indefinitely or until we reach a point where Kn = 0,

we construct a sequence {λn}Nn=1 of eigenvalues and orthonormal eigenvectors
{φn}Nn=1 such that |λn| ≥ |λn+1| with the further property that

|λn| = sup
φ⊥{φ1,φ2,...φn−1}

‖Kφ‖
‖φ‖

. (8.30)

When N < ∞, the remaining results in the theorem are easily verified. So
from now on let us assume that N =∞.

If ε := limn→∞ |λn| > 0, then
{
λ−1
n φn

}∞
n=1

is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {nk : k ∈ N} of
N such that

{
φnk

= λ−1
nk
Kφnk

}∞
k=1

is a convergent. However, since {φnk
}∞k=1

is an orthonormal set, this is impossible and hence we must conclude that
ε := limn→∞ |λn| = 0.

Let M := span{φn}∞n=1. Then K(M) ⊂ M and hence, by Lemma 8.17,
K(M⊥) ⊂M⊥. Using Eq. (8.30),
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8.3 Compact Operators on a Hilbert Space 99

‖K|M⊥‖ ≤
∥∥K|M⊥

n

∥∥ = |λn| −→ 0 as n→∞

showing K|M⊥ ≡ 0. Define P0 to be orthogonal projection onto M⊥. Then
for f ∈ H,

f = P0f + (1− P0)f = P0f +
∞∑
n=1

〈f |φn〉φn

and

Kf = KP0f +K
∞∑
n=1

〈f |φn〉φn =
∞∑
n=1

λn〈f |φn〉φn

which proves Eq. (8.29).
Since {λn}∞n=1 ⊂ σ(K) and σ(K) is closed, it follows that 0 ∈ σ(K) and

hence {λn}∞n=1 ∪ {0} ⊂ σ(K). Suppose that z /∈ {λn}∞n=1 ∪ {0} and let d
be the distance between z and {λn}∞n=1 ∪ {0}. Notice that d > 0 because
limn→∞ λn = 0.

A few simple computations show that:

(K − zI)f =
N∑
n=1

〈f |φn〉(λn − z)φn − zP0f,

(K − z)−1 exists,

(K − zI)−1f =
N∑
n=1

〈f |φn〉(λn − z)−1φn − z−1P0f,

and

‖(K − zI)−1f‖2 =
N∑
n=1

|〈f |φn〉|2
1

|λn − z|2
+

1
|z|2
‖P0f‖2

≤
(

1
d

)2
(

N∑
n=1

|〈f |φn〉|2 + ‖P0f‖2
)

=
1
d2
‖f‖2.

We have thus shown that (K − zI)−1 exists, ‖(K − zI)−1‖ ≤ d−1 < ∞ and
hence z /∈ σ(K).

Theorem 8.46 (Structure of Compact Operators). Let K : H → B
be a compact operator. Then there exists N ∈ N∪{∞} , orthonormal subsets
{φn}Nn=1 ⊂ H and {ψn}Nn=1 ⊂ B and a sequences {αn}Nn=1 ⊂ R+ such that
λ1 ≥ λ2 ≥ . . . , limn→∞ αn = 0 if N =∞, ‖ψn‖ ≤ 1 for all n and

Kf =
N∑
n=1

αn〈f |φn〉ψn for all f ∈ H. (8.31)
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100 8 Hilbert Space Basics

Proof. SinceK∗K is a selfadjoint compact operator, Theorem 8.45 implies
there exists an orthonormal set {φn}Nn=1 ⊂ H and positive numbers {λn}Nn=1

such that

K∗Kψ =
N∑
n=1

λn〈ψ|φn〉φn for all ψ ∈ H.

Let A be the positive square root of K∗K defined by

Aψ :=
N∑
n=1

√
λn〈ψ|φn〉φn for all ψ ∈ H.

A simple computation shows, A2 = K∗K, and therefore,

‖Aψ‖2 = 〈Aψ|Aψ〉 =
〈
ψ|A2ψ

〉
= 〈ψ|K∗Kψ〉 = 〈Kψ|Kψ〉 = ‖Kψ‖2

for all ψ ∈ H. Hence we may define a unitary operator, u : Ran(A)→ Ran(K)
by the formula

uAψ = Kψ for all ψ ∈ H.

We then have

Kψ = uAψ =
N∑
n=1

√
λn〈ψ|φn〉uφn (8.32)

which proves the result with ψn := uφn and αn =
√
λn.

It is instructive to find ψn explicitly and to verify Eq. (8.32) by bruit force.
Since φn = λ

−1/2
n Aφn,

ψn = λ−1/2
n uAφn = λ−1/2

n uAφn = λ−1/2
n Kφn

and
〈Kφn|Kφm〉 = 〈φn|K∗Kφm〉 = λnδmn.

This verifies that {ψn}Nn=1 is an orthonormal set. Moreover,

N∑
n=1

√
λn〈ψ|φn〉ψn =

N∑
n=1

√
λn〈ψ|φn〉λ−1/2

n Kφn

= K
N∑
n=1

〈ψ|φn〉φn = Kψ

since
∑N
n=1〈ψ|φn〉φn = Pψ where P is orthogonal projection onto Nul(K)⊥.

Second Proof. Let K = u |K| be the polar decomposition of K. Then
|K| is self-adjoint and compact, by Corollary ??, and hence by Theorem 8.45
there exists an orthonormal basis {φn}Nn=1 for Nul(|K|)⊥ = Nul(K)⊥ such
that |K|φn = λnφn, λ1 ≥ λ2 ≥ . . . and limn→∞ λn = 0 if N =∞. For f ∈ H,
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Kf = u |K|
N∑
n=1

〈f |φn〉φn =
N∑
n=1

〈f |φn〉u |K|φn =
N∑
n=1

λn〈f |φn〉uφn

which is Eq. (8.31) with ψn := uφn.

8.4 Supplement 1: Converse of the Parallelogram Law

Proposition 8.47 (Parallelogram Law Converse). If (X, ‖·‖) is a normed
space such that Eq. (8.2) holds for all x, y ∈ X, then there exists a unique in-
ner product on 〈·|·〉 such that ‖x‖ :=

√
〈x|x〉 for all x ∈ X. In this case we

say that ‖·‖ is a Hilbertian norm.

Proof. If ‖·‖ is going to come from an inner product 〈·|·〉, it follows from
Eq. (8.1) that

2Re〈x|y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2

and
−2Re〈x|y〉 = ‖x− y‖2 − ‖x‖2 − ‖y‖2.

Subtracting these two equations gives the “polarization identity,”

4Re〈x|y〉 = ‖x+ y‖2 − ‖x− y‖2.

Replacing y by iy in this equation then implies that

4Im〈x|y〉 = ‖x+ iy‖2 − ‖x− iy‖2

from which we find
〈x|y〉 =

1
4

∑
ε∈G

ε‖x+ εy‖2 (8.33)

where G = {±1,±i} – a cyclic subgroup of S1 ⊂ C. Hence if 〈·|·〉 is going to
exists we must define it by Eq. (8.33). Notice that

〈x|x〉 =
1
4

∑
ε∈G

ε‖x+ εx‖2 = ‖x‖2 + i‖x+ ix‖2 − i‖x− ix‖2

= ‖x‖2 + i
∣∣1 + i|2

∣∣ ‖x‖2 − i ∣∣1− i|2∣∣ ‖x‖2 = ‖x‖2 .

So to finish the proof of (4) we must show that 〈x|y〉 in Eq. (8.33) is an inner
product. Since

4〈y|x〉 =
∑
ε∈G

ε‖y + εx‖2 =
∑
ε∈G

ε‖ε (y + εx) ‖2

=
∑
ε∈G

ε‖εy + ε2x‖2

= ‖y + x‖2 + ‖ − y + x‖2 + i‖iy − x‖2 − i‖ − iy − x‖2

= ‖x+ y‖2 + ‖x− y‖2 + i‖x− iy‖2 − i‖x+ iy‖2

= 4〈x|y〉
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102 8 Hilbert Space Basics

it suffices to show x→ 〈x|y〉 is linear for all y ∈ H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (8.2). To do this we make use of Eq. (8.2) three times to find

‖x+ y + z‖2 = −‖x+ y − z‖2 + 2‖x+ y‖2 + 2‖z‖2

= ‖x− y − z‖2 − 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2

= ‖y + z − x‖2 − 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2

= −‖y + z + x‖2 + 2‖y + z‖2 + 2‖x‖2

− 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2.

Solving this equation for ‖x+ y + z‖2 gives

‖x+ y + z‖2 = ‖y + z‖2 + ‖x+ y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2. (8.34)

Using Eq. (8.34), for x, y, z ∈ H,

4 Re〈x+ z|y〉 = ‖x+ z + y‖2 − ‖x+ z − y‖2

= ‖y + z‖2 + ‖x+ y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2

−
(
‖z − y‖2 + ‖x− y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2

)
= ‖z + y‖2 − ‖z − y‖2 + ‖x+ y‖2 − ‖x− y‖2

= 4Re〈x|y〉+ 4 Re〈z|y〉. (8.35)

Now suppose that δ ∈ G, then since |δ| = 1,

4〈δx|y〉 =
1
4

∑
ε∈G

ε‖δx+ εy‖2 =
1
4

∑
ε∈G

ε‖x+ δ−1εy‖2

=
1
4

∑
ε∈G

εδ‖x+ δεy‖2 = 4δ〈x|y〉 (8.36)

where in the third inequality, the substitution ε → εδ was made in the sum.
So Eq. (8.36) says 〈±ix|y〉 = ±i〈ix|y〉 and 〈−x|y〉 = −〈x|y〉. Therefore

Im〈x|y〉 = Re (−i〈x|y〉) = Re〈−ix|y〉

which combined with Eq. (8.35) shows

Im〈x+ z|y〉 = Re〈−ix− iz|y〉 = Re〈−ix|y〉+ Re〈−iz|y〉
= Im〈x|y〉+ Im〈z|y〉

and therefore (again in combination with Eq. (8.35)),

〈x+ z|y〉 = 〈x|y〉+ 〈z|y〉 for all x, y ∈ H.

Because of this equation and Eq. (8.36) to finish the proof that x → 〈x|y〉 is
linear, it suffices to show 〈λx|y〉 = λ〈x|y〉 for all λ > 0. Now if λ = m ∈ N,
then
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〈mx|y〉 = 〈x+ (m− 1)x|y〉 = 〈x|y〉+ 〈(m− 1)x|y〉

so that by induction 〈mx|y〉 = m〈x|y〉. Replacing x by x/m then shows that
〈x|y〉 = m〈m−1x|y〉 so that 〈m−1x|y〉 = m−1〈x|y〉 and so if m,n ∈ N, we find

〈 n
m
x|y〉 = n〈 1

m
x|y〉 =

n

m
〈x|y〉

so that 〈λx|y〉 = λ〈x|y〉 for all λ > 0 and λ ∈ Q. By continuity, it now follows
that 〈λx|y〉 = λ〈x|y〉 for all λ > 0.

8.5 Supplement 2. Non-complete inner product spaces

Part of Theorem 8.24 goes through when H is a not necessarily complete inner
product space. We have the following proposition.

Proposition 8.48. Let (H, 〈·|·〉) be a not necessarily complete inner product
space and β ⊂ H be an orthonormal set. Then the following two conditions
are equivalent:

1. x =
∑
u∈β
〈x|u〉u for all x ∈ H.

2. ‖x‖2 =
∑
u∈β
|〈x|u〉|2 for all x ∈ H.

Moreover, either of these two conditions implies that β ⊂ H is a maximal
orthonormal set. However β ⊂ H being a maximal orthonormal set is not
sufficient to conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 8.24, 1) implies 2). For 2) implies 1)
let Λ ⊂⊂ β and consider∥∥∥∥∥x−∑

u∈Λ
〈x|u〉u

∥∥∥∥∥
2

= ‖x‖2 − 2
∑
u∈Λ
|〈x|u〉|2 +

∑
u∈Λ
|〈x|u〉|2

= ‖x‖2 −
∑
u∈Λ
|〈x|u〉|2 .

Since ‖x‖2 =
∑
u∈β
|〈x|u〉|2, it follows that for every ε > 0 there exists Λε ⊂⊂ β

such that for all Λ ⊂⊂ β such that Λε ⊂ Λ,∥∥∥∥∥x−∑
u∈Λ
〈x|u〉u

∥∥∥∥∥
2

= ‖x‖2 −
∑
u∈Λ
|〈x|u〉|2 < ε

showing that x =
∑
u∈β
〈x|u〉u. Suppose x = (x1, x2, . . . , xn, . . . ) ∈ β⊥. If 2)

is valid then ‖x‖2 = 0, i.e. x = 0. So β is maximal. Let us now construct

Page: 103 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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a counter example to prove the last assertion. Take H = Span{ei}∞i=1 ⊂ `2

and let ũn = e1 − (n + 1)en+1 for n = 1, 2 . . . . Applying Gramn-Schmidt to
{ũn}∞n=1 we construct an orthonormal set β = {un}∞n=1 ⊂ H. I now claim
that β ⊂ H is maximal. Indeed if x = (x1, x2, . . . , xn, . . . ) ∈ β⊥ then x ⊥ un
for all n, i.e.

0 = 〈x|ũn〉 = x1 − (n+ 1)xn+1.

Therefore xn+1 = (n+ 1)−1
x1 for all n. Since x ∈ Span{ei}∞i=1, xN = 0 for

some N sufficiently large and therefore x1 = 0 which in turn implies that
xn = 0 for all n. So x = 0 and hence β is maximal in H. On the other hand, β
is not maximal in `2. In fact the above argument shows that β⊥ in `2 is given
by the span of v = (1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . . ). Let P be the orthogonal projection of

`2 onto the Span(β) = v⊥. Then

∞∑
i=1

〈x|un〉un = Px = x− 〈x|v〉
‖v‖2

v,

so that
∞∑
i=1

〈x|un〉un = x iff x ∈ Span(β) = v⊥ ⊂ `2. For example if x =

(1, 0, 0, . . . ) ∈ H (or more generally for x = ei for any i), x /∈ v⊥ and hence
∞∑
i=1

〈x|un〉un 6= x.

8.6 Exercises

Exercise 8.12. Prove Theorem 14.43. Hint: Let H0 := span {xn : n ∈ N} – a
separable Hilbert subspace of H. Let {λm}∞m=1 ⊂ H0 be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yk := xnk

such that cm := limk→∞〈yk|λm〉 exists for all m ∈ N. Finish the proof by
appealing to Proposition 14.42.

Exercise 8.13. Suppose that {xn}∞n=1 ⊂ H and xn
w→ x ∈ H as n → ∞.

Show xn → x as n→∞ (i.e. limn→∞ ‖x− xn‖ = 0) iff limn→∞ ‖xn‖ = ‖x‖ .

Exercise 8.14 (Banach-Saks). Suppose that {xn}∞n=1 ⊂ H, xn
w→ x ∈ H as

n→∞, and c := supn ‖xn‖ <∞.4 Show there exists a subsequence, yk = xnk

such that

lim
N→∞

∥∥∥∥∥x− 1
N

N∑
k=1

yk

∥∥∥∥∥ = 0,

i.e. 1
N

∑N
k=1 yk → x as N → ∞. Hints: 1. show it suffices to assume x = 0

and then choose {yk}∞k=1 so that |〈yk|yl〉| ≤ l−1 (or even smaller if you like)
for all k ≤ l.
4 The assumption that c <∞ is superfluous because of the “uniform boundedness

principle,” see Theorem 25.27 below.
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Exercise 8.15 (The Mean Ergodic Theorem). Let U : H → H be a uni-
tary operator on a Hilbert space H, M = Nul(U − I), P = PM be orthogonal
projection onto M, and Sn = 1

n

∑n−1
k=0 U

k. Show Sn → PM strongly, i.e.
limn→∞ Snx = PMx for all x ∈ H.

Hints: 1. Show H is the orthogonal direct sum of M and Ran(U − I) by
first showing Nul(U∗− I) = Nul(U − I) and then using Lemma 8.17. 2. Verify
the result for x ∈ Nul(U − I) and x ∈ Ran(U − I). 3. Use a limiting argument
to verify the result for x ∈ Ran(U − I).
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9

Hölder Spaces as Banach Spaces

In this section, we will assume that readery has basic knowledge of the Rie-
mann integral and differentiability properties of functions. The results use
here may be found in Part III below. (BRUCE: there are forward references
in this section.)

Notation 9.1 Let Ω be an open subset of Rd, BC(Ω) and BC(Ω̄) be the
bounded continuous functions on Ω and Ω̄ respectively. By identifying f ∈
BC(Ω̄) with f |Ω ∈ BC(Ω), we will consider BC(Ω̄) as a subset of BC(Ω).
For u ∈ BC(Ω) and 0 < β ≤ 1 let

‖u‖u := sup
x∈Ω
|u(x)| and [u]β := sup

x,y∈Ω
x6=y

{
|u(x)− u(y)|
|x− y|β

}
.

If [u]β < ∞, then u is Hölder continuous with holder exponent1 β. The
collection of β – Hölder continuous function on Ω will be denoted by

C0,β(Ω) := {u ∈ BC(Ω) : [u]β <∞}

and for u ∈ C0,β(Ω) let

‖u‖C0,β(Ω) := ‖u‖u + [u]β . (9.1)

Remark 9.2. If u : Ω → C and [u]β < ∞ for some β > 1, then u is constant
on each connected component of Ω. Indeed, if x ∈ Ω and h ∈ Rd then∣∣∣∣u(x+ th)− u(x)

t

∣∣∣∣ ≤ [u]βtβ/t→ 0 as t→ 0

which shows ∂hu(x) = 0 for all x ∈ Ω. If y ∈ Ω is in the same connected
component as x, then by Exercise 22.8 below there exists a smooth curve
1 If β = 1, u is is said to be Lipschitz continuous.
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σ : [0, 1] → Ω such that σ(0) = x and σ(1) = y. So by the fundamental
theorem of calculus and the chain rule,

u(y)− u(x) =
∫ 1

0

d

dt
u(σ(t))dt =

∫ 1

0

0 dt = 0.

This is why we do not talk about Hölder spaces with Hölder exponents larger
than 1.

Lemma 9.3. Suppose u ∈ C1(Ω) ∩ BC(Ω) and ∂iu ∈ BC(Ω) for i =
1, 2, . . . , d, then u ∈ C0,1(Ω), i.e. [u]1 <∞.

The proof of this lemma is left to the reader as Exercise 9.1.

Theorem 9.4. Let Ω be an open subset of Rd. Then

1. Under the identification of u ∈ BC
(
Ω̄
)

with u|Ω ∈ BC (Ω) , BC(Ω̄) is a
closed subspace of BC(Ω).

2. Every element u ∈ C0,β(Ω) has a unique extension to a continuous func-
tion (still denoted by u) on Ω̄. Therefore we may identify C0,β(Ω) with
C0,β(Ω̄) ⊂ BC(Ω̄). (In particular we may consider C0,β(Ω) and C0,β(Ω̄)
to be the same when β > 0.)

3. The function u ∈ C0,β(Ω) → ‖u‖C0,β(Ω) ∈ [0,∞) is a norm on C0,β(Ω)
which make C0,β(Ω) into a Banach space.

Proof. 1. The first item is trivial since for u ∈ BC(Ω̄), the sup-norm of
u on Ω̄ agrees with the sup-norm on Ω and BC(Ω̄) is complete in this norm.

2. Suppose that [u]β < ∞ and x0 ∈ bd(Ω). Let {xn}∞n=1 ⊂ Ω be a
sequence such that x0 = limn→∞ xn. Then

|u(xn)− u(xm)| ≤ [u]β |xn − xm|β → 0 as m,n→∞

showing {u(xn)}∞n=1 is Cauchy so that ū(x0) := limn→∞ u(xn) exists. If
{yn}∞n=1 ⊂ Ω is another sequence converging to x0, then

|u(xn)− u(yn)| ≤ [u]β |xn − yn|β → 0 as n→∞,

showing ū(x0) is well defined. In this way we define ū(x) for all x ∈ bd(Ω)
and let ū(x) = u(x) for x ∈ Ω. Since a similar limiting argument shows

|ū(x)− ū(y)| ≤ [u]β |x− y|β for all x, y ∈ Ω̄

it follows that ū is still continuous and [ū]β = [u]β . In the sequel we will abuse
notation and simply denote ū by u.

3. For u, v ∈ C0,β(Ω),
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[v + u]β = sup
x,y∈Ω

x6=y

{
|v(y) + u(y)− v(x)− u(x)|

|x− y|β

}

≤ sup
x,y∈Ω

x6=y

{
|v(y)− v(x)|+ |u(y)− u(x)|

|x− y|β

}
≤ [v]β + [u]β

and for λ ∈ C it is easily seen that [λu]β = |λ| [u]β . This shows [·]β is a
semi-norm (see Definition 5.1) on C0,β(Ω) and therefore ‖ · ‖C0,β(Ω) defined
in Eq. (9.1) is a norm. To see that C0,β(Ω) is complete, let {un}∞n=1 be a
C0,β(Ω)–Cauchy sequence. Since BC(Ω̄) is complete, there exists u ∈ BC(Ω̄)
such that ‖u− un‖∞ → 0 as n→∞. For x, y ∈ Ω with x 6= y,

|u(x)− u(y)|
|x− y|β

= lim
n→∞

|un(x)− un(y)|
|x− y|β

≤ lim sup
n→∞

[un]β ≤ lim
n→∞

‖un‖C0,β(Ω) <∞,

and so we see that u ∈ C0,β(Ω). Similarly,

|u(x)− un(x)− (u(y)− un(y))|
|x− y|β

= lim
m→∞

|(um − un)(x)− (um − un)(y)|
|x− y|β

≤ lim sup
m→∞

[um − un]β → 0 as n→∞,

showing [u− un]β → 0 as n→∞ and therefore limn→∞ ‖u− un‖C0,β(Ω) = 0.

Notation 9.5 Since Ω and Ω̄ are locally compact Hausdorff spaces, we may
define C0(Ω) and C0(Ω̄) as in Definition 15.22. We will also let

C0,β
0 (Ω) := C0,β(Ω) ∩ C0(Ω) and C0,β

0 (Ω̄) := C0,β(Ω) ∩ C0(Ω̄).

It has already been shown in Proposition 15.23 that C0(Ω) and C0(Ω̄) are
closed subspaces of BC(Ω) and BC(Ω̄) respectively. The next proposition
describes the relation between C0(Ω) and C0(Ω̄).

Proposition 9.6. Each u ∈ C0(Ω) has a unique extension to a continuous
function on Ω̄ given by ū = u on Ω and ū = 0 on bd(Ω) and the extension ū
is in C0(Ω̄). Conversely if u ∈ C0(Ω̄) and u|bd(Ω) = 0, then u|Ω ∈ C0(Ω). In
this way we may identify C0(Ω) with those u ∈ C0(Ω̄) such that u|bd(Ω) = 0.

Proof. Any extension u ∈ C0(Ω) to an element ū ∈ C(Ω̄) is necessarily
unique, since Ω is dense inside Ω̄. So define ū = u on Ω and ū = 0 on bd(Ω).
We must show ū is continuous on Ω̄ and ū ∈ C0(Ω̄). For the continuity
assertion it is enough to show ū is continuous at all points in bd(Ω). For any
ε > 0, by assumption, the set Kε := {x ∈ Ω : |u(x)| ≥ ε} is a compact subset
of Ω. Since bd(Ω) = Ω̄ \ Ω, bd(Ω) ∩ Kε = ∅ and therefore the distance,
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δ := d(Kε,bd(Ω)), between Kε and bd(Ω) is positive. So if x ∈ bd(Ω) and
y ∈ Ω̄ and |y − x| < δ, then |ū(x)− ū(y)| = |u(y)| < ε which shows ū : Ω̄ → C
is continuous. This also shows {|ū| ≥ ε} = {|u| ≥ ε} = Kε is compact in Ω and
hence also in Ω̄. Since ε > 0 was arbitrary, this shows ū ∈ C0(Ω̄). Conversely if
u ∈ C0(Ω̄) such that u|bd(Ω) = 0 and ε > 0, then Kε :=

{
x ∈ Ω̄ : |u(x)| ≥ ε

}
is a compact subset of Ω̄ which is contained in Ω since bd(Ω) ∩ Kε = ∅.
Therefore Kε is a compact subset of Ω showing u|Ω ∈ C0(Ω̄).

Definition 9.7. Let Ω be an open subset of Rd, k ∈ N∪{0} and β ∈ (0, 1].
Let BCk(Ω) (BCk(Ω̄)) denote the set of k – times continuously differentiable
functions u on Ω such that ∂αu ∈ BC(Ω) (∂αu ∈ BC(Ω̄))2 for all |α| ≤ k.
Similarly, let BCk,β(Ω) denote those u ∈ BCk(Ω) such that [∂αu]β <∞ for
all |α| = k. For u ∈ BCk(Ω) let

‖u‖Ck(Ω) =
∑
|α|≤k

‖∂αu‖u and

‖u‖Ck,β(Ω) =
∑
|α|≤k

‖∂αu‖u +
∑
|α|=k

[∂αu]β .

Theorem 9.8. The spaces BCk(Ω) and BCk,β(Ω) equipped with ‖ · ‖Ck(Ω)

and ‖·‖Ck,β(Ω) respectively are Banach spaces and BCk(Ω̄) is a closed subspace
of BCk(Ω) and BCk,β(Ω) ⊂ BCk(Ω̄). Also

Ck,β0 (Ω) = Ck,β0 (Ω̄) = {u ∈ BCk,β(Ω) : ∂αu ∈ C0(Ω) ∀ |α| ≤ k}

is a closed subspace of BCk,β(Ω).

Proof. Suppose that {un}∞n=1 ⊂ BCk(Ω) is a Cauchy sequence, then
{∂αun}∞n=1 is a Cauchy sequence in BC(Ω) for |α| ≤ k. Since BC(Ω) is
complete, there exists gα ∈ BC(Ω) such that limn→∞ ‖∂αun − gα‖∞ = 0 for
all |α| ≤ k. Letting u := g0, we must show u ∈ Ck(Ω) and ∂αu = gα for all
|α| ≤ k. This will be done by induction on |α| . If |α| = 0 there is nothing to
prove. Suppose that we have verified u ∈ Cl(Ω) and ∂αu = gα for all |α| ≤ l
for some l < k. Then for x ∈ Ω, i ∈ {1, 2, . . . , d} and t ∈ R sufficiently small,

∂aun(x+ tei) = ∂aun(x) +
∫ t

0

∂i∂
aun(x+ τei)dτ.

Letting n→∞ in this equation gives

∂au(x+ tei) = ∂au(x) +
∫ t

0

gα+ei
(x+ τei)dτ

from which it follows that ∂i∂αu(x) exists for all x ∈ Ω and ∂i∂
αu = gα+ei .

This completes the induction argument and also the proof that BCk(Ω) is
2 To say ∂αu ∈ BC(Ω̄) means that ∂αu ∈ BC(Ω) and ∂αu extends to a continuous

function on Ω̄.
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complete. It is easy to check that BCk(Ω̄) is a closed subspace of BCk(Ω)
and by using Exercise 9.1 and Theorem 9.4 that that BCk,β(Ω) is a subspace
of BCk(Ω̄). The fact that Ck,β0 (Ω) is a closed subspace of BCk,β(Ω) is a con-
sequence of Proposition 15.23. To prove BCk,β(Ω) is complete, let {un}∞n=1 ⊂
BCk,β(Ω) be a ‖·‖Ck,β(Ω) – Cauchy sequence. By the completeness of BCk(Ω)
just proved, there exists u ∈ BCk(Ω) such that limn→∞ ‖u − un‖Ck(Ω) = 0.
An application of Theorem 9.4 then shows limn→∞ ‖∂αun − ∂αu‖C0,β(Ω) = 0
for |α| = k and therefore limn→∞ ‖u− un‖Ck,β(Ω) = 0.

The reader is asked to supply the proof of the following lemma.

Lemma 9.9. The following inclusions hold. For any β ∈ [0, 1]

BCk+1,0(Ω) ⊂ BCk,1(Ω) ⊂ BCk,β(Ω)

BCk+1,0(Ω̄) ⊂ BCk,1(Ω̄) ⊂ BCk,β(Ω).

9.1 Exercises

Exercise 9.1. Prove Lemma 9.3.
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Part III

Calculus and Ordinary Differential Equations
in Banach Spaces





10

The Riemann Integral

BRUCE: we should construct the Riemann Stieljtes integral here, see Lemma
28.36. Probably should make this into an exercise.

In this Chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue
integral and the Bochner Lebesgue integral will subsume the content of this
chapter. In Definition 14.1 below, we will give a general notion of a compact
subset of a “topological” space. However, by Corollary 14.9 below, when we
are working with subsets of Rd this definition is equivalent to the following
definition.

Definition 10.1. A subset A ⊂ Rd is said to be compact if A is closed and
bounded.

Theorem 10.2. Suppose that K ⊂ Rd is a compact set and f ∈ C (K,X) .
Then

1. Every sequence {un}∞n=1 ⊂ K has a convergent subsequence.
2. The function f is uniformly continuous on K, namely for every ε > 0

there exists a δ > 0 only depending on ε such that ‖f (u)− f (v)‖ < ε
whenever u, v ∈ K and |u− v| < δ where |·| is the standard Euclidean
norm on Rd.

Proof.

1. (This is a special case of Theorem 14.7 and Corollary 14.9 below.) Since K
is bounded, K ⊂ [−R,R]d for some sufficiently large d. Let tn be the first
component of un so that tn ∈ [−R,R] for all n. Let J1 = [0, R] if tn ∈ J1

for infinitely many n otherwise let J1 = [−R, 0]. Similarly split J1 in half
and let J2 ⊂ J1 be one of the halves such that tn ∈ J2 for infinitely many
n. Continue this way inductively to find a nested sequence of intervals
J1 ⊃ J2 ⊃ J3 ⊃ J4 ⊃ . . . such that the length of Jk is 2−(k−1)R and for
each k, tn ∈ Jk for infinitely many n. We may now choose a subsequence,
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{nk}∞k=1 of {n}∞n=1 such that τk := tnk
∈ Jk for all k. The sequence

{τk}∞k=1 is Cauchy and hence convergent. Thus by replacing {un}∞n=1 by a
subsequence if necessary we may assume the first component of {un}∞n=1 is
convergent. Repeating this argument for the second, then the third and all
the way through the dth – components of {un}∞n=1 , we may, by passing to
further subsequences, assume all of the components of un are convergent.
But this implies limun = u exists and since K is closed, u ∈ K.

2. (This is a special case of Exercise 14.6 below.) If f were not uniformly
continuous on K, there would exists an ε > 0 and sequences {un}∞n=1 and
{vn}∞n=1 in K such that

‖f (un)− f (vn)‖ ≥ ε while lim
n→∞

|un − vn| = 0.

By passing to subsequences if necessary we may assume that limn→∞ un
and limn→∞ vn exists. Since limn→∞ |un − vn| = 0, we must have

lim
n→∞

un = u = lim
n→∞

vn

for some u ∈ K. Since f is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

ε ≤ lim
n→∞

‖f (un)− f (vn)‖ = ‖f (u)− f (u)‖ = 0

which is a contradiction.

For the remainder of the chapter, let [a, b] be a fixed compact interval and
X be a Banach space. The collection S = S([a, b], X) of step functions,
f : [a, b]→ X, consists of those functions f which may be written in the form

f(t) = x01[a,t1](t) +
n−1∑
i=1

xi1(ti,ti+1](t), (10.1)

where π := {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and xi ∈ X.
For f as in Eq. (10.1), let

I(f) :=
n−1∑
i=0

(ti+1 − ti)xi ∈ X. (10.2)

Exercise 10.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition π of
[a, b] does not change the right side of Eq. (10.2).) Also verify that I : S → X
is a linear operator.

Notation 10.3 Let S̄ denote the closure of S inside the Banach space,
`∞([a, b], X) as defined in Remark 7.6.
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10 The Riemann Integral 117

The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.

Theorem 10.4 (B. L. T. Theorem). Suppose that Z is a normed space,
X is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T :
S → X is a bounded linear transformation (i.e. there exists C <∞ such that
‖Tz‖ ≤ C ‖z‖ for all z ∈ S), then T has a unique extension to an element
T̄ ∈ L(Z,X) and this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Exercise 10.2. Prove Theorem 10.4.

Proposition 10.5 (Riemann Integral). The linear function I : S → X
extends uniquely to a continuous linear operator Ī from S̄ to X and this
operator satisfies,

‖Ī(f)‖ ≤ (b− a) ‖f‖∞ for all f ∈ S̄. (10.3)

Furthermore, C([a, b], X) ⊂ S̄ ⊂ `∞([a, b], X) and for f ∈, Ī(f) may be com-
puted as

Ī(f) = lim
|π|→0

n−1∑
i=0

f(cπi )(ti+1 − ti) (10.4)

where π := {a = t0 < t1 < · · · < tn = b} denotes a partition of [a, b],
|π| = max {|ti+1 − ti| : i = 0, . . . , n− 1} is the mesh size of π and cπi may be
chosen arbitrarily inside [ti, ti+1]. See Figure 10.1.

Fig. 10.1. The usual picture associated to the Riemann integral.

Proof. Taking the norm of Eq. (10.2) and using the triangle inequality
shows,
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‖I(f)‖ ≤
n−1∑
i=0

(ti+1 − ti)‖xi‖ ≤
n−1∑
i=0

(ti+1 − ti)‖f‖∞ ≤ (b− a)‖f‖∞. (10.5)

The existence of Ī satisfying Eq. (10.3) is a consequence of Theorem 10.4.
Given f ∈ C([a, b], X), π := {a = t0 < t1 < · · · < tn = b} a partition of [a, b],
and cπi ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1, let fπ ∈ S be defined by

fπ(t) := f(c0)01[t0,t1](t) +
n−1∑
i=1

f(cπi )1(ti,ti+1](t).

Then by the uniform continuity of f on [a, b] (Theorem 10.2), lim|π|→0 ‖f −
fπ‖∞ = 0 and therefore f ∈ S̄. Moreover,

I (f) = lim
|π|→0

I(fπ) = lim
|π|→0

n−1∑
i=0

f(cπi )(ti+1 − ti)

which proves Eq. (10.4).
If fn ∈ S and f ∈ S̄ such that limn→∞ ‖f − fn‖∞ = 0, then for a ≤ α <

β ≤ b, then 1(α,β]fn ∈ S and limn→∞
∥∥1(α,β]f − 1(α,β]fn

∥∥
∞ = 0. This shows

1(α,β]f ∈ S̄ whenever f ∈ S̄.

Notation 10.6 For f ∈ S̄ and a ≤ α ≤ β ≤ b we will write denote Ī(1(α,β]f)
by
∫ β
α
f(t) dt or

∫
(α,β]

f(t)dt. Also following the usual convention, if a ≤ β ≤
α ≤ b, we will let ∫ β

α

f(t) dt = −Ī(1(β,α]f) = −
∫ α

β

f(t) dt.

The next Lemma, whose proof is left to the reader contains some of the
many familiar properties of the Riemann integral.

Lemma 10.7. For f ∈ S̄([a, b], X) and α, β, γ ∈ [a, b], the Riemann integral
satisfies:

1.
∥∥∥∫ βα f(t) dt

∥∥∥
X
≤ (β − α) sup {‖f(t)‖ : α ≤ t ≤ β} .

2.
∫ γ
α
f(t) dt =

∫ β
α
f(t) dt+

∫ γ
β
f(t) dt.

3. The function G(t) :=
∫ t
a
f(τ)dτ is continuous on [a, b].

4. If Y is another Banach space and T ∈ L(X,Y ), then Tf ∈ S̄([a, b], Y )
and

T

(∫ β

α

f(t) dt

)
=
∫ β

α

Tf(t) dt.

5. The function t→ ‖f(t)‖X is in S̄([a, b],R) and∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥
X

≤
∫ b

a

‖f(t)‖X dt.
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10.1 The Fundamental Theorem of Calculus 119

6. If f, g ∈ S̄([a, b],R) and f ≤ g, then∫ b

a

f(t) dt ≤
∫ b

a

g(t) dt.

Exercise 10.3. Prove Lemma 10.7.

10.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results of differential calcu-
lus, more details and the next few results below will be done in greater detail
in Chapter 12.

Definition 10.8. Let (a, b) ⊂ R. A function f : (a, b) → X is differentiable
at t ∈ (a, b) iff

L := lim
h→0

(
h−1 [f(t+ h)− f(t)]

)
= lim
h→0

“
f(t+ h)− f(t)

h
”

exists in X. The limit L, if it exists, will be denoted by ḟ(t) or df
dt (t). We also

say that f ∈ C1((a, b) → X) if f is differentiable at all points t ∈ (a, b) and
ḟ ∈ C((a, b)→ X).

As for the case of real valued functions, the derivative operator d
dt is easily

seen to be linear. The next two results have proves very similar to their real
valued function analogues.

Lemma 10.9 (Product Rules). Suppose that t → U (t) ∈ L (X) , t →
V (t) ∈ L (X) and t→ x (t) ∈ X are differentiable at t = t0, then

1. d
dt |t0 [U (t)x (t)] ∈ X exists and

d

dt
|t0 [U (t)x (t)] =

[
U̇ (t0)x (t0) + U (t0) ẋ (t0)

]
and

2. d
dt |t0 [U (t)V (t)] ∈ L (X) exists and

d

dt
|t0 [U (t)V (t)] =

[
U̇ (t0)V (t0) + U (t0) V̇ (t0)

]
.

3. If U (t0) is invertible, then t→ U (t)−1 is differentiable at t = t0 and

d

dt
|t0U (t)−1 = −U (t0)

−1
U̇ (t0)U (t0)

−1
. (10.6)
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Proof. The reader is asked to supply the proof of the first two items in Ex-
ercise 10.9. Before proving item 3., let us assume that U (t)−1 is differentiable,
then using the product rule we would learn

0 =
d

dt
|t0I =

d

dt
|t0
[
U (t)−1

U (t)
]

=
[
d

dt
|t0U (t)−1

]
U (t0) + U (t0)

−1
U̇ (t0) .

Solving this equation for d
dt |t0U (t)−1 gives the formula in Eq. (10.6). The

problem with this argument is that we have not yet shown t → U (t)−1 is
invertible at t0. Here is the formal proof. Since U (t) is differentiable at t0,
U (t) → U (t0) as t → t0 and by Corollary 7.22, U (t0 + h) is invertible for h
near 0 and

U (t0 + h)−1 → U (t0)
−1 as h→ 0.

Therefore, using Lemma 7.11, we may let h→ 0 in the identity,

U (t0 + h)−1 − U (t0)
−1

h
= U (t0 + h)−1

(
U (t0)− U (t0 + h)

h

)
U (t0)

−1
,

to learn

lim
h→0

U (t0 + h)−1 − U (t0)
−1

h
= −U (t0)

−1
U̇ (t0)U (t0)

−1
.

Proposition 10.10 (Chain Rule). Suppose s → x (s) ∈ X is differentiable
at s = s0 and t → T (t) ∈ R is differentiable at t = t0 and T (t0) = s0, then
t→ x (T (t)) is differentiable at t0 and

d

dt
|t0x (T (t)) = x′ (T (t0))T ′ (t0) .

The proof of the chain rule is essentially the same as the real valued func-
tion case, see Exercise 10.10.

Proposition 10.11. Suppose that f : [a, b] → X is a continuous function
such that ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. Let ε > 0 and α ∈ (a, b) be given. (We will later let ε ↓ 0.) By the
definition of the derivative, for all τ ∈ (a, b) there exists δτ > 0 such that

‖f(t)− f(τ)‖ =
∥∥∥f(t)− f(τ)− ḟ(τ)(t− τ)

∥∥∥ ≤ ε |t− τ | if |t− τ | < δτ .

(10.7)
Let

A = {t ∈ [α, b] : ‖f(t)− f(α)‖ ≤ ε(t− α)} (10.8)

and t0 be the least upper bound for A. We will now use a standard argument
which is referred to as continuous induction to show t0 = b. Eq. (10.7)
with τ = α shows t0 > α and a simple continuity argument shows t0 ∈ A, i.e.

Page: 120 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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‖f(t0)− f(α)‖ ≤ ε(t0 − α). (10.9)

For the sake of contradiction, suppose that t0 < b. By Eqs. (10.7) and (10.9),

‖f(t)− f(α)‖ ≤ ‖f(t)− f(t0)‖+ ‖f(t0)− f(α)‖
≤ ε(t0 − α) + ε(t− t0) = ε(t− α)

for 0 ≤ t− t0 < δt0 which violates the definition of t0 being an upper bound.
Thus we have shown b ∈ A and hence

‖f(b)− f(α)‖ ≤ ε(b− α).

Since ε > 0 was arbitrary we may let ε ↓ 0 in the last equation to conclude
f(b) = f (α) . Since α ∈ (a, b) was arbitrary it follows that f(b) = f (α) for all
α ∈ (a, b] and then by continuity for all α ∈ [a, b], i.e. f is constant.

Remark 10.12. The usual real variable proof of Proposition 10.11 makes use
Rolle’s theorem which in turn uses the extreme value theorem. This latter
theorem is not available to vector valued functions. However with the aid of
the Hahn Banach Theorem 25.4 below and Lemma 10.7, it is possible to reduce
the proof of Proposition 10.11 and the proof of the Fundamental Theorem of
Calculus 10.13 to the real valued case, see Exercise 25.3.

Theorem 10.13 (Fundamental Theorem of Calculus). Suppose that f ∈
C([a, b], X), Then

1. d
dt

∫ t
a
f(τ) dτ = f(t) for all t ∈ (a, b).

2. Now assume that F ∈ C([a, b], X), F is continuously differentiable on
(a, b) (i.e. Ḟ (t) exists and is continuous for t ∈ (a, b)) and Ḟ extends to
a continuous function on [a, b] which is still denoted by Ḟ . Then∫ b

a

Ḟ (t) dt = F (b)− F (a).

Proof. Let h > 0 be a small number and consider∥∥∥∥∥
∫ t+h

a

f(τ)dτ −
∫ t

a

f(τ)dτ − f(t)h

∥∥∥∥∥ =

∥∥∥∥∥
∫ t+h

t

(f(τ)− f(t)) dτ

∥∥∥∥∥
≤
∫ t+h

t

‖(f(τ)− f(t))‖ dτ ≤ hε(h),

where ε(h) := maxτ∈[t,t+h] ‖(f(τ) − f(t))‖. Combining this with a similar
computation when h < 0 shows, for all h ∈ R sufficiently small, that∥∥∥∥∥

∫ t+h

a

f(τ)dτ −
∫ t

a

f(τ)dτ − f(t)h

∥∥∥∥∥ ≤ |h|ε(h),
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where now ε(h) := maxτ∈[t−|h|,t+|h|] ‖(f(τ)− f(t))‖. By continuity of f at t,
ε(h) → 0 and hence d

dt

∫ t
a
f(τ) dτ exists and is equal to f(t). For the second

item, set G(t) :=
∫ t
a
Ḟ (τ) dτ−F (t). Then G is continuous by Lemma 10.7 and

Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of Proposition 10.11 shows
G is a constant and in particular G(b) = G(a), i.e.

∫ b
a
Ḟ (τ) dτ−F (b) = −F (a).

Corollary 10.14 (Mean Value Inequality). Suppose that f : [a, b] → X
is a continuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a
continuous function on [a, b]. Then

‖f(b)− f(a)‖ ≤
∫ b

a

‖ḟ(t)‖dt ≤ (b− a) ·
∥∥∥ḟ∥∥∥

∞
. (10.10)

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
∫ b
a
ḟ(t)dt

and then by Lemma 10.7,

‖f(b)− f(a)‖ =

∥∥∥∥∥
∫ b

a

ḟ(t)dt

∥∥∥∥∥ ≤
∫ b

a

‖ḟ(t)‖dt

≤
∫ b

a

∥∥∥ḟ∥∥∥
∞
dt = (b− a) ·

∥∥∥ḟ∥∥∥
∞
.

Corollary 10.15 (Change of Variable Formula). Suppose that f ∈
C([a, b], X) and T : [c, d] → (a, b) is a continuous function such that T (s)
is continuously differentiable for s ∈ (c, d) and T ′ (s) extends to a continuous
function on [c, d]. Then∫ d

c

f (T (s))T ′ (s) ds =
∫ T (d)

T (c)

f (t) dt.

Proof. For s ∈ (a, b) define F (t) :=
∫ t
T (c)

f (τ) dτ. Then F ∈ C1 ((a, b) , X)
and by the fundamental theorem of calculus and the chain rule,

d

ds
F (T (s)) = F ′ (T (s))T ′ (s) = f (T (s))T ′ (s) .

Integrating this equation on s ∈ [c, d] and using the chain rule again gives∫ d

c

f (T (s))T ′ (s) ds = F (T (d))− F (T (c)) =
∫ T (d)

T (c)

f (t) dt.
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10.2 Integral Operators as Examples of Bounded Operators 123

10.2 Integral Operators as Examples of Bounded
Operators

In the examples to follow all integrals are the standard Riemann integrals and
we will make use of the following notation.

Notation 10.16 Given an open set U ⊂ Rd, let Cc (U) denote the collection
of real valued continuous functions f on U such that

supp(f) := {x ∈ U : f (x) 6= 0}

is a compact subset of U.

Example 10.17. Suppose that K : [0, 1]× [0, 1] → C is a continuous function.
For f ∈ C([0, 1]), let

Tf(x) =
∫ 1

0

K(x, y)f(y)dy.

Since

|Tf(x)− Tf(z)| ≤
∫ 1

0

|K(x, y)−K(z, y)| |f(y)| dy

≤ ‖f‖∞ max
y
|K(x, y)−K(z, y)| (10.11)

and the latter expression tends to 0 as x → z by uniform continuity of K.
Therefore Tf ∈ C([0, 1]) and by the linearity of the Riemann integral, T :
C([0, 1])→ C([0, 1]) is a linear map. Moreover,

|Tf(x)| ≤
∫ 1

0

|K(x, y)| |f(y)| dy ≤
∫ 1

0

|K(x, y)| dy · ‖f‖∞ ≤ A ‖f‖∞

where

A := sup
x∈[0,1]

∫ 1

0

|K(x, y)| dy <∞. (10.12)

This shows ‖T‖ ≤ A < ∞ and therefore T is bounded. We may in fact
show ‖T‖ = A. To do this let x0 ∈ [0, 1] be such that

sup
x∈[0,1]

∫ 1

0

|K(x, y)| dy =
∫ 1

0

|K(x0, y)| dy.

Such an x0 can be found since, using a similar argument to that in Eq. (10.11),
x→

∫ 1

0
|K(x, y)| dy is continuous. Given ε > 0, let

fε(y) :=
K(x0, y)√

ε+ |K(x0, y)|2
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124 10 The Riemann Integral

and notice that limε↓0 ‖fε‖∞ = 1 and

‖Tfε‖∞ ≥ |Tfε(x0)| = Tfε(x0) =
∫ 1

0

|K(x0, y)|2√
ε+ |K(x0, y)|2

dy.

Therefore,

‖T‖ ≥ lim
ε↓0

1
‖fε‖∞

∫ 1

0

|K(x0, y)|2√
ε+ |K(x0, y)|2

dy

= lim
ε↓0

∫ 1

0

|K(x0, y)|2√
ε+ |K(x0, y)|2

dy = A

since

0 ≤ |K(x0, y)| −
|K(x0, y)|2√
ε+ |K(x0, y)|2

=
|K(x0, y)|√
ε+ |K(x0, y)|2

[√
ε+ |K(x0, y)|2 − |K(x0, y)|

]

≤
√
ε+ |K(x0, y)|2 − |K(x0, y)|

and the latter expression tends to zero uniformly in y as ε ↓ 0.
We may also consider other norms on C([0, 1]). Let (for now) L1 ([0, 1])

denote C([0, 1]) with the norm

‖f‖1 =
∫ 1

0

|f(x)| dx,

then T : L1 ([0, 1], dm) → C([0, 1]) is bounded as well. Indeed, let M =
sup {|K(x, y)| : x, y ∈ [0, 1]} , then

|(Tf)(x)| ≤
∫ 1

0

|K(x, y)f(y)| dy ≤M ‖f‖1

which shows ‖Tf‖∞ ≤M ‖f‖1 and hence,

‖T‖L1→C ≤ max {|K(x, y)| : x, y ∈ [0, 1]} <∞.

We can in fact show that ‖T‖ = M as follows. Let (x0, y0) ∈ [0, 1]2 satisfying
|K(x0, y0)| = M. Then given ε > 0, there exists a neighborhood U = I × J
of (x0, y0) such that |K(x, y)−K(x0, y0)| < ε for all (x, y) ∈ U. Let f ∈
Cc(I, [0,∞)) such that

∫ 1

0
f(x)dx = 1. Choose α ∈ C such that |α| = 1 and

αK(x0, y0) = M, then
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10.3 Linear Ordinary Differential Equations 125

|(Tαf)(x0)| =
∣∣∣∣∫ 1

0

K(x0, y)αf(y)dy
∣∣∣∣ = ∣∣∣∣∫

I

K(x0, y)αf(y)dy
∣∣∣∣

≥ Re
∫
I

αK(x0, y)f(y)dy

≥
∫
I

(M − ε) f(y)dy = (M − ε) ‖αf‖L1

and hence
‖Tαf‖C ≥ (M − ε) ‖αf‖L1

showing that ‖T‖ ≥ M − ε. Since ε > 0 is arbitrary, we learn that ‖T‖ ≥ M
and hence ‖T‖ = M.

One may also view T as a map from T : C([0, 1]) → L1([0, 1]) in which
case one may show

‖T‖L1→C ≤
∫ 1

0

max
y
|K(x, y)| dx <∞.

10.3 Linear Ordinary Differential Equations

Let X be a Banach space, J = (a, b) ⊂ R be an open interval with 0 ∈ J,
h ∈ C(J → X) and A ∈ C(J → L(X)). In this section we are going to
consider the ordinary differential equation,

ẏ(t) = A(t)y(t) + h (t) where y(0) = x ∈ X, (10.13)

where y is an unknown function in C1(J → X). This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for y ∈ C(J,X) such that

y(t) = x+
∫ t

0

h (τ) dτ +
∫ t

0

A(τ)y(τ)dτ. (10.14)

In what follows, we will abuse notation and use ‖·‖ to denote the opera-
tor norm on L (X) associated to then norm, ‖·‖ , on X and let ‖φ‖∞ :=
maxt∈J ‖φ(t)‖ for φ ∈ BC(J,X) or BC(J, L (X)).

Notation 10.18 For t ∈ R and n ∈ N, let

∆n(t) =
{
{(τ1, . . . , τn) ∈ Rn : 0 ≤ τ1 ≤ · · · ≤ τn ≤ t} if t ≥ 0
{(τ1, . . . , τn) ∈ Rn : t ≤ τn ≤ · · · ≤ τ1 ≤ 0} if t ≤ 0

and also write dτ = dτ1 . . . dτn and∫
∆n(t)

f(τ1, . . . τn)dτ : = (−1)n·1t<0

∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1f(τ1, . . . τn).

Page: 125 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



126 10 The Riemann Integral

Lemma 10.19. Suppose that ψ ∈ C (R,R) , then

(−1)n·1t<0

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1
n!

(∫ t

0

ψ(τ)dτ
)n

. (10.15)

Proof. Let Ψ(t) :=
∫ t
0
ψ(τ)dτ. The proof will go by induction on n. The

case n = 1 is easily verified since

(−1)1·1t<0

∫
∆1(t)

ψ(τ1)dτ1 =
∫ t

0

ψ(τ)dτ = Ψ(t).

Now assume the truth of Eq. (10.15) for n− 1 for some n ≥ 2, then

(−1)n·1t<0

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

=
∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1ψ(τ1) . . . ψ(τn)

=
∫ t

0

dτn
Ψn−1(τn)
(n− 1)!

ψ(τn) =
∫ t

0

dτn
Ψn−1(τn)
(n− 1)!

Ψ̇(τn)

=
∫ Ψ(t)

0

un−1

(n− 1)!
du =

Ψn(t)
n!

,

wherein we made the change of variables, u = Ψ(τn), in the second to last
equality.

Remark 10.20. Eq. (10.15) is equivalent to∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1
n!

(∫
∆1(t)

ψ(τ)dτ

)n
and another way to understand this equality is to view

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ
as a multiple integral (see Chapter 20 below) rather than an iterated integral.
Indeed, taking t > 0 for simplicity and letting Sn be the permutation group
on {1, 2, . . . , n} we have

[0, t]n = ∪σ∈Sn{(τ1, . . . , τn) ∈ Rn : 0 ≤ τσ1 ≤ · · · ≤ τσn ≤ t}

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ψ(τ1) . . . ψ(τn) is invariant under permutations,
we find
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10.3 Linear Ordinary Differential Equations 127(∫ t

0

ψ(τ)dτ
)n

=
∫

[0,t]n
ψ(τ1) . . . ψ(τn)dτ

=
∑
σ∈Sn

∫
{(τ1,...,τn)∈Rn:0≤τσ1≤···≤τσn≤t}

ψ(τ1) . . . ψ(τn)dτ

=
∑
σ∈Sn

∫
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(sσ−11) . . . ψ(sσ−1n)ds

=
∑
σ∈Sn

∫
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(s1) . . . ψ(sn)ds

= n!
∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ.

Theorem 10.21. Let φ ∈ BC(J,X), then the integral equation

y(t) = φ(t) +
∫ t

0

A(τ)y(τ)dτ (10.16)

has a unique solution given by

y(t) = φ(t) +
∞∑
n=1

(−1)n·1t<0

∫
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ (10.17)

and this solution satisfies the bound

‖y‖∞ ≤ ‖φ‖∞ e
∫

J
‖A(τ)‖dτ .

Proof. Define Λ : BC(J,X)→ BC(J,X) by

(Λy)(t) =
∫ t

0

A(τ)y(τ)dτ.

Then y solves Eq. (10.14) iff y = φ+ Λy or equivalently iff (I − Λ)y = φ. An
induction argument shows

(Λnφ)(t) =
∫ t

0

dτnA(τn)(Λn−1φ)(τn)

=
∫ t

0

dτn

∫ τn

0

dτn−1A(τn)A(τn−1)(Λn−2φ)(τn−1)

...

=
∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1A(τn) . . . A(τ1)φ(τ1)

= (−1)n·1t<0

∫
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ.
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128 10 The Riemann Integral

Taking norms of this equation and using the triangle inequality along with
Lemma 10.19 gives,

‖(Λnφ)(t)‖ ≤ ‖φ‖∞ ·
∫
∆n(t)

‖A(τn)‖ . . . ‖A(τ1)‖dτ

≤‖φ‖∞ ·
1
n!

(∫
∆1(t)

‖A(τ)‖dτ

)n
≤‖φ‖∞ ·

1
n!

(∫
J

‖A(τ)‖dτ
)n

.

Therefore,

‖Λn‖op ≤
1
n!

(∫
J

‖A(τ)‖dτ
)n

(10.18)

and
∞∑
n=0

‖Λn‖op ≤ e
∫

J
‖A(τ)‖dτ <∞

where ‖·‖op denotes the operator norm on L (BC(J,X)) . An application of

Proposition 7.21 now shows (I − Λ)−1 =
∞∑
n=0

Λn exists and

∥∥(I − Λ)−1
∥∥
op
≤ e

∫
J
‖A(τ)‖dτ .

It is now only a matter of working through the notation to see that these
assertions prove the theorem.

Corollary 10.22. Suppose h ∈ C(J → X) and x ∈ X, then there exits a
unique solution, y ∈ C1 (J,X) , to the linear ordinary differential Eq. (10.13).

Proof. Let

φ (t) = x+
∫ t

0

h (τ) dτ.

By applying Theorem 10.21 with and J replaced by any open interval J0

such that 0 ∈ J0 and J̄0 is a compact subinterval1 of J, there exists a unique
solution yJ0 to Eq. (10.13) which is valid for t ∈ J0. By uniqueness of solutions,
if J1 is a subinterval of J such that J0 ⊂ J1 and J̄1 is a compact subinterval
of J, we have yJ1 = yJ0 on J0. Because of this observation, we may construct
a solution y to Eq. (10.13) which is defined on the full interval J by setting
y (t) = yJ0 (t) for any J0 as above which also contains t ∈ J.

Corollary 10.23. Suppose that A ∈ L(X) is independent of time, then the
solution to

ẏ(t) = Ay(t) with y(0) = x

1 We do this so that φ|J0 will be bounded.
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is given by y(t) = etAx where

etA =
∞∑
n=0

tn

n!
An. (10.19)

Moreover,
e(t+s)A = etAesA for all s, t ∈ R. (10.20)

Proof. The first assertion is a simple consequence of Eq. 10.17 and Lemma
10.19 with ψ = 1. The assertion in Eq. (10.20) may be proved by explicit
computation but the following proof is more instructive. Given x ∈ X, let
y (t) := e(t+s)Ax. By the chain rule,

d

dt
y (t) =

d

dτ
|τ=t+seτAx = AeτAx|τ=t+s

= Ae(t+s)Ax = Ay (t) with y (0) = esAx.

The unique solution to this equation is given by

y (t) = etAx (0) = etAesAx.

This completes the proof since, by definition, y (t) = e(t+s)Ax.
We also have the following converse to this corollary whose proof is outlined

in Exercise 10.20 below.

Theorem 10.24. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies

1. (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity) t → Tt is continuous at 0, i.e. ‖Tt − I‖L(X) → 0 as
t ↓ 0.

Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.
(10.19).

10.4 Classical Weierstrass Approximation Theorem

Definition 10.25 (Support). Let f : X → Z be a function from a metric
space (X, ρ) to a vector space Z. The support of f is the closed subset, supp(f),
of X defined by

supp(f) := {x ∈ X : f(x) 6= 0}.

Example 10.26. For example if f : R→ R is defined by f(x) = sin(x)1[0,4π](x) ∈
R, then

{f 6= 0} = (0, 4π) \ {π, 2π, 3π}

and therefore supp(f) = [0, 4π].
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For the remainder of this section, Z will be used to denote a Banach space.

Definition 10.27 (Convolution). For f, g ∈ C (R) with either f or g having
compact support, we define the convolution of f and g by

f ∗ g(x) =
∫

R
f(x− y)g(y)dy =

∫
R
f(y)g(x− y)dy.

We will also use this definition when one of the functions, either f or g, takes
values in a Banach space Z.

Lemma 10.28 (Approximate δ – sequences). Suppose that {qn}∞n=1 is
a sequence non-negative continuous real valued functions on R with compact
support that satisfy ∫

R
qn(x) dx = 1 and (10.21)

lim
n→∞

∫
|x|≥ε

qn(x)dx = 0 for all ε > 0. (10.22)

If f ∈ BC(R, Z), then

qn ∗ f (x) :=
∫

R
qn(y)f(x− y)dy

converges to f uniformly on compact subsets of R×W ⊂ Rd+1.

Proof. Let x ∈ R, then because of Eq. (10.21),

‖qn ∗ f(x)− f(x)‖ =
∥∥∥∥∫

R
qn(y) (f(x− y)− f(x)) dy

∥∥∥∥
≤
∫

R
qn(y) ‖f(x− y)− f(x)‖ dy.

Let M = sup {‖f(x)‖ : x ∈ R} . Then for any ε > 0, using Eq. (10.21),

‖qn ∗ f(x)− f(x)‖ ≤
∫
|y|≤ε

qn(y) ‖f(x− y)− f(x)‖ dy

+
∫
|y|>ε

qn(y) ‖f(x− y)− f(x)‖ dy

≤ sup
|w|≤ε

‖f(x+ w)− f(x)‖+ 2M
∫
|y|>ε

qn(y)dy.

So if K is a compact subset of R (for example a large interval) we have

sup
(x)∈K

‖qn ∗ f(x)− f(x)‖

≤ sup
|w|≤ε, x∈K

‖f(x+ w)− f(x)‖+ 2M
∫
‖y‖>ε

qn(y)dy
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and hence by Eq. (10.22),

lim sup
n→∞

sup
x∈K
‖qn ∗ f(x)− f(x)‖

≤ sup
|w|≤ε, x∈K

‖f(x+ w)− f(x)‖ .

This finishes the proof since the right member of this equation tends to 0 as
ε ↓ 0 by uniform continuity of f on compact subsets of R.

Let qn : R→[0,∞) be defined by

qn(x) :=
1
cn

(1− x2)n1|x|≤1 where cn :=
∫ 1

−1

(1− x2)ndx. (10.23)

Figure 10.2 displays the key features of the functions qn.

Fig. 10.2. A plot of q1, q50, and q100. The most peaked curve is q100 and the least
is q1. The total area under each of these curves is one.

Lemma 10.29. The sequence {qn}∞n=1 is an approximate δ – sequence, i.e.
they satisfy Eqs. (10.21) and (10.22).

Proof. By construction, qn ∈ Cc (R, [0,∞)) for each n and Eq. 10.21 holds.
Since ∫

|x|≥ε
qn(x)dx =

2
∫ 1

ε
(1− x2)ndx

2
∫ ε
0
(1− x2)ndx+ 2

∫ 1

ε
(1− x2)ndx

≤
∫ 1

ε
x
ε (1− x

2)ndx∫ ε
0
x
ε (1− x2)ndx

=
(1− x2)n+1|1ε
(1− x2)n+1|ε0

=
(1− ε2)n+1

1− (1− ε2)n+1
→ 0 as n→∞,
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the proof is complete.

Notation 10.30 Let Z+ := N ∪ {0} and for x ∈ Rd and α ∈ Zd+ let
xα =

∏d
i=1 x

αi
i and |α| =

∑d
i=1 αi. A polynomial on Rd with values in Z

is a function p : Rd → Z of the form

p(x) =
∑

α:|α|≤N

pαx
α with pα ∈ Z and N ∈ Z+.

If pα 6= 0 for some α such that |α| = N, then we define deg(p) := N to be
the degree of p. If Z is a complex Banach space, the function p has a natural
extension to z ∈ Cd, namely p(z) =

∑
α:|α|≤N pαz

α where zα =
∏d
i=1 z

αi
i .

Given a compact subset K ⊂ Rd and f ∈ C (K,C)2, we are going to
show, in the Weierstrass approximation Theorem 10.34 below, that f may
be uniformly approximated by polynomial functions on K. The next theorem
addresses this question when K is a compact subinterval of R.

Theorem 10.31 (Weierstrass Approximation Theorem). Suppose −∞ <
a < b < ∞, J = [a, b] and f ∈ C(J, Z). Then there exists polynomials pn on
R such that pn → f uniformly on J.

Proof. By replacing f by F where

F (t) := f (a+ t (b− a))− [f (a) + t (f (b)− f (a))] for t ∈ [0, 1] ,

it suffices to assume a = 0, b = 1 and f (0) = f (1) = 0. Furthermore we may
now extend f to a continuous function on all R by setting f ≡ 0 on R \ [0, 1] .

With qn defined as in Eq. (10.23), let fn(x) := (qn ∗ f)(x) and recall
from Lemma 10.28 that fn (x)→ f (x) as n→∞ with the convergence being
uniform in x ∈ [0, 1]. This completes the proof since fn is equal to a polynomial
function on [0, 1] . Indeed, there are polynomials, ak (y) , such that

(1− (x− y)2)n =
2n∑
k=0

ak (y)xk,

and therefore, for x ∈ [0, 1] ,

2 Note that f is automatically bounded because if not there would exist un ∈ K
such that limn→∞ |f (un)| = ∞. Using Theorem 10.2 we may, by passing to a
subsequence if necessary, assume un → u ∈ K as n→∞ . Now the continuity of
f would then imply

∞ = lim
n→∞

|f (un)| = |f (u)|

which is absurd since f takes values in C.

Page: 132 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



10.4 Classical Weierstrass Approximation Theorem 133

fn(x) =
∫

R
qn(x− y)f(y)dy

=
1
cn

∫
[0,1]

f(y)
[
(1− (x− y)2)n1|x−y|≤1

]
dy

=
1
cn

∫
[0,1]

f(y)(1− (x− y)2)ndy

=
1
cn

∫
[0,1]

f(y)
2n∑
k=0

ak (y)xkdy =
2n∑
k=0

Akx
k

where
Ak =

∫
[0,1]

f (y) ak (y) dy.

Lemma 10.32. Suppose J = [a, b] is a compact subinterval of R and K
is a compact subset of Rd−1, then the linear mapping R : C (J ×K,Z) →
C (J,C (K,Z)) defined by (Rf) (t) = f (t, ·) ∈ C (K,Z) for t ∈ J is an iso-
metric isomorphism of Banach spaces.

Proof. By uniform continuity of f on J ×K (see Theorem 10.2),

‖(Rf) (t)− (Rf) (s)‖C(K,Z) = max
y∈K
‖f (t, y)− f (s, y)‖Z → 0 as s→ t

which shows that Rf is indeed in C (J → C (K,Z)) . Moreover,

‖Rf‖C(J→C(K,Z)) = max
t∈J
‖(Rf) (t)‖C(K,Z)

= max
t∈J

max
y∈K
‖f (t, y)‖Z = ‖f‖C(J×K,Z) ,

showing R is isometric and therefore injective.
To see that R is surjective, let F ∈ C (J → C (K,Z)) and define f (t, y) :=

F (t) (y) . Since

‖f (t, y)− f (s, y′)‖Z ≤ ‖f (t, y)− f (s, y)‖Z + ‖f (s, y)− f (s, y′)‖Z
≤ ‖F (t)− F (s)‖C(K,Z) + ‖F (s) (y)− F (s) (y′)‖Z ,

it follows by the continuity of t→ F (t) and y → F (s) (y) that

‖f (t, y)− f (s, y′)‖Z → 0 as (t, y)→ (s, y′) .

This shows f ∈ C (J ×K,Z) and thus completes the proof because Rf = F
by construction.

Corollary 10.33 (Weierstrass Approximation Theorem). Let d ∈ N,
Ji = [ai, bi] be compact subintervals of R for i = 1, 2, . . . , d, J := J1× · · · × Jd
and f ∈ C(J, Z). Then there exists polynomials pn on Rd such that pn → f
uniformly on J.
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134 10 The Riemann Integral

Proof. The proof will be by induction on d with the case d = 1 being
the content of Theorem 10.31. Now suppose that d > 1 and the theorem
holds with d replaced by d − 1. Let K := J2 × · · · × Jd, Z0 = C (K,Z) ,
R : C (J1 ×K,Z) → C (J1, Z0) be as in Lemma 10.32 and F := Rf. By
Theorem 10.31, for any ε > 0 there exists a polynomial function

p (t) =
n∑
k=0

ckt
k

with ck ∈ Z0 = C (K,Z) such that ‖F − p‖C(J1,Z0)
< ε. By the induction

hypothesis, there exists polynomial functions qk : K → Z such that

‖ck − qk‖Z0
<

ε

n (|a|+ |b|)k
.

It is now easily verified (you check) that the polynomial function,

ρ (x) :=
n∑
k=0

xk1qk (x2, . . . , xd) for x ∈ J

satisfies ‖f − ρ‖C(J,Z) < 2ε and this completes the induction argument and
hence the proof.

The reader is referred to Chapter 20 for a two more alternative proofs of
this corollary.

Theorem 10.34 (Weierstrass Approximation Theorem). Suppose that
K ⊂ Rd is a compact subset and f ∈ C(K,C). Then there exists polynomials
pn on Rd such that pn → f uniformly on K.

Proof. Choose λ > 0 and b ∈ Rd such that

K0 := λK − b := {λx− b : x ∈ K} ⊂ Bd

where Bd := (0, 1)d . The function F (y) := f
(
λ−1 (y + b)

)
for y ∈ K0 is in

C (K0,C) and if p̂n (y) are polynomials on Rd such that p̂n → F uniformly
on K0 then pn (x) := p̂n (λx− b) are polynomials on Rd such that pn → f
uniformly on K. Hence we may now assume that K is a compact subset of
Bd. Let g ∈ C (K ∪Bcd) be defined by

g (x) =
{
f (x) if x ∈ K

0 if x ∈ Bcd
and then use the Tietze extension Theorem 7.4 (applied to the real and imag-
inary parts of F ) to find a continuous function F ∈ C(Rd,C) such that
F = g|K∪Bc

d
. If pn are polynomials on Rd such that pn → F uniformly on

[0, 1]d then pn also converges to f uniformly on K. Hence, by replacing f by
F, we may now assume that f ∈ C(Rd,C), K = B̄d = [0, 1]d , and f ≡ 0 on
Bcd. The result now follows by an application of Corollary 10.33 with Z = C.
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10.4 Classical Weierstrass Approximation Theorem 135

Remark 10.35. The mapping (x, y) ∈ Rd × Rd → z = x + iy ∈ Cd is an
isomorphism of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2
and y = z−z̄

2i . Therefore under this identification any polynomial p(x, y) on
Rd × Rd may be written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x+ iy, x− iy).

Corollary 10.36 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ Cd is a compact set and f ∈ C(K,C). Then there ex-
ists polynomials pn(z, z̄) for z ∈ Cd such that supz∈K |pn(z, z̄)− f(z)| → 0 as
n→∞.

Proof. This is an immediate consequence of Theorem 10.34 and Remark
10.35.

Example 10.37. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of poly-
nomials in (z, z̄) restricted to S1. Then A is dense in C(S1).3 Since z̄ = z−1

on S1, we have shown polynomials in z and z−1 are dense in C(S1). This
example generalizes in an obvious way to K =

(
S1
)d ⊂ Cd.

Exercise 10.4. Suppose −∞ < a < b <∞ and f ∈ C ([a, b],C) satisfies∫ b

a

f (t) tndt = 0 for n = 0, 1, 2 . . . .

Show f ≡ 0.

Exercise 10.5. Suppose f ∈ C (R,C) is a 2π – periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) and∫ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Example 10.37 to show that any 2π –
periodic continuous function g on R is the uniform limit of trigonometric
polynomials of the form

p (x) =
n∑

k=−n

pke
ikx with pk ∈ C for all k.

3 Note that it is easy to extend f ∈ C(S1) to a function F ∈ C(C) by setting
F (z) = zf( z

|z| ) for z 6= 0 and F (0) = 0. So this special case does not require the
Tietze extension theorem.
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10.5 Iterated Integrals

Theorem 10.38 (Baby Fubini Theorem). Let ai, bi ∈ R with ai 6=
bi for i = 1, 2 . . . , n, f(t1, t2, . . . , tn) ∈ Z be a continuous function of
(t1, t2, . . . , tn) where ti between ai and bi for each i and for any given per-
mutation, σ, of {1, 2 . . . , n} let

Iσ (f) :=
∫ bσ1

aσ1

dtσ1 . . .

∫ bσn

aσn

dtσnf(t1, t2, . . . , tn). (10.24)

Then Iσ (f) is well defined and independent of σ, i.e. the order of iterated
integrals is irrelevant under these hypothesis.

Proof. Let Ji := [min (ai, bi) ,max (ai, bi)] , J := J1 × · · · × Jn and |Ji| :=
max (ai, bi) −min (ai, bi) . Using the uniform continuity of f (Theorem 10.2)
and the continuity of the Riemann integral, it is easy to prove (compare with
the proof of Lemma 10.32) that the map

(t1, . . . t̂σn, . . . , tn) ∈ (J1 × · · · × Ĵσn × · · · × Jn)→
∫ bσn

aσn

dtσn
f(t1, t2, . . . , tn)

is continuous, where the hat is used to denote a missing element from a list.
From this remark, it follows that each of the integrals in Eq. (10.24) are well
defined and hence so is Iσ (f) . Moreover by an induction argument using
Lemma 10.32 and the boundedness of the Riemann integral, we have the
estimate,

‖Iσ (f)‖Z ≤

(
n∏
i=1

|Ji|

)
‖f‖C(J,Z) . (10.25)

Now suppose τ is another permutation. Because of Eq. (10.25), Iσ and Iτ
are bounded operators on C (J, Z) and so to shows Iσ = Iτ is suffices to shows
there are equal on the dense set of polynomial functions (see Corollary 10.33)
in C (J, Z) . Moreover by linearity, it suffices to show Iσ (f) = Iτ (f) when f
has the form

f(t1, t2, . . . , tn) = tk11 . . . tkn
n z

for some ki ∈ N0 and z ∈ Z. However for this function, explicit computations
show

Iσ (f) = Iτ (f) =

(
n∏
i=1

bki+1
i − aki+1

i

ki + 1

)
· z.

Proposition 10.39 (Equality of Mixed Partial Derivatives). Let Q =
(a, b) × (c, d) be an open rectangle in R2 and f ∈ C(Q,Z). Assume that
∂
∂tf(s, t), ∂

∂sf(s, t) and ∂
∂t

∂
∂sf(s, t) exists and are continuous for (s, t) ∈ Q,

then ∂
∂s

∂
∂tf(s, t) exists for (s, t) ∈ Q and
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∂

∂s

∂

∂t
f(s, t) =

∂

∂t

∂

∂s
f(s, t) for (s, t) ∈ Q. (10.26)

Proof. Fix (s0, t0) ∈ Q. By two applications of Theorem 10.13,

f(s, t) = f(st0 , t) +
∫ s

s0

∂

∂σ
f(σ, t)dσ

= f(s0, t) +
∫ s

s0

∂

∂σ
f(σ, t0)dσ +

∫ s

s0

dσ

∫ t

t0

dτ
∂

∂τ

∂

∂σ
f(σ, τ) (10.27)

and then by Fubini’s Theorem 10.38 we learn

f(s, t) = f(s0, t) +
∫ s

s0

∂

∂σ
f(σ, t0)dσ +

∫ t

t0

dτ

∫ s

s0

dσ
∂

∂τ

∂

∂σ
f(σ, τ).

Differentiating this equation in t and then in s (again using two more appli-
cations of Theorem 10.13) shows Eq. (10.26) holds.

10.6 Exercises

Throughout these problems, (X, ‖·‖) is a Banach space.

Exercise 10.6. Show f = (f1, . . . , fn) ∈ S̄([a, b],Rn) iff fi ∈ S̄([a, b],R) for
i = 1, 2, . . . , n and∫ b

a

f(t)dt =

(∫ b

a

f1(t)dt, . . . ,
∫ b

a

fn(t)dt

)
.

Here Rn is to be equipped with the usual Euclidean norm. Hint: Use Lemma
10.7 to prove the forward implication.

Exercise 10.7. Give another proof of Proposition 10.39 which does not use
Fubini’s Theorem 10.38 as follows.

1. By a simple translation argument we may assume (0, 0) ∈ Q and we are
trying to prove Eq. (10.26) holds at (s, t) = (0, 0).

2. Let h(s, t) := ∂
∂t

∂
∂sf(s, t) and

G(s, t) :=
∫ s

0

dσ

∫ t

0

dτh(σ, τ)

so that Eq. (10.27) states

f(s, t) = f(0, t) +
∫ s

0

∂

∂σ
f(σ, t0)dσ +G(s, t)

and differentiating this equation at t = 0 shows
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∂

∂t
f(s, 0) =

∂

∂t
f(0, 0) +

∂

∂t
G(s, 0). (10.28)

Now show using the definition of the derivative that

∂

∂t
G(s, 0) =

∫ s

0

dσh(σ, 0). (10.29)

Hint: Consider

G(s, t)− t
∫ s

0

dσh(σ, 0) =
∫ s

0

dσ

∫ t

0

dτ [h(σ, τ)− h(σ, 0)] .

3. Now differentiate Eq. (10.28) in s using Theorem 10.13 to finish the proof.

Exercise 10.8. Give another proof of Eq. (10.24) in Theorem 10.38 based on
Proposition 10.39. To do this let t0 ∈ (c, d) and s0 ∈ (a, b) and define

G(s, t) :=
∫ t

t0

dτ

∫ s

s0

dσf(σ, τ)

Show G satisfies the hypothesis of Proposition 10.39 which combined with two
applications of the fundamental theorem of calculus implies

∂

∂t

∂

∂s
G(s, t) =

∂

∂s

∂

∂t
G(s, t) = f(s, t).

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if t = t0 or s = s0 to conclude

G(s, t) =
∫ s

s0

dσ

∫ t

t0

dτ
∂

∂τ

∂

∂σ
G(σ, τ) =

∫ s

s0

dσ

∫ t

t0

dτ
∂

∂τ
f(σ, τ). (10.30)

Finally let s = b and t = d in Eq. (10.30) and then let s0 ↓ a and t0 ↓ c to
prove Eq. (10.24).

Exercise 10.9 (Product Rule). Prove items 1. and 2. of Lemma 10.9. This
can be modeled on the standard proof for real valued functions.

Exercise 10.10 (Chain Rule). Prove the chain rule in Proposition 10.10.
Again this may be modeled on the on the standard proof for real valued
functions.

Exercise 10.11. To each A ∈ L (X) , we may define LA, RA : L (X)→ L (X)
by

LAB = AB and RAB = BA for all B ∈ L (X) .

Show LA, RA ∈ L (L (X)) and that

‖LA‖L(L(X)) = ‖A‖L(X) = ‖RA‖L(L(X)) .

Page: 138 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



10.6 Exercises 139

Exercise 10.12. Suppose that A : R → L(X) is a continuous function and
U, V : R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I (10.31)

and
U̇(t) = −U(t)A(t) with U(0) = I. (10.32)

Prove that V (t) is invertible and that V −1(t) = U(t)4, where by abuse of
notation I am writing V −1 (t) for [V (t)]−1

. Hints: 1) show d
dt [U(t)V (t)] = 0

(which is sufficient if dim(X) < ∞) and 2) show compute y(t) := V (t)U(t)
solves a linear differential ordinary differential equation that has y ≡ Id as
an obvious solution. (The results of Exercise 10.11 may be useful here.) Then
use the uniqueness of solutions to linear ODEs.

Exercise 10.13. Suppose that (X, ‖·‖) is a Banach space, J = (a, b) with
−∞ ≤ a < b ≤ ∞ and fn : R → X are continuously differentiable functions
such that there exists a summable sequence {an}∞n=1 satisfying

‖fn (t)‖+
∥∥∥ḟn (t)

∥∥∥ ≤ an for all t ∈ J and n ∈ N.

Show:

1. sup
{∥∥∥ fn(t+h)−fn(t)

h

∥∥∥ : (t, h) ∈ J × R 3 t+ h ∈ J and h 6= 0
}
≤ an.

2. The function F : R→ X defined by

F (t) :=
∞∑
n=1

fn (t) for all t ∈ J

is differentiable and for t ∈ J,

Ḟ (t) =
∞∑
n=1

ḟn (t) .

Exercise 10.14. Suppose that A ∈ L(X). Show directly that:

1. etA define in Eq. (10.19) is convergent in L(X) when equipped with the
operator norm.

2. etA is differentiable in t and that d
dte

tA = AetA.

Exercise 10.15. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of A
with eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that if
X = Rn and A is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn). Here diag(λ1, . . . , λn)
denotes the diagonal matrix Λ such that Λii = λi for i = 1, 2, . . . , n.
4 The fact that U(t) must be defined as in Eq. (10.32) follows from Lemma 10.9.
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Exercise 10.16. Suppose that A,B ∈ L(X) and [A,B] := AB − BA = 0.
Show that e(A+B) = eAeB .

Exercise 10.17. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s, t ∈ R. Show

y(t) := e(
∫ t
0 A(τ)dτ)x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 10.18. Compute etA when

A =
(

0 1
−1 0

)
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.

Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 10.19. Compute etA when

A =

0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is
the 3× 3 identity matrix. Hint: Sum the series.

Exercise 10.20. Prove Theorem 10.24 using the following outline.

1. Using the right continuity at 0 and the semi-group property for Tt, show
there are constants M and C such that ‖Tt‖L(X) ≤MCt for all t > 0.

2. Show t ∈ [0,∞)→ Tt ∈ L(X) is continuous.
3. For ε > 0, let Sε := 1

ε

∫ ε
0
Tτdτ ∈ L(X). Show Sε → I as ε ↓ 0 and

conclude from this that Sε is invertible when ε > 0 is sufficiently small.
For the remainder of the proof fix such a small ε > 0.

4. Show

TtSε =
1
ε

∫ t+ε

t

Tτdτ

and conclude from this that

lim
t↓0

(
Tt − I
t

)
Sε =

1
ε

(Tε − IdX) .

5. Using the fact that Sε is invertible, conclude A = limt↓0 t
−1 (Tt − I) exists

in L(X) and that

A =
1
ε

(Tε − I)S−1
ε .
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6. Now show, using the semigroup property and step 4., that d
dtTt = ATt for

all t > 0.
7. Using step 5, show d

dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.

Exercise 10.21 (Duhamel’ s Principle I). Suppose that A : R→ L(X) is
a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (10.31). Let x ∈ X and h ∈ C(R, X) be given.
Show that the unique solution to the differential equation:

ẏ(t) = A(t)y(t) + h(t) with y(0) = x (10.33)

is given by

y(t) = V (t)x+ V (t)
∫ t

0

V (τ)−1h(τ) dτ. (10.34)

Hint: compute d
dt [V

−1(t)y(t)] (see Exercise 10.12) when y solves Eq. (10.33).

Exercise 10.22 (Duhamel’ s Principle II). Suppose that A : R → L(X)
is a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (10.31). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be
given. Show that the unique solution to the differential equation:

Ẇ (t) = A(t)W (t) +H(t) with W (0) = W0 (10.35)

is given by

W (t) = V (t)W0 + V (t)
∫ t

0

V (τ)−1H(τ) dτ. (10.36)
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11

Ordinary Differential Equations in a Banach
Space

Let X be a Banach space, U ⊂o X, J = (a, b) 3 0 and Z ∈ C (J × U,X) – Z
is to be interpreted as a time dependent vector-field on U ⊂ X. In this section
we will consider the ordinary differential equation (ODE for short)

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U. (11.1)

The reader should check that any solution y ∈ C1(J, U) to Eq. (11.1) gives a
solution y ∈ C(J, U) to the integral equation:

y(t) = x+
∫ t

0

Z(τ, y(τ))dτ (11.2)

and conversely if y ∈ C(J, U) solves Eq. (11.2) then y ∈ C1(J, U) and y solves
Eq. (11.1).

Remark 11.1. For notational simplicity we have assumed that the initial con-
dition for the ODE in Eq. (11.1) is taken at t = 0. There is no loss in generality
in doing this since if ỹ solves

dỹ

dt
(t) = Z̃(t, ỹ(t)) with ỹ(t0) = x ∈ U

iff y(t) := ỹ(t+ t0) solves Eq. (11.1) with Z(t, x) = Z̃(t+ t0, x).

11.1 Examples

Let X = R, Z(x) = xn with n ∈ N and consider the ordinary differential
equation

ẏ(t) = Z(y(t)) = yn(t) with y(0) = x ∈ R. (11.3)

If y solves Eq. (11.3) with x 6= 0, then y(t) is not zero for t near 0. Therefore
up to the first time y possibly hits 0, we must have
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t =
∫ t

0

ẏ(τ)
y(τ)n

dτ =
∫ y(t)

0

u−ndu =


[y(t)]1−n−x1−n

1−n if n > 1

ln
∣∣∣y(t)x ∣∣∣ if n = 1

and solving these equations for y(t) implies

y(t) = y(t, x) =

{
x

n−1
√

1−(n−1)txn−1
if n > 1

etx if n = 1.
(11.4)

The reader should verify by direct calculation that y(t, x) defined above does
indeed solve Eq. (11.3). The above argument shows that these are the only
possible solutions to the Equations in (11.3).

Notice that when n = 1, the solution exists for all time while for n > 1,
we must require

1− (n− 1)txn−1 > 0

or equivalently that

t <
1

(1− n)xn−1
if xn−1 > 0 and

t > − 1
(1− n) |x|n−1 if xn−1 < 0.

Moreover for n > 1, y(t, x) blows up as t approaches the value for which
1− (n− 1)txn−1 = 0. The reader should also observe that, at least for s and
t close to 0,

y(t, y(s, x)) = y(t+ s, x) (11.5)

for each of the solutions above. Indeed, if n = 1 Eq. (11.5) is equivalent to the
well know identity, etes = et+s and for n > 1,

y(t, y(s, x)) =
y(s, x)

n−1
√

1− (n− 1)ty(s, x)n−1

=

x
n−1
√

1−(n−1)sxn−1

n−1

√
1− (n− 1)t

[
x

n−1
√

1−(n−1)sxn−1

]n−1

=

x
n−1
√

1−(n−1)sxn−1

n−1

√
1− (n− 1)t xn−1

1−(n−1)sxn−1

=
x

n−1
√

1− (n− 1)sxn−1 − (n− 1)txn−1

=
x

n−1
√

1− (n− 1)(s+ t)xn−1
= y(t+ s, x).

Now suppose Z(x) = |x|α with 0 < α < 1 and we now consider the
ordinary differential equation
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ẏ(t) = Z(y(t)) = |y(t)|α with y(0) = x ∈ R. (11.6)

Working as above we find, if x 6= 0 that

t =
∫ t

0

ẏ(τ)
|y(t)|α

dτ =
∫ y(t)

0

|u|−α du =
[y(t)]1−α − x1−α

1− α
,

where u1−α := |u|1−α sgn(u). Since sgn(y(t)) = sgn(x) the previous equation
implies

sgn(x)(1− α)t = sgn(x)
[
sgn(y(t)) |y(t)|1−α − sgn(x) |x|1−α

]
= |y(t)|1−α − |x|1−α

and therefore,

y(t, x) = sgn(x)
(
|x|1−α + sgn(x)(1− α)t

) 1
1−α

(11.7)

is uniquely determined by this formula until the first time t where |x|1−α +
sgn(x)(1− α)t = 0. As before y(t) = 0 is a solution to Eq. (11.6), however it
is far from being the unique solution. For example letting x ↓ 0 in Eq. (11.7)
gives a function

y(t, 0+) = ((1− α)t)
1

1−α

which solves Eq. (11.6) for t > 0. Moreover if we define

y(t) :=
{

((1− α)t)
1

1−α if t > 0
0 if t ≤ 0

,

(for example if α = 1/2 then y(t) = 1
4 t

21t≥0) then the reader may easily check
y also solve Eq. (11.6). Furthermore, ya(t) := y(t − a) also solves Eq. (11.6)
for all a ≥ 0, see Figure 11.1 below.

With these examples in mind, let us now go to the general theory. The
case of linear ODE’s has already been studied in Section 10.3 above.

11.2 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 11.2. Gronwall’s Lemma. Suppose that f, ε, and k are non-
negative functions of a real variable t such that

f(t) ≤ ε(t) +
∣∣∣∣∫ t

0

k(τ)f(τ)dτ
∣∣∣∣ . (11.8)

Then
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Fig. 11.1. Three different solutions to the ODE ẏ(t) = |y(t)|1/2 with y(0) = 0.

f(t) ≤ ε(t) +
∣∣∣∣∫ t

0

k(τ)ε(τ)e|
∫ t

τ
k(s)ds|dτ

∣∣∣∣ , (11.9)

and in particular if ε and k are constants we find that

f(t) ≤ εek|t|. (11.10)

Proof. I will only prove the case t ≥ 0. The case t ≤ 0 can be derived
by applying the t ≥ 0 to f̃(t) = f(−t), k̃(t) = k(−t) and ε(t) = ε(−t). Set
F (t) =

∫ t
0
k(τ)f(τ)dτ . Then by (11.8),

Ḟ = kf ≤ kε+ kF.

Hence,

d

dt
(e−

∫ t
0 k(s)dsF ) = e−

∫ t
0 k(s)ds(Ḟ − kF ) ≤ kεe−

∫ t
0 k(s)ds.

Integrating this last inequality from 0 to t and then solving for F yields:

F (t) ≤ e
∫ t
0 k(s)ds ·

∫ t

0

dτk(τ)ε(τ)e−
∫ τ
0 k(s)ds =

∫ t

0

dτk(τ)ε(τ)e
∫ t

τ
k(s)ds.

But by the definition of F we have that

f ≤ ε+ F,

and hence the last two displayed equations imply (11.9). Equation (11.10)
follows from (11.9) by a simple integration.

Corollary 11.3 (Continuous Dependence on Initial Data). Let U ⊂o
X, 0 ∈ (a, b) and Z : (a, b) × U → X be a continuous function which is K–
Lipschitz function on U, i.e. ‖Z(t, x)−Z(t, x′)‖ ≤ K‖x− x′‖ for all x and x′

in U. Suppose y1, y2 : (a, b)→ U solve
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11.3 Local Existence (Non-Linear ODE) 147

dyi(t)
dt

= Z(t, yi(t)) with yi(0) = xi for i = 1, 2. (11.11)

Then
‖y2(t)− y1(t)‖ ≤ ‖x2 − x1‖eK|t| for t ∈ (a, b) (11.12)

and in particular, there is at most one solution to Eq. (11.1) under the above
Lipschitz assumption on Z.

Proof. Let f(t) := ‖y2(t) − y1(t)‖. Then by the fundamental theorem of
calculus,

f(t) = ‖y2(0)− y1(0) +
∫ t

0

(ẏ2(τ)− ẏ1(τ)) dτ‖

≤ f(0) +
∣∣∣∣∫ t

0

‖Z(τ, y2(τ))− Z(τ, y1(τ))‖ dτ
∣∣∣∣

= ‖x2 − x1‖+K

∣∣∣∣∫ t

0

f(τ) dτ
∣∣∣∣ .

Therefore by Gronwall’s inequality we have,

‖y2(t)− y1(t)‖ = f(t) ≤ ‖x2 − x1‖eK|t|.

11.3 Local Existence (Non-Linear ODE)

We now show that Eq. (11.1) under a Lipschitz condition on Z. See Exercise
14.20 below for another existence theorem.

Theorem 11.4 (Local Existence). Let T > 0, J = (−T, T ), x0 ∈ X, r > 0
and

C(x0, r) := {x ∈ X : ‖x− x0‖ ≤ r}

be the closed r – ball centered at x0 ∈ X. Assume

M = sup {‖Z(t, x)‖ : (t, x) ∈ J × C(x0, r)} <∞ (11.13)

and there exists K <∞ such that

‖Z(t, x)− Z(t, y)‖ ≤ K ‖x− y‖ for all x, y ∈ C(x0, r) and t ∈ J. (11.14)

Let T0 < min {r/M, T} and J0 := (−T0, T0), then for each x ∈ B(x0, r−MT0)
there exists a unique solution y(t) = y(t, x) to Eq. (11.2) in C (J0, C(x0, r)) .
Moreover y(t, x) is jointly continuous in (t, x), y(t, x) is differentiable in t,
ẏ(t, x) is jointly continuous for all (t, x) ∈ J0 × B(x0, r −MT0) and satisfies
Eq. (11.1).
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Proof. The uniqueness assertion has already been proved in Corollary
11.3. To prove existence, let Cr := C(x0, r), Y := C (J0, C(x0, r)) and

Sx(y)(t) := x+
∫ t

0

Z(τ, y(τ))dτ. (11.15)

With this notation, Eq. (11.2) becomes y = Sx(y), i.e. we are looking for a
fixed point of Sx. If y ∈ Y, then

‖Sx(y)(t)− x0‖ ≤ ‖x− x0‖+
∣∣∣∣∫ t

0

‖Z(τ, y(τ))‖ dτ
∣∣∣∣ ≤ ‖x− x0‖+M |t|

≤ ‖x− x0‖+MT0 ≤ r −MT0 +MT0 = r,

showing Sx (Y ) ⊂ Y for all x ∈ B(x0, r −MT0). Moreover if y, z ∈ Y,

‖Sx(y)(t)− Sx(z)(t)‖ =
∥∥∥∥∫ t

0

[Z(τ, y(τ))− Z(τ, z(τ))] dτ
∥∥∥∥

≤
∣∣∣∣∫ t

0

‖Z(τ, y(τ))− Z(τ, z(τ))‖ dτ
∣∣∣∣

≤ K
∣∣∣∣∫ t

0

‖y(τ)− z(τ)‖ dτ
∣∣∣∣ . (11.16)

Let y0(t, x) = x and yn(·, x) ∈ Y defined inductively by

yn(·, x) := Sx(yn−1(·, x)) = x+
∫ t

0

Z(τ, yn−1(τ, x))dτ. (11.17)

Using the estimate in Eq. (11.16) repeatedly we find

|| yn+1(t)− yn(t) ||

≤ K
∣∣∣∣∫ t

0

‖yn(τ)− yn−1(τ)‖ dτ
∣∣∣∣

≤ K2

∣∣∣∣∫ t

0

dt1

∣∣∣∣∫ t1

0

dt2 ‖yn−1(t2)− yn−2(t2)‖
∣∣∣∣∣∣∣∣

...

≤ Kn

∣∣∣∣∫ t

0

dt1

∣∣∣∣∫ t1

0

dt2 . . .

∣∣∣∣∫ tn−1

0

dtn ‖y1(tn)− y0(tn)‖
∣∣∣∣ . . . ∣∣∣∣∣∣∣∣

≤ Kn ‖y1(·, x)− y0(·, x)‖∞
∫
∆n(t)

dτ

=
Kn |t|n

n!
‖y1(·, x)− y0(·, x)‖∞ ≤ 2r

Kn |t|n

n!
(11.18)

wherein we have also made use of Lemma 10.19. Combining this estimate with
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‖y1(t, x)− y0(t, x)‖ =
∥∥∥∥∫ t

0

Z(τ, x)dτ
∥∥∥∥ ≤ ∣∣∣∣∫ t

0

‖Z(τ, x)‖ dτ
∣∣∣∣ ≤M0,

where

M0 = T0 max

{∫ T0

0

‖Z(τ, x)‖ dτ,
∫ 0

−T0

‖Z(τ, x)‖ dτ

}
≤MT0,

shows

‖yn+1(t, x)− yn(t, x)‖ ≤M0
Kn |t|n

n!
≤M0

KnTn0
n!

and this implies

∞∑
n=0

sup{ ‖yn+1(·, x)− yn(·, x)‖∞,J0
: t ∈ J0}

≤
∞∑
n=0

M0
KnTn0
n!

= M0e
KT0 <∞

where

‖yn+1(·, x)− yn(·, x)‖∞,J0
:= sup {‖yn+1(t, x)− yn(t, x)‖ : t ∈ J0} .

So y(t, x) := limn→∞ yn(t, x) exists uniformly for t ∈ J and using Eq. (11.14)
we also have

sup{ ‖Z(t, y(t))− Z(t, yn−1(t))‖ : t ∈ J0}
≤ K ‖y(·, x)− yn−1(·, x)‖∞,J0

→ 0 as n→∞.

Now passing to the limit in Eq. (11.17) shows y solves Eq. (11.2). From this
equation it follows that y(t, x) is differentiable in t and y satisfies Eq. (11.1).
The continuity of y(t, x) follows from Corollary 11.3 and mean value inequality
(Corollary 10.14):

‖y(t, x)− y(t′, x′)‖ ≤ ‖y(t, x)− y(t, x′)‖+ ‖y(t, x′)− y(t′, x′)‖

= ‖y(t, x)− y(t, x′)‖+
∥∥∥∥∫ t

t′
Z(τ, y(τ, x′))dτ

∥∥∥∥
≤ ‖y(t, x)− y(t, x′)‖+

∣∣∣∣∫ t

t′
‖Z(τ, y(τ, x′))‖ dτ

∣∣∣∣
≤ ‖x− x′‖eKT +

∣∣∣∣∫ t

t′
‖Z(τ, y(τ, x′))‖ dτ

∣∣∣∣ (11.19)

≤ ‖x− x′‖eKT +M |t− t′| .

The continuity of ẏ(t, x) is now a consequence Eq. (11.1) and the continuity
of y and Z.
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Corollary 11.5. Let J = (a, b) 3 0 and suppose Z ∈ C(J ×X,X) satisfies

‖Z(t, x)− Z(t, y)‖ ≤ K ‖x− y‖ for all x, y ∈ X and t ∈ J. (11.20)

Then for all x ∈ X, there is a unique solution y(t, x) (for t ∈ J) to Eq. (11.1).
Moreover y(t, x) and ẏ(t, x) are jointly continuous in (t, x).

Proof. Let J0 = (a0, b0) 3 0 be a precompact subinterval of J and Y :=
BC (J0, X) . By compactness, M := supt∈J̄0

‖Z(t, 0)‖ < ∞ which combined
with Eq. (11.20) implies

sup
t∈J̄0

‖Z(t, x)‖ ≤M +K ‖x‖ for all x ∈ X.

Using this estimate and Lemma 10.7 one easily shows Sx(Y ) ⊂ Y for all
x ∈ X. The proof of Theorem 11.4 now goes through without any further
change.

11.4 Global Properties

Definition 11.6 (Local Lipschitz Functions). Let U ⊂o X, J be an open
interval and Z ∈ C(J×U,X). The function Z is said to be locally Lipschitz in
x if for all x ∈ U and all compact intervals I ⊂ J there exists K = K(x, I) <
∞ and ε = ε(x, I) > 0 such that B(x, ε(x, I)) ⊂ U and

‖Z(t, x1)− Z(t, x0)‖ ≤ K(x, I)‖x1 − x0‖ ∀ x0, x1 ∈ B(x, ε(x, I)) & t ∈ I.
(11.21)

For the rest of this section, we will assume J is an open interval containing
0, U is an open subset ofX and Z ∈ C(J×U,X) is a locally Lipschitz function.

Lemma 11.7. Let Z ∈ C(J × U,X) be a locally Lipschitz function in X and
E be a compact subset of U and I be a compact subset of J. Then there exists
ε > 0 such that Z(t, x) is bounded for (t, x) ∈ I × Eε and and Z(t, x) is K –
Lipschitz on Eε for all t ∈ I, where

Eε := {x ∈ U : dist(x,E) < ε} .

Proof. Let ε(x, I) and K(x, I) be as in Definition 11.6 above. Since
E is compact, there exists a finite subset Λ ⊂ E such that E ⊂ V :=
∪x∈ΛB(x, ε(x, I)/2). If y ∈ V, there exists x ∈ Λ such that ‖y − x‖ < ε(x, I)/2
and therefore

‖Z(t, y)‖ ≤ ‖Z(t, x)‖+K(x, I) ‖y − x‖ ≤ ‖Z(t, x)‖+K(x, I)ε(x, I)/2
≤ sup
x∈Λ,t∈I

{‖Z(t, x)‖+K(x, I)ε(x, I)/2} =: M <∞.
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This shows Z is bounded on I × V. Let

ε := d(E, V c) ≤ 1
2

min
x∈Λ

ε(x, I)

and notice that ε > 0 since E is compact, V c is closed and E ∩ V c = ∅.
If y, z ∈ Eε and ‖y − z‖ < ε, then as before there exists x ∈ Λ such that
‖y − x‖ < ε(x, I)/2. Therefore

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ < ε+ ε(x, I)/2 ≤ ε(x, I)

and since y, z ∈ B(x, ε(x, I)), it follows that

‖Z(t, y)− Z(t, z)‖ ≤ K(x, I)‖y − z‖ ≤ K0‖y − z‖

where K0 := maxx∈ΛK(x, I) < ∞. On the other hand if y, z ∈ Eε and
‖y − z‖ ≥ ε, then

‖Z(t, y)− Z(t, z)‖ ≤ 2M ≤ 2M
ε
‖y − z‖ .

Thus if we let K := max {2M/ε,K0} , we have shown

‖Z(t, y)− Z(t, z)‖ ≤ K‖y − z‖ for all y, z ∈ Eε and t ∈ I.

Proposition 11.8 (Maximal Solutions). Let Z ∈ C(J ×U,X) be a locally
Lipschitz function in x and let x ∈ U be fixed. Then there is an interval Jx =
(a(x), b(x)) with a ∈ [−∞, 0) and b ∈ (0,∞] and a C1–function y : J → U
with the following properties:

1. y solves ODE in Eq. (11.1).
2. If ỹ : J̃ = (ã, b̃) → U is another solution of Eq. (11.1) (we assume that

0 ∈ J̃) then J̃ ⊂ J and ỹ = y| J̃ .

The function y : J → U is called the maximal solution to Eq. (11.1).

Proof. Suppose that yi : Ji = (ai, bi) → U, i = 1, 2, are two solutions to
Eq. (11.1). We will start by showing the y1 = y2 on J1 ∩ J2. To do this1 let
1 Here is an alternate proof of the uniqueness. Let

T ≡ sup{t ∈ [0,min{b1, b2}) : y1 = y2 on [0, t]}.

(T is the first positive time after which y1 and y2 disagree.
Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T ) =

y2(T ) =: x′. Applying the local uniqueness theorem to y1(· − T ) and y2(· − T )
thought as function from (−δ, δ) → B(x′, ε(x′)) for some δ sufficiently small, we
learn that y1(·−T ) = y2(·−T ) on (−δ, δ). But this shows that y1 = y2 on [0, T+δ)
which contradicts the definition of T. Hence we must have the T = min{b1, b2},
i.e. y1 = y2 on J1 ∩ J2 ∩ [0,∞). A similar argument shows that y1 = y2 on
J1 ∩ J2 ∩ (−∞, 0] as well.
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J0 = (a0, b0) be chosen so that 0 ∈ J0 ⊂ J1∩J2, and let E := y1(J0)∪y2(J0) –
a compact subset of X. Choose ε > 0 as in Lemma 11.7 so that Z is Lipschitz
on Eε. Then y1|J0 , y2|J0 : J0 → Eε both solve Eq. (11.1) and therefore are
equal by Corollary 11.3. Since J0 = (a0, b0) was chosen arbitrarily so that
[a, b] ⊂ J1 ∩ J2, we may conclude that y1 = y2 on J1 ∩ J2. Let (yα, Jα =
(aα, bα))α∈A denote the possible solutions to (11.1) such that 0 ∈ Jα. Define
Jx = ∪Jα and set y = yα on Jα. We have just checked that y is well defined
and the reader may easily check that this function y : Jx → U satisfies all the
conclusions of the theorem.

Notation 11.9 For each x ∈ U, let Jx = (a(x), b(x)) be the maximal in-
terval on which Eq. (11.1) may be solved, see Proposition 11.8. Set D(Z) :=
∪x∈U (Jx × {x}) ⊂ J × U and let φ : D(Z) → U be defined by φ(t, x) = y(t)
where y is the maximal solution to Eq. (11.1). (So for each x ∈ U, φ(·, x) is
the maximal solution to Eq. (11.1).)

Proposition 11.10. Let Z ∈ C(J×U,X) be a locally Lipschitz function in x
and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (11.1). If b(x) <
b, then either lim supt↑b(x) ‖Z(t, y(t))‖ =∞ or y(b(x)−) := limt↑b(x) y(t) exists
and y(b(x)−) /∈ U. Similarly, if a > a(x), then either lim supt↓a(x) ‖y(t)‖ =∞
or y(a(x)+) := limt↓a y(t) exists and y(a(x)+) /∈ U.

Proof. Suppose that b < b(x) and M := lim supt↑b(x) ‖Z(t, y(t))‖ < ∞.
Then there is a b0 ∈ (0, b(x)) such that ‖Z(t, y(t))‖ ≤ 2M for all t ∈ (b0, b(x)).
Thus, by the usual fundamental theorem of calculus argument,

‖y(t)− y(t′)‖ ≤

∣∣∣∣∣
∫ t′

t

‖Z(t, y(τ))‖ dτ

∣∣∣∣∣ ≤ 2M |t− t′|

for all t, t′ ∈ (b0, b(x)). From this it is easy to conclude that y(b(x)−) =
limt↑b(x) y(t) exists. If y(b(x)−) ∈ U, by the local existence Theorem 11.4,
there exists δ > 0 and w ∈ C1 ((b(x)− δ, b(x) + δ), U) such that

ẇ(t) = Z(t, w(t)) and w(b(x)) = y(b(x)−).

Now define ỹ : (a, b(x) + δ)→ U by

ỹ(t) =
{
y(t) if t ∈ Jx
w(t) if t ∈ [b(x), b(x) + δ) .

The reader may now easily show ỹ solves the integral Eq. (11.2) and hence
also solves Eq. 11.1 for t ∈ (a(x), b(x) + δ).2 But this violates the maximality
of y and hence we must have that y(b(x)−) /∈ U. The assertions for t near
a(x) are proved similarly.
2 See the argument in Proposition 11.13 for a slightly different method of extending
y which avoids the use of the integral equation (11.2).
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Example 11.11. Let X = R2, J = R, U =
{
(x, y) ∈ R2 : 0 < r < 1

}
where

r2 = x2 + y2 and

Z(x, y) =
1
r
(x, y) +

1
1− r2

(−y, x).

The the unique solution (x(t), y(t)) to

d

dt
(x(t), y(t)) = Z(x(t), y(t)) with (x(0), y(0)) = (

1
2
, 0)

is given by

(x(t), y(t)) =
(
t+

1
2

)(
cos
(

1
1/2− t

)
, sin

(
1

1/2− t

))
for t ∈ J(1/2,0) = (−∞, 1/2) . Notice that ‖Z(x(t), y(t))‖ → ∞ as t ↑ 1/2 and
dist((x(t), y(t)), U c)→ 0 as t ↑ 1/2.

Example 11.12. (Not worked out completely.) Let X = U = `2, ψ ∈ C∞(R2)
be a smooth function such that ψ = 1 in a neighborhood of the line segment
joining (1, 0) to (0, 1) and being supported within the 1/10 – neighborhood of
this segment. Choose an ↑ ∞ and bn ↑ ∞ and define

Z(x) =
∞∑
n=1

anψ(bn(xn, xn+1))(en+1 − en). (11.22)

For any x ∈ `2, only a finite number of terms are non-zero in the above some
in a neighborhood of x. Therefor Z : `2 → `2 is a smooth and hence locally
Lipshcitz vector field. Let (y(t), J = (a, b)) denote the maximal solution to

ẏ(t) = Z(y(t)) with y(0) = e1.

Then if the an and bn are chosen appropriately, then b < ∞ and there will
exist tn ↑ b such that y(tn) is approximately en for all n. So again y(tn) does
not have a limit yet supt∈[0,b) ‖y(t)‖ < ∞. The idea is that Z is constructed
to blow the particle form e1 to e2 to e3 to e4 etc. etc. with the time it takes to
travel from en to en+1 being on order 1/2n. The vector field in Eq. (11.22) is
a first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition 11.10 which is more useful when
dim(X) <∞.

Proposition 11.13. Let Z ∈ C(J × U,X) be a locally Lipschitz function in
x and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (11.1).

1. If b(x) < b, then for every compact subset K ⊂ U there exists TK < b(x)
such that y(t) /∈ K for all t ∈ [TK , b(x)).
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154 11 Ordinary Differential Equations in a Banach Space

2. When dim(X) < ∞, we may write this condition as: if b(x) < b, then
either

lim sup
t↑b(x)

‖y(t)‖ =∞ or lim inf
t↑b(x)

dist(y(t), U c) = 0.

Proof. 1) Suppose that b(x) < b and, for sake of contradiction, there
exists a compact set K ⊂ U and tn ↑ b(x) such that y(tn) ∈ K for all n.
Since K is compact, by passing to a subsequence if necessary, we may assume
y∞ := limn→∞ y(tn) exists in K ⊂ U. By the local existence Theorem 11.4,
there exists T0 > 0 and δ > 0 such that for each x′ ∈ B (y∞, δ) there exists a
unique solution w(·, x′) ∈ C1((−T0, T0), U) solving

w(t, x′) = Z(t, w(t, x′)) and w(0, x′) = x′.

Now choose n sufficiently large so that tn ∈ (b(x)− T0/2, b(x)) and y(tn) ∈
B (y∞, δ) . Define ỹ : (a(x), b(x) + T0/2)→ U by

ỹ(t) =
{
y(t) if t ∈ Jx
w(t− tn, y(tn)) if t ∈ (tn − T0, b(x) + T0/2).

wherein we have used (tn−T0, b(x)+T0/2) ⊂ (tn−T0, tn+T0). By uniqueness
of solutions to ODE’s ỹ is well defined, ỹ ∈ C1((a(x), b(x) + T0/2) , X) and ỹ
solves the ODE in Eq. 11.1. But this violates the maximality of y. 2) For each
n ∈ N let

Kn := {x ∈ U : ‖x‖ ≤ n and dist(x,U c) ≥ 1/n} .

Then Kn ↑ U and each Kn is a closed bounded set and hence compact if
dim(X) < ∞. Therefore if b(x) < b, by item 1., there exists Tn ∈ [0, b(x))
such that y(t) /∈ Kn for all t ∈ [Tn, b(x)) or equivalently ‖y(t)‖ > n or
dist(y(t), U c) < 1/n for all t ∈ [Tn, b(x)).

Remark 11.14. In general it is not true that the functions a and b are contin-
uous. For example, let U be the region in R2 described in polar coordinates
by r > 0 and 0 < θ < 3π/4 and Z(x, y) = (0,−1) as in Figure 11.2 below.
Then b(x, y) = y for all x, y > 0 while b(x, y) = ∞ for all x < 0 and y ∈ R
which shows b is discontinuous. On the other hand notice that

{b > t} = {x < 0} ∪ {(x, y) : x ≥ 0, y > t}

is an open set for all t > 0. An example of a vector field for which b(x) is
discontinuous is given in the top left hand corner of Figure 11.2. The map
ψ would allow the reader to find an example on R2 if so desired. Some cal-
culations shows that Z transferred to R2 by the map ψ is given by the new
vector

Z̃(x, y) = −e−x
(

sin
(

3π
8

+
3
4

tan−1 (y)
)
, cos

(
3π
8

+
3
4

tan−1 (y)
))

.

Page: 154 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



11.4 Global Properties 155

Fig. 11.2. Manufacturing vector fields where b(x) is discontinuous.

Theorem 11.15 (Global Continuity). Let Z ∈ C(J × U,X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J × U and the func-
tions φ : D(Z) → U and φ̇ : D(Z) → U are continuous. More precisely, for
all x0 ∈ U and all open intervals J0 such that 0 ∈ J0 @@ Jx0 there exists
δ = δ(x0, J0, Z) > 0 and C = C(x0, J0, Z) <∞ such that for all x ∈ B(x0, δ),
J0 ⊂ Jx and

‖φ(·, x)− φ(·, x0)‖BC(J0,U) ≤ C ‖x− x0‖ . (11.23)

Proof. Let |J0| = b0−a0, I = J̄0 and E := y(J̄0) – a compact subset of U
and let ε > 0 and K <∞ be given as in Lemma 11.7, i.e. K is the Lipschitz
constant for Z on Eε. Also recall the notation: ∆1(t) = [0, t] if t > 0 and
∆1(t) = [t, 0] if t < 0. Suppose that x ∈ Eε, then by Corollary 11.3,

‖φ(t, x)− φ(t, x0)‖ ≤ ‖x− x0‖eK|t| ≤ ‖x− x0‖eK|J0| (11.24)

for all t ∈ J0 ∩ Jx such that such that φ (∆1(t), x) ⊂ Eε. Letting δ :=
εe−K|J0|/2, and assuming x ∈ B(x0, δ), the previous equation implies

‖φ(t, x)− φ(t, x0)‖ ≤ ε/2 < ε ∀ t ∈ J0 ∩ Jx 3 φ (∆1(t), x) ⊂ Eε.

This estimate further shows that φ(t, x) remains bounded and strictly away
from the boundary of U for all such t. Therefore, it follows from Proposition
11.8 and “continuous induction3” that J0 ⊂ Jx and Eq. (11.24) is valid for all

3 See the argument in the proof of Proposition 10.11.
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156 11 Ordinary Differential Equations in a Banach Space

t ∈ J0. This proves Eq. (11.23) with C := eK|J0|. Suppose that (t0, x0) ∈ D(Z)
and let 0 ∈ J0 @@ Jx0 such that t0 ∈ J0 and δ be as above. Then we have
just shown J0 × B(x0, δ) ⊂ D(Z) which proves D(Z) is open. Furthermore,
since the evaluation map

(t0, y) ∈ J0 ×BC(J0, U) e→ y(t0) ∈ X

is continuous (as the reader should check) it follows that φ = e◦(x→ φ(·, x)) :
J0 × B(x0, δ) → U is also continuous; being the composition of continuous
maps. The continuity of φ̇(t0, x) is a consequences of the continuity of φ and
the differential equation 11.1 Alternatively using Eq. (11.2),

‖φ(t0, x)− φ(t, x0)‖ ≤ ‖φ(t0, x)− φ(t0, x0)‖+ ‖φ(t0, x0)− φ(t, x0)‖

≤ C ‖x− x0‖+
∣∣∣∣∫ t0

t

‖Z(τ, φ(τ, x0))‖ dτ
∣∣∣∣

≤ C ‖x− x0‖+M |t0 − t|

where C is the constant in Eq. (11.23) andM = supτ∈J0
‖Z(τ, φ(τ, x0))‖ <∞.

This clearly shows φ is continuous.

11.5 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field Z. It will be convenient to introduce the following
suggestive notation. For (t, x) ∈ D(Z), set etZ(x) = φ(t, x). So the path
t→ etZ(x) is the maximal solution to

d

dt
etZ(x) = Z(etZ(x)) with e0Z(x) = x.

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 11.16 We write f : X → X to mean a function defined on some
open subset D(f) ⊂ X. The open set D(f) will be called the domain of f.
Given two functions f : X → X and g : X → X with domains D(f) and
D(g) respectively, we define the composite function f ◦ g : X → X to be the
function with domain

D(f ◦ g) = {x ∈ X : x ∈ D(g) and g(x) ∈ D(f)} = g−1(D(f))

given by the rule f ◦ g(x) = f(g(x)) for all x ∈ D(f ◦ g). We now write f = g
iff D(f) = D(g) and f(x) = g(x) for all x ∈ D(f) = D(g). We will also write
f ⊂ g iff D(f) ⊂ D(g) and g|D(f) = f.
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11.5 Semi-Group Properties of time independent flows 157

Theorem 11.17. For fixed t ∈ R we consider etZ as a function from X to X
with domain D(etZ) = {x ∈ U : (t, x) ∈ D(Z)}, where D(φ) = D(Z) ⊂ R×U,
D(Z) and φ are defined in Notation 11.9. Conclusions:

1. If t, s ∈ R and t · s ≥ 0, then etZ ◦ esZ = e(t+s)Z .
2. If t ∈ R, then etZ ◦ e−tZ = IdD(e−tZ).

3. For arbitrary t, s ∈ R, etZ ◦ esZ ⊂ e(t+s)Z .

Proof. Item 1. For simplicity assume that t, s ≥ 0. The case t, s ≤ 0 is left
to the reader. Suppose that x ∈ D(etZ ◦esZ). Then by assumption x ∈ D(esZ)
and esZ(x) ∈ D(etZ). Define the path y(τ) via:

y(τ) =
{
eτZ(x) if 0 ≤ τ ≤ s
e(τ−s)Z(x) if s ≤ τ ≤ t+ s

.

It is easy to check that y solves ẏ(τ) = Z(y(τ)) with y(0) = x. But since,
eτZ(x) is the maximal solution we must have that x ∈ D(e(t+s)Z) and y(t +
s) = e(t+s)Z(x). That is e(t+s)Z(x) = etZ ◦ esZ(x). Hence we have shown that
etZ ◦ esZ ⊂ e(t+s)Z . To finish the proof of item 1. it suffices to show that
D(e(t+s)Z) ⊂ D(etZ ◦ esZ). Take x ∈ D(e(t+s)Z), then clearly x ∈ D(esZ). Set
y(τ) = e(τ+s)Z(x) defined for 0 ≤ τ ≤ t. Then y solves

ẏ(τ) = Z(y(τ)) with y(0) = esZ(x).

But since τ → eτZ(esZ(x)) is the maximal solution to the above initial valued
problem we must have that y(τ) = eτZ(esZ(x)), and in particular at τ =
t, e(t+s)Z(x) = etZ(esZ(x)). This shows that x ∈ D(etZ ◦ esZ) and in fact
e(t+s)Z ⊂ etZ ◦ esZ .

Item 2. Let x ∈ D(e−tZ) – again assume for simplicity that t ≥ 0. Set
y(τ) = e(τ−t)Z(x) defined for 0 ≤ τ ≤ t. Notice that y(0) = e−tZ(x) and
ẏ(τ) = Z(y(τ)). This shows that y(τ) = eτZ(e−tZ(x)) and in particular that
x ∈ D(etZ ◦ e−tZ) and etZ ◦ e−tZ(x) = x. This proves item 2.

Item 3. I will only consider the case that s < 0 and t + s ≥ 0, the other
cases are handled similarly. Write u for t + s, so that t = −s + u. We know
that etZ = euZ ◦ e−sZ by item 1. Therefore

etZ ◦ esZ = (euZ ◦ e−sZ) ◦ esZ .

Notice in general, one has (f ◦ g) ◦ h = f ◦ (g ◦ h) (you prove). Hence, the
above displayed equation and item 2. imply that

etZ ◦ esZ = euZ ◦ (e−sZ ◦ esZ) = e(t+s)Z ◦ ID(esZ) ⊂ e(t+s)Z .

The following result is trivial but conceptually illuminating partial con-
verse to Theorem 11.17.
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Proposition 11.18 (Flows and Complete Vector Fields). Suppose U ⊂o
X, φ ∈ C(R× U,U) and φt(x) = φ(t, x). Suppose φ satisfies:

1. φ0 = IU ,
2. φt ◦ φs = φt+s for all t, s ∈ R, and
3. Z(x) := φ̇(0, x) exists for all x ∈ U and Z ∈ C(U,X) is locally Lipschitz.

Then φt = etZ .

Proof. Let x ∈ U and y(t) := φt(x). Then using Item 2.,

ẏ(t) =
d

ds
|0y(t+ s) =

d

ds
|0φ(t+s)(x) =

d

ds
|0φs ◦ φt(x) = Z(y(t)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 11.3) that φt(x) = y(t) = etZ(x).

11.6 Exercises

Exercise 11.1. Find a vector field Z such that e(t+s)Z is not contained in
etZ ◦ esZ .

Definition 11.19. A locally Lipschitz function Z : U ⊂o X → X is said to
be a complete vector field if D(Z) = R×U. That is for any x ∈ U, t→ etZ(x)
is defined for all t ∈ R.

Exercise 11.2. Suppose that Z : X → X is a locally Lipschitz function.
Assume there is a constant C > 0 such that

‖Z(x)‖ ≤ C(1 + ‖x‖) for all x ∈ X.

Then Z is complete. Hint: use Gronwall’s Lemma 11.2 and Proposition 11.10.

Exercise 11.3. Suppose y is a solution to ẏ(t) = |y(t)|1/2 with y(0) = 0.
Show there exists a, b ∈ [0,∞] such that

y(t) =


1
4 (t− b)2 if t ≥ b

0 if −a < t < b
− 1

4 (t+ a)2 if t ≤ −a.

Exercise 11.4. Using the fact that the solutions to Eq. (11.3) are never 0 if
x 6= 0, show that y(t) = 0 is the only solution to Eq. (11.3) with y(0) = 0.

Exercise 11.5 (Higher Order ODE). Let X be a Banach space, , U ⊂o Xn

and f ∈ C (J × U , X) be a Locally Lipschitz function in x = (x1, . . . , xn).
Show the nth ordinary differential equation,
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y(n)(t) = f(t, y(t), ẏ(t), . . . y(n−1)(t)) with y(k)(0) = yk0 for k < n (11.25)

where (y0
0 , . . . , y

n−1
0 ) is given in U , has a unique solution for small t ∈ J.

Hint: let y(t) =
(
y(t), ẏ(t), . . . y(n−1)(t)

)
and rewrite Eq. (11.25) as a first

order ODE of the form

ẏ(t) = Z(t,y(t)) with y(0) = (y0
0 , . . . , y

n−1
0 ).

Exercise 11.6. Use the results of Exercises 10.19 and 11.5 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2× 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I +B where B2 = 0.

Exercise 11.7 (Non-Homogeneous ODE). Suppose that U ⊂o X is open
and Z : R×U → X is a continuous function. Let J = (a, b) be an interval and
t0 ∈ J. Suppose that y ∈ C1(J, U) is a solution to the “non-homogeneous”
differential equation:

ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U. (11.26)

Define Y ∈ C1(J− t0,R×U) by Y (t) := (t+ t0, y(t+ t0)). Show that Y solves
the “homogeneous” differential equation

Ẏ (t) = Z̃(Y (t)) with Y (0) = (t0, y0), (11.27)

where Z̃(t, x) := (1, Z(x)). Conversely, suppose that Y ∈ C1(J − t0,R × U)
is a solution to Eq. (11.27). Show that Y (t) = (t+ t0, y(t+ t0)) for some y ∈
C1(J, U) satisfying Eq. (11.26). (In this way the theory of non-homogeneous
ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 11.8 (Differential Equations with Parameters). Let W be
another Banach space, U × V ⊂o X ×W and Z ∈ C(U × V,X) be a locally
Lipschitz function on U ×V. For each (x,w) ∈ U ×V, let t ∈ Jx,w → φ(t, x, w)
denote the maximal solution to the ODE

ẏ(t) = Z(y(t), w) with y(0) = x. (11.28)

Prove
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w} (11.29)

is open in R× U × V and φ and φ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (11.28), then v(t) :=

(y(t), w) solves the differential equation,

v̇(t) = Z̃(v(t)) with v(0) = (x,w), (11.30)

where Z̃(x,w) := (Z(x,w), 0) ∈ X×W and let ψ(t, (x,w)) := v(t). Now apply
the Theorem 11.15 to the differential equation (11.30).
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Exercise 11.9 (Abstract Wave Equation). For A ∈ L(X) and t ∈ R, let

cos(tA) :=
∞∑
n=0

(−1)n

(2n)!
t2nA2n and

sin(tA)
A

:=
∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1A2n.

Show that the unique solution y ∈ C2 (R, X) to

ÿ(t) +A2y(t) = 0 with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (11.31)

is given by

y(t) = cos(tA)y0 +
sin(tA)
A

ẏ0.

Remark 11.20. Exercise 11.9 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (11.31) as a first order ODE using Exercise
11.5. In doing so you will be lead to compute etB where B ∈ L(X × X) is
given by

B =
(

0 I
−A2 0

)
,

where we are writing elements of X×X as column vectors,
(
x1

x2

)
. You should

then show

etB =
(

cos(tA) sin(tA)
A

−A sin(tA) cos(tA)

)
where

A sin(tA) :=
∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1A2(n+1).

Exercise 11.10 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 11.9, but now consider the ODE,

ÿ(t) +A2y(t) = f(t) with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (11.32)

where f ∈ C(R, X). Show the unique solution to Eq. (11.32) is given by

y(t) = cos(tA)y0 +
sin(tA)
A

ẏ0 +
∫ t

0

sin((t− τ)A)
A

f(τ)dτ (11.33)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (11.33) from Exercise 10.21 and the comments in
Remark 11.20.
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12

Banach Space Calculus

In this section, X and Y will be Banach space and U will be an open subset
of X.

Notation 12.1 (ε, O, and o notation) Let 0 ∈ U ⊂o X, and f : U → Y
be a function. We will write:

1. f(x) = ε(x) if limx→0 ‖f(x)‖ = 0.
2. f(x) = O(x) if there are constants C < ∞ and r > 0 such that
‖f(x)‖ ≤ C‖x‖ for all x ∈ B(0, r). This is equivalent to the condition
that lim supx→0

(
‖x‖−1‖f(x)‖

)
<∞, where

lim sup
x→0

‖f(x)‖
‖x‖

:= lim
r↓0

sup{‖f(x)‖ : 0 < ‖x‖ ≤ r}.

3. f(x) = o(x) if f(x) = ε(x)O(x), i.e. limx→0 ‖f(x)‖/‖x‖ = 0.

Example 12.2. Here are some examples of properties of these symbols.

1. A function f : U ⊂o X → Y is continuous at x0 ∈ U if f(x0 + h) =
f(x0) + ε(h).

2. If f(x) = ε(x) and g(x) = ε(x) then f(x) + g(x) = ε(x).
Now let g : Y → Z be another function where Z is another Banach space.

3. If f(x) = O(x) and g(y) = o(y) then g ◦ f(x) = o(x).
4. If f(x) = ε(x) and g(y) = ε(y) then g ◦ f(x) = ε(x).

12.1 The Differential

Definition 12.3. A function f : U ⊂o X → Y is differentiable at x0 ∈ U
if there exists a linear transformation Λ ∈ L(X,Y ) such that

f(x0 + h)− f(x0)− Λh = o(h). (12.1)

We denote Λ by f ′(x0) or Df(x0) if it exists. As with continuity, f is dif-
ferentiable on U if f is differentiable at all points in U.
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Remark 12.4. The linear transformation Λ in Definition 12.3 is necessarily
unique. Indeed if Λ1 is another linear transformation such that Eq. (12.1)
holds with Λ replaced by Λ1, then

(Λ− Λ1)h = o(h),

i.e.

lim sup
h→0

‖(Λ− Λ1)h‖
‖h‖

= 0.

On the other hand, by definition of the operator norm,

lim sup
h→0

‖(Λ− Λ1)h‖
‖h‖

= ‖Λ− Λ1‖.

The last two equations show that Λ = Λ1.

Exercise 12.1. Show that a function f : (a, b) → X is a differentiable at
t ∈ (a, b) in the sense of Definition 10.8 iff it is differentiable in the sense of
Definition 12.3. Also show Df(t)v = vḟ(t) for all v ∈ R.

Example 12.5. If T ∈ L (X,Y ) and x, h ∈ X, then

T (x+ h)− T (x)− Th = 0

which shows T ′ (x) = T for all x ∈ X.

Example 12.6. Assume that GL(X,Y ) is non-empty. Then by Corollary 7.22,
GL(X,Y ) is an open subset of L(X,Y ) and the inverse map f : GL(X,Y )→
GL(Y,X), defined by f(A) := A−1, is continuous. We will now show that f
is differentiable and

f ′(A)B = −A−1BA−1 for all B ∈ L(X,Y ).

This is a consequence of the identity,

f(A+H)− f(A) = (A+H)−1 (A− (A+H))A−1 = −(A+H)−1HA−1

which may be used to find the estimate,∥∥f(A+H)− f(A) +A−1HA−1
∥∥ =

∥∥[A−1 − (A+H)−1
]
HA−1

∥∥
≤
∥∥A−1 − (A+H)−1

∥∥ ‖H‖∥∥A−1
∥∥

≤ ‖A−1‖3 ‖H‖2

1− ‖A−1‖ ‖H‖
= O

(
‖H‖2

)
wherein we have used the bound in Eq. (7.10) of Corollary 7.22 for the last
inequality.
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12.2 Product and Chain Rules

The following theorem summarizes some basic properties of the differential.

Theorem 12.7. The differential D has the following properties:

1. Linearity: D is linear, i.e. D(f + λg) = Df + λDg.
2. Product Rule: If f : U ⊂o X → Y and A : U ⊂o X → L(X,Z) are

differentiable at x0 then so is x→ (Af)(x) := A(x)f(x) and

D(Af)(x0)h = (DA(x0)h)f(x0) +A(x0)Df(x0)h.

3. Chain Rule: If f : U ⊂o X → V ⊂o Y is differentiable at x0 ∈ U, and
g : V ⊂o Y → Z is differentiable at y0 := f(x0), then g◦f is differentiable
at x0 and (g ◦ f)′(x0) = g′(y0)f ′(x0).

4. Converse Chain Rule: Suppose that f : U ⊂o X → V ⊂o Y is contin-
uous at x0 ∈ U, g : V ⊂o Y → Z is differentiable y0 := f(ho), g′(y0) is
invertible, and g ◦ f is differentiable at x0, then f is differentiable at x0

and
f ′(x0) := [g′(x0)]−1(g ◦ f)′(x0). (12.2)

Proof. Linearity. Let f, g : U ⊂o X → Y be two functions which are
differentiable at x0 ∈ U and λ ∈ R, then

(f + λg)(x0 + h)
= f(x0) +Df(x0)h+ o(h) + λ(g(x0) +Dg(x0)h+ o(h)
= (f + λg)(x0) + (Df(x0) + λDg(x0))h+ o(h),

which implies that (f + λg) is differentiable at x0 and that

D(f + λg)(x0) = Df(x0) + λDg(x0).

Product Rule. The computation,

A(x0 + h)f(x0 + h)
= (A(x0) +DA(x0)h+ o(h))(f(x0) + f ′(x0)h+ o(h))
= A(x0)f(x0) +A(x0)f ′(x0)h+ [DA(x0)h]f(x0) + o(h),

verifies the product rule holds. This may also be considered as a special case
of Proposition 12.9. Chain Rule. Using f(x0 + h) − f(x0) = O(h) (see Eq.
(12.1)) and o(O(h)) = o(h),

(g◦f)(x0 + h)
= g(f(x0)) + g′(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))
= g(f(x0)) + g′(f(x0))(Df(x0)x0 + o(h)) + o(f(x0 + h)− f(x0)
= g(f(x0)) + g′(f(x0))Df(x0)h+ o(h).
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Converse Chain Rule. Since g is differentiable at y0 = f(x0) and g′ (y0) is
invertible,

g(f(x0 + h))− g(f(x0))
= g′(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))
= g′(f(x0)) [f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))] .

And since g ◦ f is differentiable at x0,

(g ◦ f)(x0 + h)− g(f(x0)) = (g ◦ f)′(x0)h+ o(h).

Comparing these two equations shows that

f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))

= g′(f(x0))−1 [(g ◦ f)′(x0)h+ o(h)]

which is equivalent to

f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))

= g′(f(x0))−1 [(g ◦ f)′(x0)h+ o(h)]

= g′(f(x0))−1{(g ◦ f)′(x0)h+ o(h)− o(f(x0 + h)− f(x0))}
= g′(f(x0))−1(g ◦ f)′(x0)h+ o(h) + o(f(x0 + h)− f(x0)). (12.3)

Using the continuity of f, f(x0 + h)− f(x0) is close to 0 if h is close to zero,
and hence

‖o(f(x0 + h)− f(x0))‖ ≤
1
2
‖f(x0 + h)− f(x0)‖ (12.4)

for all h sufficiently close to 0. (We may replace 1
2 by any number α > 0

above.) Taking the norm of both sides of Eq. (12.3) and making use of Eq.
(12.4) shows, for h close to 0, that

‖f(x0 + h)− f(x0)‖

≤ ‖g′(f(x0))−1(g ◦ f)′(x0)‖‖h‖+ o(‖h‖) +
1
2
‖f(x0 + h)− f(x0)‖.

Solving for ‖f(x0 + h)− f(x0)‖ in this last equation shows that

f(x0 + h)− f(x0) = O(h). (12.5)

(This is an improvement, since the continuity of f only guaranteed that f(x0+
h) − f(x0) = ε(h).) Because of Eq. (12.5), we now know that o(f(x0 + h) −
f(x0)) = o(h), which combined with Eq. (12.3) shows that

f(x0 + h)− f(x0) = g′(f(x0))−1(g ◦ f)′(x0)h+ o(h),

i.e. f is differentiable at x0 and f ′(x0) = g′(f(x0))−1(g ◦ f)′(x0).
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Corollary 12.8 (Chain Rule). Suppose that σ : (a, b) → U ⊂o X is differ-
entiable at t ∈ (a, b) and f : U ⊂o X → Y is differentiable at σ(t) ∈ U. Then
f ◦ σ is differentiable at t and

d(f ◦ σ)(t)/dt = f ′(σ(t))σ̇(t).

Proposition 12.9 (Product Rule II). Suppose that X := X1 × · · · × Xn

with each Xi being a Banach space and T : X1×· · ·×Xn → Y is a multilinear
map, i.e.

xi ∈ Xi → T (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Y

is linear when x1, . . . , xi−1, xi+1, . . . , xn are held fixed. Then the following are
equivalent:

1. T is continuous.
2. T is continuous at 0 ∈ X.
3. There exists a constant C <∞ such that

‖T (x)‖Y ≤ C
n∏
i=1

‖xi‖Xi
(12.6)

for all x = (x1, . . . , xn) ∈ X.
4. T is differentiable at all x ∈ X1 × · · · ×Xn.

Moreover if T the differential of T is given by

T ′ (x)h =
n∑
i=1

T (x1, . . . , xi−1, hi, xi+1, . . . , xn) (12.7)

where h = (h1, . . . , hn) ∈ X.

Proof. Let us equip X with the norm

‖x‖X := max
{
‖xi‖Xi

}
.

If T is continuous then T is continuous at 0. If T is continuous at 0, using
T (0) = 0, there exists a δ > 0 such that ‖T (x)‖Y ≤ 1 whenever ‖x‖X ≤ δ.

Now if x ∈ X is arbitrary, let x′ := δ
(
‖x1‖−1

X1
x1, . . . , ‖xn‖−1

Xn
xn

)
. Then

‖x′‖X ≤ δ and hence∥∥∥∥∥
(
δn

n∏
i=1

‖xi‖−1
Xi

)
T (x1, . . . , xn)

∥∥∥∥∥
Y

= ‖T (x′)‖ ≤ 1

from which Eq. (12.6) follows with C = δ−n.
Now suppose that Eq. (12.6) holds. For x, h ∈ X and ε ∈ {0, 1}n let

|ε| =
∑n
i=1 εi and
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xε (h) := ((1− ε1)x1 + ε1h1, . . . , (1− εn)xn + εnhn) ∈ X.

By the multi-linearity of T,

T (x+ h) = T (x1 + h1, . . . , xn + hn) =
∑

ε∈{0,1}n

T (xε (h))

= T (x) +
n∑
i=1

T (x1, . . . , xi−1, hi, xi+1, . . . , xn)

+
∑

ε∈{0,1}n:|ε|≥2

T (xε (h)) . (12.8)

From Eq. (12.6), ∥∥∥∥∥∥
∑

ε∈{0,1}n:|ε|≥2

T (xε (h))

∥∥∥∥∥∥ = O
(
‖h‖2

)
,

and so it follows from Eq. (12.8) that T ′ (x) exists and is given by Eq. (12.7).
This completes the proof since it is trivial to check that T being differentiable
at x ∈ X implies continuity of T at x ∈ X.

Exercise 12.2. Let det : L (Rn) → R be the determinant function on n × n
matrices and for A ∈ L (6 Rn) we will let Ai denote the ith – column of A and
write A = (A1|A2| . . . |An) .

1. Show det′ (A) exists for all A ∈ L (6 Rn) and

′
det (A)H =

n∑
i=1

det (A1| . . . |Ai−1|Hi|Ai+1| . . . |An) (12.9)

for all H ∈ L (Rn) . Hint: recall that det (A) is a multilinear function of
its columns.

2. Use Eq. (12.9) along with basic properties of the determinant to show
det′ (I)H = tr(H).

3. Suppose now that A ∈ GL (Rn) , show

′
det (A)H = det (A) tr(A−1H).

Hint: Notice that det (A+H) = det (A) det
(
I +A−1H

)
.

4. If A ∈ L (Rn) , show det
(
eA
)

= etr(A). Hint: use the previous item and
Corollary 12.8 to show

d

dt
det
(
etA
)

= det
(
etA
)
tr(A).
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Definition 12.10. Let X and Y be Banach spaces and let L1(X,Y ) :=
L(X,Y ) and for k ≥ 2 let Lk(X,Y ) be defined inductively by Lk+1(X,Y ) =
L(X,Lk(X,Y )). For example L2(X,Y ) = L(X,L(X,Y )) and L3(X,Y ) =
L (X,L(X,L(X,Y ))) .

Suppose f : U ⊂o X → Y is a function. If f is differentiable on U, then it
makes sense to ask if f ′ = Df : U → L(X,Y ) = L1(X,Y ) is differentiable. If
Df is differentiable on U then f ′′ = D2f := DDf : U → L2(X,Y ). Similarly
we define f (n) = Dnf : U → Ln(X,Y ) inductively.

Definition 12.11. Given k ∈ N, let Ck (U, Y ) denote those functions f :
U → Y such that f (j) := Djf : U → Lj (X,Y ) exists and is continuous for
j = 1, 2, . . . , k.

Example 12.12. Let us continue on with Example 12.6 but now let X = Y to
simplify the notation. So f : GL(X)→ GL(X) is the map f(A) = A−1 and

f ′(A) = −LA−1RA−1 , i.e. f ′ = −LfRf .

where LAB = AB and RAB = AB for all A,B ∈ L(X). As the reader may
easily check, the maps

A ∈ L(X)→ LA, RA ∈ L(L(X))

are linear and bounded. So by the chain and the product rule we find f ′′(A)
exists for all A ∈ L(X) and

f ′′(A)B = −Lf ′(A)BRf − LfRf ′(A)B .

More explicitly

[f ′′(A)B]C = A−1BA−1CA−1 +A−1CA−1BA−1. (12.10)

Working inductively one shows f : GL(X)→ GL(X) defined by f(A) := A−1

is C∞.

12.3 Partial Derivatives

Definition 12.13 (Partial or Directional Derivative). Let f : U ⊂o X →
Y be a function, x0 ∈ U, and v ∈ X. We say that f is differentiable at x0 in
the direction v iff d

dt |0(f(x0 + tv)) =: (∂vf)(x0) exists. We call (∂vf)(x0) the
directional or partial derivative of f at x0 in the direction v.

Notice that if f is differentiable at x0, then ∂vf(x0) exists and is equal to
f ′(x0)v, see Corollary 12.8.
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Proposition 12.14. Let f : U ⊂o X → Y be a continuous function and
D ⊂ X be a dense subspace of X. Assume ∂vf(x) exists for all x ∈ U and
v ∈ D, and there exists a continuous function A : U → L(X,Y ) such that
∂vf(x) = A(x)v for all v ∈ D and x ∈ U ∩ D. Then f ∈ C1(U, Y ) and
Df = A.

Proof. Let x0 ∈ U, ε > 0 such that B(x0, 2ε) ⊂ U and M := sup{‖A(x)‖ :
x ∈ B(x0, 2ε)} < ∞1. For x ∈ B(x0, ε) ∩ D and v ∈ D ∩ B(0, ε), by the
fundamental theorem of calculus,

f(x+ v)− f(x) =
∫ 1

0

df(x+ tv)
dt

dt

=
∫ 1

0

(∂vf)(x+ tv) dt =
∫ 1

0

A(x+ tv) v dt. (12.11)

For general x ∈ B(x0, ε) and v ∈ B(0, ε), choose xn ∈ B(x0, ε) ∩ D and
vn ∈ D ∩B(0, ε) such that xn → x and vn → v. Then

f(xn + vn)− f(xn) =
∫ 1

0

A(xn + tvn) vn dt (12.12)

holds for all n. The left side of this last equation tends to f(x+ v)− f(x) by
the continuity of f. For the right side of Eq. (12.12) we have

‖
∫ 1

0

A(x+ tv) v dt−
∫ 1

0

A(xn + tvn) vn dt‖

≤
∫ 1

0

‖A(x+ tv)−A(xn + tvn) ‖‖v‖ dt+M‖v − vn‖.

It now follows by the continuity of A, the fact that ‖A(x+tv)−A(xn+tvn) ‖ ≤
M, and the dominated convergence theorem that right side of Eq. (12.12)
converges to

∫ 1

0
A(x+ tv) v dt. Hence Eq. (12.11) is valid for all x ∈ B(x0, ε)

and v ∈ B(0, ε). We also see that

f(x+ v)− f(x)−A(x)v = ε(v)v, (12.13)

where ε(v) :=
∫ 1

0
[A(x+ tv) −A(x)] dt. Now

1 It should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not sufficient to choose ε sufficiently small so that
B(x0, 2ε) ⊂ U. Here is a counter example. Let X ≡ H be a Hilbert space, {en}∞n=1

be an orthonormal set. Define f(x) ≡
∑∞

n=1 nφ(‖x− en‖), where φ is any contin-
uous function on R such that φ(0) = 1 and φ is supported in (−1, 1). Notice that
‖en−em‖2 = 2 for all m 6= n, so that ‖en−em‖ =

√
2. Using this fact it is rather

easy to check that for any x0 ∈ H, there is an ε > 0 such that for all x ∈ B(x0, ε),
only one term in the sum defining f is non-zero. Hence, f is continuous. However,
f(en) = n→∞ as n→∞.
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‖ε(v)‖ ≤
∫ 1

0

‖A(x+ tv) −A(x)‖ dt

≤ max
t∈[0,1]

‖A(x+ tv) −A(x)‖ → 0 as v → 0,

by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x) = A(x).

Corollary 12.15. Suppose now that X = Rd, f : U ⊂o X → Y be a contin-
uous function such that ∂if(x) := ∂ei

f (x) exists and is continuous on U for
i = 1, 2, . . . , d, where {ei}di=1 is the standard basis for Rd. Then f ∈ C1(U, Y )
and Df (x) ei = ∂if (x) for all i.

Proof. For x ∈ U, let A (x) : Rd → Y be the unique linear map such that
A (x) ei = ∂if (x) for i = 1, 2, . . . , d. Then A : U → L(Rd, Y ) is a continuous
map. Now let v ∈ Rd and v(i) := (v1, v2, . . . , vi, 0, . . . , 0) for i = 1, 2, . . . , d and
v(0) := 0. Then for t ∈ R near 0, using the fundamental theorem of calculus
and the definition of ∂if (x) ,

f (x+ tv)− f (x) =
d∑
i=1

[
f
(
x+ tv(i)

)
− f

(
x+ tv(i−1)

)]
=

d∑
i=1

∫ 1

0

d

ds
f
(
x+ tv(i−1) + stviei

)
ds

=
d∑
i=1

tvi

∫ 1

0

∂if
(
x+ tv(i−1) + stviei

)
ds

=
d∑
i=1

tvi

∫ 1

0

A
(
x+ tv(i−1) + stviei

)
eids.

Using the continuity of A, it now follows that

lim
t→0

f (x+ tv)− f (x)
t

=
d∑
i=1

vi lim
t→0

∫ 1

0

A
(
x+ tv(i−1) + stviei

)
eids

=
d∑
i=1

vi

∫ 1

0

A (x) eids = A (x) v

which shows ∂vf (x) exists and ∂vf (x) = A (x) v. The result now follows from
an application of Proposition 12.14.

12.4 Higher Order Derivatives

It is somewhat inconvenient to work with the Banach spaces Lk(X,Y ) in Def-
inition 12.10. For this reason we will introduce an isomorphic Banach space,
Mk(X,Y ).
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Definition 12.16. For k ∈ {1, 2, 3, . . .}, let Mk(X,Y ) denote the set of func-
tions f : Xk → Y such that

1. For i ∈ {1, 2, . . . , k}, v ∈ X → f〈v1, v2, . . . , vi−1, v, vi+1, . . . , vk〉 ∈ Y is
linear 2 for all {vi}ni=1 ⊂ X.

2. The norm ‖f‖Mk(X,Y ) should be finite, where

‖f‖Mk(X,Y ) := sup{‖f〈v1, v2, . . . , vk〉‖Y
‖v1‖‖v2‖ · · · ‖vk‖

: {vi}ki=1 ⊂ X \ {0}}.

Lemma 12.17. There are linear operators jk : Lk(X,Y ) → Mk(X,Y )
defined inductively as follows: j1 = IdL(X,Y ) (notice that M1(X,Y ) =
L1(X,Y ) = L(X,Y )) and

(jk+1A)〈v0, v1, . . . , vk〉 = (jk(Av0))〈v1, v2, . . . , vk〉 ∀vi ∈ X.

(Notice that Av0 ∈ Lk(X,Y ).) Moreover, the maps jk are isometric isomor-
phisms.

Proof. To get a feeling for what jk is let us write out j2 and j3 explicitly.
If A ∈ L2(X,Y ) = L(X,L(X,Y )), then (j2A)〈v1, v2〉 = (Av1)v2 and if A ∈
L3(X,Y ) = L(X,L(X,L(X,Y ))), (j3A)〈v1, v2, v3〉 = ((Av1)v2)v3 for all vi ∈
X. It is easily checked that jk is linear for all k. We will now show by induction
that jk is an isometry and in particular that jk is injective. Clearly this is true
if k = 1 since j1 is the identity map. For A ∈ Lk+1(X,Y ),

‖jk+1A‖Mk+1(X,Y )

:= sup{‖(jk(Av0))〈v1, v2, . . . , vk〉‖Y
‖v0‖‖v1‖‖v2‖ · · · ‖vk‖

: {vi}ki=0 ⊂ X \ {0}}

= sup{
‖(jk(Av0))‖Mk(X,Y )

‖v0‖
: v0 ∈ X \ {0}}

= sup{
‖Av0‖Lk(X,Y )

‖v0‖
: v0 ∈ X \ {0}}

= ‖A‖L(X,Lk(X,Y )) := ‖A‖Lk+1(X,Y ),

wherein the second to last inequality we have used the induction hypothesis.
This shows that jk+1 is an isometry provided jk is an isometry. To finish the
proof it suffices to show that jk is surjective for all k. Again this is true for
k = 1. Suppose that jk is invertible for some k ≥ 1. Given f ∈Mk+1(X,Y ) we
must produce A ∈ Lk+1(X,Y ) = L(X,Lk(X,Y )) such that jk+1A = f. If such
an equation is to hold, then for v0 ∈ X, we would have jk(Av0) = f〈v0, · · · 〉.
That is Av0 = j−1

k (f〈v0, · · · 〉). It is easily checked that A so defined is linear,
bounded, and jk+1A = f.

From now on we will identify Lk with Mk without further mention. In
particular, we will view Dkf as function on U with values in Mk(X,Y ).
2 I will routinely write f〈v1, v2, . . . , vk〉 rather than f(v1, v2, . . . , vk) when the func-

tion f depends on each of variables linearly, i.e. f is a multi-linear function.
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Theorem 12.18 (Differentiability). Suppose k ∈ {1, 2, . . .} and D is
a dense subspace of X, f : U ⊂o X → Y is a function such that
(∂v1∂v2 · · · ∂vl

f)(x) exists for all x ∈ D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k.
Further assume there exists continuous functions Al : U ⊂o X → Ml(X,Y )
such that such that (∂v1∂v2 · · · ∂vl

f)(x) = Al(x)〈v1, v2, . . . , vl〉 for all x ∈
D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k. Then Dlf(x) exists and is equal
to Al(x) for all x ∈ U and l = 1, 2, . . . , k.

Proof. We will prove the theorem by induction on k. We have already
proved the theorem when k = 1, see Proposition 12.14. Now suppose that
k > 1 and that the statement of the theorem holds when k is replaced by k−1.
Hence we know that Dlf(x) = Al(x) for all x ∈ U and l = 1, 2, . . . , k− 1. We
are also given that

(∂v1∂v2 · · · ∂vk
f)(x) = Ak(x)〈v1, v2, . . . , vk〉 ∀x ∈ U ∩D, {vi} ⊂ D. (12.14)

Now we may write (∂v2 · · · ∂vk
f)(x) as (Dk−1f)(x)〈v2, v3, . . . , vk〉 so that Eq.

(12.14) may be written as

∂v1(D
k−1f)(x)〈v2, v3, . . . , vk〉)

= Ak(x)〈v1, v2, . . . , vk〉 ∀x ∈ U ∩D, {vi} ⊂ D. (12.15)

So by the fundamental theorem of calculus, we have that

((Dk−1f)(x+ v1)− (Dk−1f)(x))〈v2, v3, . . . , vk〉

=
∫ 1

0

Ak(x+ tv1)〈v1, v2, . . . , vk〉 dt (12.16)

for all x ∈ U ∩ D and {vi} ⊂ D with v1 sufficiently small. By the same
argument given in the proof of Proposition 12.14, Eq. (12.16) remains valid
for all x ∈ U and {vi} ⊂ X with v1 sufficiently small. We may write this last
equation alternatively as,

(Dk−1f)(x+ v1)− (Dk−1f)(x) =
∫ 1

0

Ak(x+ tv1)〈v1, · · · 〉 dt. (12.17)

Hence

(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)〈v1, · · · 〉

=
∫ 1

0

[Ak(x+ tv1)−Ak(x)]〈v1, · · · 〉 dt

from which we get the estimate,

‖(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)〈v1, · · · 〉‖ ≤ ε(v1)‖v1‖ (12.18)

where ε(v1) :=
∫ 1

0
‖Ak(x + tv1) − Ak(x)‖ dt. Notice by the continuity of Ak

that ε(v1) → 0 as v1 → 0. Thus it follow from Eq. (12.18) that Dk−1f is
differentiable and that (Dkf)(x) = Ak(x).
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Example 12.19. Let f : GL(X,Y ) → GL(Y,X) be defined by f(A) := A−1.
We assume that GL(X,Y ) is not empty. Then f is infinitely differentiable and

(Dkf)(A)〈V1, V2, . . . , Vk〉

= (−1)k
∑
σ

{B−1Vσ(1)B
−1Vσ(2)B

−1 · · ·B−1Vσ(k)B
−1}, (12.19)

where sum is over all permutations of σ of {1, 2, . . . , k}.

Let me check Eq. (12.19) in the case that k = 2. Notice that we have
already shown that (∂V1f)(B) = Df(B)V1 = −B−1V1B

−1. Using the product
rule we find that

(∂V2∂V1f)(B) = B−1V2B
−1V1B

−1 +B−1V1B
−1V2B

−1 =: A2(B)〈V1, V2〉.

Notice that ‖A2(B)〈V1, V2〉‖ ≤ 2‖B−1‖3‖V1‖ · ‖V2‖, so that ‖A2(B)‖ ≤
2‖B−1‖3 <∞. Hence A2 : GL(X,Y )→M2(L(X,Y ), L(Y,X)). Also

‖(A2(B)−A2(C))〈V1, V2〉‖ ≤ 2‖B−1V2B
−1V1B

−1 − C−1V2C
−1V1C

−1‖
≤ 2‖B−1V2B

−1V1B
−1 −B−1V2B

−1V1C
−1‖

+ 2‖B−1V2B
−1V1C

−1 −B−1V2C
−1V1C

−1‖
+ 2‖B−1V2C

−1V1C
−1 − C−1V2C

−1V1C
−1‖

≤ 2‖B−1‖2‖V2‖‖V1‖‖B−1 − C−1‖
+ 2‖B−1‖‖C−1‖‖V2‖‖V1‖‖B−1 − C−1‖

+ 2‖C−1‖2‖V2‖‖V1‖‖B−1 − C−1‖.

This shows that

‖A2(B)−A2(C)‖ ≤ 2‖B−1 − C−1‖{‖B−1‖2 + ‖B−1‖‖C−1‖+ ‖C−1‖2}.

Since B → B−1 is differentiable and hence continuous, it follows that A2(B)
is also continuous in B. Hence by Theorem 12.18 D2f(A) exists and is given
as in Eq. (12.19)

Example 12.20. Suppose that f : R → R is a C∞– function and F (x) :=∫ 1

0
f(x(t)) dt for x ∈ X := C([0, 1],R) equipped with the norm ‖x‖ :=

maxt∈[0,1] |x(t)|. Then F : X → R is also infinitely differentiable and

(DkF )(x)〈v1, v2, . . . , vk〉 =
∫ 1

0

f (k)(x(t))v1(t) · · · vk(t) dt, (12.20)

for all x ∈ X and {vi} ⊂ X.

To verify this example, notice that
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(∂vF )(x) :=
d

ds
|0F (x+ sv) =

d

ds
|0
∫ 1

0

f(x(t) + sv(t)) dt

=
∫ 1

0

d

ds
|0f(x(t) + sv(t)) dt =

∫ 1

0

f ′(x(t))v(t) dt.

Similar computations show that

(∂v1∂v2 · · · ∂vk
f)(x) =

∫ 1

0

f (k)(x(t))v1(t) · · · vk(t) dt =: Ak(x)〈v1, v2, . . . , vk〉.

Now for x, y ∈ X,

|Ak(x)〈v1, v2, . . . , vk〉 −Ak(y)〈v1, v2, . . . , vk〉|

≤
∫ 1

0

|f (k)(x(t))− f (k)(y(t))| · |v1(t) · · · vk(t) |dt

≤
k∏
i=1

‖vi‖
∫ 1

0

|f (k)(x(t))− f (k)(y(t))|dt,

which shows that

‖Ak(x)−Ak(y)‖ ≤
∫ 1

0

|f (k)(x(t))− f (k)(y(t))|dt.

This last expression is easily seen to go to zero as y → x in X. Hence Ak is
continuous. Thus we may apply Theorem 12.18 to conclude that Eq. (12.20)
is valid.

12.5 Inverse and Implicit Function Theorems

In this section, let X be a Banach space, R > 0, U = B = B(0, R) ⊂ X
and ε : U → X be a continuous function such that ε (0) = 0. Our immedi-
ate goal is to give a sufficient condition on ε so that F (x) := x + ε(x) is a
homeomorphism from U to F (U) with F (U) being an open subset of X. Let’s
start by looking at the one dimensional case first. So for the moment assume
that X = R, U = (−1, 1), and ε : U → R is C1. Then F will be injective
iff F is either strictly increasing or decreasing. Since we are thinking that F
is a “small” perturbation of the identity function we will assume that F is
strictly increasing, i.e. F ′ = 1+ ε′ > 0. This positivity condition is not so eas-
ily interpreted for operators on a Banach space. However the condition that
|ε′| ≤ α < 1 is easily interpreted in the Banach space setting and it implies
1 + ε′ > 0.

Lemma 12.21. Suppose that U = B = B(0, R) (R > 0) is a ball in X and
ε : B → X is a C1 function such that ‖Dε‖ ≤ α <∞ on U. Then

‖ε(x)− ε(y)‖ ≤ α‖x− y‖ for all x, y ∈ U. (12.21)
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Proof. By the fundamental theorem of calculus and the chain rule:

ε(y)− ε(x) =
∫ 1

0

d

dt
ε(x+ t(y − x))dt

=
∫ 1

0

[Dε(x+ t(y − x))](y − x)dt.

Therefore, by the triangle inequality and the assumption that ‖Dε(x)‖ ≤ α
on B,

‖ε(y)− ε(x)‖ ≤
∫ 1

0

‖Dε(x+ t(y − x))‖dt · ‖(y − x)‖ ≤ α‖(y − x)‖.

Remark 12.22. It is easily checked that if ε : U = B(0, R) → X is C1 and
satisfies (12.21) then ‖Dε‖ ≤ α on U.

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 12.23. Suppose α ∈ (0, 1), R > 0, U = B(0, R) ⊂o X and
ε : U → X is a continuous function such that ε (0) = 0 and

‖ε(x)− ε(y)‖ ≤ α‖x− y‖ ∀ x, y ∈ U. (12.22)

Then F : U → X defined by F (x) := x+ ε(x) for x ∈ U satisfies:

1. F is an injective map and G = F−1 : V := F (U)→ U is continuous.
2. If x0 ∈ U, z0 = F (x0) and r > 0 such the B(x0, r) ⊂ U, then

B(z0, (1− α)r) ⊂ F (B(x0, r)) ⊂ B(z0, (1 + α)r). (12.23)

In particular, for all r ≤ R,

B(0, (1− α) r) ⊂ F (B(0, r)) ⊂ B(0, (1 + α) r), (12.24)

see Figure 12.1 below.
3. V := F (U) is open subset of X and F : U → V is a homeomorphism.

Proof.

1. Using the definition of F and the estimate in Eq. (12.22),

‖x− y‖ = ‖(F (x)− F (y))− (ε(x)− ε(y))‖
≤ ‖F (x)− F (y)‖+ ‖ε(x)− ε(y)‖
≤ ‖F (x)− F (y)‖+ α‖(x− y)‖

for all x, y ∈ U. This implies
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Fig. 12.1. Nesting of F (B(x0, r)) between B(z0, (1− α)r) and B(z0, (1 + α)r).

‖x− y‖ ≤ (1− α)−1‖F (x)− F (y)‖ (12.25)

which shows F is injective on U and hence shows the inverse function
G = F−1 : V := F (U) → U is well defined. Moreover, replacing x, y in
Eq. (12.25) by G (x) and G (y) respectively with x, y ∈ V shows

‖G (x)−G (y) ‖ ≤ (1− α)−1‖x− y‖ for all x, y ∈ V. (12.26)

Hence G is Lipschitz on V and hence continuous.
2. Let x0 ∈ U, r > 0 and z0 = F (x0) = x0 + ε(x0) be as in item 2. The

second inclusion in Eq. (12.23) follows from the simple computation:

‖F (x0 + h)− z0‖ = ‖h+ ε (x0 + h)− ε (x0)‖
≤ ‖h‖+ ‖ε (x0 + h)− ε (x0)‖
≤ (1 + α) ‖h‖ < (1 + α) r

for all h ∈ B (0, r) . To prove the first inclusion in Eq. (12.23) we must
find, for every z ∈ B(z0, (1−α)r), an h ∈ B (0, r) such that z = F (x0 + h)
or equivalently an h ∈ B (0, r) solving

z − z0 = F (x0 + h)− F (x0) = h+ ε(x0 + h)− ε(x0).

Let k := z − z0 and for h ∈ B (0, r) , let δ (h) := ε(x0 + h)− ε(x0). With
this notation it suffices to show for each k ∈ B(z0, (1 − α)r) there exists
h ∈ B (0, r) such that k = h+ δ (h) . Notice that δ (0) = 0 and

‖δ (h1)− δ (h2)‖ = ‖ε(x0 + h1)− ε(x0 + h2)‖ ≤ α ‖h1 − h2‖ (12.27)

for all h1, h2 ∈ B (0, r) . We are now going to solve the equation k =
h+ δ (h) for h by the method of successive approximations starting with
h0 = 0 and then defining hn inductively by

hn+1 = k − δ (hn) . (12.28)

A simple induction argument using Eq. (12.27) shows that
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‖hn+1 − hn‖ ≤ αn ‖k‖ for all n ∈ N0

and in particular that

‖hN‖ =

∥∥∥∥∥
N−1∑
n=0

(hn+1 − hn)

∥∥∥∥∥ ≤
N−1∑
n=0

‖hn+1 − hn‖

≤
N−1∑
n=0

αn ‖k‖ =
1− αN

1− α
‖k‖ . (12.29)

Since ‖k‖ < (1− α) r, this implies that ‖hN‖ < r for all N showing the
approximation procedure is well defined. Let

h := lim
N→∞

hn =
∞∑
n=0

(hn+1 − hn) ∈ X

which exists since the sum in the previous equation is absolutely con-
vergent. Passing to the limit in Eqs. (12.29) and (12.28) shows that
‖h‖ ≤ (1 − α)−1 ‖k‖ < r and h = k − δ (h) , i.e. h ∈ B (0, r) solves
k = h+ δ (h) as desired.

3. Given x0 ∈ U, the first inclusion in Eq. (12.23) shows that z0 = F (x0) is
in the interior of F (U) . Since z0 ∈ F (U) was arbitrary, it follows that
V = F (U) is open. The continuity of the inverse function has already
been proved in item 1.

For the remainder of this section let X and Y be two Banach spaces,
U ⊂o X, k ≥ 1, and f ∈ Ck(U, Y ).

Lemma 12.24. Suppose x0 ∈ U, R > 0 is such that BX(x0, R) ⊂ U and
T : BX(x0, R)→ Y is a C1 – function such that T ′(x0) is invertible. Let

α (R) := sup
x∈BX(x0,R)

∥∥T ′(x0)−1T ′(x)− I
∥∥
L(X)

(12.30)

and ε ∈ C1
(
BX(0, R), X

)
be defined by

ε (h) = T ′(x0)−1 [T (x0 + h)− T (x0)]− h (12.31)

so that
T (x0 + h) = T (x0) + T ′(x0) (h+ ε(h)) . (12.32)

Then ε(h) = o(h) as h→ 0 and

‖ε(h′)− ε(h)‖ ≤ α (R) ‖h′ − h‖ for all h, h′ ∈ BX(0, R). (12.33)

If α (R) < 1 (which may be achieved by shrinking R if necessary), then T ′(x)
is invertible for all x ∈ BX(x0, R) and

sup
x∈BX(x0,R)

∥∥T ′(x)−1
∥∥
L(Y,X)

≤ 1
1− α (R)

∥∥T ′(x0)−1
∥∥
L(Y,X)

. (12.34)
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Proof. By definition of T ′ (x0) and using T ′ (x0)
−1 exists,

T (x0 + h)− T (x0) = T ′(x0)h+ o(h)

from which it follows that ε(h) = o(h). In fact by the fundamental theorem
of calculus,

ε(h) =
∫ 1

0

(
T ′(x0)−1T ′(x0 + th)− I

)
hdt

but we will not use this here. Let h, h′ ∈ BX(0, R) and apply the fundamental
theorem of calculus to t→ T (x0 + t(h′ − h)) to conclude

ε(h′)− ε(h) = T ′(x0)−1 [T (x0 + h′)− T (x0 + h)]− (h′ − h)

=
[∫ 1

0

(
T ′(x0)−1T ′(x0 + t(h′ − h))− I

)
dt

]
(h′ − h).

Taking norms of this equation gives

‖ε(h′)− ε(h)‖ ≤
[∫ 1

0

∥∥T ′(x0)−1T ′(x0 + t(h′ − h))− I
∥∥ dt] ‖h′ − h‖

≤ α (R) ‖h′ − h‖

It only remains to prove Eq. (12.34), so suppose now that α (R) < 1. Then by
Proposition 7.21, T ′(x0)−1T ′(x) = I −

(
I − T ′(x0)−1T ′(x)

)
is invertible and∥∥∥[T ′(x0)−1T ′(x)

]−1
∥∥∥ ≤ 1

1− α (R)
for all x ∈ BX(x0, R).

Since T ′(x) = T ′(x0)
[
T ′(x0)−1T ′(x)

]
this implies T ′(x) is invertible and∥∥T ′(x)−1

∥∥ =
∥∥∥[T ′(x0)−1T ′(x)

]−1
T ′(x0)−1

∥∥∥ ≤ 1
1− α (R)

∥∥T ′(x0)−1
∥∥

for all x ∈ BX(x0, R).

Theorem 12.25 (Inverse Function Theorem). Suppose U ⊂o X, k ≥ 1
and T ∈ Ck(U, Y ) such that T ′(x) is invertible for all x ∈ U. Further assume
x0 ∈ U and R > 0 such that BX(x0, R) ⊂ U.

1. For all r ≤ R,

T (BX(x0, r)) ⊂ T (x0) + T ′ (x0)BX (0, (1 + α (r))r) . (12.35)

2. If we further assume that

α (R) := sup
x∈BX(x0,R)

∥∥T ′(x0)−1T ′(x)− I
∥∥ < 1,

which may always be achieved by taking R sufficiently small, then

T (x0) + T ′ (x0)BX (0, (1− α (r))r) ⊂ T (BX(x0, r)) (12.36)

for all r ≤ R, see Figure 12.2.
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3. T : U → Y is an open mapping, in particular V := T (U) ⊂o Y.
4. Again if R is sufficiently small so that α (R) < 1, then T |BX(x0,R) :
BX(x0, R)→ T (BX(x0, R)) is invertible and T |−1

BX(x0,R)
: T
(
BX(x0, R)

)
→

BX(x0, R) is a Ck – map.
5. If T is injective, then T−1 : V → U is also a Ck – map and(

T−1
)′

(y) =
[
T ′(T−1(y))

]−1
for all y ∈ V.

Fig. 12.2. The nesting of T (BX(x0, r)) between T (x0)+T
′ (x0)B

X (0, (1− α (r))r)
andT (x0) + T ′ (x0)B

X (0, (1 + α (r))r) .

Proof. Let ε ∈ C1
(
BX(0, R), X

)
be as defined in Eq. (12.31).

1. Using Eqs. (12.32) and (12.24),

T
(
BX(x0, r)

)
= T (x0) + T ′ (x0) (I + ε)

(
BX (0, r)

)
(12.37)

⊂ T (x0) + T ′ (x0)BX (0, (1 + α (r)) r)

which proves Eq. (12.35).
2. Now assume α (R) < 1, then by Eqs. (12.37) and (12.24),

T (x0) + T ′ (x0)BX (0, (1− α (r)) r)

⊂ T (x0) + T ′ (x0) (I + ε)
(
BX (0, r)

)
= T

(
BX (x0, r)

)
which proves Eq. (12.36).

3. Notice that h ∈ X → T (x0) + T ′ (x0)h ∈ Y is a homeomorphism. The
fact that T is an open map follows easily from Eq. (12.36) which shows
that T (x0) is interior of T (W ) for any W ⊂o X with x0 ∈W.

4. The fact that T |BX(x0,R) : BX(x0, R) → T (BX(x0, R)) is invertible with
a continuous inverse follows from Eq. (12.32) and Proposition 12.23. It
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now follows from the converse to the chain rule, Theorem 12.7, that g :=
T |−1
BX(x0,R)

: T
(
BX(x0, R)

)
→ BX(x0, R) is differentiable and

g′ (y) = [T ′ (g (y))]−1 for all y ∈ T
(
BX(x0, R)

)
.

This equation shows g is C1. Now suppose that k ≥ 2. Since T ′ ∈
Ck−1(B,L(X)) and i(A) := A−1 is a smooth map by Example 12.19,
g′ = i ◦ T ′ ◦ g is C1, i.e. g is C2. If k ≥ 2, we may use the same argument
to now show g is C3. Continuing this way inductively, we learn g is Ck.

5. Since differentiability and smoothness is local, the assertion in item 5.
follows directly from what has already been proved.

Theorem 12.26 (Implicit Function Theorem). Suppose that X, Y, and
W are three Banach spaces, k ≥ 1, A ⊂ X × Y is an open set, (x0, y0) is
a point in A, and f : A → W is a Ck – map such f(x0, y0) = 0. Assume
that D2f(x0, y0) := D(f(x0, ·))(y0) : Y → W is a bounded invertible linear
transformation. Then there is an open neighborhood U0 of x0 in X such that
for all connected open neighborhoods U of x0 contained in U0, there is a unique
continuous function u : U → Y such that u(x0) = yo, (x, u(x)) ∈ A and
f(x, u(x)) = 0 for all x ∈ U. Moreover u is necessarily Ck and

Du(x) = −D2f(x, u(x))−1D1f(x, u(x)) for all x ∈ U. (12.38)

Proof. By replacing f by (x, y) → D2f(x0, y0)−1f(x, y) if necessary, we
may assume with out loss of generality that W = Y and D2f(x0, y0) = IY .
Define F : A→ X×Y by F (x, y) := (x, f(x, y)) for all (x, y) ∈ A. Notice that

DF (x, y) =
[
I D1f(x, y)
0 D2f(x, y)

]
which is invertible iff D2f(x, y) is invertible and if D2f(x, y) is invertible then

DF (x, y)−1 =
[
I −D1f(x, y)D2f(x, y)−1

0 D2f(x, y)−1

]
.

Since D2f(x0, y0) = I is invertible, the inverse function theorem guarantees
that there exists a neighborhood U0 of x0 and V0 of y0 such that U0×V0 ⊂ A,
F (U0 × V0) is open in X × Y, F |(U0×V0) has a Ck–inverse which we call F−1.

Let π2(x, y) := y for all (x, y) ∈ X × Y and define Ck – function u0 on U0 by
u0(x) := π2 ◦ F−1(x, 0). Since F−1(x, 0) = (x̃, u0(x)) iff

(x, 0) = F (x̃, u0(x)) = (x̃, f(x̃, u0(x))),

it follows that x = x̃ and f(x, u0(x)) = 0. Thus

(x, u0(x)) = F−1(x, 0) ∈ U0 × V0 ⊂ A
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and f(x, u0(x)) = 0 for all x ∈ U0. Moreover, u0 is Ck being the composition
of the Ck– functions, x→ (x, 0), F−1, and π2. So if U ⊂ U0 is a connected set
containing x0, we may define u := u0|U to show the existence of the functions
u as described in the statement of the theorem. The only statement left to
prove is the uniqueness of such a function u. Suppose that u1 : U → Y is
another continuous function such that u1(x0) = y0, and (x, u1(x)) ∈ A and
f(x, u1(x)) = 0 for all x ∈ U. Let

O := {x ∈ U |u(x) = u1(x)} = {x ∈ U |u0(x) = u1(x)}.

Clearly O is a (relatively) closed subset of U which is not empty since x0 ∈ O.
Because U is connected, if we show that O is also an open set we will have
shown that O = U or equivalently that u1 = u0 on U. So suppose that x ∈ O,
i.e. u0(x) = u1(x). For x̃ near x ∈ U,

0 = 0− 0 = f(x̃, u0(x̃))− f(x̃, u1(x̃)) = R(x̃)(u1(x̃)− u0(x̃)) (12.39)

where

R(x̃) :=
∫ 1

0

D2f((x̃, u0(x̃) + t(u1(x̃)− u0(x̃)))dt. (12.40)

From Eq. (12.40) and the continuity of u0 and u1, limx̃→xR(x̃) =
D2f(x, u0(x)) which is invertible.3 Thus R(x̃) is invertible for all x̃ sufficiently
close to x which combined with Eq. (12.39) implies that u1(x̃) = u0(x̃) for all
x̃ sufficiently close to x. Since x ∈ O was arbitrary, we have shown that O is
open.

12.6 Smooth Dependence of ODE’s on Initial
Conditions*

In this subsection, letX be a Banach space, U ⊂o X and J be an open interval
with 0 ∈ J.

Lemma 12.27. If Z ∈ C(J ×U,X) such that DxZ(t, x) exists for all (t, x) ∈
J × U and DxZ(t, x) ∈ C(J × U,X) then Z is locally Lipschitz in x, see
Definition 11.6.

Proof. Suppose I @@ J and x ∈ U. By the continuity of DZ, for every
t ∈ I there an open neighborhood Nt of t ∈ I and εt > 0 such that B(x, εt) ⊂
U and

sup {‖DxZ(t′, x′)‖ : (t′, x′) ∈ Nt ×B(x, εt)} <∞.

By the compactness of I, there exists a finite subset Λ ⊂ I such that I ⊂
∪t∈INt. Let ε(x, I) := min {εt : t ∈ Λ} and
3 Notice that DF (x, u0(x)) is invertible for all x ∈ U0 since F |U0×V0 has a C1

inverse. Therefore D2f(x, u0(x)) is also invertible for all x ∈ U0.
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K(x, I) := sup {‖DZ(t, x′)‖(t, x′) ∈ I ×B(x, ε(x, I))} <∞.

Then by the fundamental theorem of calculus and the triangle inequality,

‖Z(t, x1)− Z(t, x0)‖ ≤
(∫ 1

0

‖DxZ(t, x0 + s(x1 − x0)‖ ds
)
‖x1 − x0‖

≤ K(x, I)‖x1 − x0‖

for all x0, x1 ∈ B(x, ε(x, I)) and t ∈ I.

Theorem 12.28 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let X be a Banach space, U ⊂o X, Z ∈ C(R × U,X) such that
DxZ ∈ C(R×U,X) and φ : D(Z) ⊂ R×X → X denote the maximal solution
operator to the ordinary differential equation

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U, (12.41)

see Notation 11.9 and Theorem 11.15. Then φ ∈ C1(D(Z), U), ∂tDxφ(t, x)
exists and is continuous for (t, x) ∈ D(Z) and Dxφ(t, x) satisfies the linear
differential equation,

d

dt
Dxφ(t, x) = [(DxZ) (t, φ(t, x))]Dxφ(t, x) with Dxφ(0, x) = IX (12.42)

for t ∈ Jx.

Proof. Let x0 ∈ U and J be an open interval such that 0 ∈ J ⊂ J̄ @@ Jx0 ,
y0 := y(·, x0)|J and

Oε := {y ∈ BC(J, U) : ‖y − y0‖∞ < ε} ⊂o BC(J,X).

By Lemma 12.27, Z is locally Lipschitz and therefore Theorem 11.15 is ap-
plicable. By Eq. (11.23) of Theorem 11.15, there exists ε > 0 and δ > 0 such
that G : B(x0, δ)→ Oε defined by G(x) := φ(·, x)|J is continuous. By Lemma
12.29 below, for ε > 0 sufficiently small the function F : Oε → BC(J,X)
defined by

F (y) := y −
∫ ·

0

Z(t, y(t))dt. (12.43)

is C1 and

DF (y)v = v −
∫ ·

0

DyZ(t, y(t))v(t)dt. (12.44)

By the existence and uniqueness Theorem 10.21 for linear ordinary differen-
tial equations, DF (y) is invertible for any y ∈ BC(J, U). By the definition
of φ, F (G(x)) = h(x) for all x ∈ B(x0, δ) where h : X → BC(J,X) is de-
fined by h(x)(t) = x for all t ∈ J, i.e. h(x) is the constant path at x. Since
h is a bounded linear map, h is smooth and Dh(x) = h for all x ∈ X.
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We may now apply the converse to the chain rule in Theorem 12.7 to con-
cludeG ∈ C1 (B(x0, δ),O) andDG(x) = [DF (G(x))]−1Dh(x) or equivalently,
DF (G(x))DG(x) = h which in turn is equivalent to

Dxφ(t, x)−
∫ t

0

[DZ(φ(τ, x)]Dxφ(τ, x) dτ = IX .

As usual this equation implies Dxφ(t, x) is differentiable in t, Dxφ(t, x) is
continuous in (t, x) and Dxφ(t, x) satisfies Eq. (12.42).

Lemma 12.29. Continuing the notation used in the proof of Theorem 12.28
and further let

f(y) :=
∫ ·

0

Z(τ, y(τ)) dτ for y ∈ Oε.

Then f ∈ C1(Oε, Y ) and for all y ∈ Oε,

f ′(y)h =
∫ ·

0

DxZ(τ, y(τ))h(τ) dτ =: Λyh.

Proof. Let h ∈ Y be sufficiently small and τ ∈ J, then by fundamental
theorem of calculus,

Z(τ,y(τ) + h(τ))− Z(τ, y(τ))

=
∫ 1

0

[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]dr

and therefore,

f(y + h)− f(y)− Λyh(t)

=
∫ t

0

[Z(τ, y(τ) + h(τ))− Z(τ, y(τ))−DxZ(τ, y(τ))h(τ) ] dτ

=
∫ t

0

dτ

∫ 1

0

dr[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]h(τ).

Therefore,
‖(f(y + h)− f(y)− Λyh)‖∞ ≤ ‖h‖∞δ(h) (12.45)

where

δ(h) :=
∫
J

dτ

∫ 1

0

dr ‖DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))‖ .

With the aide of Lemmas 12.27 and Lemma 11.7,

(r, τ, h) ∈ [0, 1]× J × Y → ‖DxZ(τ, y(τ) + rh(τ))‖

is bounded for small h provided ε > 0 is sufficiently small. Thus it follows
from the dominated convergence theorem that δ(h)→ 0 as h→ 0 and hence
Eq. (12.45) implies f ′(y) exists and is given by Λy. Similarly,
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||f ′(y + h)− f ′(y)||op

≤
∫
J

‖DxZ(τ, y(τ) + h(τ))−DxZ(τ, y(τ))‖ dτ → 0 as h→ 0

showing f ′ is continuous.

Remark 12.30. If Z ∈ Ck(U,X), then an inductive argument shows that
φ ∈ Ck(D(Z), X). For example if Z ∈ C2(U,X) then (y(t), u(t)) :=
(φ(t, x), Dxφ(t, x)) solves the ODE,

d

dt
(y(t), u(t)) = Z̃ ((y(t), u(t))) with (y(0), u(0)) = (x, IdX)

where Z̃ is the C1 – vector field defined by

Z̃ (x, u) = (Z(x), DxZ(x)u) .

Therefore Theorem 12.28 may be applied to this equation to deduce:D2
xφ(t, x)

and D2
xφ̇(t, x) exist and are continuous. We may now differentiate Eq. (12.42)

to find D2
xφ(t, x) satisfies the ODE,

d

dt
D2
xφ(t, x) = [

(
∂Dxφ(t,x)DxZ

)
(t, φ(t, x))]Dxφ(t, x)

+ [(DxZ) (t, φ(t, x))]D2
xφ(t, x)

with D2
xφ(0, x) = 0.

12.7 Existence of Periodic Solutions

A detailed discussion of the inverse function theorem on Banach and Frechét
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper. In what follows we say f ∈ Ck2π(R, (c, d)) if f ∈ Ck2π(R, (c, d)) and f is
2π – periodic, i.e. f (x+ 2π) = f (x) for all x ∈ R.

Theorem 12.31 (Taken from Hamilton, p. 110.). Let p : U := (a, b) →
V := (c, d) be a smooth function with p′ > 0 on (a, b). For every g ∈
C∞2π(R, (c, d)) there exists a unique function y ∈ C∞2π(R, (a, b)) such that

ẏ(t) + p(y(t)) = g(t).

Proof. Let Ṽ := C0
2π(R, (c, d)) ⊂o C0

2π(R,R) and Ũ ⊂o C1
2π(R, (a, b)) be

given by

Ũ :=
{
y ∈ C1

2π(R,R) : a < y(t) < b & c < ẏ(t) + p(y(t)) < d ∀ t
}
.

The proof will be completed by showing P : Ũ → Ṽ defined by
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P (y)(t) = ẏ(t) + p(y(t)) for y ∈ Ũ and t ∈ R

is bijective. Note that if P (y) is smooth then so is y.
Step 1. The differential of P is given by P ′(y)h = ḣ+p′(y)h, see Exercise

12.8. We will now show that the linear mapping P ′(y) is invertible. Indeed let
f = p′(y) > 0, then the general solution to the Eq. ḣ+ fh = k is given by

h(t) = e−
∫ t
0 f(τ)dτh0 +

∫ t

0

e−
∫ t

τ
f(s)dsk(τ)dτ

where h0 is a constant. We wish to choose h0 so that h(2π) = h0, i.e. so that

h0

(
1− e−c(f)

)
=
∫ 2π

0

e−
∫ t

τ
f(s)dsk(τ)dτ

where

c(f) =
∫ 2π

0

f(τ)dτ =
∫ 2π

0

p′(y(τ))dτ > 0.

The unique solution h ∈ C1
2π(R,R) to P ′(y)h = k is given by

h(t) =
(
1− e−c(f)

)−1

e−
∫ t
0 f(τ)dτ

∫ 2π

0

e−
∫ t

τ
f(s)dsk(τ)dτ +

∫ t

0

e−
∫ t

τ
f(s)dsk(τ)dτ

=
(
1− e−c(f)

)−1

e−
∫ t
0 f(s)ds

∫ 2π

0

e−
∫ t

τ
f(s)dsk(τ)dτ +

∫ t

0

e−
∫ t

τ
f(s)dsk(τ)dτ.

Therefore P ′(y) is invertible for all y. Hence by the inverse function Theorem
12.25, P : Ũ → Ṽ is an open mapping which is locally invertible.

Step 2. Let us now prove P : Ũ → Ṽ is injective. For this suppose
y1, y2 ∈ Ũ such that P (y1) = g = P (y2) and let z = y2 − y1. Since

ż(t) + p(y2(t))− p(y1(t)) = g(t)− g(t) = 0,

if tm ∈ R is point where z(tm) takes on its maximum, then ż(tm) = 0 and
hence

p(y2(tm))− p(y1(tm)) = 0.

Since p is increasing this implies y2(tm) = y1(tm) and hence z(tm) = 0. This
shows z(t) ≤ 0 for all t and a similar argument using a minimizer of z shows
z(t) ≥ 0 for all t. So we conclude y1 = y2.

Step 3. Let W := P (Ũ), we wish to show W = Ṽ . By step 1., we know
W is an open subset of Ṽ and since Ṽ is connected, to finish the proof it
suffices to show W is relatively closed in Ṽ . So suppose yj ∈ Ũ such that
gj := P (yj)→ g ∈ Ṽ .We must now show g ∈W, i.e. g = P (y) for some y ∈W.
If tm is a maximizer of yj , then ẏj(tm) = 0 and hence gj(tm) = p(yj(tm)) < d
and therefore yj(tm) < b because p is increasing. A similar argument works for
the minimizers then allows us to conclude Ran (p ◦ yj) ⊂ Ran (gj) @@ (c, d)
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12.8 Contraction Mapping Principle 185

for all j. Since gj is converging uniformly to g, there exists c < γ < δ < d
such that Ran(p ◦ yj) ⊂ Ran(gj) ⊂ [γ, δ] for all j. Again since p′ > 0,

Ran(yj) ⊂ p−1 ([γ, δ]) = [α, β] @@ (a, b) for all j.

In particular sup {|ẏj(t)| : t ∈ R and j} <∞ since

ẏj(t) = gj(t)− p(yj(t)) ⊂ [γ, δ]− [γ, δ] (12.46)

which is a compact subset of R. The Ascoli-Arzela Theorem (see Theoerem
14.29 below) now allows us to assume, by passing to a subsequence if necessary,
that yj is converging uniformly to y ∈ C0

2π(R, [α, β]). It now follows that

ẏj(t) = gj(t)− p(yj(t))→ g − p(y)

uniformly in t. Hence we concluded that y ∈ C1
2π(R,R)∩C0

2π(R, [α, β]), ẏj → y
and P (y) = g. This has proved that g ∈ W and hence that W is relatively
closed in Ṽ .

12.8 Contraction Mapping Principle

Some of the arguments uses in this chapter and in Chapter 11 may be ab-
stracted to a general principle of finding fixed points on a complete metric
space. This is the content of this section.

Theorem 12.32 (Contraction Mapping Principle). Suppose that (X, ρ)
is a complete metric space and S : X → X is a contraction, i.e. there exists
α ∈ (0, 1) such that ρ(S(x), S(y)) ≤ αρ(x, y) for all x, y ∈ X. Then S has
a unique fixed point in X, i.e. there exists a unique point x ∈ X such that
S(x) = x.

Proof. For uniqueness suppose that x and x′ are two fixed points of S,
then

ρ(x, x′) = ρ(S(x), S(x′)) ≤ αρ(x, x′).

Therefore (1− α)ρ(x, x′) ≤ 0 which implies that ρ(x, x′) = 0 since 1− α > 0.
Thus x = x′. For existence, let x0 ∈ X be any point in X and define xn ∈ X
inductively by xn+1 = S(xn) for n ≥ 0. We will show that x := limn→∞ xn
exists in X and because S is continuous this will imply,

x = lim
n→∞

xn+1 = lim
n→∞

S(xn) = S( lim
n→∞

xn) = S(x),

showing x is a fixed point of S. So to finish the proof, because X is complete,
it suffices to show {xn}∞n=1 is a Cauchy sequence in X. An easy inductive
computation shows, for n ≥ 0, that

ρ(xn+1, xn) = ρ(S(xn), S(xn−1)) ≤ αρ(xn, xn−1) ≤ · · · ≤ αnρ(x1, x0).
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Another inductive argument using the triangle inequality shows, for m > n,
that,

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xn) ≤ · · · ≤
m−1∑
k=n

ρ(xk+1, xk).

Combining the last two inequalities gives (using again that α ∈ (0, 1)),

ρ(xm, xn) ≤
m−1∑
k=n

αkρ(x1, x0) ≤ ρ(x1, x0)αn
∞∑
l=0

αl = ρ(x1, x0)
αn

1− α
.

This last equation shows that ρ(xm, xn) → 0 as m,n → ∞, i.e. {xn}∞n=0 is a
Cauchy sequence.

Corollary 12.33 (Contraction Mapping Principle II). Suppose that
(X, ρ) is a complete metric space and S : X → X is a continuous map such
that S(n) is a contraction for some n ∈ N. Here

S(n) :=

n times︷ ︸︸ ︷
S ◦ S ◦ . . . ◦ S

and we are assuming there exists α ∈ (0, 1) such that ρ(S(n)(x), S(n)(y)) ≤
αρ(x, y) for all x, y ∈ X. Then S has a unique fixed point in X.

Proof. Let T := S(n), then T : X → X is a contraction and hence T has
a unique fixed point x ∈ X. Since any fixed point of S is also a fixed point of
T, we see if S has a fixed point then it must be x. Now

T (S(x)) = S(n)(S(x)) = S(S(n)(x)) = S(T (x)) = S(x),

which shows that S(x) is also a fixed point of T. Since T has only one fixed
point, we must have that S(x) = x. So we have shown that x is a fixed point
of S and this fixed point is unique.

Lemma 12.34. Suppose that (X, ρ) is a complete metric space, n ∈ N, Z is
a topological space, and α ∈ (0, 1). Suppose for each z ∈ Z there is a map
Sz : X → X with the following properties:

Contraction property ρ(S(n)
z (x), S(n)

z (y)) ≤ αρ(x, y) for all x, y ∈ X and z ∈
Z.

Continuity in z For each x ∈ X the map z ∈ Z → Sz(x) ∈ X is continuous.

By Corollary 12.33 above, for each z ∈ Z there is a unique fixed point
G(z) ∈ X of Sz.

Conclusion: The map G : Z → X is continuous.
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Proof. Let Tz := S
(n)
z . If z, w ∈ Z, then

ρ(G(z), G(w)) = ρ(Tz(G(z)), Tw(G(w)))
≤ ρ(Tz(G(z)), Tw(G(z))) + ρ(Tw(G(z)), Tw(G(w)))
≤ ρ(Tz(G(z)), Tw(G(z))) + αρ(G(z), G(w)).

Solving this inequality for ρ(G(z), G(w)) gives

ρ(G(z), G(w)) ≤ 1
1− α

ρ(Tz(G(z)), Tw(G(z))).

Since w → Tw(G(z)) is continuous it follows from the above equation that
G(w)→ G(z) as w → z, i.e. G is continuous.

12.9 Exercises

Exercise 12.3. Suppose that A : R → L(X) is a continuous function and
V : R→ L(X) is the unique solution to the linear differential equation

V̇ (t) = A(t)V (t) with V (0) = I. (12.47)

Assuming that V (t) is invertible for all t ∈ R, show that V −1(t) := [V (t)]−1

must solve the differential equation

d

dt
V −1(t) = −V −1(t)A(t) with V −1(0) = I. (12.48)

See Exercise 10.12 as well.

Exercise 12.4 (Differential Equations with Parameters). Let W be
another Banach space, U × V ⊂o X ×W and Z ∈ C1(U × V,X). For each
(x,w) ∈ U × V, let t ∈ Jx,w → φ(t, x, w) denote the maximal solution to the
ODE

ẏ(t) = Z(y(t), w) with y(0) = x (12.49)

and
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}

as in Exercise 11.8.

1. Prove that φ is C1 and that Dwφ(t, x, w) solves the differential equation:

d

dt
Dwφ(t, x, w) = (DxZ)(φ(t, x, w), w)Dwφ(t, x, w)+(DwZ)(φ(t, x, w), w)

with Dwφ(0, x, w) = 0 ∈ L(W,X). Hint: See the hint for Exercise 11.8
with the reference to Theorem 11.15 being replace by Theorem 12.28.
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2. Also show with the aid of Duhamel’s principle (Exercise 10.22) and The-
orem 12.28 that

Dwφ(t, x, w) = Dxφ(t, x, w)
∫ t

0

Dxφ(τ, x, w)−1(DwZ)(φ(τ, x, w), w)dτ

Exercise 12.5. (Differential of eA) Let f : L(X) → GL(X) be the expo-
nential function f(A) = eA. Prove that f is differentiable and that

Df(A)B =
∫ 1

0

e(1−t)ABetA dt. (12.50)

Hint: Let B ∈ L(X) and define w(t, s) = et(A+sB) for all t, s ∈ R. Notice that

dw(t, s)/dt = (A+ sB)w(t, s) with w(0, s) = I ∈ L(X). (12.51)

Use Exercise 12.4 to conclude that w is C1 and that w′(t, 0) := dw(t, s)/ds|s=0

satisfies the differential equation,

d

dt
w′(t, 0) = Aw′(t, 0) +BetA with w(0, 0) = 0 ∈ L(X). (12.52)

Solve this equation by Duhamel’s principle (Exercise 10.22) and then apply
Proposition 12.14 to conclude that f is differentiable with differential given
by Eq. (12.50).

Exercise 12.6 (Local ODE Existence). Let Sx be defined as in Eq. (11.15)
from the proof of Theorem 11.4. Verify that Sx satisfies the hypothesis of
Corollary 12.33. In particular we could have used Corollary 12.33 to prove
Theorem 11.4.

Exercise 12.7 (Local ODE Existence Again). Let J = (−1, 1) , Z ∈
C1(X,X), Y := BC(J,X) and for y ∈ Y and s ∈ J let ys ∈ Y be defined by
ys(t) := y(st). Use the following outline to prove the ODE

ẏ(t) = Z(y(t)) with y(0) = x (12.53)

has a unique solution for small t and this solution is C1 in x.

1. If y solves Eq. (12.53) then ys solves

ẏs(t) = sZ(ys(t)) with ys(0) = x

or equivalently

ys(t) = x+ s

∫ t

0

Z(ys(τ))dτ. (12.54)

Notice that when s = 0, the unique solution to this equation is y0(t) = x.
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2. Let F : J × Y → J × Y be defined by

F (s, y) := (s, y(t)− s
∫ t

0

Z(y(τ))dτ).

Show the differential of F is given by

F ′(s, y)(a, v) =
(
a, t→ v(t)− s

∫ t

0

Z ′(y(τ))v(τ)dτ − a
∫ ·

0

Z(y(τ))dτ
)
.

3. Verify F ′(0, y) : R×Y → R×Y is invertible for all y ∈ Y and notice that
F (0, y) = (0, y).

4. For x ∈ X, let Cx ∈ Y be the constant path at x, i.e. Cx(t) = x for all
t ∈ J. Use the inverse function Theorem 12.25 to conclude there exists
ε > 0 and a C1 map φ : (−ε, ε)×B(x0, ε)→ Y such that

F (s, φ(s, x)) = (s, Cx) for all (s, x) ∈ (−ε, ε)×B(x0, ε).

5. Show, for s ≤ ε that ys(t) := φ(s, x)(t) satisfies Eq. (12.54). Now define
y(t, x) = φ(ε/2, x)(2t/ε) and show y(t, x) solve Eq. (12.53) for |t| < ε/2
and x ∈ B(x0, ε).

Exercise 12.8. Show P defined in Theorem 12.31 is continuously differen-
tiable and P ′(y)h = ḣ+ p′(y)h.

Exercise 12.9. Embedded sub-manifold problems.

Exercise 12.10. Lagrange Multiplier problems.

12.9.1 Alternate construction of g. To be made into an exercise.

Suppose U ⊂o X and f : U → Y is a C2 – function. Then we are looking for
a function g(y) such that f(g(y)) = y. Fix an x0 ∈ U and y0 = f(x0) ∈ Y.
Suppose such a g exists and let x(t) = g(y0 + th) for some h ∈ Y. Then
differentiating f(x(t)) = y0 + th implies

d

dt
f(x(t)) = f ′(x(t))ẋ(t) = h

or equivalently that

ẋ(t) = [f ′(x(t))]−1
h = Z(h, x(t)) with x(0) = x0 (12.55)

where Z(h, x) = [f ′(x(t))]−1
h. Conversely if x solves Eq. (12.55) we have

d
dtf(x(t)) = h and hence that

f(x(1)) = y0 + h.

Thus if we define
g(y0 + h) := eZ(h,·)(x0),

then f(g(y0 +h)) = y0 +h for all h sufficiently small. This shows f is an open
mapping.
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13

Topological Space Basics

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 13.1. A collection of subsets τ of X is a topology if

1. ∅, X ∈ τ
2. τ is closed under arbitrary unions, i.e. if Vα ∈ τ, for α ∈ I then

⋃
α∈I

Vα ∈ τ .

3. τ is closed under finite intersections, i.e. if V1, . . . , Vn ∈ τ then V1 ∩ · · · ∩
Vn ∈ τ.
A pair (X, τ) where τ is a topology on X will be called a topological
space.

Notation 13.2 Let (X, τ) be a topological space.

1. The elements, V ∈ τ, are called open sets. We will often write V ⊂o X
to indicate V is an open subset of X.

2. A subset F ⊂ X is closed if F c is open and we will write F @ X if F is
a closed subset of X.

3. An open neighborhood of a point x ∈ X is an open set V ⊂ X such
that x ∈ V. Let τx = {V ∈ τ : x ∈ V } denote the collection of open
neighborhoods of x.

4. A subset W ⊂ X is a neighborhood of x if there exists V ∈ τx such that
V ⊂W.

5. A collection η ⊂ τx is called a neighborhood base at x ∈ X if for all
V ∈ τx there exists W ∈ η such that W ⊂ V .

The notation τx should not be confused with

τ{x} := i−1
{x}(τ) = {{x} ∩ V : V ∈ τ} = {∅, {x}} .

Example 13.3. 1. Let (X, d) be a metric space, we write τd for the collection
of d – open sets in X. We have already seen that τd is a topology, see
Exercise 6.2. The collection of sets η = {Bx(ε) : ε ∈ D} where D is any
dense subset of (0, 1] is a neighborhood base at x.
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2. Let X be any set, then τ = 2X is the discrete topology on X. In this
topology all subsets of X are both open and closed. At the opposite ex-
treme we have the trivial topology, τ = {∅, X} . In this topology only
the empty set and X are open (closed).

3. Let X = {1, 2, 3}, then τ = {∅, X, {2, 3}} is a topology on X which does
not come from a metric.

4. Again let X = {1, 2, 3}. Then τ = {{1}, {2, 3}, ∅, X}. is a topology, and
the sets X, {1}, {2, 3}, ∅ are open and closed. The sets {1, 2} and {1, 3}
are neither open nor closed.

Fig. 13.1. A topology.

Definition 13.4. Let (X, τX) and (Y, τY ) be topological spaces. A function
f : X → Y is continuous if

f−1(τY ) :=
{
f−1 (V ) : V ∈ τY

}
⊂ τX .

We will also say that f is τX/τY –continuous or (τX , τY ) – continuous. Let
C(X,Y ) denote the set of continuous functions from X to Y.

Exercise 13.1. Show f : X → Y is continuous iff f−1(C) is closed in X for
all closed subsets C of Y.

Definition 13.5. A map f : X → Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f−1 :
Y → X is continuous. If there exists f : X → Y which is a homeomorphism,
we say that X and Y are homeomorphic. (As topological spaces X and Y are
essentially the same.)

13.1 Constructing Topologies and Checking Continuity

Proposition 13.6. Let E be any collection of subsets of X. Then there exists
a unique smallest topology τ(E) which contains E .
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Proof. Since 2X is a topology and E ⊂ 2X , E is always a subset of a
topology. It is now easily seen that

τ(E) :=
⋂
{τ : τ is a topology and E ⊂ τ}

is a topology which is clearly the smallest possible topology containing E .
The following proposition gives an explicit descriptions of τ(E).

Proposition 13.7. Let X be a set and E ⊂ 2X . For simplicity of notation,
assume that X, ∅ ∈ E . (If this is not the case simply replace E by E ∪ {X, ∅} .)
Then

τ (E) := {arbitrary unions of finite intersections of elements from E}.
(13.1)

Proof. Let τ be given as in the right side of Eq. (13.1). From the definition
of a topology any topology containing E must contain τ and hence E ⊂ τ ⊂
τ(E). The proof will be completed by showing τ is a topology. The validation
of τ being a topology is routine except for showing that τ is closed under
taking finite intersections. Let V,W ∈ τ which by definition may be expressed
as

V = ∪α∈AVα and W = ∪β∈BWβ ,

where Vα and Wβ are sets which are finite intersection of elements from E .
Then

V ∩W = (∪α∈AVα) ∩ (∪β∈BWβ) =
⋃

(α,β)∈A×B

Vα ∩Wβ .

Since for each (α, β) ∈ A×B, Vα ∩Wβ is still a finite intersection of elements
from E , V ∩W ∈ τ showing τ is closed under taking finite intersections.

Definition 13.8. Let (X, τ) be a topological space. We say that S ⊂ τ is a
sub-base for the topology τ iff τ = τ(S) and X = ∪S := ∪V ∈SV. We say
V ⊂ τ is a base for the topology τ iff V is a sub-base with the property that
every element V ∈ τ may be written as

V = ∪{B ∈ V : B ⊂ V }.

Exercise 13.2. Suppose that S is a sub-base for a topology τ on a set X.

1. Show V := Sf (Sf is the collection of finite intersections of elements from
S) is a base for τ.

2. Show S is itself a base for τ iff

V1 ∩ V2 = ∪{S ∈ S : S ⊂ V1 ∩ V2}.

for every pair of sets V1, V2 ∈ S.
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Fig. 13.2. Fitting balls in the intersection.

Remark 13.9. Let (X, d) be a metric space, then E = {Bx(δ) : x ∈ X and
δ > 0} is a base for τd – the topology associated to the metric d. This is the
content of Exercise 6.3.

Let us check directly that E is a base for a topology. Suppose that x, y ∈ X
and ε, δ > 0. If z ∈ B(x, δ) ∩B(y, ε), then

B(z, α) ⊂ B(x, δ) ∩B(y, ε) (13.2)

where α = min{δ − d(x, z), ε − d(y, z)}, see Figure 13.2. This is a formal
consequence of the triangle inequality. For example let us show that B(z, α) ⊂
B(x, δ). By the definition of α, we have that α ≤ δ− d(x, z) or that d(x, z) ≤
δ − α. Hence if w ∈ B(z, α), then

d(x,w) ≤ d(x, z) + d(z, w) ≤ δ − α+ d(z, w) < δ − α+ α = δ

which shows that w ∈ B(x, δ). Similarly we show that w ∈ B(y, ε) as well.
Owing to Exercise 13.2, this shows E is a base for a topology. We do not

need to use Exercise 13.2 here since in fact Equation (13.2) may be generalized
to finite intersection of balls. Namely if xi ∈ X, δi > 0 and z ∈ ∩ni=1B(xi, δi),
then

B(z, α) ⊂ ∩ni=1B(xi, δi) (13.3)

where now α := min {δi − d(xi, z) : i = 1, 2, . . . , n} . By Eq. (13.3) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Exercise 13.3. Suppose f : X → Y is a function and τX and τY are topolo-
gies on X and Y respectively. Show

f−1τY :=
{
f−1 (V ) ⊂ X : V ∈ τY

}
and f∗τX :=

{
V ⊂ Y : f−1 (V ) ∈ τX

}
(as in Notation 2.7) are also topologies on X and Y respectively.

Page: 196 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



13.1 Constructing Topologies and Checking Continuity 197

Remark 13.10. Let f : X → Y be a function. Given a topology τY ⊂ 2Y , the
topology τX := f−1(τY ) is the smallest topology on X such that f is (τX , τY )
- continuous. Similarly, if τX is a topology on X then τY = f∗τX is the largest
topology on Y such that f is (τX , τY ) - continuous.

Definition 13.11. Let (X, τ) be a topological space and A subset of X. The
relative topology or induced topology on A is the collection of sets

τA = i−1
A (τ) = {A ∩ V : V ∈ τ} ,

where iA : A→ X be the inclusion map as in Definition 2.8.

Lemma 13.12. The relative topology, τA, is a topology on A. Moreover a
subset B ⊂ A is τA – closed iff there is a τ – closed subset, C, of X such that
B = C ∩A.

Proof. The first assertion is a consequence of Exercise 13.3. For the second,
B ⊂ A is τA – closed iff A \B = A∩ V for some V ∈ τ which is equivalent to
B = A \ (A ∩ V ) = A ∩ V c for some V ∈ τ.

Exercise 13.4. Show if (X, d) is a metric space and τ = τd is the topology
coming from d, then (τd)A is the topology induced by making A into a metric
space using the metric d|A×A.

Lemma 13.13. Suppose that (X, τX), (Y, τY ) and (Z, τZ) are topological
spaces. If f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) are continuous
functions then g ◦ f : (X, τX)→ (Z, τZ) is continuous as well.

Proof. This is easy since by assumption g−1(τZ) ⊂ τY and f−1 (τY ) ⊂ τX
so that

(g ◦ f)−1 (τZ) = f−1
(
g−1 (τZ)

)
⊂ f−1 (τY ) ⊂ τX .

The following elementary lemma turns out to be extremely useful because
it may be used to greatly simplify the verification that a given function is
continuous.

Lemma 13.14. Suppose that f : X → Y is a function, E ⊂ 2Y and A ⊂ Y,
then

τ
(
f−1(E)

)
= f−1(τ(E)) and (13.4)

τ (EA) = (τ(E))A . (13.5)

Moreover, if τY = τ (E) and τX is a topology on X, then f is (τX , τY ) –
continuous iff f−1(E) ⊂ τX .
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Proof. We will give two proof of Eq. (13.4). The first proof is more con-
structive than the second, but the second proof will work in the context of σ
– algebras to be developed later.

First Proof. There is no harm (as the reader should verify) in replacing E
by E∪{∅, Y } if necessary so that we may assume that ∅, Y ∈ E . By Proposition
13.7, the general element V of τ(E) is an arbitrary unions of finite intersections
of elements from E . Since f−1 preserves all of the set operations, it follows
that f−1τ(E) consists of sets which are arbitrary unions of finite intersections
of elements from f−1E , which is precisely τ

(
f−1(E)

)
by another application

of Proposition 13.7.
Second Proof. By Exercise 13.3, f−1(τ(E)) is a topology and since E ⊂

τ (E) , f−1(E) ⊂ f−1(τ(E)). It now follows that τ(f−1(E)) ⊂ f−1(τ(E)). For
the reverse inclusion notice that

f∗τ
(
f−1(E)

)
=
{
B ⊂ Y : f−1(B) ∈ τ

(
f−1(E)

)}
is a topology which contains E and thus τ(E) ⊂ f∗τ

(
f−1(E)

)
. Hence if B ∈

τ(E) we know that f−1(B) ∈ τ
(
f−1(E)

)
, i.e. f−1(τ(E)) ⊂ τ

(
f−1(E)

)
and

Eq. (13.4) has been proved. Applying Eq. (13.4) with X = A and f = iA
being the inclusion map implies

(τ(E))A = i−1
A (τ(E)) = τ(i−1

A (E)) = τ(EA).

Lastly if f−1E ⊂ τX , then f−1τ (E) = τ
(
f−1E

)
⊂ τX which shows f is

(τX , τY ) – continuous.

Corollary 13.15. If (X, τ) is a topological space and f : X → R is a function
then the following are equivalent:

1. f is (τ, τR) - continuous,
2. f−1((a, b)) ∈ τ for all −∞ < a < b <∞,
3. f−1((a,∞)) ∈ τ and f−1((−∞, b)) ∈ τ for all a, b ∈ Q.

(We are using τR to denote the standard topology on R induced by the
metric d(x, y) = |x− y|.)

Proof. Apply Lemma 13.14 with appropriate choices of E .

Definition 13.16. Let (X, τX) and (Y, τY ) be topological spaces. A function
f : X → Y is continuous at a point x ∈ X if for every open neighborhood
V of f(x) there is an open neighborhood U of x such that U ⊂ f−1(V ). See
Figure 13.3.

Exercise 13.5. Show f : X → Y is continuous (Definition 13.16) iff f is
continuous at all points x ∈ X.

Definition 13.17. Given topological spaces (X, τ) and (Y, τ ′) and a subset
A ⊂ X. We say a function f : A → Y is continuous iff f is τA/τ

′ –
continuous.
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Fig. 13.3. Checking that a function is continuous at x ∈ X.

Definition 13.18. Let (X, τ) be a topological space and A ⊂ X. A collection
of subsets U ⊂ τ is an open cover of A if A ⊂

⋃
U :=

⋃
U∈U U.

Proposition 13.19 (Localizing Continuity). Let (X, τ) and (Y, τ ′) be
topological spaces and f : X → Y be a function.

1. If f is continuous and A ⊂ X then f |A : A→ Y is continuous.
2. Suppose there exist an open cover, U ⊂ τ, of X such that f |A is continuous

for all A ∈ U , then f is continuous.

Proof. 1. If f : X → Y is a continuous, f−1(V ) ∈ τ for all V ∈ τ ′ and
therefore

f |−1
A (V ) = A ∩ f−1(V ) ∈ τA for all V ∈ τ ′.

2. Let V ∈ τ ′, then

f−1(V ) = ∪A∈U
(
f−1(V ) ∩A

)
= ∪A∈Uf |−1

A (V ). (13.6)

Since each A ∈ U is open, τA ⊂ τ and by assumption, f |−1
A (V ) ∈ τA ⊂ τ.

Hence Eq. (13.6) shows f−1 (V ) is a union of τ – open sets and hence is also
τ – open.

Exercise 13.6 (A Baby Extension Theorem). Suppose V ∈ τ and f :
V → C is a continuous function. Further assume there is a closed subset C
such that {x ∈ V : f (x) 6= 0} ⊂ C ⊂ V, then F : X → C defined by

F (x) =
{
f(x) if x ∈ V

0 if x /∈ V
is continuous.

Exercise 13.7 (Building Continuous Functions). Prove the following
variant of item 2. of Proposition 13.19. Namely, suppose there exists a fi-
nite collection F of closed subsets of X such that X = ∪A∈FA and f |A is
continuous for all A ∈ F , then f is continuous. Given an example showing
that the assumption that F is finite can not be eliminated. Hint: consider
f−1 (C) where C is a closed subset of Y.
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13.2 Product Spaces I

Definition 13.20. Let X be a set and suppose there is a collection of topo-
logical spaces {(Yα, τα) : α ∈ A} and functions fα : X → Yα for all α ∈ A.
Let τ(fα : α ∈ A) denote the smallest topology on X such that each fα is
continuous, i.e.

τ(fα : α ∈ A) = τ(∪αf−1
α (τα)).

Proposition 13.21 (Topologies Generated by Functions). Assuming
the notation in Definition 13.20 and additionally let (Z, τZ) be a topologi-
cal space and g : Z → X be a function. Then g is (τZ , τ(fα : α ∈ A)) –
continuous iff fα ◦ g is (τZ , τα)–continuous for all α ∈ A.

Proof. (⇒) If g is (τZ , τ(fα : α ∈ A)) – continuous, then the composition
fα ◦ g is (τZ , τα) – continuous by Lemma 13.13. (⇐) Let

τX = τ(fα : α ∈ A) = τ
(
∪α∈Af−1

α (τα)
)
.

If fα ◦ g is (τZ , τα) – continuous for all α, then

g−1f−1
α (τα) ⊂ τZ ∀α ∈ A

and therefore

g−1
(
∪α∈Af−1

α (τα)
)

= ∪α∈Ag−1f−1
α (τα) ⊂ τZ

Hence

g−1 (τX) = g−1
(
τ
(
∪α∈Af−1

α (τα)
))

= τ(g−1
(
∪α∈Af−1

α (τα)
)
⊂ τZ

which shows that g is (τZ , τX) – continuous.
Let {(Xα, τα)}α∈A be a collection of topological spaces,X =XA =

∏
α∈A

Xα

and πα : XA → Xα be the canonical projection map as in Notation 2.2.

Definition 13.22. The product topology τ = ⊗α∈Aτα is the smallest topol-
ogy on XA such that each projection πα is continuous. Explicitly, τ is the
topology generated by the collection of sets,

E = {π−1
α (Vα) : α ∈ A, Vα ∈ τα} = ∪α∈Aπ−1τα. (13.7)

Applying Proposition 13.21 in this setting implies the following proposi-
tion.

Proposition 13.23. Suppose Y is a topological space and f : Y → XA is a
map. Then f is continuous iff πα ◦ f : Y → Xα is continuous for all α ∈ A.
In particular if A = {1, 2, . . . , n} so that XA = X1 × X2 × · · · × Xn and
f(y) = (f1(y), f2(y), . . . , fn(y)) ∈ X1 × X2 × · · · × Xn, then f : Y → XA is
continuous iff fi : Y → Xi is continuous for all i.
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Proposition 13.24. Suppose that (X, τ) is a topological space and {fn} ⊂
XA (see Notation 2.2) is a sequence. Then fn → f in the product topology of
XA iff fn(α)→ f(α) for all α ∈ A.

Proof. Since πα is continuous, if fn → f then fn(α) = πα(fn)→ πα(f) =
f(α) for all α ∈ A. Conversely, fn(α)→ f(α) for all α ∈ A iff πα(fn)→ πα(f)
for all α ∈ A. Therefore if V = π−1

α (Vα) ∈ E (with E as in Eq. (13.7)) and
f ∈ V, then πα(f) ∈ Vα and πα(fn) ∈ Vα for a.a. n and hence fn ∈ V for a.a.
n. This shows that fn → f as n→∞.

Proposition 13.25. Suppose that (Xα, τα)α∈A is a collection of topological
spaces and ⊗α∈Aτα is the product topology on X :=

∏
α∈AXα.

1. If Eα ⊂ τα generates τα for each α ∈ A, then

⊗α∈A τα = τ
(
∪α∈Aπ−1

α (Eα)
)

(13.8)

2. If Bα ⊂ τα is a base for τα for each α, then the collection of sets, V, of
the form

V = ∩α∈Λπ−1
α Vα =

∏
α∈Λ

Vα ×
∏
α/∈Λ

Xα =: VΛ ×XA\Λ, (13.9)

where Λ ⊂⊂ A and Vα ∈ Bα for all α ∈ Λ is base for ⊗α∈Aτα.

Proof. 1. Since

∪απ−1
α Eα ⊂ ∪απ−1

α τα = ∪απ−1
α (τ(Eα))

= ∪ατ(π−1
α Eα) ⊂ τ

(
∪απ−1

α Eα
)
,

it follows that
τ
(
∪απ−1

α Eα
)
⊂ ⊗ατα ⊂ τ

(
∪απ−1

α Eα
)
.

2. Now let U =
[
∪απ−1

α τα
]
f

denote the collection of sets consisting of finite
intersections of elements from ∪απ−1

α τα. Notice that U may be described as
those sets in Eq. (13.9) where Vα ∈ τα for all α ∈ Λ. By Exercise 13.2, U is a
base for the product topology, ⊗α∈Aτα. Hence for W ∈ ⊗α∈Aτα and x ∈ W,
there exists a V ∈ U of the form in Eq. (13.9) such that x ∈ V ⊂W. Since Bα
is a base for τα, there exists Uα ∈ Bα such that xα ∈ Uα ⊂ Vα for each α ∈ Λ.
With this notation, the set UΛ × XA\Λ ∈ V and x ∈ UΛ × XA\Λ ⊂ V ⊂ W.
This shows that every open set in X may be written as a union of elements
from V, i.e. V is a base for the product topology.

Notation 13.26 Let Ei ⊂ 2Xi be a collection of subsets of a set Xi for each
i = 1, 2, . . . , n. We will write, by abuse of notation, E1 × E2 × · · · × En for the
collection of subsets of X1×· · ·×Xn of the form A1×A2×· · ·×An with Ai ∈ Ei
for all i. That is we are identifying (A1, A2, . . . , An) with A1×A2× · · · ×An.
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Corollary 13.27. Suppose A = {1, 2, . . . , n} so X = X1 ×X2 × · · · ×Xn.

1. If Ei ⊂ 2Xi , τi = τ (Ei) and Xi ∈ Ei for each i, then

τ1 ⊗ τ2 ⊗ · · · ⊗ τn = τ(E1 × E2 × · · · × En) (13.10)

and in particular

τ1 ⊗ τ2 ⊗ · · · ⊗ τn = τ(τ1 × · · · × τn). (13.11)

2. Furthermore if Bi ⊂ τi is a base for the topology τi for each i, then B1 ×
· · · × Bn is a base for the product topology, τ1 ⊗ τ2 ⊗ · · · ⊗ τn.

Proof. (The proof is a minor variation on the proof of Proposition 13.25.)
1. Let

[
∪i∈Aπ−1

i (Ei)
]
f

denotes the collection of sets which are finite intersec-
tions from ∪i∈Aπ−1

i (Ei), then, using Xi ∈ Ei for all i,

∪i∈Aπ−1
i (Ei) ⊂ E1 × E2 × · · · × En ⊂

[
∪i∈Aπ−1

i (Ei)
]
f
.

Therefore

τ = τ
(
∪i∈Aπ−1

i (Ei)
)
⊂ τ (E1 × E2 × · · · × En) ⊂ τ

([
∪i∈Aπ−1

i (Ei)
]
f

)
= τ.

2. Observe that τ1× · · · × τn is closed under finite intersections and generates
τ1 ⊗ τ2 ⊗ · · · ⊗ τn, therefore τ1 × · · · × τn is a base for the product topology.
The proof that B1 × · · · × Bn is also a base for τ1 ⊗ τ2 ⊗ · · · ⊗ τn follows the
same method used to prove item 2. in Proposition 13.25.

Lemma 13.28. Let (Xi, di) for i = 1, . . . , n be metric spaces, X := X1×· · ·×
Xn and for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in X let

d(x, y) =
n∑
i=1

di(xi, yi). (13.12)

Then the topology, τd, associated to the metric d is the product topology on X,
i.e.

τd = τd1 ⊗ τd2 ⊗ · · · ⊗ τdn
.

Proof. Let ρ(x, y) = max{di(xi, yi) : i = 1, 2, . . . , n}. Then ρ is equivalent
to d and hence τρ = τd. Moreover if ε > 0 and x = (x1, x2, . . . , xn) ∈ X, then

Bρx(ε) = Bd1x1
(ε)× · · · ×Bdn

xn
(ε).

By Remark 13.9,
E := {Bρx(ε) : x ∈ X and ε > 0}

is a base for τρ and by Proposition 13.25 E is also a base for τd1⊗τd2⊗· · ·⊗τdn
.

Therefore,
τd1 ⊗ τd2 ⊗ · · · ⊗ τdn

= τ(E) = τρ = τd.
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13.3 Closure operations

Definition 13.29. Let (X, τ) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set Ā containing A, i.e.

Ā := ∩{F : A ⊂ F @ X} .

(Because of Exercise 6.4 this is consistent with Definition 6.10 for the
closure of a set in a metric space.)

2. The interior of A is the largest open set Ao contained in A, i.e.

Ao = ∪{V ∈ τ : V ⊂ A} .

(With this notation the definition of a neighborhood of x ∈ X may be
stated as: A ⊂ X is a neighborhood of a point x ∈ X if x ∈ Ao.)

3. The accumulation points of A is the set

acc(A) = {x ∈ X : V ∩A \ {x} 6= ∅ for all V ∈ τx}.

4. The boundary of A is the set bd(A) := Ā \Ao.

Remark 13.30. The relationships between the interior and the closure of a set
are:

(Ao)c =
⋂
{V c : V ∈ τ and V ⊂ A} =

⋂
{C : C is closed C ⊃ Ac} = Ac

and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

bd(A) := Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac, (13.13)

which is to say bd(A) consists of the points in both the closure of A and Ac.

Proposition 13.31. Let A ⊂ X and x ∈ X.

1. If V ⊂o X and A ∩ V = ∅ then Ā ∩ V = ∅.
2. x ∈ Ā iff V ∩A 6= ∅ for all V ∈ τx.
3. x ∈ bd(A) iff V ∩A 6= ∅ and V ∩Ac 6= ∅ for all V ∈ τx.
4. Ā = A ∪ acc(A).

Proof. 1. Since A ∩ V = ∅, A ⊂ V c and since V c is closed, Ā ⊂ V c. That
is to say Ā∩V = ∅. 2. By Remark 13.301, Ā = ((Ac)o)c so x ∈ Ā iff x /∈ (Ac)o

which happens iff V * Ac for all V ∈ τx, i.e. iff V ∩ A 6= ∅ for all V ∈ τx. 3.
This assertion easily follows from the Item 2. and Eq. (13.13). 4. Item 4. is an
easy consequence of the definition of acc(A) and item 2.

1 Here is another direct proof of item 2. which goes by showing x /∈ Ā iff there exists
V ∈ τx such that V ∩A = ∅. If x /∈ Ā then V =

(
Ā

)c ∈ τx and V ∩A ⊂ V ∩Ā = ∅.
Conversely if there exists V ∈ τx such that A∩V = ∅ then by Item 1. Ā∩V = ∅.
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Lemma 13.32. Let A ⊂ Y ⊂ X, ĀY denote the closure of A in Y with its
relative topology and Ā = ĀX be the closure of A in X, then ĀY = ĀX ∩ Y.

Proof. Using Lemma 13.12,

ĀY = ∩{B @ Y : A ⊂ B} = ∩{C ∩ Y : A ⊂ C @ X}
= Y ∩ (∩{C : A ⊂ C @ X}) = Y ∩ ĀX .

Alternative proof. Let x ∈ Y then x ∈ ĀY iff V ∩A 6= ∅ for all V ∈ τY
such that x ∈ V. This happens iff for all U ∈ τx, U ∩Y ∩A = U ∩A 6= ∅ which
happens iff x ∈ ĀX . That is to say ĀY = ĀX ∩ Y.

The support of a function may now be defined as in Definition 10.25 above.

Definition 13.33 (Support). Let f : X → Y be a function from a topo-
logical space (X, τX) to a vector space Y. Then we define the support of f
by

supp(f) := {x ∈ X : f(x) 6= 0},
a closed subset of X.

The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 13.34. Suppose that f : X → Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(Ā) ⊂ f(A) for all A ⊂ X
3. f−1(B) ⊂ f−1(B̄) for all B ⊂ X.

Proof. If f is continuous, then f−1
(
f(A)

)
is closed and since A ⊂

f−1 (f(A)) ⊂ f−1
(
f(A)

)
it follows that Ā ⊂ f−1

(
f(A)

)
. From this equa-

tion we learn that f(Ā) ⊂ f(A) so that (1) implies (2) Now assume (2), then
for B ⊂ Y (taking A = f−1(B̄)) we have

f(f−1(B)) ⊂ f(f−1(B̄)) ⊂ f(f−1(B̄)) ⊂ B̄

and therefore
f−1(B) ⊂ f−1(B̄). (13.14)

This shows that (2) implies (3) Finally if Eq. (13.14) holds for all B, then
when B is closed this shows that

f−1(B) ⊂ f−1(B̄) = f−1(B) ⊂ f−1(B)

which shows that
f−1(B) = f−1(B).

Therefore f−1(B) is closed whenever B is closed which implies that f is
continuous.
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13.4 Countability Axioms

Definition 13.35. Let (X, τ) be a topological space. A sequence {xn}∞n=1 ⊂
X converges to a point x ∈ X if for all V ∈ τx, xn ∈ V almost always
(abbreviated a.a.), i.e. # ({n : xn /∈ V }) < ∞. We will write xn → x as n →
∞ or limn→∞ xn = x when xn converges to x.

Example 13.36. Let X = {1, 2, 3} and τ = {X, ∅, {1, 2}, {2, 3}, {2}} and xn =
2 for all n. Then xn → x for every x ∈ X. So limits need not be unique!

Definition 13.37 (First Countable). A topological space, (X, τ), is first
countable iff every point x ∈ X has a countable neighborhood base as defined
in Notation 13.2

Example 13.38. All metric spaces, (X, d) , are first countable. Indeed, if x ∈ X
then

{
B
(
x, 1

n

)
: n ∈ N

}
is a countable neigborhood base at x ∈ X.

Exercise 13.8. Suppose X is an uncountable set and let V ∈ τ iff V c is finite
or countable of V = ∅. Show τ is a topology on X which is closed under
countable intersections and that (X, τ) is not first countable.

Exercise 13.9. Let {0, 1} be equipped with the discrete topology and X =
{0, 1}R be equipped with the product topology, τ. Show (X, τ) is not first
countable.

The spaces described in Exercises 13.8 and 13.9 are examples of topological
spaces which are not metrizable, i.e. the topology is not induced by any metric
onX. Like for metric spaces, when τ is first countable, we may formulate many
topological notions in terms of sequences.

Proposition 13.39. If f : X → Y is continuous at x ∈ X and limn→∞ xn =
x ∈ X, then limn→∞ f(xn) = f(x) ∈ Y. Moreover, if there exists a countable
neighborhood base η of x ∈ X, then f is continuous at x iff lim

n→∞
f(xn) = f(x)

for all sequences {xn}∞n=1 ⊂ X such that xn → x as n→∞.

Proof. If f : X → Y is continuous and W ∈ τY is a neighborhood of
f(x) ∈ Y, then there exists a neighborhood V of x ∈ X such that f(V ) ⊂W.
Since xn → x, xn ∈ V a.a. and therefore f(xn) ∈ f(V ) ⊂ W a.a., i.e.
f(xn) → f(x) as n → ∞. Conversely suppose that η := {Wn}∞n=1 is a
countable neighborhood base at x and lim

n→∞
f(xn) = f(x) for all sequences

{xn}∞n=1 ⊂ X such that xn → x. By replacing Wn by W1 ∩ · · · ∩Wn if neces-
sary, we may assume that {Wn}∞n=1 is a decreasing sequence of sets. If f were
not continuous at x then there exists V ∈ τf(x) such that x /∈

[
f−1(V )

]o
.

Therefore, Wn is not a subset of f−1(V ) for all n. Hence for each n, we may
choose xn ∈ Wn \ f−1(V ). This sequence then has the property that xn → x
as n→∞ while f(xn) /∈ V for all n and hence limn→∞ f(xn) 6= f(x).
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Lemma 13.40. Suppose there exists {xn}∞n=1 ⊂ A such that xn → x, then
x ∈ Ā. Conversely if (X, τ) is a first countable space (like a metric space)
then if x ∈ Ā there exists {xn}∞n=1 ⊂ A such that xn → x.

Proof. Suppose {xn}∞n=1 ⊂ A and xn → x ∈ X. Since Āc is an open
set, if x ∈ Āc then xn ∈ Āc ⊂ Ac a.a. contradicting the assumption that
{xn}∞n=1 ⊂ A. Hence x ∈ Ā. For the converse we now assume that (X, τ) is
first countable and that {Vn}∞n=1 is a countable neighborhood base at x such
that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By Proposition 13.31, x ∈ Ā iff V ∩ A 6= ∅ for all
V ∈ τx. Hence x ∈ Ā implies there exists xn ∈ Vn ∩ A for all n. It is now
easily seen that xn → x as n→∞.

Definition 13.41. A topological space, (X, τ), is second countable if there
exists a countable base V for τ, i.e. V ⊂ τ is a countable set such that for
every W ∈ τ,

W = ∪{V : V ∈ V 3V ⊂W}.

Definition 13.42. A subset D of a topological space X is dense if D̄ = X.
A topological space is said to be separable if it contains a countable dense
subset, D.

Example 13.43. The following are examples of countable dense sets.

1. The rational numbers, Q, are dense in R equipped with the usual topology.
2. More generally, Qd is a countable dense subset of Rd for any d ∈ N.
3. Even more generally, for any function µ : N→ (0,∞), `p(µ) is separable

for all 1 ≤ p <∞. For example, let Γ ⊂ F be a countable dense set, then

D := {x ∈ `p(µ) : xi ∈ Γ for all i and #{j : xj 6= 0} <∞}.

The set Γ can be taken to be Q if F = R or Q+ iQ if F = C.
4. If (X, d) is a metric space which is separable then every subset Y ⊂ X is

also separable in the induced topology.

To prove 4. above, let A = {xn}∞n=1 ⊂ X be a countable dense subset of
X. Let dY (x) = inf{d(x, y) : y ∈ Y } be the distance from x to Y and recall
that dY : X → [0,∞) is continuous. Let εn = max

{
dY (xn), 1

n

}
≥ 0 and for

each n let yn ∈ Bxn
(2εn). Then if y ∈ Y and ε > 0 we may choose n ∈ N such

that d(y, xn) ≤ εn < ε/3. Then d(yn, xn) ≤ 2εn < 2ε/3 and therefore

d(y, yn) ≤ d(y, xn) + d(xn, yn) < ε.

This shows that B := {yn}∞n=1 is a countable dense subset of Y.

Exercise 13.10. Show `∞ (N) is not separable.

Exercise 13.11. Show every second countable topological space (X, τ) is
separable. Show the converse is not true by showing X := R with τ =
{∅} ∪ {V ⊂ R : 0 ∈ V } is a separable, first countable but not a second count-
able topological space.
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Exercise 13.12. Every separable metric space, (X, d) is second countable.

Exercise 13.13. Suppose E ⊂ 2X is a countable collection of subsets of X,
then τ = τ(E) is a second countable topology on X.

13.5 Connectedness

Definition 13.44. (X, τ) is disconnected if there exist non-empty open sets
U and V of X such that U ∩ V = ∅ and X = U ∪ V . We say {U, V } is a
disconnection of X. The topological space (X, τ) is called connected if it
is not disconnected, i.e. if there is no disconnection of X. If A ⊂ X we say
A is connected iff (A, τA) is connected where τA is the relative topology on
A. Explicitly, A is disconnected in (X, τ) iff there exists U, V ∈ τ such that
U ∩A 6= ∅, U ∩A 6= ∅, A ∩ U ∩ V = ∅ and A ⊂ U ∪ V.

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space (X, τ) is connected iff the only
sets A ⊂ X which are both open and closed are the sets X and ∅. This version
of the definition is often used in practice.

Remark 13.45. Let A ⊂ Y ⊂ X. Then A is connected in X iff A is connected
in Y .

Proof. Since

τA := {V ∩A : V ⊂ X} = {V ∩A ∩ Y : V ⊂ X} = {U ∩A : U ⊂o Y },

the relative topology on A inherited from X is the same as the relative topol-
ogy on A inherited from Y . Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y.

The following elementary but important lemma is left as an exercise to
the reader.

Lemma 13.46. Suppose that f : X → Y is a continuous map between topo-
logical spaces. Then f(X) ⊂ Y is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 13.47. Suppose that f : X → Y is a continuous map between two
topological spaces, the space X is connected and the space Y is “T1,” i.e. {y}
is a closed set for all y ∈ Y as in Definition 15.35 below. Further assume f is
locally constant, i.e. for all x ∈ X there exists an open neighborhood V of x
in X such that f |V is constant. Then f is constant, i.e. f(X) = {y0} for some
y0 ∈ Y. To prove this, let y0 ∈ f(X) and let W := f−1({y0}). Since {y0} ⊂ Y
is a closed set and since f is continuous W ⊂ X is also closed. Since f is
locally constant, W is open as well and since X is connected it follows that
W = X, i.e. f(X) = {y0} .
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As a concrete application of this result, suppose that X is a connected
open subset of Rd and f : X → R is a C1 – function such that ∇f ≡ 0.
If x ∈ X and ε > 0 such that B (x, ε) ⊂ X, we have, for any |v| < ε and
t ∈ [−1, 1] , that

d

dt
f (x+ tv) = ∇f (x+ tv) · v = 0.

Therefore f (x+ v) = f (x) for all |v| < ε and this shows f is locally constant.
Hence, by what we have just proved, f is constant on X.

Theorem 13.48 (Properties of Connected Sets). Let (X, τ) be a topo-
logical space.

1. If B ⊂ X is a connected set and X is the disjoint union of two open sets
U and V, then either B ⊂ U or B ⊂ V.

2. If A ⊂ X is connected,
a) then Ā is connected.
b) More generally, if A is connected and B ⊂ acc(A), then A ∪ B is

connected as well. (Recall that acc(A) – the set of accumulation points
of A was defined in Definition 13.29 above.)

3. If {Eα}α∈A is a collection of connected sets such that
⋂
α∈AEα 6= ∅, then

Y :=
⋃
α∈AEα is connected as well.

4. Suppose A,B ⊂ X are non-empty connected subsets of X such that Ā ∩
B 6= ∅, then A ∪B is connected in X.

5. Every point x ∈ X is contained in a unique maximal connected subset
Cx of X and this subset is closed. The set Cx is called the connected
component of x.

Proof.

1. Since B is the disjoint union of the relatively open sets B ∩U and B ∩ V,
we must have B ∩ U = B or B ∩ V = B for otherwise {B ∩ U,B ∩ V }
would be a disconnection of B.

2. a. Let Y = Ā be equipped with the relative topology from X. Suppose
that U, V ⊂o Y form a disconnection of Y = Ā. Then by 1. either A ⊂ U
or A ⊂ V. Say that A ⊂ U. Since U is both open an closed in Y, it follows
that Y = Ā ⊂ U. Therefore V = ∅ and we have a contradiction to the
assumption that {U, V } is a disconnection of Y = Ā. Hence we must
conclude that Y = Ā is connected as well.
b. Now let Y = A ∪B with B ⊂ acc(A), then

ĀY = Ā ∩ Y = (A ∪ acc(A)) ∩ Y = A ∪B.

Because A is connected in Y, by (2a) Y = A ∪B = ĀY is also connected.
3. Let Y :=

⋃
α∈AEα. By Remark 13.45, we know that Eα is connected

in Y for each α ∈ A. If {U, V } were a disconnection of Y, by item (1),
either Eα ⊂ U or Eα ⊂ V for all α. Let Λ = {α ∈ A : Eα ⊂ U} then
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U = ∪α∈ΛEα and V = ∪α∈A\ΛEα. (Notice that neither Λ or A \Λ can be
empty since U and V are not empty.) Since

∅ = U ∩ V =
⋃

α∈Λ,β∈Λc (Eα ∩ Eβ) ⊃
⋂
α∈A

Eα 6= ∅.

we have reached a contradiction and hence no such disconnection exists.
4. (A good example to keep in mind here is X = R, A = (0, 1) and B =

[1, 2).) For sake of contradiction suppose that {U, V } were a disconnection
of Y = A ∪ B. By item (1) either A ⊂ U or A ⊂ V, say A ⊂ U in which
case B ⊂ V. Since Y = A ∪ B we must have A = U and B = V and so
we may conclude: A and B are disjoint subsets of Y which are both open
and closed. This implies

A = ĀY = Ā ∩ Y = Ā ∩ (A ∪B) = A ∪
(
Ā ∩B

)
and therefore

∅ = A ∩B =
[
A ∪

(
Ā ∩B

)]
∩B = Ā ∩B 6= ∅

which gives us the desired contradiction.
5. Let C denote the collection of connected subsets C ⊂ X such that x ∈ C.

Then by item 3., the set Cx := ∪C is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C̄x is also connected by item (2) and Cx is maximal, Cx = C̄x,
i.e. Cx is closed.

Theorem 13.49 (The Connected Subsets of R). The connected subsets
of R are intervals.

Proof. Suppose that A ⊂ R is a connected subset and that a, b ∈ A with
a < b. If there exists c ∈ (a, b) such that c /∈ A, then U := (−∞, c) ∩ A
and V := (c,∞) ∩ A would form a disconnection of A. Hence (a, b) ⊂ A. Let
α := inf(A) and β := sup(A) and choose αn, βn ∈ A such that αn < βn and
αn ↓ α and βn ↑ β as n → ∞. By what we have just shown, (αn, βn) ⊂ A
for all n and hence (α, β) = ∪∞n=1(αn, βn) ⊂ A. From this it follows that
A = (α, β), [α, β), (α, β] or [α, β], i.e. A is an interval.

Conversely suppose that A is an interval, and for sake of contradiction,
suppose that {U, V } is a disconnection of A with a ∈ U, b ∈ V. After relabelling
U and V if necessary we may assume that a < b. Since A is an interval
[a, b] ⊂ A. Let p = sup ([a, b] ∩ U) , then because U and V are open, a < p < b.
Now p can not be in U for otherwise sup ([a, b] ∩ U) > p and p can not be in
V for otherwise p < sup ([a, b] ∩ U) . From this it follows that p /∈ U ∪ V and
hence A 6= U ∪V contradicting the assumption that {U, V } is a disconnection.
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Theorem 13.50 (Intermediate Value Theorem). Suppose that (X, τ) is
a connected topological space and f : X → R is a continuous map. Then f
satisfies the intermediate value property. Namely, for every pair x, y ∈ X such
that f (x) < f(y) and c ∈ (f (x) , f(y)), there exits z ∈ X such that f(z) = c.

Proof. By Lemma 13.46, f (X) is connected subset of R. So by Theorem
13.49, f (X) is a subinterval of R and this completes the proof.

Definition 13.51. A topological space X is path connected if to every pair
of points {x0, x1} ⊂ X there exists a continuous path, σ ∈ C([0, 1], X), such
that σ(0) = x0 and σ(1) = x1. The space X is said to be locally path con-
nected if for each x ∈ X, there is an open neighborhood V ⊂ X of x which is
path connected.

Proposition 13.52. Let X be a topological space.

1. If X is path connected then X is connected.
2. If X is connected and locally path connected, then X is path connected.
3. If X is any connected open subset of Rn, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 13.20 –
13.22 below.

Proposition 13.53 (Stability of Connectedness Under Products). Let
(Xα, τα) be connected topological spaces. Then the product space XA =∏
α∈AXα equipped with the product topology is connected.

Proof. Let us begin with the case of two factors, namely assume that
X and Y are connected topological spaces, then we will show that X × Y is
connected as well. Given x ∈ X, let fx : Y → X×Y be the map fx(y) = (x, y)
and notice that fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are
continuous maps. From this we conclude that {x} × Y = fx(Y ) is connected
by Lemma 13.46. A similar argument shows X×{y} is connected for all y ∈ Y.

Let p = (x0, y0) ∈ X × Y and Cp denote the connected component of p.
Since {x0} × Y is connected and p ∈ {x0} × Y it follows that {x0} × Y ⊂ Cp
and hence Cp is also the connected component (x0, y) for all y ∈ Y. Similarly,
X×{y} ⊂ C(x0,y) = Cp is connected, and therefore X×{y} ⊂ Cp. So we have
shown (x, y) ∈ Cp for all x ∈ X and y ∈ Y, see Figure 13.4. By induction the
theorem holds whenever A is a finite set, i.e. for products of a finite number
of connected spaces.

For the general case, again choose a point p ∈ XA = XA and again
let C = Cp be the connected component of p. Recall that Cp is closed and
therefore if Cp is a proper subset of XA, then XA \ Cp is a non-empty open
set. By the definition of the product topology, this would imply that XA \Cp
contains an open set of the form

V := ∩α∈Λπ−1
α (Vα) = VΛ ×XA\Λ
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Fig. 13.4. This picture illustrates why the connected component of p in X × Y
must contain all points of X × Y.

where Λ ⊂⊂ A and Vα ∈ τα for all α ∈ Λ. We will now show that no such V
can exist and hence XA = Cp, i.e. XA is connected.

Define φ : XΛ → XA by φ(y) = x where

xα =
{
yα if α ∈ Λ
pα if α /∈ Λ.

If α ∈ Λ, πα◦φ(y) = yα = πα(y) and if α ∈ A\Λ then πα◦φ(y) = pα so that in
every case πα◦φ : XΛ → Xα is continuous and therefore φ is continuous. Since
XΛ is a product of a finite number of connected spaces and so is connected
and thus so is the continuous image, φ(XΛ) = XΛ × {pα}α∈A\Λ ⊂ XΛ. Now
p ∈ φ(XΛ) and φ(XΛ) is connected implies that φ(XΛ) ⊂ C. On the other
hand one easily sees that

∅ 6= V ∩ φ(XΛ) ⊂ V ∩ C

contradicting the assumption that V ⊂ Cc.

13.6 Exercises

13.6.1 General Topological Space Problems

Exercise 13.14. Let V be an open subset of R. Show V may be written as
a disjoint union of open intervals Jn = (an, bn), where an, bn ∈ R∪{±∞} for
n = 1, 2, · · · < N with N =∞ possible.
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Exercise 13.15. Let (X, τ) and (Y, τ ′) be a topological spaces, f : X → Y
be a function, U be an open cover of X and {Fj}nj=1 be a finite cover of X by
closed sets.

1. IfA ⊂ X is any set and f : X → Y is (τ, τ ′) – continuous then f |A : A→ Y
is (τA, τ ′) – continuous.

2. Show f : X → Y is (τ, τ ′) – continuous iff f |U : U → Y is (τU , τ ′) –
continuous for all U ∈ U .

3. Show f : X → Y is (τ, τ ′) – continuous iff f |Fj
: Fj → Y is (τFj

, τ ′) –
continuous for all j = 1, 2, . . . , n.

Exercise 13.16. Suppose that X is a set, {(Yα, τα) : α ∈ A} is a family of
topological spaces and fα : X → Yα is a given function for all α ∈ A. Assuming
that Sα ⊂ τα is a sub-base for the topology τα for each α ∈ A, show S :=
∪α∈Af−1

α (Sα) is a sub-base for the topology τ := τ(fα : α ∈ A).

13.6.2 Connectedness Problems

Exercise 13.17. Show any non-trivial interval in Q is disconnected.

Exercise 13.18. Suppose a < b and f : (a, b) → R is a non-decreasing func-
tion. Show if f satisfies the intermediate value property (see Theorem 13.50),
then f is continuous.

Exercise 13.19. Suppose −∞ < a < b ≤ ∞ and f : [a, b) → R is a strictly
increasing continuous function. By Lemma 13.46, f ([a, b)) is an interval and
since f is strictly increasing it must of the form [c, d) for some c ∈ R and d ∈ R̄
with c < d. Show the inverse function f−1 : [c, d) → [a, b) is continuous and
is strictly increasing. In particular if n ∈ N, apply this result to f (x) = xn

for x ∈ [0,∞) to construct the positive nth – root of a real number. Compare
with Exercise 3.8

Exercise 13.20. Prove item 1. of Proposition 13.52. Hint: show X is not
connected implies X is not path connected.

Exercise 13.21. Prove item 2. of Proposition 13.52. Hint: fix x0 ∈ X and let
W denote the set of x ∈ X such that there exists σ ∈ C([0, 1], X) satisfying
σ(0) = x0 and σ(1) = x. Then show W is both open and closed.

Exercise 13.22. Prove item 3. of Proposition 13.52.

Exercise 13.23. Let

X :=
{
(x, y) ∈ R2 : y = sin(x−1)

}
∪ {(0, 0)}

equipped with the relative topology induced from the standard topology on
R2. Show X is connected but not path connected.
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13.6.3 Metric Spaces as Topological Spaces

Definition 13.54. Two metrics d and ρ on a set X are said to be equivalent
if there exists a constant c ∈ (0,∞) such that c−1ρ ≤ d ≤ cρ.

Exercise 13.24. Suppose that d and ρ are two metrics on X.

1. Show τd = τρ if d and ρ are equivalent.
2. Show by example that it is possible for τd = τρ even thought d and ρ are

inequivalent.

Exercise 13.25. Let (Xi, di) for i = 1, . . . , n be a finite collection of metric
spaces and for 1 ≤ p ≤ ∞ and x = (x1, x2, . . . , xn) and y = (y1, . . . , yn) in
X :=

∏n
i=1Xi, let

ρp(x, y) =
{

(
∑n
i=1 [di(xi, yi)]

p)1/p if p 6=∞
maxi di(xi, yi) if p =∞

.

1. Show (X, ρp) is a metric space for p ∈ [1,∞]. Hint: Minkowski’s inequal-
ity.

2. Show for any p, q ∈ [1,∞], the metrics ρp and ρq are equivalent. Hint:
This can be done with explicit estimates or you could use Theorem 14.12
below.

Notation 13.55 Let X be a set and p := {pn}∞n=0 be a family of semi-metrics
on X, i.e. pn : X × X → [0,∞) are functions satisfying the assumptions
of metric except for the assertion that pn(x, y) = 0 implies x = y. Further
assume that pn(x, y) ≤ pn+1(x, y) for all n and if pn(x, y) = 0 for all n ∈ N
then x = y. Given n ∈ N and x ∈ X let

Bn(x, ε) := {y ∈ X : pn(x, y) < ε} .

We will write τ(p) form the smallest topology on X such that pn(x, ·) : X →
[0,∞) is continuous for all n ∈ N and x ∈ X, i.e. τ(p) := τ(pn(x·) : n ∈ N
and x ∈ X).

Exercise 13.26. Using Notation 13.55, show that collection of balls,

B := {Bn(x, ε) : n ∈ N, x ∈ X and ε > 0} ,

forms a base for the topology τ(p). Hint: Use Exercise 13.16 to show B is a
sub-base for the topology τ(p) and then use Exercise 13.2 to show B is in fact
a base for the topology τ(p).

Exercise 13.27 (A minor variant of Exercise 6.12). Let pn be as in
Notation 13.55 and

d(x, y) :=
∞∑
n=0

2−n
pn(x, y)

1 + pn(x, y)
.
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214 13 Topological Space Basics

Show d is a metric on X and τd = τ(p). Conclude that a sequence {xk}∞k=1 ⊂
X converges to x ∈ X iff

lim
k→∞

pn(xk, x) = 0 for all n ∈ N.

Exercise 13.28. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=∏∞
n=1Xn, and for x = (x(n))∞n=1 and y = (y(n))∞n=1 in X let

d(x, y) =
∞∑
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

(See Exercise 6.12.) Moreover, let πn : X → Xn be the projection maps, show

τd = ⊗∞n=1τdn
:= τ({πn : n ∈ N}).

That is show the d – metric topology is the same as the product topology on
X. Suggestions: 1) show πn is τd continuous for each n and 2) show for each
x ∈ X that d (x, ·) is ⊗∞n=1τdn – continuous. For the second assertion notice
that d (x, ·) =

∑∞
n=1 fn where fn = 2−n

(
dn(x(n),·)

1+dn(x(n),·)

)
◦ πn.
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Compactness

Definition 14.1. The subset A of a topological space (X τ) is said to be com-
pact if every open cover (Definition 13.18) of A has finite a sub-cover, i.e. if
U is an open cover of A there exists U0 ⊂⊂ U such that U0 is a cover of A.
(We will write A @@ X to denote that A ⊂ X and A is compact.) A subset
A ⊂ X is precompact if Ā is compact.

Proposition 14.2. Suppose that K ⊂ X is a compact set and F ⊂ K is a
closed subset. Then F is compact. If {Ki}ni=1 is a finite collections of compact
subsets of X then K = ∪ni=1Ki is also a compact subset of X.

Proof. Let U ⊂ τ be an open cover of F, then U∪{F c} is an open cover
of K. The cover U∪{F c} of K has a finite subcover which we denote by
U0∪{F c} where U0 ⊂⊂ U . Since F ∩ F c = ∅, it follows that U0 is the desired
subcover of F. For the second assertion suppose U ⊂ τ is an open cover of K.
Then U covers each compact set Ki and therefore there exists a finite subset
Ui ⊂⊂ U for each i such that Ki ⊂ ∪Ui. Then U0 := ∪ni=1Ui is a finite cover
of K.

Exercise 14.1 (Suggested by Michael Gurvich). Show by example that
the intersection of two compact sets need not be compact. (This pathology
disappears if one assumes the topology is Hausdorff, see Definition 15.2 below.)

Exercise 14.2. Suppose f : X → Y is continuous and K ⊂ X is compact,
then f(K) is a compact subset of Y. Give an example of continuous map,
f : X → Y, and a compact subset K of Y such that f−1(K) is not compact.

Exercise 14.3 (Dini’s Theorem). Let X be a compact topological space
and fn : X → [0,∞) be a sequence of continuous functions such that fn(x) ↓ 0
as n → ∞ for each x ∈ X. Show that in fact fn ↓ 0 uniformly in x, i.e.
supx∈X fn(x) ↓ 0 as n → ∞. Hint: Given ε > 0, consider the open sets
Vn := {x ∈ X : fn(x) < ε}.
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Definition 14.3. A collection F of closed subsets of a topological space (X, τ)
has the finite intersection property if ∩F0 6= ∅ for all F0 ⊂⊂ F .

The notion of compactness may be expressed in terms of closed sets as
follows.

Proposition 14.4. A topological space X is compact iff every family of closed
sets F ⊂ 2X having the finite intersection property satisfies

⋂
F 6= ∅.

Proof. (⇒) Suppose that X is compact and F ⊂ 2X is a collection of
closed sets such that

⋂
F = ∅. Let

U = Fc := {Cc : C ∈ F} ⊂ τ,

then U is a cover of X and hence has a finite subcover, U0. Let F0 = Uc0 ⊂⊂ F ,
then ∩F0 = ∅ so that F does not have the finite intersection property. (⇐) If
X is not compact, there exists an open cover U of X with no finite subcover.
Let

F = Uc := {U c : U ∈ U} ,

then F is a collection of closed sets with the finite intersection property while⋂
F = ∅.

Exercise 14.4. Let (X, τ) be a topological space. Show that A ⊂ X is com-
pact iff (A, τA) is a compact topological space.

14.1 Metric Space Compactness Criteria

Let (X, d) be a metric space and for x ∈ X and ε > 0 let

B′x(ε) := Bx(ε) \ {x}

be the ball centered at x of radius ε > 0 with x deleted. Recall from Definition
13.29 that a point x ∈ X is an accumulation point of a subset E ⊂ X if
∅ 6= E∩V \{x} for all open neighborhoods, V, of x. The proof of the following
elementary lemma is left to the reader.

Lemma 14.5. Let E ⊂ X be a subset of a metric space (X, d) . Then the
following are equivalent:

1. x ∈ X is an accumulation point of E.
2. B′x(ε) ∩ E 6= ∅ for all ε > 0.
3. Bx(ε) ∩ E is an infinite set for all ε > 0.
4. There exists {xn}∞n=1 ⊂ E \ {x} with limn→∞ xn = x.

Definition 14.6. A metric space (X, d) is ε – bounded (ε > 0) if there exists
a finite cover of X by balls of radius ε and it is totally bounded if it is ε –
bounded for all ε > 0.
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14.1 Metric Space Compactness Criteria 217

Theorem 14.7. Let (X, d) be a metric space. The following are equivalent.

(a)X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) Every sequence {xn}∞n=1 ⊂ X has a convergent subsequence.
(d)X is totally bounded and complete.

Proof. The proof will consist of showing that a⇒ b⇒ c⇒ d⇒ a.
(a⇒ b) We will show that not b⇒ not a. Suppose there exists an infinite

subset E ⊂ X which has no accumulation points. Then for all x ∈ X there
exists δx > 0 such that Vx := Bx(δx) satisfies (Vx \ {x}) ∩ E = ∅. Clearly
V = {Vx}x∈X is a cover of X, yet V has no finite sub cover. Indeed, for each
x ∈ X, Vx ∩E ⊂ {x} and hence if Λ ⊂⊂ X, ∪x∈ΛVx can only contain a finite
number of points from E (namely Λ∩E). Thus for any Λ ⊂⊂ X, E " ∪x∈ΛVx
and in particular X 6= ∪x∈ΛVx. (See Figure 14.1.)

Fig. 14.1. The construction of an open cover with no finite sub-cover.

(b ⇒ c) Let {xn}∞n=1 ⊂ X be a sequence and E := {xn : n ∈ N} . If
#(E) <∞, then {xn}∞n=1 has a subsequence {xnk

}∞k=1 which is constant and
hence convergent. On the other hand if #(E) =∞ then by assumption E has
an accumulation point and hence by Lemma 14.5, {xn}∞n=1 has a convergent
subsequence.

(c⇒ d) Suppose {xn}∞n=1 ⊂ X is a Cauchy sequence. By assumption there
exists a subsequence {xnk

}∞k=1 which is convergent to some point x ∈ X. Since
{xn}∞n=1 is Cauchy it follows that xn → x as n→∞ showing X is complete.
We now show that X is totally bounded. Let ε > 0 be given and choose an
arbitrary point x1 ∈ X. If possible choose x2 ∈ X such that d(x2, x1) ≥ ε, then
if possible choose x3 ∈ X such that d{x1,x2}(x3) ≥ ε and continue inductively
choosing points {xj}nj=1 ⊂ X such that d{x1,...,xn−1}(xn) ≥ ε. (See Figure
14.2.) This process must terminate, for otherwise we would produce a sequence
{xn}∞n=1 ⊂ X which can have no convergent subsequences. Indeed, the xn
have been chosen so that d (xn, xm) ≥ ε > 0 for every m 6= n and hence no
subsequence of {xn}∞n=1 can be Cauchy.

(d ⇒ a) For sake of contradiction, assume there exists an open cover
V = {Vα}α∈A of X with no finite subcover. Since X is totally bounded for
each n ∈ N there exists Λn ⊂⊂ X such that

X =
⋃
x∈Λn

Bx(1/n) ⊂
⋃
x∈Λn

Cx(1/n).
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218 14 Compactness

Fig. 14.2. Constructing a set with out an accumulation point.

Choose x1 ∈ Λ1 such that no finite subset of V covers K1 := Cx1(1). Since
K1 = ∪x∈Λ2K1∩Cx(1/2), there exists x2 ∈ Λ2 such that K2 := K1∩Cx2(1/2)
can not be covered by a finite subset of V, see Figure 14.3. Continuing this
way inductively, we construct sets Kn = Kn−1 ∩Cxn

(1/n) with xn ∈ Λn such
that no Kn can be covered by a finite subset of V. Now choose yn ∈ Kn

for each n. Since {Kn}∞n=1 is a decreasing sequence of closed sets such that
diam(Kn) ≤ 2/n, it follows that {yn} is a Cauchy and hence convergent with

y = lim
n→∞

yn ∈ ∩∞m=1Km.

Since V is a cover of X, there exists V ∈ V such that y ∈ V. Since Kn ↓ {y}
and diam(Kn) → 0, it now follows that Kn ⊂ V for some n large. But this
violates the assertion that Kn can not be covered by a finite subset of V.

Fig. 14.3. Nested Sequence of cubes.
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14.1 Metric Space Compactness Criteria 219

Corollary 14.8. Any compact metric space (X, d) is second countable and
hence also separable by Exercise 13.11. (See Example 15.25 below for an ex-
ample of a compact topological space which is not separable.)

Proof. To each integer n, there exists Λn ⊂⊂ X such that X =
∪x∈ΛnB(x, 1/n). The collection of open balls,

V := ∪n∈N ∪x∈Λn
{B(x, 1/n)}

forms a countable basis for the metric topology on X. To check this, suppose
that x0 ∈ X and ε > 0 are given and choose n ∈ N such that 1/n < ε/2
and x ∈ Λn such that d (x0, x) < 1/n. Then B(x, 1/n) ⊂ B (x0, ε) because for
y ∈ B(x, 1/n),

d (y, x0) ≤ d (y, x) + d (x, x0) < 2/n < ε.

Corollary 14.9. The compact subsets of Rn are the closed and bounded sets.

Proof. This is a consequence of Theorem 10.2 and Theorem 14.7. Here
is another proof. If K is closed and bounded then K is complete (being the
closed subset of a complete space) and K is contained in [−M,M ]n for some
positive integer M. For δ > 0, let

Λδ = δZn ∩ [−M,M ]n := {δx : x ∈ Zn and δ|xi| ≤M for i = 1, 2, . . . , n}.

We will show, by choosing δ > 0 sufficiently small, that

K ⊂ [−M,M ]n ⊂ ∪x∈Λδ
B(x, ε) (14.1)

which shows thatK is totally bounded. Hence by Theorem 14.7,K is compact.
Suppose that y ∈ [−M,M ]n, then there exists x ∈ Λδ such that |yi − xi| ≤ δ
for i = 1, 2, . . . , n. Hence

d2(x, y) =
n∑
i=1

(yi − xi)2 ≤ nδ2

which shows that d(x, y) ≤
√
nδ. Hence if choose δ < ε/

√
n we have shows

that d(x, y) < ε, i.e. Eq. (14.1) holds.

Example 14.10. Let X = `p(N) with p ∈ [1,∞) and µ ∈ `p(N) such that
µ(k) ≥ 0 for all k ∈ N. The set

K := {x ∈ X : |x(k)| ≤ µ(k) for all k ∈ N}

is compact. To prove this, let {xn}∞n=1 ⊂ K be a sequence. By com-
pactness of closed bounded sets in C, for each k ∈ N there is a subse-
quence of {xn(k)}∞n=1 ⊂ C which is convergent. By Cantor’s diagonaliza-
tion trick, we may choose a subsequence {yn}∞n=1 of {xn}∞n=1 such that
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220 14 Compactness

y(k) := limn→∞ yn(k) exists for all k ∈ N.1 Since |yn(k)| ≤ µ(k) for all n
it follows that |y(k)| ≤ µ(k), i.e. y ∈ K. Finally

lim
n→∞

‖y − yn‖pp = lim
n→∞

∞∑
k=1

|y(k)− yn(k)|p =
∞∑
k=1

lim
n→∞

|y(k)− yn(k)|p = 0

wherein we have used the Dominated convergence theorem. (Note

|y(k)− yn(k)|p ≤ 2pµp(k)

and µp is summable.) Therefore yn → y and we are done.
Alternatively, we can prove K is compact by showing that K is closed and

totally bounded. It is simple to show K is closed, for if {xn}∞n=1 ⊂ K is a
convergent sequence in X, x := limn→∞ xn, then

|x(k)| ≤ lim
n→∞

|xn(k)| ≤ µ(k) ∀ k ∈ N.

This shows that x ∈ K and hence K is closed. To see that K is totally
bounded, let ε > 0 and choose N such that

(∑∞
k=N+1 |µ(k)|p

)1/p
< ε. Since∏N

k=1 Cµ(k)(0) ⊂ CN is closed and bounded, it is compact. Therefore there
exists a finite subset Λ ⊂

∏N
k=1 Cµ(k)(0) such that

N∏
k=1

Cµ(k)(0) ⊂ ∪z∈ΛBNz (ε)

where BNz (ε) is the open ball centered at z ∈ CN relative to the
`p({1, 2, 3, . . . , N}) – norm. For each z ∈ Λ, let z̃ ∈ X be defined by
z̃(k) = z(k) if k ≤ N and z̃(k) = 0 for k ≥ N + 1. I now claim that

K ⊂ ∪z∈ΛBz̃(2ε) (14.2)

which, when verified, shows K is totally bounded. To verify Eq. (14.2), let
x ∈ K and write x = u + v where u(k) = x(k) for k ≤ N and u(k) = 0 for
k < N. Then by construction u ∈ Bz̃(ε) for some z̃ ∈ Λ and

‖v‖p ≤

( ∞∑
k=N+1

|µ(k)|p
)1/p

< ε.

1 The argument is as follows. Let {n1
j}∞j=1 be a subsequence of N = {n}∞n=1 such that

limj→∞ xn1
j
(1) exists. Now choose a subsequence {n2

j}∞j=1 of {n1
j}∞j=1 such that

limj→∞ xn2
j
(2) exists and similarly {n3

j}∞j=1 of {n2
j}∞j=1 such that limj→∞ xn3

j
(3)

exists. Continue on this way inductively to get

{n}∞n=1 ⊃ {n1
j}∞j=1 ⊃ {n2

j}∞j=1 ⊃ {n3
j}∞j=1 ⊃ . . .

such that limj→∞ xnk
j
(k) exists for all k ∈ N. Let mj := nj

j so that eventually

{mj}∞j=1 is a subsequence of {nk
j }∞j=1 for all k. Therefore, we may take yj := xmj .
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14.1 Metric Space Compactness Criteria 221

So we have

‖x− z̃‖p = ‖u+ v − z̃‖p ≤ ‖u− z̃‖p + ‖v‖p < 2ε.

Exercise 14.5 (Extreme value theorem). Let (X, τ) be a compact topo-
logical space and f : X → R be a continuous function. Show −∞ < inf f ≤
sup f <∞ and there exists a, b ∈ X such that f(a) = inf f and f(b) = sup f2.
Hint: use Exercise 14.2 and Corollary 14.9.

Exercise 14.6 (Uniform Continuity). Let (X, d) be a compact metric
space, (Y, ρ) be a metric space and f : X → Y be a continuous function.
Show that f is uniformly continuous, i.e. if ε > 0 there exists δ > 0 such that
ρ(f(y), f(x)) < ε if x, y ∈ X with d(x, y) < δ. Hint: you could follow the
argument in the proof of Theorem 10.2.

Definition 14.11. Let L be a vector space. We say that two norms, |·| and
‖·‖ , on L are equivalent if there exists constants α, β ∈ (0,∞) such that

‖f‖ ≤ α |f | and |f | ≤ β ‖f‖ for all f ∈ L.

Theorem 14.12. Let L be a finite dimensional vector space. Then any two
norms |·| and ‖·‖ on L are equivalent. (This is typically not true for norms
on infinite dimensional spaces, see for example Exercise 7.6.)

Proof. Let {fi}ni=1 be a basis for L and define a new norm on L by∥∥∥∥∥
n∑
i=1

aifi

∥∥∥∥∥
2

:=

√√√√ n∑
i=1

|ai|2 for ai ∈ F.

By the triangle inequality for the norm |·| , we find∣∣∣∣∣
n∑
i=1

aifi

∣∣∣∣∣ ≤
n∑
i=1

|ai| |fi| ≤

√√√√ n∑
i=1

|fi|2
√√√√ n∑

i=1

|ai|2 ≤M

∥∥∥∥∥
n∑
i=1

aifi

∥∥∥∥∥
2

where M =
√∑n

i=1 |fi|
2
. Thus we have

|f | ≤M ‖f‖2

for all f ∈ L and this inequality shows that |·| is continuous relative to
‖·‖2 . Since the normed space (L, ‖·‖2) is homeomorphic and isomorphic
to Fn with the standard euclidean norm, the closed bounded set, S :=
2 Here is a proof if X is a metric space. Let {xn}∞n=1 ⊂ X be a sequence such that
f(xn) ↑ sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that xn → b ∈ X as n→∞. By continuity of f, f(b) = sup f.
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{f ∈ L : ‖f‖2 = 1} ⊂ L, is a compact subset of L relative to ‖·‖2 . There-
fore by Exercise 14.5 there exists f0 ∈ S such that

m = inf {|f | : f ∈ S} = |f0| > 0.

Hence given 0 6= f ∈ L, then f
‖f‖2

∈ S so that

m ≤
∣∣∣∣ f

‖f‖2

∣∣∣∣ = |f | 1
‖f‖2

or equivalently

‖f‖2 ≤
1
m
|f | .

This shows that |·| and ‖·‖2 are equivalent norms. Similarly one shows that
‖·‖ and ‖·‖2 are equivalent and hence so are |·| and ‖·‖ .

Corollary 14.13. If (L, ‖·‖) is a finite dimensional normed space, then A ⊂
L is compact iff A is closed and bounded relative to the given norm, ‖·‖ .

Corollary 14.14. Every finite dimensional normed vector space (L, ‖·‖) is
complete. In particular any finite dimensional subspace of a normed vector
space is automatically closed.

Proof. If {fn}∞n=1 ⊂ L is a Cauchy sequence, then {fn}∞n=1 is bounded
and hence has a convergent subsequence, gk = fnk

, by Corollary 14.13. It is
now routine to show limn→∞ fn = f := limk→∞ gk.

Theorem 14.15. Suppose that (X, ‖·‖) is a normed vector in which the unit
ball, V := B0 (1) , is precompact. Then dimX <∞.

Proof. Since V̄ is compact, we may choose Λ ⊂⊂ X such that

V̄ ⊂ ∪x∈Λ
(
x+

1
2
V

)
(14.3)

where, for any δ > 0,

δV := {δx : x ∈ V } = B0 (δ) .

Let Y := span(Λ), then Eq. (14.3) implies,

V ⊂ V̄ ⊂ Y +
1
2
V.

Multiplying this equation by 1
2 then shows

1
2
V ⊂ 1

2
Y +

1
4
V = Y +

1
4
V
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and hence
V ⊂ Y +

1
2
V ⊂ Y + Y +

1
4
V = Y +

1
4
V.

Continuing this way inductively then shows that

V ⊂ Y +
1
2n
V for all n ∈ N. (14.4)

Indeed, if Eq. (14.4) holds, then

V ⊂ Y +
1
2
V ⊂ Y +

1
2

(
Y +

1
2n
V

)
= Y +

1
2n+1

V.

Hence if x ∈ V, there exists yn ∈ Y and zn ∈ B0 (2−n) such that yn+ zn → x.
Since limn→∞ zn = 0, it follows that x = limn→∞ yn ∈ Ȳ . Since dimY ≤
# (Λ) < ∞, Corollary 14.14 implies Y = Ȳ and so we have shown that
V ⊂ Y. Since for any x ∈ X, 1

2‖x‖x ∈ V ⊂ Y, we have x ∈ Y for all x ∈ X, i.e.
X = Y.

Exercise 14.7. Suppose (Y, ‖·‖Y ) is a normed space and (X, ‖·‖X) is a finite
dimensional normed space. Show every linear transformation T : X → Y is
necessarily bounded.

14.2 Compact Operators

Definition 14.16. Let A : X → Y be a bounded operator between two Banach
spaces. Then A is compact if A [BX(0, 1)] is precompact in Y or equivalently
for any {xn}∞n=1 ⊂ X such that ‖xn‖ ≤ 1 for all n the sequence yn := Axn ∈ Y
has a convergent subsequence.

Example 14.17. Let X = `2 = Y and λn ∈ C such that limn→∞ λn = 0, then
A : X → Y defined by (Ax)(n) = λnx(n) is compact.

Proof. Suppose {xj}∞j=1 ⊂ `2 such that ‖xj‖2 =
∑
|xj(n)|2 ≤ 1 for all j.

By Cantor’s Diagonalization argument, there exists {jk} ⊂ {j} such that, for
each n, x̃k(n) = xjk(n) converges to some x̃(n) ∈ C as k → ∞. By Fatou’s
Lemma 4.12,

∞∑
n=1

|x̃(n)|2 =
∞∑
n=1

lim inf
k→∞

|x̃k(n)|2 ≤ lim inf
k→∞

∞∑
n=1

|x̃k(n)|2 ≤ 1,

which shows x̃ ∈ `2.
Let λ∗M = max

n≥M
|λn|. Then
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‖Ax̃k −Ax̃‖2 =
∞∑
n=1

|λn|2 |x̃k(n)− x̃(n)|2

≤
M∑
n=1

|λn|2|x̃k(n)− x̃(n)|2 + |λ∗M |2
∞∑
M+1

|x̃k(n)− x̃(n)|2

≤
M∑
n=1

|λn|2|x̃k(n)− x̃(n)|2 + |λ∗M |2 ‖x̃k − x̃‖
2

≤
M∑
n=1

|λn|2|x̃k(n)− x̃(n)|2 + 4|λ∗M |2.

Passing to the limit in this inequality then implies

lim sup
k→∞

‖Ax̃k −Ax̃‖2 ≤ 4|λ∗M |2 → 0 as M →∞

and this completes the proof the A is a compact operator.

Lemma 14.18. If X A−→ Y
B−→ Z are bounded operators such the either A

or B is compact then the composition BA : X → Z is also compact.

Proof. Let BX(0, 1) be the open unit ball in X. If A is compact and B
is bounded, then BA(BX(0, 1)) ⊂ B(ABX(0, 1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we conclude
that BA(BX(0, 1)) is compact, being the closed subset of the compact set
B(ABX(0, 1)). If A is continuous and B is compact, then A(BX(0, 1)) is a
bounded set and so by the compactness of B, BA(BX(0, 1)) is a precompact
subset of Z, i.e. BA is compact.

14.3 Local and σ – Compactness

Notation 14.19 If X is a topological space and Y is a normed space, let

BC(X,Y ) := {f ∈ C(X,Y ) : sup
x∈X
‖f(x)‖Y <∞}

and
Cc(X,Y ) := {f ∈ C(X,Y ) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and Cc(X) for C(X,Y ),
BC(X,Y ) and Cc(X,Y ) respectively.

Remark 14.20. Let X be a topological space and Y be a Banach space.
By combining Exercise 14.2 and Theorem 14.7 it follows that Cc(X,Y ) ⊂
BC(X,Y ).
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14.3 Local and σ – Compactness 225

Definition 14.21 (Local and σ – compactness). Let (X, τ) be a topolog-
ical space.

1. (X, τ) is locally compact if for all x ∈ X there exists an open neigh-
borhood V ⊂ X of x such that V̄ is compact. (Alternatively, in light of
Definition 13.29 (also see Definition 6.5), this is equivalent to requiring
that to each x ∈ X there exists a compact neighborhood Nx of x.)

2. (X, τ) is σ – compact if there exists compact sets Kn ⊂ X such that
X = ∪∞n=1Kn. (Notice that we may assume, by replacing Kn by K1∪K2∪
· · · ∪Kn if necessary, that Kn ↑ X.)

Example 14.22. Any open subset of U ⊂ Rn is a locally compact and σ –
compact metric space. The proof of local compactness is easy and is left to
the reader. To see that U is σ – compact, for k ∈ N, let

Kk := {x ∈ U : |x| ≤ k and dUc(x) ≥ 1/k} .

Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ U as k →∞ since3

Ko
k ⊃ {x ∈ U : |x| < k and dUc(x) > 1/k} ↑ U as k →∞.

Exercise 14.8. If (X, τ) is locally compact and second countable, then there
is a countable basis B0 for the topology consisting of precompact open sets.
Use this to show (X, τ) is σ - compact.

Exercise 14.9. Every separable locally compact metric space is σ – compact.

Exercise 14.10. Every σ – compact metric space is second countable (or
equivalently separable), see Corollary 14.8.

Exercise 14.11. Suppose that (X, d) is a metric space and U ⊂ X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.
2. If X is σ – compact then (U, d) is σ – compact. Hint: Mimic Example

14.22, replacing {x ∈ Rn : |x| ≤ k} by compact sets Xk @@ X such that
Xk ↑ X.

Lemma 14.23. Let (X, τ) be locally and σ – compact. Then there exists com-
pact sets Kn ↑ X such that Kn ⊂ Ko

n+1 ⊂ Kn+1 for all n.

Proof. Suppose that C ⊂ X is a compact set. For each x ∈ C let Vx ⊂o X
be an open neighborhood of x such that V̄x is compact. Then C ⊂ ∪x∈CVx so
there exists Λ ⊂⊂ C such that

C ⊂ ∪x∈ΛVx ⊂ ∪x∈ΛV̄x =: K.
3 In fact this is an equality, but we will not need this here.
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Then K is a compact set, being a finite union of compact subsets of X, and
C ⊂ ∪x∈ΛVx ⊂ Ko. Now let Cn ⊂ X be compact sets such that Cn ↑ X as
n→∞. Let K1 = C1 and then choose a compact set K2 such that C2 ⊂ Ko

2 .
Similarly, choose a compact set K3 such that K2 ∪ C3 ⊂ Ko

3 and continue
inductively to find compact sets Kn such that Kn ∪ Cn+1 ⊂ Ko

n+1 for all n.
Then {Kn}∞n=1 is the desired sequence.

Remark 14.24. Lemma 14.23 may also be stated as saying there exists pre-
compact open sets {Gn}∞n=1 such that Gn ⊂ Ḡn ⊂ Gn+1 for all n and Gn ↑ X
as n→∞. Indeed if {Gn}∞n=1 are as above, let Kn := Ḡn and if {Kn}∞n=1 are
as in Lemma 14.23, let Gn := Ko

n.

Proposition 14.25. Suppose X is a locally compact metric space and U ⊂o
X and K @@ U. Then there exists V ⊂o X such that K ⊂ V ⊂ V ⊂ U ⊂ X
and V̄ is compact.

Proof. (This is done more generally in Proposition 15.7 below.) By local
compactness of X, for each x ∈ K there exists εx > 0 such that Bx(εx) is
compact and by shrinking εx if necessary we may assume,

Bx(εx) ⊂ Cx(εx) ⊂ Bx(2εx) ⊂ U

for each x ∈ K. By compactness of K, there exists Λ ⊂⊂ K such that K ⊂
∪x∈ΛBx(εx) =: V. Notice that V̄ ⊂ ∪x∈ΛBx(εx) ⊂ U and V̄ is a closed subset
of the compact set ∪x∈ΛBx(εx) and hence compact as well.

Definition 14.26. Let U be an open subset of a topological space (X, τ). We
will write f ≺ U to mean a function f ∈ Cc(X, [0, 1]) such that supp(f) :=
{f 6= 0} ⊂ U.

Lemma 14.27 (Urysohn’s Lemma for Metric Spaces). Let X be a lo-
cally compact metric space and K @@ U ⊂o X. Then there exists f ≺ U such
that f = 1 on K. In particular, if K is compact and C is closed in X such
that K ∩C = ∅, there exists f ∈ Cc(X, [0, 1]) such that f = 1 on K and f = 0
on C.

Proof. Let V be as in Proposition 14.25 and then use Lemma 6.15 to find
a function f ∈ C(X, [0, 1]) such that f = 1 on K and f = 0 on V c. Then
supp(f) ⊂ V̄ ⊂ U and hence f ≺ U.

14.4 Function Space Compactness Criteria

In this section, let (X, τ) be a topological space.

Definition 14.28. Let F ⊂ C(X).
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14.4 Function Space Compactness Criteria 227

1. F is equicontinuous at x ∈ X iff for all ε > 0 there exists U ∈ τx such
that |f(y)− f(x)| < ε for all y ∈ U and f ∈ F .

2. F is equicontinuous if F is equicontinuous at all points x ∈ X.
3. F is pointwise bounded if sup{|f(x)| : |f ∈ F} <∞ for all x ∈ X.

Theorem 14.29 (Ascoli-Arzela Theorem). Let (X, τ) be a compact topo-
logical space and F ⊂ C(X). Then F is precompact in C(X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (⇐) Since C(X) ⊂ `∞(X) is a complete metric space, we must
show F is totally bounded. Let ε > 0 be given. By equicontinuity, for all
x ∈ X, there exists Vx ∈ τx such that |f(y) − f(x)| < ε/2 if y ∈ Vx and
f ∈ F . Since X is compact we may choose Λ ⊂⊂ X such that X = ∪x∈ΛVx.
We have now decomposed X into “blocks” {Vx}x∈Λ such that each f ∈ F is
constant to within ε on Vx. Since sup {|f(x)| : x ∈ Λ and f ∈ F} < ∞, it is
now evident that

M = sup {|f(x)| : x ∈ X and f ∈ F}
≤ sup {|f(x)| : x ∈ Λ and f ∈ F}+ ε <∞.

Let D := {kε/2 : k ∈ Z} ∩ [−M,M ]. If f ∈ F and φ ∈ DΛ (i.e. φ : Λ→ D is a
function) is chosen so that |φ(x)− f(x)| ≤ ε/2 for all x ∈ Λ, then

|f(y)− φ(x)| ≤ |f(y)− f(x)|+ |f(x)− φ(x)| < ε ∀ x ∈ Λ and y ∈ Vx.

From this it follows that F =
⋃{
Fφ : φ ∈ DΛ

}
where, for φ ∈ DΛ,

Fφ := {f ∈ F : |f(y)− φ(x)| < ε for y ∈ Vx and x ∈ Λ}.

Let Γ :=
{
φ ∈ DΛ : Fφ 6= ∅

}
and for each φ ∈ Γ choose fφ ∈ Fφ ∩ F . For

f ∈ Fφ, x ∈ Λ and y ∈ Vx we have

|f(y)− fφ(y)| ≤ |f(y)− φ(x))|+ |φ(x)− fφ(y)| < 2ε.

So ‖f − fφ‖∞ < 2ε for all f ∈ Fφ showing that Fφ ⊂ Bfφ
(2ε). Therefore,

F = ∪φ∈ΓFφ ⊂ ∪φ∈ΓBfφ
(2ε)

and because ε > 0 was arbitrary we have shown that F is totally bounded.
(⇒) (*The rest of this proof may safely be skipped.) Since ‖·‖∞ : C(X)→

[0,∞) is a continuous function on C(X) it is bounded on any compact subset
F ⊂ C(X). This shows that sup {‖f‖∞ : f ∈ F} < ∞ which clearly implies
that F is pointwise bounded.4 Suppose F were not equicontinuous at some
4 One could also prove that F is pointwise bounded by considering the continuous

evaluation maps ex : C(X) → R given by ex(f) = f(x) for all x ∈ X.
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point x ∈ X that is to say there exists ε > 0 such that for all V ∈ τx,
sup
y∈V

sup
f∈F
|f(y)− f(x)| > ε.5 Equivalently said, to each V ∈ τx we may choose

fV ∈ F and xV ∈ V 3 |fV (x)− fV (xV )| ≥ ε. (14.5)

Set CV = {fW : W ∈ τx and W ⊂ V }
‖·‖∞ ⊂ F and notice for any V ⊂⊂ τx

that
∩V ∈VCV ⊇ C∩V 6= ∅,

so that {CV }V ∈ τx ⊂ F has the finite intersection property.6 Since F is
compact, it follows that there exists some

f ∈
⋂
V ∈τx

CV 6= ∅.

Since f is continuous, there exists V ∈ τx such that |f(x) − f(y)| < ε/3 for
all y ∈ V. Because f ∈ CV , there exists W ⊂ V such that ‖f − fW ‖ < ε/3.
We now arrive at a contradiction;

ε ≤ |fW (x)− fW (xW )|
≤ |fW (x)− f(x)|+ |f(x)− f(xW )|+ |f(xW )− fW (xW )|
< ε/3 + ε/3 + ε/3 = ε.

Exercise 14.12. Give an alternative proof of the implication, (⇐) , in Theo-
rem 14.29 by showing every subsequence {fn : n ∈ N} ⊂ F has a convergence
sub-sequence.
5 If X is first countable we could finish the proof with the following argument.

Let {Vn}∞n=1 be a neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By
the assumption that F is not equicontinuous at x, there exist fn ∈ F and xn ∈
Vn such that |fn(x) − fn(xn)| ≥ ε ∀ n. Since F is a compact metric space by
passing to a subsequence if necessary we may assume that fn converges uniformly
to some f ∈ F . Because xn → x as n→∞ we learn that

ε ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2‖fn − f‖+ |f(x)− f(xn)| → 0 as n→∞

which is a contradiction.
6 If we are willing to use Net’s described in Appendix 39 below we could finish

the proof as follows. Since F is compact, the net {fV }V ∈τx ⊂ F has a cluster
point f ∈ F ⊂ C(X). Choose a subnet {gα}α∈A of {fV }V ∈τX such that gα → f
uniformly. Then, since xV → x implies xVα → x, we may conclude from Eq.
(14.5) that

ε ≤ |gα(x)− gα(xVα)| → |g(x)− g(x)| = 0

which is a contradiction.
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Exercise 14.13. Suppose k ∈ C
(
[0, 1]2 ,R

)
and for f ∈ C ([0, 1] ,R) , let

Kf (x) :=
∫ 1

0

k (x, y) f (y) dy for all x ∈ [0, 1] .

Show K is a compact operator on (C ([0, 1] ,R) , ‖·‖∞) .

The following result is a corollary of Lemma 14.23 and Theorem 14.29.

Corollary 14.30 (Locally Compact Ascoli-Arzela Theorem). Let (X, τ)
be a locally compact and σ – compact topological space and {fm} ⊂ C(X)
be a pointwise bounded sequence of functions such that {fm|K} is equicon-
tinuous for any compact subset K ⊂ X. Then there exists a subsequence
{mn} ⊂ {m} such that {gn := fmn}

∞
n=1 ⊂ C(X) is a sequence which is uni-

formly convergent on compact subsets of X.

Proof. Let {Kn}∞n=1 be the compact subsets of X constructed in Lemma
14.23. We may now apply Theorem 14.29 repeatedly to find a nested family
of subsequences

{fm} ⊃ {g1
m} ⊃ {g2

m} ⊃ {g3
m} ⊃ . . .

such that the sequence {gnm}
∞
m=1 ⊂ C(X) is uniformly convergent on Kn.

Using Cantor’s trick, define the subsequence {hn} of {fm} by hn := gnn . Then
{hn} is uniformly convergent on Kl for each l ∈ N. Now if K ⊂ X is an
arbitrary compact set, there exists l < ∞ such that K ⊂ Ko

l ⊂ Kl and
therefore {hn} is uniformly convergent on K as well.

Proposition 14.31. Let Ω ⊂o Rd such that Ω̄ is compact and 0 ≤ α < β ≤ 1.
Then the inclusion map i : Cβ(Ω) ↪→ Cα(Ω) is a compact operator. See
Chapter 9 and Lemma 9.9 for the notation being used here.

Let {un}∞n=1 ⊂ Cβ(Ω) such that ‖un‖Cβ ≤ 1, i.e. ‖un‖∞ ≤ 1 and

|un(x)− un(y)| ≤ |x− y|β for all x, y ∈ Ω.

By the Arzela-Ascoli Theorem 14.29, there exists a subsequence of {ũn}∞n=1

of {un}∞n=1 and u ∈ Co(Ω̄) such that ũn → u in C0. Since

|u(x)− u(y)| = lim
n→∞

|ũn(x)− ũn(y)| ≤ |x− y|β ,

u ∈ Cβ as well. Define gn := u− ũn ∈ Cβ , then

[gn]β + ‖gn‖C0 = ‖gn‖Cβ ≤ 2

and gn → 0 in C0. To finish the proof we must show that gn → 0 in Cα. Given
δ > 0,

[gn]α = sup
x6=y

|gn(x)− gn(y)|
|x− y|α

≤ An +Bn
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where

An = sup
{
|gn(x)− gn(y)|
|x− y|α

: x 6= y and |x− y| ≤ δ
}

= sup
{
|gn(x)− gn(y)|
|x− y|β

· |x− y|β−α : x 6= y and |x− y| ≤ δ
}

≤ δβ−α · [gn]β ≤ 2δβ−α

and

Bn = sup
{
|gn(x)− gn(y)|
|x− y|α

: |x− y| > δ

}
≤ 2δ−α ‖gn‖C0 → 0 as n→∞.

Therefore,

lim sup
n→∞

[gn]α ≤ lim sup
n→∞

An + lim sup
n→∞

Bn ≤ 2δβ−α + 0→ 0 as δ ↓ 0.

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 14.21 below.

Theorem 14.32. Let Ω be a precompact open subset of Rd, α, β ∈ [0, 1] and
k, j ∈ N0. If j+β > k+α, then Cj,β

(
Ω̄
)

is compactly contained in Ck,α
(
Ω̄
)
.

14.5 Tychonoff’s Theorem

The goal of this section is to show that arbitrary products of compact spaces
is still compact. Before going to the general case of an arbitrary number of
factors let us start with only two factors.

Proposition 14.33. Suppose that X and Y are non-empty compact topolog-
ical spaces, then X × Y is compact in the product topology.

Proof. Let U be an open cover of X × Y. Then for each (x, y) ∈ X × Y
there exist U ∈ U such that (x, y) ∈ U. By definition of the product topology,
there also exist Vx ∈ τXx and Wy ∈ τYy such that Vx ×Wy ⊂ U. Therefore
V := {Vx ×Wy : (x, y) ∈ X × Y } is also an open cover of X ×Y. We will now
show that V has a finite sub-cover, say V0 ⊂⊂ V. Assuming this is proved for
the moment, this implies that U also has a finite subcover because each V ∈ V0

is contained in some UV ∈ U . So to complete the proof it suffices to show every
cover V of the form V = {Vα ×Wα : α ∈ A} where Vα ⊂o X and Wα ⊂o Y has
a finite subcover. Given x ∈ X, let fx : Y → X×Y be the map fx(y) = (x, y)
and notice that fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are
continuous maps. From this we conclude that {x} × Y = fx(Y ) is compact.
Similarly, it follows that X × {y} is compact for all y ∈ Y. Since V is a cover
of {x}×Y, there exist Γx ⊂⊂ A such that {x}×Y ⊂

⋃
α∈Γx

(Vα×Wα) without
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loss of generality we may assume that Γx is chosen so that x ∈ Vα for all
α ∈ Γx. Let Ux :=

⋂
α∈Γx

Vα ⊂o X, and notice that

⋃
α∈Γx

(Vα ×Wα) ⊃
⋃
α∈Γx

(Ux ×Wα) = Ux × Y, (14.6)

see Figure 14.4 below. Since {Ux}x∈X is now an open cover of X and X is

Fig. 14.4. Constructing the open set Ux.

compact, there exists Λ ⊂⊂ X such that X = ∪x∈ΛUx. The finite subcol-
lection, V0 := {Vα ×Wα : α ∈ ∪x∈ΛΓx}, of V is the desired finite subcover.
Indeed using Eq. (14.6),

∪V0 = ∪x∈Λ ∪α∈Γx
(Vα ×Wα) ⊃ ∪x∈Λ (Ux × Y ) = X × Y.

The results of Exercises 14.22 and 13.28 prove Tychonoff’s Theorem for a
countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 14.34 (Tychonoff’s Theorem). Let {Xα}α∈A be a collection of
non-empty compact spaces. Then X := XA =

∏
α∈A

Xα is compact in the prod-

uct space topology. (Compare with Exercise 14.22 which covers the special case
of a countable product of compact metric spaces.)

Proof. (The proof is taken from Loomis [14] which followed Bourbaki. Re-
mark 14.35 below should help the reader understand the strategy of the proof
to follow.) The proof requires a form of “induction” known as Zorn’s lemma
which is equivalent to the axiom of choice, see Theorem 38.7 of Appendix 38
below.
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For α ∈ A let πα denote the projection map from X to Xα. Suppose that
F is a family of closed subsets of X which has the finite intersection property,
see Definition 14.3. By Proposition 14.4 the proof will be complete if we can
show ∩F 6= ∅.

The first step is to apply Zorn’s lemma to construct a maximal collection,
F0, of (not necessarily closed) subsets ofX with the finite intersection property
such that F ⊂ F0. To do this, let Γ :=

{
G ⊂ 2X : F ⊂ G

}
equipped with the

partial order, G1 < G2 if G1 ⊂ G2. If Φ is a linearly ordered subset of Γ, then
G:= ∪Φ is an upper bound for Γ which still has the finite intersection property
as the reader should check. So by Zorn’s lemma, Γ has a maximal element
F0. The maximal F0 has the following properties.

1. F0 is closed under finite intersections. Indeed, if we let (F0)f denote the
collection of all finite intersections of elements from F0, then (F0)f has
the finite intersection property and contains F0. Since F0 is maximal, this
implies (F0)f = F0.

2. If B ⊂ X and B ∩ F 6= ∅ for all F ∈ F0 then B ∈ F0. For if not
F0 ∪ {B} would still satisfy the finite intersection property and would
properly contain F0 and this would violate the maximallity of F0.

3. For each α ∈ A,

πa(F0) := {πα(F ) ⊂ Xα : F ∈ F0}

has the finite intersection property. Indeed, if {Fi}ni=1 ⊂ F0, then
∩ni=1πα(Fi) ⊃ πα (∩ni=1Fi) 6= ∅.

SinceXα is compact, property 3. above along with Proposition 14.4 implies
∩F∈F0πα(F ) 6= ∅. Since this true for each α ∈ A, using the axiom of choice,
there exists p ∈ X such that pα = πα(p) ∈ ∩F∈F0πα(F ) for all α ∈ A. The
proof will be completed by showing ∩F 6= ∅ by showing p ∈ ∩F .

Since C := ∩
{
F̄ : F ∈ F0

}
⊂ ∩F , it suffices to show p ∈ C. Let U be an

open neighborhood of p in X. By the definition of the product topology (or
item 2. of Proposition 13.25), there exists Λ ⊂⊂ A and open sets Uα ⊂ Xα

for all α ∈ Λ such that p ∈ ∩α∈Λπ−1
α (Uα) ⊂ U. Since pα ∈ ∩F∈F0πα(F ) and

pα ∈ Uα for all α ∈ Λ, it follows that Uα ∩ πα(F ) 6= ∅ for all F ∈ F0 and all
α ∈ Λ. This then implies π−1

α (Uα) ∩ F 6= ∅ for all F ∈ F0 and all α ∈ Λ. By
property 2.7 above we concluded that π−1

α (Uα) ∈ F0 for all α ∈ Λ and then
by property 1. that ∩α∈Λπ−1

α (Uα) ∈ F0. In particular

∅ 6= F ∩
(
∩α∈Λπ−1

α (Uα)
)
⊂ F ∩ U for all F ∈ F0

which shows p ∈ F̄ for each F ∈ F0, i.e. p ∈ C.

Remark 14.35. Consider the following simple example where X = [−1, 1] ×
[−1, 1] and F = {F1, F2} as in Figure 14.5. Notice that πi(F1) ∩ πi (F2) =
7 Here is where we use that F0 is maximal among the collection of all, not just

closed, sets having the finite intersection property and containing F .
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[−1, 1] for each i and so gives no help in trying to find the ith – coordinate
of one of the two points in F1 ∩ F2. This is why it is necessary to introduce
the collection F0 in the proof of Theorem 14.34. In this case one might take
F0 to be the collection of all subsets F ⊂ X such that p ∈ F. We then have
∩F∈F0πi (F ) = {pi} , so the ith – coordinate of p may now be determined by
observing the sets, {πi (F ) : F ∈ F0} .

Fig. 14.5. Here F = {F1, F2} where F1 and F2 are the two parabolic arcs and
F1 ∩ F2 = {p, q}.

14.6 Banach – Alaoglu’s Theorem

14.6.1 Weak and Strong Topologies

Definition 14.36. Let X and Y be be a normed vector spaces and L(X,Y )
the normed space of bounded linear transformations from X to Y.

1. The weak topology on X is the topology generated by X∗, i.e. the smallest
topology on X such that every element f ∈ X∗ is continuous.

2. The weak-∗ topology on X∗ is the topology generated by X, i.e. the
smallest topology on X∗ such that the maps f ∈ X∗ → f(x) ∈ C are
continuous for all x ∈ X.

3. The strong operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ Tx ∈ Y is continuous for all x ∈ X.

4. The weak operator topology on L(X,Y ) is the smallest topology such
thatT ∈ L(X,Y ) −→ f(Tx) ∈ C is continuous for all x ∈ X and f ∈ Y ∗.

Let us be a little more precise about the topologies described in the above
definitions.
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1. The weak topology has a neighborhood base at x0 ∈ X consisting of
sets of the form

N = ∩ni=1{x ∈ X : |fi(x)− fi(x0)| < ε}

where fi ∈ X∗ and ε > 0.
2. The weak-∗ topology on X∗ has a neighborhood base at f ∈ X∗ con-

sisting of sets of the form

N := ∩ni=1{g ∈ X∗ : |f(xi)− g(xi)| < ε}

where xi ∈ X and ε > 0.
3. The strong operator topology on L(X,Y ) has a neighborhood base at
T ∈ X∗ consisting of sets of the form

N := ∩ni=1{S ∈ L (X,Y ) : ‖Sxi − Txi‖ < ε}

where xi ∈ X and ε > 0.
4. The weak operator topology on L(X,Y ) has a neighborhood base at
T ∈ X∗ consisting of sets of the form

N := ∩ni=1{S ∈ L (X,Y ) : |fi (Sxi − Txi)| < ε}

where xi ∈ X, fi ∈ X∗ and ε > 0.

Theorem 14.37 (Alaoglu’s Theorem). If X is a normed space the unit
ball in X∗ is weak - ∗ compact. (Also see Theorem 14.44 and Proposition
26.16.)

Proof. For all x ∈ X let Dx = {z ∈ C : |z| ≤ ‖x‖}. Then Dx ⊂ C is a
compact set and so by Tychonoff’s Theorem Ω :=

∏
x∈X

Dx is compact in the

product topology. If f ∈ C∗ := {f ∈ X∗ : ‖f‖ ≤ 1}, |f(x)| ≤ ‖f‖ ‖x‖ ≤ ‖x‖
which implies that f(x) ∈ Dx for all x ∈ X, i.e. C∗ ⊂ Ω. The topology on
C∗ inherited from the weak–∗ topology on X∗ is the same as that relative
topology coming from the product topology on Ω. So to finish the proof it
suffices to show C∗ is a closed subset of the compact space Ω. To prove this
let πx(f) = f(x) be the projection maps. Then

C∗ = {f ∈ Ω : f is linear}
= {f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0 for all x, y ∈ X and c ∈ C}

=
⋂

x,y∈X

⋂
c∈C
{f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0}

=
⋂

x,y∈X

⋂
c∈C

(πx+cy − πx − cπy)−1 ({0})

which is closed because (πx+cy − πx − cπy) : Ω → C is continuous.
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14.7 Weak Convergence in Hilbert Spaces 235

Theorem 14.38 (Alaoglu’s Theorem for separable spaces). Suppose
that X is a separable Banach space, C∗ := {f ∈ X∗ : ‖f‖ ≤ 1} is the
closed unit ball in X∗ and {xn}∞n=1 is an countable dense subset of C :=
{x ∈ X : ‖x‖ ≤ 1} . Then

ρ(f, g) :=
∞∑
n=1

1
2n
|f(xn)− g(xn)| (14.7)

defines a metric on C∗ which is compatible with the weak topology on C∗,
τC∗ := (τw∗)C∗ = {V ∩ C : V ∈ τw∗} . Moreover (C∗, ρ) is a compact metric
space.

Proof. The routine check that ρ is a metric is left to the reader. Let τρ
be the topology on C∗ induced by ρ. For any g ∈ X and n ∈ N, the map
f ∈ X∗ → (f(xn)− g(xn))∈C is τw∗ continuous and since the sum in Eq.
(14.7) is uniformly convergent for f ∈ C∗, it follows that f → ρ(f, g) is τC∗ –
continuous. This implies the open balls relative to ρ are contained in τC∗ and
therefore τρ ⊂ τC∗ . We now wish to prove τC∗ ⊂ τρ. Since τC∗ is the topology
generated by {x̂|C∗ : x ∈ C} , it suffices to show x̂ is τρ – continuous for all
x ∈ C. But given x ∈ C there exists a subsequence yk := xnk

of {xn}∞n=1 such
that such that x = limk→∞ yk. Since

sup
f∈C∗

|x̂(f)− ŷk(f)| = sup
f∈C∗

|f(x− yk)| ≤ ‖x− yk‖ → 0 as k →∞,

ŷk → x̂ uniformly on C∗ and using ŷk is τρ – continuous for all k (as is easily
checked) we learn x̂ is also τρ continuous. Hence τC∗ = τ(x̂|C∗ : x ∈ X) ⊂ τρ.
The compactness assertion follows from Theorem 14.37. The compactness
assertion may also be verified directly using: 1) sequential compactness is
equivalent to compactness for metric spaces and 2) a Cantor’s diagonalization
argument as in the proof of Theorem 14.44. (See Proposition 26.16 below.)

14.7 Weak Convergence in Hilbert Spaces

Suppose H is an infinite dimensional Hilbert space and {xn}∞n=1 is an or-
thonormal subset of H. Then, by Eq. (8.1), ‖xn−xm‖2 = 2 for all m 6= n and
in particular, {xn}∞n=1 has no convergent subsequences. From this we conclude
that C := {x ∈ H : ‖x‖ ≤ 1} , the closed unit ball in H, is not compact. To
overcome this problems it is sometimes useful to introduce a weaker topology
on X having the property that C is compact.

Definition 14.39. Let (X, ‖·‖) be a Banach space and X∗ be its continu-
ous dual. The weak topology, τw, on X is the topology generated by X∗. If
{xn}∞n=1 ⊂ X is a sequence we will write xn

w→ x as n → ∞ to mean that
xn → x in the weak topology.
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Because τw = τ(X∗) ⊂ τ‖·‖ := τ({‖x− ·‖ : x ∈ X}), it is harder for a
function f : X → F to be continuous in the τw – topology than in the norm
topology, τ‖·‖. In particular if φ : X → F is a linear functional which is τw –
continuous, then φ is τ‖·‖ – continuous and hence φ ∈ X∗.

Exercise 14.14. Show the vector space operations of X are continuous in the
weak topology, i.e. show:

1. (x, y) ∈ X ×X → x+ y ∈ X is (τw ⊗ τw, τw) – continuous and
2. (λ, x) ∈ F×X → λx ∈ X is (τF ⊗ τw, τw) – continuous.

Proposition 14.40. Let {xn}∞n=1 ⊂ X be a sequence, then xn
w→ x ∈ X as

n→∞ iff φ(x) = limn→∞ φ(xn) for all φ ∈ X∗.

Proof. By definition of τw, we have xn
w→ x ∈ X iff for all Γ ⊂⊂ X∗

and ε > 0 there exists an N ∈ N such that |φ(x)− φ(xn)| < ε for all n ≥ N
and φ ∈ Γ. This later condition is easily seen to be equivalent to φ(x) =
limn→∞ φ(xn) for all φ ∈ X∗.

The topological space (X, τw) is still Hausdorff as follows from the Hahn
Banach Theorem, see Theorem 25.6 below. For the moment we will concen-
trate on the special case where X = H is a Hilbert space in which case
H∗ = {φz := 〈·|z〉 : z ∈ H} , see Theorem 8.15. If x, y ∈ H and z := y−x 6= 0,
then

0 < ε := ‖z‖2 = φz(z) = φz(y)− φz(x).

Thus

Vx := {w ∈ H : |φz(x)− φz(w)| < ε/2} and
Vy := {w ∈ H : |φz(y)− φz(w)| < ε/2}

are disjoint sets from τw which contain x and y respectively. This shows that
(H, τw) is a Hausdorff space. In particular, this shows that weak limits are
unique if they exist.

Remark 14.41. Suppose that H is an infinite dimensional Hilbert space
{xn}∞n=1 is an orthonormal subset of H. Then Bessel’s inequality (Propo-
sition 8.18) implies xn

w→ 0 ∈ H as n → ∞. This points out the fact
that if xn

w→ x ∈ H as n → ∞, it is no longer necessarily true that
‖x‖ = limn→∞ ‖xn‖ . However we do always have ‖x‖ ≤ lim infn→∞ ‖xn‖
because,

‖x‖2 = lim
n→∞

〈xn|x〉 ≤ lim inf
n→∞

[‖xn‖ ‖x‖] = ‖x‖ lim inf
n→∞

‖xn‖ .

Proposition 14.42. Let H be a Hilbert space, β ⊂ H be an orthonormal
basis for H and {xn}∞n=1 ⊂ H be a bounded sequence, then the following are
equivalent:

1. xn
w→ x ∈ H as n→∞.
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14.7 Weak Convergence in Hilbert Spaces 237

2. 〈x|y〉 = limn→∞〈xn|y〉 for all y ∈ H.
3. 〈x|y〉 = limn→∞〈xn|y〉 for all y ∈ β.

Moreover, if cy := limn→∞〈xn|y〉 exists for all y ∈ β, then
∑
y∈β |cy|

2
<∞

and xn
w→ x :=

∑
y∈β cyy ∈ H as n→∞.

Proof. 1. =⇒ 2. This is a consequence of Theorem 8.15 and Proposition
14.40. 2. =⇒ 3. is trivial. 3. =⇒ 1. Let M := supn ‖xn‖ and H0 denote the
algebraic span of β. Then for y ∈ H and z ∈ H0,

|〈x− xn|y〉| ≤ |〈x− xn|z〉|+ |〈x− xn|y − z〉| ≤ |〈x− xn|z〉|+ 2M ‖y − z‖ .

Passing to the limit in this equation implies lim supn→∞ |〈x− xn|y〉| ≤
2M ‖y − z‖ which shows lim supn→∞ |〈x− xn|y〉| = 0 since H0 is dense in
H. To prove the last assertion, let Γ ⊂⊂ β. Then by Bessel’s inequality
(Proposition 8.18),∑

y∈Γ
|cy|2 = lim

n→∞

∑
y∈Γ
|〈xn|y〉|2 ≤ lim inf

n→∞
‖xn‖2 ≤M2.

Since Γ ⊂⊂ β was arbitrary, we conclude that
∑
y∈β |cy|

2 ≤ M < ∞ and
hence we may define x :=

∑
y∈β cyy. By construction we have

〈x|y〉 = cy = lim
n→∞

〈xn|y〉 for all y ∈ β

and hence xn
w→ x ∈ H as n→∞ by what we have just proved.

Theorem 14.43. Suppose {xn}∞n=1 is a bounded sequence in a Hilbert space,
H. Then there exists a subsequence yk := xnk

of {xn}∞n=1 and x ∈ X such
that yk

w→ x as k →∞.

Proof. This is a consequence of Proposition 14.42 and a Cantor’s diago-
nalization argument which is left to the reader, see Exercise 8.12.

Theorem 14.44 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
H is a separable Hilbert space, C := {x ∈ H : ‖x‖ ≤ 1} is the closed unit ball
in H and {en}∞n=1 is an orthonormal basis for H. Then

ρ(x, y) :=
∞∑
n=1

1
2n
|〈x− y|en〉| (14.8)

defines a metric on C which is compatible with the weak topology on C, τC :=
(τw)C = {V ∩ C : V ∈ τw} . Moreover (C, ρ) is a compact metric space. (This
theorem will be extended to Banach spaces, see Theorems 14.37 and 14.38
below.)
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Proof. The routine check that ρ is a metric is left to the reader. Let τρ
be the topology on C induced by ρ. For any y ∈ H and n ∈ N, the map
x ∈ H → 〈x− y|en〉 = 〈x|en〉 − 〈y|en〉 is τw continuous and since the sum in
Eq. (14.8) is uniformly convergent for x, y ∈ C, it follows that x → ρ(x, y) is
τC – continuous. This implies the open balls relative to ρ are contained in τC
and therefore τρ ⊂ τC . For the converse inclusion, let z ∈ H, x → φz(x) =
〈x|z〉 be an element of H∗, and for N ∈ N let zN :=

∑N
n=1〈z|en〉en. Then

φzN
=
∑N
n=1 〈z|en〉φen is ρ continuous, being a finite linear combination of

the φen
which are easily seen to be ρ – continuous. Because zN → z as N →∞

it follows that

sup
x∈C
|φz(x)− φzN

(x)| = ‖z − zN‖ → 0 as N →∞.

Therefore φz|C is ρ – continuous as well and hence τC = τ(φz|C : z ∈ H) ⊂
τρ. The last assertion follows directly from Theorem 14.43 and the fact that
sequential compactness is equivalent to compactness for metric spaces.

14.8 Exercises

Exercise 14.15. Prove Lemma 14.5.

Exercise 14.16. Let C be a closed proper subset of Rn and x ∈ Rn \C. Show
there exists a y ∈ C such that d(x, y) = dC(x).

Exercise 14.17. Let F = R in this problem and A ⊂ `2(N) be defined by

A = {x ∈ `2(N) : x(n) ≥ 1 + 1/n for some n ∈ N}
= ∪∞n=1{x ∈ `2(N) : x(n) ≥ 1 + 1/n}.

Show A is a closed subset of `2(N) with the property that dA(0) = 1 while
there is no y ∈ A such that d(0, y) = 1. (Remember that in general an infinite
union of closed sets need not be closed.)

Exercise 14.18. Let p ∈ [1,∞] and X be an infinite set. Show directly, with-
out using Theorem 14.15, the closed unit ball in `p(X) is not compact.

14.8.1 Ascoli-Arzela Theorem Problems

Exercise 14.19. Let T ∈ (0,∞) and F ⊂ C([0, T ]) be a family of functions
such that:

1. ḟ(t) exists for all t ∈ (0, T ) and f ∈ F .
2. supf∈F |f(0)| <∞ and

3. M := supf∈F supt∈(0,T )

∣∣∣ḟ(t)
∣∣∣ <∞.
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Show F is precompact in the Banach space C([0, T ]) equipped with the
norm ‖f‖∞ = supt∈[0,T ] |f(t)| .

Exercise 14.20 (Peano’s Existence Theorem). Suppose Z : R × Rd →
Rd is a bounded continuous function. Then for each T < ∞8 there exists a
solution to the differential equation

ẋ(t) = Z(t, x(t)) for − T < t < T with x(0) = x0. (14.9)

Do this by filling in the following outline for the proof.

1. Given ε > 0, show there exists a unique function xε ∈ C([−ε,∞) → Rd)
such that xε(t) := x0 for −ε ≤ t ≤ 0 and

xε(t) = x0 +
∫ t

0

Z(τ, xε(τ − ε))dτ for all t ≥ 0. (14.10)

Here∫ t

0

Z(τ, xε(τ−ε))dτ =
(∫ t

0

Z1(τ, xε(τ − ε))dτ, . . . ,
∫ t

0

Zd(τ, xε(τ − ε))dτ
)

where Z = (Z1, . . . , Zd) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t ∈ [0, ε], it follows from Eq. (14.10) that

xε(t) = x0 +
∫ t

0

Z(τ, x0)dτ.

Now that xε(t) is known for t ∈ [−ε, ε] it can be found by integration for
t ∈ [−ε, 2ε]. The process can be repeated.

2. Then use Exercise 14.19 to show there exists {εk}∞k=1 ⊂ (0,∞) such that
limk→∞ εk = 0 and xεk

converges to some x ∈ C([0, T ]) with respect to
the sup-norm: ‖x‖∞ = supt∈[0,T ] |x(t)|). Also show for this sequence that

lim
k→∞

sup
εk≤τ≤T

|xεk
(τ − εk)− x (τ)| = 0.

3. Pass to the limit (with justification) in Eq. (14.10) with ε replaced by
εk to show x satisfies

x(t) = x0 +
∫ t

0

Z(τ, x(τ))dτ ∀ t ∈ [0, T ].

4. Conclude from this that ẋ(t) exists for t ∈ (0, T ) and that x solves Eq.
(14.9).

8 Using Corollary 14.30, we may in fact allow T = ∞.

Page: 239 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



240 14 Compactness

5. Apply what you have just proved to the ODE,

ẏ(t) = −Z(−t, y(t)) for 0 ≤ t < T with y(0) = x0.

Then extend x(t) above to (−T, T ) by setting x(t) = y(−t) if t ∈ (−T, 0].
Show x so defined solves Eq. (14.9) for t ∈ (−T, T ).

Exercise 14.21. Prove Theorem 14.32. Hint: First prove Cj,β
(
Ω̄
)

@@
Cj,α

(
Ω̄
)

is compact if 0 ≤ α < β ≤ 1. Then use Lemma 14.18 repeatedly to
handle all of the other cases.

14.8.2 Tychonoff’s Theorem Problem

Exercise 14.22 (Tychonoff’s Theorem for Compact Metric Spaces).
Let us continue the Notation used in Exercise 6.12. Further assume that
the spaces Xn are compact for all n. Show, without using Theorem 14.34,
(X, d) is compact. Hint: Either use Cantor’s method to show every sequence
{xm}∞m=1 ⊂ X has a convergent subsequence or alternatively show (X, d) is
complete and totally bounded. (Compare with Example 14.10.)

Page: 240 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



15

Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology τ. We
are now interested in restrictions on τ in order to insure there are “plenty”
of continuous functions. One such restriction is to assume τ = τd – is the
topology induced from a metric on X. For example the results in Lemma
6.15 and Theorem 7.4 above shows that metric spaces have lots of continuous
functions.

The main thrust of this section is to study locally compact (and σ – com-
pact) “Hausdorff” spaces as defined in Definitions 15.2 and 14.21. We will see
again that this class of topological spaces have an ample supply of continuous
functions. We will start out with the notion of a Hausdorff topology. The fol-
lowing example shows a pathology which occurs when there are not enough
open sets in a topology.

Example 15.1. As in Example 13.36, let

X := {1, 2, 3} with τ := {X, ∅, {1, 2}, {2, 3}, {2}}.

Example 13.36 shows limits need not be unique in this space and moreover it
is easy to verify that the only continuous functions, f : Y → R, are necessarily
constant.

Definition 15.2 (Hausdorff Topology). A topological space, (X, τ), is
Hausdorff if for each pair of distinct points, x, y ∈ X, there exists dis-
joint open neighborhoods, U and V of x and y respectively. (Metric spaces are
typical examples of Hausdorff spaces.)

Remark 15.3. When τ is Hausdorff the “pathologies” appearing in Example
15.1 do not occur. Indeed if xn → x ∈ X and y ∈ X \ {x} we may choose
V ∈ τx and W ∈ τy such that V ∩W = ∅. Then xn ∈ V a.a. implies xn /∈ W
for all but a finite number of n and hence xn 9 y, so limits are unique.

Proposition 15.4. Let (Xα, τα) be Hausdorff topological spaces. Then the
product space XA =

∏
α∈AXα equipped with the product topology is Haus-

dorff.
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Proof. Let x, y ∈ XA be distinct points. Then there exists α ∈ A such that
πα(x) = xα 6= yα = πα(y). Since Xα is Hausdorff, there exists disjoint open
sets U, V ⊂ Xα such πα(x) ∈ U and πα(y) ∈ V. Then π−1

α (U) and π−1
α (V ) are

disjoint open sets in XA containing x and y respectively.

Proposition 15.5. Suppose that (X, τ) is a Hausdorff space, K @@ X and
x ∈ Kc. Then there exists U, V ∈ τ such that U ∩ V = ∅, x ∈ U and K ⊂ V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U, V ∈ τ such that K ⊂ V and F ⊂ U.

Proof. Because X is Hausdorff, for all y ∈ K there exists Vy ∈ τy and
Uy ∈ τx such that Vy ∩Uy = ∅. The cover {Vy}y∈K of K has a finite subcover,
{Vy}y∈Λ for some Λ ⊂⊂ K. Let V = ∪y∈ΛVy and U = ∩y∈ΛUy, then U, V ∈ τ
satisfy x ∈ U, K ⊂ V and U ∩ V = ∅. This shows that Kc is open and hence
that K is closed. Suppose that K and F are two disjoint compact subsets of
X. For each x ∈ F there exists disjoint open sets Ux and Vx such that K ⊂ Vx
and x ∈ Ux. Since {Ux}x∈F is an open cover of F, there exists a finite subset
Λ of F such that F ⊂ U := ∪x∈ΛUx. The proof is completed by defining
V := ∩x∈ΛVx.

Exercise 15.1. Show any finite set X admits exactly one Hausdorff topology
τ.

Exercise 15.2. Let (X, τ) and (Y, τY ) be topological spaces.

1. Show τ is Hausdorff iff ∆ := {(x, x) : x ∈ X} is a closed set in X × X
equipped with the product topology τ ⊗ τ.

2. Suppose τ is Hausdorff and f, g : Y → X are continuous maps. If
{f = g}

Y
= Y then f = g. Hint: make use of the map f×g : Y → X×X

defined by (f × g) (y) = (f(y), g(y)).

Exercise 15.3. Give an example of a topological space which has a non-closed
compact subset.

Proposition 15.6. Suppose that X is a compact topological space, Y is a
Hausdorff topological space, and f : X → Y is a continuous bijection then f
is a homeomorphism, i.e. f−1 : Y → X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdorff spaces
are closed, it follows that

(
f−1

)−1 (C) = f(C) is closed in X for all closed
subsets C of X. Thus f−1 is continuous.

The next two results shows that locally compact Hausdorff spaces have
plenty of open sets and plenty of continuous functions.
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Proposition 15.7. Suppose X is a locally compact Hausdorff space and U ⊂o
X and K @@ U. Then there exists V ⊂o X such that K ⊂ V ⊂ V ⊂ U ⊂ X
and V̄ is compact. (Compare with Proposition 14.25 above.)

Proof. By local compactness, for all x ∈ K, there exists Ux ∈ τx such
that Ūx is compact. Since K is compact, there exists Λ ⊂⊂ K such that
{Ux}x∈Λ is a cover of K. The set O = U ∩ (∪x∈ΛUx) is an open set such that
K ⊂ O ⊂ U and O is precompact since Ō is a closed subset of the compact
set ∪x∈ΛŪx. (∪x∈ΛŪx. is compact because it is a finite union of compact sets.)
So by replacing U by O if necessary, we may assume that Ū is compact. Since
Ū is compact and bd(U) = Ū ∩U c is a closed subset of Ū , bd(U) is compact.
Because bd(U) ⊂ U c, it follows that bd(U) ∩K = ∅, so by Proposition 15.5,
there exists disjoint open sets V and W such that K ⊂ V and bd(U) ⊂W. By
replacing V by V ∩U if necessary we may further assume that K ⊂ V ⊂ U, see
Figure 15.1. Because Ū ∩W c is a closed set containing V and bd(U)∩W c = ∅,

Fig. 15.1. The construction of V.

V̄ ⊂ Ū ∩W c = (U ∪ bd(U)) ∩W c = U ∩W c ⊂ U ⊂ Ū .

Since Ū is compact it follows that V̄ is compact and the proof is complete.
The following Lemma is analogous to Lemma 14.27.

Lemma 15.8 (Urysohn’s Lemma for LCH Spaces). Let X be a locally
compact Hausdorff space and K @@ U ⊂o X. Then there exists f ≺ U (see
Definition 14.26) such that f = 1 on K. In particular, if K is compact and
C is closed in X such that K ∩C = ∅, there exists f ∈ Cc(X, [0, 1]) such that
f = 1 on K and f = 0 on C.

Proof. For notational ease later it is more convenient to construct g :=
1 − f rather than f. To motivate the proof, suppose g ∈ C(X, [0, 1]) such
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that g = 0 on K and g = 1 on U c. For r > 0, let Ur = {g < r} . Then for
0 < r < s ≤ 1, Ur ⊂ {g ≤ r} ⊂ Us and since {g ≤ r} is closed this implies

K ⊂ Ur ⊂ Ūr ⊂ {g ≤ r} ⊂ Us ⊂ U.

Therefore associated to the function g is the collection open sets {Ur}r>0 ⊂ τ
with the property that K ⊂ Ur ⊂ Ūr ⊂ Us ⊂ U for all 0 < r < s ≤ 1 and
Ur = X if r > 1. Finally let us notice that we may recover the function g from
the sequence {Ur}r>0 by the formula

g(x) = inf{r > 0 : x ∈ Ur}. (15.1)

The idea of the proof to follow is to turn these remarks around and define g
by Eq. (15.1).

Step 1. (Construction of the Ur.) Let

D :=
{
k2−n : k = 1, 2, . . . , 2−n, n = 1, 2, . . .

}
be the dyadic rationals in (0, 1]. Use Proposition 15.7 to find a precompact
open set U1 such that K ⊂ U1 ⊂ Ū1 ⊂ U. Apply Proposition 15.7 again to
construct an open set U1/2 such that

K ⊂ U1/2 ⊂ Ū1/2 ⊂ U1

and similarly use Proposition 15.7 to find open sets U1/2, U3/4 ⊂o X such that

K ⊂ U1/4 ⊂ Ū1/4 ⊂ U1/2 ⊂ Ū1/2 ⊂ U3/4 ⊂ Ū3/4 ⊂ U1.

Likewise there exists open set U1/8, U3/8, U5/8, U7/8 such that

K ⊂ U1/8 ⊂ Ū1/8 ⊂ U1/4 ⊂ Ū1/4 ⊂ U3/8 ⊂ Ū3/8 ⊂ U1/2

⊂ Ū1/2 ⊂ U5/8 ⊂ Ū5/8 ⊂ U3/4 ⊂ Ū3/4 ⊂ U7/8 ⊂ Ū7/8 ⊂ U1.

Continuing this way inductively, one shows there exists precompact open sets
{Ur}r∈D ⊂ τ such that

K ⊂ Ur ⊂ Ur ⊂ Us ⊂ U1 ⊂ Ū1 ⊂ U

for all r, s ∈ D with 0 < r < s ≤ 1.
Step 2. Let Ur := X if r > 1 and define

g(x) = inf{r ∈ D ∪ (1, 2) : x ∈ Ur},

see Figure 15.2. Then g(x) ∈ [0, 1] for all x ∈ X, g(x) = 0 for x ∈ K since
x ∈ K ⊂ Ur for all r ∈ D. If x ∈ U c1 , then x /∈ Ur for all r ∈ D and hence
g(x) = 1. Therefore f := 1 − g is a function such that f = 1 on K and
{f 6= 0} = {g 6= 1} ⊂ U1 ⊂ Ū1 ⊂ U so that supp(f) = {f 6= 0} ⊂ Ū1 ⊂ U is
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15 Locally Compact Hausdorff Spaces 245

Fig. 15.2. Determining g from {Ur} .

a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.

Since E = {(α,∞), (−∞, α) : α ∈ R} generates the standard topology on
R, to prove g is continuous it suffices to show {g < α} and {g > α} are open
sets for all α ∈ R. But g(x) < α iff there exists r ∈ D ∪ (1,∞) with r < α
such that x ∈ Ur. Therefore

{g < α} =
⋃
{Ur : r ∈ D ∪ (1,∞) 3 r < α}

which is open in X. If α ≥ 1, {g > α} = ∅ and if α < 0, {g > α} = X. If
α ∈ (0, 1), then g(x) > α iff there exists r ∈ D such that r > α and x /∈ Ur.
Now if r > α and x /∈ Ur then for s ∈ D ∩ (α, r), x /∈ Ūs ⊂ Ur. Thus we have
shown that

{g > α} =
⋃{(

Us
)c

: s ∈ D 3 s > α
}

which is again an open subset of X.

Theorem 15.9 (Locally Compact Tietz Extension Theorem). Let
(X, τ) be a locally compact Hausdorff space, K @@ U ⊂o X, f ∈ C(K,R),
a = min f(K) and b = max f(K). Then there exists F ∈ C(X, [a, b])
such that F |K = f. Moreover given c ∈ [a, b], F can be chosen so that
supp(F − c) = {F 6= c} ⊂ U.

The proof of this theorem is similar to Theorem 7.4 and will be left to the
reader, see Exercise 15.6.
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246 15 Locally Compact Hausdorff Spaces

15.1 Locally compact form of Urysohn’s Metrization
Theorem

Notation 15.10 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=
∞∑
n=1

1
2n
|an − bn| . (15.2)

The metric introduced in Exercise 14.22 would be defined, in this context,
as d̃(a, b) :=

∑∞
n=1

1
2n

|an−bn|
1+|an−bn| . Since 1 ≤ 1+|an − bn| ≤ 2, it follows that d̃ ≤

d ≤ 2d. So the metrics d and d̃ are equivalent and in particular the topologies
induced by d and d̃ are the same. By Exercises 13.28, the d – topology on Q
is the same as the product topology and by Tychonoff’s Theorem 14.34 or by
Exercise 14.22, (Q, d) is a compact metric space.

Theorem 15.11. To every separable metric space (X, ρ), there exists a con-
tinuous injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeo-
morphism. In short, any separable metrizable space X is homeomorphic to a
subset of (Q, d).

Remark 15.12. Notice that if we let ρ′(x, y) := d(G(x), G(y)), then ρ′ induces
the same topology on X as ρ and G : (X, ρ′)→ (Q, d) is isometric.

Proof. Let D = {xn}∞n=1 be a countable dense subset of X,

φ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if t ≥ 1,

(see Figure 15.3) and for m,n ∈ N let

fm,n(x) := 1− φ (mρ(xn, x)).

Then fm,n = 0 if ρ(x, xn) < 1/m and fm,n = 1 if ρ(x, xn) > 2/m. Let
{gk}∞k=1 be an enumeration of {fm,n : m,n ∈ N} and define G : X → Q by

G(x) = (g1(x), g2(x), . . . ) ∈ Q.

We will now show G : X → G(X) ⊂ Q is a homeomorphism. To show G
is injective suppose x, y ∈ X and ρ(x, y) = δ ≥ 1/m. In this case we may
find xn ∈ X such that ρ(x, xn) ≤ 1

2m , ρ(y, xn) ≥ δ − 1
2m ≥

1
2m and hence

f4m,n(y) = 1 while f4m,n(y) = 0. From this it follows that G(x) 6= G(y) if
x 6= y and hence G is injective. The continuity of G is a consequence of the
continuity of each of the components gi of G. So it only remains to show
G−1 : G(X) → X is continuous. Given a = G(x) ∈ G(X) ⊂ Q and ε > 0,
choose m ∈ N and xn ∈ X such that ρ(xn, x) < 1

2m < ε
2 . Then fm,n(x) = 0
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Fig. 15.3. The graph of the function φ.

and for y /∈ B(xn, 2
m ), fm,n(y) = 1. So if k is chosen so that gk = fm,n, we

have shown that for

d(G(y), G(x)) ≥ 2−k for y /∈ B(xn, 2/m)

or equivalently put, if

d(G(y), G(x)) < 2−k then y ∈ B(xn, 2/m) ⊂ B(x, 1/m) ⊂ B(x, ε).

This shows that if G(y) is sufficiently close to G(x) then ρ(y, x) < ε, i.e. G−1

is continuous at a = G(x).

Theorem 15.13 (Urysohn Metrization Theorem for LCH’s). Every
second countable locally compact Hausdorff space, (X, τ) , is metrizable, i.e.
there is a metric ρ on X such that τ = τρ. Moreover, ρ may be chosen so that
X is isometric to a subset Q0 ⊂ Q equipped with the metric d in Eq. (15.2).
In this metric X is totally bounded and hence the completion of X (which is
isometric to Q̄0 ⊂ Q) is compact. (Also see Theorem 15.43.)

Proof. Let B be a countable base for τ and set

Γ := {(U, V ) ∈ B × B | Ū ⊂ V and Ū is compact}.

To each O ∈ τ and x ∈ O there exist (U, V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a base for τ, there exists V ∈ B such that x ∈ V ⊂ O.
Now apply Proposition 15.7 to find U ′ ⊂o X such that x ∈ U ′ ⊂ Ū ′ ⊂ V
with Ū ′ being compact. Since B is a base for τ, there exists U ∈ B such that
x ∈ U ⊂ U ′ and since Ū ⊂ Ū ′, Ū is compact so (U, V ) ∈ Γ. In particular this
shows that B′ := {U ∈ B : (U, V ) ∈ Γ for some V ∈ B} is still a base for τ. If
Γ is a finite, then B′ is finite and τ only has a finite number of elements as well.
Since (X, τ) is Hausdorff, it follows that X is a finite set. Letting {xn}Nn=1 be
an enumeration of X, define T : X → Q by T (xn) = en for n = 1, 2, . . . , N
where en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1 occurring in the nth spot. Then
ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is the desired metric.
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248 15 Locally Compact Hausdorff Spaces

So we may now assume that Γ is an infinite set and let {(Un, Vn)}∞n=1 be an
enumeration of Γ. By Urysohn’s Lemma 15.8 there exists fU,V ∈ C(X, [0, 1])
such that fU,V = 0 on Ū and fU,V = 1 on V c. Let F := {fU,V | (U, V ) ∈ Γ}
and set fn := fUn,Vn

– an enumeration of F . We will now show that

ρ(x, y) :=
∞∑
n=1

1
2n
|fn(x)− fn(y)|

is the desired metric on X. The proof will involve a number of steps.

1. (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequality
and ρ is symmetric. If x, y ∈ X are distinct points then there exists
(Un0 , Vn0) ∈ Γ such that x ∈ Un0 and Vn0 ⊂ O := {y}c . Since fn0(x) = 0
and fn0(y) = 1, it follows that ρ(x, y) ≥ 2−n0 > 0.

2. (Let τ0 = τ (fn : n ∈ N) , then τ = τ0 = τρ.) As usual we have τ0 ⊂ τ.
Since, for each x ∈ X, y → ρ(x, y) is τ0 – continuous (being the uni-
formly convergent sum of continuous functions), it follows that Bx(ε) :=
{y ∈ X : ρ(x, y) < ε} ∈ τ0 for all x ∈ X and ε > 0. Thus τρ ⊂ τ0 ⊂ τ.
Suppose that O ∈ τ and x ∈ O. Let (Un0 , Vn0) ∈ Γ be such that x ∈ Un0

and Vn0 ⊂ O. Then fn0(x) = 0 and fn0 = 1 on Oc. Therefore if y ∈ X and
fn0(y) < 1, then y ∈ O so x ∈ {fn0 < 1} ⊂ O. This shows that O may be
written as a union of elements from τ0 and therefore O ∈ τ0. So τ ⊂ τ0 and
hence τ = τ0.Moreover, if y ∈ Bx(2−n0) then 2−n0 > ρ(x, y) ≥ 2−n0fn0(y)
and therefore x ∈ Bx(2−n0) ⊂ {fn0 < 1} ⊂ O. This shows O is ρ – open
and hence τρ ⊂ τ0 ⊂ τ ⊂ τρ.

3. (X is isometric to some Q0 ⊂ Q.) Let T : X → Q be defined by T (x) =
(f1(x), f2(x), . . . , fn(x), . . . ). Then T is an isometry by the very definitions
of d and ρ and thereforeX is isometric to Q0 := T (X). Since Q0 is a subset
of the compact metric space (Q, d), Q0 is totally bounded and therefore
X is totally bounded.

BRUCE: Add Stone Chech Compactification results.

15.2 Partitions of Unity

Definition 15.14. Let (X, τ) be a topological space and X0 ⊂ X be a set. A
collection of sets {Bα}α∈A ⊂ 2X is locally finite on X0 if for all x ∈ X0,
there is an open neighborhood Nx ∈ τ of x such that #{α ∈ A : Bα ∩ Nx 6=
∅} <∞.

Definition 15.15. Suppose that U is an open cover of X0 ⊂ X. A collection
{φα}α∈A ⊂ C(X, [0, 1]) (N =∞ is allowed here) is a partition of unity on
X0 subordinate to the cover U if:

1. for all α there is a U ∈ U such that supp(φα) ⊂ U,
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2. the collection of sets, {supp(φα)}α∈A, is locally finite on X, and
3.
∑
α∈A φα = 1 on X0.

Notice by item 2. that, for each x ∈ X, there is a neighborhood Nx such
that

Λ := {α ∈ A : supp(φα) ∩Nx 6= ∅}

is a finite set. Therefore,
∑
α∈A φα|Nx =

∑
α∈Λ φα|Nx which shows the sum∑

α∈A φα is well defined and defines a continuous function on Nx and there-
fore on X since continuity is a local property. We will summarize these last
comments by saying the sum,

∑
α∈A φα, is locally finite.

Proposition 15.16 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K ⊂ X is a compact set and
U = {Uj}nj=1 is an open cover of K. Then there exists a partition of unity
{hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Proof. For all x ∈ K choose a precompact open neighborhood, Vx, of x
such that V x ⊂ Uj . Since K is compact, there exists a finite subset, Λ, of K
such that K ⊂

⋃
x∈Λ

Vx. Let

Fj = ∪
{
V̄x : x ∈ Λ and V x ⊂ Uj

}
.

Then Fj is compact, Fj ⊂ Uj for all j, and K ⊂ ∪nj=1Fj . By Urysohn’s Lemma
15.8 there exists fj ≺ Uj such that fj = 1 on Fj for j = 1, 2, . . . , n and by
convention let fn+1 ≡ 1. We will now give two methods to finish the proof.

Method 1. Let h1 = f1, h2 = f2(1− h1) = f2(1− f1),

h3 = f3(1− h1 − h2) = f3(1− f1 − (1− f1)f2) = f3(1− f1)(1− f2)

and continue on inductively to define

hk = (1− h1 − · · · − hk−1)fk = fk ·
k−1∏
j=1

(1− fj)∀ k = 2, 3, . . . , n (15.3)

and to show

hn+1 = (1− h1 − · · · − hn) · 1 = 1 ·
n∏
j=1

(1− fj). (15.4)

From these equations it clearly follows that hj ∈ Cc(X, [0, 1]) and that
supp(hj) ⊂ supp(fj) ⊂ Uj , i.e. hj ≺ Uj . Since

∏n
j=1(1 − fj) = 0 on K,∑n

j=1 hj = 1 on K and {hj}nj=1 is the desired partition of unity.

Method 2. Let g :=
n∑
j=1

fj ∈ Cc(X). Then g ≥ 1 on K and hence

K ⊂ {g > 1
2}. Choose φ ∈ Cc(X, [0, 1]) such that φ = 1 on K and supp(φ) ⊂
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250 15 Locally Compact Hausdorff Spaces

{g > 1
2} and define f0 := 1 − φ. Then f0 = 0 on K, f0 = 1 if g ≤ 1

2 and
therefore,

f0 + f1 + · · ·+ fn = f0 + g > 0

on X. The desired partition of unity may be constructed as

hj(x) =
fj(x)

f0(x) + · · ·+ fn(x)
.

Indeed supp (hj) = supp (fj) ⊂ Uj , hj ∈ Cc(X, [0, 1]) and on K,

h1 + · · ·+ hn =
f1 + · · ·+ fn

f0 + f1 + · · ·+ fn
=
f1 + · · ·+ fn
f1 + · · ·+ fn

= 1.

Proposition 15.17. Let (X, τ) be a locally compact and σ – compact Haus-
dorff space. Suppose that U ⊂ τ is an open cover of X. Then we may construct
two locally finite open covers V = {Vi}Ni=1 and W = {Wi}Ni=1 of X (N = ∞
is allowed here) such that:

1. Wi ⊂ W̄i ⊂ Vi ⊂ V̄i and V̄i is compact for all i.
2. For each i there exist U ∈ U such that V̄i ⊂ U.

Proof. By Remark 14.24, there exists an open cover of G = {Gn}∞n=1

of X such that Gn ⊂ Ḡn ⊂ Gn+1. Then X = ∪∞k=1(Ḡk \ Ḡk−1), where by
convention G−1 = G0 = ∅. For the moment fix k ≥ 1. For each x ∈ Ḡk \Gk−1,
let Ux ∈ U be chosen so that x ∈ Ux and by Proposition 15.7 choose an open
neighborhood Nx of x such that N̄x ⊂ Ux ∩ (Gk+1 \ Ḡk−2), see Figure 15.4
below. Since {Nx}x∈Ḡk\Gk−1

is an open cover of the compact set Ḡk \Gk−1,

there exist a finite subset Γk ⊂ {Nx}x∈Ḡk\Gk−1
which also covers Ḡk \Gk−1.

By construction, for each W ∈ Γk, there is a U ∈ U such that W̄ ⊂
U ∩ (Gk+1 \ Ḡk−2) and by another application of Proposition 15.7, there
exists an open set VW such that W̄ ⊂ VW ⊂ V̄W ⊂ U ∩ (Gk+1 \ Ḡk−2). We
now choose and enumeration {Wi}Ni=1 of the countable open cover, ∪∞k=1Γk,
of X and define Vi = VWi

. Then the collection {Wi}Ni=1 and {Vi}Ni=1 are easily
checked to satisfy all the conclusions of the proposition. In particular notice
that for each k; Vi ∩Gk 6= ∅ for only a finite number of i’s.

Theorem 15.18 (Partitions of Unity for σ – Compact LCH Spaces).
Let (X, τ) be locally compact, σ – compact and Hausdorff and let U ⊂ τ be an
open cover of X. Then there exists a partition of unity of {hi}Ni=1 (N =∞ is
allowed here) subordinate to the cover U such that supp(hi) is compact for all
i.

Proof. Let V = {Vi}Ni=1 and W = {Wi}Ni=1 be open covers of X with the
properties described in Proposition 15.17. By Urysohn’s Lemma 15.8, there

Page: 250 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



15.2 Partitions of Unity 251

Fig. 15.4. Constructing the {Wi}N
i=1 .

exists fi ≺ Vi such that fi = 1 on W̄i for each i. As in the proof of Proposition
15.16 there are two methods to finish the proof.

Method 1. Define h1 = f1, hj by Eq. (15.3) for all other j. Then as in
Eq. (15.4), for all n < N + 1,

1−
∞∑
j=1

hj = lim
n→∞

fn n∏
j=1

(1− fj)

 = 0

since for x ∈ X, fj(x) = 1 for some j. As in the proof of Proposition 15.16, it
is easily checked that {hi}Ni=1 is the desired partition of unity.

Method 2. Let f :=
∑N
i=1 fi, a locally finite sum, so that f ∈ C(X).

Since {Wi}∞i=1 is a cover of X, f ≥ 1 on X so that 1/f ∈ C (X)) as well. The
functions hi := fi/f for i = 1, 2, . . . , N give the desired partition of unity.

Lemma 15.19. Let (X, τ) be a locally compact Hausdorff space.

1. A subset E ⊂ X is closed iff E ∩K is closed for all K @@ X.
2. Let {Cα}α∈A be a locally finite collection of closed subsets of X, then
C = ∪α∈ACα is closed in X. (Recall that in general closed sets are only
closed under finite unions.)

Proof. 1. Since compact subsets of Hausdorff spaces are closed, E ∩K is
closed if E is closed and K is compact. Now suppose that E ∩ K is closed
for all compact subsets K ⊂ X and let x ∈ Ec. Since X is locally compact,
there exists a precompact open neighborhood, V, of x.1 By assumption E ∩ V̄
1 If X were a metric space we could finish the proof as follows. If there does not

exist an open neighborhood of x which is disjoint from E, then there would exists
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is closed so x ∈
(
E ∩ V̄

)c – an open subset of X. By Proposition 15.7 there
exists an open set U such that x ∈ U ⊂ Ū ⊂

(
E ∩ V̄

)c
, see Figure 15.5. Let

Fig. 15.5. Showing Ec is open.

W := U ∩ V. Since

W ∩ E = U ∩ V ∩ E ⊂ U ∩ V̄ ∩ E = ∅,

and W is an open neighborhood of x and x ∈ Ec was arbitrary, we have shown
Ec is open hence E is closed.

2. Let K be a compact subset of X and for each x ∈ K let Nx be an
open neighborhood of x such that #{α ∈ A : Cα ∩Nx 6= ∅} <∞. Since K is
compact, there exists a finite subset Λ ⊂ K such that K ⊂ ∪x∈ΛNx. Letting
Λ0 := {α ∈ A : Cα ∩K 6= ∅}, then

# (Λ0) ≤
∑
x∈Λ

#{α ∈ A : Cα ∩Nx 6= ∅} <∞

and hence K ∩ (∪α∈ACα) = K ∩ (∪α∈Λ0Cα) . The set (∪α∈Λ0Cα) is a finite
union of closed sets and hence closed. Therefore, K ∩ (∪α∈ACα) is closed and
by item 1. it follows that ∪α∈ACα is closed as well.

Corollary 15.20. Let (X, τ) be a locally compact and σ – compact Hausdorff
space and U = {Uα}α∈A ⊂ τ be an open cover of X. Then there exists a
partition of unity of {hα}α∈A subordinate to the cover U such that supp(hα) ⊂
Uα for all α ∈ A. (Notice that we do not assert that hα has compact support.
However if Ūα is compact then supp(hα) will be compact.)

xn ∈ E such that xn → x. Since E ∩ V̄ is closed and xn ∈ E ∩ V̄ for all large n,
it follows (see Exercise 6.4) that x ∈ E ∩ V̄ and in particular that x ∈ E. But we
chose x ∈ Ec.
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Proof. By the σ – compactness of X, we may choose a countable subset,
{αi}Ni=1 (N = ∞ allowed here), of A such that {Ui := Uαi

}Ni=1 is still an
open cover of X. Let {gj}∞j=1 be a partition of unity2 subordinate to the
cover {Ui}Ni=1 as in Theorem 15.18. Define Γ̃k := {j : supp(gj) ⊂ Uk} and

Γk := Γ̃k \
(
∪k−1
j=1 Γ̃k

)
, where by convention Γ̃0 = ∅. Then

N =
∞⋃
k=1

Γ̃k =
∞∐
k=1

Γk.

If Γk = ∅ let hk := 0 otherwise let hk :=
∑
j∈Γk

gj , a locally finite sum. Then

N∑
k=1

hk =
∞∑
j=1

gj = 1.

By Item 2. of Lemma 15.19, ∪j∈Γk
supp(gj) is closed and therefore,

supp(hk) = {hk 6= 0} = ∪j∈Γk
{gj 6= 0} ⊂ ∪j∈Γk

supp(gj) ⊂ Uk

and hence hk ≺ Uk and the sum
∑N
k=1 hk is still locally finite. (Why?) The

desired partition of unity is now formed by letting hαk
:= hk for k < N + 1

and hα ≡ 0 if α /∈ {αi}Ni=1.

Corollary 15.21. Let (X, τ) be a locally compact and σ – compact Haus-
dorff space and A,B be disjoint closed subsets of X. Then there exists
f ∈ C(X, [0, 1]) such that f = 1 on A and f = 0 on B. In fact f can be
chosen so that supp(f) ⊂ Bc.

Proof. Let U1 = Ac and U2 = Bc, then {U1, U2} is an open cover of X.
By Corollary 15.20 there exists h1, h2 ∈ C(X, [0, 1]) such that supp(hi) ⊂ Ui
for i = 1, 2 and h1 + h2 = 1 on X. The function f = h2 satisfies the desired
properties.

15.3 C0(X) and the Alexanderov Compactification

Definition 15.22. Let (X, τ) be a topological space. A continuous function
f : X → C is said to vanish at infinity if {|f | ≥ ε} is compact in X for
all ε > 0. The functions, f ∈ C(X), vanishing at infinity will be denoted by
C0(X). (Notice that C0 (X) = C (X) whenever X is compact.)

Proposition 15.23. Let X be a topological space, BC(X) be the space of
bounded continuous functions on X with the supremum norm topology. Then
2 So as to simplify the indexing we assume there countable number of gj ’s. This

can always be arranged by taking gk ≡ 0 for large k if necessary.
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254 15 Locally Compact Hausdorff Spaces

1. C0(X) is a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then
C0(X) = Cc(X).

Proof.

1. If f ∈ C0(X), K1 := {|f | ≥ 1} is a compact subset of X and there-
fore f(K1) is a compact and hence bounded subset of C and so M :=
supx∈K1

|f(x)| <∞. Therefore ‖f‖∞ ≤M ∨ 1 <∞ showing f ∈ BC(X).
Now suppose fn ∈ C0(X) and fn → f in BC(X). Let ε > 0 be given and
choose n sufficiently large so that ‖f − fn‖∞ ≤ ε/2. Since

|f | ≤ |fn|+ |f − fn| ≤ |fn|+ ‖f − fn‖∞ ≤ |fn|+ ε/2,

{|f | ≥ ε} ⊂ {|fn|+ ε/2 ≥ ε} = {|fn| ≥ ε/2} .

Because {|f | ≥ ε} is a closed subset of the compact set {|fn| ≥ ε/2} ,
{|f | ≥ ε} is compact and we have shown f ∈ C0(X).

2. Since C0(X) is a closed subspace of BC(X) and Cc(X) ⊂ C0(X), we
always have Cc(X) ⊂ C0(X). Now suppose that f ∈ C0(X) and let Kn :=
{|f | ≥ 1

n} @@ X. By Lemma 15.8 we may choose φn ∈ Cc(X, [0, 1]) such
that φn ≡ 1 on Kn. Define fn := φnf ∈ Cc(X). Then

‖f − fn‖u = ‖(1− φn)f‖∞ ≤
1
n
→ 0 as n→∞.

This shows that f ∈ Cc(X).

Proposition 15.24 (Alexanderov Compactification). Suppose that (X, τ)
is a non-compact locally compact Hausdorff space. Let X∗ = X ∪{∞} , where
{∞} is a new symbol not in X. The collection of sets,

τ∗ = τ ∪ {X∗ \K : K @@ X} ⊂ 2X
∗
,

is a topology on X∗ and (X∗, τ∗) is a compact Hausdorff space. Moreover
f ∈ C(X) extends continuously to X∗ iff f = g+ c with g ∈ C0(X) and c ∈ C
in which case the extension is given by f(∞) = c.

Proof. 1. (τ∗ is a topology.) Let F := {F ⊂ X∗ : X∗ \ F ∈ τ∗}, i.e.
F ∈ F iff F is a compact subset of X or F = F0∪{∞} with F0 being a closed
subset of X. Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of X are closed and closed subsets of compact
subsets of X are compact, it is also easily checked that F is closed under
arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence τ∗ is a topology.
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15.3 C0(X) and the Alexanderov Compactification 255

2. ((X∗, τ∗) is a Hausdorff space.) It suffices to show any point x ∈ X
can be separated from ∞. To do this use Proposition 15.7 to find an open
precompact neighborhood, U, of x. Then U and V := X∗ \ Ū are disjoint open
subsets of X∗ such that x ∈ U and ∞ ∈ V.

3. ((X∗, τ∗) is compact.) Suppose that U ⊂ τ∗ is an open cover of X∗.
Since U covers ∞, there exists a compact set K ⊂ X such that X∗ \K ∈ U .
Clearly X is covered by U0 := {V \ {∞} : V ∈ U} and by the definition of τ∗

(or using (X∗, τ∗) is Hausdorff), U0 is an open cover of X. In particular U0 is
an open cover of K and since K is compact there exists Λ ⊂⊂ U such that
K ⊂ ∪{V \ {∞} : V ∈ Λ} . It is now easily checked that Λ ∪ {X∗ \K} ⊂ U
is a finite subcover of X∗.

4. (Continuous functions on C(X∗) statements.) Let i : X → X∗ be the
inclusion map. Then i is continuous and open, i.e. i(V ) is open in X∗ for all
V open in X. If f ∈ C(X∗), then g = f |X−f(∞) = f ◦ i−f(∞) is continuous
on X. Moreover, for all ε > 0 there exists an open neighborhood V ∈ τ∗ of ∞
such that

|g(x)| = |f(x)− f(∞)| < ε for all x ∈ V.

Since V is an open neighborhood of ∞, there exists a compact subset,
K ⊂ X, such that V = X∗ \ K. By the previous equation we see that
{x ∈ X : |g(x)| ≥ ε} ⊂ K, so {|g| ≥ ε} is compact and we have shown g van-
ishes at ∞.

Conversely if g ∈ C0(X), extend g to X∗ by setting g(∞) = 0. Given
ε > 0, the set K = {|g| ≥ ε} is compact, hence X∗ \K is open in X∗. Since
g(X∗ \K) ⊂ (−ε, ε) we have shown that g is continuous at ∞. Since g is also
continuous at all points in X it follows that g is continuous on X∗. Now it
f = g + c with c ∈ C and g ∈ C0(X), it follows by what we just proved that
defining f(∞) = c extends f to a continuous function on X∗.

Example 15.25. Let X be an uncountable set and τ be the discrete topology
on X. Let (X∗ = X ∪ {∞} , τ∗) be the one point compactification of X. The
smallest dense subset of X∗ is the uncountable set X. Hence X∗ is a compact
but non-separable and hence non-metrizable space.

Exercise 15.4. Let X := {0, 1}R and τ be the product topology on X where
{0, 1} is equipped with the discrete topology. Show (X, τ) is separable. (Com-
bining this with Exercise 13.9 and Tychonoff’s Theorem 14.34, we see that
(X, τ) is compact and separable but not first countable.)

Solution to Exercise (15.4). We begin by observing that a basic open
neighborhood of g ∈ X is of the form

VΛ := {f ∈ X : f = g on Λ}

where Λ ⊂⊂ R. Therefore to see that X is separable, we must find a countable
set D ⊂ X such that for any g ∈ X (g : R→{0, 1}) and any Λ ⊂⊂ R, there
exists f ∈ D such that f = g on Λ.
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Kevin Costello’s construction. Let

Mm,k := 1[k/m,(k+1)/m)

be the characteristic function of the interval [k/m, (k + 1)/m) and let D ⊂
{0, 1}R be the set of all finite sums of Mm,k which still have range in {0, 1},
i.e. the set of sums over disjoint intervals.

Now suppose g ∈ {0, 1}R and Λ ⊂⊂ R. Let

S := {x ∈ Λ : g (x) = 0} and T = {x ∈ Λ : g (x) = 1} .

Then Λ = S
∐
T and we may take intervals Jt := [k/m, (k + 1)/m) 3 t for

each t ∈ T which are small enough to be disjoint and not contain any points
in S. Then f =

∑
t∈T 1Jt ∈ D and f = g on Λ showing f ∈ VΛ.

The next proposition gathers a number of results involving countability
assumptions which have appeared in the exercises.

Proposition 15.26 (Summary). Let (X, τ) be a topological space.

1. If (X, τ) is second countable, then (X, τ) is separable; see Exercise 13.11.
2. If (X, τ) is separable and metrizable then (X, τ) is second countable; see

Exercise 13.12.
3. If (X, τ) is locally compact and metrizable then (X, τ) is σ – compact iff

(X, τ) is separable; see Exercises 14.10 and 14.11.
4. If (X, τ) is locally compact and second countable, then (X, τ) is σ - com-

pact, see Exercise 14.8.
5. If (X, τ) is locally compact and metrizable, then (X, τ) is σ – compact iff

(X, τ) is separable, see Exercises 14.9 and 14.10.
6. There exists spaces, (X, τ) , which are both compact and separable but not

first countable and in particular not metrizable, see Exercise 15.4.

15.4 Stone-Weierstrass Theorem

We now wish to generalize Theorem 10.34 to more general topological spaces.
We will first need some definitions.

Definition 15.27. Let X be a topological space and A ⊂ C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x, y ∈ X there exists
f ∈ A such that f(x) 6= f(y).

2. A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication. (Note well: we do not assume 1 ∈ A.)

3. A ⊂ C(X,R) is called a lattice if f ∨ g := max(f, g) and f ∧ g =
min(f, g) ∈ A for all f, g ∈ A.
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15.4 Stone-Weierstrass Theorem 257

4. A ⊂ C(X,C) is closed under conjugation if f̄ ∈ A whenever f ∈ A.

Remark 15.28. If X is a topological space such that C(X,R) separates points
then X is Hausdorff. Indeed if x, y ∈ X and f ∈ C(X,R) such that
f(x) 6= f(y), then f−1(J) and f−1(I) are disjoint open sets containing x
and y respectively when I and J are disjoint intervals containing f(x) and
f(y) respectively.

Lemma 15.29. If A is a closed sub-algebra of BC(X,R) then |f | ∈ A for all
f ∈ A and A is a lattice.

Proof. Let f ∈ A and let M = sup
x∈X
|f(x)| . Using Theorem 10.34 or

Exercise 15.12, there are polynomials pn(t) such that

lim
n→∞

sup
|t|≤M

||t| − pn(t)| = 0.

By replacing pn by pn − pn(0) if necessary we may assume that pn(0) = 0.
Since A is an algebra, it follows that fn = pn(f) ∈ A and |f | ∈ A, because
|f | is the uniform limit of the fn’s. Since

f ∨ g =
1
2

(f + g + |f − g|) and

f ∧ g =
1
2

(f + g − |f − g|),

we have shown A is a lattice.

Lemma 15.30. Let A ⊂ C(X,R) be an algebra which separates points and
suppose x and y are distinct points of X. If there exits such that f, g ∈ A such
that

f(x) 6= 0 and g(y) 6= 0, (15.5)

then
V := {(f(x), f(y)) : f ∈ A}= R2. (15.6)

Proof. It is clear that V is a non-zero subspace of R2. If dim(V ) = 1, then
V = span(a, b) for some (a, b) ∈ R2 which, necessarily by Eq. (15.5), satisfy
a 6= 0 6= b. Since (a, b) = (f(x), f(y)) for some f ∈ A and f2 ∈ A, it follows
that (a2, b2) = (f2(x), f2(y)) ∈ V as well. Since dimV = 1, (a, b) and (a2, b2)
are linearly dependent and therefore

0 = det
(
a b
a2 b2

)
= ab2 − a2b = ab(b− a)

which implies that a = b. But this the implies that f(x) = f(y) for all f ∈ A,
violating the assumption that A separates points. Therefore we conclude that
dim(V ) = 2, i.e. V = R2.
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Theorem 15.31 (Stone-Weierstrass Theorem). Suppose X is a locally
compact Hausdorff space and A ⊂ C0(X,R) is a closed subalgebra which
separates points. For x ∈ X let

Ax := {f(x) : f ∈ A} and
Ix = {f ∈ C0(X,R) : f(x) = 0}.

Then either one of the following two cases hold.

1. A = C0(X,R) or
2. there exists a unique point x0 ∈ X such that A = Ix0 .

Moreover, case 1. holds iff Ax = R for all x ∈ X and case 2. holds iff
there exists a point x0 ∈ X such that Ax0 = {0} .

Proof. If there exists x0 such that Ax0 = {0} (x0 is unique since A
separates points) then A ⊂ Ix0 . If such an x0 exists let C = Ix0 and if Ax = R
for all x, set C = C0(X,R). Let f ∈ C be given. By Lemma 15.30, for all
x, y ∈ X such that x 6= y, there exists gxy ∈ A such that f = gxy on {x, y}.3
When X is compact the basic idea of the proof is contained in the following
identity,

f(z) = inf
x∈X

sup
y∈X

gxy(z) for all z ∈ X. (15.7)

To prove this identity, let gx := supy∈X gxy and notice that gx ≥ f since
gxy(y) = f(y) for all y ∈ X. Moreover, gx(x) = f(x) for all x ∈ X since
gxy(x) = f(x) for all x. Therefore,

inf
x∈X

sup
y∈X

gxy = inf
x∈X

gx = f.

The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (15.7) becoming only an
approximate identity. We also have to modify Eq. (15.7) slightly to take care
of the non-compact case.

Claim. Given ε > 0 and x ∈ X there exists gx ∈ A such that gx(x) = f(x)
and f < gx + ε on X.

To prove this, let Vy be an open neighborhood of y such that |f − gxy| < ε
on Vy; in particular f < ε+ gxy on Vy. Also let gx,∞ be any fixed element in
A such that gx,∞ (x) = f (x) and let

K =
{
|f | ≥ ε

2

}
∪
{
|gx,∞| ≥

ε

2

}
. (15.8)

Since K is compact, there exists Λ ⊂⊂ K such that K ⊂
⋃
y∈Λ

Vy. Define

3 If Ax0 = {0} and x = x0 or y = x0, then gxy exists merely by the fact that A
separates points.
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15.4 Stone-Weierstrass Theorem 259

gx(z) = max{gxy : y ∈ Λ ∪ {∞}}.

Since
f < ε+ gxy < ε+ gx on Vy,

for any y ∈ Λ, and

f <
ε

2
< ε+ gx,∞ ≤ gx + ε on Kc,

f < ε + gx on X and by construction f(x) = gx(x), see Figure ??. This
completes the proof of the claim.

Fig. 15.6. Constructing the “dominating approximates,” gx for each x ∈ X.

To complete the proof of the theorem, let g∞ be a fixed element of A such
that f < g∞ + ε on X; for example let g∞ = gx0 ∈ A for some fixed x0 ∈ X.
For each x ∈ X, let Ux be a neighborhood of x such that |f − gx| < ε on Ux.
Choose

Γ ⊂⊂ F :=
{
|f | ≥ ε

2

}
∪
{
|g∞| ≥

ε

2

}
such that F ⊂

⋃
x∈Γ

Ux (Γ exists since F is compact) and define

g = min{gx : x ∈ Γ ∪ {∞}} ∈ A.

Then, for x ∈ F, gx < f + ε on Ux and hence g < f + ε on
⋃
x∈Γ

Ux ⊃ F.

Likewise,
g ≤ g∞ < ε/2 < f + ε on F c.

Therefore we have now shown,

f < g + ε and g < f + ε on X,

i.e. |f − g| < ε on X. Since ε > 0 is arbitrary it follows that f ∈ Ā = A and
so A = C.

Page: 259 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



260 15 Locally Compact Hausdorff Spaces

Corollary 15.32 (Complex Stone-Weierstrass Theorem). Let X be a
locally compact Hausdorff space. Suppose A ⊂ C0(X,C) is closed in the uni-
form topology, separates points, and is closed under complex conjugation. Then
either A = C0(X,C) or

A = IC
x0

:= {f ∈ C0(X,C) : f(x0) = 0}

for some x0 ∈ X.

Proof. Since

Re f =
f + f̄

2
and Im f =

f − f̄
2i

,

Re f and Im f are both in A. Therefore

AR = {Re f, Im f : f ∈ A}

is a real sub-algebra of C0(X,R) which separates points. Therefore either
AR = C0(X,R) or AR = Ix0 ∩C0(X,R) for some x0 and hence A = C0(X,C)
or IC

x0
respectively.

As an easy application, Theorem 15.31 and Corollary 15.32 imply Theorem
10.34 and Corollary 10.36 respectively. Here are a few more applications.

Example 15.33. Let f ∈ C([a, b]) be a positive function which is injective.
Then functions of the form

∑N
k=1 akf

k with ak ∈ C and N ∈ N are dense in
C([a, b]). For example if a = 1 and b = 2, then one may take f(x) = xα for
any α 6= 0, or f(x) = ex, etc.

Exercise 15.5. Let (X, d) be a separable compact metric space. Show that
C(X) is also separable. Hint: Let E ⊂ X be a countable dense set and then
consider the algebra, A ⊂ C(X), generated by {d(x, ·)}x∈E .

Example 15.34. Let X = [0,∞), λ > 0 be fixed, A be the real algebra
generated by t → e−λt. So the general element f ∈ A is of the form
f(t) = p(e−λt), where p(x) is a polynomial function in x with real coefficients.
Since A ⊂ C0(X,R) separates points and e−λt ∈ A is pointwise positive,
Ā = C0(X,R).

As an application of Example 15.34, suppose that g ∈ Cc (X,R) satisfies,∫ ∞

0

g (t) e−λtdt = 0 for all λ > 0. (15.9)

(Note well that the integral in Eq. (15.9) is really over a finite interval since g
is compactly supported.) Equation (15.9) along with linearity of the Riemann
integral implies ∫ ∞

0

g (t) f (t) dt = 0 for all f ∈ A.
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We may now choose fn ∈ A such that fn → g uniformly and therefore,
using the continuity of the Riemann integral under uniform convergence (see
Proposition 10.5),

0 = lim
n→∞

∫ ∞

0

g (t) fn (t) dt =
∫ ∞

0

g2 (t) dt.

From this last equation it is easily deduced, using the continuity of g, that
g ≡ 0. See Theorem 22.12 below, where this is done in greater generality.

15.5 *More on Separation Axioms: Normal Spaces

(This section may safely be omitted on the first reading.)

Definition 15.35 (T0 – T2 Separation Axioms). Let (X, τ) be a topological
space. The topology τ is said to be:

1. T0 if for x 6= y in X there exists V ∈ τ such that x ∈ V and y /∈ V or V
such that y ∈ V but x /∈ V.

2. T1 if for every x, y ∈ X with x 6= y there exists V ∈ τ such that x ∈ V
and y /∈ V. Equivalently, τ is T1 iff all one point subsets of X are closed.4

3. T2 if it is Hausdorff.

Note T2 implies T1 which implies T0. The topology in Example 15.1 is T0

but not T1. If X is a finite set and τ is a T1 – topology on X then τ = 2X . To
prove this let x ∈ X be fixed. Then for every y 6= x in X there exists Vy ∈ τ
such that x ∈ Vy while y /∈ Vy. Thus {x} = ∩y 6=xVy ∈ τ showing τ contains
all one point subsets of X and therefore all subsets of X. So we have to look
to infinite sets for an example of T1 topology which is not T2.

Example 15.36. Let X be any infinite set and let τ = {A ⊂ X : #(Ac) <∞}∪
{∅} – the so called cofinite topology. This topology is T1 because if x 6= y in
X, then V = {x}c ∈ τ with x /∈ V while y ∈ V. This topology however is not
T2. Indeed if U, V ∈ τ are open sets such that x ∈ U, y ∈ V and U ∩ V = ∅
then U ⊂ V c. But this implies #(U) < ∞ which is impossible unless U = ∅
which is impossible since x ∈ U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark 15.3) need not occur for T1 – spaces. For example, let X = N
and τ be the cofinite topology on X as in Example 15.36. Then xn = n is a
sequence in X such that xn → x as n→∞ for all x ∈ N. For the most part
we will avoid these pathologies in the future by only considering Hausdorff
topologies.
4 If one point subsets are closed and x 6= y in X then V := {x}c is an open set

containing y but not x. Conversely if τ is T1 and x ∈ X there exists Vy ∈ τ such
that y ∈ Vy and x /∈ Vy for all y 6= x. Therefore, {x}c = ∪y 6=xVy ∈ τ.
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Definition 15.37 (Normal Spaces: T4 – Separation Axiom). A topolog-
ical space (X, τ) is said to be normal or T4 if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A,B ⊂ X there exists disjoint open

sets V,W ⊂ X such that A ⊂ V and B ⊂W.

Example 15.38. By Lemma 6.15 and Corollary 15.21 it follows that metric
spaces and topological spaces which are locally compact, σ – compact and
Hausdorff (in particular compact Hausdorff spaces) are normal. Indeed, in
each case if A,B are disjoint closed subsets of X, there exists f ∈ C(X, [0, 1])
such that f = 1 onA and f = 0 onB.Now let U =

{
f > 1

2

}
and V = {f < 1

2}.

Remark 15.39. A topological space, (X, τ), is normal iff for any C ⊂ W ⊂ X
with C being closed and W being open there exists an open set U ⊂o X such
that

C ⊂ U ⊂ Ū ⊂W.

To prove this first suppose X is normal. Since W c is closed and C ∩W c = ∅,
there exists disjoint open sets U and V such that C ⊂ U and W c ⊂ V.
Therefore C ⊂ U ⊂ V c ⊂W and since V c is closed, C ⊂ U ⊂ Ū ⊂ V c ⊂W.

For the converse direction suppose A and B are disjoint closed subsets of
X. Then A ⊂ Bc and Bc is open, and so by assumption there exists U ⊂o X
such that A ⊂ U ⊂ Ū ⊂ Bc and by the same token there exists W ⊂o X such
that Ū ⊂W ⊂ W̄ ⊂ Bc. Taking complements of the last expression implies

B ⊂ W̄ c ⊂W c ⊂ Ū c.

Let V = W̄ c. Then A ⊂ U ⊂o X, B ⊂ V ⊂o X and U ∩ V ⊂ U ∩W c = ∅.

Theorem 15.40 (Urysohn’s Lemma for Normal Spaces). Let X be a
normal space. Assume A,B are disjoint closed subsets of X. Then there exists
f ∈ C(X, [0, 1]) such that f = 0 on A and f = 1 on B.

Proof. To make the notation match Lemma 15.8, let U = Ac and K = B.
Then K ⊂ U and it suffices to produce a function f ∈ C(X, [0, 1]) such that
f = 1 on K and supp(f) ⊂ U. The proof is now identical to that for Lemma
15.8 except we now use Remark 15.39 in place of Proposition 15.7.

Theorem 15.41 (Tietze Extension Theorem). Let (X, τ) be a normal
space, D be a closed subset of X, −∞ < a < b < ∞ and f ∈ C(D, [a, b]).
Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof. The proof is identical to that of Theorem 7.4 except we now use
Theorem 15.40 in place of Lemma 6.15.

Corollary 15.42. Suppose that X is a normal topological space, D ⊂ X is
closed, F ∈ C(D,R). Then there exists F ∈ C(X) such that F |D = f.
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Proof. Let g = arctan(f) ∈ C(D, (−π2 ,
π
2 )). Then by the Tietze ex-

tension theorem, there exists G ∈ C(X, [−π2 ,
π
2 ]) such that G|D = g. Let

B := G−1({−π2 ,
π
2 }) @ X, then B ∩ D = ∅. By Urysohn’s lemma (Theo-

rem 15.40) there exists h ∈ C(X, [0, 1]) such that h ≡ 1 on D and h = 0
on B and in particular hG ∈ C(D, (−π2 ,

π
2 )) and (hG) |D = g. The function

F := tan(hG) ∈ C(X) is an extension of f.

Theorem 15.43 (Urysohn Metrization Theorem for Normal Spaces).
Every second countable normal space, (X, τ) , is metrizable, i.e. there is a
metric ρ on X such that τ = τρ. Moreover, ρ may be chosen so that X is
isometric to a subset Q0 ⊂ Q (Q is as in Notation 15.10) equipped with the
metric d in Eq. (15.2). In this metric X is totally bounded and hence the
completion of X (which is isometric to Q̄0 ⊂ Q) is compact.

Proof. (The proof here will be very similar to the proof of Theorem 15.13.)
Let B be a countable base for τ and set

Γ := {(U, V ) ∈ B × B | Ū ⊂ V }.

To each O ∈ τ and x ∈ O there exist (U, V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a base for τ, there exists V ∈ B such that x ∈ V ⊂ O.
Because {x}∩V c = ∅, there exists disjoint open sets Ũ andW such that x ∈ Ũ ,
V c ⊂ W and Ũ ∩ W = ∅. Choose U ∈ B such that x ∈ U ⊂ Ũ . Since
U ⊂ Ũ ⊂ W c, U ⊂ W c ⊂ V and hence (U, V ) ∈ Γ. See Figure 15.7 below. In

Fig. 15.7. Constructing (U, V ) ∈ Γ.

particular this shows that

B0 := {U ∈ B : (U, V ) ∈ Γ for some V ∈ B}

is still a base for τ.
If Γ is a finite set, the previous comment shows that τ only has a finite

number of elements as well. Since (X, τ) is Hausdorff, it follows that X is a

Page: 263 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



264 15 Locally Compact Hausdorff Spaces

finite set. Letting {xn}Nn=1 be an enumeration of X, define T : X → Q by
T (xn) = en for n = 1, 2, . . . , N where en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1
occurring in the nth spot. Then ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is the
desired metric.

So we may now assume that Γ is an infinite set and let {(Un, Vn)}∞n=1

be an enumeration of Γ. By Urysohn’s Lemma for normal spaces (Theorem
15.40) there exists fU,V ∈ C(X, [0, 1]) such that fU,V = 0 on Ū and fU,V = 1
on V c. Let F := {fU,V | (U, V ) ∈ Γ} and set fn := fUn,Vn

– an enumeration
of F . The proof that

ρ(x, y) :=
∞∑
n=1

1
2n
|fn(x)− fn(y)|

is the desired metric on X now follows exactly as the corresponding argument
in the proof of Theorem 15.13.

15.6 Exercises

Exercise 15.6. Prove Theorem 15.9. Hints:

1. By Proposition 15.7, there exists a precompact open set V such that
K ⊂ V ⊂ V̄ ⊂ U. Now suppose that f : K → [0, α] is continuous with
α ∈ (0, 1] and let A := f−1([0, 1

3α]) and B := f−1([ 23α, 1]). Appeal to
Lemma 15.8 to find a function g ∈ C(X, [0, α/3]) such that g = α/3 on B
and supp(g) ⊂ V \A.

2. Now follow the argument in the proof of Theorem 7.4 to construct F ∈
C(X, [a, b]) such that F |K = f.

3. For c ∈ [a, b], choose φ ≺ U such that φ = 1 on K and replace F by
Fc := φF + (1− φ)c.

Exercise 15.7 (Sterographic Projection). Let X = Rn, X∗ := X ∪ {∞}
be the one point compactification of X, Sn := {y ∈ Rn+1 : |y| = 1} be the
unit sphere in Rn+1 and N = (0, . . . , 0, 1) ∈ Rn+1. Define f : Sn → X∗ by
f(N) =∞, and for y ∈ Sn \ {N} let f(y) = b ∈ Rn be the unique point such
that (b, 0) is on the line containing N and y, see Figure 15.8 below. Find a
formula for f and show f : Sn → X∗ is a homeomorphism. (So the one point
compactification of Rn is homeomorphic to the n sphere.)

Exercise 15.8. Let (X, τ) be a locally compact Hausdorff space. Show (X, τ)
is separable iff (X∗, τ∗) is separable.

Exercise 15.9. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X∗ := X ∪ {∞} , τ∗) ,
is not metrizable. Hint: use exercise 15.8.
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Fig. 15.8. Sterographic projection and the one point compactification of Rn.

Exercise 15.10. Suppose (X, d) is a locally compact and σ – compact metric
space. Show the one point compactification, (X∗ := X ∪ {∞} , τ∗) , is metriz-
able.

Exercise 15.11. In this problem, suppose Theorem 15.31 has only been
proved when X is compact. Show that it is possible to prove Theorem 15.31
by using Proposition 15.24 to reduce the non-compact case to the compact
case.

Hints:

1. If Ax = R for all x ∈ X let X∗ = X ∪ {∞} be the one point compactifi-
cation of X.

2. If Ax0 = {0} for some x0 ∈ X, let Y := X \ {x0} and Y ∗ = Y ∪ {∞} be
the one point compactification of Y.

3. For f ∈ A define f (∞) = 0. In this way A may be considered to be a
sub-algebra of C(X∗,R) in case 1. or a sub-algebra of C(Y ∗,R) in case 2.

Exercise 15.12. Let M <∞, show there are polynomials pn(t) such that

lim
n→∞

sup
|t|≤M

||t| − pn(t)| = 0

using the following outline.

1. Let f(x) =
√

1− x for |x| ≤ 1 and use Taylor’s theorem with integral
remainder (see Eq. 37.15 of Appendix 37), or analytic function theory if
you know it, to show there are constants5 cn > 0 for n ∈ N such that

√
1− x = 1−

∞∑
n=1

cnx
n for all |x| < 1. (15.10)

5 In fact cn := (2n−3)!!
2nn!

, but this is not needed.
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2. Let qm(x) := 1 −
∑m
n=1 cnx

n. Use (15.10) to show
∑∞
n=1 cn = 1 and

conclude from this that

lim
m→∞

sup
|x|≤1

|
√

1− x− qm(x)| = 0. (15.11)

3. Let 1− x = t2/M2, i.e. x = 1− t2/M2, then

lim
m→∞

sup
|t|≤M

∣∣∣∣ |t|M − qm(1− t2/M2)
∣∣∣∣ = 0

so that pm(t) := Mqm(1− t2/M2) are the desired polynomials.

Exercise 15.13. Given a continuous function f : R → C which is 2π -
periodic and ε > 0. Show there exists a trigonometric polynomial, p(θ) =
n∑

n=−N
αne

inθ, such that |f(θ)− P (θ)| < ε for all θ ∈ R. Hint: show that

there exists a unique function F ∈ C(S1) such that f(θ) = F (eiθ) for all
θ ∈ R.

Remark 15.44. Exercise 15.13 generalizes to 2π – periodic functions on Rd,
i.e. functions such that f(θ+2πei) = f(θ) for all i = 1, 2, . . . , d where {ei}di=1

is the standard basis for Rd. A trigonometric polynomial p(θ) is a function of
θ ∈ Rd of the form

p(θ) =
∑
n∈Γ

αne
in·θ

where Γ is a finite subset of Zd. The assertion is again that these trigonometric
polynomials are dense in the 2π – periodic functions relative to the supremum
norm.
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Baire Category Theorem

Definition 16.1. Let (X, τ) be a topological space. A set E ⊂ X is said to be
nowhere dense if

(
Ē
)o = ∅ i.e. Ē has empty interior.

Notice that E is nowhere dense is equivalent to

X =
((
Ē
)o)c =

(
Ē
)c = (Ec)o.

That is to say E is nowhere dense iff Ec has dense interior.

16.1 Metric Space Baire Category Theorem

Theorem 16.2 (Baire Category Theorem). Let (X, ρ) be a complete met-
ric space.

1. If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞⋂
n=1

Vn is dense in

X.
2. If {En}∞n=1 is a sequence of nowhere dense sets, then

⋃∞
n=1En ⊂⋃∞

n=1 Ēn & X and in particular X 6=
⋃∞
n=1En.

Proof. 1. We must shows that Ḡ = X which is equivalent to showing
that W ∩ G 6= ∅ for all non-empty open sets W ⊂ X. Since V1 is dense,
W ∩ V1 6= ∅ and hence there exists x1 ∈ X and ε1 > 0 such that

B(x1, ε1) ⊂W ∩ V1.

Since V2 is dense, B(x1, ε1)∩V2 6= ∅ and hence there exists x2 ∈ X and ε2 > 0
such that

B(x2, ε2) ⊂ B(x1, ε1) ∩ V2.

Continuing this way inductively, we may choose {xn ∈ X and εn > 0}∞n=1 such
that
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B(xn, εn) ⊂ B(xn−1, εn−1) ∩ Vn ∀n.

Furthermore we can clearly do this construction in such a way that εn ↓ 0 as
n ↑ ∞. Hence {xn}∞n=1 is Cauchy sequence and x = lim

n→∞
xn exists in X since

X is complete. Since B(xn, εn) is closed, x ∈ B(xn, εn) ⊂ Vn so that x ∈ Vn
for all n and hence x ∈ G. Moreover, x ∈ B(x1, ε1) ⊂ W ∩ V1 implies x ∈ W
and hence x ∈W ∩G showing W ∩G 6= ∅.

2. The second assertion is equivalently to showing

∅ 6=

( ∞⋃
n=1

Ēn

)c
=

∞⋂
n=1

(
Ēn
)c =

∞⋂
n=1

(Ecn)
o
.

As we have observed, En is nowhere dense is equivalent to (Ecn)
o being a dense

open set, hence by part 1),
⋂∞
n=1 (Ecn)

o is dense in X and hence not empty.

Example 16.3. Suppose that X is a countable set and ρ is a metric on X for
which no single point set is open. Then (X, ρ) is not complete. Indeed we
may assume X = N and let En := {n} ⊂ N for all n ∈ N. Then En is closed
and by assumption it has empty interior. Since X = ∪n∈NEn, it follows from
the Baire Category Theorem 16.2 that (X, ρ) can not be complete.

16.2 Locally Compact Hausdorff Space Baire Category
Theorem

Here is another version of the Baire Category theorem when X is a locally
compact Hausdorff space.

Proposition 16.4. Let X be a locally compact Hausdorff space.

1. If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞⋂
n=1

Vn is dense in

X.
2. If {En}∞n=1 is a sequence of nowhere dense sets, then X 6=

⋃∞
n=1En.

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if suffices to show G ∩W 6= ∅ for all open sets
W ⊂ X. Since V1 is dense, there exists x1 ∈ V1 ∩W and by Proposition 15.7
there exists U1 ⊂o X such that x1 ∈ U1 ⊂ Ū1 ⊂ V1∩W with Ū1 being compact.
Similarly, there exists a non-empty open set U2 such that U2 ⊂ Ū2 ⊂ U1 ∩V2.
Working inductively, we may find non-empty open sets {Uk}∞k=1 such that
Uk ⊂ Ūk ⊂ Uk−1∩Vk. Since ∩nk=1Ūk = Ūn 6= ∅ for all n, the finite intersection
characterization of Ū1 being compact implies that

∅ 6= ∩∞k=1Ūk ⊂ G ∩W.
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16.2 Locally Compact Hausdorff Space Baire Category Theorem 269

Definition 16.5. A subset E ⊂ X is meager or of the first category if

E =
∞⋃
n=1

En where each En is nowhere dense. And a set R ⊂ X is called

residual if Rc is meager.

Remarks 16.6 For those readers that already know some measure theory
may want to think of meager as being the topological analogue of sets of mea-
sure 0 and residual as being the topological analogue of sets of full measure.
(This analogy should not be taken too seriously, see Exercise 19.19.)

1. R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {En}
such that

Rc = ∪∞n=1En ⊂ ∪∞n=1Ēn.

Taking complements of this equation shows that

∩∞n=1Ē
c
n ⊂ R,

i.e. R contains a set of the form ∩∞n=1Vn with each Vn (= Ēcn) being an
open dense subset of X.
Conversely, if ∩∞n=1Vn ⊂ R with each Vn being an open dense subset of X,
then Rc ⊂ ∪∞n=1V

c
n and hence Rc = ∪∞n=1En where each En = Rc ∩ V cn , is

a nowhere dense subset of X.
2. A countable union of meager sets is meager and any subset of a meager

set is meager.
3. A countable intersection of residual sets is residual.

Remarks 16.7 The Baire Category Theorems may now be stated as follows.
If X is a complete metric space or X is a locally compact Hausdorff space,
then

1. all residual sets are dense in X and
2. X is not meager.

It should also be remarked that incomplete metric spaces may be meager.
For example, let X ⊂ C([0, 1]) be the subspace of polynomial functions on
[0, 1] equipped with the supremum norm. Then X = ∪∞n=1En where En ⊂ X
denotes the subspace of polynomials of degree less than or equal to n. You
are asked to show in Exercise 16.1 below that En is nowhere dense for all n.
Hence X is meager and the empty set is residual in X.

Here is an application of Theorem 16.2.

Theorem 16.8. Let N ⊂ C([0, 1],R) be the set of nowhere differentiable
functions. (Here a function f is said to be differentiable at 0 if f ′(0) :=
limt↓0

f(t)−f(0)
t exists and at 1 if f ′(1) := limt↑0

f(1)−f(t)
1−t exists.) Then N is

a residual set so the “generic” continuous functions is nowhere differentiable.
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270 16 Baire Category Theorem

Proof. If f /∈ N , then f ′(x0) exists for some x0 ∈ [0, 1] and by the
definition of the derivative and compactness of [0, 1], there exists n ∈ N such
that |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]. Thus if we define

En := {f ∈ C([0, 1]) : ∃ x0 ∈ [0, 1] 3 |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]} ,

then we have just shown N c ⊂ E := ∪∞n=1En. So to finish the proof it suffices
to show (for each n) En is a closed subset of C([0, 1],R) with empty interior.

1. To prove En is closed, let {fm}∞m=1 ⊂ En be a sequence of functions
such that there exists f ∈ C([0, 1],R) such that ‖f − fm‖∞ → 0 as m → ∞.
Since fm ∈ En, there exists xm ∈ [0, 1] such that

|fm(x)− fm(xm)| ≤ n|x− xm| ∀ x ∈ [0, 1]. (16.1)

Since [0, 1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume x0 = limm→∞ xm ∈ [0, 1] exists. Passing to the limit
in Eq. (16.1), making use of the uniform convergence of fn → f to show
limm→∞ fm(xm) = f(x0), implies

|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]

and therefore that f ∈ En. This shows En is a closed subset of C([0, 1],R).
2. To finish the proof, we will show E0

n = ∅ by showing for each f ∈ En and
ε > 0 given, there exists g ∈ C([0, 1],R)\En such that ‖f − g‖∞ < ε. We now
construct g. Since [0, 1] is compact and f is continuous there exists N ∈ N
such that |f(x)− f(y)| < ε/2 whenever |y − x| < 1/N. Let k denote the
piecewise linear function on [0, 1] such that k(mN ) = f(mN ) for m = 0, 1, . . . , N
and k′′(x) = 0 for x /∈ πN := {m/N : m = 0, 1, . . . , N} . Then it is easily seen
that ‖f − k‖u < ε/2 and for x ∈ (mN ,

m+1
N ) that

|k′(x)| =
|f(m+1

N )− f(mN )|
1
N

< Nε/2.

We now make k “rougher” by adding a small wiggly function h which we define
as follows. Let M ∈ N be chosen so that 4εM > 2n and define h uniquely
by h(mM ) = (−1)mε/2 for m = 0, 1, . . . ,M and h′′(x) = 0 for x /∈ πM . Then
‖h‖∞ < ε and |h′(x)| = 4εM > 2n for x /∈ πM . See Figure 16.1 below. Finally
define g := k + h. Then

‖f − g‖∞ ≤ ‖f − k‖∞ + ‖h‖∞ < ε/2 + ε/2 = ε

and
|g′(x)| ≥ |h′(x)| − |k′ (x)| > 2n− n = n ∀x /∈ πM ∪ πN .

It now follows from this last equation and the mean value theorem that for
any x0 ∈ [0, 1], ∣∣∣∣g(x)− g(x0)

x− x0

∣∣∣∣ > n
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Fig. 16.1. Constgructing a rough approximation, g, to a continuous function f.

for all x ∈ [0, 1] sufficiently close to x0. This shows g /∈ En and so the proof is
complete.

Here is an application of the Baire Category Theorem in Proposition 16.4.

Proposition 16.9. Suppose that f : R→ R is a function such that f ′(x)
exists for all x ∈ R. Let

U :=
⋃
ε>0

{
x ∈ R : sup

|y|<ε
|f ′(x+ y)| <∞

}
.

Then U is a dense open set. (It is not true that U = R in general, see Example
29.36 below.)

Proof. It is easily seen from the definition of U that U is open. LetW ⊂o R
be an open subset of R. For k ∈ N, let

Ek :=
{
x ∈W : |f(y)− f(x)| ≤ k |y − x| when |y − x| ≤ 1

k

}
=

⋂
z:|z|≤k−1

{x ∈W : |f(x+ z)− f(x)| ≤ k |z|} ,

which is a closed subset of R since f is continuous. Moreover, if x ∈ W and
M = |f ′(x)| , then

|f(y)− f(x)| = |f ′(x) (y − x) + o (y − x)|
≤ (M + 1) |y − x|

for y close to x. (Here o(y − x) denotes a function such that limy→x o(y −
x)/(y − x) = 0.) In particular, this shows that x ∈ Ek for all k sufficiently
large. Therefore W= ∪∞k=1Ek and since W is not meager by the Baire category
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Theorem in Proposition 16.4, some Ek has non-empty interior. That is there
exists x0 ∈ Ek ⊂W and ε > 0 such that

J := (x0 − ε, x0 + ε) ⊂ Ek ⊂W.

For x ∈ J, we have |f(x+ z)− f(x)| ≤ k |z| provided that |z| ≤ k−1 and
therefore that |f ′(x)| ≤ k for x ∈ J. Therefore x0 ∈ U ∩ W showing U is
dense.

Remark 16.10. This proposition generalizes to functions f : Rn → Rm in an
obvious way.

For our next application of Theorem 16.2, let X := BC∞ ((−1, 1)) denote
the set of smooth functions f on (−1, 1) such that f and all of its derivatives
are bounded. In the metric

ρ(f, g) :=
∞∑
k=0

2−k
∥∥f (k) − g(k)

∥∥
∞

1 +
∥∥f (k) − g(k)

∥∥
∞

for f, g ∈ X,

X becomes a complete metric space.

Theorem 16.11. Given an increasing sequence of positive numbers {Mn}∞n=1 ,
the set

F :=
{
f ∈ X : lim sup

n→∞

∣∣∣∣f (n)(0)
Mn

∣∣∣∣ ≥ 1
}

is dense in X. In particular, there is a dense set of f ∈ X such that the power
series expansion of f at 0 has zero radius of convergence.

Proof. Step 1. Let n ∈ N. Choose g ∈ C∞c ((−1, 1)) such that ‖g‖∞ < 2−n

while g′(0) = 2Mn and define

fn(x) :=
∫ x

0

dtn−1

∫ tn−1

0

dtn−2 . . .

∫ t2

0

dt1g(t1).

Then for k < n,

f (k)
n (x) =

∫ x

0

dtn−k−1

∫ tn−k−1

0

dtn−k−2 . . .

∫ t2

0

dt1g(t1),

f (n)(x) = g′(x), f (n)
n (0) = 2Mn and f (k)

n satisfies∥∥∥f (k)
n

∥∥∥
∞
≤ 2−n

(n− 1− k)!
≤ 2−n for k < n.

Consequently,
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ρ(fn, 0) =
∞∑
k=0

2−k

∥∥∥f (k)
n

∥∥∥
∞

1 +
∥∥∥f (k)
n

∥∥∥
∞

≤
n−1∑
k=0

2−k2−n +
∞∑
k=n

2−k · 1 ≤ 2
(
2−n + 2−n

)
= 4 · 2−n.

Thus we have constructed fn ∈ X such that limn→∞ ρ(fn, 0) = 0 while
f

(n)
n (0) = 2Mn for all n.

Step 2. The set

Gn := ∪m≥n
{
f ∈ X :

∣∣∣f (m)(0)
∣∣∣ > Mm

}
is a dense open subset of X. The fact that Gn is open is clear. To see that
Gn is dense, let g ∈ X be given and define gm := g + εmfm where εm :=
sgn(g(m)(0)). Then∣∣∣g(m)

m (0)
∣∣∣ = ∣∣∣g(m)(0)

∣∣∣+ ∣∣∣f (m)
m (0)

∣∣∣ ≥ 2Mm > Mm for all m.

Therefore, gm ∈ Gn for all m ≥ n and since

ρ(gm, g) = ρ(fm, 0)→ 0 as m→∞

it follows that g ∈ Ḡn.
Step 3. By the Baire Category theorem, ∩Gn is a dense subset of X. This

completes the proof of the first assertion since

F =
{
f ∈ X : lim sup

n→∞

∣∣∣∣f (n)(0)
Mn

∣∣∣∣ ≥ 1
}

= ∩∞n=1

{
f ∈ X :

∣∣∣∣f (n)(0)
Mn

∣∣∣∣ ≥ 1 for some n ≥ m
}
⊃ ∩∞n=1Gn.

Step 4. Take Mn = (n!)2 and recall that the power series expansion for f
near 0 is given by

∑∞
n=0

fn(0)
n! xn. This series can not converge for any f ∈ F

and any x 6= 0 because

lim sup
n→∞

∣∣∣∣fn(0)
n!

xn
∣∣∣∣ = lim sup

n→∞

∣∣∣∣∣fn(0)
(n!)2

n!xn
∣∣∣∣∣

= lim sup
n→∞

∣∣∣∣∣fn(0)
(n!)2

∣∣∣∣∣ · lim
n→∞

n! |xn| =∞

where we have used limn→∞ n! |xn| =∞ and lim supn→∞

∣∣∣ fn(0)

(n!)2

∣∣∣ ≥ 1.
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Remark 16.12. Given a sequence of real number {an}∞n=0 there always exists
f ∈ X such that f (n)(0) = an. To construct such a function f, let φ ∈
C∞c (−1, 1) be a function such that φ = 1 in a neighborhood of 0 and εn ∈ (0, 1)
be chosen so that εn ↓ 0 as n → ∞ and

∑∞
n=0 |an| εnn < ∞. The desired

function f can then be defined by

f(x) =
∞∑
n=0

an
n!
xnφ(x/εn) =:

∞∑
n=0

gn(x). (16.2)

The fact that f is well defined and continuous follows from the estimate:

|gn(x)| =
∣∣∣an
n!
xnφ(x/εn)

∣∣∣ ≤ ‖φ‖∞
n!
|an| εnn

and the assumption that
∑∞
n=0 |an| εnn <∞. The estimate

|g′n(x)| =
∣∣∣∣ an
(n− 1)!

xn−1φ(x/εn) +
an
n!εn

xnφ′(x/εn)
∣∣∣∣

≤
‖φ‖∞

(n− 1)!
|an| εn−1

n +
‖φ′‖∞
n!

|an| εnn

≤ (‖φ‖∞ + ‖φ′‖∞) |an| εnn

and the assumption that
∑∞
n=0 |an| εnn < ∞ shows f ∈ C1(−1, 1) and

f ′(x) =
∑∞
n=0 g

′
n(x). Similar arguments show f ∈ Ckc (−1, 1) and f (k)(x) =∑∞

n=0 g
(k)
n (x) for all x and k ∈ N. This completes the proof since, using

φ(x/εn) = 1 for x in a neighborhood of 0, g(k)
n (0) = δk,nak and hence

f (k)(0) =
∞∑
n=0

g(k)
n (0) = ak.

16.3 Exercises

Exercise 16.1. Let (X, ‖·‖) be a normed space and E ⊂ X be a subspace.

1. If E is closed and proper subspace of X then E is nowhere dense.
2. If E is a proper finite dimensional subspace of X then E is nowhere dense.

Exercise 16.2. Now suppose that (X, ‖·‖) is an infinite dimensional Banach
space. Show that X can not have a countable algebraic basis. More explicitly,
there is no countable subset S ⊂ X such that every element x ∈ X may be
written as a finite linear combination of elements from S. Hint: make use of
Exercise 16.1 and the Baire category theorem.
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17

Introduction: What are measures and why
“measurable” sets

Definition 17.1 (Preliminary). A measure µ “on” a set X is a function
µ : 2X → [0,∞] such that

1. µ(∅) = 0
2. If {Ai}Ni=1 is a finite (N <∞) or countable (N =∞) collection of subsets

of X which are pair-wise disjoint (i.e. Ai ∩Aj = ∅ if i 6= j) then

µ(∪Ni=1Ai) =
N∑
i=1

µ(Ai).

Example 17.2. Suppose that X is any set and x ∈ X is a point. For A ⊂ X,
let

δx(A) =
{

1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 17.3. Suppose that µ is a measure on X and λ > 0, then λ · µ
is also a measure on X. Moreover, if {µα}α∈J are all measures on X, then
µ =

∑
α∈J µα, i.e.

µ(A) =
∑
α∈J

µα(A) for all A ⊂ X

is a measure on X. (See Section 2 for the meaning of this sum.) To prove
this we must show that µ is countably additive. Suppose that {Ai}∞i=1 is a
collection of pair-wise disjoint subsets of X, then

µ(∪∞i=1Ai) =
∞∑
i=1

µ(Ai) =
∞∑
i=1

∑
α∈J

µα(Ai)

=
∑
α∈J

∞∑
i=1

µα(Ai) =
∑
α∈J

µα(∪∞i=1Ai)

= µ(∪∞i=1Ai)
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wherein the third equality we used Theorem 4.22 and in the fourth we used
that fact that µα is a measure.

Example 17.4. Suppose that X is a set λ : X → [0,∞] is a function. Then

µ :=
∑
x∈X

λ(x)δx

is a measure, explicitly
µ(A) =

∑
x∈A

λ(x)

for all A ⊂ X.

17.1 The problem with Lebesgue “measure”

So far all of the examples of measures given above are “counting” type mea-
sures, i.e. a weighted count of the number of points in a set. We certainly are
going to want other types of measures too. In particular, it will be of great
interest to have a measure on R (called Lebesgue measure) which measures
the “length” of a subset of R. Unfortunately as the next theorem shows, there
is no such reasonable measure of length if we insist on measuring all subsets
of R.

Theorem 17.5. There is no measure µ : 2R→[0,∞] such that

1. µ([a, b)) = (b− a) for all a < b and
2. is translation invariant, i.e. µ(A + x) = µ(A) for all x ∈ R and A ∈ 2R,

where
A+ x := {y + x : y ∈ A} ⊂ R.

In fact the theorem is still true even if (1) is replaced by the weaker con-
dition that 0 < µ((0, 1]) <∞.

The counting measure µ (A) = # (A) is translation invariant. However
µ((0, 1]) =∞ in this case and so µ does not satisfy condition 1.

Proof. First proof. Let us identify [0, 1) with the unit circle S1 := {z ∈
C : |z| = 1} by the map

φ(t) = ei2πt = (cos 2πt+ i sin 2πt) ∈ S1

for t ∈ [0, 1). Using this identification we may use µ to define a function ν on
2S

1
by ν(φ(A)) = µ(A) for all A ⊂ [0, 1). This new function is a measure on

S1 with the property that 0 < ν((0, 1]) <∞. For z ∈ S1 and N ⊂ S1 let

zN := {zn ∈ S1 : n ∈ N}, (17.1)
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that is to say eiθN is N rotated counter clockwise by angle θ. We now claim
that ν is invariant under these rotations, i.e.

ν(zN) = ν(N) (17.2)

for all z ∈ S1 and N ⊂ S1. To verify this, write N = φ(A) and z = φ(t) for
some t ∈ [0, 1) and A ⊂ [0, 1). Then

φ(t)φ(A) = φ(t+Amod1)

where for A ⊂ [0, 1) and α ∈ [0, 1),

t+Amod1 := {a+ tmod1 ∈ [0, 1) : a ∈ N}
= (a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}) .

Thus

ν(φ(t)φ(A)) = µ(t+Amod1)
= µ ((a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}))
= µ ((a+A ∩ {a < 1− t})) + µ (((t− 1) +A ∩ {a ≥ 1− t}))
= µ (A ∩ {a < 1− t}) + µ (A ∩ {a ≥ 1− t})
= µ ((A ∩ {a < 1− t}) ∪ (A ∩ {a ≥ 1− t}))
= µ(A) = ν(φ(A)).

Therefore it suffices to prove that no finite non-trivial measure ν on S1 such
that Eq. (17.2) holds. To do this we will “construct” a non-measurable set
N = φ(A) for some A ⊂ [0, 1). Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S1. As above R acts on S1 by rotations and divides
S1 up into equivalence classes, where z, w ∈ S1 are equivalent if z = rw for
some r ∈ R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N ⊂ S1 be the set of these
representative points. Then every point z ∈ S1 may be uniquely written as
z = nr with n ∈ N and r ∈ R. That is to say

S1 =
∐
r∈R

(rN) (17.3)

where
∐
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (17.2) and (17.3),

ν(S1) =
∑
r∈R

ν(rN) =
∑
r∈R

ν(N).
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The right member from this equation is either 0 or∞, 0 if ν(N) = 0 and∞ if
ν(N) > 0. In either case it is not equal ν(S1) ∈ (0, 1). Thus we have reached
the desired contradiction.

Proof. Second proof of Theorem 17.5. For N ⊂ [0, 1) and α ∈ [0, 1),
let

Nα = N + αmod1
= {a+ αmod1 ∈ [0, 1) : a ∈ N}
= (α+N ∩ {a < 1− α}) ∪ ((α− 1) +N ∩ {a ≥ 1− α}) .

Then

µ (Nα) = µ (α+N ∩ {a < 1− α}) + µ ((α− 1) +N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α}) + µ (N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α} ∪ (N ∩ {a ≥ 1− α}))
= µ(N). (17.4)

We will now construct a bad set N which coupled with Eq. (17.4) will lead to
a contradiction. Set

Qx := {x+ r ∈ R : r∈ Q} =x+Q.

Notice that Qx ∩Qy 6= ∅ implies that Qx = Qy. Let O = {Qx : x ∈ R} – the
orbit space of the Q action. For all A ∈ O choose f(A) ∈ [0, 1/3) ∩ A1 and
define N = f(O). Then observe:

1. f(A) = f(B) implies that A ∩B 6= ∅ which implies that A = B so that f
is injective.

2. O = {Qn : n ∈ N}.

Let R be the countable set,

R := Q ∩ [0, 1).

We now claim that

Nr ∩Ns = ∅ if r 6= s and (17.5)
[0, 1) = ∪r∈RNr. (17.6)

Indeed, if x ∈ Nr ∩Ns 6= ∅ then x = r + nmod1 and x = s+ n′ mod1, then
n−n′ ∈ Q, i.e. Qn = Qn′ . That is to say, n = f(Qn) = f(Qn′) = n′ and hence
that s = rmod1, but s, r ∈ [0, 1) implies that s = r. Furthermore, if x ∈ [0, 1)
and n := f(Qx), then x − n = r ∈ Q and x ∈ Nrmod 1. Now that we have
constructed N, we are ready for the contradiction. By Equations (17.4–17.6)
we find
1 We have used the Axiom of choice here, i.e.

∏
A∈F (A ∩ [0, 1/3]) 6= ∅
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1 = µ([0, 1)) =
∑
r∈R

µ(Nr) =
∑
r∈R

µ(N)

=
{
∞ if µ(N) > 0
0 if µ(N) = 0 .

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non – measurable” set.

Because of Theorem 17.5, it is necessary to modify Definition 17.1. Theo-
rem 17.5 points out that we will have to give up the idea of trying to measure
all subsets of R but only measure some sub-collections of “measurable” sets.
This leads us to the notion of σ – algebra discussed in the next chapter. Our
revised notion of a measure will appear in Definition 19.1 of Chapter 19 below.
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Measurability

18.1 Algebras and σ – Algebras

Definition 18.1. A collection of subsets A of a set X is an algebra if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈
A.
In view of conditions 1. and 2., 3. is equivalent to

3′. A is closed under finite intersections.

Definition 18.2. A collection of subsetsM of X is a σ – algebra (or some-
times called a σ – field) if M is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂M, then ∪∞i=1Ai ∈M. (Notice that since M is also
closed under taking complements,M is also closed under taking countable in-
tersections.) A pair (X,M), where X is a set and M is a σ – algebra on X,
is called a measurable space.

The reader should compare these definitions with that of a topology in
Definition 13.1. Recall that the elements of a topology are called open sets.
Analogously, elements of and algebra A or a σ – algebra M will be called
measurable sets.

Example 18.3. Here are some examples of algebras.

1.M = 2X , thenM is a topology, an algebra and a σ – algebra.
2. Let X = {1, 2, 3}, then τ = {∅, X, {2, 3}} is a topology on X which is not

an algebra.
3. τ = A = {{1}, {2, 3}, ∅, X} is a topology, an algebra, and a σ – algebra

on X. The sets X, {1}, {2, 3}, ∅ are open and closed. The sets {1, 2} and
{1, 3} are neither open nor closed and are not measurable.

The reader should compare this example with Example 13.3.
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Proposition 18.4. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. The proof is the same as the analogous Proposition 13.6 for topolo-
gies, i.e.

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M :M is a σ – algebra such that E ⊂M}.

Example 18.5. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
18.1.

Fig. 18.1. A collection of subsets.

Then

τ(E) = {∅, X, {1}, {1, 2}, {1, 3}}
A(E) = σ(E) = 2X .

The next proposition is the analogue to Proposition 13.7 for topologies
and enables us to give and explicit descriptions of A(E). On the other hand
it should be noted that σ(E) typically does not admit a simple concrete de-
scription.

Proposition 18.6. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (18.1)

Proof. Let A denote the right member of Eq. (18.1). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
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to show A is an algebra. The proof of these assertions are routine except for
possibly showing thatA is closed under complementation. To checkA is closed
under complementation, let Z ∈ A be expressed as

Z =
N⋃
i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Acij ∈ Ec, we find that

Zc =
N⋂
i=1

K⋃
j=1

Bij =
K⋃

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1 ∩B2j2 ∩ · · · ∩BNjN is a finite inter-
section of sets from Ec.

Remark 18.7. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =
∞⋃
i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞⋃

j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac`,j`

)

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe σ(E), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition 18.13 below.

Exercise 18.1. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

The following notion will be useful in the sequel and plays an analogous
role for algebras as a base (Definition 13.8) does for a topology.

Definition 18.8. A set E ⊂ 2X is said to be an elementary family or
elementary class provided that

• ∅ ∈ E
• E is closed under finite intersections
• if E ∈ E , then Ec is a finite disjoint union of sets from E . (In particular

X = ∅c is a finite disjoint union of elements from E .)
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Example 18.9. Let X = R, then

E :=
{
(a, b] ∩ R : a, b ∈ R̄

}
= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is an elementary family.

Exercise 18.2. Let A ⊂ 2X and B ⊂ 2Y be elementary families. Show the
collection

E = A× B = {A×B : A ∈ A and B ∈ B}

is also an elementary family.

Proposition 18.10. Suppose E ⊂ 2X is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E .

Proof. This could be proved making use of Proposition 18.6. However it
is easier to give a direct proof. Let A denote the collection of sets which may
be written as finite disjoint unions of sets from E . Clearly E ⊂ A ⊂ A(E) so it
suffices to show A is an algebra since A(E) is the smallest algebra containing
E . By the properties of E , we know that ∅, X ∈ A. Now suppose that Ai =∐
F∈Λi

F ∈ A where, for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets
from E . Then

n⋂
i=1

Ai =
n⋂
i=1

( ∐
F∈Λi

F

)
=

⋃
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from E . Therefore A is
closed under finite intersections. Similarly, if A =

∐
F∈Λ F with Λ being a

finite collection of disjoint sets from E , then Ac =
⋂
F∈Λ F

c. Since by assump-
tion F c ∈ A for F ∈ Λ ⊂ E and A is closed under finite intersections, it
follows that Ac ∈ A.

Definition 18.11. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F .

Example 18.12. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = τ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.

Page: 286 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



18.1 Algebras and σ – Algebras 287

Proposition 18.13. Suppose that M ⊂ 2X is a σ – algebra and M is at
most a countable set. Then there exists a unique finite partition F of X such
that F ⊂M and every element B ∈M is of the form

B = ∪{A ∈ F : A ⊂ B} . (18.2)

In particular M is actually a finite set and # (M) = 2n for some n ∈ N.

Proof. For each x ∈ X let

Ax = ∩{A ∈M : x ∈ A} ∈ M,

wherein we have usedM is a countable σ – algebra to insure Ax ∈M. Hence
Ax is the smallest set inM which contains x. Let C = Ax∩Ay. If x /∈ C then
Ax \C ⊂ Ax is an element ofM which contains x and since Ax is the smallest
member ofM containing x, we must have that C = ∅. Similarly if y /∈ C then
C = ∅. Therefore if C 6= ∅, then x, y ∈ Ax ∩ Ay ∈ M and Ax ∩ Ay ⊂ Ax and
Ax∩Ay ⊂ Ay from which it follows that Ax = Ax∩Ay = Ay. This shows that
F = {Ax : x ∈ X} ⊂ M is a (necessarily countable) partition of X for which
Eq. (18.2) holds for all B ∈M. Enumerate the elements of F as F = {Pn}Nn=1

where N ∈ N or N =∞. If N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ M

is bijective and therefore, by Lemma 2.6,M is uncountable. Thus any count-
able σ – algebra is necessarily finite. This finishes the proof modulo the unique-
ness assertion which is left as an exercise to the reader.

Example 18.14. Let X = R and

E = {(a,∞) : a ∈ R} ∪ {R, ∅} = {(a,∞) ∩ R : a ∈ R̄} ⊂ 2R.

Notice that Ef = E and that E is closed under unions, which shows that
τ(E) = E , i.e. E is already a topology. Since (a,∞)c = (−∞, a] we find that
Ec = {(a,∞), (−∞, a],−∞ ≤ a <∞} ∪ {R, ∅}. Noting that

(a,∞) ∩ (−∞, b] = (a, b]

it follows that A(E) = A(Ẽ) where

Ẽ :=
{
(a, b] ∩ R : a, b ∈ R̄

}
.

Since Ẽ is an elementary family of subsets of R, Proposition 18.10 implies
A(E) may be described as being those sets which are finite disjoint unions of
sets from Ẽ . The σ – algebra, σ(E), generated by E is very complicated.
Here are some sets in σ(E) – most of which are not in A(E).

(a) (a, b) =
∞⋃
n=1

(a, b− 1
n ] ∈ σ(E).
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(b) All of the standard open subsets of R are in σ(E).
(c) {x} =

⋂
n

(
x− 1

n , x
]
∈ σ(E)

(d) [a, b] = {a} ∪ (a, b] ∈ σ(E)
(e) Any countable subset of R is in σ(E).

Remark 18.15. In the above example, one may replace E by E = {(a,∞) : a ∈
Q} ∪ {R, ∅}, in which case A(E) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a,∞), (−∞, a], (a, b] : a, b ∈ Q} ∪ {∅,R} .

This shows that A(E) is a countable set – a useful fact which will be needed
later.

Notation 18.16 For a general topological space (X, τ), the Borel σ – alge-
bra is the σ – algebra BX := σ(τ) on X. In particular if X = Rn, BRn will
be used to denote the Borel σ – algebra on Rn when Rn is equipped with its
standard Euclidean topology.

Exercise 18.3. Verify the σ – algebra, BR, is generated by any of the following
collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Proposition 18.17. If τ is a second countable topology on X and E is a
countable collection of subsets of X such that τ = τ(E), then BX := σ(τ) =
σ(E), i.e. σ(τ(E)) = σ(E).

Proof. Let Ef denote the collection of subsets of X which are finite inter-
section of elements from E along withX and ∅. Notice that Ef is still countable
(you prove). A set Z is in τ(E) iff Z is an arbitrary union of sets from Ef .
Therefore Z =

⋃
A∈F

A for some subset F ⊂ Ef which is necessarily count-

able. Since Ef ⊂ σ(E) and σ(E) is closed under countable unions it follows
that Z ∈ σ(E) and hence that τ(E) ⊂ σ(E). Lastly, since E ⊂ τ(E) ⊂ σ(E),
σ(E) ⊂ σ(τ(E)) ⊂ σ(E).

18.2 Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose (X,M, µ) is a measure
space and f : X → R+. Roughly speaking, in the next Chapter we are going
to define

∫
X

fdµ as a certain limit of sums of the form,

∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).
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For this to make sense we will need to require f−1((a, b]) ∈ M for all a <
b. Because of Lemma 18.22 below, this last condition is equivalent to the
condition f−1(BR) ⊂M.

Definition 18.18. Let (X,M) and (Y,F) be measurable spaces. A function
f : X → Y is measurable if f−1(F) ⊂M. We will also say that f is M/F
– measurable or (M,F) – measurable.

Example 18.19 (Characteristic Functions). Let (X,M) be a measurable space
and A ⊂ X. We define the characteristic function 1A : X → R by

1A(x) =
{

1 if x ∈ A
0 if x /∈ A.

If A ∈ M, then 1A is (M, 2R) – measurable because 1−1
A (W ) is either ∅, X,

A or Ac for any W ⊂ R. Conversely, if F is any σ – algebra on R containing
a set W ⊂ R such that 1 ∈ W and 0 ∈ W c, then A ∈ M if 1A is (M,F) –
measurable. This is because A = 1−1

A (W ) ∈M.

Exercise 18.4. Suppose f : X → Y is a function, F ⊂ 2Y and M ⊂ 2X .
Show f−1F and f∗M (see Notation 2.7) are algebras (σ – algebras) provided
F and M are algebras (σ – algebras).

Remark 18.20. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y ,
the σ – algebraM := f−1(F) is the smallest σ – algebra on X such that f is
(M,F) - measurable . Similarly, if M is a σ - algebra on X then F = f∗M
is the largest σ – algebra on Y such that f is (M,F) - measurable .

Recall from Definition 2.8 that for E ⊂ 2X and A ⊂ X that

EA = i−1
A (E) = {A ∩ E : E ∈ E}

where iA : A → X is the inclusion map. Because of Exercise 13.3, when
E =M is an algebra (σ – algebra),MA is an algebra (σ – algebra) on A and
we call MA the relative or induced algebra (σ – algebra) on A.

The next two Lemmas are direct analogues of their topological counter
parts in Lemmas 13.13 and 13.14. For completeness, the proofs will be given
even though they are same as those for Lemmas 13.13 and 13.14.

Lemma 18.21. Suppose that (X,M), (Y,F) and (Z,G) are measurable
spaces. If f : (X,M) → (Y,F) and g : (Y,F) → (Z,G) are measurable
functions then g ◦ f : (X,M)→ (Z,G) is measurable as well.

Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
(
g−1 (G)

)
⊂ f−1 (F) ⊂M.
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Lemma 18.22. Suppose that f : X → Y is a function and E ⊂ 2Y and A ⊂ Y
then

σ
(
f−1(E)

)
= f−1(σ(E)) and (18.3)

(σ(E))A = σ(EA ). (18.4)

(Similar assertion hold with σ (·) being replaced by A (·) .) Moreover, if F =
σ(E) andM is a σ – algebra on X, then f is (M,F) – measurable iff f−1(E) ⊂
M.

Proof. By Exercise 18.4, f−1(σ(E)) is a σ – algebra and since E ⊂ F ,
f−1(E) ⊂ f−1(σ(E)). It now follows that σ (f−1(E)) ⊂ f−1(σ (E)). For the
reverse inclusion, notice that

f∗σ
(
f−1(E)

)
=
{
B ⊂ Y : f−1(B) ∈ σ

(
f−1(E)

)}
is a σ – algebra which contains E and thus σ(E) ⊂ f∗σ

(
f−1(E)

)
. Hence if

B ∈ σ(E) we know that f−1(B) ∈ σ
(
f−1(E)

)
, i.e. f−1(σ(E)) ⊂ σ

(
f−1(E)

)
and Eq. (18.3) has been proved. Applying Eq. (18.3) with X = A and f = iA
being the inclusion map implies

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).

Lastly if f−1E ⊂ M, then f−1σ (E) = σ
(
f−1E

)
⊂ M which shows f is

(M,F) – measurable.

Corollary 18.23. Suppose that (X,M) is a measurable space. Then the fol-
lowing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Proof. An exercise in using Lemma 18.22 and is the content of Exercise
18.8.

Here is yet another way to generate σ – algebras. (Compare with the
analogous topological Definition 13.20.)

Definition 18.24 (σ – Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ A}
and functions fα : X → Yα for all α ∈ A. Let σ(fα : α ∈ A) denote the
smallest σ – algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ A) = σ(∪αf−1
α (Fα)).

Proposition 18.25. Assuming the notation in Definition 18.24 and addition-
ally let (Z,M) be a measurable space and g : Z → X be a function. Then g
is (M, σ(fα : α ∈ A)) – measurable iff fα ◦ g is (M,Fα)–measurable for all
α ∈ A.
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18.2 Measurable Functions 291

Proof. This proof is essentially the same as the proof of the topological
analogue in Proposition 13.21. (⇒) If g is (M, σ(fα : α ∈ A)) – measurable,
then the composition fα ◦ g is (M,Fα) – measurable by Lemma 18.21. (⇐)
Let

G = σ(fα : α ∈ A) = σ
(
∪α∈Af−1

α (Fα)
)
.

If fα ◦ g is (M,Fα) – measurable for all α, then

g−1f−1
α (Fα) ⊂M∀α ∈ A

and therefore

g−1
(
∪α∈Af−1

α (Fα)
)

= ∪α∈Ag−1f−1
α (Fα) ⊂M.

Hence

g−1 (G) = g−1
(
σ
(
∪α∈Af−1

α (Fα)
))

= σ(g−1
(
∪α∈Af−1

α (Fα)
)
⊂M

which shows that g is (M,G) – measurable.

Definition 18.26. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .

Proposition 18.27. Let X and Y be two topological spaces and f : X → Y
be a continuous function. Then f is Borel measurable.

Proof. Using Lemma 18.22 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Definition 18.28. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A → Y is measurable iff f is MA/F –
measurable.

Proposition 18.29 (Localizing Measurability). Let (X,M) and (Y,F)
be measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is measurable.
2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn

measurable for all n, then f is M – measurable.

Proof. As the reader will notice, the proof given below is essentially iden-
tical to the proof of Proposition 13.19 which is the topological analogue of
this proposition. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F
and therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .
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292 18 Measurability

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

Proposition 18.30. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each
i. In particular, a function f : X → C is (M,BC) – measurable iff Re f and
Im f are (M,BR) – measurable.

Proof. This is formally a consequence of Corollary 18.65 and Proposition
18.60 below. Nevertheless it is instructive to give a direct proof now. Let
τ = τRn denote the usual topology on Rn and πi : Rn → R be projection
onto the ith – factor. Since πi is continuous, πi is BRn/BR – measurable and
therefore if f : X → Rn is measurable then so is fi = πi ◦ f. Now suppose
fi : X → R is measurable for all i = 1, 2, . . . , n. Let

E := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) .

Since E ⊂ τ and every element V ∈ τ may be written as a (necessarily)
countable union of elements from E , we have σ (E) ⊂ BRn = σ (τ) ⊂ σ (E) , i.e.
σ (E) = BRn . (This part of the proof is essentially a direct proof of Corollary
18.65 below.) Because

f−1 ((a, b)) = f−1
1 ((a1, b1)) ∩ f−1

2 ((a2, b2)) ∩ · · · ∩ f−1
n ((an, bn)) ∈M

for all a, b ∈ Q with a < b, it follows that f−1E ⊂M and therefore

f−1BRn = f−1σ (E) = σ
(
f−1E

)
⊂M.

Corollary 18.31. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C×C, A± : C×C→ C and M : C×C −→ C by
F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and M
are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC ⊗ BC) =
(M,BC2) – measurable since π1 ◦ F = f and π2 ◦ F = g are (M,BC) –
measurable. Therefore A±◦F = f±g and M ◦F = f ·g, being the composition
of measurable functions, are also measurable.

Page: 292 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



18.2 Measurable Functions 293

Lemma 18.32. Let α ∈ C, (X,M) be a measurable space and f : X → C be
a (M,BC) – measurable function. Then

F (x) :=
{ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \{0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄
defined by

BR̄ := σ ({[a,∞] : a ∈ R}) . (18.5)

Proposition 18.33 (The Structure of BR̄). Let BR and BR̄ be as above,
then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (18.6)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.

Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,

{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
(
i−1

({
[a,∞] : a ∈ R̄

}))
= σ

({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.

This implies:
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294 18 Measurability

1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A ∩ R ∈BR there exists B ∈ BR̄ such that A ∩ R =
B ∩ R. Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude
that A ∈ BR̄ as well.

This proves Eq. (18.6).
The proofs of the next two corollaries are left to the reader, see Exercises

18.5 and 18.6.

Corollary 18.34. Let (X,M) be a measurable space and f : X → R̄ be a
function. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) := 1R (f (x)) =
{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Corollary 18.35. Let (X,M) be a measurable space, f, g : X → R̄ be func-
tions and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions,
0 · ∞ = 0 and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞
and g (x) =∞. Then f · g and f + g are measurable functions on X if both f
and g are measurable.

Exercise 18.5. Prove Corollary 18.34 noting that the equivalence of items 1.
– 3. is a direct analogue of Corollary 18.23. Use Proposition 18.33 to handle
item 4.

Exercise 18.6. Prove Corollary 18.35.

Proposition 18.36 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M) → R for j ∈ N is a sequence
of M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are all M/BR – measurable functions. (Note that this result is in generally
false when (X,M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g+(x) := sup jfj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M
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so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.

Definition 18.37. Given a function f : X → R̄ let f+(x) := max {f(x), 0}
and f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.
Corollary 18.38. Suppose (X,M) is a measurable space and f : X → R̄ is
a function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 18.36 implies f± are measur-
able. Conversely if f± are measurable then so is f = f+ − f−.

18.2.1 More general pointwise limits

Lemma 18.39. Suppose that (X,M) is a measurable space, (Y, d) is a metric
space and fj : X → Y is (M,BY ) – measurable for all j. Also assume that for
each x ∈ X, f(x) = limn→∞ fn(x) exists. Then f : X → Y is also (M,BY ) –
measurable.

Proof. Let V ∈ τd and Wm := {y ∈ Y : dV c(y) > 1/m} for m = 1, 2, . . . .
Then Wm ∈ τd,

Wm ⊂ W̄m ⊂ {y ∈ Y : dV c(y) ≥ 1/m} ⊂ V

for all m and Wm ↑ V as m → ∞. The proof will be completed by verifying
the identity,

f−1(V ) = ∪∞m=1 ∪∞N=1 ∩n≥Nf−1
n (Wm) ∈M.

If x ∈ f−1(V ) then f(x) ∈ V and hence f(x) ∈Wm for somem. Since fn(x)→
f(x), fn(x) ∈ Wm for almost all n. That is x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1

n (Wm).
Conversely when x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1

n (Wm) there exists an m such that
fn(x) ∈Wm ⊂ W̄m for almost all n. Since fn(x)→ f(x) ∈ W̄m ⊂ V, it follows
that x ∈ f−1(V ).

Remark 18.40. In the previous Lemma 18.39 it is possible to let (Y, τ) be any
topological space which has the “regularity” property that if V ∈ τ there
exists Wm ∈ τ such that Wm ⊂ W̄m ⊂ V and V = ∪∞m=1Wm. Moreover, some
extra condition is necessary on the topology τ in order for Lemma 18.39 to
be correct. For example if Y = {1, 2, 3} and τ = {Y, ∅, {1, 2}, {2, 3}, {2}} as
in Example 13.36 and X = {a, b} with the trivial σ – algebra. Let fj(a) =
fj(b) = 2 for all j, then fj is constant and hence measurable. Let f(a) = 1
and f(b) = 2, then fj → f as j → ∞ with f being non-measurable. Notice
that the Borel σ – algebra on Y is 2Y .
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18.3 σ – Function Algebras

In this subsection, we are going to relate σ – algebras of subsets of a set X to
certain algebras of functions on X. We will begin this endeavor after proving
the simple but very useful approximation Theorem 18.42 below.

Definition 18.41. Let (X,M) be a measurable space. A function φ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if φ is M – BF
measurable and φ(X) contains only finitely many elements.

Any such simple functions can be written as

φ =
n∑
i=1

λi1Ai with Ai ∈M and λi ∈ F. (18.7)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of φ and Ai =
φ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

φ =
∑
y∈F

y1φ−1({y}). (18.8)

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 18.42 (Approximation Theorem). Let f : X → [0,∞] be mea-
surable and define, see Figure 18.2,

φn(x) :=
22n−1∑
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2n1f−1((2n,∞])(x)

=
22n−1∑
k=0

k

2n
1{ k

2n<f≤ k+1
2n }(x) + 2n1{f>2n}(x)

then φn ≤ f for all n, φn(x) ↑ f(x) for all x ∈ X and φn ↑ f uniformly on
the sets XM := {x ∈ X : f(x) ≤M} with M < ∞. Moreover, if f : X →
C is a measurable function, then there exists simple functions φn such that
limn→∞ φn(x) = f(x) for all x and |φn| ↑ |f | as n→∞.

Proof. Since

(
k

2n
,
k + 1
2n

] = (
2k

2n+1
,
2k + 1
2n+1

] ∪ (
2k + 1
2n+1

,
2k + 2
2n+1

],

if x ∈ f−1
(
( 2k
2n+1 ,

2k+1
2n+1 ]

)
then φn(x) = φn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then φn(x) = 2k

2n+1 <
2k+1
2n+1 = φn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

Page: 296 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



18.3 σ – Function Algebras 297

Fig. 18.2. Constructing simple functions approximating a function, f : X → [0,∞].

and so for x ∈ f−1((2n+1,∞]), φn(x) = 2n < 2n+1 = φn+1(x) and for x ∈
f−1((2n, 2n+1]), φn+1(x) ≥ 2n = φn(x). Therefore φn ≤ φn+1 for all n. It is
clear by construction that φn(x) ≤ f(x) for all x and that 0 ≤ f(x)−φn(x) ≤
2−n if x ∈ X2n . Hence we have shown that φn(x) ↑ f(x) for all x ∈ X and
φn ↑ f uniformly on bounded sets. For the second assertion, first assume that
f : X → R is a measurable function and choose φ±n to be simple functions
such that φ±n ↑ f± as n→∞ and define φn = φ+

n − φ−n . Then

|φn| = φ+
n + φ−n ≤ φ+

n+1 + φ−n+1 = |φn+1|

and clearly |φn| = φ+
n +φ−n ↑ f+ +f− = |f | and φn = φ+

n −φ−n → f+−f− = f
as n→∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f
and vn → Im f as n→∞. Let φn = un + ivn, then

|φn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and φn = un + ivn → Re f + i Im f = f as n→∞.
For the rest of this section let X be a given set.

Definition 18.43 (Bounded Convergence). We say that a sequence of
functions fn from X to R or C converges boundedly to a function f if
limn→∞ fn(x) = f(x) for all x ∈ X and

sup{|fn(x)| : x ∈ X and n = 1, 2, . . .} <∞.

Definition 18.44. A function algebra H on X is a linear subspace of
`∞ (X,R) which contains 1 and is closed under pointwise multiplication, i.e.
H is a subalgebra of `∞ (X,R) which contains 1. If H is further closed under
bounded convergence then H is said to be a σ – function algebra.
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Example 18.45. Suppose M is a σ – algebra on X, then

`∞ (M,R) := {f ∈ `∞ (X,R) : f is M/BR – measurable} (18.9)

is a σ – function algebra. The next theorem will show that these are the only
example of σ – function algebras. (See Exercise 18.7 below for examples of
function algebras on X.)

Notation 18.46 If H ⊂ `∞ (X,R) be a function algebra, let

M (H) := {A ⊂ X : 1A ∈ H} . (18.10)

Theorem 18.47. Let H be a σ – function algebra on a set X. Then

1.M (H) is a σ – algebra on X.
2. H = `∞ (M (H) ,R) .
3. The map

M∈ {σ – algebras on X} → `∞ (M,R) ∈ {σ – function algebras on X}
(18.11)

is bijective with inverse given by H →M (H) .

Proof. Let M :=M (H) .

1. Since 0, 1 ∈ H, ∅, X ∈ M. If A ∈ M then, since H is a linear subspace
of `∞ (X,R) , 1Ac = 1− 1A ∈ H which shows Ac ∈M. If {An}∞n=1 ⊂M,
then since H is an algebra,

1∩N
n=1An

=
N∏
n=1

1An
=: fN ∈ H

for all N ∈ N. Because H is closed under bounded convergence it follows
that

1∩∞n=1An = lim
N→∞

fN ∈ H

and this implies ∩∞n=1An ∈M. Hence we have shownM is a σ – algebra.
2. Since H is an algebra, p (f) ∈ H for any f ∈ H and any polynomial p on
R. The Weierstrass approximation Theorem 10.34, asserts that polynomi-
als on R are uniformly dense in the space of continuos functions on any
compact subinterval of R. Hence if f ∈ H and φ ∈ C (R) , there exists poly-
nomials pn on R such that pn ◦ f (x) converges to φ◦ f (x) uniformly (and
hence boundedly) in x ∈ X as n→∞. Therefore φ ◦ f ∈ H for all f ∈ H
and φ ∈ C (R) and in particular |f | ∈ H and f± := |f |±f

2 ∈ H if f ∈ H.
Fix an α ∈ R and for n ∈ N let φn (t) := (t− α)1/n+ , where (t− α)+ :=
max {t− α, 0} . Then φn ∈ C (R) and φn (t) → 1t>α as n → ∞ and the
convergence is bounded when t is restricted to any compact subset of R.
Hence if f ∈ H it follows that 1f>α = limn→∞ φn (f) ∈ H for all α ∈ R,

Page: 298 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



18.3 σ – Function Algebras 299

i.e. {f > α} ∈ M for all α ∈ R. Therefore if f ∈ H then f ∈ `∞ (M,R)
and we have shown H ⊂ `∞ (M,R) . Conversely if f ∈ `∞ (M,R) , then
for any α < β, {α < f ≤ β} ∈ M = M (H) and so by assumption
1{α<f≤β} ∈ H. Combining this remark with the approximation Theo-
rem 18.42 and the fact that H is closed under bounded convergence shows
that f ∈ H. Hence we have shown `∞ (M,R) ⊂ H which combined with
H ⊂ `∞ (M,R) already proved shows H = `∞ (M (H) ,R) .

3. Items 1. and 2. shows the map in Eq. (18.11) is surjective. To see the
map is injective suppose M and F are two σ – algebras on X such that
`∞ (M,R) = `∞ (F ,R) , then

M = {A ⊂ X : 1A ∈ `∞ (M,R)}
= {A ⊂ X : 1A ∈ `∞ (F ,R)} = F .

Notation 18.48 Suppose M is a subset of `∞ (X,R) .

1. Let H (M) denote the smallest subspace of `∞ (X,R) which contains M
and the constant functions and is closed under bounded convergence.

2. Let Hσ (M) denote the smallest σ – function algebra containing M.

Theorem 18.49. Suppose M is a subset of `∞ (X,R) , then Hσ (M) =
`∞ (σ (M) ,R) or in other words the following diagram commutes:

M −→ σ (M)
M {Multiplicative Subsets} −→ {σ – algebras} M
↓ ↓ ↓ ↓

Hσ (M) {σ– function algebras} = {σ– function algebras} `∞ (M,R) .

Proof. Since `∞ (σ (M) ,R) is σ – function algebra which contains M it
follows that

Hσ (M) ⊂ `∞ (σ (M) ,R) .

For the opposite inclusion, let

M =M (Hσ (M)) := {A ⊂ X : 1A ∈ Hσ (M)} .

By Theorem 18.47, M ⊂ Hσ (M) = `∞ (M,R) which implies that every
f ∈M is M – measurable. This then implies σ (M) ⊂M and therefore

`∞ (σ (M) ,R) ⊂ `∞ (M,R) = Hσ (M) .

Definition 18.50 (Multiplicative System). A collection of bounded real or
complex valued functions, M, on a set X is called a multiplicative system
if f · g ∈M whenever f and g are in M.
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Theorem 18.51 (Dynkin’s Multiplicative System Theorem). Suppose
M ⊂ `∞ (X,R) is a multiplicative system, then

H (M) = Hσ (M) = `∞ (σ (M) ,R) . (18.12)

In words, the smallest subspace of bounded real valued functions on X which
contains M that is closed under bounded convergence is the same as the space
of bounded real valued σ (M) – measurable functions on X.

Proof. We begin by proving H := H (M) is a σ – function algebra. To do
this, for any f ∈ H let

Hf := {g ∈ H : fg ∈ H} ⊂ H

and notice that Hf is a linear subspace of `∞ (X,R) which is closed under
bounded convergence. Moreover if f ∈M, M ⊂ Hf since M is multiplicative.
Therefore Hf = H and we have shown that fg ∈ H whenever f ∈ M and
g ∈ H. Given this it now follows that M ⊂ Hf for any f ∈ H and by
the same reasoning just used, Hf = H. Since f ∈ H is arbitrary, we have
shown fg ∈ H for all f, g ∈ H, i.e. H is an algebra. Since it is harder to
be an algebra of functions containing M (see Exercise 18.13) than it is to
be a subspace of functions containing M it follows that H (M) ⊂ Hσ (M) .
But as we have just seen H (M) is a σ – function algebra which contains
M so we must have Hσ (M) ⊂ H (M) because Hσ (M) is by definition the
smallest such σ – function algebra. Hence Hσ (M) = H (M) . The assertion
that Hσ (M) = `∞ (σ (M) ,R) has already been proved in Theorem 18.49.

Theorem 18.52 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of `∞(X,C) such that: 1 ∈ H, H is closed under
complex conjugation, and H is closed under bounded convergence. If M ⊂ H
is multiplicative system which is closed under conjugation, then H contains all
bounded complex valued σ(M)-measurable functions, i.e. `∞ (σ (M) ,C) ⊂ H.

Proof. Let M0 = spanC(M ∪ {1}) be the complex span of M. As the
reader should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex
conjugation and that σ (M0) = σ (M) . Let HR := H ∩ `∞(X,R) and MR

0 =
M∩`∞(X,R). Then (you verify)MR

0 is a multiplicative system,MR
0 ⊂ HR and

HR is a linear space containing 1 which is closed under bounded convergence.
Therefore by Theorem 18.51, `∞

(
σ
(
MR

0

)
,R
)
⊂ HR. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in H (M0)

or M0 respectively. Therefore H = HR + iHR, M0 = MR
0 + iMR

0 , σ
(
MR

0

)
=

σ (M0) = σ (M) and

`∞ (σ (M) ,C) = `∞
(
σ
(
MR

0

)
,R
)

+ i`∞
(
σ
(
MR

0

)
,R
)

⊂ HR + iHR = H.
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Exercise 18.7 (Algebra analogue of Theorem 18.47). Call a function
algebra H ⊂ `∞ (X,R) a simple function algebra if the range of each func-
tion f ∈ H is a finite subset of R. Prove there is a one to one correspondence
between algebras A on a set X and simple function algebras H on X.

Definition 18.53. A collection of subsets, C, of X is a multiplicative
class(or a π – class) if C is closed under finite intersections.

Corollary 18.54. Suppose H is a subspace of `∞(X,R) which is closed under
bounded convergence and 1 ∈ H. If C ⊂ 2X is a multiplicative class such
that 1A ∈ H for all A ∈ C, then H contains all bounded σ(C) – measurable
functions.

Proof. Let M = {1} ∪ {1A : A ∈ C} . Then M ⊂ H is a multiplicative
system and the proof is completed with an application of Theorem 18.51.

Corollary 18.55. Suppose that (X, d) is a metric space and BX = σ(τd)
is the Borel σ – algebra on X and H is a subspace of `∞(X,R) such that
BC(X,R) ⊂ H and H is closed under bounded convergence1. Then H contains
all bounded BX – measurable real valued functions on X. (This may be stated
as follows: the smallest vector space of bounded functions which is closed under
bounded convergence and contains BC(X,R) is the space of bounded BX –
measurable real valued functions on X.)

Proof. Let V ∈ τd be an open subset of X and for n ∈ N let

fn(x) := min(n · dV c(x), 1) for all x ∈ X.

Notice that fn = φn ◦ dV c where φn(t) = min(nt, 1) (see Figure 18.3) which
is continuous and hence fn ∈ BC(X,R) for all n. Furthermore, fn converges
boundedly to 1dV c>0 = 1V as n → ∞ and therefore 1V ∈ H for all V ∈ τ.
Since τ is a π – class, the result now follows by an application of Corollary
18.54.

Here are some more variants of Corollary 18.55.

Proposition 18.56. Let (X, d) be a metric space, BX = σ(τd) be the Borel
σ – algebra and assume there exists compact sets Kk ⊂ X such that Ko

k ↑ X.
Suppose that H is a subspace of `∞(X,R) such that Cc(X,R) ⊂ H (Cc(X,R)
is the space of continuous functions with compact support) and H is closed
under bounded convergence. Then H contains all bounded BX – measurable
real valued functions on X.

Proof. Let k and n be positive integers and set ψn,k(x) = min(1, n ·
d(Ko

k)
c(x)). Then ψn,k ∈ Cc(X,R) and {ψn,k 6= 0} ⊂ Ko

k . Let Hn,k denote
those bounded BX – measurable functions, f : X → R, such that ψn,kf ∈ H.
1 Recall that BC(X,R) are the bounded continuous functions on X.
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Fig. 18.3. Plots of φ1, φ2 and φ3.

It is easily seen that Hn,k is closed under bounded convergence and that
Hn,k contains BC(X,R) and therefore by Corollary 18.55, ψn,kf ∈ H for all
bounded measurable functions f : X → R. Since ψn,kf → 1Ko

k
f boundedly

as n→∞, 1Ko
k
f ∈ H for all k and similarly 1Ko

k
f → f boundedly as k →∞

and therefore f ∈ H.

Lemma 18.57. Suppose that (X, τ) is a locally compact second countable
Hausdorff space.2 Then:

1. every open subset U ⊂ X is σ – compact. In fact U is still a locally compact
second countable Hausdorff space.

2. If F ⊂ X is a closed set, there exist open sets Vn ⊂ X such that Vn ↓ F
as n→∞.

3. To each open set U ⊂ X there exists fn ≺ U (i.e. fn ∈ Cc (U, [0, 1])) such
that limn→∞ fn = 1U .

4. BX = σ(Cc(X,R)), i.e. the σ – algebra generated by Cc(X) is the Borel σ
– algebra on X.

Proof.

1. Let U be an open subset of X, V be a countable base for τ and

VU := {W ∈ V : W̄ ⊂ U and W̄ is compact}.

For each x ∈ U, by Proposition 15.7, there exists an open neighborhood
V of x such that V̄ ⊂ U and V̄ is compact. Since V is a base for the
topology τ, there exists W ∈ V such that x ∈W ⊂ V. Because W̄ ⊂ V̄ , it
follows that W̄ is compact and hence W ∈ VU . As x ∈ U was arbitrary,
U = ∪VU . This shows VU is a countable basis for the topology on U and
that U is still locally compact.

2 For example any separable locally compact metric space and in particular any
open subset of Rn.
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Let {Wn}∞n=1 be an enumeration of VU and set Kn := ∪nk=1W̄k. Then
Kn ↑ U as n → ∞ and Kn is compact for each n. This shows U is σ –
compact. (See Exercise 14.7.)

2. Let {Kn}∞n=1 be compact subsets of F c such that Kn ↑ F c as n→∞ and
set Vn := Kc

n = X \Kn. Then Vn ↓ F and by Proposition 15.5, Vn is open
for each n.

3. Let U ⊂ X be an open set and {Kn}∞n=1 be compact subsets of U such
that Kn ↑ U. By Urysohn’s Lemma 15.8, there exist fn ≺ U such that
fn = 1 on Kn. These functions satisfy, 1U = limn→∞ fn.

4. By item 3., 1U is σ(Cc(X,R)) – measurable for all U ∈ τ and hence
τ ⊂ σ(Cc(X,R)). Therefore BX = σ(τ) ⊂ σ(Cc(X,R)). The converse
inclusion holds because continuous functions are always Borel measurable.

Here is a variant of Corollary 18.55.

Corollary 18.58. Suppose that (X, τ) is a second countable locally compact
Hausdorff space and BX = σ(τ) is the Borel σ – algebra on X. If H is a
subspace of `∞(X,R) which is closed under bounded convergence and contains
Cc(X,R), then H contains all bounded BX – measurable real valued functions
on X.

Proof. By Item 3. of Lemma 18.57, for every U ∈ τ the characteristic
function, 1U , may be written as a bounded pointwise limit of functions from
Cc (X,R) . Therefore 1U ∈ H for all U ∈ τ. Since τ is a π – class, the proof is
finished with an application of Corollary 18.54

18.4 Product σ – Algebras

Let {(Xα,Mα)}α∈A be a collection of measurable spaces X = XA =
∏
α∈A

Xα

and πα : XA → Xα be the canonical projection map as in Notation 2.2.

Definition 18.59 (Product σ – Algebra). The product σ – algebra,
⊗α∈AMα, is the smallest σ – algebra on X such that each πα for α ∈ A is
measurable, i.e.

⊗α∈AMα := σ(πα : α ∈ A) = σ
(
∪απ−1

α (Mα)
)
.

Applying Proposition 18.25 in this setting implies the following proposi-
tion.

Proposition 18.60. Suppose Y is a measurable space and f : Y → X = XA

is a map. Then f is measurable iff πα ◦ f : Y → Xα is measurable for all
α ∈ A. In particular if A = {1, 2, . . . , n} so that X = X1×X2× · · · ×Xn and
f(y) = (f1(y), f2(y), . . . , fn(y)) ∈ X1 × X2 × · · · × Xn, then f : Y → XA is
measurable iff fi : Y → Xi is measurable for all i.
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Proposition 18.61. Suppose that (Xα,Mα)α∈A is a collection of measurable
spaces and Eα ⊂Mα generates Mα for each α ∈ A, then

⊗α∈AMα = σ
(
∪α∈Aπ−1

α (Eα)
)

(18.13)

Moreover, suppose that A is either finite or countably infinite, Xα ∈ Eα for
each α ∈ A, and Mα = σ(Eα) for each α ∈ A. Then the product σ – algebra
satisfies

⊗α∈AMα = σ

({∏
α∈A

Eα : Eα ∈ Eα for all α ∈ A

})
. (18.14)

In particular if A = {1, 2, . . . , n} , then X = X1 ×X2 × · · · ×Xn and

M1 ⊗M2 ⊗ · · · ⊗Mn = σ(M1 ×M2 × · · · ×Mn),

where M1 ×M2 × · · · ×Mn is as defined in Notation 13.26.

Proof. Since ∪απ−1
α (Eα) ⊂ ∪απ−1

α (Mα), it follows that

F := σ
(
∪απ−1

α (Eα)
)
⊂ σ

(
∪απ−1

α (Mα)
)

= ⊗α∈AMα.

Conversely,
F ⊃ σ(π−1

α (Eα)) = π−1
α (σ(Eα)) = π−1

α (Mα)

holds for all α implies that

∪απ−1
α (Mα) ⊂ F

and hence that ⊗α∈AMα ⊂ F . We now prove Eq. (18.14). Since we are
assuming that Xα ∈ Eα for each α ∈ A, we see that

∪απ−1
α (Eα) ⊂

{∏
α∈A

Eα : Eα ∈ Eα for all α ∈ A

}
and therefore by Eq. (18.13)

⊗α∈AMα = σ
(
∪απ−1

α (Eα)
)
⊂ σ

({∏
α∈A

Eα : Eα ∈ Eα for all α ∈ A

})
.

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,∏

α∈A
Eα = ∩α∈Aπ−1

α (Eα) ∈ ⊗α∈AMα

and hence

σ

({∏
α∈A

Eα : Eα ∈ Eα for all α ∈ A

})
⊂ ⊗α∈AMα.
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Remark 18.62. One can not relax the assumption that Xα ∈ Eα in the second
part of Proposition 18.61. For example, if X1 = X2 = {1, 2} and E1 = E2 =
{{1}} , then σ(E1 × E2) = {∅, X1 × X2, {(1, 1)}} while σ(σ(E1) × σ(E2)) =
2X1×X2 .

Theorem 18.63. Let {Xα}α∈A be a sequence of sets where A is at most
countable. Suppose for each α ∈ A we are given a countable set Eα ⊂ 2Xα . Let
τα = τ(Eα) be the topology on Xα generated by Eα and X be the product space∏
α∈AXα with equipped with the product topology τ := ⊗α∈Aτ(Eα). Then the

Borel σ – algebra BX = σ(τ) is the same as the product σ – algebra:

BX = ⊗α∈ABXα
,

where BXα
= σ(τ(Eα)) = σ(Eα) for all α ∈ A.

In particular if A = {1, 2, . . . , n} and each (Xi, τi) is a second countable
topological space, then

BX := σ(τ1 ⊗ τ2 ⊗ · · · ⊗ τn) = σ(BX1 × · · · × BXn) =: BX1 ⊗ · · · ⊗ BXn .

Proof. By Proposition 13.25, the topology τ may be described as the
smallest topology containing E = ∪α∈Aπ−1

α (Eα). Now E is the countable union
of countable sets so is still countable. Therefore by Proposition 18.17 and
Proposition 18.61,

BX = σ(τ) = σ(τ(E)) = σ(E) = ⊗α∈Aσ(Eα)
= ⊗α∈Aσ(τα) = ⊗α∈ABXα

.

Corollary 18.64. If (Xi, di) are separable metric spaces for i = 1, . . . , n, then

BX1 ⊗ · · · ⊗ BXn
= B(X1×···×Xn)

where BXi
is the Borel σ – algebra on Xi and B(X1×···×Xn) is the Borel

σ – algebra on X1 × · · · × Xn equipped with the metric topology associ-
ated to the metric d(x, y) =

∑n
i=1 di(xi, yi) where x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn).

Proof. This is a combination of the results in Lemma 13.28, Exercise 13.12
and Theorem 18.63.

Because all norms on finite dimensional spaces are equivalent, the usual
Euclidean norm on Rm × Rn is equivalent to the “product” norm defined by

‖(x, y)‖Rm×Rn = ‖x‖Rm + ‖y‖Rn .

Hence by Lemma 13.28, the Euclidean topology on Rm+n is the same as the
product topology on Rm+n ∼= Rm×Rn. Here we are identifying Rm×Rn with
Rm+n by the map

(x, y) ∈ Rm × Rn → (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n.

These comments along with Corollary 18.64 proves the following result.
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Corollary 18.65. After identifying Rm×Rn with Rm+n as above and letting
BRn denote the Borel σ –algebra on Rn, we have

BRm+n = BRn ⊗ BRm and BRn =

n–times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR.

18.4.1 Factoring of Measurable Maps

Lemma 18.66. Suppose that (Y,F) is a measurable space and F : X → Y is
a map. Then to every (σ(F ),BR̄) – measurable function, H : X → R̄, there is
a (F ,BR̄) – measurable function h : Y → R̄ such that H = h ◦ F.

Proof. First suppose that H = 1A where A ∈ σ(F ) = F−1(F). Let
B ∈ F such that A = F−1(B) then 1A = 1F−1(B) = 1B ◦ F and hence the
Lemma is valid in this case with h = 1B . More generally if H =

∑
ai1Ai

is a simple function, then there exists Bi ∈ F such that 1Ai
= 1Bi

◦ F and
hence H = h ◦ F with h :=

∑
ai1Bi – a simple function on R̄. For general

(σ(F ),F) – measurable function, H, from X → R̄, choose simple functions
Hn converging to H. Let hn be simple functions on R̄ such that Hn = hn ◦F.
Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ F = h ◦ F

where h := lim supn→∞ hn – a measurable function from Y to R̄.
The following is an immediate corollary of Proposition 18.25 and Lemma

18.66.

Corollary 18.67. Let X and A be sets, and suppose for α ∈ A we are give a
measurable space (Yα,Fα) and a function fα : X → Yα. Let Y :=

∏
α∈A Yα,

F := ⊗α∈AFα be the product σ – algebra on Y and M := σ(fα : α ∈ A)
be the smallest σ – algebra on X such that each fα is measurable. Then the
function F : X → Y defined by [F (x)]α := fα(x) for each α ∈ A is (M,F)
– measurable and a function H : X → R̄ is (M,BR̄) – measurable iff there
exists a (F ,BR̄) – measurable function h from Y to R̄ such that H = h ◦ F.

18.5 Exercises

Exercise 18.8. Prove Corollary 18.23. Hint: See Exercise 18.3.

Exercise 18.9. IfM is the σ – algebra generated by E ⊂ 2X , thenM is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 18.10. Let (X,M) be a measure space and fn : X → F be a se-
quence of measurable functions onX. Show that {x : limn→∞ fn(x) exists in F} ∈
M.
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Exercise 18.11. Show that every monotone function f : R→ R is (BR,BR)
– measurable.

Exercise 18.12. Show by example that the supremum of an uncountable
family of measurable functions need not be measurable. (Folland problem 2.6
on p. 48.)

Exercise 18.13. Let X = {1, 2, 3, 4} , A = {1, 2} , B = {2, 3} and M :=
{1A, 1B} . Show Hσ (M) 6= H (M) in this case.
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Measures and Integration

Definition 19.1. A measure µ on a measurable space (X,M) is a function
µ :M→ [0,∞] such that

1. µ(∅) = 0 and
2. (Finite Additivity) If {Ai}ni=1 ⊂M are pairwise disjoint, i.e. Ai ∩Aj = ∅

when i 6= j, then

µ(
n⋃
i=1

Ai) =
n∑
i=1

µ(Ai).

3. (Continuity) If An ∈M and An ↑ A, then µ(An) ↑ µ(A).

We call a triple (X,M, µ), where (X,M) is a measurable space and µ :
M→ [0,∞] is a measure, a measure space.

Remark 19.2. Properties 2) and 3) in Definition 19.1 are equivalent to the
following condition. If {Ai}∞i=1 ⊂M are pairwise disjoint then

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai). (19.1)

To prove this assume that Properties 2) and 3) in Definition 19.1 hold and

{Ai}∞i=1 ⊂ M are pairwise disjoint. Letting Bn :=
n⋃
i=1

Ai ↑ B :=
∞⋃
i=1

Ai, we

have

µ(
∞⋃
i=1

Ai) = µ(B)
(3)
= lim

n→∞
µ(Bn)

(2)
= lim

n→∞

n∑
i=1

µ(Ai) =
∞∑
i=1

µ(Ai).

Conversely, if Eq. (19.1) holds we may take Aj = ∅ for all j > n to see that
Property 2) of Definition 19.1 holds. Also if An ↑ A, let Bn := An \An−1 with
A0 := ∅. Then {Bn}∞n=1 are pairwise disjoint, An = ∪nj=1Bj and A = ∪∞j=1Bj .
So if Eq. (19.1) holds we have
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µ(A) = µ
(
∪∞j=1Bj

)
=

∞∑
j=1

µ(Bj)

= lim
n→∞

n∑
j=1

µ(Bj) = lim
n→∞

µ(∪nj=1Bj) = lim
n→∞

µ(An).

Proposition 19.3 (Basic properties of measures). Suppose that (X,M, µ)
is a measure space and E,F ∈M and {Ej}∞j=1 ⊂M, then :

1. µ(E) ≤ µ(F ) if E ⊂ F.
2. µ(∪Ej) ≤

∑
µ(Ej).

3. If µ(E1) <∞ and Ej ↓ E, i.e. E1 ⊃ E2 ⊃ E3 ⊃ . . . and E = ∩jEj , then
µ(Ej) ↓ µ(E) as j →∞.

Proof.

1. Since F = E ∪ (F \ E),

µ(F ) = µ(E) + µ(F \ E) ≥ µ(E).

2. Let Ẽj = Ej \ (E1 ∪ · · · ∪ Ej−1) so that the Ẽj ’s are pair-wise disjoint
and E = ∪Ẽj . Since Ẽj ⊂ Ej it follows from Remark 19.2 and part (1),
that

µ(E) =
∑

µ(Ẽj) ≤
∑

µ(Ej).

3. Define Di := E1 \ Ei then Di ↑ E1 \ E which implies that

µ(E1)− µ(E) = lim
i→∞

µ(Di) = µ(E1)− lim
i→∞

µ(Ei)

which shows that limi→∞ µ(Ei) = µ(E).

Definition 19.4. A set E ⊂ X is a null set if E ∈M and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ X : P is false for x}

is a null set. For example if f and g are two measurable functions on
(X,M, µ), f = g a.e. means that µ(f 6= g) = 0.

Definition 19.5. A measure space (X,M, µ) is complete if every subset of
a null set is in M, i.e. for all F ⊂ X such that F ⊂ E ∈ M with µ(E) = 0
implies that F ∈M.
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Proposition 19.6 (Completion of a Measure). Let (X,M, µ) be a mea-
sure space. Set

N = N µ := {N ⊂ X : ∃ F ∈M 3 N ⊂ F and µ(F ) = 0} ,
M̄ = M̄µ := {A ∪N : A ∈M and N ∈ N} and
µ̄(A ∪N) := µ(A) for A ∈M and N ∈ N ,

see Fig. 19.1. Then M̄ is a σ – algebra, µ̄ is a well defined measure on M̄, µ̄ is
the unique measure on M̄ which extends µ on M, and (X,M̄, µ̄) is complete
measure space. The σ-algebra, M̄, is called the completion of M relative to
µ and µ̄, is called the completion of µ.

Proof. Clearly X, ∅ ∈ M̄. Let A ∈ M and N ∈ N and choose F ∈ M

Fig. 19.1. Completing a σ – algebra.

such that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ M. Thus M̄ is closed under
complements. If Ai ∈ M and Ni ⊂ Fi ∈ M such that µ(Fi) = 0 then
∪(Ai∪Ni) = (∪Ai)∪(∪Ni) ∈ M̄ since ∪Ai ∈M and ∪Ni ⊂ ∪Fi and µ(∪Fi) ≤∑
µ(Fi) = 0. Therefore, M̄ is a σ – algebra. Suppose A ∪N1 = B ∪N2 with

A,B ∈M and N1, N2,∈ N . Then A ⊂ A∪N1 ⊂ A∪N1 ∪F2 = B ∪F2 which
shows that

µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure,
i.e. that it is countable additive.

Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.
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312 19 Measures and Integration

Definition 19.7. Suppose X is a set, E ⊂M ⊂ 2X and µ :M→ [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) < ∞ and X = ∪∞n=1En. If M is a σ – algebra and µ is a measure on
M which is σ – finite on M we will say (X,M, µ) is a σ – finite measure
space.

The reader should check that if µ is a finitely additive measure on an
algebra, M, then µ is σ – finite on M iff there exists Xn ∈ M such that
Xn ↑ X and µ(Xn) <∞.

19.1 Example of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F ⊂ 2X is a countable or finite partition of X and M ⊂ 2X is
the σ – algebra which consists of the collection of sets A ⊂ X such that

A = ∪{α ∈ F : α ⊂ A} . (19.2)

It is easily seen thatM is a σ – algebra.
Any measure µ :M→ [0,∞] is determined uniquely by its values on F .

Conversely, if we are given any function λ : F → [0,∞] we may define, for
A ∈M,

µ(A) =
∑

α∈F3α⊂A
λ(α) =

∑
α∈F

λ(α)1α⊂A

where 1α⊂A is one if α ⊂ A and zero otherwise. We may check that µ is a
measure onM. Indeed, if A =

∐∞
i=1Ai and α ∈ F , then α ⊂ A iff α ⊂ Ai for

one and hence exactly one Ai. Therefore 1α⊂A =
∑∞
i=1 1α⊂Ai

and hence

µ(A) =
∑
α∈F

λ(α)1α⊂A =
∑
α∈F

λ(α)
∞∑
i=1

1α⊂Ai

=
∞∑
i=1

∑
α∈F

λ(α)1α⊂Ai =
∞∑
i=1

µ(Ai)

as desired. Thus we have shown that there is a one to one correspondence
between measures µ onM and functions λ : F → [0,∞].

The construction of measures will be covered in Chapters 30 – 31 below.
However, let us record here the existence of an interesting class of measures.

Theorem 19.8. To every right continuous non-decreasing function F :
R→ R there exists a unique measure µF on BR such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a ≤ b <∞ (19.3)
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Moreover, if A ∈ BR then

µF (A) = inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂ ∪∞i=1(ai, bi]

}
(19.4)

= inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂
∞∐
i=1

(ai, bi]

}
. (19.5)

In fact the map F → µF is a one to one correspondence between right con-
tinuous functions F with F (0) = 0 on one hand and measures µ on BR such
that µ(J) <∞ on any bounded set J ∈ BR on the other.

Proof. See Section 28.3 below or Theorem 28.38 below.

Example 19.9. The most important special case of Theorem 19.8 is when
F (x) = x, in which case we write m for µF . The measure m is called Lebesgue
measure.

Theorem 19.10. Lebesgue measure m is invariant under translations, i.e.
for B ∈ BR and x ∈ R,

m(x+B) = m(B). (19.6)

Moreover, m is the unique measure on BR such that m((0, 1]) = 1 and Eq.
(19.6) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (19.7)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.

Proof. Let mx(B) := m(x + B), then one easily shows that mx is a
measure on BR such that mx((a, b]) = b− a for all a < b. Therefore, mx = m
by the uniqueness assertion in Theorem 19.8. For the converse, suppose that
m is translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

(
k − 1
n

+ (0,
1
n

]
)
.

Therefore,

1 = m((0, 1]) =
n∑
k=1

m

(
k − 1
n

+ (0,
1
n

]
)

=
n∑
k=1

m((0,
1
n

]) = n ·m((0,
1
n

]).

That is to say

m((0,
1
n

]) = 1/n.
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314 19 Measures and Integration

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (19.7) we may assume that λ 6= 0
since this case is trivial to prove. Now let mλ(B) := |λ|−1

m(λB). It is easily
checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
We are now going to develop integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

19.1.1 ADD: Examples of Measures

BRUCE: ADD details.

1. Product measure for the flipping of a coin.
2. Haar Measure
3. Measure on embedded submanifolds, i.e. Hausdorff measure.
4. Wiener measure.
5. Gibbs states.
6. Measure associated to self-adjoint operators and classifying them.

19.2 Integrals of Simple functions

Let (X,M, µ) be a fixed measure space in this section.

Definition 19.11. Let F = C or [0,∞) and suppose that φ : X → F is
a simple function as in Definition 18.41. If F = C assume further that
µ(φ−1({y})) <∞ for all y 6= 0 in C. For such functions φ, define Iµ(φ) by

Iµ(φ) =
∑
y∈F

yµ(φ−1({y})).
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19.2 Integrals of Simple functions 315

Proposition 19.12. Let λ ∈ F and φ and ψ be two simple functions, then Iµ
satisfies:

1.
Iµ(λφ) = λIµ(φ). (19.8)

2.
Iµ(φ+ ψ) = Iµ(ψ) + Iµ(φ).

3. If φ and ψ are non-negative simple functions such that φ ≤ ψ then

Iµ(φ) ≤ Iµ(ψ).

Proof. Let us write {φ = y} for the set φ−1({y}) ⊂ X and µ(φ = y) for
µ({φ = y}) = µ(φ−1 ({y})) so that

Iµ(φ) =
∑
y∈F

yµ(φ = y).

We will also write {φ = a, ψ = b} for φ−1({a}) ∩ ψ−1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that λ ∈ F then

Iµ(λφ) =
∑
y∈F

y µ(λφ = y) =
∑
y∈F

y µ(φ = y/λ)

=
∑
z∈F

λz µ(φ = z) = λIµ(φ)

provided that λ 6= 0. The case λ = 0 is clear, so we have proved 1. Suppose
that φ and ψ are two simple functions, then

Iµ(φ+ ψ) =
∑
z∈F

z µ(φ+ ψ = z)

=
∑
z∈F

z µ (∪w∈F {φ = w, ψ = z − w})

=
∑
z∈F

z
∑
w∈F

µ(φ = w, ψ = z − w)

=
∑
z,w∈F

(z + w)µ(φ = w, ψ = z)

=
∑
z∈F

z µ(ψ = z) +
∑
w∈F

w µ(φ = w)

= Iµ(ψ) + Iµ(φ).

which proves 2. For 3. if φ and ψ are non-negative simple functions such that
φ ≤ ψ
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Iµ(φ) =
∑
a≥0

aµ(φ = a) =
∑
a,b≥0

aµ(φ = a, ψ = b)

≤
∑
a,b≥0

bµ(φ = a, ψ = b) =
∑
b≥0

bµ(ψ = b) = Iµ(ψ),

wherein the third inequality we have used {φ = a, ψ = b} = ∅ if a > b.

19.3 Integrals of positive functions

Definition 19.13. Let L+ = L+ (M) = {f : X → [0,∞] : f is measurable}.
Define∫

X

f (x) dµ (x) =
∫
X

fdµ := sup {Iµ(φ) : φ is simple and φ ≤ f} .

We say the f ∈ L+ is integrable if
∫
X
fdµ <∞. If A ∈M, let∫

A

f (x) dµ (x) =
∫
A

fdµ :=
∫
X

1Af dµ.

Remark 19.14. Because of item 3. of Proposition 19.12, if φ is a non-negative
simple function,

∫
X
φdµ = Iµ(φ) so that

∫
X

is an extension of Iµ. This exten-
sion still has the monotonicity property if Iµ : namely if 0 ≤ f ≤ g then∫

X

fdµ = sup {Iµ(φ) : φ is simple and φ ≤ f}

≤ sup {Iµ(φ) : φ is simple and φ ≤ g} ≤
∫
X

gdµ.

Similarly if c > 0, ∫
X

cfdµ = c

∫
X

fdµ.

Also notice that if f is integrable, then µ ({f =∞}) = 0.

Lemma 19.15 (Sums as Integrals). Let X be a set and ρ : X → [0,∞] be
a function, let µ =

∑
x∈X ρ(x)δx on M = 2X , i.e.

µ(A) =
∑
x∈A

ρ(x).

If f : X → [0,∞] is a function (which is necessarily measurable), then∫
X

fdµ =
∑
X

fρ.
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Proof. Suppose that φ : X → [0,∞) is a simple function, then φ =∑
z∈[0,∞) z1{φ=z} and∑

X

φρ =
∑
x∈X

ρ(x)
∑

z∈[0,∞)

z1{φ=z}(x) =
∑

z∈[0,∞)

z
∑
x∈X

ρ(x)1{φ=z}(x)

=
∑

z∈[0,∞)

zµ({φ = z}) =
∫
X

φdµ.

So if φ : X → [0,∞) is a simple function such that φ ≤ f, then∫
X

φdµ =
∑
X

φρ ≤
∑
X

fρ.

Taking the sup over φ in this last equation then shows that∫
X

fdµ ≤
∑
X

fρ.

For the reverse inequality, let Λ ⊂⊂ X be a finite set and N ∈ (0,∞).
Set fN (x) = min {N, f(x)} and let φN,Λ be the simple function given by
φN,Λ(x) := 1Λ(x)fN (x). Because φN,Λ(x) ≤ f(x),∑

Λ

fNρ =
∑
X

φN,Λρ =
∫
X

φN,Λdµ ≤
∫
X

fdµ.

Since fN ↑ f as N →∞, we may let N →∞ in this last equation to concluded∑
Λ

fρ ≤
∫
X

fdµ.

Since Λ is arbitrary, this implies∑
X

fρ ≤
∫
X

fdµ.

Theorem 19.16 (Monotone Convergence Theorem). Suppose fn ∈ L+

is a sequence of functions such that fn ↑ f (f is necessarily in L+) then∫
fn ↑

∫
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,∫
fn ≤

∫
fm ≤

∫
f
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from which if follows
∫
fn is increasing in n and

lim
n→∞

∫
fn ≤

∫
f. (19.9)

For the opposite inequality, let φ : X → [0,∞) be a simple function such
that 0 ≤ φ ≤ f, α ∈ (0, 1) and Xn := {fn ≥ αφ} . Notice that Xn ↑ X and
fn ≥ α1Xn

φ and so by definition of
∫
fn,∫

fn ≥
∫
α1Xn

φ = α

∫
1Xn

φ. (19.10)

Then using the continuity property of µ,

lim
n→∞

∫
1Xn

φ = lim
n→∞

∫
1Xn

∑
y>0

y1{φ=y}

= lim
n→∞

∑
y>0

yµ(Xn ∩ {φ = y}) =
∑
y>0

y lim
n→∞

µ(Xn ∩ {φ = y})

=
∑
y>0

y lim
n→∞

µ({φ = y}) =
∫
φ.

This identity allows us to let n→∞ in Eq. (19.10) to conclude∫
X

φ ≤ 1
α

lim
n→∞

∫
fn.

Since this is true for all non-negative simple functions φ with φ ≤ f ;∫
f = sup

{∫
X

φ : φ is simple and φ ≤ f
}
≤ 1
α

lim
n→∞

∫
fn.

Because α ∈ (0, 1) was arbitrary, it follows that
∫
f ≤ lim

n→∞

∫
fn which com-

bined with Eq. (19.9) proves the theorem.
The following simple lemma will be use often in the sequel.

Lemma 19.17 (Chebyshev’s Inequality). Suppose that f ≥ 0 is a mea-
surable function, then for any ε > 0,

µ(f ≥ ε) ≤ 1
ε

∫
X

fdµ. (19.11)

In particular if
∫
X
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the

set {f > 0} is σ – finite.

Proof. Since 1{f≥ε} ≤ 1{f≥ε} 1
εf ≤

1
εf,

µ(f ≥ ε) =
∫
X

1{f≥ε}dµ ≤
∫
X

1{f≥ε}
1
ε
fdµ ≤ 1

ε

∫
X

fdµ.
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If M :=
∫
X
fdµ <∞, then

µ(f =∞) ≤ µ(f ≥ n) ≤ M

n
→ 0 as n→∞

and {f ≥ 1/n} ↑ {f > 0} with µ(f ≥ 1/n) ≤ nM <∞ for all n.

Corollary 19.18. If fn ∈ L+ is a sequence of functions then∫ ∞∑
n=1

fn =
∞∑
n=1

∫
fn.

In particular, if
∑∞
n=1

∫
fn <∞ then

∑∞
n=1 fn <∞ a.e.

Proof. First off we show that∫
(f1 + f2) =

∫
f1 +

∫
f2

by choosing non-negative simple function φn and ψn such that φn ↑ f1 and
ψn ↑ f2. Then (φn +ψn) is simple as well and (φn +ψn) ↑ (f1 + f2) so by the
monotone convergence theorem,∫

(f1 + f2) = lim
n→∞

∫
(φn + ψn) = lim

n→∞

(∫
φn +

∫
ψn

)
= lim
n→∞

∫
φn + lim

n→∞

∫
ψn =

∫
f1 +

∫
f2.

Now to the general case. Let gN :=
N∑
n=1

fn and g =
∞∑
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞∑
n=1

∫
fn := lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn

= lim
N→∞

∫
gN =

∫
g =:

∫ ∞∑
n=1

fn.

Remark 19.19. It is in the proof of this corollary (i.e. the linearity of the
integral) that we really make use of the assumption that all of our functions are
measurable. In fact the definition

∫
fdµ makes sense for all functions f : X →

[0,∞] not just measurable functions. Moreover the monotone convergence
theorem holds in this generality with no change in the proof. However, in
the proof of Corollary 19.18, we use the approximation Theorem 18.42 which
relies heavily on the measurability of the functions to be approximated.
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The following Lemma and the next Corollary are simple applications of
Corollary 19.18.

Lemma 19.20 (The First Borell – Carntelli Lemma). Let (X,M, µ) be
a measure space, An ∈M, and set

{An i.o.} = {x ∈ X : x ∈ An for infinitely many n’s} =
∞⋂
N=1

⋃
n≥N

An.

If
∑∞
n=1 µ(An) <∞ then µ({An i.o.}) = 0.

Proof. (First Proof.) Let us first observe that

{An i.o.} =

{
x ∈ X :

∞∑
n=1

1An
(x) =∞

}
.

Hence if
∑∞
n=1 µ(An) <∞ then

∞ >
∞∑
n=1

µ(An) =
∞∑
n=1

∫
X

1An
dµ =

∫
X

∞∑
n=1

1An
dµ

implies that
∞∑
n=1

1An(x) < ∞ for µ - a.e. x. That is to say µ({An i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 ⋃
n≥N

An


≤ lim
N→∞

∑
n≥N

µ(An)

and the last limit is zero since
∑∞
n=1 µ(An) <∞.

Corollary 19.21. Suppose that (X,M, µ) is a measure space and {An}∞n=1 ⊂
M is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞∑
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =
∫
X

1∪∞n=1An
dµ and

∞∑
n=1

µ(An) =
∫
X

∞∑
n=1

1An
dµ
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it suffices to show
∞∑
n=1

1An
= 1∪∞n=1An µ – a.e. (19.12)

Now
∑∞
n=1 1An ≥ 1∪∞n=1An and

∑∞
n=1 1An(x) 6= 1∪∞n=1An(x) iff x ∈ Ai∩Aj for

some i 6= j, that is{
x :

∞∑
n=1

1An(x) 6= 1∪∞n=1An(x)

}
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (19.12) and hence the corollary.

Notation 19.22 If m is Lebesgue measure on BR, f is a non-negative Borel
measurable function and a < b with a, b ∈ R̄, we will often write

∫ b
a
f (x) dx

or
∫ b
a
fdm for

∫
(a,b]∩R fdm.

Example 19.23. Suppose −∞ < a < b < ∞, f ∈ C([a, b], [0,∞)) and m be
Lebesgue measure on R. Also let πk = {a = ak0 < ak1 < · · · < aknk

= b} be a
sequence of refining partitions (i.e. πk ⊂ πk+1 for all k) such that

mesh(πk) := max{
∣∣akj − ak+1

j−1

∣∣ : j = 1, . . . , nk} → 0 as k →∞.

For each k, let

fk(x) = f(a)1{a} +
nk−1∑
l=0

min
{
f(x) : akl ≤ x ≤ akl+1

}
1(ak

l ,a
k
l+1]

(x)

then fk ↑ f as k →∞ and so by the monotone convergence theorem,∫ b

a

fdm :=
∫

[a,b]

fdm = lim
k→∞

∫ b

a

fk dm

= lim
k→∞

nk−1∑
l=0

min
{
f(x) : akl ≤ x ≤ akl+1

}
m
(
(akl , a

k
l+1]

)
=
∫ b

a

f(x)dx.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Example 19.24. For all λ > 0,∫ ∞

0

e−λxdm(x) = λ−1 and
∫

R

1
1 + x2

dm(x) = π.
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The proof of these identities are similar. By the monotone convergence the-
orem, Example 19.23 and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 10.13 above or Theorem 19.40 below),∫ ∞

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdx

= − lim
N→∞

1
λ
e−λx|N0 = λ−1

and ∫
R

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dx

= lim
N→∞

[
tan−1(N)− tan−1(−N)

]
= π.

Let us also consider the functions x−p,∫
(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

0

1( 1
n ,1]

(x)
1
xp
dm(x)

= lim
n→∞

∫ 1

1
n

1
xp
dx = lim

n→∞

x−p+1

1− p

∣∣∣∣1
1/n

=
{ 1

1−p if p < 1
∞ if p > 1

If p = 1 we find∫
(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

1
n

1
x
dx = lim

n→∞
ln(x)|11/n =∞.

Example 19.25. Let {rn}∞n=1 be an enumeration of the points in Q∩ [0, 1] and
define

f(x) =
∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Since, By Theorem 19.40,∫ 1

0

1√
|x− rn|

dx =
∫ 1

rn

1√
x− rn

dx+
∫ rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn

− 2
√
rn − x|rn

0 = 2
(√

1− rn −
√
rn
)

≤ 4,
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we find∫
[0,1]

f(x)dm(x) =
∞∑
n=1

2−n
∫

[0,1]

1√
|x− rn|

dx ≤
∞∑
n=1

2−n4 = 4 <∞.

In particular, m(f =∞) = 0, i.e. that f <∞ for almost every x ∈ [0, 1] and
this implies that

∞∑
n=1

2−n
1√
|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

Proposition 19.26. Suppose that f ≥ 0 is a measurable function. Then∫
X
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
∫
fdµ ≤

∫
gdµ. In particular if f = g a.e. then

∫
fdµ =

∫
gdµ.

Proof. If f = 0 a.e. and φ ≤ f is a simple function then φ = 0 a.e.
This implies that µ(φ−1({y})) = 0 for all y > 0 and hence

∫
X
φdµ = 0 and

therefore
∫
X
fdµ = 0. Conversely, if

∫
fdµ = 0, then by (Lemma 19.17),

µ(f ≥ 1/n) ≤ n
∫
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤
∑∞
n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e. For the second

assertion let E be the exceptional set where f > g, i.e. E := {x ∈ X : f(x) >
g(x)}. By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere. Because
g = 1Ecg + 1Eg and 1Eg = 0 a.e.,∫

gdµ =
∫

1Ecgdµ+
∫

1Egdµ =
∫

1Ecgdµ

and similarly
∫
fdµ =

∫
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,∫

fdµ =
∫

1Ecfdµ ≤
∫

1Ecgdµ =
∫
gdµ.

Corollary 19.27. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, then∫

fn ↑
∫
f as n→∞.

Proof. Let E ⊂ X be a null set such that fn1Ec ↑ f1Ec as n→∞. Then
by the monotone convergence theorem and Proposition 19.26,∫

fn =
∫
fn1Ec ↑

∫
f1Ec =

∫
f as n→∞.
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Lemma 19.28 (Fatou’s Lemma). If fn : X → [0,∞] is a sequence of
measurable functions then∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∫
gk ≤

∫
fn for all n ≥ k

and therefore ∫
gk ≤ lim inf

n→∞

∫
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∫
lim inf

n→∞
fn =

∫
lim
k→∞

gk
MCT= lim

k→∞

∫
gk ≤ lim inf

n→∞

∫
fn.

19.4 Integrals of Complex Valued Functions

Definition 19.29. A measurable function f : X → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ;R) for the space
of real valued integrable functions. For f ∈ L1 (µ;R) , let∫

fdµ =
∫
f+dµ−

∫
f−dµ

Convention: If f, g : X → R̄ are two measurable functions, let f + g
denote the collection of measurable functions h : X → R̄ such that h(x) =
f(x)+g(x) whenever f(x)+g(x) is well defined, i.e. is not of the form∞−∞ or
−∞+∞. We use a similar convention for f −g. Notice that if f, g ∈ L1 (µ;R)
and h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 19.30 (Abuse of notation) We will sometimes denote the in-
tegral

∫
X
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all

A ∈M.

Remark 19.31. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
∫
|f | dµ <∞. Hence

L1 (µ;R) :=
{
f : X → R̄ : f is measurable and

∫
X

|f | dµ <∞
}
.
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19.4 Integrals of Complex Valued Functions 325

If f, g ∈ L1 (µ;R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 19.26 that

∫
fdµ =

∫
gdµ. In particular if f, g ∈ L1 (µ;R) we may

define ∫
X

(f + g) dµ =
∫
X

hdµ

where h is any element of f + g.

Proposition 19.32. The map

f ∈ L1 (µ;R)→
∫
X

fdµ ∈ R

is linear and has the monotonicity property:
∫
fdµ ≤

∫
gdµ for all f, g ∈

L1 (µ;R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ;R) and a, b ∈ R. By modifying f and g on a null
set, we may assume that f, g are real valued functions. We have af + bg ∈
L1 (µ;R) because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ;R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that ∫
af = −a

∫
f− + a

∫
f+ = a(

∫
f+ −

∫
f−) = a

∫
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that ∫

af = a

∫
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore, ∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

and hence∫
h =

∫
h+ −

∫
h− =

∫
f+ +

∫
g+ −

∫
f− −

∫
g− =

∫
f +

∫
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that
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326 19 Measures and Integration∫
f+ +

∫
g− ≤

∫
g+ +

∫
f−

or equivalently that∫
f =

∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.

The monotonicity property is also a consequence of the linearity of the inte-
gral, the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 19.26.

Definition 19.33. A measurable function f : X → C is integrable if∫
X
|f | dµ <∞. Analogously to the real case, let

L1 (µ;C) :=
{
f : X → C : f is measurable and

∫
X

|f | dµ <∞
}
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤

√
2 max (|Re f | , |Im f |) ,

∫
|f | dµ <∞ iff∫

|Re f | dµ+
∫
|Im f | dµ <∞.

For f ∈ L1 (µ;C) define∫
f dµ =

∫
Re f dµ+ i

∫
Im f dµ.

It is routine to show the integral is still linear on L1 (µ;C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ;C) or L1 (µ;R) . If A ∈M
and f ∈ L1 (µ;C) or f : X → [0,∞] is a measurable function, let∫

A

fdµ :=
∫
X

1Afdµ.

Proposition 19.34. Suppose that f ∈ L1 (µ;C) , then∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f | dµ. (19.13)

Proof. Start by writing
∫
X
f dµ = Reiθ with R ≥ 0. We may assume that

R =
∣∣∫
X
fdµ

∣∣ > 0 since otherwise there is nothing to prove. Since

R = e−iθ
∫
X

f dµ =
∫
X

e−iθf dµ =
∫
X

Re
(
e−iθf

)
dµ+ i

∫
X

Im
(
e−iθf

)
dµ,

it must be that
∫
X

Im
[
e−iθf

]
dµ = 0. Using the monotonicity in Proposition

19.26, ∣∣∣∣∫
X

fdµ

∣∣∣∣ = ∫
X

Re
(
e−iθf

)
dµ ≤

∫
X

∣∣Re
(
e−iθf

)∣∣ dµ ≤ ∫
X

|f | dµ.
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19.4 Integrals of Complex Valued Functions 327

Proposition 19.35. Let f, g ∈ L1 (µ) , then

1. The set {f 6= 0} is σ – finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥

1
n ) <∞ for all n.

2. The following are equivalent
a)
∫
E
f =

∫
E
g for all E ∈M

b)
∫
X

|f − g| = 0

c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 19.17,

µ(|f | ≥ 1
n

) ≤ n
∫
X

|f | dµ <∞

for all n. 2. (a) =⇒ (c) Notice that∫
E

f =
∫
E

g ⇔
∫
E

(f − g) = 0

for all E ∈ M. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re
∫
E

(f − g)dµ =
∫

1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e. (c) =⇒ (b) is clear and so is (b)
=⇒ (a) since ∣∣∣∣∫

E

f −
∫
E

g

∣∣∣∣ ≤ ∫ |f − g| = 0.

Definition 19.36. Let (X,M, µ) be a measure space and L1(µ) = L1(X,M, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

‖f − g‖L1 =
∫
|f − g| dµ

and into a metric space using ρ1(f, g) = ‖f − g‖L1 .

Warning: in the future we will often not make much of a distinction
between L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger
will be pointed out when necessary.
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Remark 19.37. More generally we may define Lp(µ) = Lp(X,M, µ) for p ∈
[1,∞) as the set of measurable functions f such that∫

X

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in Chapter 21 that

‖f‖Lp =
(∫
|f |p dµ

)1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), ‖·‖Lp) is a Banach space in this norm.

Theorem 19.38 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

∫
X
gndµ→

∫
X
gdµ.

Then f ∈ L1 (µ) and ∫
X

fdµ = lim
h→∞

∫
X

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,∫

X

(g ± f)dµ =
∫
X

lim inf
n→∞

(gn ± fn) dµ ≤ lim inf
n→∞

∫
X

(gn ± fn) dµ

= lim
n→∞

∫
X

gndµ+ lim inf
n→∞

(
±
∫
X

fndµ

)
=
∫
X

gdµ+ lim inf
n→∞

(
±
∫
X

fndµ

)
Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,∫

X

gdµ±
∫
X

fdµ ≤
∫
X

gdµ+
{

lim infn→∞
∫
X
fndµ

− lim supn→∞
∫
X
fndµ

and therefore

lim sup
n→∞

∫
X

fndµ ≤
∫
X

fdµ ≤ lim inf
n→∞

∫
X

fndµ.

This shows that lim
n→∞

∫
X
fndµ exists and is equal to

∫
X
fdµ.

Exercise 19.1. Give another proof of Proposition 19.34 by first proving Eq.
(19.13) with f being a cylinder function in which case the triangle inequality
for complex numbers will do the trick. Then use the approximation Theorem
18.42 along with the dominated convergence Theorem 19.38 to handle the
general case.
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Corollary 19.39. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that
∑∞
n=1 ‖fn‖L1(µ) <

∞, then
∑∞
n=1 fn is convergent a.e. and∫

X

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
X

fndµ.

Proof. The condition
∑∞
n=1 ‖fn‖L1(µ) < ∞ is equivalent to

∑∞
n=1 |fn| ∈

L1 (µ) . Hence
∑∞
n=1 fn is almost everywhere convergent and if SN :=∑N

n=1 fn, then

|SN | ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,∫
X

( ∞∑
n=1

fn

)
dµ =

∫
X

lim
N→∞

SNdµ = lim
N→∞

∫
X

SNdµ

= lim
N→∞

N∑
n=1

∫
X

fndµ =
∞∑
n=1

∫
X

fndµ.

Theorem 19.40 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b <∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

∫ x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩ C1((a, b),R).
2. F ′(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.
f = G′|(a,b)) then ∫ b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
∫

R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y)
for m – a.e. y and

∣∣1(a,x)(y)f(y)
∣∣ ≤ 1(a,b)(y) |f(y)| is an L1 – function, it

follows from the dominated convergence Theorem 19.38 that F is continuous
on [a, b]. Simple manipulations show,∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ = 1
|h|


∣∣∣∫ x+hx

[f(y)− f(x)] dm(y)
∣∣∣ if h > 0∣∣∣∫ xx+h [f(y)− f(x)] dm(y)
∣∣∣ if h < 0

≤ 1
|h|

{∫ x+h
x
|f(y)− f(x)| dm(y) if h > 0∫ x

x+h
|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}
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and the latter expression, by the continuity of f, goes to zero as h→ 0 . This
shows F ′ = f on (a, b). For the converse direction, we have by assumption
that G′(x) = F ′(x) for x ∈ (a, b). Therefore by the mean value theorem,
F −G = C for some constant C. Hence∫ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

Example 19.41. The following limit holds,

lim
n→∞

∫ n

0

(1− x

n
)ndm(x) = 1.

Let fn(x) = (1 − x
n )n1[0,n](x) and notice that limn→∞ fn(x) = e−x. We will

now show
0 ≤ fn(x) ≤ e−x for all x ≥ 0.

It suffices to consider x ∈ [0, n]. Let g(x) = exfn(x), then for x ∈ (0, n),

d

dx
ln g(x) = 1 + n

1
(1− x

n )
(− 1
n

) = 1− 1
(1− x

n )
≤ 0

which shows that ln g(x) and hence g(x) is decreasing on [0, n]. Therefore
g(x) ≤ g(0) = 1, i.e.

0 ≤ fn(x) ≤ e−x.

From Example 19.24, we know∫ ∞

0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

∫ n

0

(1− x

n
)ndm(x) = lim

n→∞

∫ ∞

0

fn(x)dm(x)

=
∫ ∞

0

lim
n→∞

fn(x)dm(x) =
∫ ∞

0

e−xdm(x) = 1.

Example 19.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is
a sequence of complex numbers such that

∑∞
n=0 |an| rn <∞ for all r ∈ (0, R).

Then∫ β

α

( ∞∑
n=0

anx
n

)
dm(x) =

∞∑
n=0

an

∫ β

α

xndm(x) =
∞∑
n=0

an
βn+1 − αn+1

n+ 1
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for all −R < α < β < R. Indeed this follows from Corollary 19.39 since

∞∑
n=0

∫ β

α

|an| |x|n dm(x) ≤
∞∑
n=0

(∫ |β|

0

|an| |x|n dm(x) +
∫ |α|

0

|an| |x|n dm(x)

)

≤
∞∑
n=0

|an|
|β|n+1 + |α|n+1

n+ 1
≤ 2r

∞∑
n=0

|an| rn <∞

where r = max(|β| , |α|).

Corollary 19.43 (Differentiation Under the Integral). Suppose that
J ⊂ R is an open interval and f : J ×X → C is a function such that

1. x→ f(t, x) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f∂t (t, x) exists for all (t, x).

4. There is a function g ∈ L1 (µ) such that
∣∣∣∂f∂t (t, ·)∣∣∣ ≤ g ∈ L1 (µ) for each

t ∈ J.
Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.

∫
X
|f(t, x)| dµ(x) < ∞), t →∫

X
f(t, x)dµ(x) is a differentiable function on J and

d

dt

∫
X

f(t, x)dµ(x) =
∫
X

∂f

∂t
(t, x)dµ(x).

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of f separately, we may assume that f is real. Also
notice that

∂f

∂t
(t, x) = lim

n→∞
n(f(t+ n−1, x)− f(t, x))

and therefore, for x → ∂f
∂t (t, x) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, x)− f(t0, x)| ≤ g(x) |t− t0| for all t ∈ J (19.14)

and hence

|f(t, x)| ≤ |f(t, x)− f(t0, x)|+ |f(t0, x)| ≤ g(x) |t− t0|+ |f(t0, x)| .

This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=
∫
X
f(t, x)dµ(x), then

G(t)−G(t0)
t− t0

=
∫
X

f(t, x)− f(t0, x)
t− t0

dµ(x).

By assumption,

lim
t→t0

f(t, x)− f(t0, x)
t− t0

=
∂f

∂t
(t, x) for all x ∈ X
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and by Eq. (19.14),∣∣∣∣f(t, x)− f(t0, x)
t− t0

∣∣∣∣ ≤ g(x) for all t ∈ J and x ∈ X.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)
tn − t0

= lim
n→∞

∫
X

f(tn, x)− f(t0, x)
tn − t0

dµ(x)

=
∫
X

lim
n→∞

f(tn, x)− f(t0, x)
tn − t0

dµ(x)

=
∫
X

∂f

∂t
(t0, x)dµ(x)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =
limt→t0

G(t)−G(t0)
t−t0 exists and

Ġ(t0) =
∫
X

∂f

∂t
(t0, x)dµ(x).

Example 19.44. Recall from Example 19.24 that

λ−1 =
∫

[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
(
− d

dλ

)n
e−λx = xne−λx ≤ C(ε)e−εx.

Using this fact, Corollary 19.43 and induction gives

n!λ−n−1 =
(
− d

dλ

)n
λ−1 =

∫
[0,∞)

(
− d

dλ

)n
e−λxdm(x)

=
∫

[0,∞)

xne−λxdm(x).

That is n! = λn
∫
[0,∞)

xne−λxdm(x). Recall that

Γ (t) :=
∫

[0,∞)

xt−1e−xdx for t > 0.

(The reader should check that Γ (t) < ∞ for all t > 0.) We have just shown
that Γ (n+ 1) = n! for all n ∈ N.
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Remark 19.45. Corollary 19.43 may be generalized by allowing the hypothesis
to hold for x ∈ X \ E where E ∈ M is a fixed null set, i.e. E must be
independent of t. Consider what happens if we formally apply Corollary 19.43
to g(t) :=

∫∞
0

1x≤tdm(x),

ġ(t) =
d

dt

∫ ∞

0

1x≤tdm(x) ?=
∫ ∞

0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is

not defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should
decide which hypothesis of Corollary 19.43 has been violated in this example.)

19.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 19.46. Suppose that (X,M, µ) is a complete measure space1

and f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ – a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in M and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)−1(A) =
{
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)−1(A) if 0 /∈ A (19.15)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness of
M that (1Eg)−1(B) ∈ M if 0 /∈ B. Therefore Eq. (19.15) shows that 1Eg is
measurable. 2. Let E = {x : lim

n→∞
fn(x) 6= f(x)} by assumption E ∈ M and

µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.

The above results are in general false if (X,M, µ) is not complete. For
example, let X = {0, 1, 2},M = {{0}, {1, 2}, X, φ} and µ = δ0. Take g(0) =
0, g(1) = 1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

1 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈ M and µ(A) = 0,
then N ∈M as well.
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Lemma 19.47. Suppose that (X,M, µ) is a measure space and M̄ is the
completion of M relative to µ and µ̄ is the extension of µ to M̄. Then a
function f : X → R is (M̄,B = BR) – measurable iff there exists a function
g : X → R that is (M,B) – measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and
µ̄ (E) = 0, i.e. f(x) = g(x) for µ̄ – a.e. x. Moreover for such a pair f and g,
f ∈ L1(µ̄) iff g ∈ L1(µ) and in which case∫

X

fdµ̄ =
∫
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) – measurable, we see from Proposition 19.46 that f is (M̄,B)
– measurable. Conversely if f is (M̄,B) – measurable, by considering f± we
may assume that f ≥ 0. Choose (M̄,B) – measurable simple function φn ≥ 0
such that φn ↑ f as n→∞. Writing

φn =
∑

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak\Bk) = 0.
Letting

φ̃n :=
∑

ak1Bk

we have produced a (M,B) – measurable simple function φ̃n ≥ 0 such that
En := {φn 6= φ̃n} has zero µ̄ – measure. Since µ̄ (∪nEn) ≤

∑
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F φ̃n = 1Fφn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) – measurable and that {f 6= g} ⊂ F has
µ̄ – measure zero. Since f = g, µ̄ – a.e.,

∫
X
fdµ̄ =

∫
X
gdµ̄ so to prove Eq.

(19.16) it suffices to prove ∫
X

gdµ̄ =
∫
X

gdµ. (19.16)

Because µ̄ = µ on M, Eq. (19.16) is easily verified for non-negative M –
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 18.42 it holds for all M – measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by
considering (Re g)± and (Im g)± .

19.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition
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π = {a = t0 < t1 < · · · < tn = b} (19.17)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
n∑
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
n∑
1

mj1(tj−1,tj ] and

Sπf =
∑

Mj(tj − tj−1) and sπf =
∑

mj(tj − tj−1).

Notice that

Sπf =
∫ b

a

Gπdm and sπf =
∫ b

a

gπdm.

The upper and lower Riemann integrals are defined respectively by∫ b

a

f(x)dx = inf
π
Sπf and

∫ a

b

f(x)dx = sup
π

sπf.

Definition 19.48. The function f is Riemann integrable iff
∫ b
a
f =

∫ b
a
f ∈

R and which case the Riemann integral
∫ b
a
f is defined to be the common value:∫ b

a

f(x)dx =
∫ b

a

f(x)dx =
∫ b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 19.20.

Lemma 19.49. If π′ and π are two partitions of [a, b] and π ⊂ π′ then

Gπ ≥ Gπ′ ≥ f ≥ gπ′ ≥ gπ and
Sπf ≥ Sπ′f ≥ sπ′f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπk
f ↓

∫ b

a

f and sπk
f ↑

∫ b

a

f as k →∞.

If we let
G := lim

k→∞
Gπk

and g := lim
k→∞

gπk
(19.18)

then by the dominated convergence theorem,∫
[a,b]

gdm = lim
k→∞

∫
[a,b]

gπk
= lim
k→∞

sπk
f =

∫ b

a

f(x)dx (19.19)

and∫
[a,b]

Gdm = lim
k→∞

∫
[a,b]

Gπk
= lim
k→∞

Sπk
f =

∫ b

a

f(x)dx. (19.20)
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Notation 19.50 For x ∈ [a, b], let

H(x) = lim sup
y→x

f(y) := lim
ε↓0

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 19.51. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (19.18), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (19.21)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk := Gπk
↓ G and gk := gπk

↑ g.

1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim
y→x

f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k

and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (19.22)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y)
over some interval contained in [x−ε, x+ε]. Again letting k →∞ implies

sup
|y−x|≤ε

f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (19.22) then implies
H(x) = G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if
x /∈ π and hence Eq. (19.21) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)
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Theorem 19.52. Let f : [a, b]→ R be a bounded function. Then∫ b

a

f =
∫

[a,b]

Hdm and
∫ b

a

f =
∫

[a,b]

hdm (19.23)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}

is an m̄ – null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable2, i.e. f is L/B –
measurable where L is the Lebesgue σ – algebra and B is the Borel σ – algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, then∫

[a,b]

Hdm =
∫ b

a

f(x)dx =
∫

[a,b]

fdm̄ =
∫

[a,b]

hdm. (19.24)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as
described in Lemma 19.49 and let G and g be defined as in Lemma 19.51.
Since m(π) = 0, H = G a.e., Eq. (19.23) is a consequence of Eqs. (19.19) and
(19.20). From Eq. (19.23), f is Riemann integrable iff∫

[a,b]

Hdm =
∫

[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m
– null set. In light of these results and Eq. (19.21), the remaining assertions
including Eq. (19.24) are now consequences of Lemma 19.47.

Notation 19.53 In view of this theorem we will often write
∫ b
a
f(x)dx for∫ b

a
fdm.

19.7 Determining Classes of Measures

Definition 19.54 (σ – finite). Let X be a set and E ⊂ F ⊂ 2X . We say
that a function µ : F → [0,∞] is σ – finite on E if there exist Xn ∈ E such
that Xn ↑ X and µ(Xn) <∞ for all n.

2 f need not be Borel measurable.
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Theorem 19.55 (Uniqueness). Suppose that C ⊂ 2X is a π – class (see
Definition 18.53),M = σ(C) and µ and ν are two measure onM. If µ and ν
are σ – finite on C and µ = ν on C, then µ = ν on M.

Proof. We begin first with the special case where µ(X) <∞ and therefore
also

ν(X) = lim
n→∞

ν (Xn) = lim
n→∞

µ (Xn) = µ(X) <∞.

Let
H := {f ∈ `∞ (M,R) : µ (f) = ν (f)} .

ThenH is a linear subspace which is closed under bounded convergence (by the
dominated convergence theorem), contains 1 and contains the multiplicative
system, M := {1C : C ∈ C} . Therefore, by Theorem 18.51 or Corollary 18.54,
H = `∞ (M,R) and hence µ = ν. For the general case, let X1

n, X
2
n ∈ C be

chosen so that X1
n ↑ X and X2

n ↑ X as n→∞ and µ
(
X1
n

)
+ ν

(
X2
n

)
<∞ for

all n. Then Xn := X1
n ∩X2

n ∈ C increases to X and ν (Xn) = µ (Xn) <∞ for
all n. For each n ∈ N, define two measures µn and νn onM by

µn(A) := µ(A ∩Xn) and νn(A) = ν(A ∩Xn).

Then, as the reader should verify, µn and νn are finite measure on M such
that µn = νn on C. Therefore, by the special case just proved, µn = νn onM.
Finally, using the continuity properties of measures,

µ(A) = lim
n→∞

µ(A ∩Xn) = lim
n→∞

ν(A ∩Xn) = ν(A)

for all A ∈M.
As an immediate consequence we have the following corollaries.

Corollary 19.56. Suppose that (X, τ) is a topological space, BX = σ(τ) is
the Borel σ – algebra on X and µ and ν are two measures on BX which are
σ – finite on τ. If µ = ν on τ then µ = ν on BX , i.e. µ ≡ ν.

Corollary 19.57. Suppose that µ and ν are two measures on BRn which are
finite on bounded sets and such that µ(A) = ν(A) for all sets A of the form

A = (a, b] = (a1, b1]× · · · × (an, bn]

with a, b ∈ Rn and a < b, i.e. ai < bi for all i. Then µ = ν on BRn .

Proposition 19.58. Suppose that (X, d) is a metric space, µ and ν are two
measures on BX := σ(τd) which are finite on bounded measurable subsets of
X and ∫

X

fdµ =
∫
X

fdν (19.25)

for all f ∈ BCb(X,R) where

BCb(X,R) = {f ∈ BC(X,R) : supp(f) is bounded}. (19.26)

Then µ ≡ ν.
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Proof. To prove this fix a o ∈ X and let

ψR(x) = ([R+ 1− d(x, o)] ∧ 1) ∨ 0 (19.27)

so that ψR ∈ BCb(X, [0, 1]), supp(ψR) ⊂ B(o,R + 2) and ψR ↑ 1 as R →∞.
Let HR denote the space of bounded real valued BX – measurable functions
f such that ∫

X

ψRfdµ =
∫
X

ψRfdν. (19.28)

Then HR is closed under bounded convergence and because of Eq. (19.25)
contains BC(X,R). Therefore by Corollary 18.55, HR contains all bounded
measurable functions on X. Take f = 1A in Eq. (19.28) with A ∈ BX , and
then use the monotone convergence theorem to let R → ∞. The result is
µ(A) = ν(A) for all A ∈ BX .

Here is another version of Proposition 19.58.

Proposition 19.59. Suppose that (X, d) is a metric space, µ and ν are two
measures on BX = σ(τd) which are both finite on compact sets. Further assume
there exists compact sets Kk ⊂ X such that Ko

k ↑ X. If∫
X

fdµ =
∫
X

fdν (19.29)

for all f ∈ Cc(X,R) then µ ≡ ν.

Proof. Let ψn,k be defined as in the proof of Proposition 18.56 and let
Hn,k denote those bounded BX – measurable functions, f : X → R such that∫

X

fψn,kdµ =
∫
X

fψn,kdν.

By assumption BC(X,R) ⊂ Hn,k and one easily checks that Hn,k is closed
under bounded convergence. Therefore, by Corollary 18.55, Hn,k contains all
bounded measurable function. In particular for A ∈ BX ,∫

X

1Aψn,kdµ =
∫
X

1Aψn,kdν.

Letting n → ∞ in this equation, using the dominated convergence theorem,
one shows ∫

X

1A1Ko
k
dµ =

∫
X

1A1Ko
k
dν

holds for k. Finally using the monotone convergence theorem we may let
k →∞ to conclude

µ(A) =
∫
X

1Adµ =
∫
X

1Adν = ν(A)

for all A ∈ BX .
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19.8 Exercises

Exercise 19.2. Let µ be a measure on an algebra A ⊂ 2X , then µ(A) +
µ(B) = µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.

Exercise 19.3 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where
A∆B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:

1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A∆B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B.
Show “∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let
[A] := {B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a
well defined metric onM/ ∼ .

4. Similarly show µ̃ ([A]) = µ (A) is a well defined function on M/ ∼ and
show µ̃ : (M/ ∼)→ R+ is ρ̄ – continuous.

Exercise 19.4. Suppose that µn : M → [0,∞] are measures on M for n ∈
N. Also suppose that µn(A) is increasing in n for all A ∈ M. Prove that
µ :M→ [0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 19.5. Now suppose that Λ is some index set and for each λ ∈ Λ,
µλ : M → [0,∞] is a measure on M. Define µ : M → [0,∞] by µ(A) =∑
λ∈Λ µλ(A) for each A ∈M. Show that µ is also a measure.

Exercise 19.6. Let (X,M, µ) be a measure space and ρ : X → [0,∞] be a
measurable function. For A ∈M, set ν(A) :=

∫
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.
2. Let f : X → [0,∞] be a measurable function, show∫

X

fdν =
∫
X

fρdµ. (19.30)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (19.30) still holds.

Notation 19.60 It is customary to informally describe ν defined in Exercise
19.6 by writing dν = ρdµ.

Exercise 19.7. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞]
by ν(A) := µ(f−1(A)) for all A ∈ F .
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1. Show ν is a measure. (We will write ν = f∗µ or ν = µ ◦ f−1.)
2. Show ∫

Y

gdν =
∫
X

(g ◦ f) dµ (19.31)

for all measurable functions g : Y → [0,∞]. Hint: see the hint from
Exercise 19.6.

3. Show a measurable function g : Y → C is in L1(ν) iff g ◦ f ∈ L1(µ) and
that Eq. (19.31) holds for all g ∈ L1(ν).

Exercise 19.8. Let F : R → R be a C1-function such that F ′(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the inverse function theorem that F−1

is a C1 – function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
(
F−1

)−1
(A)) =

(
F−1
∗ m

)
(A)

for all A ∈ BR. Show dν = F ′dm. Use this result to prove the change of
variable formula, ∫

R
h ◦ F · F ′dm =

∫
R
hdm (19.32)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F ′dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Theorem 19.8 (or
see Corollary 19.57) to conclude dν = F ′dm on all of BR. To prove Eq. (19.32)
apply Exercise 19.7 with g = h ◦ F and f = F−1.

Exercise 19.9. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞

µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 19.10. BRUCE: Delete this exercise which is contained in Lemma
19.17. Suppose (X,M, µ) be a measure space and f : X → [0∞] be a mea-
surable function such that

∫
X
fdµ < ∞. Show µ ({f =∞}) = 0 and the set

{f > 0} is σ – finite.

Exercise 19.11. Folland 2.13 on p. 52. Hint: “Fatou times two.”

Exercise 19.12. Folland 2.14 on p. 52. BRUCE: delete this exercise

Exercise 19.13. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

∫
fndm = ∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 while∫
gndm = 1 for all n.
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Exercise 19.14. Folland 2.19 on p. 59. (This problem is essentially covered
in the previous exercise.)

Exercise 19.15. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.∑∞
n=−∞ |an| < ∞), then f(θ) :=

∑∞
n=−∞ ane

inθ is a continuous function
for θ ∈ R and

an =
1
2π

∫ π

−π
f(θ)e−inθdθ.

Exercise 19.16. For any function f ∈ L1 (m) , show x ∈ R→
∫
(−∞,x]

f (t) dm (t)
is continuous in x. Also find a finite measure, µ, on BR such that x →∫
(−∞,x]

f (t) dµ (t) is not continuous.

Exercise 19.17. Folland 2.28 on p. 60.

Exercise 19.18. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of −1 and the sum is on k = 1 to ∞. In part e, s should be
taken to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =
∞∑
n=0

(2n− 1)!!
2nn!

zn =
∞∑
n=0

(2n)!
4n (n!)2

zn for |z| < 1.

Exercise 19.19. There exists a meager (see Definition 16.5 and Proposition
16.4) subsets of R which have full Lebesgue measure, i.e. whose complement
is a Lebesgue null set. (This is Folland 5.27. Hint: Consider the generalized
Cantor sets discussed on p. 39 of Folland.)

Exercise 19.20. Prove Lemma 19.49.
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Multiple Integrals

In this chapter we will introduce iterated integrals and product measures. We
are particularly interested in when it is permissible to interchange the order
of integration in multiple integrals.

Example 20.1. As an example let X = [1,∞) and Y = [0, 1] equipped with
their Borel σ - algebras and let µ = ν = m, where m is Lebesgue measure.
The iterated integrals of the function f (x, y) := e−xy − 2e−2xy satisfy,∫ 1

0

[∫ ∞

1

(e−xy − 2e−2xy)dx
]
dy =

∫ 1

0

e−y
(

1− e−y

y

)
dy ∈ (0,∞)

and∫ ∞

1

[∫ 1

0

(e−xy − 2e−2xy)dy
]
dx = −

∫ ∞

1

e−x
[
1− e−x

x

]
dx ∈ (−∞, 0)

and therefore are not equal. Hence it is not always true that order of integra-
tion is irrelevant.

Lemma 20.2. Let F be either [0,∞), R or C. Suppose (X,M) and (Y,N )
are two measurable spaces and f : X×Y → F is a (M⊗N ,BF) – measurable
function, then for each y ∈ Y,

x→ f(x, y) is (M,BF) measurable, (20.1)

for each x ∈ X,
y → f(x, y) is (N ,BF) measurable. (20.2)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

from which it follows that Eqs. (20.1) and (20.2) hold for this function. Let
H be the collection of all bounded (M⊗N ,BF) – measurable functions on
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X × Y such that Eqs. (20.1) and (20.2) hold, here we assume F = R or C.
Because measurable functions are closed under taking linear combinations
and pointwise limits, H is linear subspace of `∞ (M⊗N ,F) which is closed
under bounded convergence and contain 1E ∈ H for all E in the π – class, E .
Therefore by by Corollary 18.54, that H = `∞ (M⊗N ,F) .

For the general (M⊗N ,BR) – measurable functions f : X × Y → F and
M ∈ N, let fM := 1|f |≤Mf ∈ `∞ (M⊗N ,F) . Then Eqs. (20.1) and (20.2)
hold with f replaced by fM and hence for f as well by letting M →∞.

Notation 20.3 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two
measure spaces and f : X × Y → C is a M ⊗ N – measurable function,
the iterated integrals of f (when they make sense) are:∫

X

dµ(x)
∫
Y

dν(y)f(x, y) :=
∫
X

[∫
Y

f(x, y)dν(y)
]
dµ(x)

and ∫
Y

dν(y)
∫
X

dµ(x)f(x, y) :=
∫
Y

[∫
X

f(x, y)dµ(x)
]
dν(y).

Notation 20.4 Suppose that f : X → C and g : Y → C are functions, let
f ⊗ g denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f⊗g is (M⊗N ,BC) – measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦π1 where
π1 : X ×Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

20.1 Fubini-Tonelli’s Theorem and Product Measure

Theorem 20.5. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) – measurable function, then for each
y ∈ Y,

x→ f(x, y) is M – B[0,∞] measurable, (20.3)

for each x ∈ X,

y → f(x, y) is N – B[0,∞] measurable, (20.4)

x→
∫
Y

f(x, y)dν(y) is M – B[0,∞] measurable, (20.5)

y →
∫
X

f(x, y)dµ(x) is N – B[0,∞] measurable, (20.6)
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and ∫
X

dµ(x)
∫
Y

dν(y)f(x, y) =
∫
Y

dν(y)
∫
X

dµ(x)f(x, y). (20.7)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (20.3) and (20.4) hold. Moreover∫
Y

f(x, y)dν(y) =
∫
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (20.5) holds and we have∫
X

dµ(x)
∫
Y

dν(y)f(x, y) = ν(B)µ(A). (20.8)

Similarly, ∫
X

f(x, y)dµ(x) = µ(A)1B(y) and∫
Y

dν(y)
∫
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (20.6) and (20.7) hold in this case as well. For
the moment let us further assume that µ(X) < ∞ and ν(Y ) < ∞ and let
H be the collection of all bounded (M⊗N ,BR) – measurable functions on
X × Y such that Eqs. (20.3) – (20.7) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1E ∈ H for all E in the π – class, E , it follows by Corollary 18.54 that H is the
space of all bounded (M⊗N ,BR) – measurable functions on X×Y. Finally if
f : X × Y → [0,∞] is a (M⊗N ,BR̄) – measurable function, let fM = M ∧ f
so that fM ↑ f as M → ∞ and Eqs. (20.3) – (20.7) hold with f replaced by
fM for all M ∈ N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M → ∞ in these equations to deduce the theorem in
the case µ and ν are finite measures. For the σ – finite case, choose Xn ∈M,
Yn ∈ N such that Xn ↑ X, Yn ↑ Y, µ(Xn) < ∞ and ν(Yn) < ∞ for all
m,n ∈ N. Then define µm(A) = µ(Xm ∩ A) and νn(B) = ν(Yn ∩ B) for all
A ∈M and B ∈ N or equivalently dµm = 1Xmdµ and dνn = 1Yndν. By what
we have just proved Eqs. (20.3) – (20.7) with µ replaced by µm and ν by νn
for all (M⊗N ,BR̄) – measurable functions, f : X×Y → [0,∞]. The validity
of Eqs. (20.3) – (20.7) then follows by passing to the limits m→∞ and then
n→∞ making use of the monotone convergence theorem in the form,∫

X

udµm =
∫
X

u1Xm
dµ ↑

∫
X

udµ as m→∞
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and ∫
Y

vdµn =
∫
Y

v1Yndµ ↑
∫
Y

vdµ as n→∞

for all u ∈ L+(X,M) and v ∈ L+(Y,N ).

Corollary 20.6. Suppose (X,M, µ) and (Y,N , ν) are σ – finite measure
spaces. Then there exists a unique measure π onM⊗N such that π(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N . Moreover π is given by

π(E) =
∫
X

dµ(x)
∫
Y

dν(y)1E(x, y) =
∫
Y

dν(y)
∫
X

dµ(x)1E(x, y) (20.9)

for all E ∈M⊗N and π is σ – finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ – finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) <∞, ν(Yn) <∞, Xn ↑ X and Yn ↑ Y, then
Xn × Yn ∈ M⊗N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n. The
uniqueness assertion is a consequence of Theorem 19.55 or see Theorem 32.6
below with E = M×N . For the existence, it suffices to observe, using the
monotone convergence theorem, that π defined in Eq. (20.9) is a measure on
M⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B) for all A ∈M
and B ∈ N from Eq. (20.8).

Notation 20.7 The measure π is called the product measure of µ and ν and
will be denoted by µ⊗ ν.

Theorem 20.8 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces and π = µ ⊗ ν is the product measure on M⊗N .
If f ∈ L+(X × Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈
L+(Y,N ) for all x ∈ X,∫

Y

f(·, y)dν(y) ∈ L+(X,M),
∫
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and ∫
X×Y

f dπ =
∫
X

dµ(x)
∫
Y

dν(y)f(x, y) (20.10)

=
∫
Y

dν(y)
∫
X

dµ(x)f(x, y). (20.11)

Proof. By Theorem 20.5 and Corollary 20.6, the theorem holds when
f = 1E with E ∈ M ⊗ N . Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-
tone convergence theorem repeatedly along with the approximation Theorem
18.42, one deduces the theorem for general f ∈ L+(X × Y,M⊗N ).
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20.1 Fubini-Tonelli’s Theorem and Product Measure 347

The following convention will be in force for the rest of this chapter.
Convention: If (X,M, µ) is a measure space and f : X → C is a measur-

able but non-integrable function, i.e.
∫
X
|f | dµ =∞, by convention we will de-

fine
∫
X
fdµ := 0. However if f is a non-negative function (i.e. f : X → [0,∞])

is a non-integrable function we will still write
∫
X
fdµ =∞.

Theorem 20.9 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces, π = µ ⊗ ν is the product measure on M⊗N and
f : X × Y → C is a M⊗N – measurable function. Then the following three
conditions are equivalent:∫

X×Y
|f | dπ <∞, i.e. f ∈ L1(π), (20.12)∫

X

(∫
Y

|f(x, y)| dν(y)
)
dµ(x) <∞ and (20.13)∫

Y

(∫
X

|f(x, y)| dµ(x)
)
dν(y) <∞. (20.14)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ-
a.e. x, f(·, y) ∈ L1(µ) for ν-a.e. y,

∫
Y
f(·, y)dv(y) ∈ L1(µ),

∫
X
f(x, ·)dµ(x) ∈

L1(ν) and Eqs. (20.10) and (20.11) are still valid.

Proof. The equivalence of Eqs. (20.12) – (20.14) is a direct consequence
of Tonelli’s Theorem 20.8. Now suppose f ∈ L1(π) is a real valued function
and let

E :=
{
x ∈ X :

∫
Y

|f (x, y)| dν (y) =∞
}
. (20.15)

Then by Tonelli’s theorem, x →
∫
Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem implies∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) =

∫
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then using the above convention we have∫

Y

f (x, y) dν (y) =
∫
Y

1Ec (x) f (x, y) dν (y)

=
∫
Y

1Ec (x) [f+ (x, y)− f− (x, y)] dν (y)

=
∫
Y

1Ec (x) f+ (x, y) dν (y)−
∫
Y

1Ec (x) f− (x, y) dν (y) .

(20.16)

Noting that 1Ec (x) f± (x, y) = (1Ec ⊗ 1Y · f±) (x, y) is a positive M⊗N –
measurable function, it follows from another application of Tonelli’s theorem
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348 20 Multiple Integrals

that x →
∫
Y
f (x, y) dν (y) is M – measurable, being the difference of two

measurable functions. Moreover∫
X

∣∣∣∣∫
Y

f (x, y) dν (y)
∣∣∣∣ dµ (x) ≤

∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) <∞,

which shows
∫
Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (20.16) on x and using

Tonelli’s theorem repeatedly implies,∫
X

[∫
Y

f (x, y) dν (y)
]
dµ (x)

=
∫
X

dµ (x)
∫
Y

dν (y) 1Ec (x) f+ (x, y)−
∫
X

dµ (x)
∫
Y

dν (y) 1Ec (x) f− (x, y)

=
∫
Y

dν (y)
∫
X

dµ (x) 1Ec (x) f+ (x, y)−
∫
Y

dν (y)
∫
X

dµ (x) 1Ec (x) f− (x, y)

=
∫
Y

dν (y)
∫
X

dµ (x) f+ (x, y)−
∫
Y

dν (y)
∫
X

dµ (x) f− (x, y)

=
∫
X×Y

f+dπ −
∫
X×Y

f−dπ =
∫
X×Y

(f+ − f−) dπ =
∫
X×Y

fdπ (20.17)

which proves Eq. (20.10) holds.
Now suppose that f = u + iv is complex valued and again let E be as

in Eq. (20.15). Just as above we still have E ∈ M and µ (E) = 0. By our
convention,∫
Y

f (x, y) dν (y) =
∫
Y

1Ec (x) f (x, y) dν (y) =
∫
Y

1Ec (x) [u (x, y) + iv (x, y)] dν (y)

=
∫
Y

1Ec (x)u (x, y) dν (y) + i

∫
Y

1Ec (x) v (x, y) dν (y)

which is measurable in x by what we have just proved. Similarly one shows∫
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (20.10) still holds by a computation similar

to that done in Eq. (20.17). The assertions pertaining to Eq. (20.11) may be
proved in the same way.

Notation 20.10 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.
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20.1 Fubini-Tonelli’s Theorem and Product Measure 349

Theorem 20.11. Suppose (X,M, µ) and (Y,N , ν) are complete σ – finite
measure spaces. Let (X×Y,L, λ) be the completion of (X×Y,M⊗N , µ⊗ν).
If f is L – measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N –
measurable for µ a.e. x and fy isM – measurable for ν a.e. y and in case (b)
fx ∈ L1(ν) and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,(

x→
∫
Y

fxdν

)
∈ L1 (µ) and

(
y →

∫
X

fydµ

)
∈ L1 (ν)

and ∫
X×Y

fdλ =
∫
Y

dν

∫
X

dµ f =
∫
X

dµ

∫
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =
∫
X

ν(xE)dµ(x) =
∫
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y. If h is L measurable and
h = 0 for λ – a.e., then there exists E ∈ M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and
{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

∫
Y
h(x, y)dν(y)

exists and equals 0 for µ a.e. x and similarly that
∫
X
h(x, y)dµ(x) exists and

equals 0 for ν a.e. y. Therefore

0 =
∫
X×Y

hdλ =
∫
Y

(∫
X

hdµ

)
dν =

∫
X

(∫
Y

hdν

)
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M ⊗ N , µ ⊗ ν) such that
f(x, y) = g(x, y) for λ− a.e. (x, y). Define h := f − g. Then h = 0, λ− a.e.
Hence by what we have just proved and Theorem 20.8 f = g + h has the
following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) and∫
Y

f(x, y)dν(y) =
∫
Y

g(x, y)dν(y).
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2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) and∫
X

f(x, y)dµ(x) =
∫
X

g(x, y)dµ(x).

From these assertions and Theorem 20.8, it follows that∫
X

dµ(x)
∫
Y

dν(y)f(x, y) =
∫
X

dµ(x)
∫
Y

dν(y)g(x, y)

=
∫
Y

dν(y)
∫
Y

dν(x)g(x, y)

=
∫
X×Y

g(x, y)d(µ⊗ ν)(x, y)

=
∫
X×Y

f(x, y)dλ(x, y).

Similarly it is shown that∫
Y

dν(y)
∫
X

dµ(x)f(x, y) =
∫
X×Y

f(x, y)dλ(x, y).

The previous theorems have obvious generalizations to products of any
finite number of σ – finite measure spaces. For example the following theorem
holds.

Theorem 20.12. Suppose {(Xi,Mi, µi)}ni=1 are σ – finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure, π, on
(X,M1 ⊗ · · · ⊗Mn) such that

π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi.

(This measure and its completion will be denoted by µ1⊗· · ·⊗µn.) If f : X →
[0,∞] is a M1 ⊗ · · · ⊗Mn – measurable function then∫

X

fdπ =
∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (20.18)

where σ is any permutation of {1, 2, . . . , n}. This equation also holds for any
f ∈ L1(π) and moreover, f ∈ L1(π) iff∫

Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ.

This theorem can be proved by the same methods as in the two factor case,
see Exercise 20.5. Alternatively, one can use the theorems already proved and
induction on n, see Exercise 20.6 in this regard.
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Example 20.13. In this example we will show

lim
M→∞

∫ M

0

sinx
x

dx = π/2. (20.19)

To see this write 1
x =

∫∞
0
e−txdt and use Fubini-Tonelli to conclude that∫ M

0

sinx
x

dx =
∫ M

0

[∫ ∞

0

e−tx sinx dt
]
dx

=
∫ ∞

0

[∫ M

0

e−tx sinx dx

]
dt

=
∫ ∞

0

1
1 + t2

(
1− te−Mt sinM − e−Mt cosM

)
dt

→
∫ ∞

0

1
1 + t2

dt =
π

2
as M →∞,

wherein we have used the dominated convergence theorem to pass to the limit.

The next example is a refinement of this result.

Example 20.14. We have∫ ∞

0

sinx
x

e−Λxdx =
1
2
π − arctanΛ for all Λ > 0 (20.20)

and forΛ,M ∈ [0,∞),∣∣∣∣∣
∫ M

0

sinx
x

e−Λxdx− 1
2
π + arctanΛ

∣∣∣∣∣ ≤ C e−MΛ

M
(20.21)

where C = maxx≥0
1+x
1+x2 = 1

2
√

2−2
∼= 1.2. In particular Eq. (20.19) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
∣∣∣∣∫ x

0

cos ydy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

1dy
∣∣∣∣ = |x|

so
∣∣ sin x
x

∣∣ ≤ 1 for all x 6= 0. Making use of the identity∫ ∞

0

e−txdt = 1/x

and Fubini’s theorem,
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352 20 Multiple Integrals∫ M

0

sinx
x

e−Λxdx =
∫ M

0

dx sinx e−Λx
∫ ∞

0

e−txdt

=
∫ ∞

0

dt

∫ M

0

dx sinx e−(Λ+t)x

=
∫ ∞

0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)2 + 1
dt

=
∫ ∞

0

1
(Λ+ t)2 + 1

dt−
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt

=
1
2
π − arctanΛ− ε(M,Λ) (20.22)

where

ε(M,Λ) =
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt.

Since ∣∣∣∣∣cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

∣∣∣∣∣ ≤ 1 + (Λ+ t)
(Λ+ t)2 + 1

≤ C,

|ε(M,Λ)| ≤
∫ ∞

0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (20.22) proves Eq. (20.21) from which Eq. (20.19)
follows by taking Λ → ∞ and Eq. (20.20) follows (using the dominated con-
vergence theorem again) by letting M →∞.

20.2 Lebesgue Measure on Rd and the Change of
Variables Theorem

Notation 20.15 Let

md :=
d times︷ ︸︸ ︷

m⊗ · · · ⊗m on BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR

be the d – fold product of Lebesgue measure m on BR. We will also use md

to denote its completion and let Ld be the completion of BRd relative to md.
A subset A ∈ Ld is called a Lebesgue measurable set and md is called d –
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 20.16. A function f : Rd → R is Lebesgue measurable if
f−1(BR) ⊂ Ld.

Notation 20.17 I will often be sloppy in the sequel and write m for md and
dx for dm(x) = dmd(x), i.e.
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20.2 Lebesgue Measure on Rd and the Change of Variables Theorem 353∫
Rd

f (x) dx =
∫

Rd

fdm =
∫

Rd

fdmd.

Hopefully the reader will understand the meaning from the context.

Theorem 20.18. Lebesgue measure md is translation invariant. Moreover md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.

Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then

x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that

md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x+A) = md(A) for all A ∈ BRd by Corollary 19.57. From this
fact we see that the measure md(x + ·) and md(·) have the same null sets.
Using this it is easily seen that m(x + A) = m(A) for all A ∈ Ld. The proof
of the second assertion is Exercise 20.7.

Exercise 20.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations
and satisfies, m(B0(ε)) > 0 for all ε > 0. Show m(V ) =∞ for all non-empty
open subsets V ⊂ H.

Theorem 20.19 (Change of Variables Theorem). Let Ω ⊂o Rd be an
open set and T : Ω → T (Ω) ⊂o Rd be a C1 – diffeomorphism,1 see Figure
20.1. Then for any Borel measurable function, f : T (Ω)→ [0,∞],∫

Ω

f (T (x)) |detT ′ (x) |dx =
∫

T (Ω)

f (y) dy, (20.23)

where T ′(x) is the linear transformation on Rd defined by T ′(x)v := d
dt |0T (x+

tv). More explicitly, viewing vectors in Rd as columns, T ′ (x) may be repre-
sented by the matrix

T ′ (x) =

∂1T1 (x) . . . ∂dT1 (x)
...

. . .
...

∂1Td (x) . . . ∂dTd (x)

 , (20.24)

i.e. the i - j – matrix entry of T ′(x) is given by T ′(x)ij = ∂iTj(x) where
T (x) = (T1(x), . . . , Td(x))tr and ∂i = ∂/∂xi.

1 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the
inverse map T−1 : T (Ω) → Ω is also continuously differentiable.
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354 20 Multiple Integrals

Fig. 20.1. The geometric setup of Theorem 20.19.

Remark 20.20. Theorem 20.19 is best remembered as the statement: if we
make the change of variables y = T (x) , then dy = |detT ′ (x) |dx. As usual,
you must also change the limits of integration appropriately, i.e. if x ranges
through Ω then y must range through T (Ω) .

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise 19.8. Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < α < β < b such that [a, b] is a compact
subinterval of Ω. Then |detT ′| = |T ′| and∫

[a,b]

1T ((α,β]) (T (x)) |T ′ (x)| dx =
∫

[a,b]

1(α,β] (x) |T ′ (x)| dx =
∫ β

α

|T ′ (x)| dx.

If T ′ (x) > 0 on [a, b] , then∫ β

α

|T ′ (x)| dx =
∫ β

α

T ′ (x) dx = T (β)− T (α)

= m (T ((α, β])) =
∫
T ([a,b])

1T ((α,β]) (y) dy

while if T ′ (x) < 0 on [a, b] , then∫ β

α

|T ′ (x)| dx = −
∫ β

α

T ′ (x) dx = T (α)− T (β)

= m (T ((α, β])) =
∫
T ([a,b])

1T ((α,β]) (y) dy.
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20.2 Lebesgue Measure on Rd and the Change of Variables Theorem 355

Combining the previous three equations shows∫
[a,b]

f (T (x)) |T ′ (x)| dx =
∫
T ([a,b])

f (y) dy (20.25)

whenever f is of the form f = 1T ((α,β]) with a < α < β < b. An application of
Dynkin’s multiplicative system Theorem 18.51 then implies that Eq. (20.25)
holds for every bounded measurable function f : T ([a, b]) → R. (Observe
that |T ′ (x)| is continuous and hence bounded for x in the compact interval,
[a, b] .) From Exercise 13.14, Ω =

∐N
n=1 (an, bn) where an, bn ∈ R∪{±∞} for

n = 1, 2, · · · < N with N = ∞ possible. Hence if f : T (Ω) → R + is a Borel
measurable function and an < αk < βk < bn with αk ↓ an and βk ↑ bn, then
by what we have already proved and the monotone convergence theorem∫

Ω

1(an,bn) · (f ◦ T ) · |T ′|dm =
∫
Ω

(
1T ((an,bn)) · f

)
◦ T · |T ′|dm

= lim
k→∞

∫
Ω

(
1T ([αk,βk]) · f

)
◦ T · |T ′| dm

= lim
k→∞

∫
T (Ω)

1T ([αk,βk]) · f dm

=
∫

T (Ω)

1T ((an,bn)) · f dm.

Summing this equality on n, then shows Eq. (20.23) holds.
To carry out the induction step, we now suppose d > 1 and suppose the

theorem is valid with d being replaced by d−1. For notational compactness, let
us write vectors in Rd as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T ′ (x) , will always be taken to be
given as in Eq. (20.24).

Case 1. Suppose T (x) has the form

T (x) = (xi, T2 (x) , . . . , Td (x)) (20.26)

or
T (x) = (T1 (x) , . . . , Td−1 (x) , xi) (20.27)

for some i ∈ {1, . . . , d} . For definiteness we will assume T is as in Eq. (20.26),
the case of T in Eq. (20.27) may be handled similarly. For t ∈ R, let it :
Rd−1 → Rd be the inclusion map defined by

it (w) := wt := (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ,

Ωt be the (possibly empty) open subset of Rd−1 defined by

Ωt :=
{
w ∈ Rd−1 : (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ∈ Ω

}
Page: 355 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



356 20 Multiple Integrals

and Tt : Ωt → Rd−1 be defined by

Tt (w) = (T2 (wt) , . . . , Td (wt)) ,

see Figure 20.2. Expanding detT ′ (wt) along the first row of the matrix T ′ (wt)

Fig. 20.2. In this picture d = i = 3 and Ω is an egg-shaped region with an egg-
shaped hole. The picture indicates the geometry associated with the map T and
slicing the set Ω along planes where x3 = t.

shows
|detT ′ (wt)| = |detT ′t (w)| .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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Ω

f ◦ T |detT ′|dm =
∫
Rd

1Ω · f ◦ T |detT ′|dm

=
∫
Rd

1Ω (wt) (f ◦ T ) (wt) |detT ′ (wt) |dwdt

=
∫

R

∫
Ωt

(f ◦ T ) (wt) |detT ′ (wt) |dw

 dt
=
∫

R

∫
Ωt

f (t, Tt (w)) |detT ′t (w) |dw

 dt
=
∫

R

 ∫
Tt(Ωt)

f (t, z) dz

 dt =
∫

R

 ∫
Rd−1

1T (Ω) (t, z) f (t, z) dz

 dt
=
∫

T (Ω)

f (y) dy

wherein the last two equalities we have used Fubini-Tonelli along with the
identity;

T (Ω) =
∐
t∈R

T (it (Ω)) =
∐
t∈R
{(t, z) : z ∈ Tt (Ωt)} .

Case 2. (Eq. (20.23) is true locally.) Suppose that T : Ω → Rd is a general
map as in the statement of the theorem and x0 ∈ Ω is an arbitrary point. We
will now show there exists an open neighborhood W ⊂ Ω of x0 such that∫

W

f ◦ T |detT ′|dm =
∫
T (W )

fdm

holds for all Borel measurable function, f : T (W )→ [0,∞]. Let Mi be the 1-i
minor of T ′ (x0) , i.e. the determinant of T ′ (x0) with the first row and ith –
column removed. Since

0 6= detT ′ (x0) =
d∑
i=1

(−1)i+1
∂iTj (x0) ·Mi,

there must be some i such that Mi 6= 0. Fix an i such that Mi 6= 0 and let,

S (x) := (xi, T2 (x) , . . . , Td (x)) . (20.28)

Observe that |detS′ (x0)| = |Mi| 6= 0. Hence by the inverse function Theorem
12.25, there exist an open neighborhood W of x0 such that W ⊂o Ω and
S (W ) ⊂o Rd and S : W → S (W ) is a C1 – diffeomorphism. Let R : S (W )→
T (W ) ⊂o Rd to be the C1 – diffeomorphism defined by

Page: 357 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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R (z) := T ◦ S−1 (z) for all z ∈ S (W ) .

Because

(T1 (x) , . . . , Td (x)) = T (x) = R (S (x)) = R ((xi, T2 (x) , . . . , Td (x)))

for all x ∈W, if

(z1, z2, . . . , zd) = S (x) = (xi, T2 (x) , . . . , Td (x))

then
R (z) =

(
T1

(
S−1 (z)

)
, z2, . . . , zd

)
. (20.29)

Observe that S is a map of the form in Eq. (20.26), R is a map of the form
in Eq. (20.27), T ′ (x) = R′ (S (x))S′ (x) (by the chain rule) and (by the mul-
tiplicative property of the determinant)

|detT ′ (x)| = |detR′ (S (x)) | |detS′ (x)| ∀ x ∈W.

So if f : T (W ) → [0,∞] is a Borel measurable function, two applications of
the results in Case 1. shows,∫

W

f ◦ T · |detT ′|dm =
∫
W

(f ◦R · |detR′|) ◦ S · |detS′| dm

=
∫

S(W )

f ◦R · |detR′|dm =
∫

R(S(W ))

fdm

=
∫
T (W )

fdm

and Case 2. is proved.
Case 3. (General Case.) Let f : Ω → [0,∞] be a general non-negative

Borel measurable function and let

Kn := {x ∈ Ω : dist(x,Ωc) ≥ 1/n and |x| ≤ n} .

Then each Kn is a compact subset of Ω and Kn ↑ Ω as n → ∞. Using the
compactness of Kn and case 2, for each n ∈ N, there is a finite open cover
Wn of Kn such that W ⊂ Ω and Eq. (20.23) holds with Ω replaced by W for
each W ∈ Wn. Let {Wi}∞i=1 be an enumeration of ∪∞n=1Wn and set W̃1 = W1

and W̃i := Wi \ (W1 ∪ · · · ∪Wi−1) for all i ≥ 2. Then Ω =
∐∞
i=1 W̃i and by

repeated use of case 2.,
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Ω

f ◦ T |detT ′|dm =
∞∑
i=1

∫
Ω

1W̃i
· (f ◦ T ) · |detT ′|dm

=
∞∑
i=1

∫
Wi

[(
1T(W̃i)f

)
◦ T
]
· |detT ′|dm

=
∞∑
i=1

∫
T (Wi)

1T(W̃i) · f dm =
n∑
i=1

∫
T (Ω)

1T(W̃i) · f dm

=
∫

T (Ω)

fdm.

Remark 20.21. When d = 1, one often learns the change of variables formula
as ∫ b

a

f (T (x))T ′ (x) dx =
∫ T (b)

T (a)

f (y) dy (20.30)

where f : [a, b] → R is a continuous function and T is C1 – function defined
in a neighborhood of [a, b] . If T ′ > 0 on (a, b) then T ((a, b)) = (T (a) , T (b))
and Eq. (20.30) is implies Eq. (20.23) with Ω = (a, b) . On the other hand if
T ′ < 0 on (a, b) then T ((a, b)) = (T (b) , T (a)) and Eq. (20.30) is equivalent
to ∫

(a,b)

f (T (x)) (− |T ′ (x)|) dx = −
∫ T (a)

T (b)

f (y) dy = −
∫
T ((a,b))

f (y) dy

which is again implies Eq. (20.23). On the other hand Eq. Eq. (20.30) is
more general than Eq. (20.23) since it does not require T to be injective. The
standard proof of Eq. (20.30) is as follows. For z ∈ T ([a, b]) , let

F (z) :=
∫ z

T (a)

f (y) dy.

Then by the chain rule and the fundamental theorem of calculus,∫ b

a

f (T (x))T ′ (x) dx =
∫ b

a

F ′ (T (x))T ′ (x) dx =
∫ b

a

d

dx
[F (T (x))] dx

= F (T (x)) |ba =
∫ T (b)

T (a)

f (y) dy.

An application of Dynkin’s multiplicative systems theorem (in the form of
Corollary 18.55) now shows that Eq. (20.30) holds for all bounded measurable
functions f on (a, b) . Then by the usual truncation argument, it also holds
for all positive measurable functions on (a, b) .
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Example 20.22. Continuing the setup in Theorem 20.19, if A ∈ BΩ , then

m (T (A)) =
∫

Rd

1T (A) (y) dy =
∫

Rd

1T (A) (Tx) |detT ′ (x)| dx

=
∫

Rd

1A (x) |detT ′ (x)| dx

wherein the second equality we have made the change of variables, y = T (x) .
Hence we have shown

d (m ◦ T ) = |detT ′ (·)| dm.

In particular if T ∈ GL(d,R) = GL(Rd) – the space of d×d invertible matrices,
then m ◦ T = |detT |m, i.e.

m (T (A)) = |detT |m (A) for allA ∈ BRd . (20.31)

This equation also shows that m◦T and m have the same null sets and hence
the equality in Eq. (20.31) is valid for any A ∈ Ld.

Exercise 20.2. Show that f ∈ L1
(
T (Ω) ,md

)
iff∫

Ω

|f ◦ T | |detT ′|dm <∞

and if f ∈ L1
(
T (Ω) ,md

)
, then Eq. (20.23) holds.

Example 20.23 (Polar Coordinates). Suppose T : (0,∞) × (0, 2π) → R2 is
defined by

x = T (r, θ) = (r cos θ, r sin θ) ,

i.e. we are making the change of variable,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In this case

T ′(r, θ) =
(

cos θ − r sin θ
sin θ r cos θ

)
and therefore

dx = |detT ′(r, θ)| drdθ = rdrdθ.

Observing that

R2 \ T ((0,∞)× (0, 2π)) = ` := {(x, 0) : x ≥ 0}

has m2 – measure zero, it follows from the change of variables Theorem 20.19
that ∫

R2
f(x)dx =

∫ 2π

0

dθ

∫ ∞

0

dr r · f(r (cos θ, sin θ)) (20.32)

for any Borel measurable function f : R2 → [0,∞].
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20.2 Lebesgue Measure on Rd and the Change of Variables Theorem 361

Example 20.24 (Holomorphic Change of Variables). Suppose that f : Ω ⊂o
C ∼= R2→ C is an injective holomorphic function such that f ′ (z) 6= 0 for all
z ∈ Ω. We may express f as

f (x+ iy) = U (x, y) + iV (x, y)

for all z = x+ iy ∈ Ω. Hence if we make the change of variables,

w = u+ iv = f (x+ iy) = U (x, y) + iV (x, y)

then

dudv =
∣∣∣∣det

[
Ux Uy
Vx Vy

]∣∣∣∣ dxdy = |UxVy − UyVx| dxdy.

Recalling that U and V satisfy the Cauchy Riemann equations, Ux = Vy and
Uy = −Vx with f ′ = Ux + iVx, we learn

UxVy − UyVx = U2
x + V 2

x = |f ′|2 .

Therefore
dudv = |f ′ (x+ iy)|2 dxdy.

Example 20.25. In this example we will evaluate the integral

I :=
∫∫

Ω

(
x4 − y4

)
dxdy

where
Ω =

{
(x, y) : 1 < x2 − y2 < 2, 0 < xy < 1

}
,

see Figure 20.3 We are going to do this by making the change of variables,

Fig. 20.3. The region Ω consists of the two curved rectangular regions shown.
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(u, v) := T (x, y) =
(
x2 − y2, xy

)
,

in which case

dudv =
∣∣∣∣det

[
2x −2y
y x

]∣∣∣∣ dxdy = 2
(
x2 + y2

)
dxdy

Notice that(
x4 − y4

)
=
(
x2 − y2

) (
x2 + y2

)
= u

(
x2 + y2

)
=

1
2
ududv.

The function T is not injective on Ω but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
Ω = −D ∪ D and T (±D) = (1, 2) × (0, 1) The change of variables theorem
then implies

I± :=
∫∫

±D

(
x4 − y4

)
dxdy =

1
2

∫∫
(1,2)×(0,1)

ududv =
1
2
u2

2
|21 · 1 =

3
4

and therefore I = I+ + I− = 2 · (3/4) = 3/2.

Exercise 20.3 (Spherical Coordinates). Let T : (0,∞)×(0, π)×(0, 2π)→
R3 be defined by

T (r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ)
= r (sinφ cos θ, sinφ sin θ, cosφ) ,

see Figure 20.4. By making the change of variables x = T (r, φ, θ) , show

Fig. 20.4. The relation of x to (r, φ, θ) in spherical coordinates.

∫
R3
f(x)dx =

∫ π

0

dφ

∫ 2π

0

dθ

∫ ∞

0

dr r2 sinφ · f(T (r, φ, θ))

for any Borel measurable function, f : R3 → [0,∞].
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Lemma 20.26. Let a > 0 and

Id(a) :=
∫
Rd

e−a|x|
2
dm(x).

Then Id(a) = (π/a)d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =
∫

Rd−1×R
e−a|y|

2
e−at

2
md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (20.33)

So it suffices to compute:

I2(a) =
∫
R2

e−a|x|
2
dm(x) =

∫
R2\{0}

e−a(x
2
1+x

2
2)dx1dx2.

Using polar coordinates, see Eq. (20.32), we find,

I2(a) =
∫ ∞

0

dr r

∫ 2π

0

dθ e−ar
2

= 2π
∫ ∞

0

re−ar
2
dr

= 2π lim
M→∞

∫ M

0

re−ar
2
dr = 2π lim

M→∞

e−ar
2

−2a

∫ M

0

=
2π
2a

= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (20.33).

20.3 The Polar Decomposition of Lebesgue Measure

Let

Sd−1 = {x ∈ Rd : |x|2 :=
d∑
i=1

x2
i = 1}

be the unit sphere in Rd equipped with its Borel σ – algebra, BSd−1 and
Φ : Rd \ {0} → (0,∞)×Sd−1 be defined by Φ(x) := (|x| , |x|−1

x). The inverse
map, Φ−1 : (0,∞) × Sd−1 → Rd \ {0} , is given by Φ−1(r, ω) = rω. Since Φ
and Φ−1 are continuous, they are both Borel measurable. For E ∈ BSd−1 and
a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]× E) ∈ BRd .

Definition 20.27. For E ∈ BSd−1 , let σ(E) := d · m(E1). We call σ the
surface measure on Sd−1.
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It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]× E) ∈ BRd so thatm(E1) is well defined. Moreover if E =

∐∞
i=1Ei,

then E1 =
∐∞
i=1 (Ei)1 and

σ(E) = d ·m(E1) =
∞∑
i=1

m ((Ei)1) =
∞∑
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and
ε > 0 is a small number, then the volume of

(1, 1 + ε] · E = {rω : r ∈ (1, 1 + ε] and ω ∈ E}

should be approximately given by m ((1, 1 + ε] · E) ∼= σ(E)ε, see Figure 20.5
below. On the other hand

Fig. 20.5. Motivating the definition of surface measure for a sphere.

m ((1, 1 + ε]E) = m (E1+ε \ E1) =
{
(1 + ε)d − 1

}
m(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
ε↓0

{
(1 + ε)d − 1

}
m(E1)

ε
= d ·m(E1).

The following theorem is motivated by Example 20.23 and Exercise 20.3.

Theorem 20.28 (Polar Coordinates). If f : Rd → [0,∞] is a (BRd ,B)–
measurable function then∫

Rd

f(x)dm(x) =
∫

(0,∞)×Sd−1

f(rω)rd−1 drdσ(ω). (20.34)

Proof. By Exercise 19.7,
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20.3 The Polar Decomposition of Lebesgue Measure 365∫
Rd

fdm =
∫

Rd\{0}

(
f ◦ Φ−1

)
◦ Φ dm =

∫
(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (Φ∗m) (20.35)

and therefore to prove Eq. (20.34) we must work out the measure Φ∗m on
B(0,∞) ⊗ BSd−1 defined by

Φ∗m(A) := m
(
Φ−1(A)

)
∀ A ∈ B(0,∞) ⊗ BSd−1 . (20.36)

If A = (a, b]× E with 0 < a < b and E ∈ BSd−1 , then

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} = bE1 \ aE1

wherein we have used Ea = aE1 in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Φ∗m) ((a, b]× E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1) = d ·m(E1)
∫ b

a

rd−1dr. (20.37)

Letting dρ(r) = rd−1dr, i.e.

ρ(J) =
∫
J

rd−1dr ∀ J ∈ B(0,∞), (20.38)

Eq. (20.37) may be written as

(Φ∗m) ((a, b]× E) = ρ((a, b]) · σ(E) = (ρ⊗ σ) ((a, b]× E) . (20.39)

Since
E = {(a, b]× E : 0 < a < b and E ∈ BSd−1} ,

is a π class (in fact it is an elementary class) such that σ(E) = B(0,∞)⊗BSd−1 ,
it follows from Theorem 19.55 and Eq. (20.39) that Φ∗m = ρ⊗ σ. Using this
result in Eq. (20.35) gives∫

Rd

fdm =
∫

(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (ρ⊗ σ)

which combined with Tonelli’s Theorem 20.8 proves Eq. (20.35).

Corollary 20.29. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(20.40)

where Γ is the gamma function given by

Γ (x) :=
∫ ∞

0

ux−1e−udr (20.41)

Moreover, Γ (1/2) =
√
π, Γ (1) = 1 and Γ (x+ 1) = xΓ (x) for x > 0.
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Proof. Using Theorem 20.28 we find

Id(1) =
∫ ∞

0

dr rd−1e−r
2
∫

Sd−1

dσ = σ(Sd−1)
∫ ∞

0

rd−1e−r
2
dr.

We simplify this last integral by making the change of variables u = r2 so
that r = u1/2 and dr = 1

2u
−1/2du. The result is∫ ∞

0

rd−1e−r
2
dr =

∫ ∞

0

u
d−1
2 e−u

1
2
u−1/2du

=
1
2

∫ ∞

0

u
d
2−1e−udu =

1
2
Γ (d/2). (20.42)

Combing the the last two equations with Lemma 20.26 which states that
Id(1) = πd/2, we conclude that

πd/2 = Id(1) =
1
2
σ(Sd−1)Γ (d/2)

which proves Eq. (20.40). Example 19.24 implies Γ (1) = 1 and from Eq.
(20.42),

Γ (1/2) = 2
∫ ∞

0

e−r
2
dr =

∫ ∞

−∞
e−r

2
dr

= I1(1) =
√
π.

The relation, Γ (x+1) = xΓ (x) is the consequence of the following integration
by parts argument:

Γ (x+ 1) =
∫ ∞

0

e−u ux+1 du

u
=
∫ ∞

0

ux
(
− d

du
e−u

)
du

= x

∫ ∞

0

ux−1 e−u du = x Γ (x).

BRUCE: add Morrey’s Inequality ?? here.

20.4 More proofs of the classical Weierstrass
approximation Theorem 10.34

In each of these proofs we will use the reduction explained the previous proof
of Theorem 10.34 to reduce to the case where f ∈ C([0, 1]d). The first proof
we will give here is based on the “weak law” of large numbers. The second
will be another approximate δ – function argument.
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Proof. of Theorem 10.34. Let 0 : = (0, 0, . . . , 0), 1 : = (1, 1, . . . , 1) and
[0,1] := [0, 1]d. By considering the real and imaginary parts of f separately,
it suffices to assume f ∈ C([0,1],R). For x ∈ [0, 1], let νx be the measure on
{0, 1} such that νx ({0}) = 1− x and νx ({1}) = x. Then∫

{0,1}
ydνx(y) = 0 · (1− x) + 1 · x = x and (20.43)∫

{0,1}
(y − x)2dνx(y) = x2(1− x) + (1− x)2 · x = x(1− x). (20.44)

For x ∈ [0,1] let µx = νx1 ⊗ · · · ⊗ νxd
be the product of νx1 , . . . , νxd

on
Ω := {0, 1}d . Alternatively the measure µx may be described by

µx ({ε}) =
d∏
i=1

(1− xi)1−εi xεi
i (20.45)

for ε ∈ Ω. Notice that µx ({ε}) is a degree d polynomial in x for each ε ∈ Ω.
For n ∈ N and x ∈ [0,1], let µnx denote the n – fold product of µx with itself
on Ωn, Xi(ω) = ωi ∈ Ω ⊂ Rd for ω ∈ Ωn and let

Sn = (S1
n, . . . , S

d
n) := (X1 +X2 + · · ·+Xn)/n,

so Sn : Ωn → Rd. The reader is asked to verify (Exercise 20.4) that∫
Ωn

Sndµ
n
x :=

(∫
Ωn

S1
ndµ

n
x , . . . ,

∫
Ωn

Sdndµ
n
x

)
= (x1, . . . , xd) = x (20.46)

and ∫
Ωn

|Sn − x|2 dµnx =
1
n

d∑
i=1

xi(1− xi) ≤
d

n
. (20.47)

From these equations it follows that Sn is concentrating near x as n→∞, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

pn(x) :=
∫
Ωn

f(Sn)dµnx (20.48)

should approach f(x) as n→∞. Let ε > 0 be given,M = sup {|f(x)| : x ∈ [0, 1]}
and

δε = sup {|f(y)− f(x)| : x, y ∈ [0,1] and |y − x| ≤ ε} .
By uniform continuity of f on [0,1], limε↓0 δε = 0. Using these definitions and
the fact that µnx(Ω

n) = 1,

|f(x)− pn(x)| =
∣∣∣∣∫
Ωn

(f(x)− f(Sn)) dµnx

∣∣∣∣ ≤ ∫
Ωn

|f(x)− f(Sn)| dµnx

≤
∫
{|Sn−x|>ε}

|f(x)− f(Sn)| dµnx +
∫
{|Sn−x|≤ε}

|f(x)− f(Sn)| dµnx

≤ 2Mµnx (|Sn − x| > ε) + δε. (20.49)
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By Chebyshev’s inequality,

µnx (|Sn − x| > ε) ≤ 1
ε2

∫
Ωn

(Sn − x)2dµnx =
d

nε2
,

and therefore, Eq. (20.49) yields the estimate

‖f − pn‖∞ ≤
2dM
nε2

+ δε

and hence
lim sup
n→∞

‖f − pn‖∞ ≤ δε → 0 as ε ↓ 0.

This completes the proof since, using Eq. (20.45),

pn(x) =
∑
ω∈Ωn

f(Sn(ω))µnx({ω}) =
∑
ω∈Ωn

f(Sn(ω))
n∏
i=1

µx({ωi}),

is an nd – degree polynomial in x ∈ Rd).

Exercise 20.4. Verify Eqs. (20.46) and (20.47). This is most easily done using
Eqs. (20.43) and (20.44) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless
it is convenient to use this formulation.)

The second proof requires the next two lemmas.

Lemma 20.30 (Approximate δ – sequences). Suppose that {Qn}∞n=1 is a
sequence of positive functions on Rd such that∫

Rd

Qn(x) dx = 1 and (20.50)

lim
n→∞

∫
|x|≥ε

Qn(x)dx = 0 for all ε > 0. (20.51)

For f ∈ BC(Rd), Qn ∗ f converges to f uniformly on compact subsets of Rd.

Proof. The proof is exactly the same as the proof of Lemma 10.28, it is
only necessary to replace R by Rd everywhere in the proof.

Define
Qn : Rn → [0,∞) by Qn(x) = qn(x1) . . . qn(xd). (20.52)

where qn is defined in Eq. (10.23).

Lemma 20.31. The sequence {Qn}∞n=1 is an approximate δ – sequence, i.e.
they satisfy Eqs. (20.50) and (20.51).
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20.5 More Spherical Coordinates 369

Proof. The fact that Qn integrates to one is an easy consequence of
Tonelli’s theorem and the fact that qn integrates to one. Since all norms on
Rd are equivalent, we may assume that |x| = max {|xi| : i = 1, 2, . . . , d} when
proving Eq. (20.51). With this norm{

x ∈ Rd : |x| ≥ ε
}

= ∪di=1

{
x ∈ Rd : |xi| ≥ ε

}
and therefore by Tonelli’s theorem,∫

{|x|≥ε}

Qn(x)dx ≤
d∑
i=1

∫
{|xi|≥ε}

Qn(x)dx = d

∫
{x∈R|x|≥ε}

qn(t)dt

which tends to zero as n→∞ by Lemma 10.29.
Proof. Proof of Theorem 10.34. Again we assume f ∈ C

(
Rd,C

)
and f ≡ 0

on Qcd where Qd := (0, 1)d . Let Qn(x) be defined as in Eq. (20.52). Then by
Lemma 20.31 and 20.30, pn(x) := (Qn ∗F )(x)→ F (x) uniformly for x ∈ [0,1]
as n→∞. So to finish the proof it only remains to show pn(x) is a polynomial
when x ∈ [0,1]. For x ∈ [0,1],

pn(x) =
∫

Rd

Qn(x− y)f(y)dy

=
1
cn

∫
[0,1]

f(y)
d∏
i=1

[
c−1
n (1− (xi − yi)2)n1|xi−yi|≤1

]
dy

=
1
cn

∫
[0,1]

f(y)
d∏
i=1

[
c−1
n (1− (xi − yi)2)n

]
dy.

Since the product in the above integrand is a polynomial if (x, y) ∈ Rd × Rd,
it follows easily that pn(x) is polynomial in x.

20.5 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals
on spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞)×
[0, 2π) so that (

x1

x2

)
=
(
r cos θ
r sin θ

)
= T2(θ, r).

For n = 3 we let x3 = r cosφ1 and then(
x1

x2

)
= T2(θ, r sinφ1),

as can be seen from Figure 20.6, so that
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Fig. 20.6. Setting up polar coordinates in two and three dimensions.

x1

x2

x3

 =
(
T2(θ, r sinφ1)

r cosφ1

)
=

 r sinφ1 cos θ
r sinφ1 sin θ
r cosφ1

 =: T3(θ, φ1, r, ).

We continue to work inductively this way to define
x1

...
xn
xn+1

 =
(
Tn(θ, φ1, . . . , φn−2, r sinφn−1, )

r cosφn−1

)
= Tn+1(θ, φ1, . . . , φn−2, φn−1, r).

So for example,

x1 = r sinφ2 sinφ1 cos θ
x2 = r sinφ2 sinφ1 sin θ
x3 = r sinφ2 cosφ1

x4 = r cosφ2

and more generally,

x1 = r sinφn−2 . . . sinφ2 sinφ1 cos θ
x2 = r sinφn−2 . . . sinφ2 sinφ1 sin θ
x3 = r sinφn−2 . . . sinφ2 cosφ1

...
xn−2 = r sinφn−2 sinφn−3 cosφn−4

xn−1 = r sinφn−2 cosφn−3

xn = r cosφn−2. (20.53)

By the change of variables formula,
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20.5 More Spherical Coordinates 371∫
Rn

f(x)dm(x)

=
∫ ∞

0

dr

∫
0≤φi≤π,0≤θ≤2π

dφ1 . . . dφn−2dθ∆n(θ, φ1, . . . , φn−2, r)f(Tn(θ, φ1, . . . , φn−2, r))

(20.54)

where
∆n(θ, φ1, . . . , φn−2, r) := |detT ′n(θ, φ1, . . . , φn−2, r)| .

Proposition 20.32. The Jacobian, ∆n is given by

∆n(θ, φ1, . . . , φn−2, r) = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1. (20.55)

If f is a function on rSn−1 – the sphere of radius r centered at 0 inside of
Rn, then∫
rSn−1

f(x)dσ(x) = rn−1

∫
Sn−1

f(rω)dσ(ω)

=
∫

0≤φi≤π,0≤θ≤2π

f(Tn(θ, φ1, . . . , φn−2, r))∆n(θ, φ1, . . . , φn−2, r)dφ1 . . . dφn−2dθ

(20.56)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinφn−1

and writing ∂Tn

∂ξ for ∂Tn

∂ξ (θ, φ1, . . . , φn−2, ρ) we have

∆n+1(θ,φ1, . . . , φn−2, φn−1, r)

=
∣∣∣∣[ ∂Tn

∂θ
∂Tn

∂φ1

0 0
. . . ∂Tn

∂φn−2

. . . 0

∂Tn

∂ρ r cosφn−1

−r sinφn−1

∂Tn

∂ρ sinφn−1

cosφn−1

]∣∣∣∣
= r

(
cos2 φn−1 + sin2 φn−1

)
∆n(, θ, φ1, . . . , φn−2, ρ)

= r∆n(θ, φ1, . . . , φn−2, r sinφn−1),

i.e.

∆n+1(θ, φ1, . . . , φn−2, φn−1, r) = r∆n(θ, φ1, . . . , φn−2, r sinφn−1). (20.57)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with ∆2(θ, r) = r already derived in Example 20.23, Eq. (20.57)
implies,

∆3(θ, φ1, r) = r∆2(θ, r sinφ1) = r2 sinφ1

∆4(θ, φ1, φ2, r) = r∆3(θ, φ1, r sinφ2) = r3 sin2 φ2 sinφ1

...

∆n(θ, φ1, . . . , φn−2, r) = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1
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which proves Eq. (20.55). Eq. (20.56) now follows from Eqs. (??), (20.54) and
(20.55).

As a simple application, Eq. (20.56) implies

σ(Sn−1) =
∫

0≤φi≤π,0≤θ≤2π

sinn−2 φn−2 . . . sin2 φ2 sinφ1dφ1 . . . dφn−2dθ

= 2π
n−2∏
k=1

γk = σ(Sn−2)γn−2 (20.58)

where γk :=
∫ π
0

sink φdφ. If k ≥ 1, we have by integration by parts that,

γk =
∫ π

0

sink φdφ = −
∫ π

0

sink−1 φ d cosφ = 2δk,1 + (k − 1)
∫ π

0

sink−2 φ cos2 φdφ

= 2δk,1 + (k − 1)
∫ π

0

sink−2 φ
(
1− sin2 φ

)
dφ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1
k

γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1
2
π, γ3 =

2
3
2, γ4 =

3
4

1
2
π, γ5 =

4
5

2
3
2, γ6 =

5
6

3
4

1
2
π

and more generally by induction that

γ2k = π
(2k − 1)!!

(2k)!!
and γ2k+1 = 2

(2k)!!
(2k + 1)!!

.

Indeed,

γ2(k+1)+1 =
2k + 2
2k + 3

γ2k+1 =
2k + 2
2k + 3

2
(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!
(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1
2k + 1

γ2k =
2k + 1
2k + 2

π
(2k − 1)!!

(2k)!!
= π

(2k + 1)!!
(2k + 2)!!

.

The recursion relation in Eq. (20.58) may be written as

σ(Sn) = σ
(
Sn−1

)
γn−1 (20.59)

which combined with σ
(
S1
)

= 2π implies
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σ
(
S1
)

= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1
2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 =

22π2

2!!
· 22

3
=

23π2

3!!

σ(S5) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π · 4

5
2
3
2 =

24π3

5!!

and more generally that

σ(S2n) =
2 (2π)n

(2n− 1)!!
and σ(S2n+1) =

(2π)n+1

(2n)!!
(20.60)

which is verified inductively using Eq. (20.59). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)n

(2n− 1)!!
π

(2n− 1)!!
(2n)!!

=
(2π)n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)n+1

(2n)!!
2

(2n)!!
(2n+ 1)!!

=
2 (2π)n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (??) and (20.60 in
agreement. We may also write the formula in Eq. (20.60) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even
(2π)

n+1
2

(n−1)!! for n odd.

20.6 Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower’s Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 20.33. Let U ⊂o Rm, f ∈ C∞(U,Rd) and C := {x ∈ U : Ran k(f ′(x)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel mea-
surable subset of Rd of Lebesgue measure 0.
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Remark 20.34. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the
norm, |x| := maxi |xi| . Recall that if f ∈ C1(U,Rd) and p ∈ U, then

f(p+x) = f(p)+
∫ 1

0

f ′(p+tx)xdt = f(p)+f ′(p)x+
∫ 1

0

[f ′(p+ tx)− f ′(p)]xdt

so that if

R(p, x) := f(p+ x)− f(p)− f ′(p)x =
∫ 1

0

[f ′(p+ tx)− f ′(p)]xdt

we have

|R(p, x)| ≤ |x|
∫ 1

0

|f ′(p+ tx)− f ′(p)| dt = |x| ε(p, x).

By uniform continuity, it follows for any compact subset K ⊂ U that

sup {|ε(p, x)| : p ∈ K and |x| ≤ δ} → 0 as δ ↓ 0.

Proof. Notice that if x ∈ U \ C, then f ′(x) : Rm → Rn is surjective,
which is an open condition, so that U \C is an open subset of U. This shows
C is relatively closed in U, i.e. there exists C̃ @ Rm such that C = C̃ ∩ U.
Let Kn ⊂ U be compact subsets of U such that Kn ↑ U, then Kn ∩ C ↑ C
and Kn ∩ C = Kn ∩ C̃ is compact for each n. Therefore, f(Kn ∩ C) ↑ f(C)
i.e. f(C) = ∪nf(Kn ∩ C) is a countable union of compact sets and therefore
is Borel measurable. Moreover, since m(f(C)) = limn→∞m(f(Kn ∩ C)), it
suffices to show m(f(K)) = 0 for all compact subsets K ⊂ C. Case 1. (n ≤ m)
Let K = [a, a + γ] be a cube contained in U and by scaling the domain we
may assume γ = (1, 1, 1, . . . , 1). For N ∈ N and j ∈ SN := {0, 1, . . . , N − 1}n
let Kj = j/N + [a, a + γ/N ] so that K = ∪j∈SN

Kj with Ko
j ∩ Ko

j′ = ∅ if
j 6= j′. Let {Qj : j = 1 . . . ,M} be the collection of those {Kj : j ∈ SN} which
intersect C. For each j, let pj ∈ Qj ∩ C and for x ∈ Qj − pj we have

f(pj + x) = f(pj) + f ′(pj)x+Rj(x)

where |Rj(x)| ≤ εj(N)/N and ε(N) := maxj εj(N)→ 0 as N →∞. Now

m (f(Qj)) = m (f(pj) + (f ′(pj) +Rj) (Qj − pj))
= m ((f ′(pj) +Rj) (Qj − pj))
= m (Oj (f ′(pj) +Rj) (Qj − pj)) (20.61)

where Oj ∈ SO(n) is chosen so that Ojf
′(pj)Rn ⊂ Rm−1 × {0} . Now

Ojf
′(pj)(Qj − pj) is contained in Γ × {0} where Γ ⊂ Rm−1 is a cube cen-

tered at 0 ∈ Rm−1 with side length at most 2 |f ′(pj)| /N ≤ 2M/N where
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M = maxp∈K |f ′(p)| . It now follows that Oj (f ′(pj) +Rj) (Qj − pj) is con-
tained the set of all points within ε(N)/N of Γ × {0} and in particular

Oj (f ′(pj) +Rj) (Qj − pj) ⊂ (1 + ε(N)/N)Γ × [ε(N)/N, ε(N)/N ].

From this inclusion and Eq. (20.61) it follows that

m (f(Qj)) ≤
[
2
M

N
(1 + ε(N)/N)

]m−1

2ε(N)/N

= 2mMm−1 [(1 + ε(N)/N)]m−1
ε(N)

1
Nm

and therefore,

m (f(C ∩K)) ≤
∑
j

m (f(Qj)) ≤ Nn2mMm−1 [(1 + ε(N)/N)]m−1
ε(N)

1
Nm

= 2nMn−1 [(1 + ε(N)/N)]n−1
ε(N)

1
Nm−n → 0 as N →∞

since m ≥ n. This proves the easy case since we may write U as a countable
union of cubes K as above. Remark. The case (m < n) also follows from the
case m = n as follows. When m < n, C = U and we must show m(f(U)) = 0.
Letting F : U×Rn−m → Rn be the map F (x, y) = f(x). Then F ′(x, y)(v, w) =
f ′(x)v, and hence CF := U × Rn−m. So if the assertion holds for m = n we
have

m(f(U)) = m(F (U × Rn−m)) = 0.

Case 2. (m > n) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

Ci := {x ∈ U : ∂αf(x) = 0 when |α| ≤ i}

so that C ⊃ C1 ⊃ C2 ⊃ C3 ⊃ . . . . The proof is by induction on n and goes
by the following steps:

1. m(f(C \ C1)) = 0.
2. m(f(Ci \ Ci+1)) = 0 for all i ≥ 1.
3. m(f(Ci)) = 0 for all i sufficiently large.

Step 1. Ifm = 1, there is nothing to prove since C = C1 so we may assume
m ≥ 2. Suppose that x ∈ C \ C1, then f ′(p) 6= 0 and so by reordering the
components of x and f(p) if necessary we may assume that ∂1f1 (p) 6= 0 where
we are writing ∂f(p)/∂xi as ∂if (p) . The map h(x) := (f1(x), x2, . . . , xn) has
differential

h′(p) =


∂1f1 (p) ∂2f1 (p) . . . ∂nf1 (p)

0 1 0 0
...

...
. . .

...
0 0 0 1


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which is not singular. So by the implicit function theorem, there exists there
exists V ∈ τp such that h : V → h(V ) ∈ τh(p) is a diffeomorphism and in
particular ∂f1(x)/∂x1 6= 0 for x ∈ V and hence V ⊂ U \ C1. Consider the
map g := f ◦ h−1 : V ′ := h(V )→ Rm, which satisfies

(f1(x), f2(x), . . . , fm(x)) = f(x) = g(h(x)) = g((f1(x), x2, . . . , xn))

which implies g(t, y) = (t, u(t, y)) for (t, y) ∈ V ′ := h(V ) ∈ τh(p), see Figure
20.7 below where p = x̄ and m = p. Since

Fig. 20.7. Making a change of variable so as to apply induction.

g′(t, y) =
[

1 0
∂tu(t, y) ∂yu(t, y)

]
it follows that (t, y) is a critical point of g iff y ∈ C ′t – the set of critical points
of y → u(t, y). Since h is a diffeomorphism we have C ′ := h(C ∩ V ) are the
critical points of g in V ′ and

f(C ∩ V ) = g(C ′) = ∪t [{t} × ut(C ′t)] .

By the induction hypothesis, mm−1(ut(C ′t)) = 0 for all t, and therefore by
Fubini’s theorem,

m(f(C ∩ V )) =
∫

R
mm−1(ut(C ′t))1V ′t 6=∅dt = 0.

Since C \C1 may be covered by a countable collection of open sets V as above,
it follows that m(f(C \ C1)) = 0. Step 2. Suppose that p ∈ Ck \ Ck+1, then
there is an α such that |α| = k + 1 such that ∂αf(p) = 0 while ∂βf(p) = 0
for all |β| ≤ k. Again by permuting coordinates we may assume that α1 6= 0
and ∂αf1(p) 6= 0. Let w(x) := ∂α−e1f1(x), then w(p) = 0 while ∂1w(p) 6= 0.
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So again the implicit function theorem there exists V ∈ τp such that h(x) :=
(w (x) , x2, . . . , xn) maps V → V ′ := h(V ) ∈ τh(p) in a diffeomorphic way and
in particular ∂1w(x) 6= 0 on V so that V ⊂ U \Ck+1. As before, let g := f ◦h−1

and notice that C ′k := h(Ck ∩ V ) ⊂ {0} × Rn−1 and

f(Ck ∩ V ) = g(C ′k) = ḡ (C ′k)

where ḡ := g|({0}×Rn−1)∩V ′ . Clearly C ′k is contained in the critical points of ḡ,
and therefore, by induction

0 = m(ḡ(C ′k)) = m(f(Ck ∩ V )).

Since Ck\Ck+1 is covered by a countable collection of such open sets, it follows
that

m(f(Ck \ Ck+1)) = 0 for all k ≥ 1.

Step 3. Suppose that Q is a closed cube with edge length δ contained in U
and k > n/m− 1. We will show m(f(Q∩Ck)) = 0 and since Q is arbitrary it
will follows that m(f(Ck)) = 0 as desired. By Taylor’s theorem with (integral)
remainder, it follows for x ∈ Q ∩ Ck and h such that x+ h ∈ Q that

f(x+ h) = f(x) +R(x, h)

where
|R(x, h)| ≤ c ‖h‖k+1

where c = c(Q, k). Now subdivide Q into rn cubes of edge size δ/r and let
Q′ be one of the cubes in this subdivision such that Q′ ∩ Ck 6= ∅ and let
x ∈ Q′ ∩ Ck. It then follows that f(Q′) is contained in a cube centered at
f(x) ∈ Rm with side length at most 2c (δ/r)k+1 and hence volume at most
(2c)m (δ/r)m(k+1)

. Therefore, f(Q∩Ck) is contained in the union of at most
rn cubes of volume (2c)m (δ/r)m(k+1) and hence meach

m (f(Q ∩ Ck)) ≤ (2c)m (δ/r)m(k+1)
rn = (2c)m δm(k+1)rn−m(k+1) → 0 as r ↑ ∞

provided that n−m(k + 1) < 0, i.e. provided k > n/m− 1.

20.7 Exercises

Exercise 20.5. Prove Theorem 20.12. Suggestion, to get started define

π (A) :=
∫
X1

dµ (x1) . . .
∫
Xn

dµ (xn) 1A (x1, . . . , xn)

and then show Eq. (20.18) holds. Use the case of two factors as the model of
your proof.
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Exercise 20.6. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1

is (M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈M1 ⊗M2 ⊗M3. Then π is the unique measure onM1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable

function. Verify the identity,∫
X1×X2×X3

fdπ =
∫
X3

dµ3(x3)
∫
X2

dµ2(x2)
∫
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six

possible orderings of the iterated integrals.

Exercise 20.7. Prove the second assertion of Theorem 20.18. That is show
md is the unique translation invariant measure on BRd such that md((0, 1]d) =
1. Hint: Look at the proof of Theorem 19.10.

Exercise 20.8. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],
M = B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and
ν be counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X}
be the diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)
]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)
]
dν(y)

by explicitly computing both sides of this equation.

Exercise 20.9. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 20.10. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M×BR should be M⊗BR̄ in this problem.)

Exercise 20.11. Folland Problem 2.55 on p. 77. (Explicit integrations.)
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Exercise 20.12. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm),
g(x) =

∫ a
x
f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =
∫ a

0

f(t)dt.

Exercise 20.13. Show
∫∞
0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x
x dm(x) is not defined as a Lebesgue integral.

Exercise 20.14. Folland Problem 2.57 on p. 77.

Exercise 20.15. Folland Problem 2.58 on p. 77.

Exercise 20.16. Folland Problem 2.60 on p. 77. Properties of the Γ – func-
tion.

Exercise 20.17. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 20.18. Folland Problem 2.62 on p. 80. Rotation invariance of sur-
face measure on Sn−1.

Exercise 20.19. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 20.20. Show, using Problem 20.18 that∫
Sd−1

ωiωjdσ (ω) =
1
d
δijσ

(
Sd−1

)
.

Hint: show
∫
Sd−1 ω

2
i dσ (ω) is independent of i and therefore

∫
Sd−1

ω2
i dσ (ω) =

1
d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .
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Lp-spaces

Let (X,M, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : X → C let

‖f‖p :=
(∫

X

|f |p dµ
)1/p

. (21.1)

When p =∞, let

‖f‖∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (21.2)

For 0 < p ≤ ∞, let

Lp(X,M, µ) = {f : X → C : f is measurable and ‖f‖p <∞}/ ∼

where f ∼ g iff f = g a.e. Notice that ‖f − g‖p = 0 iff f ∼ g and if f ∼ g
then ‖f‖p = ‖g‖p. In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 21.1. Suppose that ‖f‖∞ ≤ M, then for all a > M, µ(|f | > a) = 0
and therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(x)| ≤ M
for µ - a.e. x. Conversely, if |f | ≤M a.e. and a > M then µ(|f | > a) = 0 and
hence ‖f‖∞ ≤M. This leads to the identity:

‖f‖∞ = inf {a ≥ 0 : |f(x)| ≤ a for µ – a.e. x} .

The next theorem is a generalization Theorem 5.6 to general integrals and
the proof is essentially identical to the proof of Theorem 5.6.

Theorem 21.2 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p
p−1 , or equivalently p−1 + q−1 = 1. If f and g are measurable functions then

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (21.3)

Assuming p ∈ (1,∞) and ‖f‖p · ‖g‖q <∞, equality holds in Eq. (21.3) iff |f |p
and |g|q are linearly dependent as elements of L1 which happens iff

|g|q‖f‖pp = ‖g‖qq |f |
p a.e. (21.4)
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Proof. The cases where ‖f‖q = 0 or ∞ or ‖g‖p = 0 or ∞ are easy to deal
with and are left to the reader. So we will now assume that 0 < ‖f‖q, ‖g‖p <
∞. Let s = |f | /‖f‖p and t = |g|/‖g‖q then Lemma 5.5 implies

|fg|
‖f‖p‖g‖q

≤ 1
p

|f |p

‖f‖p
+

1
q

|g|q

‖g‖q
(21.5)

with equality iff |g/‖g‖q| = |f |p−1
/‖f‖(p−1)

p = |f |p/q /‖f‖p/qp , i.e. |g|q‖f‖pp =
‖g‖qq |f |

p
. Integrating Eq. (21.5) implies

‖fg‖1
‖f‖p‖g‖q

≤ 1
p

+
1
q

= 1

with equality iff Eq. (21.4) holds. The proof is finished since it is easily checked
that equality holds in Eq. (21.3) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.

The following corollary is an easy extension of Hölder’s inequality.

Corollary 21.3. Suppose that fi : X → C are measurable functions for i =
1, . . . , n and p1, . . . , pn and r are positive numbers such that

∑n
i=1 p

−1
i = r−1,

then ∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
r

≤
n∏
i=1

‖fi‖pi
where

n∑
i=1

p−1
i = r−1.

Proof. To prove this inequality, start with n = 2, then for any p ∈ [1,∞],

‖fg‖rr =
∫
X

|f |r |g|r dµ ≤ ‖fr‖p ‖g
r‖p∗

where p∗ = p
p−1 is the conjugate exponent. Let p1 = pr and p2 = p∗r so that

p−1
1 + p−1

2 = r−1 as desired. Then the previous equation states that

‖fg‖r ≤ ‖f‖p1 ‖g‖p2

as desired. The general case is now proved by induction. Indeed,∥∥∥∥∥
n+1∏
i=1

fi

∥∥∥∥∥
r

=

∥∥∥∥∥
n∏
i=1

fi · fn+1

∥∥∥∥∥
r

≤

∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
q

‖fn+1‖pn+1

where q−1+p−1
n+1 = r−1. Since

∑n
i=1 p

−1
i = q−1, we may now use the induction

hypothesis to conclude ∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
q

≤
n∏
i=1

‖fi‖pi
,

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality.
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Theorem 21.4 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp

then
‖f + g‖p ≤ ‖f‖p + ‖g‖p. (21.6)

Moreover, assuming f and g are not identically zero, equality holds in Eq.
(21.6) iff sgn(f) $ sgn(g) a.e. (see the notation in Definition 5.7) when p = 1
and f = cg a.e. for some c > 0 for p ∈ (1,∞).

Proof. When p =∞, |f | ≤ ‖f‖∞ a.e. and |g| ≤ ‖g‖∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ a.e. and therefore

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ .

When p <∞,

|f + g|p ≤ (2max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

‖f + g‖pp ≤ 2p
(
‖f‖pp + ‖g‖pp

)
<∞.

In case p = 1,

‖f + g‖1 =
∫
X

|f + g|dµ ≤
∫
X

|f | dµ+
∫
X

|g|dµ

with equality iff |f |+ |g| = |f + g| a.e. which happens iff sgn(f) $ sgn(g) a.e.
In case p ∈ (1,∞), we may assume ‖f + g‖p, ‖f‖p and ‖g‖p are all positive
since otherwise the theorem is easily verified. Now

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

with equality iff sgn(f) $ sgn(g). Integrating this equation and applying
Holder’s inequality with q = p/(p− 1) gives∫

X

|f + g|pdµ ≤
∫
X

|f | |f + g|p−1dµ+
∫
X

|g| |f + g|p−1dµ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q (21.7)

with equality iff

sgn(f) $ sgn(g) and(
|f |
‖f‖p

)p
=
|f + g|p

‖f + g‖pp
=
(
|g|
‖g‖p

)p
a.e. (21.8)

Therefore

‖|f + g|p−1‖qq =
∫
X

(|f + g|p−1)qdµ =
∫
X

|f + g|pdµ. (21.9)

Combining Eqs. (21.7) and (21.9) implies
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‖f + g‖pp ≤ ‖f‖p‖f + g‖p/qp + ‖g‖p‖f + g‖p/qp (21.10)

with equality iff Eq. (21.8) holds which happens iff f = cg a.e. with c > 0.
Solving for ‖f + g‖p in Eq. (21.10) gives Eq. (21.6).

The next theorem gives another example of using Hölder’s inequality

Theorem 21.5. Suppose that (X,M, µ) and (Y,N , ν) be σ – finite measure
spaces, p ∈ [1,∞], q = p/(p−1) and k : X×Y → C be aM⊗N – measurable
function. Assume there exist finite constants C1 and C2 such that∫

X

|k(x, y)| dµ(x) ≤ C1 for ν a.e. y and∫
Y

|k(x, y)| dν(y) ≤ C2 for µ a.e. x.

If f ∈ Lp(ν), then∫
Y

|k(x, y)f(y)| dν(y) <∞ for µ – a.e. x,

x→ Kf(x) :=
∫
Y
k(x, y)f(y)dν(y) ∈ Lp(µ) and

‖Kf‖Lp(µ) ≤ C
1/p
1 C

1/q
2 ‖f‖Lp(ν) (21.11)

Proof. Suppose p ∈ (1,∞) to begin with and let q = p/(p − 1), then by
Hölder’s inequality,∫
Y

|k(x, y)f(y)| dν(y) =
∫
Y

|k(x, y)|1/q |k(x, y)|1/p |f(y)| dν(y)

≤
[∫

Y

|k(x, y)| dν(y)
]1/q [∫

Y

|k(x, y)| |f(y)|p dν(y)
]1/p

≤ C1/q
2

[∫
Y

|k(x, y)| |f(y)|p dν(y)
]1/p

.

Therefore,∥∥∥∥∫
Y

|k(·, y)f(y)| dν(y)
∥∥∥∥p
Lp(µ)

=
∫
X

dµ(x)
[∫

Y

|k(x, y)f(y)| dν(y)
]p

≤ Cp/q2

∫
X

dµ(x)
∫
Y

dν(y) |k(x, y)| |f(y)|p

= C
p/q
2

∫
Y

dν(y) |f(y)|p
∫
X

dµ(x) |k(x, y)|

≤ Cp/q2 C1

∫
Y

dν(y) |f(y)|p = C
p/q
2 C1 ‖f‖pLp(ν) ,
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wherein we used Tonelli’s theorem in third line. From this it follows that∫
Y
|k(x, y)f(y)| dν(y) <∞ for µ - a.e. x,

x→ Kf(x) :=
∫
Y

k(x, y)f(y)dν(y) ∈ Lp(µ)

and that Eq. (21.11) holds.
Similarly if p =∞,∫

Y

|k(x, y)f(y)| dν(y) ≤ ‖f‖L∞(ν)·
∫
Y

|k(x, y)| dν(y) ≤ C2 ‖f‖L∞(ν) for µ – a.e. x.

so that ‖Kf‖L∞(µ) ≤ C2 ‖f‖L∞(ν) . If p = 1, then∫
X

dµ(x)
∫
Y

dν(y) |k(x, y)f(y)| =
∫
Y

dν(y) |f(y)|
∫
X

dµ(x) |k(x, y)|

≤ C1

∫
Y

dν(y) |f(y)|

which shows ‖Kf‖L1(µ) ≤ C1 ‖f‖L1(ν) .

21.1 Jensen’s Inequality

Definition 21.6. A function φ : (a, b)→ R is convex if for all a < x0 < x1 <
b and t ∈ [0, 1] φ(xt) ≤ tφ(x1) + (1− t)φ(x0) where xt = tx1 + (1− t)x0.

Example 21.7. The functions exp(x) and − log(x) are convex and xp is
convex iff p ≥ 1 as follows from Corollary 21.9 below which in part states
that any φ ∈ C2 ((a, b) ,R) such that φ′′ ≥ 0 is convex.

The following Proposition is clearly motivated by Figure 21.1.

Proposition 21.8. Suppose φ : (a, b)→ R is a convex function, then

1. For all u, v, w, z ∈ (a, b) such that u < z, w ∈ [u, z) and v ∈ (u, z],

φ(v)− φ(u)
v − u

≤ φ(z)− φ(w)
z − w

. (21.12)

2. For each c ∈ (a, b), the right and left sided derivatives φ′±(c) exists in R
and if a < u < v < b, then φ′+(u) ≤ φ′−(v) ≤ φ′+(v).

3. The function φ is continuous.
4. For all t ∈ (a, b) and β ∈ [φ′−(t), φ′+(t)], φ(x) ≥ φ(t) + β(x − t) for all
x ∈ (a, b). In particular,

φ(x) ≥ φ(t) + φ′−(t)(x− t) for all x, t ∈ (a, b).
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Fig. 21.1. A convex function along with two cords corresponding to x0 = −2 and
x1 = 4 and x0 = −5 and x1 = −2.

Proof. 1a) Suppose first that u < v = w < z, in which case Eq. (21.12) is
equivalent to

(φ(v)− φ(u)) (z − v) ≤ (φ(z)− φ(v)) (v − u)

which after solving for φ(v) is equivalent to the following equations holding:

φ(v) ≤ φ(z)
v − u
z − u

+ φ(u)
z − v
z − u

.

But this last equation states that φ(v) ≤ φ(z)t + φ(u) (1− t) where t = v−u
z−u

and v = tz + (1− t)u and hence is valid by the definition of φ being convex.
1b) Now assume u = w < v < z, in which case Eq. (21.12) is equivalent to

(φ(v)− φ(u)) (z − u) ≤ (φ(z)− φ(u)) (v − u)

which after solving for φ(v) is equivalent to

φ(v) (z − u) ≤ φ(z) (v − u) + φ(u) (z − v)

which is equivalent to

φ(v) ≤ φ(z)
v − u
z − u

+ φ(u)
z − v
z − u

.

Again this equation is valid by the convexity of φ. 1c) u < w < v = z, in
which case Eq. (21.12) is equivalent to

(φ(z)− φ(u)) (z − w) ≤ (φ(z)− φ(w)) (z − u)

and this is equivalent to the inequality,
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φ(w) ≤ φ(z)
w − u
z − u

+ φ(u)
z − w
z − u

which again is true by the convexity of φ. 1) General case. If u < w < v < z,
then by 1a-1c)

φ(z)− φ(w)
z − w

≥ φ(v)− φ(w)
v − w

≥ φ(v)− φ(u)
v − u

and if u < v < w < z

φ(z)− φ(w)
z − w

≥ φ(w)− φ(v)
w − v

≥ φ(w)− φ(u)
w − u

.

We have now taken care of all possible cases. 2) On the set a < w < z < b,
Eq. (21.12) shows that (φ(z)− φ(w)) / (z − w) is a decreasing function in w
and an increasing function in z and therefore φ′±(x) exists for all x ∈ (a, b).
Also from Eq. (21.12) we learn that

φ′+(u) ≤ φ(z)− φ(w)
z − w

for all a < u < w < z < b, (21.13)

φ(v)− φ(u)
v − u

≤ φ′−(z) for all a < u < v < z < b, (21.14)

and letting w ↑ z in the first equation also implies that

φ′+(u) ≤ φ′−(z) for all a < u < z < b.

The inequality, φ′−(z) ≤ φ′+(z), is also an easy consequence of Eq. (21.12). 3)
Since φ(x) has both left and right finite derivatives, it follows that φ is contin-
uous. (For an alternative proof, see Rudin.) 4) Given t, let β ∈ [φ′−(t), φ′+(t)],
then by Eqs. (21.13) and (21.14),

φ(t)− φ(u)
t− u

≤ φ′−(t) ≤ β ≤ φ′+(t) ≤ φ(z)− φ(t)
z − t

for all a < u < t < z < b. Item 4. now follows.

Corollary 21.9. Suppose φ : (a, b)→ R is differential then φ is convex iff φ′

is non decreasing. In particular if φ ∈ C2(a, b) then φ is convex iff φ′′ ≥ 0.

Proof. By Proposition 21.8, if φ is convex then φ′ is non-decreasing. Con-
versely if φ′ is increasing then by the mean value theorem,

φ(x1)− φ(c)
x1 − c

= φ′(ξ1) for some ξ1 ∈ (c, x1)

and
φ(c)− φ(x0)

c− x0
= φ′(ξ2) for some ξ2 ∈ (x0, c).
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Hence
φ(x1)− φ(c)

x1 − c
≥ φ(c)− φ(x0)

c− x0

for all x0 < c < x1. Solving this inequality for φ(c) gives

φ(c) ≤ c− x0

x1 − x0
φ(x1) +

x1 − c
x1 − x0

φ(x0)

showing φ is convex.

Theorem 21.10 (Jensen’s Inequality). Suppose that (X,M, µ) is a prob-
ability space, i.e. µ is a positive measure and µ(X) = 1. Also suppose that
f ∈ L1(µ), f : X → (a, b), and φ : (a, b)→ R is a convex function. Then

φ

(∫
X

fdµ

)
≤
∫
X

φ(f)dµ

where if φ ◦ f /∈ L1(µ), then φ ◦ f is integrable in the extended sense and∫
X
φ(f)dµ =∞.

Proof. Let t =
∫
X
fdµ ∈ (a, b) and let β ∈ R be such that φ(s) − φ(t) ≥

β(s−t) for all s ∈ (a, b). Then integrating the inequality, φ(f)−φ(t) ≥ β(f−t),
implies that

0 ≤
∫
X

φ(f)dµ− φ(t) =
∫
X

φ(f)dµ− φ(
∫
X

fdµ).

Moreover, if φ(f) is not integrable, then φ(f) ≥ φ(t) + β(f − t) which shows
that negative part of φ(f) is integrable. Therefore,

∫
X
φ(f)dµ = ∞ in this

case.

Example 21.11. The convex functions in Example 21.7 lead to the following
inequalities,

exp
(∫

X

fdµ

)
≤
∫
X

efdµ, (21.15)∫
X

log(|f |)dµ ≤ log
(∫

X

|f | dµ
)

and for p ≥ 1, ∣∣∣∣∫
X

fdµ

∣∣∣∣p ≤ (∫
X

|f | dµ
)p
≤
∫
X

|f |p dµ.

The last equation may also easily be derived using Hölder’s inequality. As a
special case of the first equation, we get another proof of Lemma 5.5. Indeed,
more generally, suppose pi, si > 0 for i = 1, 2, . . . , n and

∑n
i=1

1
pi

= 1, then
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s1 . . . sn = e
∑n

i=1 ln si = e
∑n

i=1
1

pi
ln s

pi
i ≤

n∑
i=1

1
pi
eln s

pi
i =

n∑
i=1

spi

i

pi
(21.16)

where the inequality follows from Eq. (21.15) with X = {1, 2, . . . , n} , µ =∑n
i=1

1
pi
δi and f (i) := ln spi

i . Of course Eq. (21.16) may be proved directly
using the convexity of the exponential function.

21.2 Modes of Convergence

As usual let (X,M, µ) be a fixed measure space, assume 1 ≤ p ≤ ∞ and let
{fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on X.
We have the following notions of convergence and Cauchy sequences.

Definition 21.12. 1. fn → f a.e. if there is a set E ∈M such that µ(E) =
0 and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ – measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We
will abbreviate this by saying fn → f in L0 or by fn

µ→ f.
3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ ‖fn − f‖p = 0.

Definition 21.13. 1. {fn} is a.e. Cauchy if there is a set E ∈M such that
µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.

2. {fn} is Cauchy in µ – measure (or L0 – Cauchy) if limm,n→∞ µ(|fn −
fm| > ε) = 0 for all ε > 0.

3. {fn} is Cauchy in Lp if limm,n→∞ ‖fn − fm‖p = 0.

Lemma 21.14 (Chebyshev’s inequality again). Let p ∈ [1,∞) and f ∈
Lp, then

µ (|f | ≥ ε) ≤ 1
εp
‖f‖pp for all ε > 0.

In particular if {fn} ⊂ Lp is Lp – convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (19.11),

µ (|f | ≥ ε) = µ (|f |p ≥ εp) ≤ 1
εp

∫
X

|f |p dµ =
1
εp
‖f‖pp

and therefore if {fn} is Lp – Cauchy, then

µ (|fn − fm| ≥ ε) ≤
1
εp
‖fn − fm‖pp → 0 as m,n→∞

showing {fn} is L0 – Cauchy. A similar argument holds for the Lp – convergent
case.
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Here is a sequence of functions where fn → 0 a.e., fn 9 0 in L1, fn
m→ 0.

Above is a sequence of functions where fn → 0 a.e., yet fn 9 0 in L1. or in
measure.

Here is a sequence of functions where fn → 0 a.e., fn
m→ 0 but fn 9 0 in L1.

Above is a sequence of functions where fn → 0 in L1, fn 9 0 a.e., and
fn

m→ 0.

Lemma 21.15. Suppose an ∈ C and |an+1−an| ≤ εn and
∞∑
n=1

εn <∞. Then

lim
n→∞

an = a ∈ C exists and |a− an| ≤ δn :=
∞∑
k=n

εk.
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Proof. (This is a special case of Exercise 6.9.) Let m > n then

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)
∣∣∣∣ ≤ m−1∑

k=n

|ak+1 − ak| ≤
∞∑
k=n

εk := δn . (21.17)

So |am− an| ≤ δmin(m,n) → 0 as ,m, n→∞, i.e. {an} is Cauchy. Let m→∞
in (21.17) to find |a− an| ≤ δn.

Theorem 21.16. Suppose {fn} is L0-Cauchy. Then there exists a subse-
quence gj = fnj

of {fn} such that lim gj := f exists a.e. and fn
µ→ f

as n→∞. Moreover if g is a measurable function such that fn
µ→ g as n→∞,

then f = g a.e.

Proof. Let εn > 0 such that
∞∑
n=1

εn < ∞ (εn = 2−n would do) and set

δn =
∞∑
k=n

εk. Choose gj = fnj
such that {nj} is a subsequence of N and

µ({|gj+1 − gj | > εj}) ≤ εj .

Let Ej = {|gj+1 − gj | > εj} ,

FN =
∞⋃
j=N

Ej =
∞⋃
j=N

{|gj+1 − gj | > εj}

and

E :=
∞⋂
N=1

FN =
∞⋂
N=1

∞⋃
j=N

Ej = {|gj+1 − gj | > εj i.o.}.

Then µ(E) = 0 by Lemma 19.20 or the computation

µ(E) ≤
∞∑
j=N

µ(Ej) ≤
∞∑
j=N

εj = δN → 0 as N →∞.

If x /∈ FN , i.e. |gj+1(x)− gj(x)| ≤ εj for all j ≥ N, then by Lemma 21.15,
f(x) = lim

j→∞
gj(x) exists and |f(x) − gj(x)| ≤ δj for all j ≥ N. Therefore,

since Ec =
∞⋃
N=1

F cN , lim
j→∞

gj(x) = f(x) exists for all x /∈ E. Moreover, {x :

|f(x)− gj(x)| > δj} ⊂ Fj for all j ≥ N and hence

µ(|f − gj | > δj) ≤ µ(Fj) ≤ δj → 0 as j →∞.

Therefore gj
µ→ f as j →∞. Since

{|fn − f | > ε} = {|f − gj + gj − fn| > ε}
⊂ {|f − gj | > ε/2} ∪ {|gj − fn| > ε/2},
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µ({|fn − f | > ε}) ≤ µ({|f − gj | > ε/2}) + µ(|gj − fn| > ε/2)

and

µ({|fn − f | > ε}) ≤ lim
j→∞

supµ(|gj − fn| > ε/2)→ 0 as n→∞.

If there is another function g such that fn
µ→ g as n → ∞, then arguing as

above

µ(|f − g| > ε) ≤ µ({|f − fn| > ε/2}) + µ(|g − fn| > ε/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ(∪∞n=1{|f − g| >
1
n
}) ≤

∞∑
n=1

µ(|f − g| > 1
n

) = 0,

i.e. f = g a.e.

Corollary 21.17 (Dominated Convergence Theorem). Suppose {fn} ,
{gn} , and g are in L1 and f ∈ L0 are functions such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
∫
gn →

∫
g as n→∞.

Then f ∈ L1 and limn→∞ ‖f − fn‖1 = 0, i.e. fn → f in L1. In particular
limn→∞

∫
fn =

∫
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To
see that |f | ≤ g, use Theorem 21.16 to find subsequences {fnk

} and {gnk
} of

{fn} and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk
| ≤ lim

k→∞
gnk

= g a.e.

If (for sake of contradiction) limn→∞ ‖f − fn‖1 6= 0 there exists ε > 0 and a
subsequence {fnk

} of {fn} such that∫
|f − fnk

| ≥ ε for all k. (21.18)

Using Theorem 21.16 again, we may assume (by passing to a further subse-
quences if necessary) that fnk

→ f and gnk
→ g almost everywhere. Noting,

|f − fnk
| ≤ g + gnk

→ 2g and
∫

(g + gnk
) →

∫
2g, an application of the

dominated convergence Theorem 19.38 implies limk→∞
∫
|f − fnk

| = 0 which
contradicts Eq. (21.18).

Exercise 21.1 (Fatou’s Lemma). If fn ≥ 0 and fn → f in measure, then∫
f ≤ lim infn→∞

∫
fn.
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21.3 Completeness of Lp – spaces 393

Theorem 21.18 (Egoroff’s Theorem). Suppose µ(X) < ∞ and fn → f
a.e. Then for all ε > 0 there exists E ∈ M such that µ(E) < ε and fn → f

uniformly on Ec. In particular fn
µ−→ f as n→∞.

Proof. Let fn → f a.e. Then µ({|fn − f | > 1
k i.o. n}) = 0 for all k > 0,

i.e.

lim
N→∞

µ

 ⋃
n≥N

{|fn − f | >
1
k
}

 = µ

 ∞⋂
N=1

⋃
n≥N

{|fn − f | >
1
k
}

 = 0.

Let Ek :=
⋃

n≥Nk

{|fn − f | > 1
k} and choose an increasing sequence {Nk}∞k=1

such that µ(Ek) < ε2−k for all k. Setting E := ∪Ek, µ(E) <
∑
k ε2

−k = ε
and if x /∈ E, then |fn − f | ≤ 1

k for all n ≥ Nk and all k. That is fn → f
uniformly on Ec.

Exercise 21.2. Show that Egoroff’s Theorem remains valid when the as-
sumption µ(X) <∞ is replaced by the assumption that |fn| ≤ g ∈ L1 for all n.
Hint: make use of Theorem 21.18 applied to fn|Xk

where Xk :=
{
|g| ≥ k−1

}
.

21.3 Completeness of Lp – spaces

Theorem 21.19. Let ‖·‖∞ be as defined in Eq. (21.2), then (L∞(X,M, µ), ‖·‖∞) is
a Banach space. A sequence {fn}∞n=1 ⊂ L∞ converges to f ∈ L∞ iff there ex-
ists E ∈ M such that µ(E) = 0 and fn → f uniformly on Ec. Moreover,
bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 21.4, ‖·‖∞ satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure ‖·‖∞
is a norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
‖f − fn‖∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
(
|f − fn| > k−1

)
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

{
|f − fn| > k−1

}
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈ M such
that µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩ Ec) = 0

for all n sufficiently large. That is to say lim supn→∞ ‖f − fn‖∞ ≤ ε for
all ε > 0. The density of simple functions follows from the approximation
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Theorem 18.42. So the last item to prove is the completeness of L∞ for which
we will use Theorem 7.13.

Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such that
∑∞
n=1 ‖fn‖∞ < ∞.

Let Mn := ‖fn‖∞ , En := {|fn| > Mn} , and E := ∪∞n=1En so that µ(E) = 0.
Then

∞∑
n=1

sup
x∈Ec

|fn(x)| ≤
∞∑
n=1

Mn <∞

which shows that SN (x) =
∑N
n=1 fn(x) converges uniformly to S(x) :=∑∞

n=1 fn(x) on Ec, i.e. limn→∞ ‖S − Sn‖∞ = 0.
Alternatively, suppose εm,n := ‖fm − fn‖∞ → 0 as m,n → ∞. Let

Em,n = {|fn − fm| > εm,n} and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.

Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec.
Letting f = limn→∞ 1Ecfn, it then follows that limn→∞ ‖fn − f‖∞ = 0.

Theorem 21.20 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp – norm, ‖·‖p (see Eq. (21.1)), is a Banach space.

Proof. By Minkowski’s Theorem 21.4, ‖·‖p satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure
‖·‖p is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p <∞,
the case p =∞ being done in Theorem 21.19.

Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 21.14), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
21.16 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,

‖gj − f‖pp =
∫

lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf
∫
|gj − gk|pdµ

= lim
k→∞

inf ‖gj − gk‖pp → 0 as j →∞.

In particular, ‖f‖p ≤ ‖gj − f‖p+ ‖gj‖p <∞ so the f ∈ Lp and gj
Lp

−→ f . The
proof is finished because,

‖fn − f‖p ≤ ‖fn − gj‖p + ‖gj − f‖p → 0 as j, n→∞.

The Lp(µ) – norm controls two types of behaviors of f, namely the “be-
havior at infinity” and the behavior of “local singularities.” So in particular,
if f blows up at a point x0 ∈ X, then locally near x0 it is harder for f to be in
Lp(µ) as p increases. On the other hand a function f ∈ Lp(µ) is allowed to de-
cay at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
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there are two notable exceptions. (1) If µ(X) <∞, then there is no behavior
at infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≥ p as is shown in
Corollary 21.21 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then
all functions in Lp(µ) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≥ p,
see Corollary 21.25 below.

Corollary 21.21. If µ(X) < ∞ and 0 < p < q ≤ ∞, then Lq(µ) ⊂ Lp(µ),
the inclusion map is bounded and in fact

‖f‖p ≤ [µ(X)](
1
p−

1
q ) ‖f‖q .

Proof. Take a ∈ [1,∞] such that

1
p

=
1
a

+
1
q
, i.e. a =

pq

q − p
.

Then by Corollary 21.3,

‖f‖p = ‖f · 1‖p ≤ ‖f‖q · ‖1‖a = µ(X)1/a‖f‖q = µ(X)(
1
p−

1
q )‖f‖q.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

Proposition 21.22. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1
pλ

=
1− λ
p0

+
λ

p1
(21.19)

with the interpretation that λ/p1 = 0 if p1 =∞.1 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g+h with g ∈ Lp0 and h ∈ Lp1 .
For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

‖f‖ := inf
{
‖g‖p0 + ‖h‖p1 : f = g + h

}
.

Then (Lp0 + Lp1 , ‖·‖) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact ‖f‖ ≤ 2 ‖f‖pλ

for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined
by f on Ec. Hence let g = f1E and h = f1Ec so that f = g+h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,
1 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0

pλ
· p1 − pλ

p1 − p0
.
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‖g‖p0p0 =
∫
|f |p0 1|f |>M = Mp0

∫ ∣∣∣∣ fM
∣∣∣∣p0 1|f |>M

≤Mp0

∫ ∣∣∣∣ fM
∣∣∣∣pλ

1|f |>M ≤Mp0−pλ ‖f‖pλ

pλ
<∞

and

‖h‖p1p1 =
∥∥f1|f |≤M

∥∥p1
p1

=
∫
|f |p1 1|f |≤M = Mp1

∫ ∣∣∣∣ fM
∣∣∣∣p1 1|f |≤M

≤Mp1

∫ ∣∣∣∣ fM
∣∣∣∣pλ

1|f |≤M ≤Mp1−pλ ‖f‖pλ

pλ
<∞.

Moreover this shows

‖f‖ ≤M1−pλ/p0 ‖f‖pλ/p0
pλ

+M1−pλ/p1 ‖f‖pλ/p1
pλ

.

Taking M = λ ‖f‖pλ
then gives

‖f‖ ≤
(
λ1−pλ/p0 + λ1−pλ/p1

)
‖f‖pλ

and then taking λ = 1 shows ‖f‖ ≤ 2 ‖f‖pλ
. The proof that (Lp0 + Lp1 , ‖·‖)

is a Banach space is left as Exercise 21.7 to the reader.

Corollary 21.23 (Interpolation of Lp – norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (21.19), then
Lp0 ∩ Lp1 ⊂ Lpλ and

‖f‖pλ
≤ ‖f‖λp0 ‖f‖

1−λ
p1

. (21.20)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let

‖f‖ := ‖f‖p0 + ‖f‖p1 .

Then (Lp0 ∩ Lp1 , ‖·‖) is a Banach space and the inclusion map of Lp0 ∩ Lp1
into Lpλ is bounded, in fact

‖f‖pλ
≤ max

(
λ−1, (1− λ)−1

) (
‖f‖p0 + ‖f‖p1

)
. (21.21)

The heuristic explanation of this corollary is that if f ∈ Lp0 ∩Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.

Proof. Let λ be determined as above, a = p0/λ and b = p1/(1− λ), then
by Corollary 21.3,

‖f‖pλ
=
∥∥∥|f |λ |f |1−λ∥∥∥

pλ

≤
∥∥∥|f |λ∥∥∥

a

∥∥∥|f |1−λ∥∥∥
b

= ‖f‖λp0 ‖f‖
1−λ
p1

.

It is easily checked that ‖·‖ is a norm on Lp0 ∩ Lp1 . To show this space is
complete, suppose that {fn} ⊂ Lp0 ∩ Lp1 is a ‖·‖ – Cauchy sequence. Then
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21.4 Converse of Hölder’s Inequality 397

{fn} is both Lp0 and Lp1 – Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ ‖f − fn‖p0 = 0 and limn→∞ ‖g − fn‖pλ

= 0. By Chebyshev’s
inequality (Lemma 21.14) fn → f and fn → g in measure and therefore by
Theorem 21.16, f = g a.e. It now is clear that limn→∞ ‖f − fn‖ = 0. The
estimate in Eq. (21.21) is left as Exercise 21.6 to the reader.

Remark 21.24. Combining Proposition 21.22 and Corollary 21.23 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (21.19).

Corollary 21.25. Suppose now that µ is counting measure on X. Then
Lp(µ) ⊂ Lq(µ) for all 0 < p < q ≤ ∞ and ‖f‖q ≤ ‖f‖p .

Proof. Suppose that 0 < p < q =∞, then

‖f‖p∞ = sup {|f(x)|p : x ∈ X} ≤
∑
x∈X
|f(x)|p = ‖f‖pp ,

i.e. ‖f‖∞ ≤ ‖f‖p for all 0 < p < ∞. For 0 < p ≤ q ≤ ∞, apply Corollary
21.23 with p0 = p and p1 =∞ to find

‖f‖q ≤ ‖f‖
p/q
p ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p .

21.3.1 Summary:

1. Since µ(|f | > ε) ≤ ε−p ‖f‖pp , Lp – convergence implies L0 – convergence.
2. L0 – convergence implies almost everywhere convergence for some subse-

quence.
3. If µ(X) < ∞ then almost everywhere convergence implies uniform con-

vergence off certain sets of small measure and in particular we have L0 –
convergence.

4. If µ(X) <∞, then Lq ⊂ Lp for all p ≤ q and Lq – convergence implies Lp

– convergence.
5. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
6. If p ≤ q, then `p ⊂ `q and‖f‖q ≤ ‖f‖p .

21.4 Converse of Hölder’s Inequality

Throughout this section we assume (X,M, µ) is a σ – finite measure space,
q ∈ [1,∞] and p ∈ [1,∞] are conjugate exponents, i.e. p−1 + q−1 = 1. For
g ∈ Lq, let φg ∈ (Lp)∗ be given by
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φg(f) =
∫
gf dµ =: 〈g, f〉. (21.22)

By Hölder’s inequality

|φg(f)| ≤
∫
|gf |dµ ≤ ‖g‖q‖f‖p (21.23)

which implies that

‖φg‖(Lp)∗ := sup{|φg(f)| : ‖f‖p = 1} ≤ ‖g‖q. (21.24)

Proposition 21.26 (Converse of Hölder’s Inequality). Let (X,M, µ) be
a σ – finite measure space and 1 ≤ p ≤ ∞ as above. For all g ∈ Lq,

‖g‖q = ‖φg‖(Lp)∗ := sup
{
|φg(f)| : ‖f‖p = 1

}
(21.25)

and for any measurable function g : X → C,

‖g‖q = sup
{∫

X

|g| fdµ : ‖f‖p = 1 and f ≥ 0
}
. (21.26)

Proof. We begin by proving Eq. (21.25). Assume first that q < ∞ so
p > 1. Then

|φg(f)| =
∣∣∣∣∫ gf dµ

∣∣∣∣ ≤ ∫ |gf | dµ ≤ ‖g‖q‖f‖p
and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 21.2, when |f |p = c|g|q for some
constant c > 0. So let f := sgn(g)|g|q/p which for p =∞ is to be interpreted
as f = sgn(g), i.e. |g|q/∞ ≡ 1. When p =∞,

|φg(f)| =
∫
X

g sgn(g)dµ = ‖g‖L1(µ) = ‖g‖1 ‖f‖∞

which shows that ‖φg‖(L∞)∗ ≥ ‖g‖1. If p <∞, then

‖f‖pp =
∫
|f |p =

∫
|g|q = ‖g‖qq

while
φg(f) =

∫
gfdµ =

∫
|g||g|q/pdµ =

∫
|g|qdµ = ‖g‖qq.

Hence
|φg(f)|
‖f‖p

=
‖g‖qq
‖g‖q/pq

= ‖g‖q(1−
1
p )

q = ‖g‖q.

This shows that ||φg‖ ≥ ‖g‖q which combined with Eq. (21.24) implies Eq.
(21.25).
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21.4 Converse of Hölder’s Inequality 399

The last case to consider is p = 1 and q =∞. Let M := ‖g‖∞ and choose
Xn ∈ M such that Xn ↑ X as n → ∞ and µ(Xn) < ∞ for all n. For any
ε > 0, µ(|g| ≥M −ε) > 0 and Xn∩{|g| ≥M −ε} ↑ {|g| ≥M −ε}. Therefore,
µ(Xn ∩ {|g| ≥M − ε}) > 0 for n sufficiently large. Let

f = sgn(g)1Xn∩{|g|≥M−ε},

then
‖f‖1 = µ(Xn ∩ {|g| ≥M − ε}) ∈ (0,∞)

and

|φg(f)| =
∫
Xn∩{|g|≥M−ε}

sgn(g)gdµ =
∫
Xn∩{|g|≥M−ε}

|g|dµ

≥ (M − ε)µ(Xn ∩ {|g| ≥M − ε}) = (M − ε)‖f‖1.

Since ε > 0 is arbitrary, it follows from this equation that ‖φg‖(L1)∗ ≥ M =
‖g‖∞.

Now for the proof of Eq. (21.26). The key new point is that we no longer
are assuming that g ∈ Lq. Let M(g) denote the right member in Eq. (21.26)
and set gn := 1Xn∩{|g|≤n}g. Then |gn| ↑ |g| as n → ∞ and it is clear that
M(gn) is increasing in n. Therefore using Lemma 4.10 and the monotone
convergence theorem,

lim
n→∞

M(gn) = sup
n
M(gn) = sup

n
sup

{∫
X

|gn| fdµ : ‖f‖p = 1 and f ≥ 0
}

= sup
{

sup
n

∫
X

|gn| fdµ : ‖f‖p = 1 and f ≥ 0
}

= sup
{

lim
n→∞

∫
X

|gn| fdµ : ‖f‖p = 1 and f ≥ 0
}

= sup
{∫

X

|g| fdµ : ‖f‖p = 1 and f ≥ 0
}

= M(g).

Since gn ∈ Lq for all n and M(gn) = ‖φgn
‖(Lp)∗ (as you should verify), it

follows from Eq. (21.25) that M(gn) = ‖gn‖q . When q <∞ (by the monotone
convergence theorem) and when q = ∞ (directly from the definitions) one
learns that limn→∞ ‖gn‖q = ‖g‖q . Combining this fact with limn→∞M(gn) =
M(g) just proved shows M(g) = ‖g‖q .

As an application we can derive a sweeping generalization of Minkowski’s
inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 21.27 (Minkowski’s Inequality for Integrals). Let (X,M, µ)
and (Y,N , ν) be σ – finite measure spaces and 1 ≤ p ≤ ∞. If f is a M⊗N
measurable function, then y → ‖f(·, y)‖Lp(µ) is measurable and
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1. if f is a positive M⊗N measurable function, then∥∥∥∥∫
Y

f(·, y)dν(y)
∥∥∥∥
Lp(µ)

≤
∫
Y

‖f(·, y)‖Lp(µ)dν(y). (21.27)

2. If f : X×Y → C is aM⊗N measurable function and
∫
Y
‖f(·, y)‖Lp(µ)dν(y) <

∞ then
a) for µ – a.e. x, f(x, ·) ∈ L1(ν),
b) the µ –a.e. defined function, x→

∫
Y
f(x, y)dν(y), is in Lp(µ) and

c) the bound in Eq. (21.27) holds.

Proof. For p ∈ [1,∞], let Fp(y) := ‖f(·, y)‖Lp(µ). If p ∈ [1,∞)

Fp(y) = ‖f(·, y)‖Lp(µ) =
(∫

X

|f(x, y)|p dµ(x)
)1/p

is a measurable function on Y by Fubini’s theorem. To see that F∞ is mea-
surable, let Xn ∈ M such that Xn ↑ X and µ(Xn) < ∞ for all n. Then by
Exercise 21.5,

F∞(y) = lim
n→∞

lim
p→∞

‖f(·, y)1Xn‖Lp(µ)

which shows that F∞ is (Y,N ) – measurable as well. This shows that integral
on the right side of Eq. (21.27) is well defined.

Now suppose that f ≥ 0, q = p/(p− 1)and g ∈ Lq(µ) such that g ≥ 0 and
‖g‖Lq(µ) = 1. Then by Tonelli’s theorem and Hölder’s inequality,∫

X

[∫
Y

f(x, y)dν(y)
]
g(x)dµ(x) =

∫
Y

dν(y)
∫
X

dµ(x)f(x, y)g(x)

≤ ‖g‖Lq(µ)

∫
Y

‖f(·, y)‖Lp(µ)dν(y)

=
∫
Y

‖f(·, y)‖Lp(µ)dν(y).

Therefore by the converse to Hölder’s inequality (Proposition 21.26),∥∥∥∥∫
Y

f(·, y)dν(y)
∥∥∥∥
Lp(µ)

= sup
{∫

X

[∫
Y

f(x, y)dν(y)
]
g(x)dµ(x) : ‖g‖Lq(µ) = 1 and g ≥ 0

}
≤
∫
Y

‖f(·, y)‖Lp(µ)dν(y)

proving Eq. (21.27) in this case.
Now let f : X×Y → C be as in item 2) of the theorem. Applying the first

part of the theorem to |f | shows
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Y

|f(x, y)| dν(y) <∞ for µ– a.e. x,

i.e. f(x, ·) ∈ L1(ν) for the µ –a.e. x. Since
∣∣∫
Y
f(x, y)dν(y)

∣∣ ≤ ∫
Y
|f(x, y)| dν(y)

it follows by item 1) that∥∥∥∥∫
Y

f(·, y)dν(y)
∥∥∥∥
Lp(µ)

≤
∥∥∥∥∫

Y

|f(·, y)| dν(y)
∥∥∥∥
Lp(µ)

≤
∫
Y

‖f(·, y)‖Lp(µ) dν(y).

Hence the function, x ∈ X →
∫
Y
f(x, y)dν(y), is in Lp(µ) and the bound in

Eq. (21.27) holds.
Here is an application of Minkowski’s inequality for integrals. In this the-

orem we will be using the convention that x−1/∞ := 1.

Theorem 21.28 (Theorem 6.20 in Folland). Suppose that k : (0,∞) ×
(0,∞)→ C is a measurable function such that k is homogenous of degree −1,
i.e. k(λx, λy) = λ−1k(x, y) for all λ > 0. If, for some p ∈ [1,∞],

Cp :=
∫ ∞

0

|k(x, 1)|x−1/pdx <∞

then for f ∈ Lp((0,∞),m), k(x, ·)f(·) ∈ L1((0,∞),m) for m – a.e. x. More-
over, the m – a.e. defined function

(Kf)(x) =
∫ ∞

0

k(x, y)f(y)dy (21.28)

is in Lp((0,∞),m) and

‖Kf‖Lp((0,∞),m) ≤ Cp‖f‖Lp((0,∞),m).

Proof. By the homogeneity of k, k(x, y) = x−1k(1, yx ). Using this relation
and making the change of variables, y = zx, gives∫ ∞

0

|k(x, y)f(y)| dy =
∫ ∞

0

x−1
∣∣∣k(1, y

x
)f(y)

∣∣∣ dy
=
∫ ∞

0

x−1 |k(1, z)f(xz)|xdz =
∫ ∞

0

|k(1, z)f(xz)| dz.

Since
‖f(· z)‖pLp((0,∞),m) =

∫ ∞

0

|f(yz)|pdy =
∫ ∞

0

|f(x)|p dx

z
,

‖f(· z)‖Lp((0,∞),m) = z−1/p‖f‖Lp((0,∞),m).

Using Minkowski’s inequality for integrals then shows
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0

|k(·, y)f(y)| dy
∥∥∥∥
Lp((0,∞),m)

≤
∫ ∞

0

|k(1, z)| ‖f(·z)‖Lp((0,∞),m) dz

= ‖f‖Lp((0,∞),m)

∫ ∞

0

|k(1, z)| z−1/pdz

= Cp‖f‖Lp((0,∞),m) <∞.

This shows that Kf in Eq. (21.28) is well defined from m – a.e. x. The proof
is finished by observing

‖Kf‖Lp((0,∞),m) ≤
∥∥∥∥∫ ∞

0

|k(·, y)f(y)| dy
∥∥∥∥
Lp((0,∞),m)

≤ Cp‖f‖Lp((0,∞),m)

for all f ∈ Lp((0,∞),m).
The following theorem is a strengthening of Proposition 21.26. It may be

skipped on the first reading.

Theorem 21.29 (Converse of Hölder’s Inequality II). Assume that
(X,M, µ) is a σ – finite measure space, q, p ∈ [1,∞] are conjugate exponents
and let Sf denote the set of simple functions φ on X such that µ (φ 6= 0) <∞.
Let g : X → C be a measurable function such that φg ∈ L1 (µ) for all φ ∈ Sf ,2
and define

Mq(g) := sup
{∣∣∣∣∫

X

φgdµ

∣∣∣∣ : φ ∈ Sf with ‖φ‖p = 1
}
. (21.29)

If Mq(g) <∞ then g ∈ Lq (µ) and Mq(g) = ‖g‖q .

Proof. Let Xn ∈M be sets such that µ(Xn) <∞ and Xn ↑ X as n ↑ ∞.
Suppose that q = 1 and hence p = ∞. Choose simple functions φn on X
such that |φn| ≤ 1 and sgn(g) = limn→∞ φn in the pointwise sense. Then
1Xmφn ∈ Sf and therefore∣∣∣∣∫

X

1Xm
φngdµ

∣∣∣∣ ≤Mq(g)

for all m,n. By assumption 1Xm
g ∈ L1(µ) and therefore by the dominated

convergence theorem we may let n→∞ in this equation to find∫
X

1Xm |g| dµ ≤Mq(g)

for all m. The monotone convergence theorem then implies that∫
X

|g| dµ = lim
m→∞

∫
X

1Xm |g| dµ ≤Mq(g)

2 This is equivalent to requiring 1Ag ∈ L1(µ) for all A ∈M such that µ(A) <∞.
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showing g ∈ L1(µ) and ‖g‖1 ≤ Mq(g). Since Holder’s inequality implies that
Mq(g) ≤ ‖g‖1 , we have proved the theorem in case q = 1. For q > 1, we will
begin by assuming that g ∈ Lq(µ). Since p ∈ [1,∞) we know that Sf is a
dense subspace of Lp(µ) and therefore, using φg is continuous on Lp(µ),

Mq(g) = sup
{∣∣∣∣∫

X

φgdµ

∣∣∣∣ : φ ∈ Lp(µ) with ‖φ‖p = 1
}

= ‖g‖q

where the last equality follows by Proposition 21.26. So it remains to show
that if φg ∈ L1 for all φ ∈ Sf and Mq(g) <∞ then g ∈ Lq(µ). For n ∈ N, let
gn := 1Xn

1|g|≤ng. Then gn ∈ Lq(µ), in fact ‖gn‖q ≤ nµ(Xn)1/q < ∞. So by
the previous paragraph, ‖gn‖q = Mq(gn) and hence

‖gn‖q = sup
{∣∣∣∣∫

X

φ1Xn
1|g|≤ngdµ

∣∣∣∣ : φ ∈ Lp(µ) with ‖φ‖p = 1
}

≤Mq(g)
∥∥φ1Xn

1|g|≤n
∥∥
p
≤Mq(g) · 1 = Mq(g)

wherein the second to last inequality we have made use of the definition of
Mq(g) and the fact that φ1Xn

1|g|≤n ∈ Sf . If q ∈ (1,∞), an application of the
monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, ‖·‖p , implies

‖g‖q = lim
n→∞

‖gn‖q ≤Mq(g) <∞.

If q =∞, then ‖gn‖∞ ≤Mq(g) <∞ for all n implies |gn| ≤Mq(g) a.e. which
then implies that |g| ≤Mq(g) a.e. since |g| = limn→∞ |gn| . That is g ∈ L∞(µ)
and ‖g‖∞ ≤M∞(g).

21.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 – convergent sequence is Lp – convergent.

Notation 21.30 For f ∈ L1(µ) and E ∈M, let

µ(f : E) :=
∫
E

fdµ.

and more generally if A,B ∈M let

µ(f : A,B) :=
∫
A∩B

fdµ.

Lemma 21.31. Suppose g ∈ L1(µ), then for any ε > 0 there exist a δ > 0
such that µ(|g| : E) < ε whenever µ(E) < δ.

Page: 403 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



404 21 Lp-spaces

Proof. If the Lemma is false, there would exist ε > 0 and sets En such
that µ(En) → 0 while µ(|g| : En) ≥ ε for all n. Since |1En

g| ≤ |g| ∈ L1 and
for any δ ∈ (0, 1), µ(1En

|g| > δ) ≤ µ(En) → 0 as n → ∞, the dominated
convergence theorem of Corollary 21.17 implies limn→∞ µ(|g| : En) = 0. This
contradicts µ(|g| : En) ≥ ε for all n and the proof is complete.

Suppose that {fn}∞n=1 is a sequence of measurable functions which con-
verge in L1(µ) to a function f. Then for E ∈M and n ∈ N,

|µ(fn : E)| ≤ |µ(f − fn : E)|+ |µ(f : E)| ≤ ‖f − fn‖1 + |µ(f : E)| .

Let εN := supn>N ‖f − fn‖1 , then εN ↓ 0 as N ↑ ∞ and

sup
n
|µ(fn : E)| ≤ sup

n≤N
|µ(fn : E)| ∨ (εN + |µ(f : E)|) ≤ εN + µ (gN : E) ,

(21.30)
where gN = |f | +

∑N
n=1 |fn| ∈ L1. From Lemma 21.31 and Eq. (21.30) one

easily concludes,

∀ ε > 0 ∃ δ > 0 3 sup
n
|µ(fn : E)| < ε when µ(E) < δ. (21.31)

Definition 21.32. Functions {fn}∞n=1 ⊂ L1(µ) satisfying Eq. (21.31) are
said to be uniformly integrable.

Remark 21.33. Let {fn} be real functions satisfying Eq. (21.31), E be a set
where µ(E) < δ and En = E ∩ {fn ≥ 0} . Then µ(En) < δ so that µ(f+

n :
E) = µ(fn : En) < ε and similarly µ(f−n : E) < ε. Therefore if Eq. (21.31)
holds then

sup
n
µ(|fn| : E) < 2ε when µ(E) < δ. (21.32)

Similar arguments work for the complex case by looking at the real and imag-
inary parts of fn. Therefore {fn}∞n=1 ⊂ L1(µ) is uniformly integrable iff

∀ ε > 0 ∃ δ > 0 3 sup
n
µ(|fn| : E) < ε when µ(E) < δ. (21.33)

Lemma 21.34. Assume that µ(X) < ∞, then {fn} is uniformly bounded in
L1(µ) (i.e. K = supn ‖fn‖1 <∞) and {fn} is uniformly integrable iff

lim
M→∞

sup
n
µ(|fn| : |fn| ≥M) = 0. (21.34)

Proof. Since {fn} is uniformly bounded in L1(µ), µ(|fn| ≥ M) ≤ K/M.
So if (21.33) holds and ε > 0 is given, we may choose M sufficiently large so
that µ(|fn| ≥M) < δ(ε) for all n and therefore,

sup
n
µ(|fn| : |fn| ≥M) ≤ ε.

Since ε is arbitrary, we concluded that Eq. (21.34) must hold. Conversely,
suppose that Eq. (21.34) holds, then automatically K = supn µ(|fn|) < ∞
because
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µ(|fn|) = µ(|fn| : |fn| ≥M) + µ(|fn| : |fn| < M)
≤ sup

n
µ(|fn| : |fn| ≥M) +Mµ(X) <∞.

Moreover,

µ(|fn| : E) = µ(|fn| : |fn| ≥M,E) + µ(|fn| : |fn| < M,E)
≤ sup

n
µ(|fn| : |fn| ≥M) +Mµ(E).

So given ε > 0 choose M so large that supn µ(|fn| : |fn| ≥M) < ε/2 and then
take δ = ε/ (2M) .

Remark 21.35. It is not in general true that if {fn} ⊂ L1(µ) is uniformly
integrable then supn µ(|fn|) <∞. For example take X = {∗} and µ({∗}) = 1.
Let fn(∗) = n. Since for δ < 1 a set E ⊂ X such that µ(E) < δ is in fact
the empty set, we see that Eq. (21.32) holds in this example. However, for
finite measure spaces with out “atoms”, for every δ > 0 we may find a finite
partition of X by sets {E`}k`=1 with µ(E`) < δ. Then if Eq. (21.32) holds with
2ε = 1, then

µ(|fn|) =
k∑
`=1

µ(|fn| : E`) ≤ k

showing that µ(|fn|) ≤ k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly bounded and uniformly in-
tegrable.

Lemma 21.36. Suppose that µ(X) < ∞, and Λ ⊂ L0(X) is a collection of
functions.

1. If there exists a non decreasing function φ : R+ → R+ such that
limx→∞ φ(x)/x =∞ and

K := sup
f∈Λ

µ(φ(|f |)) <∞ (21.35)

then
lim
M→∞

sup
f∈Λ

µ
(
|f | 1|f |≥M

)
= 0. (21.36)

2. Conversely if Eq. (21.36) holds, there exists a non-decreasing continuous
function φ : R+ → R+ such that φ(0) = 0, limx→∞ φ(x)/x = ∞ and Eq.
(21.35) is valid.

Proof. 1. Let φ be as in item 1. above and set εM := supx≥M
x

φ(x) → 0
as M →∞ by assumption. Then for f ∈ Λ
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µ(|f | : |f | ≥M) = µ(
|f |

φ (|f |)
φ (|f |) : |f | ≥M) ≤ εMµ(φ (|f |) : |f | ≥M)

≤ εMµ(φ (|f |)) ≤ KεM

and hence
lim
M→∞

sup
f∈Λ

µ
(
|f | 1|f |≥M

)
≤ lim
M→∞

KεM = 0.

2. By assumption, εM := supf∈Λ µ
(
|f | 1|f |≥M

)
→ 0 as M → ∞. Therefore

we may choose Mn ↑ ∞ such that
∞∑
n=0

(n+ 1) εMn <∞

where by convention M0 := 0. Now define φ so that φ(0) = 0 and

φ′(x) =
∞∑
n=0

(n+ 1) 1(Mn,Mn+1](x),

i.e.

φ(x) =
∫ x

0

φ′(y)dy =
∞∑
n=0

(n+ 1) (x ∧Mn+1 − x ∧Mn) .

By construction φ is continuous, φ(0) = 0, φ′(x) is increasing (so φ is convex)
and φ′(x) ≥ (n+ 1) for x ≥Mn. In particular

φ(x)
x
≥ φ(Mn) + (n+ 1)x

x
≥ n+ 1 for x ≥Mn

from which we conclude limx→∞ φ(x)/x = ∞. We also have φ′(x) ≤ (n + 1)
on [0,Mn+1] and therefore

φ(x) ≤ (n+ 1)x for x ≤Mn+1.

So for f ∈ Λ,

µ (φ(|f |)) =
∞∑
n=0

µ
(
φ(|f |)1(Mn,Mn+1](|f |)

)
≤

∞∑
n=0

(n+ 1)µ
(
|f | 1(Mn,Mn+1](|f |)

)
≤

∞∑
n=0

(n+ 1)µ
(
|f | 1|f |≥Mn

)
≤

∞∑
n=0

(n+ 1) εMn

and hence

sup
f∈Λ

µ (φ(|f |)) ≤
∞∑
n=0

(n+ 1) εMn
<∞.
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Theorem 21.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 ≤ p <∞. A sequence {fn} ⊂ Lp is Cauchy iff

1. {fn} is L0 – Cauchy,
2. {|fn|p} – is uniformly integrable.
3. For all ε > 0, there exists a set E ∈ M such that µ(E) < ∞ and∫

Ec |fn|p dµ < ε for all n. (This condition is vacuous when µ(X) <∞.)

Proof. (=⇒) Suppose {fn} ⊂ Lp is Cauchy. Then (1) {fn} is L0 –
Cauchy by Lemma 21.14. (2) By completeness of Lp, there exists f ∈ Lp such
that ‖fn − f‖p → 0 as n→∞. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f | , |fn|))p−1 ||f | − |fn|| ≤ p(|f |+ |fn|)p−1 ||f | − |fn||

and therefore by Hölder’s inequality,∫
||f |p − |fn|p| dµ ≤ p

∫
(|f |+ |fn|)p−1 ||f | − |fn|| dµ ≤ p

∫
(|f |+ |fn|)p−1|f − fn|dµ

≤ p‖f − fn‖p‖(|f |+ |fn|)p−1‖q = p‖ |f |+ |fn|‖p/qp ‖f − fn‖p
≤ p(‖f‖p + ‖fn‖p)p/q‖f − fn‖p

where q := p/(p− 1). This shows that
∫
||f |p − |fn|p| dµ→ 0 as n→∞.3 By

the remarks prior to Definition 21.32, {|fn|p} is uniformly integrable. To verify
(3), for M > 0 and n ∈ N let EM = {|f | ≥ M} and EM (n) = {|fn| ≥ M}.
Then µ(EM ) ≤ 1

Mp ‖f ||pp <∞ and by the dominated convergence theorem,∫
Ec

M

|f |p dµ =
∫
|f |p 1|f |<Mdµ→ 0 as M → 0.

Moreover,∥∥fn1Ec
M

∥∥
p
≤
∥∥f1Ec

M

∥∥
p
+
∥∥(fn − f)1Ec

M

∥∥
p
≤
∥∥f1Ec

M

∥∥
p
+ ‖fn − f‖p . (21.37)

So given ε > 0, choose N sufficiently large such that for all n ≥ N, ‖f −
fn‖pp < ε. Then choose M sufficiently small such that

∫
Ec

M
|f |p dµ < ε and∫

Ec
M (n)

|f |p dµ < ε for all n = 1, 2, . . . , N − 1. Letting E := EM ∪ EM (1) ∪
· · · ∪ EM (N − 1), we have

µ(E) <∞,
∫
Ec

|fn|p dµ < ε for n ≤ N − 1

and by Eq. (21.37)

3 Here is an alternative proof. Let hn ≡ ||fn|p − |f |p| ≤ |fn|p + |f |p =: gn ∈ L1 and

g ≡ 2|f |p. Then gn
µ→ g, hn

µ→ 0 and
∫
gn →

∫
g. Therefore by the dominated

convergence theorem in Corollary 21.17, lim
n→∞

∫
hn dµ = 0.

Page: 407 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



408 21 Lp-spaces∫
Ec

|fn|p dµ < (ε1/p + ε1/p)p ≤ 2pε for n ≥ N.

Therefore we have found E ∈M such that µ(E) <∞ and

sup
n

∫
Ec

|fn|p dµ ≤ 2pε

which verifies (3) since ε > 0 was arbitrary. (⇐=) Now suppose{fn} ⊂ Lp

satisfies conditions (1) - (3). Let ε > 0, E be as in (3) and

Amn := {x ∈ E|fm(x)− fn(x)| ≥ ε}.

Then
‖(fn − fm) 1Ec‖p ≤ ‖fn1Ec‖p + ‖fm 1Ec‖p < 2ε1/p

and

‖fn − fm‖p = ‖(fn − fm)1Ec‖p + ‖(fn − fm)1E\Amn
‖p

+ ‖(fn − fm)1Amn
‖p

≤ ‖(fn − fm)1E\Amn
‖p + ‖(fn − fm)1Amn

‖p + 2ε1/p. (21.38)

Using properties (1) and (3) and 1E∩{|fm−fn|<ε}|fm− fn|p ≤ εp1E ∈ L1, the
dominated convergence theorem in Corollary 21.17 implies

‖(fn − fm) 1E\Amn
‖pp =

∫
1E∩{|fm−fn|<ε} |fm − fn|

p −→
m,n→∞

0.

which combined with Eq. (21.38) implies

lim sup
m,n→∞

‖fn − fm‖p ≤ lim sup
m,n→∞

‖(fn − fm)1Amn‖p + 2ε1/p.

Finally

‖(fn − fm)1Amn‖p ≤ ‖fn1Amn‖p + ‖fm 1Amn‖p ≤ 2δ(ε)

where
δ(ε) := sup

n
sup{ ‖fn 1E‖p : E ∈M 3 µ(E) ≤ ε}

By property (2), δ(ε)→ 0 as ε→ 0. Therefore

lim sup
m,n→∞

‖fn − fm‖p ≤ 2ε1/p + 0 + 2δ(ε)→ 0 as ε ↓ 0

and therefore {fn} is Lp-Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 21.38 (Vitali Convergence Theorem). (This is problem 9 on
p. 133 in Rudin.) Assume that µ(X) <∞, {fn} is uniformly integrable, fn →
f a.e. and |f | <∞ a.e., then f ∈ L1(µ) and fn → f in L1(µ).
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Proof. Let ε > 0 be given and choose δ > 0 as in the Eq. (21.32). Now use
Egoroff’s Theorem 21.18 to choose a set Ec where {fn} converges uniformly
on Ec and µ(E) < δ. By uniform convergence on Ec, there is an integer
N <∞ such that |fn − fm| ≤ 1 on Ec for all m,n ≥ N. Letting m→∞, we
learn that

|fN − f | ≤ 1 on Ec.

Therefore |f | ≤ |fN |+ 1 on Ec and hence

µ(|f |) = µ(|f | : Ec) + µ(|f | : E)
≤ µ(|fN |) + µ(X) + µ(|f | : E).

Now by Fatou’s lemma,

µ(|f | : E) ≤ lim inf
n→∞

µ(|fn| : E) ≤ 2ε <∞

by Eq. (21.32). This shows that f ∈ L1. Finally

µ(|f − fn|) = µ(|f − fn| : Ec) + µ(|f − fn| : E)
≤ µ(|f − fn| : Ec) + µ(|f |+ |fn| : E)
≤ µ(|f − fn| : Ec) + 4ε

and so by the Dominated convergence theorem we learn that

lim sup
n→∞

µ(|f − fn|) ≤ 4ε.

Since ε > 0 was arbitrary this completes the proof.

Theorem 21.39 (Vitali again). Suppose that fn → f in µ measure and Eq.
(21.34) holds, then fn → f in L1.

Proof. This could of course be proved using 21.38 after passing to sub-
sequences to get {fn} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f ∈ L1(µ). Now let

φK(x) = x1|x|≤K +K1|x|>K .

then φK(fn)
µ→ φK(f) because |φK(f)− φK(fn)| ≤ |f − fn| and since

|f − fn| ≤ |f − φK(f)|+ |φK(f)− φK(fn)|+ |φK(fn)− fn|

we have that

µ|f − fn| ≤ µ |f − φK(f)|+ µ|φK(f)− φK(fn)|+ µ |φK(fn)− fn|
= µ(|f | : |f | ≥ K) + µ|φK(f)− φK(fn)|+ µ(|fn| : |fn| ≥ K).

Therefore by the dominated convergence theorem

lim sup
n→∞

µ|f − fn| ≤ µ(|f | : |f | ≥ K) + lim sup
n→∞

µ(|fn| : |fn| ≥ K).

This last expression goes to zero as K →∞ by uniform integrability.
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21.6 Exercises

Definition 21.40. The essential range of f, essran(f), consists of those
λ ∈ C such that µ(|f − λ| < ε) > 0 for all ε > 0.

Definition 21.41. Let (X, τ) be a topological space and ν be a measure on
BX = σ(τ). The support of ν, supp(ν), consists of those x ∈ X such that
ν(V ) > 0 for all open neighborhoods, V, of x.

Exercise 21.3. Let (X, τ) be a second countable topological space and ν be
a measure on BX – the Borel σ – algebra on X. Show

1. supp(ν) is a closed set. (This is actually true on all topological spaces.)
2. ν(X \ supp(ν)) = 0 and use this to conclude that W := X \ supp(ν)

is the largest open set in X such that ν(W ) = 0. Hint: let U ⊂ τ be
a countable base for the topology τ. Show that W may be written as a
union of elements from V ∈ V with the property that µ(V ) = 0.

Exercise 21.4. Prove the following facts about essran(f).

1. Let ν = f∗µ := µ◦f−1 – a Borel measure on C. Show essran(f) = supp(ν).
2. essran(f) is a closed set and f(x) ∈ essran(f) for almost every x, i.e.
µ(f /∈ essran(f)) = 0.

3. If F ⊂ C is a closed set such that f(x) ∈ F for almost every x then
essran(f) ⊂ F. So essran(f) is the smallest closed set F such that f(x) ∈ F
for almost every x.

4. ‖f‖∞ = sup {|λ| : λ ∈ essran(f)} .

Exercise 21.5. Let f ∈ Lp ∩ L∞ for some p < ∞. Show ‖f‖∞ =
limq→∞ ‖f‖q . If we further assume µ(X) <∞, show ‖f‖∞ = limq→∞ ‖f‖q for
all measurable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ ‖f‖q <
∞. Hints: Use Corollary 21.23 to show lim supq→∞ ‖f‖q ≤ ‖f‖∞ and to
show lim infq→∞ ‖f‖q ≥ ‖f‖∞ , let M < ‖f‖∞ and make use of Chebyshev’s
inequality.

Exercise 21.6. Prove Eq. (21.21) in Corollary 21.23. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a, b ≥ 1 with a−1 + b−1 = 1 chosen
appropriately,

st ≤ sa

a
+
tb

b
,

(see Lemma 5.5 for Eq. (21.16)) applied to the right side of Eq. (21.20).

Exercise 21.7. Complete the proof of Proposition 21.22 by showing (Lp +
Lr, ‖·‖) is a Banach space. Hint: you may find using Theorem 7.13 is helpful
here.

Exercise 21.8. Folland 6.5 on p. 186.
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Exercise 21.9. By making the change of variables, u = lnx, prove the fol-
lowing facts:∫ 1/2

0

x−a |lnx|b dx <∞⇐⇒ a < 1 or a = 1 and b < −1∫ ∞

2

x−a |lnx|b dx <∞⇐⇒ a > 1 or a = 1 and b < −1∫ 1

0

x−a |lnx|b dx <∞⇐⇒ a < 1 and b > −1∫ ∞

1

x−a |lnx|b dx <∞⇐⇒ a > 1 and b > −1.

Suppose 0 < p0 < p1 ≤ ∞ and m is Lebesgue measure on (0,∞) . Use
the above results to manufacture a function f on (0,∞) such that f ∈
Lp ((0,∞) ,m) iff (a) p ∈ (p0, p1) , (b) p ∈ [p0, p1] and (c) p = p0.

Exercise 21.10. Folland 6.9 on p. 186.

Exercise 21.11. Folland 6.10 on p. 186. Use the strong form of Theorem
19.38.

Exercise 21.12. Let (X,M, µ) and (Y,N , ν) be σ – finite measure spaces,
f ∈ L2(ν) and k ∈ L2(µ⊗ ν). Show∫

|k(x, y)f(y)| dν(y) <∞ for µ – a.e. x.

Let Kf(x) :=
∫
Y
k(x, y)f(y)dν(y) when the integral is defined. Show Kf ∈

L2(µ) and K : L2(ν) → L2(µ) is a bounded operator with ‖K‖op ≤
‖k‖L2(µ⊗ν) .

Exercise 21.13. Folland 6.27 on p. 196. Hint: Theorem 21.28.

Exercise 21.14. Folland 2.32 on p. 63.

Exercise 21.15. Folland 2.38 on p. 63.
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Approximation Theorems and Convolutions

22.1 Density Theorems

In this section, (X,M, µ) will be a measure space A will be a subalgebra of
M.

Notation 22.1 Suppose (X,M, µ) is a measure space and A ⊂M is a sub-
algebra of M. Let S(A) denote those simple functions φ : X → C such that
φ−1({λ}) ∈ A for all λ ∈ C and let Sf (A, µ) denote those φ ∈ S(A) such that
µ(φ 6= 0) <∞.

Remark 22.2. For φ ∈ Sf (A, µ) and p ∈ [1,∞), |φ|p =
∑
z 6=0 |z|p1{φ=z} and

hence ∫
|φ|p dµ =

∑
z 6=0

|z|pµ(φ = z) <∞ (22.1)

so that Sf (A, µ) ⊂ Lp(µ). Conversely if φ ∈ S(A)∩Lp(µ), then from Eq. (22.1)
it follows that µ (φ = z) <∞ for all z 6= 0 and therefore µ (φ 6= 0) <∞. Hence
we have shown, for any 1 ≤ p <∞,

Sf (A, µ) = S(A) ∩ Lp(µ).

Lemma 22.3 (Simple Functions are Dense). The simple functions,
Sf (M, µ), form a dense subspace of Lp(µ) for all 1 ≤ p <∞.

Proof. Let {φn}∞n=1 be the simple functions in the approximation Theo-
rem 18.42. Since |φn| ≤ |f | for all n, φn ∈ Sf (M, µ) and

|f − φn|p ≤ (|f |+ |φn|)p ≤ 2p |f |p ∈ L1 (µ) .

Therefore, by the dominated convergence theorem,

lim
n→∞

∫
|f − φn|pdµ =

∫
lim
n→∞

|f − φn|pdµ = 0.
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The goal of this section is to find a number of other dense subspaces of
Lp (µ) for p ∈ [1,∞). The next theorem is the key result of this section.

Theorem 22.4 (Density Theorem). Let p ∈ [1,∞), (X,M, µ) be a mea-
sure space and M be an algebra of bounded F – valued (F = R or F = C)
measurable functions such that

1. M ⊂ Lp (µ,F) and σ (M) =M.
2. There exists ψk ∈M such that ψk → 1 boundedly.
3. If F = C we further assume that M is closed under complex conjugation.

Then to every function f ∈ Lp (µ,F) , there exists φn ∈ M such that
limn→∞ ‖f − φn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,F) .

Proof. Fix k ∈ N for the moment and let H denote those bounded M –
measurable functions, f : X → F, for which there exists {φn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − φn‖Lp(µ) = 0. A routine check shows H is a subspace
of `∞ (M,F) such that 1 ∈ H, M ⊂ H and H is closed under complex
conjugation if F = C. Moreover, H is closed under bounded convergence.
To see this suppose fn ∈ H and fn → f boundedly. Then, by the dominated
convergence theorem, limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.1 (Take the dominating
function to be g = [2C |ψk|]p where C is a constant bounding all of the
{|fn|}∞n=1 .) We may now choose φn ∈ M such that ‖φn − ψkfn‖Lp(µ) ≤

1
n

then

lim sup
n→∞

‖ψkf − φn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − φn‖Lp(µ) = 0 (22.2)

which implies f ∈ H. An application of Dynkin’s Multiplicative System The-
orem 18.51 if F = R or Theorem 18.52 if F = C now shows H contains all
bounded measurable functions on X.

Let f ∈ Lp (µ) be given. The dominated convergence theorem implies
limk→∞

∥∥ψk1{|f |≤k}f − f∥∥Lp(µ)
= 0. (Take the dominating function to be

g = [2C |f |]p where C is a bound on all of the |ψk| .) Using this and what we
have just proved, there exists φk ∈M such that∥∥ψk1{|f |≤k}f − φk∥∥Lp(µ)

≤ 1
k
.

The same line of reasoning used in Eq. (22.2) now implies limk→∞ ‖f − φk‖Lp(µ) =
0.
1 It is at this point that the proof would break down if p = ∞.
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Definition 22.5. Let (X, τ) be a topological space and µ be a measure on
BX = σ (τ) . A locally integrable function is a Borel measurable function
f : X → C such that

∫
K
|f | dµ < ∞ for all compact subsets K ⊂ X. We will

write L1
loc(µ) for the space of locally integrable functions. More generally we

say f ∈ Lploc (µ) iff ‖1Kf‖Lp(µ) <∞ for all compact subsets K ⊂ X.

Definition 22.6. Let (X, τ) be a topological space. A K-finite measure on
X is Borel measure µ such that µ (K) <∞ for all compact subsets K ⊂ X.

Lebesgue measure on R is an example of a K-finite measure while counting
measure on R is not a K-finite measure.

Example 22.7. Suppose that µ is a K-finite measure on BRd . An application of
Theorem 22.4 shows Cc (R,C) is dense in Lp(Rd,BRd , µ;C). To apply Theorem
22.4, let M := Cc

(
Rd,C

)
and ψk (x) := ψ (x/k) where ψ ∈ Cc

(
Rd,C

)
with

ψ (x) = 1 in a neighborhood of 0. The proof is completed by showing σ (M) =
σ
(
Cc
(
Rd,C

))
= BRd , which follows directly from Lemma 18.57.

We may also give a more down to earth proof as follows. Let x0 ∈ Rd, R >

0, A := B (x0, R)c and fn (x) := d
1/n
A (x) . Then fn ∈ M and fn → 1B(x0,R)

as n→∞ which shows 1B(x0,R) is σ (M)-measurable, i.e. B (x0, R) ∈ σ (M) .
Since x0 ∈ Rd and R > 0 were arbitrary, σ (M) = BRd .

More generally we have the following result.

Theorem 22.8. Let (X, τ) be a second countable locally compact Hausdorff
space and µ : BX → [0,∞] be a K-finite measure. Then Cc(X) (the space
of continuous functions with compact support) is dense in Lp(µ) for all p ∈
[1,∞). (See also Proposition 28.23 below.)

Proof. Let M := Cc(X) and use Item 3. of Lemma 18.57 to find functions
ψk ∈ M such that ψk → 1 to boundedly as k → ∞. The result now follows
from an application of Theorem 22.4 along with the aid of item 4. of Lemma
18.57.

Exercise 22.1. Show that BC (R,C) is not dense in L∞(R,BR,m;C). Hence
the hypothesis that p <∞ in Theorem 22.4 can not be removed.

Corollary 22.9. Suppose X ⊂ Rn is an open set, BX is the Borel σ – algebra
on X and µ be a K-finite measure on (X,BX) . Then Cc(X) is dense in Lp(µ)
for all p ∈ [1,∞).

Corollary 22.10. Suppose that X is a compact subset of Rn and µ is a finite
measure on (X,BX), then polynomials are dense in Lp(X,µ) for all 1 ≤ p <
∞.

Proof. Consider X to be a metric space with usual metric induced
from Rn. Then X is a locally compact separable metric space and there-
fore Cc(X,C) = C(X,C) is dense in Lp(µ) for all p ∈ [1,∞). Since, by the
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dominated convergence theorem, uniform convergence implies Lp(µ) – conver-
gence, it follows from the Weierstrass approximation theorem (see Theorem
10.34 and Corollary 10.36 or Theorem 15.31 and Corollary 15.32) that poly-
nomials are also dense in Lp(µ).

Lemma 22.11. Let (X, τ) be a second countable locally compact Hausdorff
space and µ : BX → [0,∞] be a K-finite measure on X. If h ∈ L1

loc(µ) is a
function such that ∫

X

fhdµ = 0 for all f ∈ Cc(X) (22.3)

then h(x) = 0 for µ – a.e. x. (See also Corollary 28.26 below.)

Proof. Let dν(x) = |h(x)| dx, then ν is a K-finite measure on X and hence
Cc(X) is dense in L1(ν) by Theorem 22.8. Notice that∫

X

f · sgn(h)dν =
∫
X

fhdµ = 0 for all f ∈ Cc(X). (22.4)

Let {Kk}∞k=1 be a sequence of compact sets such that Kk ↑ X as in Lemma
14.23. Then 1Kk

sgn(h) ∈ L1(ν) and therefore there exists fm ∈ Cc(X) such
that fm → 1Kk

sgn(h) in L1(ν). So by Eq. (22.4),

ν(Kk) =
∫
X

1Kk
dν = lim

m→∞

∫
X

fmsgn(h)dν = 0.

Since Kk ↑ X as k →∞, 0 = ν(X) =
∫
X
|h| dµ, i.e. h(x) = 0 for µ – a.e. x.

As an application of Lemma 22.11 and Example 15.34, we will show that
the Laplace transform is injective.

Theorem 22.12 (Injectivity of the Laplace Transform). For f ∈
L1([0,∞), dx), the Laplace transform of f is defined by

Lf(λ) :=
∫ ∞

0

e−λxf(x)dx for all λ > 0.

If Lf(λ) := 0 then f(x) = 0 for m -a.e. x.

Proof. Suppose that f ∈ L1([0,∞), dx) such that Lf(λ) ≡ 0. Let g ∈
C0([0,∞),R) and ε > 0 be given. By Example 15.34 we may choose {aλ}λ>0

such that # ({λ > 0 : aλ 6= 0}) <∞ and

|g(x)−
∑
λ>0

aλe
−λx| < ε for all x ≥ 0.

Then
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22.1 Density Theorems 417∣∣∣∣∫ ∞

0

g(x)f(x)dx
∣∣∣∣ =

∣∣∣∣∣
∫ ∞

0

(
g(x)−

∑
λ>0

aλe
−λx

)
f(x)dx

∣∣∣∣∣
≤
∫ ∞

0

∣∣∣∣∣g(x)−∑
λ>0

aλe
−λx

∣∣∣∣∣ |f(x)| dx ≤ ε‖f‖1.

Since ε > 0 is arbitrary, it follows that
∫∞
0
g(x)f(x)dx = 0 for all g ∈

C0([0,∞),R). The proof is finished by an application of Lemma 22.11.
Here is another variant of Theorem 22.8.

Theorem 22.13. Let (X, d) be a metric space, τd be the topology on X gen-
erated by d and BX = σ(τd) be the Borel σ – algebra. Suppose µ : BX → [0,∞]
is a measure which is σ – finite on τd and let BCf (X) denote the bounded
continuous functions on X such that µ(f 6= 0) <∞. Then BCf (X) is a dense
subspace of Lp(µ) for any p ∈ [1,∞).

Proof. Let Xk ∈ τd be open sets such that Xk ↑ X and µ(Xk) < ∞ and
let

ψk(x) = min(1, k · dXc
k
(x)) = φk(dXc

k
(x)),

see Figure 22.1 below. It is easily verified that M := BCf (X) is an algebra,

Fig. 22.1. The plot of φn for n = 1, 2, and 4. Notice that φn → 1(0,∞).

ψk ∈ M for all k and ψk → 1 boundedly as k → ∞. Given V ∈ τ and
k, n ∈ N,let

fk,n (x) := min(1, n · d(V ∩Xk)c(x)).

Then {fk,n 6= 0} = V ∩Xk so fk,n ∈ BCf (X). Moreover

lim
k→∞

lim
n→∞

fk,n = lim
k→∞

1V ∩Xk
= 1V

which shows V ∈ σ (M) and hence σ (M) = BX . The proof is now completed
by an application of Theorem 22.4.
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418 22 Approximation Theorems and Convolutions

Exercise 22.2. (BRUCE: Should drop this exercise.) Suppose that (X, d) is
a metric space, µ is a measure on BX := σ(τd) which is finite on bounded
measurable subsets of X. Show BCb(X,R), defined in Eq. (19.26), is dense in
Lp (µ) . Hints: let ψk be as defined in Eq. (19.27) which incidentally may be
used to show σ (BCb(X,R)) = σ (BC(X,R)) . Then use the argument in the
proof of Corollary 18.55 to show σ (BC(X,R)) = BX .

Theorem 22.14. Suppose p ∈ [1,∞), A ⊂M is an algebra such that σ(A) =
M and µ is σ – finite on A. Then Sf (A, µ) is dense in Lp(µ). (See also Remark
28.7 below.)

Proof. Let M := Sf (A, µ). By assumption there exits Xk ∈ A such that
µ(Xk) < ∞ and Xk ↑ X as k → ∞. If A ∈ A, then Xk ∩ A ∈ A and
µ (Xk ∩A) <∞ so that 1Xk∩A ∈M. Therefore 1A = limk→∞ 1Xk∩A is σ (M)
– measurable for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ M
and therefore M = σ (A) ⊂ σ (M) ⊂ M, i.e. σ (M) = M. The theorem
now follows from Theorem 22.4 after observing ψk := 1Xk

∈ M and ψk → 1
boundedly.

Theorem 22.15 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂
M is a countable algebra such that σ(A) =M and µ is σ – finite on A. Then
Lp(µ) is separable and

D = {
∑

aj1Aj
: aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in Sf (A, µ) relative to the
Lp(µ) – norm. The proof is then complete since Sf (A, µ) is a dense subspace
of Lp (µ) by Theorem 22.14.

Example 22.16. The collection of functions of the form φ =
∑n
k=1 ck1(ak,bk]

with ak, bk ∈ Q and ak < bk are dense in Lp(R,BR,m;C) and Lp(R,BR,m;C)
is separable for any p ∈ [1,∞). To prove this simply apply Theorem 22.14 with
A being the algebra on R generated by the half open intervals (a, b] ∩R with
a < b and a, b ∈ Q∪{±∞} , i.e. A consists of sets of the form

∐n
k=1(ak, bk]∩R,

where ak, bk ∈ Q∪{±∞} .

Exercise 22.3. Show L∞([0, 1] ,BR,m;C) is not separable. Hint: Suppose
Γ is a dense subset of L∞([0, 1] ,BR,m;C) and for λ ∈ (0, 1) , let fλ (x) :=
1[0,λ] (x) . For each λ ∈ (0, 1) , choose gλ ∈ Γ such that ‖fλ − gλ‖∞ < 1/2 and
then show the map λ ∈ (0, 1)→ gλ ∈ Γ is injective. Use this to conclude that
Γ must be uncountable.

Corollary 22.17 (Riemann Lebesgue Lemma). Suppose that f ∈ L1(R,m),
then

lim
λ→±∞

∫
R
f(x)eiλxdm(x) = 0.
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Proof. By Example 22.16, given ε > 0 there exists φ =
∑n
k=1 ck1(ak,bk]

with ak, bk ∈ R such that ∫
R
|f − φ|dm < ε.

Notice that∫
R
φ(x)eiλxdm(x) =

∫
R

n∑
k=1

ck1(ak,bk](x)eiλxdm(x)

=
n∑
k=1

ck

∫ bk

ak

eiλxdm(x) =
n∑
k=1

ckλ
−1eiλx|bk

ak

= λ−1
n∑
k=1

ck
(
eiλbk − eiλak

)
→ 0 as |λ| → ∞.

Combining these two equations with∣∣∣∣∫
R
f(x)eiλxdm(x)

∣∣∣∣ ≤ ∣∣∣∣∫
R

(f(x)− φ(x)) eiλxdm(x)
∣∣∣∣+ ∣∣∣∣∫

R
φ(x)eiλxdm(x)

∣∣∣∣
≤
∫

R
|f − φ|dm+

∣∣∣∣∫
R
φ(x)eiλxdm(x)

∣∣∣∣
≤ ε+

∣∣∣∣∫
R
φ(x)eiλxdm(x)

∣∣∣∣
we learn that

lim sup
|λ|→∞

∣∣∣∣∫
R
f(x)eiλxdm(x)

∣∣∣∣ ≤ ε+ lim sup
|λ|→∞

∣∣∣∣∫
R
φ(x)eiλxdm(x)

∣∣∣∣ = ε.

Since ε > 0 is arbitrary, this completes the proof of the Riemann Lebesgue
lemma.

Corollary 22.18. Suppose A ⊂M is an algebra such that σ(A) =M and µ
is σ – finite on A. Then for every B ∈ M such that µ(B) < ∞ and ε > 0
there exists D ∈ A such that µ(B4D) < ε. (See also Remark 28.7 below.)

Proof. By Theorem 22.14, there exists a collection, {Ai}ni=1 , of pairwise
disjoint subsets of A and λi ∈ R such that

∫
X
|1B − f | dµ < ε where f =∑n

i=1 λi1Ai
. Let A0 := X \ ∪ni=1Ai ∈ A then
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420 22 Approximation Theorems and Convolutions∫
X

|1B − f | dµ =
n∑
i=0

∫
Ai

|1B − f | dµ

= µ (A0 ∩B) +
n∑
i=1

[∫
Ai∩B

|1B − λi| dµ+
∫
Ai\B

|1B − λi| dµ

]

= µ (A0 ∩B) +
n∑
i=1

[|1− λi|µ (B ∩Ai) + |λi|µ (Ai \B)] (22.5)

≥ µ (A0 ∩B) +
n∑
i=1

min {µ (B ∩Ai) , µ (Ai \B)} (22.6)

where the last equality is a consequence of the fact that 1 ≤ |λi| + |1− λi| .
Let

αi =
{

0 if µ (B ∩Ai) < µ (Ai \B)
1 if µ (B ∩Ai) ≥ µ (Ai \B)

and g =
∑n
i=1 αi1Ai

= 1D where

D := ∪{Ai : i > 0 & αi = 1} ∈ A.

Equation (22.5) with λi replaced by αi and f by g implies∫
X

|1B − 1D| dµ = µ (A0 ∩B) +
n∑
i=1

min {µ (B ∩Ai) , µ (Ai \B)} .

The latter expression, by Eq. (22.6), is bounded by
∫
X
|1B − f | dµ < ε and

therefore,

µ(B4D) =
∫
X

|1B − 1D| dµ < ε.

Remark 22.19. We have to assume that µ(B) < ∞ as the following example
shows. Let X = R,M = B, µ = m, A be the algebra generated by half open
intervals of the form (a, b], and B = ∪∞n=1(2n, 2n+1]. It is easily checked that
for every D ∈ A, that m(B∆D) =∞.

22.2 Convolution and Young’s Inequalities

Throughout this section we will be solely concerned with d – dimensional
Lebesgue measure, m, and we will simply write Lp for Lp

(
Rd,m

)
.

Definition 22.20 (Convolution). Let f, g : Rd → C be measurable func-
tions. We define

f ∗ g(x) =
∫

Rd

f(x− y)g(y)dy (22.7)
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22.2 Convolution and Young’s Inequalities 421

whenever the integral is defined, i.e. either f (x− ·) g (·) ∈ L1(Rd,m) or
f (x− ·) g (·) ≥ 0. Notice that the condition that f (x− ·) g (·) ∈ L1(Rd,m)
is equivalent to writing |f | ∗ |g| (x) <∞. By convention, if the integral in Eq.
(22.7) is not defined, let f ∗ g(x) := 0.

Notation 22.21 Given a multi-index α ∈ Zd+, let |α| = α1 + · · ·+ αd,

xα :=
d∏
j=1

x
αj

j , and ∂αx =
(
∂

∂x

)α
:=

d∏
j=1

(
∂

∂xj

)αj

.

For z ∈ Rd and f : Rd → C, let τzf : Rd → C be defined by τzf(x) = f(x−z).

Remark 22.22 (The Significance of Convolution).

1. Suppose that f, g ∈ L1 (m) are positive functions and let µ be the measure
on
(
Rd
)2 defined by

dµ (x, y) := f (x) g (y) dm (x) dm (y) .

Then if h : R→ [0,∞] is a measurable function we have∫
(Rd)2

h (x+ y) dµ (x, y) =
∫

(Rd)2
h (x+ y) f (x) g (y) dm (x) dm (y)

=
∫

(Rd)2
h (x) f (x− y) g (y) dm (x) dm (y)

=
∫

Rd

h (x) f ∗ g (x) dm (x) .

In other words, this shows the measure (f ∗ g)m is the same as S∗µ where
S (x, y) := x+y. In probability lingo, the distribution of a sum of two “in-
dependent” (i.e. product measure) random variables is the the convolution
of the individual distributions.

2. Suppose that L =
∑

|α|≤k aα∂
α is a constant coefficient differential oper-

ator and suppose that we can solve (uniquely) the equation Lu = g in the
form

u(x) = Kg(x) :=
∫

Rd

k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the
inverse operation to differentiation.) Since τzL = Lτz for all z ∈ Rd, (this
is another way to characterize constant coefficient differential operators)
and L−1 = K we should have τzK = Kτz. Writing out this equation then
says∫

Rd

k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=
∫

Rd

k(x, y)g(y − z)dy =
∫

Rd

k(x, y + z)g(y)dy.
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422 22 Approximation Theorems and Convolutions

Since g is arbitrary we conclude that k(x − z, y) = k(x, y + z). Taking
y = 0 then gives

k(x, z) = k(x− z, 0) =: ρ(x− z).

We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation
to appear naturally when solving constant coefficient partial differential
equations. More about this point later.

Proposition 22.23. Suppose p ∈ [1,∞], f ∈ L1 and g ∈ Lp, then f ∗ g(x)
exists for almost every x, f ∗ g ∈ Lp and

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p .

Proof. This follows directly from Minkowski’s inequality for integrals,
Theorem 21.27.

Proposition 22.24. Suppose that p ∈ [1,∞), then τz : Lp → Lp is an iso-
metric isomorphism and for f ∈ Lp, z ∈ Rd → τzf ∈ Lp is continuous.

Proof. The assertion that τz : Lp → Lp is an isometric isomorphism
follows from translation invariance of Lebesgue measure and the fact that
τ−z ◦ τz = id. For the continuity assertion, observe that

‖τzf − τyf‖p = ‖τ−y (τzf − τyf)‖p = ‖τz−yf − f‖p

from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rd.
When f ∈ Cc(Rd), τzf → f uniformly and since the K := ∪|z|≤1supp(τzf) is
compact, it follows by the dominated convergence theorem that τzf → f in
Lp as z → 0 ∈ Rd. For general g ∈ Lp and f ∈ Cc(Rd),

‖τzg − g‖p ≤‖τzg − τzf‖p + ‖τzf − f‖p + ‖f − g‖p
= ‖τzf − f‖p + 2 ‖f − g‖p

and thus

lim sup
z→0
‖τzg − g‖p ≤ lim sup

z→0
‖τzf − f‖p + 2 ‖f − g‖p = 2 ‖f − g‖p .

Because Cc(Rd) is dense in Lp, the term ‖f − g‖p may be made as small as
we please.

Exercise 22.4. Let p ∈ [1,∞] and ‖τz − I‖L(Lp(m)) be the operator norm
τz − I. Show ‖τz − I‖L(Lp(m)) = 2 for all z ∈ Rd \ {0} and conclude from
this that z ∈ Rd → τz ∈ L (Lp (m)) is not continuous. Hints: 1) Show
‖τz − I‖L(Lp(m)) =

∥∥τ|z|e1 − I∥∥L(Lp(m))
. 2) Let z = te1 with t > 0 and look

for f ∈ Lp (m) such that τzf is approximately equal to −f. (In fact, if p =∞,
you can find f ∈ L∞ (m) such that τzf = −f.) (BRUCE: add on a problem
somewhere showing that σ (τz) = S1 ⊂ C. This is very simple to prove if p = 2
by using the Fourier transform.)

Page: 422 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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Definition 22.25. Suppose that (X, τ) is a topological space and µ is a mea-
sure on BX = σ(τ). For a measurable function f : X → C we define the
essential support of f by

suppµ(f) = {x ∈ X : µ({y ∈ V : f(y) 6= 0}}) > 0 ∀ neighborhoods V of x}.
(22.8)

Equivalently, x /∈ suppµ(f) iff there exists an open neighborhood V of x such
that 1V f = 0 a.e.

It is not hard to show that if supp(µ) = X (see Definition 21.41) and
f ∈ C(X) then suppµ(f) = supp(f) := {f 6= 0} , see Exercise 22.7.

Lemma 22.26. Suppose (X, τ) is second countable and f : X → C is a mea-
surable function and µ is a measure on BX . Then X := U \ suppµ(f) may
be described as the largest open set W such that f1W (x) = 0 for µ – a.e. x.
Equivalently put, C := suppµ(f) is the smallest closed subset of X such that
f = f1C a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent,
suppose suppµ(f) is defined as in Eq. (22.8) and W := X \ suppµ(f). Then

W = {x ∈ X : ∃ τ 3 V 3 x such that µ({y ∈ V : f(y) 6= 0}}) = 0}
= ∪{V ⊂o X : µ (f1V 6= 0) = 0}
= ∪{V ⊂o X : f1V = 0 for µ – a.e.} .

So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let
U be a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.

Then it is easily seen that W = ∪Uf and since Uf is countable

µ (f1W 6= 0) ≤
∑
V ∈Uf

µ (f1V 6= 0) = 0.

Lemma 22.27. Suppose f, g, h : Rd → C are measurable functions and as-
sume that x is a point in Rd such that |f |∗|g| (x) <∞ and |f |∗(|g| ∗ |h|) (x) <
∞, then

1. f ∗ g(x) = g ∗ f(x)
2. f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
3. If z ∈ Rd and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)
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4. If x /∈ suppm(f) + suppm(g) then f ∗ g(x) = 0 and in particular,

suppm(f ∗ g) ⊂ suppm(f) + suppm(g)

where in defining suppm(f ∗g) we will use the convention that “f ∗g(x) 6=
0” when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =
∫

Rd

|f | (x− y) |g| (y)dy =
∫

Rd

|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y → x − y. Similar computations prove
all of the remaining assertions of the first three items of the lemma. Item
4. Since f ∗ g(x) = f̃ ∗ g̃(x) if f = f̃ and g = g̃ a.e. we may, by replacing
f by f1suppm(f) and g by g1suppm(g) if necessary, assume that {f 6= 0} ⊂
suppm(f) and {g 6= 0} ⊂ suppm(g). So if x /∈ (suppm(f) + suppm(g)) then
x /∈ ({f 6= 0}+ {g 6= 0}) and for all y ∈ Rd, either x − y /∈ {f 6= 0} or y /∈
{g 6= 0} . That is to say either x − y ∈ {f = 0} or y ∈ {g = 0} and hence
f(x−y)g(y) = 0 for all y and therefore f ∗g(x) = 0. This shows that f ∗g = 0
on Rd \

(
suppm(f) + suppm(g)

)
and therefore

Rd \
(
suppm(f) + suppm(g)

)
⊂ Rd \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).

Remark 22.28. Let A,B be closed sets of Rd, it is not necessarily true that
A+B is still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/ |x|} ,

then every point of A+B has a positive y - component and hence is not zero.
On the other hand, for x > 0 we have (x, 1/x)+ (−x, 1/x) = (0, 2/x) ∈ A+B
for all x and hence 0 ∈ A+B showing A + B is not closed. Nevertheless if
one of the sets A or B is compact, then A+B is closed again. Indeed, if A is
compact and xn = an + bn ∈ A + B and xn → x ∈ Rd, then by passing to a
subsequence if necessary we may assume limn→∞ an = a ∈ A exists. In this
case

lim
n→∞

bn = lim
n→∞

(xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.

Proposition 22.29. Suppose that p, q ∈ [1,∞] and p and q are conjugate
exponents, f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rd), ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q
and if p, q ∈ (1,∞) then f ∗ g ∈ C0(Rd).
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Proof. The existence of f∗g(x) and the estimate |f ∗ g| (x) ≤ ‖f‖p ‖g‖q for
all x ∈ Rd is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q .
By relabeling p and q if necessary we may assume that p ∈ [1,∞). Since

‖τz (f ∗ g)− f ∗ g‖u = ‖τzf ∗ g − f ∗ g‖u
≤ ‖τzf − f‖p ‖g‖q → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 22.27 and what we have just proved that fm ∗ gm ∈ Cc(Rd)
where fm = f1|f |≤m and gm = g1|g|≤m. Moreover,

‖f ∗ g − fm ∗ gm‖∞ ≤ ‖f ∗ g − fm ∗ g‖∞ + ‖fm ∗ g − fm ∗ gm‖∞
≤ ‖f − fm‖p ‖g‖q + ‖fm‖p ‖g − gm‖q
≤ ‖f − fm‖p ‖g‖q + ‖f‖p ‖g − gm‖q → 0 as m→∞

showing, with the aid of Proposition 15.23, f ∗ g ∈ C0(Rd).

Theorem 22.30 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy

1
p

+
1
q

= 1 +
1
r
. (22.9)

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m – a.e. x and

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q . (22.10)

In particular L1 is closed under convolution. (The space (L1, ∗) is an example
of a “Banach algebra” without unit.)

Remark 22.31. Before going to the formal proof, let us first understand Eq.
(22.9) by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then
after a few simple change of variables we find

‖fλ‖p = λ−d/p ‖f‖ and (f ∗ g)λ = λdfλ ∗ gλ.

Therefore if Eq. (22.10) holds for some p, q, r ∈ [1,∞], we would also have

‖f ∗ g‖r = λd/r ‖(f ∗ g)λ‖r ≤ λ
d/rλd ‖fλ‖p ‖gλ‖q = λ(d+d/r−d/p−d/q) ‖f‖p ‖g‖q

for all λ > 0. This is only possible if Eq. (22.9) holds.

Proof. By the usual sorts of arguments, we may assume f and g are
positive functions. Let α, β ∈ [0, 1] and p1, p2 ∈ (0,∞] satisfy p−1

1 +p−1
2 +r−1 =

1. Then by Hölder’s inequality, Corollary 21.3,
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f ∗ g(x) =
∫

Rd

[
f(x− y)(1−α)g(y)(1−β)

]
f(x− y)αg(y)βdy

≤
(∫

Rd

f(x− y)(1−α)rg(y)(1−β)rdy

)1/r (∫
Rd

f(x− y)αp1dy
)1/p1

×

×
(∫

Rd

g(y)βp2dy
)1/p2

=
(∫

Rd

f(x− y)(1−α)rg(y)(1−β)rdy

)1/r

‖f‖ααp1 ‖g‖
β
βp2

.

Taking the rth power of this equation and integrating on x gives

‖f ∗ g‖rr ≤
∫

Rd

(∫
Rd

f(x− y)(1−α)rg(y)(1−β)rdy

)
dx · ‖f‖ααp1 ‖g‖

β
βp2

= ‖f‖(1−α)r
(1−α)r ‖g‖

(1−β)r
(1−β)r ‖f‖

αr
αp1
‖g‖βrβp2 . (22.11)

Let us now suppose, (1 − α)r = αp1 and (1 − β)r = βp2, in which case Eq.
(22.11) becomes,

‖f ∗ g‖rr ≤ ‖f‖
r
αp1
‖g‖rβp2

which is Eq. (22.10) with

p := (1− α)r = αp1 and q := (1− β)r = βp2. (22.12)

So to finish the proof, it suffices to show p and q are arbitrary indices in
[1,∞] satisfying p−1 +q−1 = 1+r−1. If α, β, p1, p2 satisfy the relations above,
then

α =
r

r + p1
and β =

r

r + p2

and

1
p

+
1
q

=
1
αp1

+
1
αp2

=
1
p1

r + p1

r
+

1
p2

r + p2

r

=
1
p1

+
1
p2

+
2
r

= 1 +
1
r
.

Conversely, if p, q, r satisfy Eq. (22.9), then let α and β satisfy p = (1 − α)r
and q = (1− β)r, i.e.

α :=
r − p
r

= 1− p

r
≤ 1 and β =

r − q
r

= 1− q

r
≤ 1.

Using Eq. (22.9) we may also express α and β as

α = p(1− 1
q
) ≥ 0 and β = q(1− 1

p
) ≥ 0

and in particular we have shown α, β ∈ [0, 1]. If we now define p1 := p/α ∈
(0,∞] and p2 := q/β ∈ (0,∞], then
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1
p1

+
1
p2

+
1
r

= β
1
q

+ α
1
p

+
1
r

= (1− 1
q
) + (1− 1

p
) +

1
r

= 2−
(

1 +
1
r

)
+

1
r

= 1

as desired.

Theorem 22.32 (Approximate δ – functions). Let p ∈ [1,∞], φ ∈
L1(Rd), a :=

∫
Rd φ(x)dx, and for t > 0 let φt(x) = t−dφ(x/t). Then

1. If f ∈ Lp with p <∞ then φt ∗ f → af in Lp as t ↓ 0.
2. If f ∈ BC(Rd) and f is uniformly continuous then ‖φt ∗ f − af‖∞ → 0

as t ↓ 0.
3. If f ∈ L∞ and f is continuous on U ⊂o Rd then φt ∗ f → af uniformly

on compact subsets of U as t ↓ 0.

Proof. Making the change of variables y = tz implies

φt ∗ f(x) =
∫

Rd

f(x− y)φt(y)dy =
∫

Rd

f(x− tz)φ(z)dz

so that

φt ∗ f(x)− af(x) =
∫

Rd

[f(x− tz)− f(x)]φ(z)dz

=
∫

Rd

[τtzf(x)− f(x)]φ(z)dz. (22.13)

Hence by Minkowski’s inequality for integrals (Theorem 21.27), Proposition
22.24 and the dominated convergence theorem,

‖φt ∗ f − af‖p ≤
∫

Rd

‖τtzf − f‖p |φ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (22.13)

‖φt ∗ f − af‖∞ ≤
∫

Rd

‖τtzf − f‖∞ |φ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 ‖τtzf − f‖∞ = 0 uniformly in z by the uniform continuity of f.

Item 3. Let BR = B(0, R) be a large ball in Rd and K @@ U, then
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sup
x∈K
|φt ∗ f(x)− af(x)|

≤
∣∣∣∣∫
BR

[f(x− tz)− f(x)]φ(z)dz
∣∣∣∣+
∣∣∣∣∣
∫
Bc

R

[f(x− tz)− f(x)]φ(z)dz

∣∣∣∣∣
≤
∫
BR

|φ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
Bc

R

|φ(z)| dz

≤ ‖φ‖1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
|z|>R

|φ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K
|φt ∗ f(x)− af(x)| ≤ 2 ‖f‖∞

∫
|z|>R

|φ(z)| dz → 0 as R→∞.

See Theorem 8.15 of Folland for a statement about almost everywhere
convergence.

Exercise 22.5. Let

f(t) =
{
e−1/t if t > 0

0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).

Lemma 22.33. There exists φ ∈ C∞c (Rd, [0,∞)) such that φ(0) > 0,
supp(φ) ⊂ B̄(0, 1) and

∫
Rd φ(x)dx = 1.

Proof. Define h(t) = f(1 − t)f(t + 1) where f is as in Exercise 22.5.
Then h ∈ C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =∫

Rd h(|x|2)dx. Then φ(x) = c−1h(|x|2) is the desired function.
The reader asked to prove the following proposition in Exercise 22.9 below.

Proposition 22.34. Suppose that f ∈ L1
loc(Rd,m) and φ ∈ C1

c (Rd), then
f ∗ φ ∈ C1(Rd) and ∂i(f ∗ φ) = f ∗ ∂iφ. Moreover if φ ∈ C∞c (Rd) then
f ∗ φ ∈ C∞(Rd).

Corollary 22.35 (C∞ – Uryshon’s Lemma). Given K @@ U ⊂o Rd, there
exists f ∈ C∞c (Rd, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.

Proof. Let φ be as in Lemma 22.33, φt(x) = t−dφ(x/t) be as in Theorem
22.32, d be the standard metric on Rd and ε = d(K,U c). Since K is compact
and U c is closed, ε > 0. Let Vδ =

{
x ∈ Rd : d(x,K) < δ

}
and f = φε/3 ∗1Vε/3 ,

then
supp(f) ⊂ supp(φε/3) + Vε/3 ⊂ V̄2ε/3 ⊂ U.

Since V̄2ε/3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =
∫

Rd

1d(y,K)<ε/3 · φε/3(x− y)dy =
∫

Rd

φε/3(x− y)dy = 1.
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The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader,

Exercise 22.10.

Lemma 22.36 (Integration by Parts). Suppose f and g are measur-
able functions on Rd such that t → f(x1, . . . , xi−1, t, xi+1, . . . , xd) and t →
g(x1, . . . , xi−1, t, xi+1, . . . , xd) are continuously differentiable functions on R
for each fixed x = (x1, . . . , xd) ∈ Rd. Moreover assume f · g, ∂f

∂xi
· g and

f · ∂g∂xi
are in L1(Rd,m). Then∫

Rd

∂f

∂xi
· gdm = −

∫
Rd

f · ∂g
∂xi

dm.

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 22.37 (Riemann Lebesgue Lemma). For f ∈ L1(Rd,m) let

f̂(ξ) := (2π)−d/2
∫

Rd

f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rd) and
∥∥∥f̂∥∥∥

∞
≤ (2π)−d/2 ‖f‖1 .

(The choice of the normalization factor, (2π)−d/2, in f̂ is for later conve-
nience.)

Proof. The fact that f̂ is continuous is a simple application of the domi-
nated convergence theorem. Moreover,∣∣∣f̂(ξ)

∣∣∣ ≤ ∫
Rd

|f(x)| dm(x) ≤ (2π)−d/2 ‖f‖1

so it only remains to see that f̂(ξ) → 0 as |ξ| → ∞. First suppose that
f ∈ C∞c (Rd) and let ∆ =

∑d
j=1

∂2

∂x2
j

be the Laplacian on Rd. Notice that
∂
∂xj

e−iξ·x = −iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using Lemma 22.36 re-
peatedly,∫

Rd

∆kf(x)e−iξ·xdm(x) =
∫

Rd

f(x)∆k
xe
−iξ·xdm(x) = − |ξ|2k

∫
Rd

f(x)e−iξ·xdm(x)

= −(2π)d/2 |ξ|2k f̂(ξ)

for any k ∈ N. Hence

(2π)d/2
∣∣∣f̂(ξ)

∣∣∣ ≤ |ξ|−2k ∥∥∆kf
∥∥

1
→ 0

as |ξ| → ∞ and f̂ ∈ C0(Rd). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rd) is
a sequence such that limk→∞ ‖f − fk‖1 = 0, then limk→∞

∥∥∥f̂ − f̂k∥∥∥
∞

= 0.

Hence f̂ ∈ C0(Rd) by an application of Proposition 15.23.
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Corollary 22.38. Let X ⊂ Rd be an open set and µ be a K-finite measure
on BX .

1. Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
2. If h ∈ L1

loc(µ) satisfies∫
X

fhdµ = 0 for all f ∈ C∞c (X) (22.14)

then h(x) = 0 for µ – a.e. x.

Proof. Let f ∈ Cc(X), φ be as in Lemma 22.33, φt be as in Theorem
22.32 and set ψt := φt ∗ (f1X) . Then by Proposition 22.34 ψt ∈ C∞(X) and
by Lemma 22.27 there exists a compact set K ⊂ X such that supp(ψt) ⊂ K
for all t sufficiently small. By Theorem 22.32, ψt → f uniformly on X as t ↓ 0

1. The dominated convergence theorem (with dominating function being
‖f‖∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1., since
Theorem 22.8 guarantees that Cc(X) is dense in Lp(µ).

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being ‖f‖∞ |h| 1K) implies

0 = lim
t↓0

∫
X

ψthdµ =
∫
X

lim
t↓0

ψthdµ =
∫
X

fhdµ.

The proof is now finished by an application of Lemma 22.11.

22.2.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 15.16, Theorem 15.18
and Corollary 15.20. The proofs of these results are the same as their contin-
uous counterparts. One simply uses the smooth version of Urysohn’s Lemma
of Corollary 22.35 in place of Lemma 15.8.

Proposition 22.39 (Smooth Partitions of Unity for Compacts). Sup-
pose that X is an open subset of Rd, K ⊂ X is a compact set and U = {Uj}nj=1

is an open cover of K. Then there exists a smooth (i.e. hj ∈ C∞(X, [0, 1]))
partition of unity {hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Theorem 22.40 (Locally Compact Partitions of Unity). Suppose that
X is an open subset of Rd and U is an open cover of X. Then there exists a
smooth partition of unity of {hi}Ni=1 (N = ∞ is allowed here) subordinate to
the cover U such that supp(hi) is compact for all i.

Corollary 22.41. Suppose that X is an open subset of Rd and U =
{Uα}α∈A ⊂ τ is an open cover of X. Then there exists a smooth partition
of unity of {hα}α∈A subordinate to the cover U such that supp(hα) ⊂ Uα for
all α ∈ A. Moreover if Ūα is compact for each α ∈ A we may choose hα so
that hα ≺ Uα.
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22.3 Exercises

Exercise 22.6. Let (X, τ) be a topological space, µ a measure on BX =
σ(τ) and f : X → C be a measurable function. Letting ν be the measure,
dν = |f | dµ, show supp(ν) = suppµ(f), where supp(ν) is defined in Definition
21.41).

Exercise 22.7. Let (X, τ) be a topological space, µ a measure on BX = σ(τ)
such that supp(µ) = X (see Definition 21.41). Show suppµ(f) = supp(f) =
{f 6= 0} for all f ∈ C(X).

Exercise 22.8. Prove the following strong version of item 3. of Proposition
13.52, namely to every pair of points, x0, x1, in a connected open subset V
of Rd there exists σ ∈ C∞(R, V ) such that σ(0) = x0 and σ(1) = x1. Hint:
First choose a continuous path γ : [0, 1]→ V such that γ (t) = x0 for t near 0
and γ (t) = x1 for t near 1 and then use a convolution argument to smooth γ.

Exercise 22.9. Prove Proposition 22.34 by appealing to Corollary 19.43.

Exercise 22.10 (Integration by Parts). Suppose that (x, y) ∈ R× Rd−1 →
f(x, y) ∈ C and (x, y) ∈ R× Rd−1 → g(x, y) ∈ C are measurable functions
such that for each fixed y ∈ Rd, x→ f(x, y) and x→ g(x, y) are continuously
differentiable. Also assume f · g, ∂xf · g and f · ∂xg are integrable relative to
Lebesgue measure on R× Rd−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. Show∫
R×Rd−1

∂xf(x, y) · g(x, y)dxdy = −
∫

R×Rd−1
f(x, y) · ∂xg(x, y)dxdy. (22.15)

(Note: this result and Fubini’s theorem proves Lemma 22.36.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of

0 ∈ R and set ψε(x) = ψ(εx). First verify Eq. (22.15) with f(x, y) replaced
by ψε(x)f(x, y) by doing the x – integral first. Then use the dominated con-
vergence theorem to prove Eq. (22.15) by passing to the limit, ε ↓ 0.

Exercise 22.11. Let µ be a finite measure on BRd , then D := span{eiλ·x :
λ ∈ Rd} is a dense subspace of Lp(µ) for all 1 ≤ p <∞. Hints: By Theorem
22.8, Cc(Rd) is a dense subspace of Lp(µ). For f ∈ Cc(Rd) and N ∈ N, let

fN (x) :=
∑
n∈Zd

f(x+ 2πNn).

Show fN ∈ BC(Rd) and x→ fN (Nx) is 2π – periodic, so by Exercise 15.13,
x → fN (Nx) can be approximated uniformly by trigonometric polynomials.
Use this fact to conclude that fN ∈ D̄L

p(µ). After this show fN → f in Lp(µ).

Exercise 22.12. Suppose that µ and ν are two finite measures on Rd such
that
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Rd

eiλ·xdµ(x) =
∫

Rd

eiλ·xdν(x) (22.16)

for all λ ∈ Rd. Show µ = ν.
Hint: Perhaps the easiest way to do this is to use Exercise 22.11 with the

measure µ being replaced by µ + ν. Alternatively, use the method of proof
of Exercise 22.11 to show Eq. (22.16) implies

∫
Rd fdµ(x) =

∫
Rd fdν(x) for all

f ∈ Cc(Rd) and then apply Corollary 18.58.

Exercise 22.13. Again let µ be a finite measure on BRd . Further assume that
CM :=

∫
Rd e

M |x|dµ(x) < ∞ for all M ∈ (0,∞). Let P(Rd) be the space of
polynomials, ρ(x) =

∑
|α|≤N ραx

α with ρα ∈ C, on Rd. (Notice that |ρ(x)|p ≤
CeM |x| for some constant C = C(ρ, p,M), so that P(Rd) ⊂ Lp(µ) for all
1 ≤ p < ∞.) Show P(Rd) is dense in Lp(µ) for all 1 ≤ p < ∞. Here is a
possible outline.

Outline: Fix a λ ∈ Rd and let fn(x) = (λ · x)n /n! for all n ∈ N.

1. Use calculus to verify supt≥0 t
αe−Mt = (α/M)α e−α for all α ≥ 0 where

(0/M)0 := 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
(
|x|pn e−M |x|

)
|λ|pn eM |x|

to find an estimate on ‖fn‖p .
2. Use your estimate on ‖fn‖p to show

∑∞
n=0 ‖fn‖p <∞ and conclude

lim
N→∞

∥∥∥∥∥eiλ·(·) −
N∑
n=0

infn

∥∥∥∥∥
p

= 0.

3. Now finish by appealing to Exercise 22.11.

Exercise 22.14. Again let µ be a finite measure on BRd but now assume
there exists an ε > 0 such that C :=

∫
Rd e

ε|x|dµ(x) < ∞. Also let q > 1 and
h ∈ Lq(µ) be a function such that

∫
Rd h(x)xαdµ(x) = 0 for all α ∈ Nd0. (As

mentioned in Exercise 22.14, P(Rd) ⊂ Lp(µ) for all 1 ≤ p <∞, so x→ h(x)xα

is in L1(µ).) Show h(x) = 0 for µ– a.e. x using the following outline.
Outline: Fix a λ ∈ Rd, let fn(x) = (λ · x)n /n! for all n ∈ N, and let

p = q/(q − 1) be the conjugate exponent to q.

1. Use calculus to verify supt≥0 t
αe−εt = (α/ε)α e−α for all α ≥ 0 where

(0/ε)0 := 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
(
|x|pn e−ε|x|

)
|λ|pn eε|x|

to find an estimate on ‖fn‖p .
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2. Use your estimate on ‖fn‖p to show there exists δ > 0 such that∑∞
n=0 ‖fn‖p < ∞ when |λ| ≤ δ and conclude for |λ| ≤ δ that eiλ·x =

Lp(µ)-
∑∞
n=0 i

nfn(x). Conclude from this that∫
Rd

h(x)eiλ·xdµ(x) = 0 when |λ| ≤ δ.

3. Let λ ∈ Rd (|λ| not necessarily small) and set g(t) :=
∫

Rd e
itλ·xh(x)dµ(x)

for t ∈ R. Show g ∈ C∞(R) and

g(n)(t) =
∫

Rd

(iλ · x)neitλ·xh(x)dµ(x) for all n ∈ N.

4. Let T = sup{τ ≥ 0 : g|[0,τ ] ≡ 0}. By Step 2., T ≥ δ. If T <∞, then

0 = g(n)(T ) =
∫

Rd

(iλ · x)neiTλ·xh(x)dµ(x) for all n ∈ N.

Use Step 3. with h replaced by eiTλ·xh(x) to conclude

g(T + t) =
∫

Rd

ei(T+t)λ·xh(x)dµ(x) = 0 for all t ≤ δ/ |λ| .

This violates the definition of T and therefore T = ∞ and in particular
we may take T = 1 to learn∫

Rd

h(x)eiλ·xdµ(x) = 0 for all λ ∈ Rd.

5. Use Exercise 22.11 to conclude that∫
Rd

h(x)g(x)dµ(x) = 0

for all g ∈ Lp(µ). Now choose g judiciously to finish the proof.
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Further Hilbert and Banach Space Techniques





23

L2 - Hilbert Spaces Techniques and Fourier
Series

This section is concerned with Hilbert spaces presented as in the following
example.

Example 23.1. Let (X,M, µ) be a measure space. Then H := L2(X,M, µ)
with inner product

〈f |g〉 =
∫
X

f · ḡdµ

is a Hilbert space.

It will be convenient to define

〈f, g〉 :=
∫
X

f (x) g (x) dµ (x) (23.1)

for all measurable functions f, g on X such that fg ∈ L1 (µ) . So with this
notation we have 〈f |g〉 = 〈f, ḡ〉 for all f, g ∈ H.

Exercise 23.1. Let K : L2(ν) → L2(µ) be the operator defined in Exercise
21.12. Show K∗ : L2(µ)→ L2(ν) is the operator given by

K∗g(y) =
∫
X

k̄(x, y)g(x)dµ(x).

23.1 L2-Orthonoramal Basis

Example 23.2. 1. Let H = L2([−1, 1], dm), A := {1, x, x2, x3 . . . } and β ⊂ H
be the result of doing the Gram-Schmidt procedure on A. By the Stone-
Weierstrass theorem or by Exercise 22.13 directly, A is total in H. Hence
by Remark 8.26, β is an orthonormal basis for H. The basis, β, consists
of polynomials which up to normalization are the so called “Legendre
polynomials.”
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2. Let H = L2(R, e− 1
2x

2
dx) and A := {1, x, x2, x3 . . . }. Again by Exercise

22.13, A is total in H and hence the Gram-Schmidt procedure applied to
A produces an orthonormal basis, β, of polynomial functions for H. This
basis consists, up to normalizations, of the so called “Hermite polyno-
mials” on R.

Remark 23.3 (An Interesting Phenomena). Let H = L2([−1, 1], dm) and B :=
{1, x3, x6, x9, . . . }. Then again A is total in H by the same argument as in
item 2. Example 23.2. This is true even though B is a proper subset of A.
Notice that A is an algebraic basis for the polynomials on [−1, 1] while B is
not! The following computations may help relieve some of the reader’s anxiety.
Let f ∈ L2([−1, 1], dm), then, making the change of variables x = y1/3, shows
that∫ 1

−1

|f(x)|2 dx =
∫ 1

−1

∣∣∣f(y1/3)
∣∣∣2 1

3
y−2/3dy =

∫ 1

−1

∣∣∣f(y1/3)
∣∣∣2 dµ(y) (23.2)

where dµ(y) = 1
3y
−2/3dy. Since µ([−1, 1]) = m([−1, 1]) = 2, µ is a finite

measure on [−1, 1] and hence by Exercise 22.13 A := {1, x, x2, x3 . . . } is total
(see Definition 8.25) in L2([−1, 1], dµ). In particular for any ε > 0 there exists
a polynomial p(y) such that∫ 1

−1

∣∣∣f(y1/3)− p(y)
∣∣∣2 dµ(y) < ε2.

However, by Eq. (23.2) we have

ε2 >

∫ 1

−1

∣∣∣f(y1/3)− p(y)
∣∣∣2 dµ(y) =

∫ 1

−1

∣∣f(x)− p(x3)
∣∣2 dx.

Alternatively, if f ∈ C([−1, 1]), then g(y) = f(y1/3) is back in C([−1, 1]).
Therefore for any ε > 0, there exists a polynomial p(y) such that

ε > ‖g − p‖∞ = sup {|g(y)− p(y)| : y ∈ [−1, 1]}
= sup

{∣∣g(x3)− p(x3)
∣∣ : x ∈ [−1, 1]

}
= sup

{∣∣f(x)− p(x3)
∣∣ : x ∈ [−1, 1]

}
.

This gives another proof the polynomials in x3 are dense in C([−1, 1]) and
hence in L2([−1, 1]).

Exercise 23.2. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
such that L2 (µ) and L2 (ν) are separable. If {fn}∞n=1 and {gm}∞m=1

are orthonormal bases for L2 (µ) and L2 (ν) respectively, then β :=
{fn ⊗ gm : m,n ∈ N} is an orthonormal basis for L2 (µ⊗ ν) . (Recall that
f ⊗ g (x, y) := f (x) g (y) , see Notation 20.4.) Hint: model your proof on
the proof of Proposition 8.28.
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23.2 Hilbert Schmidt Operators 439

Definition 23.4 (External direct sum of Hilbert spaces). Suppose that
{Hn}∞n=1 is a sequence of Hilbert spaces. Let ⊕∞n=1Hn denote the space of
sequences, f ∈

∏∞
n=1Hn such that

‖f‖ =

√√√√ ∞∑
n=1

‖f (n)‖2Hn
<∞.

It is easily seen that (⊕∞n=1Hn, ‖·‖) is a Hilbert space with inner product de-
fined, for all f, g ∈ ⊕∞n=1Hn, by

〈f |g〉⊕∞n=1Hn
=

∞∑
n=1

〈f (n) |g (n)〉Hn
.

Exercise 23.3. Suppose H is a Hilbert space and {Hn : n ∈ N} are closed
subspaces of H such that Hn ⊥ Hm for all m 6= n and if f ∈ H with f ⊥ Hn

for all n ∈ N, then f = 0. For f ∈ ⊕∞n=1Hn, show the sum
∑∞
n=1 f (n) is

convergent in H and the map U : ⊕∞n=1Hn → H defined by Uf :=
∑∞
n=1 f (n)

is unitary.

Exercise 23.4. Suppose (X,M, µ) is a measure space and X =
∐∞
n=1Xn

with Xn ∈M and µ (Xn) > 0 for all n. Then U : L2 (X,µ)→ ⊕∞n=1L
2 (Xn, µ)

defined by (Uf) (n) := f1Xn
is unitary.

23.2 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces.

Proposition 23.5. Let H and B be a separable Hilbert spaces, K : H → B
be a bounded linear operator, {en}∞n=1 and {um}∞m=1 be orthonormal basis for
H and B respectively. Then:

1.
∑∞
n=1 ‖Ken‖

2 =
∑∞
m=1 ‖K∗um‖2 allowing for the possibility that the

sums are infinite. In particular the Hilbert Schmidt norm of K,

‖K‖2HS :=
∞∑
n=1

‖Ken‖2 ,

is well defined independent of the choice of orthonormal basis {en}∞n=1.
We say K : H → B is a Hilbert Schmidt operator if ‖K‖HS <∞ and
let HS(H,B) denote the space of Hilbert Schmidt operators from H to B.

2. For all K ∈ L(H,B), ‖K‖HS = ‖K∗‖HS and

‖K‖HS ≥ ‖K‖op := sup {‖Kh‖ : h ∈ H 3 ‖h‖ = 1} .
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440 23 L2 - Hilbert Spaces Techniques and Fourier Series

3. The set HS(H,B) is a subspace of L (H,B) (the bounded operators from
H → B), ‖·‖HS is a norm on HS(H,B) for which (HS(H,B), ‖·‖HS) is
a Hilbert space, and the corresponding inner product is given by

〈K1|K2〉HS =
∞∑
n=1

〈K1en|K2en〉 . (23.3)

4. If K : H → B is a bounded finite rank operator, then K is Hilbert Schmidt.
5. Let PNx :=

∑N
n=1 〈x|en〉 en be orthogonal projection onto span{en : n ≤ N} ⊂

H and for K ∈ HS(H,B), let KN := KPN . Then

‖K −KN‖2op ≤ ‖K −KN‖2HS → 0 as N →∞,

which shows that finite rank operators are dense in (HS(H,B), ‖·‖HS) .
In particular of HS(H,B) ⊂ K(H,B) – the space of compact operators
from H → B.

6. If Y is another Hilbert space and A : Y → H and C : B → Y are bounded
operators, then

‖KA‖HS ≤ ‖K‖HS ‖A‖op and ‖CK‖HS ≤ ‖K‖HS ‖C‖op ,

in particular HS(H,H) is an ideal in L (H) .

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

∞∑
n=1

‖Ken‖2 =
∞∑
n=1

∞∑
m=1

|〈Ken|um〉|2

=
∞∑
m=1

∞∑
n=1

|〈e|K∗um〉|2 =
∞∑
m=1

‖K∗um‖2 .

This proves ‖K‖HS is well defined independent of basis and that ‖K‖HS =
‖K∗‖HS . For x ∈ H \ {0} , x/ ‖x‖ may be taken to be the first element in an
orthonormal basis for H and hence∥∥∥∥K x

‖x‖

∥∥∥∥ ≤ ‖K‖HS .
Multiplying this inequality by ‖x‖ shows ‖Kx‖ ≤ ‖K‖HS ‖x‖ and hence
‖K‖op ≤ ‖K‖HS .

Item 3. For K1,K2 ∈ L(H,B),
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‖K1 +K2‖HS =

√√√√ ∞∑
n=1

‖K1en +K2en‖2

≤

√√√√ ∞∑
n=1

[‖K1en‖+ ‖K2en‖]2

= ‖{‖K1en‖+ ‖K2en‖}∞n=1‖`2
≤ ‖{‖K1en‖}∞n=1‖`2 + ‖{‖K2en‖}∞n=1‖`2
= ‖K1‖HS + ‖K2‖HS .

From this triangle inequality and the homogeneity properties of ‖·‖HS , we
now easily see that HS(H,B) is a subspace of L(H,B) and ‖·‖HS is a norm
on HS(H,B). Since

∞∑
n=1

|〈K1en|K2en〉| ≤
∞∑
n=1

‖K1en‖ ‖K2en‖

≤

√√√√ ∞∑
n=1

‖K1en‖2
√√√√ ∞∑
n=1

‖K2en‖2 = ‖K1‖HS ‖K2‖HS ,

the sum in Eq. (23.3) is well defined and is easily checked to define an inner
product on HS(H,B) such that ‖K‖2HS = 〈K|K〉HS .

The proof that
(
HS(H,B), ‖·‖2HS

)
is complete is very similar to the proof

of Theorem 7.5. Indeed, suppose {Km}∞m=1 is a ‖·‖HS – Cauchy sequence in
HS(H,B). Because L(H,B) is complete, there exists K ∈ L(H,B) such that
‖K −Km‖op → 0 as m→∞. Thus, making use of Fatou’s Lemma 4.12,

‖K −Km‖2HS =
∞∑
n=1

‖(K −Km) en‖2

=
∞∑
n=1

lim inf
l→∞

‖(Kl −Km) en‖2

≤ lim inf
l→∞

∞∑
n=1

‖(Kl −Km) en‖2

= lim inf
l→∞

‖Kl −Km‖2HS → 0 as m→∞.

Hence K ∈ HS(H,B) and limm→∞ ‖K −Km‖2HS = 0.
Item 4. Since Nul(K∗)⊥ = Ran (K) = Ran (K) ,

‖K‖2HS = ‖K∗‖2HS =
N∑
n=1

‖K∗vn‖2H <∞
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442 23 L2 - Hilbert Spaces Techniques and Fourier Series

where N := dim Ran (K) and {vn}Nn=1 is an orthonormal basis for Ran (K) =
K (H) .

Item 5. Simply observe,

‖K −KN‖2op ≤ ‖K −KN‖2HS =
∑
n>N

‖Ken‖2 → 0 as N →∞.

Item 6. For C ∈ L(B, Y ) and K ∈ L(H,B) then

‖CK‖2HS =
∞∑
n=1

‖CKen‖2 ≤ ‖C‖2op
∞∑
n=1

‖Ken‖2 = ‖C‖2op ‖K‖
2
HS

and for A ∈ L (Y,H) ,

‖KA‖HS = ‖A∗K∗‖HS ≤ ‖A
∗‖op ‖K

∗‖HS = ‖A‖op ‖K‖HS .

Remark 23.6. The separability assumptions made in Proposition 23.5 are un-
necessary. In general, we define

‖K‖2HS =
∑
e∈β

‖Ke‖2

where β ⊂ H is an orthonormal basis. The same proof of Item 1. of Proposition
23.5 shows ‖K‖HS is well defined and ‖K‖HS = ‖K∗‖HS . If ‖K‖2HS < ∞,
then there exists a countable subset β0 ⊂ β such that Ke = 0 if e ∈ β \β0. Let
H0 := span(β0) and B0 := K(H0). Then K (H) ⊂ B0, K|H⊥

0
= 0 and hence

by applying the results of Proposition 23.5 to K|H0 : H0 → B0 one easily sees
that the separability of H and B are unnecessary in Proposition 23.5.

Example 23.7. Let (X,µ) be a measure space, H = L2(X,µ) and

k(x, y) :=
n∑
i=1

fi(x)gi(y)

where
fi, gi ∈ L2(X,µ) for i = 1, . . . , n.

Define
(Kf)(x) =

∫
X

k(x, y)f(y)dµ(y),

then K : L2(X,µ) → L2(X,µ) is a finite rank operator and hence Hilbert
Schmidt.
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23.2 Hilbert Schmidt Operators 443

Exercise 23.5. Suppose that (X,µ) is a σ–finite measure space such that
H = L2(X,µ) is separable and k : X ×X → R is a measurable function, such
that

‖k‖2L2(X×X,µ⊗µ) :=
∫
X×X

|k(x, y)|2dµ(x)dµ(y) <∞.

Define, for f ∈ H,
Kf(x) =

∫
X

k(x, y)f(y)dµ(y),

when the integral makes sense. Show:

1. Kf(x) is defined for µ–a.e. x in X.
2. The resulting function Kf is in H and K : H → H is linear.
3. ‖K‖HS = ‖k‖L2(X×X,µ⊗µ) <∞. (This implies K ∈ HS(H,H).)

Example 23.8. Suppose that Ω ⊂ Rn is a bounded set, α < n, then the oper-
ator K : L2(Ω,m)→ L2(Ω,m) defined by

Kf(x) :=
∫
Ω

1
|x− y|α

f(y)dy

is compact.

Proof. For ε ≥ 0, let

Kεf(x) :=
∫
Ω

1
|x− y|α + ε

f(y)dy = [gε ∗ (1Ωf)] (x)

where gε(x) = 1
|x|α+ε1C(x) with C ⊂ Rn a sufficiently large ball such that

Ω −Ω ⊂ C. Since α < n, it follows that

gε ≤ g0 = |·|−α 1C ∈ L1(Rn,m).

Hence it follows by Proposition 22.23 that

‖(K −Kε) f‖L2(Ω) ≤ ‖(g0 − gε) ∗ (1Ωf)‖L2(Rn)

≤ ‖(g0 − gε)‖L1(Rn) ‖1Ωf‖L2(Rn)

= ‖(g0 − gε)‖L1(Rn) ‖f‖L2(Ω)

which implies

‖K −Kε‖B(L2(Ω)) ≤ ‖g0 − gε‖L1(Rn)

=
∫
C

∣∣∣∣ 1
|x|α + ε

− 1
|x|α

∣∣∣∣ dx→ 0 as ε ↓ 0 (23.4)

by the dominated convergence theorem. For any ε > 0,∫
Ω×Ω

[
1

|x− y|α + ε

]2
dxdy <∞,

and hence Kε is Hilbert Schmidt and hence compact. By Eq. (23.4), Kε → K
as ε ↓ 0 and hence it follows that K is compact as well.
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Exercise 23.6. Let H := L2 ([0, 1] ,m) , k (x, y) := min (x, y) for x, y ∈ [0, 1]
and define K : H → H by

Kf (x) =
∫ 1

0

k (x, y) f (y) dy.

By Exercise 23.5, K is a Hilbert Schmidt operator and it is easily seen that
K is self-adjoint. Show:

1. If g ∈ C2 ([0, 1]) with g (0) = 0 = g′ (1) , then Kg′′ = −g. Use this to
conclude 〈Kf |g′′〉 = −〈f |g〉 for all g ∈ C∞c ((0, 1)) and consequently that
Nul(K) = {0} .

2. Now suppose that f ∈ H is an eigenvector of K with eigenvalue λ 6= 0.
Show that there is a version1 of f which is in C ([0, 1]) ∩ C2 ((0, 1)) and
this version, still denoted by f, solves

λf ′′ = −f with f (0) = f ′ (1) = 0. (23.5)

where f ′ (1) := limx↑1 f
′ (x) .

3. Use Eq. (23.5) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem 8.45, to show{√

2 sin
((

n+
1
2

)
πx

)
: n ∈ N0

}
is an orthonormal basis for L2 ([0, 1] ,m) .

Exercise 23.7. Let (X,M, µ) be a σ – finite measure space, a ∈ L∞(µ) and
let A be the bounded operator on H := L2(µ) defined by Af (x) = a (x) f (x)
for all f ∈ H. (We will denote A by Ma in the future.) Show:

1. ‖A‖op = ‖a‖L∞(µ) .
2. A∗ = Mā.
3. σ (A) = essran(a) where σ (A) is the spectrum of A and essran(a) is the

essential range of a, see Definitions 8.30 and 21.40 respectively.
4. Show λ is an eigenvalue for A = Ma iff µ ({a = λ}) > 0, i.e. iff a has a

“flat spot of height λ.”

23.3 Fourier Series Considerations

Throughout this section we will let dθ, dx, dα, etc. denote Lebesgue measure
on Rd normalized so that the cube, Q := (−π, π]d, has measure one, i.e.
dθ = (2π)−ddm(θ) where m is standard Lebesgue measure on Rd. As usual,
for α ∈ Nd0, let

Dα
θ =

(
1
i

)|α|
∂|α|

∂θα1
1 . . . ∂θαd

d

.

1 A measurable function g is called a version of f iff g = f a.e..
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23.3 Fourier Series Considerations 445

Notation 23.9 Let Ckper(Rd) denote the 2π – periodic functions in Ck(Rd),
that is f ∈ Ckper(Rd) iff f ∈ Ck(Rd) and f(θ+2πei) = f(θ) for all θ ∈ Rd and
i = 1, 2, . . . , d. Further let 〈·|·〉 denote the inner product on the Hilbert space,
H := L2([−π, π]d), given by

〈f |g〉 :=
∫
Q

f(θ)ḡ(θ)dθ =
(

1
2π

)d ∫
Q

f(θ)ḡ(θ)dm (θ)

and define φk(θ) := eik·θ for all k ∈ Zd. For f ∈ L1(Q), we will write f̃(k)
for the Fourier coefficient,

f̃(k) := 〈f |φk〉 =
∫
Q

f(θ)e−ik·θdθ. (23.6)

Since any 2π – periodic functions on Rd may be identified with function
on the d - dimensional torus, Td ∼= Rd/ (2πZ)d ∼=

(
S1
)d
, I may also write

Ck(Td) for Ckper(Rd) and Lp
(
Td
)

for Lp (Q) where elements in f ∈ Lp (Q) are
to be thought of as there extensions to 2π – periodic functions on Rd.

Theorem 23.10 (Fourier Series). The functions β :=
{
φk : k ∈ Zd

}
form

an orthonormal basis for H, i.e. if f ∈ H then

f =
∑
k∈Zd

〈f |φk〉φk =
∑
k∈Zd

f̃(k)φk (23.7)

where the convergence takes place in L2([−π, π]d).

Proof. Simple computations show β :=
{
φk : k ∈ Zd

}
is an orthonormal

set. We now claim that β is an orthonormal basis. To see this recall that
Cc((−π, π)d) is dense in L2((−π, π)d, dm). Any f ∈ Cc((−π, π)) may be ex-
tended to be a continuous 2π – periodic function on R and hence by Exercise
15.13 and Remark 15.44, f may uniformly (and hence in L2) be approximated
by a trigonometric polynomial. Therefore β is a total orthonormal set, i.e. β
is an orthonormal basis.

This may also be proved by first proving the case d = 1 as above and then
using Exercise 23.2 inductively to get the result for any d.

Exercise 23.8. Let A be the operator defined in Lemma 8.36 and for g ∈
L2 (T) , let Ug (k) := g̃ (k) so that U : L2 (T) → `2 (Z) is unitary. Show
U−1AU = Ma where a ∈ C∞per (R) is a function to be found. Use this repre-
sentation and the results in Exercise 23.7 to give a simple proof of the results
in Lemma 8.36.

23.3.1 Dirichlet, Fejér and Kernels

Although the sum in Eq. (23.7) is guaranteed to converge relative to the
Hilbertian norm on H it certainly need not converge pointwise even if
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f ∈ Cper
(
Rd
)

as will be proved in Section 25.3.1 below. Nevertheless, if f
is sufficiently regular, then the sum in Eq. (23.7) will converge pointwise as
we will now show. In the process we will give a direct and constructive proof
of the result in Exercise 15.13, see Theorem 23.12 below.

Let us restrict our attention to d = 1 here. Consider

fn (θ) =
∑
|k|≤n

f̃(k)φk (θ) =
∑
|k|≤n

1
2π

[∫
[−π,π]

f(x)e−ik·xdx

]
φk (θ)

=
1
2π

∫
[−π,π]

f(x)
∑
|k|≤n

eik·(θ−x)dx

=
1
2π

∫
[−π,π]

f(x)Dn(θ − x)dx (23.8)

where

Dn(θ) :=
n∑

k=−n

eikθ

is called the Dirichlet kernel. Letting α = eiθ/2, we have

Dn(θ) =
n∑

k=−n

α2k =
α2(n+1) − α−2n

α2 − 1
=
α2n+1 − α−(2n+1)

α− α−1

=
2i sin(n+ 1

2 )θ
2i sin 1

2θ
=

sin(n+ 1
2 )θ

sin 1
2θ

.

and therefore

Dn(θ) :=
n∑

k=−n

eikθ =
sin(n+ 1

2 )θ
sin 1

2θ
, (23.9)

see Figure 23.3.1.

This is a plot D1 and D10.
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with the understanding that the right side of this equation is 2n+1 whenever
θ ∈ 2πZ.

Theorem 23.11. Suppose f ∈ L1 ([−π, π] , dm) and f is differentiable at
some θ ∈ [−π, π] , then limn→∞ fn (θ) = f (θ) where fn is as in Eq. (23.8).

Proof. Observe that

1
2π

∫
[−π,π]

Dn(θ − x)dx =
1
2π

∫
[−π,π]

∑
|k|≤n

eik·(θ−x)dx = 1

and therefore,

fn (θ)− f (θ) =
1
2π

∫
[−π,π]

[f(x)− f (θ)]Dn(θ − x)dx

=
1
2π

∫
[−π,π]

[f(x)− f (θ − x)]Dn(x)dx

=
1
2π

∫
[−π,π]

[
f(θ − x)− f (θ)

sin 1
2x

]
sin(n+

1
2
)x dx. (23.10)

If f is differentiable at θ, the last expression in Eq. (23.10) tends to 0 as
n→∞ by the Riemann Lebesgue Lemma (Corollary 22.17 or Lemma 22.37)
and the fact that 1[−π,π] (x)

f(θ−x)−f(θ)

sin 1
2x

∈ L1 (dx) .
Despite the Dirichlet kernel not being positive, it still satisfies the approx-

imate δ – sequence property, 1
2πDn → δ0 as n → ∞, when acting on C1 –

periodic functions in θ. In order to improve the convergence properties it is
reasonable to try to replace {fn : n ∈ N0} by the sequence of averages (see
Exercise 7.14),

FN (θ) =
1

N + 1

N∑
n=0

fn (θ) =
1

N + 1

N∑
n=0

1
2π

∫
[−π,π]

f(x)
∑
|k|≤n

eik·(θ−x)dx

=
1
2π

∫
[−π,π]

KN (θ − x)f(x)dx

where

KN (θ) :=
1

N + 1

N∑
n=0

∑
|k|≤n

eik·θ (23.11)

is the Fejér kernel.

Theorem 23.12. The Fejér kernel KN in Eq. (23.11) satisfies:

1.
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KN (θ) =
N∑

n=−N

[
1− |n|

N + 1

]
einθ (23.12)

=
1

N + 1
sin2

(
N+1

2 θ
)

sin2
(
θ
2

) . (23.13)

2. KN (θ) ≥ 0.
3. 1

2π

∫ π
−πKN (θ)dθ = 1

4. supε≤|θ|≤πKN (θ)→ 0 as N →∞ for all ε > 0, see Figure 23.1.
5. For any continuous 2π – periodic function f on R, KN ∗ f(θ) → f(θ)

uniformly in θ as N →∞, where

KN ∗ f(θ) =
1
2π

∫ π

−π
KN (θ − α)f(α)dα

=
N∑

n=−N

[
1− |n|

N + 1

]
f̃ (n) einθ. (23.14)

Fig. 23.1. Plots of KN (θ) for N = 2, 7 and 13.

Proof. 1. Equation (23.12) is a consequence of the identity,

N∑
n=0

∑
|k|≤n

eik·θ =
∑

|k|≤n≤N

eik·θ =
∑
|k|≤N

(N + 1− |k|) eik·θ.

Moreover, letting α = eiθ/2 and using Eq. (3.3) shows
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KN (θ) =
1

N + 1

N∑
n=0

∑
|k|≤n

α2k =
1

N + 1

N∑
n=0

α2n+2 − α−2n

α2 − 1

=
1

(N + 1) (α− α−1)

N∑
n=0

[
α2n+1 − α−2n−1

]
=

1
(N + 1) (α− α−1)

N∑
n=0

[
αα2n − α−1α−2n

]
=

1
(N + 1) (α− α−1)

[
α
α2N+2 − 1
α2 − 1

− α−1α
−2N−2 − 1
α−2 − 1

]
=

1
(N + 1) (α− α−1)2

[
α2(N+1) − 1 + α−2(N+1) − 1

]
=

1
(N + 1) (α− α−1)2

[
α(N+1) − α−(N+1)

]2
=

1
N + 1

sin2 ((N + 1) θ/2)
sin2 (θ/2)

.

Items 2. and 3. follow easily from Eqs. (23.13) and (23.12) respectively.
Item 4. is a consequence of the elementary estimate;

sup
ε≤|θ|≤π

KN (θ) ≤ 1
N + 1

1
sin2

(
ε
2

)
and is clearly indicated in Figure 23.1. Item 5. now follows by the standard
approximate δ – function arguments, namely,

|KN ∗ f(θ)− f (θ)| = 1
2π

∣∣∣∣∫ π

−π
KN (θ − α) [f(α)− f (θ)] dα

∣∣∣∣
≤ 1

2π

∫ π

−π
KN (α) |f(θ − α)− f (θ)| dα

≤ 1
π

1
N + 1

1
sin2

(
ε
2

) ‖f‖∞ +
1
2π

∫
|α|≤ε

KN (α) |f(θ − α)− f (θ)| dα

≤ 1
π

1
N + 1

1
sin2

(
ε
2

) ‖f‖∞ + sup
|α|≤ε

|f(θ − α)− f (θ)| .

Therefore,

lim sup
N→∞

‖KN ∗ f − f‖∞ ≤ sup
θ

sup
|α|≤ε

|f(θ − α)− f (θ)| → 0 as ε ↓ 0.
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450 23 L2 - Hilbert Spaces Techniques and Fourier Series

23.3.2 The Dirichlet Problems on D and the Poisson Kernel

Let D := {z ∈ C : |z| < 1} be the open unit disk in C ∼= R2, write z ∈ C as
z = x + iy or z = reiθ, and let ∆ = ∂2

∂x2 + ∂2

∂y2 be the Laplacian acting on
C2 (D) .

Theorem 23.13 (Dirichlet problem for D). To every continuous function
g ∈ C (bd(D)) there exists a unique function u ∈ C(D̄) ∩ C2(D) solving

∆u(z) = 0 for z ∈ D and u|∂D = g. (23.15)

Moreover for r < 1, u is given by,

u(reiθ) =
1
2π

∫ π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ) (23.16)

=
1
2π

Re
∫ π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα (23.17)

where Pr is the Poisson kernel defined by

Pr(δ) :=
1− r2

1− 2r cos δ + r2
.

(The problem posed in Eq. (23.15) is called the Dirichlet problem for D.)

Proof. In this proof, we are going to be identifying S1 = bd(D) :={
z ∈ D̄ : |z| = 1

}
with [−π, π]/ (π ∼ −π) by the map θ ∈ [−π, π]→ eiθ ∈ S1.

Also recall that the Laplacian ∆ may be expressed in polar coordinates as,

∆u = r−1∂r
(
r−1∂ru

)
+

1
r2
∂2
θu,

where

(∂ru)
(
reiθ

)
=

∂

∂r
u
(
reiθ

)
and (∂θu)

(
reiθ

)
=

∂

∂θ
u
(
reiθ

)
.

Uniqueness. Suppose u is a solution to Eq. (23.15) and let

g̃(k) :=
1
2π

∫ π

−π
g(eikθ)e−ikθdθ

and
ũ(r, k) :=

1
2π

∫ π

−π
u(reiθ)e−ikθdθ (23.18)

be the Fourier coefficients of g (θ) and θ → u
(
reiθ

)
respectively. Then for

r ∈ (0, 1) ,
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23.3 Fourier Series Considerations 451

r−1∂r (r∂rũ(r, k)) =
1
2π

∫ π

−π
r−1∂r

(
r−1∂ru

)
(reiθ)e−ikθdθ

= − 1
2π

∫ π

−π

1
r2
∂2
θu(re

iθ)e−ikθdθ

= − 1
r2

1
2π

∫ π

−π
u(reiθ)∂2

θe
−ikθdθ

=
1
r2
k2ũ(r, k)

or equivalently
r∂r (r∂rũ(r, k)) = k2ũ(r, k). (23.19)

Recall the general solution to

r∂r (r∂ry(r)) = k2y(r) (23.20)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) solving Eq. (23.19) may
be written as ũ(r, k) = Akr

|k| +Bkr
−|k| for some constants Ak and Bk when

k 6= 0. If k = 0, the solution to Eq. (23.20) is gotten by simple integration and
the result is ũ(r, 0) = A0 + B0 ln r. Since ũ(r, k) is bounded near the origin
for each k it must be that Bk = 0 for all k ∈ Z. Hence we have shown there
exists Ak ∈ C such that, for all r ∈ (0, 1),

Akr
|k| = ũ(r, k) =

1
2π

∫ π

−π
u(reiθ)e−ikθdθ. (23.21)

Since all terms of this equation are continuous for r ∈ [0, 1], Eq. (23.21)
remains valid for all r ∈ [0, 1] and in particular we have, at r = 1, that

Ak =
1
2π

∫ π

−π
u(eiθ)e−ikθdθ = g̃(k).

Hence if u is a solution to Eq. (23.15) then u must be given by

u(reiθ) =
∑
k∈Z

g̃(k)r|k|eikθ for r < 1. (23.22)

or equivalently,
u(z) =

∑
k∈N0

g̃(k)zk +
∑
k∈N

g̃(−k)z̄k.

Notice that the theory of the Fourier series implies Eq. (23.22) is valid in the
L2 (dθ) - sense. However more is true, since for r < 1, the series in Eq. (23.22) is
absolutely convergent and in fact defines a C∞ – function (see Exercise 4.11 or
Corollary 19.43) which must agree with the continuous function, θ → u

(
reiθ

)
,

for almost every θ and hence for all θ. This completes the proof of uniqueness.
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452 23 L2 - Hilbert Spaces Techniques and Fourier Series

Existence. Given g ∈ C (bd(D)) , let u be defined as in Eq. (23.22). Then,
again by Exercise 4.11 or Corollary 19.43, u ∈ C∞ (D) . So to finish the proof
it suffices to show limx→y u (x) = g (y) for all y ∈ bd(D). Inserting the formula
for g̃(k) into Eq. (23.22) gives

u(reiθ) =
1
2π

∫ π

−π
Pr (θ − α)u(eiα)dα for all r < 1

where

Pr (δ) =
∑
k∈Z

r|k|eikδ =
∞∑
k=0

rkeikδ +
∞∑
k=0

rke−ikδ − 1 =

= Re
[
2

1
1− reiδ

− 1
]

= Re
[
1 + reiδ

1− reiδ

]
= Re

[(
1 + reiδ

) (
1− re−iδ

)
|1− reiδ|2

]
= Re

[
1− r2 + 2ir sin δ
1− 2r cos δ + r2

]
(23.23)

=
1− r2

1− 2r cos δ + r2
.

The Poisson kernel again solves the usual approximate δ – function prop-
erties (see Figure 2), namely:

1. Pr (δ) > 0 and

1
2π

∫ π

−π
Pr (θ − α) dα =

1
2π

∫ π

−π

∑
k∈Z

r|k|eik(θ−α)dα

=
1
2π

∑
k∈Z

r|k|
∫ π

−π
eik(θ−α)dα = 1

and
2.

sup
ε≤|θ|≤π

Pr(θ) ≤
1− r2

1− 2r cos ε+ r2
→ 0 as r ↑ 1.

A plot of Pr(δ) for r = 0.2, 0.5 and 0.7.
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Therefore by the same argument used in the proof of Theorem 23.12,

lim
r↑1

sup
θ

∣∣u (reiθ)− g (eiθ)∣∣ = lim
r↑1

sup
θ

∣∣(Pr ∗ g) (eiθ)− g (eiθ)∣∣ = 0

which certainly implies limx→y u (x) = g (y) for all y ∈ bd(D).

Remark 23.14 (Harmonic Conjugate). Writing z = reiθ, Eq. (23.17) may be
rewritten as

u(z) =
1
2π

Re
∫ π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1
2π

∫ π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.

Moreover it follows from Eq. (23.23) that

ImF (reiθ) =
1
π

Im
∫ π

−π

r sin(θ − α)
1− 2r cos(θ − α) + r2

g(eiα)dα

=: (Qr ∗ u) (eiθ)

where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v =: (Qr ∗ g) (eiθ) is the harmonic conju-
gate of u and P̃r = Qr. For more on this point see Section ?? below.

23.4 Weak L2-Derivatives

Theorem 23.15 (Weak and Strong Differentiability). Suppose that f ∈
L2(Rn) and v ∈ Rn \ {0} . Then the following are equivalent:

1. There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

∥∥∥∥f(·+ tnv)− f(·)
tn

∥∥∥∥
2

<∞.

2. There exists g ∈ L2(Rn) such that 〈f, ∂vφ〉 = −〈g, φ〉 for all φ ∈ C∞c (Rn).
3. There exists g ∈ L2(Rn) and fn ∈ C∞c (Rn) such that fn

L2

→ f and ∂vfn
L2

→
g as n→∞.

4. There exists g ∈ L2 such that

f(·+ tv)− f(·)
t

L2

→ g as t→ 0.
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454 23 L2 - Hilbert Spaces Techniques and Fourier Series

(See Theorem 26.18 for the Lp generalization of this theorem.)

Proof. 1. =⇒ 2. We may assume, using Theorem 14.43 and passing to a
subsequence if necessary, that f(·+tnv)−f(·)

tn

w→ g for some g ∈ L2(Rn). Now
for φ ∈ C∞c (Rn),

〈g|φ〉 = lim
n→∞

〈
f(·+ tnv)− f(·)

tn
, φ

〉
= lim
n→∞

〈
f,
φ(· − tnv)− φ(·)

tn

〉
=
〈
f, lim
n→∞

φ(· − tnv)− φ(·)
tn

〉
= −〈f, ∂vφ〉,

wherein we have used the translation invariance of Lebesgue measure and
the dominated convergence theorem. 2. =⇒ 3. Let φ ∈ C∞c (Rn,R) such that∫

Rn φ(x)dx = 1 and let φm(x) = mnφ(mx), then by Proposition 22.34, hm :=
φm ∗ f ∈ C∞(Rn) for all m and

∂vhm(x) = ∂vφm ∗ f(x) =
∫

Rn

∂vφm(x− y)f(y)dy = 〈f,−∂v [φm (x− ·)]〉

= 〈g, φm (x− ·)〉 = φm ∗ g(x).

By Theorem 22.32, hm → f ∈ L2(Rn) and ∂vhm = φm ∗ g → g in L2(Rn)
as m → ∞. This shows 3. holds except for the fact that hm need not have
compact support. To fix this let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a
neighborhood of 0 and let ψε(x) = ψ(εx) and (∂vψ)ε (x) := (∂vψ) (εx). Then

∂v (ψεhm) = ∂vψεhm + ψε∂vhm = ε (∂vψ)ε hm + ψε∂vhm

so that ψεhm → hm in L2 and ∂v (ψεhm) → ∂vhm in L2 as ε ↓ 0. Let
fm = ψεm

hm where εm is chosen to be greater than zero but small enough so
that

‖ψεm
hm − hm‖2 + ‖∂v (ψεm

hm)→ ∂vhm‖2 < 1/m.

Then fm ∈ C∞c (Rn), fm → f and ∂vfm → g in L2 as m → ∞. 3. =⇒ 4. By
the fundamental theorem of calculus

τ−tvfm(x)− fm(x)
t

=
fm(x+ tv)− fm(x)

t

=
1
t

∫ 1

0

d

ds
fm(x+ stv)ds =

∫ 1

0

(∂vfm) (x+ stv)ds.

(23.24)

Let

Gt(x) :=
∫ 1

0

τ−stvg(x)ds =
∫ 1

0

g(x+ stv)ds

which is defined for almost every x and is in L2(Rn) by Minkowski’s inequality
for integrals, Theorem 21.27. Therefore
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τ−tvfm(x)− fm(x)
t

−Gt(x) =
∫ 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds

and hence again by Minkowski’s inequality for integrals,∥∥∥∥τ−tvfm − fmt
−Gt

∥∥∥∥
2

≤
∫ 1

0

‖τ−stv (∂vfm)− τ−stvg‖2 ds

=
∫ 1

0

‖∂vfm − g‖2 ds.

Letting m→∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one
more application of Minkowski’s inequality for integrals implies,∥∥∥∥τ−tvf − ft

− g
∥∥∥∥

2

= ‖Gt − g‖2 =
∥∥∥∥∫ 1

0

(τ−stvg − g) ds
∥∥∥∥

2

≤
∫ 1

0

‖τ−stvg − g‖2 ds.

By the dominated convergence theorem and Proposition 22.24, the latter term
tends to 0 as t→ 0 and this proves 4. The proof is now complete since 4. =⇒
1. is trivial.

23.5 *Conditional Expectation

In this section let (Ω,F , P ) be a probability space, i.e. (Ω,F , P ) is a measure
space and P (Ω) = 1. Let G ⊂ F be a sub – sigma algebra of F and write
f ∈ Gb if f : Ω → C is bounded and f is (G,BC) – measurable. In this section
we will write

Ef :=
∫
Ω

fdP.

Definition 23.16 (Conditional Expectation). Let EG : L2(Ω,F , P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,F , P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,G, P ), we say that EGf ∈ L2(Ω,F , P ) is the
conditional expectation of f.

Theorem 23.17. Let (Ω,F , P ) and G ⊂ F be as above and f, g ∈
L2(Ω,F , P ).

1. If f ≥ 0, P – a.e. then EGf ≥ 0, P – a.e.
2. If f ≥ g, P – a.e. there EGf ≥ EGg, P – a.e.
3. |EGf | ≤ EG |f | , P – a.e.
4. ‖EGf‖L1 ≤ ‖f‖L1 for all f ∈ L2. So by the B.L.T. Theorem 10.4, EG

extends uniquely to a bounded linear map from L1(Ω,F , P ) to L1(Ω,G, P )
which we will still denote by EG .
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456 23 L2 - Hilbert Spaces Techniques and Fourier Series

5. If f ∈ L1(Ω,F , P ) then F = EGf ∈ L1(Ω,G, P ) iff

E(Fh) = E(fh) for all h ∈ Gb.

6. If g ∈ Gb and f ∈ L1(Ω,F , P ), then EG(gf) = g · EGf, P – a.e.

Proof. By the definition of orthogonal projection for h ∈ Gb,

E(fh) = E(f · EGh) = E(EGf · h).

So if f, h ≥ 0 then 0 ≤ E(fh) ≤ E(EGf · h) and since this holds for all h ≥ 0
in Gb, EGf ≥ 0, P – a.e. This proves (1). Item (2) follows by applying item
(1). to f − g. If f is real, ±f ≤ |f | and so by Item (2), ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P – a.e. For complex f, let h ≥ 0 be a bounded and G –
measurable function. Then

E [|EGf |h] = E
[
EGf · sgn (EGf)h

]
= E

[
f · sgn (EGf)h

]
≤ E [|f |h] = E [EG |f | · h] .

Since h is arbitrary, it follows that |EGf | ≤ EG |f | , P – a.e. Integrating this
inequality implies

‖EGf‖L1 ≤ E |EGf | ≤ E [EG |f | · 1] = E [|f |] = ‖f‖L1 .

Item (5). Suppose f ∈ L1(Ω,F , P ) and h ∈ Gb. Let fn ∈ L2(Ω,F , P ) be a
sequence of functions such that fn → f in L1(Ω,F , P ). Then

E(EGf · h) = E( lim
n→∞

EGfn · h) = lim
n→∞

E(EGfn · h)

= lim
n→∞

E(fn · h) = E(f · h). (23.25)

This equation uniquely determines EG , for if F ∈ L1(Ω,G, P ) also satisfies
E(F · h) = E(f · h) for all h ∈ Gb, then taking h = sgn (F − EGf) in Eq.
(23.25) gives

0 = E((F − EGf)h) = E(|F − EGf |).

This shows F = EGf, P – a.e. Item (6) is now an easy consequence of this
characterization, since if h ∈ Gb,

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .

Thus EG (gf) = g · EGf, P – a.e.

Proposition 23.18. If G0 ⊂ G1 ⊂ F . Then

EG0EG1 = EG1EG0 = EG0 . (23.26)

Proof. Equation (23.26) holds on L2(Ω,F , P ) by the basic properties of
orthogonal projections. It then hold on L1(Ω,F , P ) by continuity and the
density of L2(Ω,F , P ) in L1(Ω,F , P ).
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Example 23.19. Suppose that (X,M, µ) and (Y,N , ν) are two σ – finite mea-
sure spaces. Let Ω = X × Y, F =M⊗N and P (dx, dy) = ρ(x, y)µ(dx)ν(dy)
where ρ ∈ L1(Ω,F , µ⊗ν) is a positive function such that

∫
X×Y ρd (µ⊗ ν) = 1.

Let πX : Ω → X be the projection map, πX(x, y) = x, and

G := σ(πX) = π−1
X (M) = {A× Y : A ∈M} .

Then f : Ω → R is G – measurable iff f = F ◦πX for some function F : X → R
which is N – measurable, see Lemma 18.66. For f ∈ L1(Ω,F , P ), we will now
show EGf = F ◦ πX where

F (x) =
1

ρ̄(x)
1(0,∞)(ρ̄(x)) ·

∫
Y

f(x, y)ρ(x, y)ν(dy),

ρ̄(x) :=
∫
Y
ρ(x, y)ν(dy). (By convention,

∫
Y
f(x, y)ρ(x, y)ν(dy) := 0 if∫

Y
|f(x, y)| ρ(x, y)ν(dy) =∞.)
By Tonelli’s theorem, the set

E := {x ∈ X : ρ̄(x) =∞} ∪
{
x ∈ X :

∫
Y

|f(x, y)| ρ(x, y)ν(dy) =∞
}

is a µ – null set. Since

E [|F ◦ πX |] =
∫
X

dµ(x)
∫
Y

dν(y) |F (x)| ρ(x, y) =
∫
X

dµ(x) |F (x)| ρ̄(x)

=
∫
X

dµ(x)
∣∣∣∣∫
Y

ν(dy)f(x, y)ρ(x, y)
∣∣∣∣

≤
∫
X

dµ(x)
∫
Y

ν(dy) |f(x, y)| ρ(x, y) <∞,

F ◦πX ∈ L1(Ω,G, P ). Let h = H ◦πX be a bounded G – measurable function,
then

E [F ◦ πX · h] =
∫
X

dµ(x)
∫
Y

dν(y)F (x)H(x)ρ(x, y)

=
∫
X

dµ(x)F (x)H(x)ρ̄(x)

=
∫
X

dµ(x)H(x)
∫
Y

ν(dy)f(x, y)ρ(x, y)

= E [hf ]

and hence EGf = F ◦ πX as claimed.

This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise 23.25 to gain more intuition about
conditional expectations.
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Theorem 23.20 (Jensen’s inequality). Let (Ω,F , P ) be a probability space
and ϕ : R→ R be a convex function. Assume f ∈ L1(Ω,F , P ;R) is a function
such that (for simplicity) ϕ(f) ∈ L1(Ω,F , P ;R), then ϕ(EGf) ≤ EG [ϕ(f)] ,
P – a.e.

Proof. Let us first assume that φ is C1 and f is bounded. In this case

ϕ(x)− ϕ(x0) ≥ ϕ′(x0)(x− x0) for all x0, x ∈ R. (23.27)

Taking x0 = EGf and x = f in this inequality implies

ϕ(f)− ϕ(EGf) ≥ ϕ′(EGf)(f − EGf)

and then applying EG to this inequality gives

EG [ϕ(f)]− ϕ(EGf) = EG [ϕ(f)− ϕ(EGf)]
≥ ϕ′(EGf)(EGf − EGEGf) = 0

The same proof works for general φ, one need only use Proposition 21.8 to
replace Eq. (23.27) by

ϕ(x)− ϕ(x0) ≥ ϕ′−(x0)(x− x0) for all x0, x ∈ R

where ϕ′−(x0) is the left hand derivative of φ at x0. If f is not bounded, apply
what we have just proved to fM = f1|f |≤M , to find

EG
[
ϕ(fM )

]
≥ ϕ(EGfM ). (23.28)

Since EG : L1(Ω,F , P ;R)→ L1(Ω,F , P ;R) is a bounded operator and fM →
f and ϕ(fM ) → φ(f) in L1(Ω,F , P ;R) as M → ∞, there exists {Mk}∞k=1

such that Mk ↑ ∞ and fMk → f and ϕ(fMk)→ φ(f), P – a.e. So passing to
the limit in Eq. (23.28) shows EG [ϕ(f)] ≥ ϕ(EGf), P – a.e.

23.6 Exercises

Exercise 23.9. Let (X,M, µ) be a measure space and H := L2(X,M, µ).
Given f ∈ L∞(µ) let Mf : H → H be the multiplication operator defined by
Mfg = fg. Show M2

f = Mf iff there exists A ∈M such that f = 1A a.e.

Exercise 23.10 (Haar Basis). In this problem, let L2 denote L2([0, 1],m)
with the standard inner product,

ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x)

and for k, j ∈ N0 := N∪{0} with 0 ≤ j < 2k let
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ψkj(x) = 2k/2ψ(2kx− j)
= 2k/2

(
12−k[j,j+1/2)(x)− 12−k[j+1/2,j+1)(x)

)
.

The following pictures shows the graphs of ψ00, ψ1,0, ψ1,1, ψ2,1, ψ2,2 and ψ2,3

respectively.

Plot of ψ0, 0.

Plot of ψ10. Plot of ψ11.

Plot of ψ20. Plot of ψ21.

Plot of ψ22. Plot of ψ23.

1. For n ∈ N, letM0 = span({1}) andMn := span
(
{1} ∪

{
ψkj : 0 ≤ k < n and 0 ≤ j < 2k

})
for n ∈ N, where 1 denotes the constant function 1. Show

Mn = span
(
{1[j2−n,(j+1)2−n) : and 0 ≤ j < 2n

)
.

Page: 459 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



460 23 L2 - Hilbert Spaces Techniques and Fourier Series

2. Show β := {1} ∪
{
ψkj : 0 ≤ k and 0 ≤ j < 2k

}
is an orthonormal

set. Hint: show ψk+1,j ∈ M⊥
k for all 0 ≤ j < 2k+1 and show{

ψkj : 0 ≤ j < 2k
}

is an orthonormal set for fixed k.
3. Show ∪∞n=1Mn is a dense subspace of L2 and therefore β is an orthonormal

basis for L2. Hint: see Theorem 22.15.
4. For f ∈ L2, let

Hnf := 〈f |1〉1 +
n−1∑
k=0

2k−1∑
j=0

〈f |ψkj〉ψkj .

Show (compare with Exercise 23.25)

Hnf =
2n−1∑
j=0

(
2n
∫ (j+1)2−n

j2−n

f(x)dx

)
1[j2−n,(j+1)2−n)

and use this to show ‖f −Hnf‖∞ → 0 as n → ∞ for all f ∈ C([0, 1]).
Hint: Compute orthogonal projection onto Mn using a judiciously chosen
basis for Mn.

Exercise 23.11. Let O(n) be the orthogonal groups consisting of n× n real
orthogonal matrices O, i.e. OtrO = I. For O ∈ O(n) and f ∈ L2(Rn) let
UOf(x) = f(O−1x). Show

1. UOf is well defined, namely if f = g a.e. then UOf = UOg a.e.
2. UO : L2(Rn) → L2(Rn) is unitary and satisfies UO1UO2 = UO1O2 for all
O1, O2 ∈ O(n). That is to say the map O ∈ O(n) → U(L2(Rn)) – the
unitary operators on L2(Rn) is a group homomorphism, i.e. a “unitary
representation” of O(n).

3. For each f ∈ L2(Rn), the map O ∈ O(n) → UOf ∈ L2(Rn) is continu-
ous. Take the topology on O(n) to be that inherited from the Euclidean
topology on the vector space of all n× n matrices. Hint: see the proof of
Proposition 22.24.

Exercise 23.12. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 23.13. Spherical Harmonics.

Exercise 23.14. The gradient and the Laplacian in spherical coordinates.

Exercise 23.15. Legendre polynomials.

23.7 Fourier Series Exercises

Exercise 23.16. Show
∑∞
k=1 k

−2 = π2/6, by taking f(x) = x on [−π, π] and
computing ‖f‖22 directly and then in terms of the Fourier Coefficients f̃ of f.
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Exercise 23.17 (Riemann Lebesgue Lemma for Fourier Series). Show
for f ∈ L1([−π, π]d) that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) =
0. Hint: If f ∈ H, this follows form Bessel’s inequality. Now use a density
argument.

Exercise 23.18. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ `1(Zd)
and set

g(x) :=
∑
k∈Zd

f̃(k)eik·x (pointwise).

1. Show g ∈ Cper(Rd).
2. Show g(x) = f(x) for m – a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and

then use approximation arguments to show∫
[−π,π]d

f(x)h(x)dx =
∫

[−π,π]d
g(x)h(x)dx ∀ h ∈ C([−π, π]d)

and then refer to Lemma 22.11.
3. Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Exercise 23.19. Suppose m ∈ N0, α is a multi-index such that |α| ≤ 2m and
f ∈ C2m

per(Rd)2.

1. Using integration by parts, show (using Notation 22.21) that

(ik)αf̃(k) = 〈∂αf |ek〉 for all k ∈ Zd.

Note: This equality implies∣∣∣f̃(k)
∣∣∣ ≤ 1

kα
‖∂αf‖H ≤

1
kα
‖∂αf‖∞ .

2. Now let ∆f =
∑d
i=1 ∂

2f/∂x2
i , Working as in part 1) show

〈(1−∆)mf |ek〉 = (1 + |k|2)mf̃(k). (23.29)

Remark 23.21. Suppose that m is an even integer, α is a multi-index and
f ∈ Cm+|α|

per (Rd), then

2 We view Cper(R) as a subspace of H = L2 ([−π, π]) by identifying f ∈ Cper(R)
with f |[−π,π] ∈ H.
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k∈Zd

|kα|
∣∣∣f̃(k)

∣∣∣
2

=

∑
k∈Zd

|〈∂αf |ek〉| (1 + |k|2)m/2(1 + |k|2)−m/2
2

=

∑
k∈Zd

∣∣∣〈(1−∆)m/2∂αf |ek〉
∣∣∣ (1 + |k|2)−m/2

2

≤
∑
k∈Zd

∣∣∣〈(1−∆)m/2∂αf |ek〉
∣∣∣2 · ∑

k∈Zd

(1 + |k|2)−m

= Cm

∥∥∥(1−∆)m/2∂αf
∥∥∥2

H

where Cm :=
∑
k∈Zd(1 + |k|2)−m <∞ iff m > d/2. So the smoother f is the

faster f̃ decays at infinity. The next problem is the converse of this assertion
and hence smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 23.20 (A Sobolev Imbedding Theorem). Suppose s ∈ R and{
ck ∈ C : k ∈ Zd

}
are coefficients such that∑

k∈Zd

|ck|2 (1 + |k|2)s <∞.

Show if s > d
2 +m, the function f defined by

f(x) =
∑
k∈Zd

cke
ik·x

is in Cmper(Rd). Hint: Work as in the above remark to show∑
k∈Zd

|ck| |kα| <∞ for all |α| ≤ m.

Exercise 23.21 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
∑
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)−d/2
∫

Rd

F (x)e−ik·xdx.

Further assume F̂ ∈ `1(Zd).

1. Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: Compute∫
[−π,π]d

∑
k∈Zd |F (x+ 2πk)| dx.
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2. Let

f(x) :=
{∑

k∈Zd F (x+ 2πk) for x /∈ E
0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)−d/2 F̂ (k).
3. Using item 2) and the assumptions on F, show

f(x) =
∑
k∈Zd

f̃(k)eik·x =
∑
k∈Zd

(2π)−d/2 F̂ (k)eik·x for m – a.e. x,

i.e. ∑
k∈Zd

F (x+ 2πk) = (2π)−d/2
∑
k∈Zd

F̂ (k)eik·x for m – a.e. x (23.30)

and form this conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d).
Hint: see the hint for item 2. of Exercise 23.18.

4. Suppose we now assume that F ∈ C(Rd) and F satisfies:
a) |F (x)| ≤ C(1 + |x|)−s for some s > d and C <∞ and
b) F̂ ∈ `1(Zd).

Under these added assumptions show Eq. (23.30) holds for all x ∈ Rd and
in particular ∑

k∈Zd

F (2πk) = (2π)−d/2
∑
k∈Zd

F̂ (k).

For notational simplicity, in the remaining problems we will assume that
d = 1.

Exercise 23.22 (Heat Equation 1.). Let (t, x) ∈ [0,∞)×R→ u(t, x) be a
continuous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and
uxx exists and are continuous when t > 0. Further assume that u satisfies the
heat equation u̇ = 1

2uxx. Let ũ(t, k) := 〈u(t, ·)|ek〉 for k ∈ Z. Show for t > 0
and k ∈ Z that ũ(t, k) is differentiable in t and d

dt ũ(t, k) = −k2ũ(t, k)/2. Use
this result to show

u(t, x) =
∑
k∈Z

e−
t
2k

2
f̃(k)eikx (23.31)

where f(x) := u(0, x) and as above

f̃(k) = 〈f |ek〉 =
∫ π

−π
f(y)e−ikydy =

1
2π

∫ π

−π
f(y)e−ikydm (y) .

Notice from Eq. (23.31) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 23.23 (Heat Equation 2.). Let qt(x) := 1
2π

∑
k∈Z e

− t
2k

2
eikx.

Show that Eq. (23.31) may be rewritten as

u(t, x) =
∫ π

−π
qt(x− y)f(y)dy
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and
qt(x) =

∑
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2
. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=
∫

Rd

pt(x− y)f(y)dy.

Hint: To show qt(x) =
∑
k∈Z pt(x+k2π), use the Poisson summation formula

and the Gaussian integration identity,

p̂t(ω) =
1√
2π

∫
R
pt(x)eiωxdx =

1√
2π
e−

t
2ω

2
. (23.32)

Equation (23.32) will be discussed in Example 33.4 below.

Exercise 23.24 (Wave Equation). Let u ∈ C2(R×R) be such that u(t, ·) ∈
Cper(R) for all t ∈ R. Further assume that u solves the wave equation, utt =
uxx. Let f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := 〈u(t, ·), ek〉 for
k ∈ Z is twice continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use
this result to show

u(t, x) =
∑
k∈Z

(
f̃(k) cos(kt) + g̃(k)

sin kt
k

)
eikx (23.33)

with the sum converging absolutely. Also show that u(t, x) may be written as

u(t, x) =
1
2

[f(x+ t) + f(x− t)] +
1
2

∫ t

−t
g(x+ τ)dτ. (23.34)

Hint: To show Eq. (23.33) implies (23.34) use

cos kt =
eikt + e−ikt

2
,

sin kt =
eikt − e−ikt

2i
, and

eik(x+t) − eik(x−t)

ik
=
∫ t

−t
eik(x+τ)dτ.

23.8 Conditional Expectation Exercises

Exercise 23.25. Suppose (Ω,F , P ) is a probability space andA := {Ai}∞i=1 ⊂
F is a partition of Ω. (Recall this means Ω =

∐∞
i=1Ai.) Let G be the σ –

algebra generated by A. Show:
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1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G – measurable iff g =

∑∞
i=1 λi1Ai

for some λi ∈ R.
3. For f ∈ L1(Ω,F , P ), let E(f |Ai) := E [1Ai

f ] /P (Ai) if P (Ai) 6= 0 and
E(f |Ai) = 0 otherwise. Show

EGf =
∞∑
i=1

E(f |Ai)1Ai
.
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24

Complex Measures, Radon-Nikodym Theorem
and the Dual of Lp

Definition 24.1. A signed measure ν on a measurable space (X,M) is a
function ν :M→ R such that

1. Either
ν (M) := {ν (A) : A ∈M} ⊂ (−∞,∞]

or ν(M) ⊂ [−∞,∞).
2. ν is countably additive, this is to say if E =

∐∞
j=1Ej with Ej ∈M, then

ν(E) =
∞∑
j=1

ν(Ej).

If ν(E) ∈ R then the series
∞∑
j=1

ν(Ej) is absolutely convergent since it is

independent of rearrangements.
3. ν(∅) = 0.

If there exists Xn ∈ M such that |ν(Xn)| <∞ and X = ∪∞n=1Xn, then ν
is said to be σ – finite and if ν(M) ⊂ R then ν is said to be a finite signed
measure. Similarly, a countably additive set function ν :M → C such that
ν(∅) = 0 is called a complex measure.

Example 24.2. Suppose that µ+ and µ− are two positive measures onM such
that either µ+(X) <∞ or µ−(X) <∞, then ν = µ+−µ− is a signed measure.
If both µ+(X) and µ−(X) are finite then ν is a finite signed measure and may
also be considered to be a complex measure.

Example 24.3. Suppose that g : X → R is measurable and either
∫
E
g+dµ or∫

E
g−dµ <∞, then

ν(A) =
∫
A

gdµ ∀ A ∈M (24.1)

defines a signed measure. This is actually a special case of the last example
with µ±(A) :=

∫
A
g±dµ. Notice that the measure µ± in this example have
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the property that they are concentrated on disjoint sets, namely µ+ “lives”
on {g > 0} and µ− “lives” on the set {g < 0} .

Example 24.4. Suppose that µ is a positive measure on (X,M) and g ∈ L1(µ),
then ν given as in Eq. (24.1) is a complex measure on (X,M). Also if

{
µr±, µ

i
±
}

is any collection of four positive finite measures on (X,M), then

ν := µr+ − µr− + i
(
µi+ − µi−

)
(24.2)

is a complex measure.

If ν is given as in Eq. 24.1, then ν may be written as in Eq. (24.2) with
dµr± = (Re g)± dµ and dµi± = (Im g)± dµ.

24.1 The Radon-Nikodym Theorem

Definition 24.5. Let ν be a complex or signed measure on (X,M). A set
E ∈M is a null set or precisely a ν – null set if ν(A) = 0 for all A ∈M such
that A ⊂ E, i.e. ν|ME

= 0. Recall that ME := {A ∩ E : A ∈ M} = i−1
E (M)

is the “trace of M on E.

We will eventually show that every complex and σ – finite signed measure
ν may be described as in Eq. (24.1). The next theorem is the first result in
this direction.

Theorem 24.6 (A Baby Radon-Nikodym Theorem). Suppose (X,M)
is a measurable space, µ is a positive finite measure onM and ν is a complex
measure onM such that |ν(A)| ≤ µ(A) for all A ∈M. Then dν = ρdµ where
|ρ| ≤ 1. Moreover if ν is a positive measure, then 0 ≤ ρ ≤ 1.

Proof. For a simple function, f ∈ S(X,M), let ν(f) :=
∑
a∈C aν(f = a).

Then
|ν(f)| ≤

∑
a∈C
|a| |ν(f = a)| ≤

∑
a∈C
|a|µ(f = a) =

∫
X

|f | dµ.

So, by the B.L.T. Theorem 10.4, ν extends to a continuous linear functional
on L1(µ) satisfying the bounds

|ν(f)| ≤
∫
X

|f | dµ ≤
√
µ(X) ‖f‖L2(µ) for all f ∈ L1(µ).

The Riesz representation Theorem 8.15 then implies there exists a unique
ρ ∈ L2(µ) such that

ν(f) =
∫
X

fρdµ for all f ∈ L2(µ).

Taking A ∈M and f = sgn(ρ)1A in this equation shows
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24.1 The Radon-Nikodym Theorem 469∫
A

|ρ| dµ = ν(sgn(ρ)1A) ≤ µ(A) =
∫
A

1dµ

from which it follows that |ρ| ≤ 1, µ – a.e. If ν is a positive measure, then
for real f, 0 = Im [ν(f)] =

∫
X

Im ρfdµ and taking f = Im ρ shows 0 =∫
X

[Im ρ]2 dµ, i.e. Im(ρ(x)) = 0 for µ – a.e. x and we have shown ρ is real a.e.
Similarly,

0 ≤ ν(Re ρ < 0) =
∫
{Re ρ<0}

ρdµ ≤ 0,

shows ρ ≥ 0 a.e.

Definition 24.7. Let µ and ν be two signed or complex measures on (X,M).
Then:

1. µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈M
such that A is a ν – null set and Ac is a µ – null set.

2. The measure ν is absolutely continuous relative to µ (written as
ν � µ) provided ν(A) = 0 whenever A is a µ – null set, i.e. all µ – null
sets are ν – null sets as well.

As an example, suppose that µ is a positive measure and ρ ∈ L1 (µ) .
Then the measure, ν := ρµ is absolutely continuous relative to µ. Indeed, if
µ (A) = 0 then

ρ (A) =
∫
A

ρdµ = 0

as well.

Lemma 24.8. If µ1, µ2 and ν are signed measures on (X,M) such that µ1 ⊥
ν and µ2 ⊥ ν and µ1 + µ2 is well defined, then (µ1 + µ2) ⊥ ν. If {µi}∞i=1 is a
sequence of positive measures such that µi ⊥ ν for all i then µ =

∑∞
i=1 µi ⊥ ν

as well.

Proof. In both cases, choose Ai ∈ M such that Ai is ν – null and Aci is
µi-null for all i. Then by Lemma 24.16, A := ∪iAi is still a ν –null set. Since

Ac = ∩iAci ⊂ Acm for all m

we see that Ac is a µi - null set for all i and is therefore a null set for µ =∑∞
i=1 µi. This shows that µ ⊥ ν.
Throughout the remainder of this section µ will be always be a positive

measure on (X,M) .

Definition 24.9 (Lebesgue Decomposition). Suppose that ν is a signed
(complex) measure and µ is a positive measure on (X,M). Two signed (com-
plex) measures νa and νs form a Lebesgue decomposition of ν relative to
µ if
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1. If ν (A) = ∞ (ν (A) = −∞) for some A ∈ M then νa (A) 6= −∞
(νa (A) 6= +∞) and νs (A) 6= −∞ (νs (A) 6= +∞) .

2. ν = νa + νs which is well defined by assumption 1.
3. νa � µ and νs ⊥ µ.

Lemma 24.10. Let ν is a signed (complex) measure and µ is a positive mea-
sure on (X,M). If there exists a Lebesgue decomposition, ν = νs + νa, of the
measure ν relative to µ then it is unique. Moreover:

1. if ν is positive then νs and νa are positive.
2. If ν is a σ – finite measure then so are νs and νa.

Proof. Since νs ⊥ µ, there exists A ∈ M such that µ(A) = 0 and Ac is
νs – null and because νa � µ, A is also a null set for νa. So for C ∈ M,
νa(C ∩A) = 0 and νs (C ∩Ac) = 0 from which it follows that

ν(C) = ν(C ∩A) + ν(C ∩Ac) = νs(C ∩A) + νa(C ∩Ac)

and hence,

νs(C) = νs(C ∩A) = ν(C ∩A) and
νa(C) = νa(C ∩Ac) = ν(C ∩Ac). (24.3)

Item 1. is now obvious from Eq. (24.3).
For Item 2., if ν is a σ – finite measure then there exists Xn ∈M such that

X = ∪∞n=1Xn and |ν(Xn)| <∞ for all n. Since ν(Xn) = νa(Xn)+ νs(Xn), we
must have νa(Xn) ∈ R and νs(Xn) ∈ R showing νa and νs are σ – finite as
well.

For the uniqueness assertion, if we have another decomposition ν = ν̃a+ ν̃s
with ν̃s ⊥ µ and ν̃a � µ we may choose Ã ∈ M such that µ(Ã) = 0 and Ãc

is ν̃s – null. Then B = A ∪ Ã is still a µ - null set and Bc = Ac ∩ Ãc is a null
set for both νs and ν̃s. Therefore by the same arguments which proved Eq.
(24.3),

νs(C) = ν(C ∩B) = ν̃s(C) and
νa(C) = ν(C ∩Bc) = ν̃a(C) for all C ∈M.

Lemma 24.11. Suppose µ is a positive measure on (X,M) and f, g : X → R̄
are extended integrable functions such that∫

A

fdµ =
∫
A

gdµ for all A ∈M, (24.4)

∫
X
f− dµ < ∞,

∫
X
g− dµ < ∞, and the measures |f | dµ and |g| dµ are σ –

finite. Then f(x) = g(x) for µ – a.e. x.

Page: 470 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



24.1 The Radon-Nikodym Theorem 471

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X and∫
Xn
|f | dµ < ∞ and

∫
Xn
|g| dµ < ∞ for all n. Replacing A by A ∩ Xn in

Eq. (24.4) implies∫
A

1Xn
fdµ =

∫
A∩Xn

fdµ =
∫
A∩Xn

gdµ =
∫
A

1Xn
gdµ

for all A ∈ M. Since 1Xn
f and 1Xn

g are in L1(µ) for all n, this equation
implies 1Xn

f = 1Xn
g, µ – a.e. Letting n→∞ then shows that f = g, µ – a.e.

Remark 24.12. Suppose that f and g are two positive measurable functions
on (X,M, µ) such that Eq. (28.32) holds. It is not in general true that f = g,
µ – a.e. A trivial counter example is to take M = 2X , µ(A) = ∞ for all
non-empty A ∈M, f = 1X and g = 2 · 1X . Then Eq. (24.4) holds yet f 6= g.

Theorem 24.13 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ and ν are σ – finite positive measures on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa + νs relative to µ and there exists
a unique (modulo sets of µ – measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν � µ.

Proof. The uniqueness assertions follow directly from Lemmas 24.10 and
24.11.

Existence. (Von-Neumann’s Proof.) First suppose that µ and ν are finite
measures and let λ = µ+ ν. By Theorem 24.6, dν = hdλ with 0 ≤ h ≤ 1 and
this implies, for all non-negative measurable functions f, that

ν(f) = λ(fh) = µ(fh) + ν(fh) (24.5)

or equivalently
ν(f(1− h)) = µ(fh). (24.6)

Taking f = 1{h=1} in Eq. (24.6) shows that

µ ({h = 1}) = ν(1{h=1}(1− h)) = 0,

i.e. 0 ≤ h (x) < 1 for µ - a.e. x. Let

ρ := 1{h<1}
h

1− h

and then take f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (24.6) to learn

ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg).

Hence if we define

νa := 1{h<1}ν and νs := 1{h=1}ν,
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we then have νs ⊥ µ (since νs “lives” on {h = 1} while µ (h = 1) = 0) and
νa = ρµ and in particular νa � µ. Hence ν = νa + νs is the desired Lebesgue
decomposition of ν.1

If we further assume that ν � µ, then µ (h = 1) = 0 implies ν (h = 1) = 0
and hence that νs = 0 and we conclude that ν = νa = ρµ.

For the σ – finite case, write X =
∐∞
n=1Xn where Xn ∈ M are chosen

so that µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let dµn = 1Xn
dµ and dνn =

1Xn
dν. Then by what we have just proved there exists ρn ∈ L1(X,µn) ⊂

L1(X,µ) and measure νsn such that dνn = ρndµn + dνsn with νsn ⊥ µn. Since
µn and νsn “live” on Xn (see Eq. (24.3) there exists An ∈ MXn such that
µ (An) = µn (An) = 0 and

νsn (X \An) = νsn (Xn \An) = 0.

This shows that νsn ⊥ µ for all n and so by Lemma 24.8, νs :=
∑∞
n=1 ν

s
n is

singular relative to µ. Since

ν =
∞∑
n=1

νn =
∞∑
n=1

(ρnµn + νsn) =
∞∑
n=1

(ρn1Xn
µ+ νsn) = ρµ+ νs,

where ρ :=
∑∞
n=1 1Xn

ρn, it follows that ν = νa + νs with νa = ρµ is the
Lebesgue decomposition of ν relative to µ.

Theorem 24.14 (Dual of Lp – spaces). Let (X,M, µ) be a σ – finite mea-
sure space and suppose that p, q ∈ [1,∞] are conjugate exponents. Then for
p ∈ [1,∞), the map g ∈ Lq → φg ∈ (Lp)∗ (where φg = 〈·, g〉µ was defined
in Eq. 21.22) is an isometric isomorphism of Banach spaces. We summarize
this by writing (Lp)∗ = Lq for all 1 ≤ p < ∞. (The result is in general false
for p = 1 as can be seen from Theorem 25.13 and Lemma 25.14 below.)

1 Here is the motivation for this construction. Suppose that dν = dνs + ρdµ is
the Radon-Nikodym decompostion and X = A

∐
B such that νs(B) = 0 and

µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(fg) = ν(fg) + µ(fg).

Letting f → 1Af then implies that

νs(1Af) = ν(1Afg)

which show that g = 1 ν –a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf(1− g)) = ν(1Bf(1− g)) = µ(1Bfg) = µ(fg)

which shows that
ρ(1− g) = ρ1B(1− g) = g µ− a.e..

This shows that ρ = g
1−g

µ – a.e.
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24.1 The Radon-Nikodym Theorem 473

Proof. The only results of this theorem which are not covered in Propo-
sition 21.26 is the surjectivity of the map g ∈ Lq → φg ∈ (Lp)∗. When p = 2,
this surjectivity is a direct consequence of the Riesz Theorem 8.15.

Case 1. We will begin the proof under the extra assumption that µ(X) <
∞ in which cased bounded functions are in Lp(µ) for all p. So let φ ∈ (Lp)∗ .
We need to find g ∈ Lq(µ) such that φ = φg.When p ∈ [1, 2], L2(µ) ⊂ Lp(µ) so
that we may restrict φ to L2(µ) and again the result follows fairly easily from
the Riesz Theorem, see Exercise 24.3 below. To handle general p ∈ [1,∞),
define ν(A) := φ(1A). If A =

∐∞
n=1An with An ∈M, then

‖1A −
N∑
n=1

1An‖Lp = ‖1∪∞n=N+1An‖Lp =
[
µ(∪∞n=N+1An)

] 1
p → 0 as N →∞.

Therefore

ν(A) = φ(1A) =
∞∑
1

φ(1An
) =

∞∑
1

ν(An)

showing ν is a complex measure.2 For A ∈M, let |ν| (A) be the “total varia-
tion” of A defined by

|ν| (A) := sup {|φ(f1A)| : |f | ≤ 1}

and notice that

|ν(A)| ≤ |ν| (A) ≤ ‖φ‖(Lp)∗ µ(A)1/p for all A ∈M. (24.7)

You are asked to show in Exercise 24.4 that |ν| is a measure on (X,M). (This
can also be deduced from Lemma 24.29 and Proposition 24.33 below.) By Eq.
(24.7) |ν| � µ, by Theorem 24.6 dν = hd |ν| for some |h| ≤ 1 and by Theorem
24.13 d |ν| = ρdµ for some ρ ∈ L1(µ). Hence, letting g = ρh ∈ L1(µ), dν = gdµ
or equivalently

φ(1A) =
∫
X

g1Adµ ∀ A ∈M. (24.8)

By linearity this equation implies

φ(f) =
∫
X

gfdµ (24.9)

for all simple functions f on X. Replacing f by 1{|g|≤M}f in Eq. (24.9) shows

φ(f1{|g|≤M}) =
∫
X

1{|g|≤M}gfdµ

holds for all simple functions f and then by continuity for all f ∈ Lp(µ). By
the converse to Holder’s inequality, (Proposition 21.26) we learn that

2 It is at this point that the proof breaks down when p = ∞.
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474 24 Complex Measures, Radon-Nikodym Theorem and the Dual of Lp∥∥1{|g|≤M}g
∥∥
q

= sup
‖f‖p=1

∣∣φ(f1{|g|≤M})
∣∣

≤ sup
‖f‖p=1

‖φ‖(Lp)∗
∥∥f1{|g|≤M}

∥∥
p
≤ ‖φ‖(Lp)∗ .

Using the monotone convergence theorem we may let M →∞ in the previous
equation to learn ‖g‖q ≤ ‖φ‖(Lp)∗ .With this result, Eq. (24.9) extends by
continuity to hold for all f ∈ Lp(µ) and hence we have shown that φ = φg.

Case 2. Now suppose that µ is σ – finite and Xn ∈M are sets such that
µ(Xn) < ∞ and Xn ↑ X as n → ∞. We will identify f ∈ Lp(Xn, µ) with
f1Xn

∈ Lp(X,µ) and this way we may consider Lp(Xn, µ) as a subspace of
Lp(X,µ) for all n and p ∈ [1,∞]. By Case 1. there exists gn ∈ Lq(Xn, µ) such
that

φ(f) =
∫
Xn

gnfdµ for all f ∈ Lp(Xn, µ)

and

‖gn‖q = sup
{
|φ(f)| : f ∈ Lp(Xn, µ) and ‖f‖Lp(Xn,µ) = 1

}
≤ ‖φ‖[Lp(µ)]∗ .

It is easy to see that gn = gm a.e. on Xn ∩ Xm for all m,n so that g :=
limn→∞ gn exists µ – a.e. By the above inequality and Fatou’s lemma, ‖g‖q ≤
‖φ‖[Lp(µ)]∗ < ∞ and since φ(f) =

∫
Xn

gfdµ for all f ∈ Lp(Xn, µ) and n

and ∪∞n=1L
p(Xn, µ) is dense in Lp(X,µ) it follows by continuity that φ(f) =∫

X
gfdµ for all f ∈ Lp(X,µ),i.e. φ = φg.

24.2 The Structure of Signed Measures

Definition 24.15. Let ν be a signed measure on (X,M) and E ∈M, then

1. E is positive if for all A ∈M such that A ⊂ E, ν(A) ≥ 0, i.e. ν|ME
≥ 0.

2. E is negative if for all A ∈M such that A ⊂ E, ν(A) ≤ 0, i.e. ν|ME
≤ 0.

Lemma 24.16. Suppose that ν is a signed measure on (X,M). Then

1. Any subset of a positive set is positive.
2. The countable union of positive (negative or null) sets is still positive

(negative or null).
3. Let us now further assume that ν(M) ⊂ [−∞,∞) and E ∈ M is a set

such that ν (E) ∈ (0,∞). Then there exists a positive set P ⊂ E such that
ν(P ) ≥ ν(E).

Proof. The first assertion is obvious. If Pj ∈ M are positive sets, let

P =
∞⋃
n=1

Pn. By replacing Pn by the positive set Pn\

(
n−1⋃
j=1

Pj

)
we may assume
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that the {Pn}∞n=1 are pairwise disjoint so that P =
∞∐
n=1

Pn. Now if E ⊂ P and

E ∈ M, E =
∞∐
n=1

(E ∩ Pn) so ν(E) =
∑∞
n=1 ν(E ∩ Pn) ≥ 0.which shows that

P is positive. The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of

negative measure from E. The set remaining from this procedure will be P.
We now proceed to the formal proof. For all A ∈M let

n(A) = 1 ∧ sup{−ν(B) : B ⊂ A}.

Since ν(∅) = 0, n(A) ≥ 0 and n(A) = 0 iff A is positive. Choose A0 ⊂ E
such that −ν(A0) ≥ 1

2n(E) and set E1 = E \ A0, then choose A1 ⊂ E1 such
that −ν(A1) ≥ 1

2n(E1) and set E2 = E \ (A0 ∪A1) . Continue this procedure

inductively, namely if A0, . . . , Ak−1 have been chosen let Ek = E \
(
k−1∐
i=0

Ai

)
and choose Ak ⊂ Ek such that −ν(Ak) ≥ 1

2n(Ek). Let P := E \
∞∐
k=0

Ak =
∞⋂
k=0

Ek, then E = P ∪
∞∐
k=0

Ak and hence

(0,∞) 3 ν(E) = ν(P ) +
∞∑
k=0

ν(Ak) = ν(P )−
∞∑
k=0

−ν(Ak) ≤ ν(P ). (24.10)

From Eq. (24.10) we learn that
∑∞
k=0−ν(Ak) < ∞ and in particular that

limk→∞(−ν(Ak)) = 0. Since 0 ≤ 1
2n(Ek) ≤ −ν(Ak), this also implies

limk→∞ n(Ek) = 0. If A ∈ M with A ⊂ P, then A ⊂ Ek for all k and
so, for k large so that n(Ek) < 1, we find −ν(A) ≤ n(Ek). Letting k →∞ in
this estimate shows −ν(A) ≤ 0 or equivalently ν(A) ≥ 0. Since A ⊂ P was
arbitrary, we conclude that P is a positive set such that ν(P ) ≥ ν(E).

24.2.1 Hahn Decomposition Theorem

Definition 24.17. Suppose that ν is a signed measure on (X,M). A Hahn
decomposition for ν is a partition {P,N = P c} of X such that P is positive
and N is negative.

Theorem 24.18 (Hahn Decomposition Theorem). Every signed mea-
sure space (X,M, ν) has a Hahn decomposition, {P,N}. Moreover, if {P̃ , Ñ}
is another Hahn decomposition, then P∆P̃ = N∆Ñ is a null set, so the de-
composition is unique modulo null sets.

Proof. With out loss of generality we may assume that ν(M) ⊂ [−∞,∞).
If not just consider −ν instead.

Uniqueness. For any A ∈M, we have

Page: 475 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



476 24 Complex Measures, Radon-Nikodym Theorem and the Dual of Lp

ν(A) = ν(A ∩ P ) + ν(A ∩N) ≤ ν(A ∩ P ) ≤ ν(P ).

In particular, taking A = P ∪ P̃ , we learn

ν(P ) ≤ ν(P ∪ P̃ ) ≤ ν(P )

or equivalently that ν (P ) = ν
(
P ∪ P̃

)
. Of course by symmetry we also have

ν (P ) = ν
(
P ∪ P̃

)
= ν

(
P̃
)

=: s.

Since also,

s = ν(P ∪ P̃ ) = ν(P ) + ν(P̃ )− ν(P ∩ P̃ ) = 2s− ν(P ∩ P̃ ),

we also have ν(P ∩ P̃ ) = s. Finally using P ∪ P̃ =
[
P ∩ P̃

]∐(
P̃∆P

)
, we

conclude that

s = ν(P ∪ P̃ ) = ν(P ∩ P̃ ) + ν(P̃∆P ) = s+ ν(P̃∆P )

which shows ν(P̃∆P ) = 0. Thus N∆Ñ = P̃∆P is a positive set with zero
measure, i.e. N∆Ñ = P̃∆P is a null set and this proves the uniqueness
assertion.

Existence. Let
s := sup{ν(A) : A ∈M}

which is non-negative since ν(∅) = 0. If s = 0, we are done since P = ∅ and
N = X is the desired decomposition. So assume s > 0 and choose An ∈ M
such that ν(An) > 0 and limn→∞ ν(An) = s. By Lemma 24.16 there exists
positive sets Pn ⊂ An such that ν(Pn) ≥ ν(An). Then s ≥ ν(Pn) ≥ ν(An)→ s
as n→∞ implies that s = limn→∞ ν(Pn). The set P := ∪∞n=1Pn is a positive
set being the union of positive sets and since Pn ⊂ P for all n,

ν(P ) ≥ ν(Pn)→ s as n→∞.

This shows that ν(P ) ≥ s and hence by the definition of s, s = ν(P ) <∞.
I now claim that N = P c is a negative set and therefore, {P,N} is the

desired Hahn decomposition. If N were not negative, we could find E ⊂ N =
P c such that ν(E) > 0. We then would have

ν(P ∪ E) = ν(P ) + ν(E) = s+ ν(E) > s

which contradicts the definition of s.

24.2.2 Jordan Decomposition

Theorem 24.19 (Jordan Decomposition). If ν is a signed measure on
(X,M) , there exist unique positive measure ν± on (X,M) such that ν+ ⊥ ν−
and ν = ν+ − ν−. This decomposition is called the Jordan decomposition
of ν.
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Proof. Let {P,N} be a Hahn decomposition for ν and define

ν+(E) := ν(P ∩ E) and ν−(E) := −ν(N ∩ E) ∀ E ∈M.

Then it is easily verified that ν = ν+ − ν− is a Jordan decomposition of ν.
The reader is asked to prove the uniqueness of this decomposition in Exercise
24.9.

Definition 24.20. |ν| (E) = ν+(E) + ν−(E) is called the total variation of
ν. A signed measure is called σ – finite provided that |ν| := ν+ + ν− is a σ
finite measure.

Lemma 24.21. Let ν be a signed measure on (X,M) and A ∈M. If ν(A) ∈
R then ν(B) ∈ R for all B ⊂ A. Moreover, ν(A) ∈ R iff |ν| (A) < ∞. In
particular, ν is σ finite iff |ν| is σ – finite. Furthermore if P,N ∈ M is a
Hahn decomposition for ν and g = 1P − 1N , then dν = gd |ν| , i.e.

ν(A) =
∫
A

gd |ν| for all A ∈M.

Proof. Suppose that B ⊂ A and |ν(B)| = ∞ then since ν(A) = ν(B) +
ν(A \B) we must have |ν(A)| =∞. Let P,N ∈M be a Hahn decomposition
for ν, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) = |ν(A ∩ P )| − |ν(A ∩N)| and
|ν| (A) = ν(A ∩ P )− ν(A ∩N) = |ν(A ∩ P )|+ |ν(A ∩N)| . (24.11)

Therefore ν(A) ∈ R iff ν(A ∩ P ) ∈ R and ν(A ∩ N) ∈ R iff |ν| (A) < ∞.
Finally,

ν(A) = ν(A ∩ P ) + ν(A ∩N)
= |ν| (A ∩ P )− |ν| (A ∩N)

=
∫
A

(1P − 1N )d |ν|

which shows that dν = gd |ν| .

Lemma 24.22. Suppose that µ is a positive measure on (X,M) and g : X →
R is an extended µ-integrable function. If ν is the signed measure dν = gdµ,
then dν± = g±dµ and d |ν| = |g| dµ. We also have

|ν| (A) = sup{
∫
A

f dν : |f | ≤ 1} for all A ∈M. (24.12)

Proof. The pair, P = {g > 0} and N = {g ≤ 0} = P c is a Hahn decom-
position for ν. Therefore

ν+(A) = ν(A ∩ P ) =
∫
A∩P

gdµ =
∫
A

1{g>0}gdµ =
∫
A

g+dµ,
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ν−(A) = −ν(A ∩N) = −
∫
A∩N

gdµ = −
∫
A

1{g≤0}gdµ = −
∫
A

g−dµ.

and

|ν| (A) = ν+(A) + ν−(A) =
∫
A

g+dµ−
∫
A

g−dµ

=
∫
A

(g+ − g−) dµ =
∫
A

|g| dµ.

If A ∈M and |f | ≤ 1, then∣∣∣∣∫
A

f dν

∣∣∣∣ = ∣∣∣∣∫
A

f dν+ −
∫
A

f dν−

∣∣∣∣ ≤ ∣∣∣∣∫
A

f dν+

∣∣∣∣+ ∣∣∣∣∫
A

f dν−

∣∣∣∣
≤
∫
A

|f | dν+ +
∫
A

|f | dν− =
∫
A

|f | d |ν| ≤ |ν| (A).

For the reverse inequality, let f := 1P − 1N then∫
A

f dν = ν(A ∩ P )− ν(A ∩N) = ν+(A) + ν−(A) = |ν| (A).

Definition 24.23. Let ν be a signed measure on (X,M), let

L1(ν) := L1(ν+) ∩ L1(ν−) = L1(|ν|)

and for f ∈ L1(ν) we define∫
X

fdν =
∫
X

fdν+ −
∫
X

fdν−.

Lemma 24.24. Let µ be a positive measure on (X,M), g be an extended
integrable function on (X,M, µ) and dν = gdµ. Then L1(ν) = L1(|g| dµ) and
for f ∈ L1(ν), ∫

X

fdν =
∫
X

fgdµ.

Proof. By Lemma 24.22, dν+ = g+dµ, dν− = g−dµ, and d |ν| = |g| dµ so
that L1(ν) = L1(|ν|) = L1(|g| dµ) and for f ∈ L1(ν),∫

X

fdν =
∫
X

fdν+ −
∫
X

fdν− =
∫
X

fg+dµ−
∫
X

fg−dµ

=
∫
X

f (g+ − g−) dµ =
∫
X

fgdµ.
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Lemma 24.25. Suppose ν is a signed measure, µ is a positive measure and
ν = νa + νs is a Lebesgue decomposition (see Definition 24.9) of ν relative to
µ, then |ν| = |νa|+ |νs| .

Proof. Let A ∈ M be chosen so that A is a null set for νa and Ac is
a null set for νs. Let A = P ′

∐
N ′ be a Hahn decomposition of νs|MA

and
Ac = P̃

∐
Ñ be a Hahn decomposition of νa|MAc . Let P = P ′ ∪ P̃ and

N = N ′ ∪ Ñ . Since for C ∈M,

ν(C ∩ P ) = ν(C ∩ P ′) + ν(C ∩ P̃ )

= νs(C ∩ P ′) + νa(C ∩ P̃ ) ≥ 0

and

ν(C ∩N) = ν(C ∩N ′) + ν(C ∩ Ñ)

= νs(C ∩N ′) + νa(C ∩ Ñ) ≤ 0

we see that {P,N} is a Hahn decomposition for ν. It also easy to see that
{P,N} is a Hahn decomposition for both νs and νa as well. Therefore,

|ν| (C) = ν(C ∩ P )− ν(C ∩N)
= νs(C ∩ P )− νs(C ∩N) + νa(C ∩ P )− νa(C ∩N)
= |νs| (C) + |νa| (C).

Lemma 24.26.

1. Let ν be a signed measure and µ be a positive measure on (X,M) such
that ν � µ and ν ⊥ µ, then ν ≡ 0.

2. Suppose that ν =
∑∞
i=1 νi where νi are positive measures on (X,M) such

that νi � µ, then ν � µ.
3. Also if ν1 and ν2 are two signed measure such that νi � µ for i = 1, 2

and ν = ν1 + ν2 is well defined, then ν � µ.

Proof. 1. Because ν ⊥ µ, there exists A ∈ M such that A is a ν – null
set and B = Ac is a µ - null set. Since B is µ – null and ν � µ, B is also ν
– null. This shows by Lemma 24.16 that X = A ∪ B is also ν – null, i.e. ν is
the zero measure. The proof of items 2. and 3. are easy and will be left to the
reader.

Theorem 24.27 (Radon Nikodym Theorem for Signed Measures).
Let ν be a σ – finite signed measure and µ be a σ – finite positive measure on
(X,M). Then ν has a unique Lebesgue decomposition ν = νa + νs relative to
µ and there exists a unique (modulo sets of µ – measure 0) extended integrable
function ρ : X → R such that dνa = ρdµ. Moreover, νs = 0 iff ν � µ, i.e.
dν = ρdµ iff ν � µ.
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Proof. Uniqueness. Is a direct consequence of Lemmas 24.10 and 24.11.
Existence. Let ν = ν+ − ν− be the Jordan decomposition of ν. Assume,
without loss of generality, that ν+(X) <∞, i.e. ν(A) <∞ for all A ∈M. By
the Radon Nikodym Theorem 24.13 for positive measures there exist functions
f± : X → [0,∞) and measures λ± such that ν± = µf± + λ± with λ± ⊥ µ.
Since

∞ > ν+(X) = µf+(X) + λ+(X),

f+ ∈ L1(µ) and λ+(X) < ∞ so that f = f+ − f− is an extended integrable
function, dνa := fdµ and νs = λ+−λ− are signed measures. This finishes the
existence proof since

ν = ν+ − ν− = µf+ + λ+ −
(
µf− + λ−

)
= νa + νs

and νs = (λ+ − λ−) ⊥ µ by Lemma 24.8. For the final statement, if νs = 0,
then dν = ρdµ and hence ν � µ. Conversely if ν � µ, then dνs = dν−ρdµ�
µ, so by Lemma 24.16, νs = 0. Alternatively just use the uniqueness of the
Lebesgue decomposition to conclude νa = ν and νs = 0. Or more directly,
choose B ∈M such that µ(Bc) = 0 and B is a νs – null set. Since ν � µ, Bc

is also a ν – null set so that, for A ∈M,

ν(A) = ν(A ∩B) = νa(A ∩B) + νs(A ∩B) = νa(A ∩B).

Notation 24.28 The function f is called the Radon-Nikodym derivative of ν
relative to µ and we will denote this function by dν

dµ .

24.3 Complex Measures

Suppose that ν is a complex measure on (X,M), let νr := Re ν, νi := Im ν
and µ := |νr| + |νi|. Then µ is a finite positive measure on M such that
νr � µ and νi � µ. By the Radon-Nikodym Theorem 24.27, there exists
real functions h, k ∈ L1(µ) such that dνr = h dµ and dνi = k dµ. So letting
g := h+ ik ∈ L1(µ),

dν = (h+ ik)dµ = gdµ

showing every complex measure may be written as in Eq. (24.1).

Lemma 24.29. Suppose that ν is a complex measure on (X,M), and for
i = 1, 2 let µi be a finite positive measure on (X,M) such that dν = gidµi
with gi ∈ L1(µi). Then∫

A

|g1| dµ1 =
∫
A

|g2| dµ2 for all A ∈M.

In particular, we may define a positive measure |ν| on (X,M) by
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24.3 Complex Measures 481

|ν| (A) =
∫
A

|g1| dµ1 for all A ∈M.

The finite positive measure |ν| is called the total variation measure of ν.

Proof. Let λ = µ1+µ2 so that µi � λ. Let ρi = dµi/dλ ≥ 0 and hi = ρigi.
Since

ν(A) =
∫
A

gidµi =
∫
A

giρidλ =
∫
A

hidλ for all A ∈M,

h1 = h2, λ –a.e. Therefore∫
A

|g1| dµ1 =
∫
A

|g1| ρ1dλ =
∫
A

|h1| dλ

=
∫
A

|h2| dλ =
∫
A

|g2| ρ2dλ =
∫
A

|g2| dµ2.

Definition 24.30. Given a complex measure ν, let νr = Re ν and νi = Im ν
so that νr and νi are finite signed measures such that

ν(A) = νr(A) + iνi(A) for all A ∈M.

Let L1(ν) := L1(νr) ∩ L1(νi) and for f ∈ L1(ν) define∫
X

fdν :=
∫
X

fdνr + i

∫
X

fdνi.

Example 24.31. Suppose that µ is a positive measure on (X,M), g ∈ L1(µ)
and ν(A) =

∫
A
gdµ as in Example 24.4, then L1(ν) = L1(|g| dµ) and for

f ∈ L1(ν) ∫
X

fdν =
∫
X

fgdµ. (24.13)

To check Eq. (24.13), notice that dνr = Re g dµ and dνi = Im g dµ so that
(using Lemma 24.24)

L1(ν) = L1(Re gdµ)∩L1(Im gdµ) = L1(|Re g| dµ)∩L1(|Im g| dµ) = L1(|g| dµ).

If f ∈ L1(ν), then∫
X

fdν :=
∫
X

f Re gdµ+ i

∫
X

f Im gdµ =
∫
X

fgdµ.

Remark 24.32. Suppose that ν is a complex measure on (X,M) such that
dν = gdµ and as above d |ν| = |g| dµ. Letting

ρ = sgn(ρ) :=
{ g
|g| if |g| 6= 0
1 if |g| = 0
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482 24 Complex Measures, Radon-Nikodym Theorem and the Dual of Lp

we see that
dν = gdµ = ρ |g| dµ = ρd |ν|

and |ρ| = 1 and ρ is uniquely defined modulo |ν| – null sets. We will denote ρ
by dν/d |ν| . With this notation, it follows from Example 24.31 that L1(ν) :=
L1 (|ν|) and for f ∈ L1(ν),∫

X

fdν =
∫
X

f
dν

d |ν|
d |ν| .

We now give a number of methods for computing the total variation, |ν| , of
a complex or signed measure ν.

Proposition 24.33 (Total Variation). Suppose A ⊂ 2X is an algebra,
M = σ(A), ν is a complex (or a signed measure which is σ – finite on A) on
(X,M) and for E ∈M let

µ0(E) = sup

{
n∑
1

|ν(Ej)| : Ej ∈ AE 3 Ei ∩ Ej = δijEi, n = 1, 2, . . .

}

µ1(E) = sup

{
n∑
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩ Ej = δijEi, n = 1, 2, . . .

}

µ2(E) = sup

{ ∞∑
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩ Ej = δijEi

}

µ3(E) = sup
{∣∣∣∣∫

E

fdν

∣∣∣∣ : f is measurable with |f | ≤ 1
}

µ4(E) = sup
{∣∣∣∣∫

E

fdν

∣∣∣∣ : f ∈ Sf (A, |ν|) with |f | ≤ 1
}
.

then µ0 = µ1 = µ2 = µ3 = µ4 = |ν| .

Proof. Let ρ = dν/d |ν| and recall that |ρ| = 1, |ν| – a.e.
Step 1. µ4 ≤ |ν| = µ3. If f is measurable with |f | ≤ 1 then∣∣∣∣∫

E

f dν

∣∣∣∣ = ∣∣∣∣∫
E

f ρd |ν|
∣∣∣∣ ≤ ∫

E

|f | d |ν| ≤
∫
E

1d |ν| = |ν| (E)

from which we conclude that µ4 ≤ µ3 ≤ |ν| . Taking f = ρ̄ above shows∣∣∣∣∫
E

f dν

∣∣∣∣ = ∫
E

ρ̄ ρ d |ν| =
∫
E

1 d |ν| = |ν| (E)

which shows that |ν| ≤ µ3 and hence |ν| = µ3.
Step 2. µ4 ≥ |ν| . Let Xm ∈ A be chosen so that |ν| (Xm) < ∞ and

Xm ↑ X as m → ∞. By Theorem 22.15 (or Remark 28.7 or Corollary 31.42
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24.3 Complex Measures 483

below), there exists ρn ∈ Sf (A, µ) such that ρn → ρ1Xm
in L1(|ν|) and each

ρn may be written in the form

ρn =
N∑
k=1

zk1Ak
(24.14)

where zk ∈ C and Ak ∈ A and Ak ∩ Aj = ∅ if k 6= j. I claim that we may
assume that |zk| ≤ 1 in Eq. (24.14) for if |zk| > 1 and x ∈ Ak,

|ρ(x)− zk| ≥
∣∣∣ρ(x)− |zk|−1

zk

∣∣∣ .
This is evident from Figure 24.1 and formally follows from the fact that

d

dt

∣∣∣ρ(x)− t |zk|−1
zk

∣∣∣2 = 2
[
t− Re(|zk|−1

zkρ(x))
]
≥ 0

when t ≥ 1. Therefore if we define

Fig. 24.1. Sliding points to the unit circle.

wk :=
{
|zk|−1

zk if |zk| > 1
zk if |zk| ≤ 1

and ρ̃n =
N∑
k=1

wk1Ak
then

|ρ(x)− ρn(x)| ≥ |ρ(x)− ρ̃n(x)|

and therefore ρ̃n → ρ1Xm
in L1(|ν|). So we now assume that ρn is as in Eq.

(24.14) with |zk| ≤ 1. Now∣∣∣∣∫
E

ρ̄ndν −
∫
E

ρ̄1Xmdν

∣∣∣∣ ≤ ∣∣∣∣∫
E

(ρ̄ndν − ρ̄1Xm) ρd |ν|
∣∣∣∣

≤
∫
E

|ρ̄n − ρ̄1Xm | d |ν| → 0 as n→∞
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484 24 Complex Measures, Radon-Nikodym Theorem and the Dual of Lp

and hence

µ4(E) ≥
∣∣∣∣∫
E

ρ̄1Xm
dν

∣∣∣∣ = |ν| (E ∩Xm) for all m.

Letting m ↑ ∞ in this equation shows µ4 ≥ |ν| which combined with step 1.
shows µ3 = µ4 = |ν| .

Step 3. µ0 = µ1 = µ2 = |ν| . Clearly µ0 ≤ µ1 ≤ µ2. Suppose {Ej}∞j=1 ⊂
ME be a collection of pairwise disjoint sets, then

∞∑
j=1

|ν(Ej)| =
∞∑
j=1

∫
Ej

ρd |ν| ≤
∞∑
j=1

|ν| (Ej) = |ν| (∪Ej) ≤ |ν| (E)

which shows that µ2 ≤ |ν| = µ4. So it suffices to show µ4 ≤ µ0. But if
f ∈ Sf (A, |ν|) with |f | ≤ 1, then f may be expressed as f =

∑N
k=1 zk1Ak

with |zk| ≤ 1 and Ak ∩Aj = δijAk. Therefore,∣∣∣∣∫
E

fdν

∣∣∣∣ =
∣∣∣∣∣
N∑
k=1

zkν(Ak ∩ E)

∣∣∣∣∣ ≤
N∑
k=1

|zk| |ν(Ak ∩ E)|

≤
N∑
k=1

|ν(Ak ∩ E)| ≤ µ0(A).

Since this equation holds for all f ∈ Sf (A, |ν|) with |f | ≤ 1, µ4 ≤ µ0 as
claimed.

Theorem 24.34 (Radon Nikodym Theorem for Complex Measures).
Let ν be a complex measure and µ be a σ – finite positive measure on (X,M).
Then ν has a unique Lebesgue decomposition ν = νa+νs relative to µ and there
exists a unique element ρ ∈ L1(µ) such that such that dνa = ρdµ. Moreover,
νs = 0 iff ν � µ, i.e. dν = ρdµ iff ν � µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 24.10 and 24.11.
Existence. Let g : X → S1 ⊂ C be a function such that dν = gd |ν| . By
Theorem 24.13, there exists h ∈ L1(µ) and a positive measure |ν|s such that
|ν|s ⊥ µ and d |ν| = hdµ + d |ν|s . Hence we have dν = ρdµ + dνs with
ρ := gh ∈ L1(µ) and dνs := gd |ν|s . This finishes the proof since, as is easily
verified, νs ⊥ µ.

24.4 Absolute Continuity on an Algebra

The following results will be needed in Section 29.4 below.

Exercise 24.1. Let ν = νr+iνi is a complex measure on a measurable space,
(X,M) , then |νr| ≤ |ν| ,

∣∣νi∣∣ ≤ |ν| and |ν| ≤ |νr|+
∣∣νi∣∣ .
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Exercise 24.2. Let ν be a signed measure on a measurable space, (X,M) .
If A ∈ M is set such that there exists M < ∞ such that |ν (B)| ≤ M for all
B ∈ MA = {C ∩A : C ∈M} , then |ν| (A) ≤ 2M. If ν is complex measure
with A ∈M and M <∞ as above, then |ν| (A) ≤ 4M.

Lemma 24.35. Let ν be a complex or a signed measure on (X,M). Then
A ∈M is a ν – null set iff |ν| (A) = 0. In particular if µ is a positive measure
on (X,M), ν � µ iff |ν| � µ.

Proof. In all cases we have |ν(A)| ≤ |ν| (A) for all A ∈ M which clearly
shows that |ν| (A) = 0 implies A is a ν – null set. Conversely if A is a ν – null
set, then, by definition, ν|MA

≡ 0 so by Proposition 24.33

|ν| (A) = sup

{ ∞∑
1

|ν(Ej)| : Ej ∈MA 3 Ei ∩ Ej = δijEi

}
= 0.

since Ej ⊂ A implies µ(Ej) = 0 and hence ν(Ej) = 0.
Alternate Proofs that A is ν – null implies |ν| (A) = 0.
1) Suppose ν is a signed measure and {P,N = P c} ⊂ M is a Hahn de-

composition for ν. Then

|ν| (A) = ν(A ∩ P )− ν(A ∩N) = 0.

Now suppose that ν is a complex measure. Then A is a null set for both
νr := Re ν and νi := Im ν. Therefore |ν| (A) ≤ |νr| (A) + |νi| (A) = 0.

2) Here is another proof in the complex case. Let ρ = dν
d|ν| , then by as-

sumption of A being ν – null,

0 = ν(B) =
∫
B

ρd |ν| for all B ∈MA.

This shows that ρ1A = 0, |ν| – a.e. and hence

|ν| (A) =
∫
A

|ρ| d |ν| =
∫
X

1A |ρ| d |ν| = 0.

Theorem 24.36 (ε – δ Definition of Absolute Continuity). Let ν be a
complex measure and µ be a positive measure on (X,M). Then ν � µ iff for
all ε > 0 there exists a δ > 0 such that |ν(A)| < ε whenever A ∈ M and
µ(A) < δ.

Proof. (⇐=) If µ(A) = 0 then |ν(A)| < ε for all ε > 0 which shows that
ν(A) = 0, i.e. ν � µ.

(=⇒) Since ν � µ iff |ν| � µ and |ν(A)| ≤ |ν| (A) for all A ∈M, it suffices
to assume ν ≥ 0 with ν(X) <∞. Suppose for the sake of contradiction there
exists ε > 0 and An ∈M such that ν(An) ≥ ε > 0 while µ(An) ≤ 1

2n . Let
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486 24 Complex Measures, Radon-Nikodym Theorem and the Dual of Lp

A = {An i.o.} =
∞⋂
N=1

⋃
n≥N

An

so that

µ(A) = lim
N→∞

µ (∪n≥NAn) ≤ lim
N→∞

∞∑
n=N

µ(An) ≤ lim
N→∞

2−(N−1) = 0.

On the other hand,

ν(A) = lim
N→∞

ν (∪n≥NAn) ≥ lim
n→∞

inf ν(An) ≥ ε > 0

showing that ν is not absolutely continuous relative to µ.

Corollary 24.37. Let µ be a positive measure on (X,M) and f ∈ L1(dµ).

Then for all ε > 0 there exists δ > 0 such that
∣∣∣∣∫
A

f dµ

∣∣∣∣ < ε for all A ∈ M

such that µ(A) < δ.

Proof. Apply theorem 24.36 to the signed measure ν(A) =
∫
A

f dµ for all

A ∈M.

Theorem 24.38 (Absolute Continuity on an Algebra). Let ν be a com-
plex measure and µ be a positive measure on (X,M). Suppose that A ⊂ M
is an algebra such that σ(A) =M and that µ is σ – finite on A. Then ν � µ
iff for all ε > 0 there exists a δ > 0 such that |ν(A)| < ε for all A ∈ A which
satisfy µ(A) < δ.

Proof. (=⇒) This implication is a consequence of Theorem 24.36.
(⇐=) If |ν(A)| < ε for all A ∈ A with µ(A) < δ, then by Exercise 24.2,

|ν| (A) ≤ 4ε for all A ∈ A with µ(A) < δ. Because of this argument, we may
now replace ν by |ν| and hence we may assume that ν is a positive finite
measure.

Let ε > 0 and δ > 0 be such that ν(A) < ε for all A ∈ A with µ(A) < δ.
Suppose that B ∈ M with µ(B) < δ and α ∈ (0, δ − µ (B)) . By Corollary
22.18, there exists A ∈ A such that

µ (A∆B) + ν (A∆B) = (µ+ ν) (A∆B) < α.

In particular it follows that µ (A) ≤ µ (B) + µ (A∆B) < δ and hence by
assumption ν (A) < ε. Therefore,

ν (B) ≤ ν (A) + ν (A∆B) < ε+ α

and letting α ↓ 0 in this inequality shows ν (B) ≤ ε.
Alternative Proof. Let ε > 0 and δ > 0 be such that ν(A) < ε for all

A ∈ A with µ(A) < δ. Suppose that B ∈M with µ(B) < δ. Use the regularity
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Theorem 28.6 below (or see Theorem 32.9 or Corollary 31.42) to find A ∈ Aσ
such that B ⊂ A and µ(B) ≤ µ(A) < δ. Write A = ∪nAn with An ∈ A. By
replacing An by ∪nj=1Aj if necessary we may assume that An is increasing in
n. Then µ(An) ≤ µ(A) < δ for each n and hence by assumption ν(An) < ε.
Since B ⊂ A = ∪nAn it follows that ν(B) ≤ ν(A) = limn→∞ ν(An) ≤ ε. Thus
we have shown that ν(B) ≤ ε for all B ∈M such that µ(B) < δ.

24.5 Exercises

Exercise 24.3. Prove Theorem 24.14 for p ∈ [1, 2] by directly applying the
Riesz theorem to φ|L2(µ).

Exercise 24.4. Show |ν| be defined as in Eq. (24.7) is a positive measure.
Here is an outline.

1. Show
|ν| (A) + |ν| (B) ≤ |ν| (A ∪B). (24.15)

when A,B are disjoint sets inM.
2. If A =

∐∞
n=1An with An ∈M then

|ν| (A) ≤
∞∑
n=1

|ν| (An). (24.16)

3. From Eqs. (24.15) and (24.16) it follows that |ν| is finitely additive, and
hence

|ν| (A) =
N∑
n=1

|ν| (An) + |ν| (∪n>NAn) ≥
N∑
n=1

|ν| (An).

Letting N → ∞ in this inequality shows |ν| (A) ≥
∑∞
n=1 |ν| (An) which

combined with Eq. (24.16) shows |ν| is countable additive.

Exercise 24.5. Suppose µi, νi are σ – finite positive measures on measurable
spaces, (Xi,Mi), for i = 1, 2. If νi � µi for i = 1, 2 then ν1 ⊗ ν2 � µ1 ⊗ µ2

and in fact

d(ν1 ⊗ ν2)
d(µ1 ⊗ µ2)

(x1, x2) = ρ1 ⊗ ρ2(x1, x2) := ρ1(x1)ρ2(x2)

where ρi := dνi/dµi for i = 1, 2.

Exercise 24.6. Let X = [0, 1] , M := B[0,1], m be Lebesgue measure and µ
be counting measure on X. Show

1. m� µ yet there is not function ρ such that dm = ρdµ.
2. Counting measure µ has no Lebesgue decomposition relative to m.
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Exercise 24.7. Let ν be a σ – finite signed measure, f ∈ L1(|ν|) and define∫
X

fdν =
∫
X

fdν+ −
∫
X

fdν−.

Suppose that µ is a σ – finite measure and ν � µ. Show∫
X

fdν =
∫
X

f
dν

dµ
dµ. (24.17)

BRUCE: this seems to already be done in Lemma 24.24.

Exercise 24.8. Suppose that ν is a signed or complex measure on (X,M)
and An ∈ M such that either An ↑ A or An ↓ A and ν(A1) ∈ R, then show
ν(A) = limn→∞ ν(An).

Exercise 24.9. Let (X,M) be a measurable space, ν :M→ [−∞,∞) be a
signed measure, and ν = ν+−ν− be a Jordan decomposition of ν. If ν := α−β
with α and β being positive measures and α (X) < ∞, show ν+ ≤ α and
ν− ≤ β. Us this result to prove the uniqueness of Jordan decompositions
stated in Theorem 24.19.

Exercise 24.10. Let ν1 and ν2 be two signed measures on (X,M) which are
assumed to be valued in [−∞,∞). Show, |ν1 + ν2| ≤ |ν1| + |ν2| . Hint: use
Exercise 24.9 along with the observation that ν1+ν2 = (ν+

1 +ν+
2 )−(ν−1 +ν−2 ),

where ν±i := (νi)± .

Exercise 24.11. Folland Exercise 3.7a on p. 88.

Exercise 24.12. Show Theorem 24.36 may fail if ν is not finite. (For a hint,
see problem 3.10 on p. 92 of Folland.)

Exercise 24.13. Folland 3.14 on p. 92.

Exercise 24.14. Folland 3.15 on p. 92.

Exercise 24.15. If ν is a complex measure on (X,M) such that |ν| (X) =
ν (X) , then ν = |ν| .
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25

Three Fundamental Principles of Banach
Spaces

25.1 The Hahn-Banach Theorem

Our goal here is to show that continuous dual, X∗, of a Banach space, X,
is always large. This will be the content of the Hahn-Banach Theorem 25.4
below.

Proposition 25.1. Let X be a complex vector space over C and let XR denote
X thought of as a real vector space. If f ∈ X∗ and u = Ref ∈ X∗

R then

f(x) = u(x)− iu(ix). (25.1)

Conversely if u ∈ X∗
R and f is defined by Eq. (25.1), then f ∈ X∗ and

‖u‖X∗
R

= ‖f‖X∗ . More generally if p is a semi-norm (see Definition 5.1) on
X, then

|f | ≤ p iff u ≤ p.

Proof. Let v(x) = Im f(x), then

v(ix) = Im f(ix) = Im(if(x)) = Ref(x) = u(x).

Therefore

f(x) = u(x) + iv(x) = u(x) + iu(−ix) = u(x)− iu(ix).

Conversely for u ∈ X∗
R let f(x) = u(x)− iu(ix). Then

f((a+ ib)x) = u(ax+ ibx)− iu(iax− bx)
= au(x) + bu(ix)− i(au(ix)− bu(x))

while
(a+ ib)f(x) = au(x) + bu(ix) + i(bu(x)− au(ix)).

So f is complex linear. Because |u(x)| = |Ref(x)| ≤ |f(x)|, it follows that
‖u‖ ≤ ‖f‖. For x ∈ X choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x) so
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|f(x)| = f(λx) = u(λx) ≤ ‖u‖ ‖λx‖ = ‖u‖‖x‖.

Since x ∈ X is arbitrary, this shows that ‖f‖ ≤ ‖u‖ so ‖f‖ = ‖u‖.1 For
the last assertion, it is clear that |f | ≤ p implies that u ≤ |u| ≤ |f | ≤ p.
Conversely if u ≤ p and x ∈ X, choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x).
Then

|f(x)| = λf(x) = f(λx) = u(λx) ≤ p(λx) = p(x)

holds for all x ∈ X.

Definition 25.2 (Minkowski functional). A function p : X → R is a
Minkowski functional if

1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X and
2. p(cx) = cp(x) for all c ≥ 0 and x ∈ X.

Example 25.3. Suppose that X = R and

p(x) = inf {λ ≥ 0 : x ∈ λ[−1, 2] = [−λ, 2λ]} .

Notice that if x ≥ 0, then p(x) = x/2 and if x ≤ 0 then p(x) = −x, i.e.

p(x) =
{
x/2 if x ≥ 0
|x| if x ≤ 0.

From this formula it is clear that p(cx) = cp(x) for all c ≥ 0 but not for c < 0.
Moreover, p satisfies the triangle inequality, indeed if p(x) = λ and p(y) = µ,
then x ∈ λ[−1, 2] and y ∈ µ[−1, 2] so that

x+ y ∈ λ[−1, 2] + µ[−1, 2] ⊂ (λ+ µ) [−1, 2]

which shows that p(x+y) ≤ λ+µ = p(x)+p(y). To check the last set inclusion
let a, b ∈ [−1, 2], then

1 Proof. To understand better why ‖f‖ = ‖u‖, notice that

‖f‖2 = sup
‖x‖=1

|f(x)|2 = sup
‖x‖=1

(|u(x)|2 + |u(ix)|2).

Suppose that M = sup
‖x‖=1

|u(x)| and this supremum is attained at x0 ∈ X with

‖x0‖ = 1. Replacing x0 by −x0 if necessary, we may assume that u(x0) = M.
Since u has a maximum at x0,

0 =
d

dt

∣∣∣∣
0

u

(
x0 + itx0

‖x0 + itx0‖

)
=

d

dt

∣∣∣∣
0

{
1

|1 + it| (u(x0) + tu(ix0))

}
= u(ix0)

since d
dt
|0|1 + it| = d

dt
|0
√

1 + t2 = 0.This explains why ‖f‖ = ‖u‖.
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25.1 The Hahn-Banach Theorem 491

λa+ µb = (λ+ µ)
(

λ

λ+ µ
a+

µ

λ+ µ
b

)
∈ (λ+ µ) [−1, 2]

since [−1, 2] is a convex set and λ
λ+µ + µ

λ+µ = 1.

BRUCE: Add in the relationship to convex sets and separation theorems,
see Reed and Simon Vol. 1. for example.

Theorem 25.4 (Hahn-Banach). Let X be a real vector space, p : X → R
be a Minikowski functional, M ⊂ X be a subspace f : M → R be a linear
functional such that f ≤ p on M. Then there exists a linear functional F :
X → R such that F |M = f and F ≤ p on X.

Proof. Step 1. We show for all x ∈ X \M there exists and extension F
to M ⊕Rx with the desired properties. If F exists and α = F (x), then for all
y ∈M and λ ∈ R we must have

f(y) + λα = F (y + λx) ≤ p(y + λx). (25.2)

Dividing this equation by |λ| allows us to conclude that Eq. (25.2) is valid for
all y ∈M and λ ∈ R iff

f(y) + εα ≤ p(y + εx) for all y ∈M and ε ∈ {±1} .

Equivalently put we must have, for all y, z ∈M, that

α ≤ p(y + x)− f (y) and
f(z)− p(z − x) ≤ α.

Hence it is possible to find an α ∈ R such that Eq. (25.2) holds iff

f(z)− p(z − x) ≤ p(y + x)− f (y) for all y, z ∈M. (25.3)

(If Eq. (25.3) holds, then supz∈M [f(z)− p(z − x)] ≤ infy∈M [p(y + x)− f (y)]
and so we may choose α = supz∈M [f(z)− p(z − x)] for example.) Now Equa-
tion (25.3) is equivalent to having

f (z) + f (y) = f (z + y) ≤ p(y + x) + p(z − x) for all y, z ∈M

and this last equation is valid because

f (z + y) ≤ p (z + y) = p(y + x+ z − x) ≤ p(y + x) + p(z − x),

wherein we use f ≤ p on M and the triangle inequality for p. In conclusion, if
α := supz∈M [f(z)− p(z − x)] and F (y + λx) := f(y)+λα, then by following
the above logic backwards, we have F |M = f and F ≤ p on M ⊕Rx showing
F is the desired extension.

Step 2. Let us now write F : X → R to mean F is defined on a linear
subspace D(F ) ⊂ X and F : D(F ) → R is linear. For F,G : X → R we will
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say F ≺ G if D(F ) ⊂ D(G) and F = G|D(F ), that is G is an extension of F.
Let

F = {F : X → R : f ≺ F and F ≤ p on D(F )}.

Then (F ,≺) is a partially ordered set. If Φ ⊂ F is a chain (i.e. a linearly
ordered subset of F) then Φ has an upper bound G ∈ F defined by D(G) =⋃
F∈Φ

D(F ) and G(x) = F (x) for x ∈ D(F ). Then it is easily checked that

D(G) is a linear subspace, G ∈ F , and F ≺ G for all F ∈ Φ. We may now
apply Zorn’s Lemma2 (see Theorem 38.7) to conclude there exists a maximal
element F ∈ F . Necessarily, D(F ) = X for otherwise we could extend F by
step (1), violating the maximality of F. Thus F is the desired extension of f.

Corollary 25.5. Suppose that X is a complex vector space, p : X → [0,∞) is
a semi-norm, M ⊂ X is a linear subspace, and f : M → C is linear functional
such that |f(x)| ≤ p(x) for all x ∈ M. Then there exists F ∈ X ′ (X ′ is the
algebraic dual of X) such that F |M = f and |F | ≤ p.

Proof. Let u = Ref then u ≤ p on M and hence by Theorem 25.4,
there exists U ∈ X ′

R such that U |M = u and U ≤ p on M . Define F (x) =
U(x)− iU(ix) then as in Proposition 25.1, F = f on M and |F | ≤ p.

Theorem 25.6. Let X be a normed space M ⊂ X be a closed subspace and
x ∈ X \M . Then there exists f ∈ X∗ such that ‖f‖ = 1, f(x) = δ = d(x,M)
and f = 0 on M .

Proof. Defineh : M ⊕ Cx→ Cby h(m + λx) := λδ for all m ∈ M and
λ ∈ C. Then

‖h‖ := sup
m∈M and λ6=0

|λ| δ
‖m+ λx‖

= sup
m∈M and λ6=0

δ

‖x+m/λ‖
=
δ

δ
= 1

and by the Hahn – Banach theorem there exists f ∈ X∗ such that f |M⊕Cx = h
and ‖f‖ ≤ 1. Since 1 = ‖h‖ ≤ ‖f‖ ≤ 1, it follows that ‖f‖ = 1.

Corollary 25.7. To each x ∈ X, let x̂ ∈ X∗∗ be defined by x̂(f) = f(x) for
all f ∈ X∗. Then the map x ∈ X → x̂ ∈ X∗∗ is a linear isometry of Banach
spaces.

Proof. Since
2 The use of Zorn’s lemma in this step may be avoided in the case that p (x) is a

norm and X may be written as M ⊕ span(β) where β := {xn}∞n=1 is a countable
subset ofX. In this case, by step (1) and induction, f : M → R may be extended to
a linear functional F : M ⊕ span(β) → R with F (x) ≤ p (x) for x ∈M ⊕ span(β).
This function F then extends by continuity to X and gives the desired extension
of f.
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25.1 The Hahn-Banach Theorem 493

|x̂(f)| = |f(x)| ≤ ‖f‖X∗ ‖x‖X for all f ∈ X∗,

it follows that ‖x̂‖X∗∗ ≤ ‖x‖X . Now applying Theorem 25.6 with M = {0} ,
there exists f ∈ X∗ such that ‖f‖ = 1 and |x̂(f)| = f(x) = ‖x‖ , which shows
that ‖x̂‖X∗∗ ≥ ‖x‖X . This shows that x ∈ X → x̂ ∈ X∗∗ is an isometry. Since
isometries are necessarily injective, we are done.

Definition 25.8. A Banach space X is reflexive if the map x ∈ X → x̂ ∈
X∗∗ is surjective.

Example 25.9. Every Hilbert space H is reflexive. This is a consequence of the
Riesz Theorem 8.15.

Exercise 25.1. Show all finite dimensional Banach spaces are reflexive.

Definition 25.10. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and

N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

We call M0 the annihilator of M and N⊥ the backwards annihilator of
N.

Lemma 25.11. Let M ⊂ X and N ⊂ X∗, then

1. M0 and N⊥ are always closed subspace of X∗ and X respectively.
2.
(
M0
)⊥ = M̄.

Proof. Since

M0 = ∩x∈MNul(x̂) and N⊥ = ∩f∈MNul(f),

M0 and N⊥ are both formed as an intersection of closed subspaces and hence
are themselves closed subspaces.

If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈
(
M0
)⊥ and hence

M̄ ⊂
(
M0
)⊥
. If x /∈ M̄, then there exists (by Theorem 25.6) f ∈ X∗ such that

f |M = 0 while f(x) 6= 0, i.e. f ∈ M0 yet f(x) 6= 0. This shows x /∈
(
M0
)⊥

and we have shown
(
M0
)⊥ ⊂ M̄.

Proposition 25.12. Suppose X is a Banach space, then X∗∗∗ = (̂X∗)⊕
(
X̂
)0

where (
X̂
)0

= {λ ∈ X∗∗∗ : λ (x̂) = 0 for all x ∈ X} .

In particular X is reflexive iff X∗ is reflexive.

Page: 493 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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Proof. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) := ψ(x̂) for all x ∈ X
and set ψ′ := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ′(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ′ ∈ X̂0 and we have shown X∗∗∗ = X̂∗ + X̂0. If ψ ∈ X̂∗ ∩ X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X, i.e.
f = 0 so ψ = 0. Therefore X∗∗∗ = X̂∗ ⊕ X̂0 as claimed.

If X is reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing (X∗)∗∗ =
X∗∗∗ = (̂X∗), i.e. X∗ is reflexive. Conversely if X∗ is reflexive we conclude

that
(
X̂
)0

= {0} and therefore

X∗∗ = {0}⊥ =
(
X̂0
)⊥

= X̂,

which shows X̂ is reflexive. Here we have used(
X̂0
)⊥

= X̂ = X̂

since X̂ is a closed subspace of X∗∗.

Theorem 25.13 (Continuation of Theorem 7.16). Let X be an infinite
set, µ : X → (0,∞) be a function, p ∈ [1,∞], q := p/ (p− 1) be the conjugate
exponent and for f ∈ `q (µ) define φf : `p (µ)→ F by

φf (g) :=
∑
x∈X

f (x) g (x)µ (x) . (25.4)

1. `p (µ) is reflexive for p ∈ (1,∞) .
2. The map φ : `1 (µ)→ `∞ (X)∗ is not surjective.
3. `1 (µ) and `∞ (X) are not reflexive.

See Lemma 25.14 and Exercise 28.3 below for more examples of non-
reflexive spaces.

Proof.

1. This basically follows from two applications of item 3 of Theorem 7.16.
More precisely if λ ∈ `p (µ)∗∗ , let λ̃ ∈ `q (µ)∗ be defined by λ̃ (g) = λ (φg)
for g ∈ `q (µ) . Then by item 3., there exists f ∈ `p (µ) such that, for all
g ∈ `q (µ) ,

λ (φg) = λ̃ (g) = φf (g) = φg (f) = f̂ (φg) .

Since `p (µ)∗ = {φg : g ∈ `q (µ)} , this implies that λ = f̂ and so `p (µ) is
reflexive.

Page: 494 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



25.1 The Hahn-Banach Theorem 495

2. Recall c0 (X) as defined in Notation 7.15 and is a closed subspace of
`∞ (X) , see Exercise 7.4. Let 1 ∈ `∞ (X) denote the constant function 1
on X. Notice that ‖1− f‖∞ ≥ 1 for all f ∈ c0 (X) and therefore, by the
Hahn - Banach Theorem, there exists λ ∈ `∞ (X)∗ such that λ (1) = 0
while λ|c0(X) ≡ 0. Now if λ = φf for some f ∈ `1 (µ) , then µ (x) f (x) =
λ (δx) = 0 for all x and f would have to be zero. This is absurd.

3. As we have seen `1 (µ)∗ ∼= `∞ (X) while `∞ (X)∗ ∼= c0 (X)∗ 6= `1 (µ) . Let
λ ∈ `∞ (X)∗ be the linear functional as described above. We view this as
an element of `1 (µ)∗∗ by using

λ̃ (φg) := λ (g) for all g ∈ `∞ (X) .

Suppose that λ̃ = f̂ for some f ∈ `1 (µ) , then

λ (g) = λ̃ (φg) = f̂ (φg) = φg (f) = φf (g) .

But λ was constructed in such a way that λ 6= φf for any f ∈ `1 (µ) .
It now follows from Proposition 25.12 that `1 (µ)∗ ∼= `∞ (X) is also not
reflexive.

Exercise 25.2. Suppose p ∈ (1,∞) and µ is a σ – finite measure on a mea-
surable space (X,M), then Lp(X,M, µ) is reflexive. Hint: model your proof
on the proof of item 1. of Theorem 25.13 making use of Theorem 24.14.

Lemma 25.14. Suppose that (X, o) is a pointed Hausdorff topological space
(i.e. o ∈ X is a fixed point) and ν is a finite measure on BX such that

1. supp(ν) = X while ν ({o}) = 0 and
2. there exists fn ∈ C (X) such that fn → 1{o} boundedly as n→∞.

(For example suppose X = [0, 1], o = 0, and µ = m.)
Then the map

g ∈ L1 (ν)→ φg ∈ L∞ (ν)∗

is not surjective and the Banach space L1 (ν) is not reflexive. (In other words,
Theorem 24.14 may fail when p =∞ and L1 - spaces need not be reflexive.)

Proof. Since supp(ν) = X, if f ∈ C (X) we have

‖f‖L∞(ν) = sup {|f (x)|x ∈ X}

and we may view C (X) as a closed subspace of L∞ (ν) . For f ∈ C (X) , let
λ (f) = f (o) . Then ‖λ‖C(X)∗ = 1, and therefore by Corollary 25.5 of the
Hahn-Banach Theorem, there exists an extension Λ ∈ (L∞ (ν))∗ such that
λ = Λ|C(X) and ‖Λ‖ = 1.

If Λ = φg for some g ∈ L1 (ν) then we would have
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f (o) = λ (f) = Λ(f) = φg(f) =
∫
X

fgdν for all f ∈ C (X) .

Applying this equality to the {fn}∞n=1 in item 2. of the statement of the lemma
and then passing to the limit using the dominated convergence theorem, we
arrive at the following contradiction;

1 = lim
n→∞

fn (o) = lim
n→∞

∫
X

fngdν =
∫
X

1{o}gdν = 0.

Hence we must conclude that Λ 6= φg for any g ∈ L1 (ν) .
Since, by Theorem 24.14, the map f ∈ L∞ (ν) → φf ∈ L1 (ν)∗ is an

isometric isomorphism of Banach spaces we may define L ∈ L1 (ν)∗∗ by

L (φf ) := Λ (f) for all f ∈ L∞ (ν) .

If L were to equal ĝ for some g ∈ L1 (ν) , then

Λ (f) = L (φf ) = ĝ (φf ) = φf (g) =
∫
X

fgdν

for all f ∈ C (X) ⊂ L∞ (ν) . But we have just seen this is impossible and
therefore L 6= ĝ for any g ∈ L1 (ν) and thus L1 (ν) is not reflexive.

25.1.1 Hahn – Banach Theorem Problems

Exercise 25.3. Give another proof Corollary 10.14 based on Remark 10.12.
Hint: the Hahn Banach theorem implies

‖f(b)− f(a)‖ = sup
λ∈X∗, λ6=0

|λ(f(b))− λ(f(a))|
‖λ‖

.

Exercise 25.4. Prove Theorem 10.38 using the following strategy.

1. Use the results from the proof in the text of Theorem 10.38 that

s→
∫ d

c

f(s, t)dt and t→
∫ b

a

f(s, t)ds

are continuous maps.
2. For the moment takeX = R and prove Eq. (10.24) holds by first proving it

holds when f (s, t) = smtn with m,n ∈ N0. Then use this result along with
Theorem 10.34 to show Eq. (10.24) holds for all f ∈ C ([a, b]× [c, d],R) .

3. For the general case, use the special case proved in item 2. along with
Hahn Banach Theorem 25.4.
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25.1 The Hahn-Banach Theorem 497

Exercise 25.5 (Liouville’s Theorem). (This exercise requires knowledge
of complex variables.) Let X be a Banach space and f : C→X be a
function which is complex differentiable at all points z ∈ C, i.e. f ′ (z) :=
limh→0 (f (z + h)− f(z) /h exists for all z ∈ C. If we further suppose that

M := sup
z∈C
‖f (z)‖ <∞,

then f is constant. Hint: use the Hahn Banach Theorem 25.4 and the fact
the result holds if X = C.

Exercise 25.6. Let M be a finite dimensional subspace of a normed space,
X. Show there exists a closed subspace, N, such that X = M ⊕ N. Hint:
let β = {x1, . . . , xn} ⊂ M be a basis for M and construct N making use of
λi ∈ X∗ which you should construct to satisfy,

λi(xj) = δij =
{

1 if i = j
0 if i 6= j.

Exercise 25.7. Folland 5.21, p. 160.

Exercise 25.8. Let X be a Banach space such that X∗ is separable. Show
X is separable as well. (The converse is not true as can be seen by taking
X = `1 (N) .) Hint: use the greedy algorithm, i.e. suppose D ⊂ X∗ \ {0} is a
countable dense subset of X∗, for ` ∈ D choose x` ∈ X such that ‖x`‖ = 1
and |`(x`)| ≥ 1

2‖`‖.

Exercise 25.9. Folland 5.26.

25.1.2 *Quotient spaces, adjoints, and more reflexivity

Definition 25.15. Let X and Y be Banach spaces and A : X → Y be a linear
operator. The transpose of A is the linear operator A† : Y ∗ → X∗ defined
by
(
A†f

)
(x) = f(Ax) for f ∈ Y ∗ and x ∈ X. The null space of A is the

subspace Nul(A) := {x ∈ X : Ax = 0} ⊂ X. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and

N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

Proposition 25.16 (Basic properties of transposes and annihilators).

1. ‖A‖ =
∥∥A†∥∥ and A††x̂ = Âx for all x ∈ X.

2. M0 and N⊥ are always closed subspaces of X∗ and X respectively.
3.
(
M0
)⊥ = M̄.

4. N̄ ⊂
(
N⊥)0 with equality when X is reflexive.

Page: 497 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



498 25 Three Fundamental Principles of Banach Spaces

5. Nul(A) = Ran(A†)⊥ and Nul(A†) = Ran(A)0. Moreover, Ran(A) =
Nul(A†)⊥ and if X is reflexive, then Ran(A†) = Nul(A)0.

6. X is reflexive iff X∗ is reflexive. More generally X∗∗∗ = X̂∗ ⊕ X̂0 where

X̂0 = {λ ∈ X∗∗∗ : λ (x̂) = 0 for all x ∈ X} .

Proof.

1.

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖f‖=1

|f(Ax)|

= sup
‖f‖=1

sup
‖x‖=1

∣∣A†f(x)
∣∣ = sup

‖f‖=1

∥∥A†f∥∥ =
∥∥A†∥∥ .

2. This is an easy consequence of the assumed continuity off all linear func-
tionals involved.

3. If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈
(
M0
)⊥
. Therefore

M̄ ⊂
(
M0
)⊥
. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0

while f(x) 6= 0, i.e. f ∈M0 yet f(x) 6= 0. This shows x /∈
(
M0
)⊥ and we

have shown
(
M0
)⊥ ⊂ M̄.

4. It is again simple to show N ⊂
(
N⊥)0 and therefore N̄ ⊂

(
N⊥)0 .

Moreover, as above if f /∈ N̄ there exists ψ ∈ X∗∗ such that ψ|N̄ = 0
while ψ(f) 6= 0. If X is reflexive, ψ = x̂ for some x ∈ X and since
g(x) = ψ(g) = 0 for all g ∈ N̄ , we have x ∈ N⊥. On the other hand,
f(x) = ψ(f) 6= 0 so f /∈

(
N⊥)0 . Thus again

(
N⊥)0 ⊂ N̄ .

5.

Nul(A) = {x ∈ X : Ax = 0} = {x ∈ X : f(Ax) = 0 ∀ f ∈ X∗}
=
{
x ∈ X : A†f(x) = 0 ∀ f ∈ X∗}

=
{
x ∈ X : g(x) = 0 ∀ g ∈ Ran(A†)

}
= Ran(A†)⊥.

Similarly,

Nul(A†) =
{
f ∈ Y ∗ : A†f = 0

}
=
{
f ∈ Y ∗ : (A†f)(x) = 0 ∀ x ∈ X

}
= {f ∈ Y ∗ : f(Ax) = 0 ∀ x ∈ X}
=
{
f ∈ Y ∗ : f |Ran(A) = 0

}
= Ran(A)0.

6. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) = ψ(x̂) for all x ∈ X and set
ψ′ := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ′(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ′ ∈ X̂0 and we have shown X∗∗∗ = X̂∗+X̂0. If ψ ∈ X̂∗∩X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X,
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25.1 The Hahn-Banach Theorem 499

i.e. f = 0 so ψ = 0. Therefore X∗∗∗ = X̂∗ ⊕ X̂0 as claimed. If X is
reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing X∗∗∗ = X̂∗, i.e. X∗

is reflexive. Conversely if X∗ is reflexive we conclude that X̂0 = {0} and

therefore X∗∗ = {0}⊥ =
(
X̂0
)⊥

= X̂, so that X is reflexive.

Alternative proof. Notice that fψ = J†ψ, where J : X → X∗∗ is given
by Jx = x̂, and the composition

f ∈ X∗ ˆ→ f̂ ∈ X∗∗∗ J†→ J†f̂ ∈ X∗

is the identity map since
(
J†f̂

)
(x) = f̂(Jx) = f̂(x̂) = x̂(f) = f(x) for all

x ∈ X. Thus it follows that X∗ ˆ→ X∗∗∗ is invertible iff J† is its inverse
which can happen iff Nul(J†) = {0} . But as above Nul(J†) = Ran (J)0

which will be zero iff Ran(J) = X∗∗ and since J is an isometry this
is equivalent to saying Ran (J) = X∗∗. So we have again shown X∗ is
reflexive iff X is reflexive.

Theorem 25.17. Let X be a Banach space, M ⊂ X be a proper closed
subspace, X/M the quotient space, π : X → X/M the projection map
π(x) = x+M for x ∈ X and define the quotient norm on X/M by

‖π(x)‖X/M = ‖x+M‖X/M = inf
m∈M

‖x+m‖X .

Then:

1. ‖·‖X/M is a norm on X/M.

2. The projection map π : X → X/M has norm 1, ‖π‖ = 1.
3. (X/M, ‖·‖X/M ) is a Banach space.
4. If Y is another normed space and T : X → Y is a bounded linear trans-

formation such that M ⊂ Nul(T ), then there exists a unique linear trans-
formation S : X/M → Y such that T = S ◦ π and moreover ‖T‖ = ‖S‖ .

Proof. 1) Clearly ‖x+M‖ ≥ 0 and if ‖x + M‖ = 0, then there exists
mn ∈ M such that ‖x + mn‖ → 0 as n → ∞, i.e. x = lim

n→∞
mn ∈ M̄ = M.

Since x ∈M, x+M = 0 ∈ X/M. If c ∈ C\ {0} , x ∈ X, then

‖cx+M‖ = inf
m∈M

‖cx+m‖ = |c| inf
m∈M

‖x+m/c‖ = |c| ‖x+M‖

because m/c runs through M as m runs through M. Let x1, x2 ∈ X and
m1,m2 ∈M then

‖x1 + x2 +M‖ ≤ ‖x1 + x2 +m1 +m2‖ ≤ ‖x1 +m1‖+ ‖x2 +m2‖.

Taking infinums over m1,m2 ∈M then implies
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‖x1 + x2 +M‖ ≤ ‖x1 +M‖+ ‖x2 +M‖.

and we have completed the proof the (X/M, ‖ · ‖) is a normed space. 2) Since
‖π(x)‖ = infm∈M ‖x+m‖ ≤ ‖x‖ for all x ∈ X, ‖π‖ ≤ 1. To see ‖π‖ = 1, let
x ∈ X \M so that π(x) 6= 0. Given α ∈ (0, 1), there exists m ∈M such that

‖x+m‖ ≤ α−1 ‖π(x)‖ .

Therefore,
‖π(x+m)‖
‖x+m‖

=
‖π(x)‖
‖x+m‖

≥ α ‖x+m‖
‖x+m‖

= α

which shows ‖π‖ ≥ α. Since α ∈ (0, 1) is arbitrary we conclude that ‖π(x)‖ =
1. 3) Let π(xn) ∈ X/M be a sequence such that

∑
‖π(xn)‖ < ∞. As above

there exists mn ∈ M such that ‖π(xn)‖ ≥ 1
2‖xn + mn‖ and hence

∑
‖xn +

mn‖ ≤ 2
∑
‖π(xn)‖ < ∞. Since X is complete, x :=

∞∑
n=1

(xn +mn) exists in

X and therefore by the continuity of π,

π(x) =
∞∑
n=1

π(xn +mn) =
∞∑
n=1

π(xn)

showing X/M is complete. 4) The existence of S is guaranteed by the “factor
theorem” from linear algebra. Moreover ‖S‖ = ‖T‖ because

‖T‖ = ‖S ◦ π‖ ≤ ‖S‖ ‖π‖ = ‖S‖

and

‖S‖ = sup
x/∈M

‖S(π(x))‖
‖π(x)‖

= sup
x/∈M

‖Tx‖
‖π(x)‖

≥ sup
x/∈M

‖Tx‖
‖x‖

= sup
x6=0

‖Tx‖
‖x‖

= ‖T‖ .

Theorem 25.18. Let X be a Banach space. Then

1. Identifying X with X̂ ⊂ X∗∗, the weak – ∗ topology on X∗∗ induces the
weak topology on X. More explicitly, the map x ∈ X → x̂ ∈ X̂ is a
homeomorphism when X is equipped with its weak topology and X̂ with
the relative topology coming from the weak-∗ topology on X∗∗.

2. X̂ ⊂ X∗∗ is dense in the weak-∗ topology on X∗∗.
3. Letting C and C∗∗ be the closed unit balls in X and X∗∗ respectively, then
Ĉ := {x̂ ∈ C∗∗ : x ∈ C} is dense in C∗∗ in the weak – ∗ topology on X∗∗..

4. X is reflexive iff C is weakly compact.

(See Definition 14.36 for the topologies being used here.)
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25.1 The Hahn-Banach Theorem 501

Proof.

1. The weak – ∗ topology on X∗∗ is generated by{
f̂ : f ∈ X∗

}
= {ψ ∈ X∗∗ → ψ(f) : f ∈ X∗} .

So the induced topology on X is generated by

{x ∈ X → x̂ ∈ X∗∗ → x̂(f) = f(x) : f ∈ X∗} = X∗

and so the induced topology on X is precisely the weak topology.
2. A basic weak - ∗ neighborhood of a point λ ∈ X∗∗ is of the form

N := ∩nk=1 {ψ ∈ X∗∗ : |ψ(fk)− λ(fk)| < ε} (25.5)

for some {fk}nk=1 ⊂ X∗ and ε > 0. be given. We must now find x ∈ X
such that x̂ ∈ N , or equivalently so that

|x̂(fk)− λ(fk)| = |fk(x)− λ(fk)| < ε for k = 1, 2, . . . , n. (25.6)

In fact we will show there exists x ∈ X such that λ(fk) = fk(x) for
k = 1, 2, . . . , n. To prove this stronger assertion we may, by discard-
ing some of the fk’s if necessary, assume that {fk}nk=1 is a linearly
independent set. Since the {fk}nk=1 are linearly independent, the map
x ∈ X → (f1(x), . . . , fn(x)) ∈ Cn is surjective (why) and hence there
exists x ∈ X such that

(f1(x), . . . , fn(x)) = Tx = (λ (f1) , . . . , λ(fn)) (25.7)

as desired.
3. Let λ ∈ C∗∗ ⊂ X∗∗ and N be the weak - ∗ open neighborhood of
λ as in Eq. (25.5). Working as before, given ε > 0, we need to find
x ∈ C such that Eq. (25.6). It will be left to the reader to verify that
it suffices again to assume {fk}nk=1 is a linearly independent set. (Hint:
Suppose that {f1, . . . , fm} were a maximal linearly dependent subset of
{fk}nk=1 , then each fk with k > m may be written as a linear combination
{f1, . . . , fm} .) As in the proof of item 2., there exists x ∈ X such that
Eq. (25.7) holds. The problem is that x may not be in C. To remedy this,
let N := ∩nk=1 Nul(fk) = Nul(T ), π : X → X/N ∼= Cn be the projection
map and f̄k ∈ (X/N)∗ be chosen so that fk = f̄k ◦ π for k = 1, 2, . . . , n.
Then we have produced x ∈ X such that

(λ (f1) , . . . , λ(fn)) = (f1(x), . . . , fn(x)) = (f̄1(π(x)), . . . , f̄n(π(x))).

Since
{
f̄1, . . . , f̄n

}
is a basis for (X/N)∗ we find
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502 25 Three Fundamental Principles of Banach Spaces

‖π(x)‖ = sup
α∈Cn\{0}

∣∣∑n
i=1 αif̄i(π(x))

∣∣∥∥∑n
i=1 αif̄i

∥∥ = sup
α∈Cn\{0}

|
∑n
i=1 αiλ(fi)|
‖
∑n
i=1 αifi‖

= sup
α∈Cn\{0}

|λ(
∑n
i=1 αifi)|

‖
∑n
i=1 αifi‖

≤ ‖λ‖ sup
α∈Cn\{0}

‖
∑n
i=1 αifi‖

‖
∑n
i=1 αifi‖

= 1.

Hence we have shown ‖π(x)‖ ≤ 1 and therefore for any α > 1 there
exists y = x + n ∈ X such that ‖y‖ < α and (λ (f1) , . . . , λ(fn)) =
(f1(y), . . . , fn(y)). Hence

|λ(fi)− fi(y/α)| ≤
∣∣fi(y)− α−1fi(y)

∣∣ ≤ (1− α−1) |fi(y)|

which can be arbitrarily small (i.e. less than ε) by choosing α sufficiently
close to 1.

4. Let Ĉ := {x̂ : x ∈ C} ⊂ C∗∗ ⊂ X∗∗. If X is reflexive, Ĉ = C∗∗ is weak -
∗ compact and hence by item 1., C is weakly compact in X. Conversely
if C is weakly compact, then Ĉ ⊂ C∗∗ is weak – ∗ compact being the
continuous image of a continuous map. Since the weak – ∗ topology on
X∗∗ is Hausdorff, it follows that Ĉ is weak – ∗ closed and so by item 3,

C∗∗ = Ĉ
weak–∗

= Ĉ. So if λ ∈ X∗∗, λ/ ‖λ‖ ∈ C∗∗ = Ĉ, i.e. there exists
x ∈ C such that x̂ = λ/ ‖λ‖ . This shows λ = (‖λ‖x)ˆ and therefore
X̂ = X∗∗.

25.2 The Open Mapping Theorem

Theorem 25.19 (Open Mapping Theorem). Let X,Y be Banach spaces,
T ∈ L(X,Y ). If T is surjective then T is an open mapping, i.e. T (V ) is open
in Y for all open subsets V ⊂ X.

Proof. For all α > 0 let BXα = {x ∈ X : ‖x‖X < α} ⊂ X, BYα =
{y ∈ Y : ‖y‖Y < α} ⊂ Y and Eα = T (BXα ) ⊂ Y. The proof will be carried out
by proving the following three assertions.

1. There exists δ > 0 such that BYδα ⊂ Eα for all α > 0.
2. For the same δ > 0, BYδα ⊂ Eα, i.e. we may remove the closure in assertion

1.
3. The last assertion implies T is an open mapping.

1. Since Y =
∞⋃
n−1

En, the Baire category Theorem 16.2 implies there exists

n such that E
0

n 6= ∅, i.e. there exists y ∈ En and ε > 0 such that BY (y, ε) ⊂
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25.2 The Open Mapping Theorem 503

En. Suppose ‖y′‖ < ε then y and y + y′ are in BY (y, ε) ⊂ En hence there
exists x̃, x ∈ BXn such that ‖T x̃ − (y + y′)‖ and ‖Tx − y‖ may be made as
small as we please, which we abbreviate as follows

‖T x̃− (y + y′)‖ ≈ 0 and ‖Tx− y‖ ≈ 0.

Hence by the triangle inequality,

‖T (x̃− x)− y′‖ = ‖T x̃− (y + y′)− (Tx− y)‖
≤ ‖T x̃− (y + y′)‖+ ‖Tx− y‖ ≈ 0

with x̃ − x ∈ BX2n. This shows that y′ ∈ E2n which implies BY (0, ε) ⊂ E2n.
Since the map φα : Y → Y given by φα(y) = α

2ny is a homeomorphism,
φα(E2n) = Eα and φα(BY (0, ε)) = BY (0, αε2n ), it follows that BYδα ⊂ Eα
where δ := ε

2n > 0.
2. Let δ be as in assertion 1., y ∈ BYδ and α1 ∈ (‖y‖ /δ, 1). Choose

{αn}∞n=2 ⊂ (0,∞) such that
∑∞
n=1 αn < 1. Since y ∈ BYα1δ

⊂ Eα1 = T
(
BXα1

)
by assertion 1. there exists x1 ∈ BXα1

such that ‖y − Tx1‖ < α2δ. (Notice that
‖y − Tx1‖ can be made as small as we please.) Similarly, since y − Tx1 ∈
BYα2δ

⊂ Ēα2 = T
(
BXα2

)
there exists x2 ∈ BXα2

such that ‖y − Tx1 − Tx2‖ <
α3δ. Continuing this way inductively, there exists xn ∈ BXαn

such that

‖y −
n∑
k=1

Txk‖ < αn+1δ for all n ∈ N. (25.8)

Since
∞∑
n=1
‖xn‖ <

∞∑
n=1

αn < 1, x :=
∞∑
n=1

xn exists and ‖x‖ < 1, i.e. x ∈ BX1 .

Passing to the limit in Eq. (25.8) shows, ‖y−Tx‖ = 0 and hence y ∈ T (BX1 ) =
E1. Therefore we have shown BXδ ⊂ E1. The same scaling argument as above
then shows BXαδ ⊂ Eα for all α > 0.

3. If x ∈ V ⊂o X and y = Tx ∈ TV we must show that TV contains a
ball BY (y, ε) = Tx+BYε for some ε > 0. Now BY (y, ε) = Tx+BYε ⊂ TV iff
BYε ⊂ TV − Tx = T (V − x). Since V − x is a neighborhood of 0 ∈ X, there
exists α > 0 such that BXα ⊂ (V − x) and hence by assertion 2.,

BYαδ ⊂ TBXα ⊂ T (V − x) = T (V )− y

and therefore BY (y, ε) ⊂ TV with ε := αδ.

Corollary 25.20. If X,Y are Banach spaces and T ∈ L(X,Y ) is invertible
(i.e. a bijective linear transformation) then the inverse map, T−1, is bounded,
i.e. T−1 ∈ L(Y,X). (Note that T−1 is automatically linear.)

Definition 25.21. Let X and Y be normed spaces and T : X → Y be linear
(not necessarily continuous) map.
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504 25 Three Fundamental Principles of Banach Spaces

1. Let Γ : X → X × Y be the linear map defined by Γ (x) := (x, T (x)) for
all x ∈ X and let

Γ (T ) = {(x, T (x)) : x ∈ X}

be the graph of T.
2. The operator T is said to be closed if Γ (T ) is closed subset of X × Y.

Exercise 25.10. Let T : X → Y be a linear map between normed vector
spaces, show T is closed iff for all convergent sequences {xn}∞n=1 ⊂ X such that
{Txn}∞n=1 ⊂ Y is also convergent, we have limn→∞ Txn = T (limn→∞ xn) .
(Compare this with the statement that T is continuous iff for every convergent
sequences {xn}∞n=1 ⊂ X we have {Txn}∞n=1 ⊂ Y is necessarily convergent
and limn→∞ Txn = T (limn→∞ xn) .)

Theorem 25.22 (Closed Graph Theorem). Let X and Y be Banach
spaces and T : X → Y be linear map. Then T is continuous iff T is closed.

Proof. If T is continuous and (xn, Txn) → (x, y) ∈ X × Y as n → ∞
then Txn → Tx = y which implies (x, y) = (x, Tx) ∈ Γ (T ). Conversely
suppose T is closed, i.e. Γ (T ) is a closed subspace of X × Y and is therefore
a Banach space in its own right. The map π2 : X × Y → X is continuous and
π1|Γ (T ) : Γ (T )→ X is continuous bijection which implies π1|−1

Γ (T ) is bounded
by the open mapping Theorem 25.19. Therefore T = π2 ◦ Γ = π2 ◦ π1|−1

Γ (T )

is bounded, being the composition of bounded operators since the following
diagram commutes

Γ (T )
Γ = π1|−1

Γ (T ) ↗ ↘ π2

X −→ Y
T

.

As an application we have the following proposition.

Proposition 25.23. Let H be a Hilbert space. Suppose that T : H → H is a
linear (not necessarily bounded) map such that there exists T ∗ : H → H such
that

〈Tx|Y 〉 = 〈x|T ∗Y 〉 ∀ x, y ∈ H.

Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that xn ∈ H
such that (xn, Txn)→ (x, y) ∈ H ×H. Then for any z ∈ H,

〈Txn|z〉 = 〈xn|T ∗z〉 −→ 〈x|T ∗z〉 = 〈Tx|z〉 as n→∞.

On the other hand limn→∞〈Txn|z〉 = 〈y|z〉 as well and therefore 〈Tx|z〉 =
〈y|z〉 for all z ∈ H. This shows that Tx = y and proves that T is closed.

Here is another example.
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25.2 The Open Mapping Theorem 505

Example 25.24. Suppose thatM⊂ L2([0, 1],m) is a closed subspace such that
each element of M has a representative in C([0, 1]). We will abuse notation
and simply write M⊂ C([0, 1]). Then

1. There exists A ∈ (0,∞) such that ‖f‖∞ ≤ A‖f‖L2 for all f ∈M.
2. For all x ∈ [0, 1] there exists gx ∈M such that

f(x) = 〈f |gx〉 :=
∫ 1

0

f (y) gx (y) dy for all f ∈M.

Moreover we have ‖gx‖ ≤ A.
3. The subspace M is finite dimensional and dim(M) ≤ A2.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we
first show that (M, ‖·‖∞) is a complete space. To prove this it suffices to show
M is a closed subspace of C([0, 1]). So let {fn} ⊂ M and f ∈ C([0, 1]) such
that ‖fn − f‖∞ → 0 as n → ∞. Then ‖fn − fm‖L2 ≤ ‖fn − fm‖∞ → 0 as
m,n→∞, and sinceM is closed in L2([0, 1]), L2 − limn→∞ fn = g ∈M. By
passing to a subsequence if necessary we know that g(x) = limn→∞ fn(x) =
f(x) for m - a.e. x. So f = g ∈M.

i) Let i : (M, ‖ · ‖∞)→ (M, ‖ · ‖2) be the identity map. Then i is bounded
and bijective. By the open mapping theorem, j = i−1 is bounded as well.
Hence there exists A <∞ such that ‖f‖∞ = ‖j(f)‖ ≤ A ‖f‖2 for all f ∈M.

ii) Let j : (M, ‖ · ‖2) → (M, ‖ · ‖∞) be the identity map. We will shows
that j is a closed operator and hence bounded by the closed graph Theorem
25.22. Suppose that fn ∈ M such that fn → f in L2 and fn = j(fn) → g in
C([0, 1]). Then as in the first paragraph, we conclude that g = f = j(f) a.e.
showing j is closed. Now finish as in last line of proof i).

2) For x ∈ [0, 1], let ex : M → C be the evaluation map ex(f) = f(x).
Then

|ex(f)| ≤ |f(x)| ≤ ‖f‖∞ ≤ A‖f‖L2

which shows that ex ∈M∗. Hence there exists a unique element gx ∈M such
that

f(x) = ex(f) = 〈f, gx〉 for all f ∈M.

Moreover ‖gx‖L2 = ‖ex‖M∗ ≤ A.
3) Let {fj}nj=1 be an L2 – orthonormal subset of M. Then

A2 ≥ ‖ex‖2M∗ = ‖gx‖2L2 ≥
n∑
j=1

|〈fj , gx〉|2 =
n∑
j=1

|fj(x)|2

and integrating this equation over x ∈ [0, 1] implies that

A2 ≥
n∑
j=1

∫ 1

0

|fj(x)|2dx =
n∑
j=1

1 = n

which shows that n ≤ A2. Hence dim(M) ≤ A2.
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506 25 Three Fundamental Principles of Banach Spaces

Remark 25.25. Keeping the notation in Example 25.24, G(x, y) = gx(y) for
all x, y ∈ [0, 1]. Then

f(x) = ex(f) =
∫ 1

0

f(y)G(x, y)dy for all f ∈M.

The function G is called the reproducing kernel forM.

The above example generalizes as follows.

Proposition 25.26. Suppose that (X,M, µ) is a finite measure space, p ∈
[1,∞) and W is a closed subspace of Lp(µ) such that W ⊂ Lp(µ) ∩ L∞(µ).
Then dim(W ) <∞.

Proof. With out loss of generality we may assume that µ(X) = 1. As in
Example 25.24, we shows that W is a closed subspace of L∞(µ) and hence
by the open mapping theorem, there exists a constant A < ∞ such that
‖f‖∞ ≤ A ‖f‖p for all f ∈W. Now if 1 ≤ p ≤ 2, then

‖f‖∞ ≤ A ‖f‖p ≤ A ‖f‖2

and if p ∈ (2,∞), then ‖f‖pp ≤ ‖f‖
2
2 ‖f‖

p−2
∞ or equivalently,

‖f‖p ≤ ‖f‖
2/p
2 ‖f‖1−2/p

∞ ≤ ‖f‖2/p2

(
A ‖f‖p

)1−2/p

from which we learn that ‖f‖p ≤ A1−2/p ‖f‖2 and therefore that ‖f‖∞ ≤
AA1−2/p ‖f‖2 so that in any case there exists a constant B < ∞ such
that ‖f‖∞ ≤ B ‖f‖2 . Let {fn}Nn=1 be an orthonormal subset of W and
f =

∑N
n=1 cnfn with cn ∈ C, then∥∥∥∥∥

N∑
n=1

cnfn

∥∥∥∥∥
2

∞

≤ B2
N∑
n=1

|cn|2 ≤ B2 |c|2

where |c|2 :=
∑N
n=1 |cn|

2
. For each c ∈ CN , there is an exception set Ec such

that for x /∈ Ec, ∣∣∣∣∣
N∑
n=1

cnfn(x)

∣∣∣∣∣
2

≤ B2 |c|2 .

Let D := (Q+ iQ)N and E = ∩c∈DEc. Then µ(E) = 0 and for x /∈ E,∣∣∣∑N
n=1 cnfn(x)

∣∣∣ ≤ B2 |c|2 for all c ∈ D. By continuity it then follows for
x /∈ E that ∣∣∣∣∣

N∑
n=1

cnfn(x)

∣∣∣∣∣
2

≤ B2 |c|2 for all c ∈ CN .
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Taking cn = fn(x) in this inequality implies that∣∣∣∣∣
N∑
n=1

|fn(x)|2
∣∣∣∣∣
2

≤ B2
N∑
n=1

|fn(x)|2 for all x /∈ E

and therefore that

N∑
n=1

|fn(x)|2 ≤ B2 for all x /∈ E.

Integrating this equation over x then implies that N ≤ B2, i.e. dim(W ) ≤ B2.

25.3 Uniform Boundedness Principle

Theorem 25.27 (Uniform Boundedness Principle). Let X and Y be a
normed vector spaces, A ⊂ L(X,Y ) be a collection of bounded linear operators
from X to Y,

F = FA = {x ∈ X : sup
A∈A
‖Ax‖ <∞} and

R = RA = F c = {x ∈ X : sup
A∈A
‖Ax‖ =∞}. (25.9)

1. If sup
A∈A
‖A‖ <∞ then F = X.

2. If F is not meager, then sup
A∈A
‖A‖ <∞.

3. If X is a Banach space, F is not meager iff sup
A∈A
‖A‖ <∞. In particular,

if sup
A∈A
‖Ax‖ <∞ for all x ∈ X then sup

A∈A
‖A‖ <∞.

4. If X is a Banach space, then sup
A∈A
‖A‖ =∞ iff R is residual. In particular

if sup
A∈A
‖A‖ =∞ then sup

A∈A
‖Ax‖ =∞ for x in a dense subset of X.

Proof. 1. If M := sup
A∈A
‖A‖ < ∞, then sup

A∈A
‖Ax‖ ≤ M ‖x‖ < ∞ for all

x ∈ X showing F = X.
2. For each n ∈ N, let En ⊂ X be the closed sets given by

En = {x : sup
A∈A
‖Ax‖ ≤ n} =

⋂
A∈A
{x : ‖Ax‖ ≤ n}.

Then F = ∪∞n=1En which is assumed to be non-meager and hence there exists
an n ∈ N such that En has non-empty interior. Let Bx(δ) be a ball such that
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508 25 Three Fundamental Principles of Banach Spaces

Bx(δ) ⊂ En. Then for y ∈ X with ‖y‖ = δ we know x − y ∈ Bx(δ) ⊂ En, so
that Ay = Ax−A(x− y) and hence for any A ∈ A,

‖Ay‖ ≤ ‖Ax‖+ ‖A(x− y)‖ ≤ n+ n = 2n.

Hence it follows that ‖A‖ ≤ 2n/δ for all A ∈ A, i.e. sup
A∈A
‖A‖ ≤ 2n/δ <∞.

3. If X is a Banach space, F = X is not meager by the Baire Category
Theorem 16.2. So item 3. follows from items 1. and 2 and the fact that F = X
iff sup

A∈A
‖Ax‖ <∞ for all x ∈ X.

4. Item 3. is equivalent to F is meager iff sup
A∈A
‖A‖ =∞. Since R = F c, R

is residual iff F is meager, so R is residual iff sup
A∈A
‖A‖ =∞.

Remarks 25.28 Let S ⊂ X be the unit sphere in X, fA(x) = Ax for x ∈ S
and A ∈ A.

1. The assertion sup
A∈A
‖Ax‖ < ∞ for all x ∈ X implies sup

A∈A
‖A‖ < ∞ may

be interpreted as follows. If supA∈A ‖fA (x)‖ < ∞ for all x ∈ S, then
sup
A∈A
‖fA‖∞ <∞ where ‖fA‖∞ := supx∈S ‖fA (x)‖ = ‖A‖ .

2. If dim(X) < ∞ we may give a simple proof of this assertion. Indeed
if {en}Nn=1 ⊂ S is a basis for X there is a constant ε > 0 such that∥∥∥∑N

n=1 λnen

∥∥∥ ≥ ε
∑N
n=1 |λn| and so the assumption supA∈A ‖fA (x)‖ <

∞ implies

sup
A∈A
‖A‖ = sup

A∈A
sup
λ6=0

∥∥∥∑N
n=1 λnAen

∥∥∥∥∥∥∑N
n=1 λnen

∥∥∥ ≤ sup
A∈A

sup
λ6=0

∑N
n=1 |λn| ‖Aen‖
ε
∑N
n=1 |λn|

≤ ε−1 sup
A∈A

sup
n
‖Aen‖ = ε−1 sup

n
sup
A∈A
‖Aen‖ <∞.

Notice that we have used the linearity of each A ∈ A in a crucial way.
3. If we drop the linearity assumption, so that fA ∈ C(S, Y ) for all A ∈ A

– some index set, then it is no longer true that supA∈A ‖fA (x)‖ < ∞
for all x ∈ S, then sup

A∈A
‖fA‖∞ < ∞. The reader is invited to construct a

counter example when X = R2 and Y = R by finding a sequence {fn}∞n=1

of continuous functions on S1 such that limn→∞ fn(x) = 0 for all x ∈ S1

while limn→∞ ‖fn‖C(S1) =∞.
4. The assumption that X is a Banach space in item 3.of Theorem 25.27

can not be dropped. For example, let X ⊂ C([0, 1]) be the polynomial
functions on [0, 1] equipped with the uniform norm ‖·‖∞ and for t ∈ (0, 1],
let ft(x) := (x(t)− x(0)) /t for all x ∈ X. Then limt→0 ft(x) = d

dt |0x(t)
and therefore supt∈(0,1] |ft(x)| < ∞ for all x ∈ X. If the conclusion of
Theorem 25.27 (item 3.) were true we would have M := supt∈(0,1] ‖ft‖ <
∞. This would then imply
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t

∣∣∣∣ ≤M ‖x‖∞ for all x ∈ X and t ∈ (0, 1].

Letting t ↓ 0 in this equation gives, |ẋ(0)| ≤ M ‖x‖∞ for all x ∈ X. But
taking x(t) = tn in this inequality shows M =∞.

Example 25.29. Suppose that {cn}∞n=1 ⊂ C is a sequence of numbers such that

lim
N→∞

N∑
n=1

ancn exists in C for all a ∈ `1.

Then c ∈ `∞.

Proof. Let fN ∈
(
`1
)∗ be given by fN (a) =

∑N
n=1 ancn and set MN :=

max {|cn| : n = 1, . . . , N} . Then

|fN (a)| ≤MN ‖a‖`1

and by taking a = ek with k such MN = |ck| , we learn that ‖fN‖ = MN .
Now by assumption, limN→∞ fN (a) exists for all a ∈ `1 and in particular,

sup
N
|fN (a)| <∞ for all a ∈ `1.

So by the uniform boundedness principle, Theorem 25.27,

∞ > sup
N
‖fN‖ = sup

N
MN = sup {|cn| : n = 1, 2, 3, . . . } .

25.3.1 Applications to Fourier Series

Let T = S1 be the unit circle in S1, φn(z) := zn for all n ∈ Z, and m denote
the normalized arc length measure on T, i.e. if f : T → [0,∞) is measurable,
then ∫

T

f(w)dw :=
∫
T

fdm :=
1
2π

∫ π

−π
f(eiθ)dθ.

From Section 23.3, we know {φn}n∈Z is an orthonormal basis for L2(T ). For
n ∈ N and z ∈ T, let

sn(f, z) :=
n∑

k=−n

〈f |φn〉φk(z) =
∫
T

f(w)dn(zw̄)dw

where

dn(eiθ) :=
n∑

k=−n

eikθ =
sin(n+ 1

2 )θ
sin 1

2θ
,
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510 25 Three Fundamental Principles of Banach Spaces

see Eqs. (23.8) and (23.9). By Theorem 23.10, for all f ∈ L2(T ) we know

f = L2(T )− lim
n→∞

sn(f, ·).

On the other hand the next proposition shows; if we fix z ∈ T, then
limn→∞ sn (f, z) does not even exist for the “typical” f ∈ C(T ) ⊂ L2(T ).

Proposition 25.30 (Lack of pointwise convergence). For each z ∈ T,
there exists a residual set Rz ⊂ C(T ) such that supn |sn(f, z)| = ∞ for all
f ∈ Rz. Recall that C(T ) is a complete metric space, hence Rz is a dense
subset of C(T ).

Proof. By symmetry considerations, it suffices to assume z = 1 ∈ T. Let
Λn : C(T )→ C be given by

Λnf := sn(f, 1) =
∫
T

f(w)dn(w̄)dw.

An application of Corollary 31.68 below shows,

‖Λn‖ = ‖dn‖1 =
∫
T

|dn(w̄)| dw

=
1
2π

∫ π

−π

∣∣dn(e−iθ)∣∣ dθ =
1
2π

∫ π

−π

∣∣∣∣ sin(n+ 1
2 )θ

sin 1
2θ

∣∣∣∣ dθ. (25.10)

Of course we may prove this directly as follows. Since

|Λnf | =
∣∣∣∣∫
T

f(w)dn(w̄)dw
∣∣∣∣ ≤ ∫

T

|f(w)dn(w̄)| dw ≤ ‖f‖∞
∫
T

|dn(w̄)| dw,

we learn ‖Λn‖ ≤
∫
T
|dn(w̄)| dw. For all ε > 0, let

fε (z) :=
dn (z̄)√
d2
n (z̄) + ε

.

Then ‖fε‖C(T ) ≤ 1 and hence

‖Λn‖ ≥ lim
ε↓0
|Λnfε| = lim

ε↓0

∫
T

d2
n (z̄)√

d2
n (z̄) + ε

dw =
∫
T

|dn (z̄)| dw

and the verification of Eq. (25.10) is complete.
Using

|sinx| =
∣∣∣∣∫ x

0

cos ydy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ |x|

in Eq. (25.10) implies that
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‖Λn‖ ≥
1
2π

∫ π

−π

∣∣∣∣ sin(n+ 1
2 )θ

1
2θ

∣∣∣∣ dθ =
2
π

∫ π

0

∣∣∣∣sin(n+
1
2
)θ
∣∣∣∣ dθθ

=
2
π

∫ π

0

∣∣∣∣sin(n+
1
2
)θ
∣∣∣∣ dθθ =

∫ (n+ 1
2 )π

0

|sin y| dy
y
→∞ as n→∞

(25.11)

and hence supn ‖Λn‖ =∞. So by Theorem 25.27,

R1 = {f ∈ C(T ) : sup
n
|Λnf | =∞}

is a residual set.
See Rudin Chapter 5 for more details.

Lemma 25.31. For f ∈ L1(T ), let

f̃(n) := 〈f, φn〉 =
∫
T

f(w)w̄ndw.

Then f̃ ∈ c0 := C0(Z) (i.e limn→∞ f̃(n) = 0) and the map f ∈ L1(T )→ f̃ ∈
c0 is a one to one bounded linear transformation into but not onto c0.

Proof. By Bessel’s inequality,
∑
n∈Z

∣∣∣f̃(n)
∣∣∣2 < ∞ for all f ∈ L2(T ) and

in particular lim|n|→∞

∣∣∣f̃(n)
∣∣∣ = 0. Given f ∈ L1(T ) and g ∈ L2(T ) we have

∣∣∣f̃(n)− ĝ(n)
∣∣∣ = ∣∣∣∣∫

T

[f(w)− g(w)] w̄ndw
∣∣∣∣ ≤ ‖f − g‖1

and hence

lim sup
n→∞

∣∣∣f̃(n)
∣∣∣ = lim sup

n→∞

∣∣∣f̃(n)− ĝ(n)
∣∣∣ ≤ ‖f − g‖1

for all g ∈ L2(T ). Since L2(T ) is dense in L1(T ), it follows that
lim supn→∞

∣∣∣f̃(n)
∣∣∣ = 0 for all f ∈ L1, i.e. f̃ ∈ c0. Since

∣∣∣f̃(n)
∣∣∣ ≤ ‖f‖1 ,

we have
∥∥∥f̃∥∥∥

c0
≤ ‖f‖1 showing that Λf := f̃ is a bounded linear transfor-

mation from L1(T ) to c0. To see that Λ is injective, suppose f̃ = Λf ≡ 0,
then

∫
T
f(w)p(w, w̄)dw = 0 for all polynomials p in w and w̄. By the Stone -

Wierestrass and the dominated convergence theorem, this implies that∫
T

f(w)g(w)dw = 0

for all g ∈ C(T ). Lemma 22.11 now implies f = 0 a.e. If Λ were surjective,
the open mapping theorem would imply that Λ−1 : c0 → L1(T ) is bounded.
In particular this implies there exists C <∞ such that
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512 25 Three Fundamental Principles of Banach Spaces

‖f‖L1 ≤ C
∥∥∥f̃∥∥∥

c0
for all f ∈ L1(T ). (25.12)

Taking f = dn, we find (because d̃n (k) = 1|k|≤n) that
∥∥∥d̃n∥∥∥

c0
= 1 while

(by Eq. (25.11)) limn→∞ ‖dn‖L1 = ∞ contradicting Eq. (25.12). Therefore
Ran(Λ) 6= c0.

25.4 Exercises

25.4.1 More Examples of Banach Spaces

Exercise 25.11. Let (X,M) be a measurable space and M(X) denote the
space of complex measures on (X,M) and for µ ∈ M(X) let ‖µ‖ := |µ‖(X).
Show (M(X), ‖·‖) is a Banach space. (Move to Section 29.)

Exercise 25.12. Folland 5.9, p. 155. (Drop this problem, or move to Chapter
9.)

Exercise 25.13. Folland 5.10, p. 155. (Drop this problem, or move later
where it can be done.)

Exercise 25.14. Folland 5.11, p. 155. (Drop this problem, or move to Chapter
9.)

25.4.2 Hahn-Banach Theorem Problems

Exercise 25.15. Let X be a normed vector space. Show a linear functional,
f : X → C, is bounded iff M := f−1 ({0}) is closed. Hint: if M is closed yet
f is not continuous, consider yn := x0 − xn/f(xn) where x0 ∈ X such that
f (x0) = 1 and xn ∈ X such that ‖xn‖ = 1 and limn→∞ |f (xn)| =∞.

Exercise 25.16. Let M be a closed subspace of a normed space, X, and
x ∈ X \M. Show M ⊕ Cx is closed. Hint: make use of a λ ∈ X∗ which you
should construct so that λ (M) = 0 while λ (x) 6= 0.

Exercise 25.17. (Uses quotient spaces.) Let X be an infinite dimensional
normed vector space. Show:

1. There exists a sequence {xn}∞n=1 ⊂ X such that ‖xn‖ = 1 for all n and
‖xm − xn‖ ≥ 1

2 for all m 6= n.
2. Show X is not locally compact.
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25.4.3 Open Mapping and Closed Operator Problems

Exercise 25.18. Let X = `1 (N) ,

Y =

{
f ∈ X :

∞∑
n=1

n |f (n)| <∞

}

with Y being equipped with the `1 (N) - norm, and T : Y → X be defined by
(Tf) (n) = nf (n) . Show:

1. Y is a proper dense subspace of X and in particular Y is not complete
2. T : Y → X is a closed operator which is not bounded.
3. T : Y → X is algebraically invertible, S := T−1 : X → Y is bounded and

surjective but not open.

Exercise 25.19. LetX = C ([0, 1]) and Y = C1 ([0, 1]) ⊂ X with bothX and
Y being equipped with the uniform norm. Let T : Y → X be the linear map,
Tf = f ′. Here C1 ([0, 1]) denotes those functions, f ∈ C1 ((0, 1)) ∩ C ([0, 1])
such that

f ′(1) := lim
x↑1

f ′ (x) and f ′ (0) := lim
x↓0

f ′ (x)

exist.

1. Y is a proper dense subspace of X and in particular Y is not complete.
2. T : Y → X is a closed operator which is not bounded.

Exercise 25.20. Folland 5.31, p. 164.

Exercise 25.21. Let X be a vector space equipped with two norms, ‖·‖1 and
‖·‖2 such that ‖·‖1 ≤ ‖·‖2 and X is complete relative to both norms. Show
there is a constant C <∞ such that ‖·‖2 ≤ C ‖·‖1 .

Exercise 25.22. Show that it is impossible to find a sequence, {an}n∈N ⊂
(0,∞) , with the following property: if {λn}n∈N is a sequence in C, then∑∞
n=1 |λn| <∞ iff sup a−1

n |λn| <∞. (Poetically speaking, there is no “slowest
rate” of decay for the summands of absolutely convergent series.)

Outline: For sake of contradiction suppose such a “magic” sequence
{an}n∈N ⊂ (0,∞) were to exists.

1. For f ∈ `∞ (N) , let (Tf) (n) := anf (n) for n ∈ N. Verify that Tf ∈ `1 (N)
and T : `∞(N)→ `1 (N) is a bounded linear operator.

2. Show T : `∞(N) → `1 (N) must be an invertible operator and that T−1 :
`1 (N) → `∞(N) is necessarily bounded, i.e. T : `∞ (N) → `1 (N) is a
homeomorphism.

3. Arrive at a contradiction by showing either that T−1 is not bounded or
by using the fact that, D, the set of finitely supported sequences, is dense
in `1 (N) but not in `∞ (N) .
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514 25 Three Fundamental Principles of Banach Spaces

Exercise 25.23. Folland 5.34, p. 164. (Not a very good problem, delete.)

Exercise 25.24. Folland 5.35, p. 164. (A quotient space exercise.)

Exercise 25.25. Folland 5.36, p. 164. (A quotient space exercise.)

Exercise 25.26. Suppose T : X → Y is a linear map between two Banach
spaces such that f ◦ T ∈ X∗ for all f ∈ Y ∗. Show T is bounded.

Exercise 25.27. Suppose Tn : X → Y for n ∈ N is a sequence of bounded
linear operators between two Banach spaces such limn→∞ Tnx exists for all
x ∈ X. Show Tx := limn→∞ Tnx defines a bounded linear operator from X
to Y.

Exercise 25.28. Let X,Y and Z be Banach spaces and B : X ×Y → Z be a
bilinear map such that B (x, ·) ∈ L (Y,Z) and B (·, y) ∈ L (X,Z) for all x ∈ X
and y ∈ Y. Show there is a constant M <∞ such that

|B(x, y)| ≤M ‖x‖ ‖y‖ for all (x, y) ∈ X × Y

and conclude from this that B : X × Y → Z is continuous

Exercise 25.29. Folland 5.40, p. 165. (Condensation of singularities).

Exercise 25.30. Folland 5.41, p. 165. (Drop this exercise, it is 16.2.)

25.4.4 Weak Topology and Convergence Problems

Definition 25.32. A sequence {xn}∞n=1 ⊂ X is weakly Cauchy if for all
V ∈ τw such that 0 ∈ V, xn − xm ∈ V for all m,n sufficiently large. Similarly
a sequence {fn}∞n=1 ⊂ X∗ is weak–∗ Cauchy if for all V ∈ τw∗ such that
0 ∈ V, fn − fm ∈ V for all m,n sufficiently large.

Remark 25.33. These conditions are equivalent to {f(xn)}∞n=1 being Cauchy
for all f ∈ X∗ and {fn(x)}∞n=1 being Cauchy for all x ∈ X respectively.

Exercise 25.31. Let X and Y be Banach spaces. Show:

1. Every weakly Cauchy sequence in X is bounded.
2. Every weak-* Cauchy sequence in X∗ is bounded.
3. If {Tn}∞n=1 ⊂ L (X,Y ) converges weakly (or strongly) then supn ‖Tn‖L(X,Y ) <
∞.

Exercise 25.32. Let X be a Banach space, C := {x ∈ X : ‖x‖ ≤ 1} and
C∗ := {λ ∈ X∗ : ‖λ‖X∗ ≤ 1} be the closed unit balls in X and X∗ respec-
tively.

1. Show C is weakly closed and C∗ is weak-* closed inX andX∗ respectively.
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2. If E ⊂ X is a norm-bounded set, then the weak closure, Ēw ⊂ X, is also
norm bounded.

3. If F ⊂ X∗ is a norm-bounded set, then the weak-* closure, Ēw−∗ ⊂ X∗,
is also norm bounded.

4. Every weak-* Cauchy sequence {fn} ⊂ X∗ is weak-* convergent to some
f ∈ X∗.

Exercise 25.33. Folland 5.49, p. 171.

Exercise 25.34. If X is a separable normed linear space, the weak-* topology
on the closed unit ball in X∗ is second countable and hence metrizable. (See
Theorem 14.38.)

Exercise 25.35. Let X be a Banach space. Show every weakly compact sub-
set of X is norm bounded and every weak–∗ compact subset of X∗ is norm
bounded.

Exercise 25.36. A vector subspace of a normed space X is normed closed
iff it is weakly closed. (If X is not reflexive, it is not necessarily true that
a normed closed subspace of X∗ need be weak* closed, see Exercise 25.38.)
(Hint: this problem only uses the Hahn-Banach Theorem.)

Exercise 25.37. Let X be a Banach space, {Tn}∞n=1 and {Sn}∞n=1 be two
sequences of bounded operators on X such that Tn → T and Sn → S strongly,
and suppose {xn}∞n=1 ⊂ X such that limn→∞ ‖xn − x‖ = 0. Show:

1. limn→∞ ‖Tnxn − Tx‖ = 0 and that
2. TnSn → TS strongly as n→∞.

Exercise 25.38. Folland 5.52, p. 172.
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26

Weak and Strong Derivatives

For this section, let Ω be an open subset of Rd, p, q, r ∈ [1,∞], Lp(Ω) =
Lp(Ω,BΩ ,m) and Lploc(Ω) = Lploc(Ω,BΩ ,m), where m is Lebesgue measure
on BRd and BΩ is the Borel σ – algebra on Ω. If Ω = Rd, we will simply write
Lp and Lploc for Lp(Rd) and Lploc(Rd) respectively. Also let

〈f, g〉 :=
∫
Ω

fgdm

for any pair of measurable functions f, g : Ω → C such that fg ∈ L1(Ω).
For example, by Hölder’s inequality, if 〈f, g〉 is defined for f ∈ Lp(Ω) and
g ∈ Lq(Ω) when q = p

p−1 .

Definition 26.1. A sequence {un}∞n=1 ⊂ Lploc(Ω) is said to converge to u ∈
Lploc(Ω) if limn→∞ ‖u− un‖Lq(K) = 0 for all compact subsets K ⊂ Ω.

The following simple but useful remark will be used (typically without
further comment) in the sequel.

Remark 26.2. Suppose r, p, q ∈ [1,∞] are such that r−1 = p−1 + q−1 and
ft → f in Lp(Ω) and gt → g in Lq(Ω) as t → 0, then ftgt → fg in Lr(Ω).
Indeed,

‖ftgt − fg‖r = ‖(ft − f) gt + f (gt − g)‖r
≤ ‖ft − f‖p ‖gt‖q + ‖f‖p ‖gt − g‖q → 0 as t→ 0

26.1 Basic Definitions and Properties

Definition 26.3 (Weak Differentiability). Let v ∈ Rd and u ∈ Lp(Ω)
(u ∈ Lploc(Ω)) then ∂vu is said to exist weakly in Lp(Ω) (Lploc(Ω)) if there
exists a function g ∈ Lp(Ω) (g ∈ Lploc(Ω)) such that
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〈u, ∂vφ〉 = −〈g, φ〉 for all φ ∈ C∞c (Ω). (26.1)

The function g if it exists will be denoted by ∂(w)
v u. Similarly if α ∈ Nd0 and

∂α is as in Notation 22.21, we say ∂αu exists weakly in Lp(Ω) (Lploc(Ω)) iff
there exists g ∈ Lp(Ω) (Lploc(Ω)) such that

〈u, ∂αφ〉 = (−1)|α|〈g, φ〉 for all φ ∈ C∞c (Ω).

More generally if p(ξ) =
∑

|α|≤N aαξ
α is a polynomial in ξ ∈ Rn, then p(∂)u

exists weakly in Lp(Ω) (Lploc(Ω)) iff there exists g ∈ Lp(Ω) (Lploc(Ω)) such
that

〈u, p(−∂)φ〉 = 〈g, φ〉 for all φ ∈ C∞c (Ω) (26.2)

and we denote g by w−p(∂)u.

By Corollary 22.38, there is at most one g ∈ L1
loc(Ω) such that Eq. (26.2)

holds, so w−p(∂)u is well defined.

Lemma 26.4. Let p(ξ) be a polynomial on Rd, k = deg (p) ∈ N, and u ∈
L1
loc(Ω) such that p(∂)u exists weakly in L1

loc(Ω). Then

1. suppm(w−p(∂)u) ⊂ suppm(u), where suppm(u) is the essential support of
u relative to Lebesgue measure, see Definition 22.25.

2. If deg p = k and u|U ∈ Ck (U,C) for some open set U ⊂ Ω, then
w−p(∂)u = p (∂)u a.e. on U.

Proof.

1. Since

〈w−p(∂)u, φ〉 = −〈u, p(−∂)φ〉 = 0 for all φ ∈ C∞c (Ω \ suppm(u)),

an application of Corollary 22.38 shows w−p(∂)u = 0 a.e. on Ω \
suppm(u). So by Lemma 22.26, Ω \ suppm(u) ⊂ Ω \ suppm(w−p(∂)u),
i.e. suppm(w−p(∂)u) ⊂ suppm(u).

2. Suppose that u|U is Ck and let ψ ∈ C∞c (U). (We view ψ as a function
in C∞c (Rd) by setting ψ ≡ 0 on Rd \ U.) By Corollary 22.35, there exists
γ ∈ C∞c (Ω) such that 0 ≤ γ ≤ 1 and γ = 1 in a neighborhood of supp(ψ).
Then by setting γu = 0 on Rd \ supp(γ) we may view γu ∈ Ckc (Rd) and
so by standard integration by parts (see Lemma 22.36) and the ordinary
product rule,

〈w−p(∂)u, ψ〉 = 〈u, p(−∂)ψ〉 = −〈γu, p(−∂)ψ〉
= 〈p(∂) (γu) , ψ〉 = 〈p(∂)u, ψ〉 (26.3)

wherein the last equality we have γ is constant on supp(ψ). Since Eq.
(26.3) is true for all ψ ∈ C∞c (U), an application of Corollary 22.38 with
h = w−p(∂)u− p (∂)u and µ = m shows w−p(∂)u = p (∂)u a.e. on U.
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Notation 26.5 In light of Lemma 26.4 there is no danger in simply writing
p (∂)u for w−p(∂)u. So in the sequel we will always interpret p(∂)u in the
weak or “distributional” sense.

Example 26.6. Suppose u(x) = |x| for x ∈ R, then ∂u(x) = sgn(x) in L1
loc (R)

while ∂2u(x) = 2δ(x) so ∂2u(x) does not exist weakly in L1
loc (R) .

Example 26.7. Suppose d = 2 and u(x, y) = 1y>x. Then u ∈ L1
loc

(
R2
)
, while

∂x1y>x = −δ (y − x) and ∂y1y>x = δ (y − x) and so that neither ∂xu or ∂yu
exists weakly. On the other hand (∂x + ∂y)u = 0 weakly. To prove these as-
sertions, notice u ∈ C∞

(
R2 \∆

)
where ∆ =

{
(x, x) : x ∈ R2

}
. So by Lemma

26.4, for any polynomial p (ξ) without constant term, if p (∂)u exists weakly
then p (∂)u = 0. However,

〈u,−∂xφ〉 = −
∫
y>x

φx(x, y)dxdy = −
∫

R
φ(y, y)dy,

〈u,−∂yφ〉 = −
∫
y>x

φy(x, y)dxdy =
∫

R
φ(x, x)dx and

〈u,−(∂x + ∂y)φ〉 = 0

from which it follows that ∂xu and ∂yu can not be zero while (∂x + ∂y)u = 0.
On the other hand if p(ξ) and q (ξ) are two polynomials and u ∈ L1

loc (Ω)
is a function such that p(∂)u exists weakly in L1

loc (Ω) and q (∂) [p (∂)u] exists
weakly in L1

loc (Ω) then (qp) (∂)u exists weakly in L1
loc (Ω) . This is because

〈u, (qp) (−∂)φ〉 = 〈u, p (−∂) q(−∂)φ〉
= 〈p (∂)u, q(−∂)φ〉 = 〈q(∂)p (∂)u, φ〉 for all φ ∈ C∞c (Ω) .

Example 26.8. Let u(x, y) = 1x>0 + 1y>0 in L1
loc

(
R2
)
. Then ∂xu(x, y) = δ(x)

and ∂yu(x, y) = δ(y) so ∂xu(x, y) and ∂yu(x, y) do not exist weakly in
L1
loc

(
R2
)
. However ∂y∂xu does exists weakly and is the zero function. This

shows ∂y∂xu may exists weakly despite the fact both ∂xu and ∂yu do not
exists weakly in L1

loc

(
R2
)
.

Lemma 26.9. Suppose u ∈ L1
loc (Ω) and p(ξ) is a polynomial of degree k such

that p (∂)u exists weakly in L1
loc (Ω) then

〈p (∂)u, φ〉 = 〈u, p (−∂)φ〉 for all φ ∈ Ckc (Ω) . (26.4)

Note: The point here is that Eq. (26.4) holds for all φ ∈ Ckc (Ω) not just
φ ∈ C∞c (Ω) .

Proof. Let φ ∈ Ckc (Ω) and choose η ∈ C∞c (B (0, 1)) such that∫
Rd η(x)dx = 1 and let ηε(x) := ε−dη(x/ε). Then ηε ∗ φ ∈ C∞c (Ω) for ε suffi-

ciently small and p (−∂) [ηε ∗ φ] = ηε ∗ p (−∂)φ → p (−∂)φ and ηε ∗ φ → φ
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520 26 Weak and Strong Derivatives

uniformly on compact sets as ε ↓ 0. Therefore by the dominated convergence
theorem,

〈p (∂)u, φ〉 = lim
ε↓0
〈p (∂)u, ηε ∗ φ〉 = lim

ε↓0
〈u, p (−∂) (ηε ∗ φ)〉 = 〈u, p (−∂)φ〉.

Lemma 26.10 (Product Rule). Let u ∈ L1
loc(Ω), v ∈ Rd and φ ∈ C1(Ω).

If ∂(w)
v u exists in L1

loc(Ω), then ∂
(w)
v (φu) exists in L1

loc(Ω) and

∂(w)
v (φu) = ∂vφ · u+ φ∂(w)

v u a.e.

Moreover if φ ∈ C1
c (Ω) and F := φu ∈ L1 (here we define F on Rd by setting

F = 0 on Rd \Ω ), then ∂(w)F = ∂vφ · u+ φ∂
(w)
v u exists weakly in L1(Rd).

Proof. Let ψ ∈ C∞c (Ω), then using Lemma 26.9,

−〈φu, ∂vψ〉 = −〈u, φ∂vψ〉 = −〈u, ∂v (φψ)− ∂vφ · ψ〉
= 〈∂(w)

v u, φψ〉+ 〈∂vφ · u, ψ〉
= 〈φ∂(w)

v u, ψ〉+ 〈∂vφ · u, ψ〉.

This proves the first assertion. To prove the second assertion let γ ∈ C∞c (Ω)
such that 0 ≤ γ ≤ 1 and γ = 1 on a neighborhood of supp(φ). So for ψ ∈
C∞c (Rd), using ∂vγ = 0 on supp(φ) and γψ ∈ C∞c (Ω), we find

〈F, ∂vψ〉 = 〈γF, ∂vψ〉 = 〈F, γ∂vψ〉 = 〈(φu) , ∂v (γψ)− ∂vγ · ψ〉
= 〈(φu) , ∂v (γψ)〉 = −〈∂(w)

v (φu) , (γψ)〉
= −〈∂vφ · u+ φ∂(w)

v u, γψ〉 = −〈∂vφ · u+ φ∂(w)
v u, ψ〉.

This show ∂
(w)
v F = ∂vφ · u+ φ∂

(w)
v u as desired.

Lemma 26.11. Suppose q ∈ [1,∞), p(ξ) is a polynomial in ξ ∈ Rd and
u ∈ Lqloc(Ω). If there exists {um}∞m=1 ⊂ Lqloc(Ω) such that p (∂)um exists in
Lqloc(Ω) for all m and there exists g ∈ Lqloc(Ω) such that for all φ ∈ C∞c (Ω),

lim
m→∞

〈um, φ〉 = 〈u, φ〉 and lim
m→∞

〈p (∂)um, φ〉 = 〈g, φ〉

then p (∂)u exists in Lqloc(Ω) and p (∂)u = g.

Proof. Since

〈u, p (∂)φ〉 = lim
m→∞

〈um, p (∂)φ〉 = − lim
m→∞

〈p (∂)um, φ〉 = 〈g, φ〉

for all φ ∈ C∞c (Ω), p (∂)u exists and is equal to g ∈ Lqloc(Ω).
Conversely we have the following proposition.
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26.1 Basic Definitions and Properties 521

Proposition 26.12 (Mollification). Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is
a collection of polynomials in ξ ∈ Rd and u ∈ Lqloc(Ω) such that pl(∂)u exists
weakly in Lqloc(Ω) for l = 1, 2, . . . , N. Then there exists un ∈ C∞c (Ω) such that
un → u in Lqloc(Ω) and pl (∂)un → pl (∂)u in Lqloc(Ω) for l = 1, 2, . . . , N.

Proof. Let η ∈ C∞c (B(0, 1)) such that
∫

Rd ηdm = 1 and ηε(x) :=
ε−dη(x/ε) be as in the proof of Lemma 26.9. For any function f ∈ L1

loc (Ω) ,
ε > 0 and x ∈ Ωε := {y ∈ Ω : dist(y,Ωc) > ε} , let

fε(x) := f ∗ ηε(x) := 1Ωf ∗ ηε(x) =
∫
Ω

f(y)ηε(x− y)dy.

Notice that fε ∈ C∞(Ωε) and Ωε ↑ Ω as ε ↓ 0. Given a compact set K ⊂ Ω
let Kε := {x ∈ Ω : dist(x,K) ≤ ε} . Then Kε ↓ K as ε ↓ 0, there exists ε0 > 0
such that K0 := Kε0 is a compact subset of Ω0 := Ωε0 ⊂ Ω (see Figure 26.1)
and for x ∈ K,

f ∗ ηε(x) :=
∫
Ω

f(y)ηε(x− y)dy =
∫
Kε

f(y)ηε(x− y)dy.

Therefore, using Theorem 22.32,

Fig. 26.1. The geomentry of K ⊂ K0 ⊂ Ω0 ⊂ Ω.

‖f ∗ ηε − f‖Lp(K) = ‖(1K0f) ∗ ηε − 1K0f‖Lp(K)

≤ ‖(1K0f) ∗ ηε − 1K0f‖Lp(Rd) → 0 as ε ↓ 0.

Hence, for all f ∈ Lqloc(Ω), f ∗ ηε ∈ C∞(Ωε) and

lim
ε↓0
‖f ∗ ηε − f‖Lp(K) = 0. (26.5)
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Now let p(ξ) be a polynomial on Rd, u ∈ Lqloc(Ω) such that p (∂)u ∈ Lqloc(Ω)
and vε := ηε ∗ u ∈ C∞(Ωε) as above. Then for x ∈ K and ε < ε0,

p(∂)vε(x) =
∫
Ω

u(y)p(∂x)ηε(x− y)dy =
∫
Ω

u(y)p(−∂y)ηε(x− y)dy

=
∫
Ω

u(y)p(−∂y)ηε(x− y)dy = 〈u, p(∂)ηε(x− ·)〉

= 〈p(∂)u, ηε(x− ·)〉 = (p(∂)u)ε (x). (26.6)

From Eq. (26.6) we may now apply Eq. (26.5) with f = u and f = pl(∂)u for
1 ≤ l ≤ N to find

‖vε − u‖Lp(K) +
N∑
l=1

‖pl(∂)vε − pl(∂)u‖Lp(K) → 0 as ε ↓ 0.

For n ∈ N, let

Kn := {x ∈ Ω : |x| ≤ n and d(x,Ωc) ≥ 1/n}

(so Kn ⊂ Ko
n+1 ⊂ Kn+1 for all n and Kn ↑ Ω as n→∞ or see Lemma 14.23)

and choose ψn ∈ C∞c (Ko
n+1, [0, 1]), using Corollary 22.35, so that ψn = 1 on

a neighborhood of Kn. Choose εn ↓ 0 such that Kn+1 ⊂ Ωεn
and

‖vεn
− u‖Lp(Kn) +

N∑
l=1

‖pl(∂)vεn
− pl(∂)u‖Lp(Kn) ≤ 1/n.

Then un := ψn · vεn
∈ C∞c (Ω) and since un = vεn

on Kn we still have

‖un − u‖Lp(Kn) +
N∑
l=1

‖pl(∂)un − pl(∂)u‖Lp(Kn) ≤ 1/n. (26.7)

Since any compact set K ⊂ Ω is contained in Ko
n for all n sufficiently large,

Eq. (26.7) implies

lim
n→∞

[
‖un − u‖Lp(K) +

N∑
l=1

‖pl(∂)un − pl(∂)u‖Lp(K)

]
= 0.

The following proposition is another variant of Proposition 26.12 which
the reader is asked to prove in Exercise 26.2 below.

Proposition 26.13. Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a collection of
polynomials in ξ ∈ Rd and u ∈ Lq = Lq

(
Rd
)

such that pl(∂)u ∈ Lq for
l = 1, 2, . . . , N. Then there exists un ∈ C∞c

(
Rd
)

such that

lim
n→∞

[
‖un − u‖Lq +

N∑
l=1

‖pl(∂)un − pl(∂)u‖Lq

]
= 0.
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Notation 26.14 (Difference quotients) For v ∈ Rd and h ∈ R \ {0} and
a function u : Ω → C, let

∂hv u(x) :=
u(x+ hv)− u(x)

h

for those x ∈ Ω such that x + hv ∈ Ω. When v is one of the standard basis
elements, ei for 1 ≤ i ≤ d, we will write ∂hi u(x) rather than ∂hei

u(x). Also let

∇hu(x) :=
(
∂h1 u(x), . . . , ∂

h
nu(x)

)
be the difference quotient approximation to the gradient.

Definition 26.15 (Strong Differentiability). Let v ∈ Rd and u ∈ Lp, then
∂vu is said to exist strongly in Lp if the limh→0 ∂

h
v u exists in Lp. We will

denote the limit by ∂(s)
v u.

It is easily verified that if u ∈ Lp, v ∈ Rd and ∂(s)
v u ∈ Lp exists then ∂(w)

v u

exists and ∂(w)
v u = ∂

(s)
v u. The key to checking this assertion is the identity,

〈∂hv u, φ〉 =
∫

Rd

u(x+ hv)− u(x)
h

φ(x)dx

=
∫

Rd

u(x)
φ(x− hv)− φ(x)

h
dx = 〈u, ∂h−vφ〉. (26.8)

Hence if ∂(s)
v u = limh→0 ∂

h
v u exists in Lp and φ ∈ C∞c (Rd), then

〈∂(s)
v u, φ〉 = lim

h→0
〈∂hv u, φ〉 = lim

h→0
〈u, ∂h−vφ〉 =

d

dh
|0〈u, φ (· − hv)〉 = −〈u, ∂vφ〉

wherein Corollary 19.43 has been used in the last equality to bring the deriva-
tive past the integral. This shows ∂(w)

v u exists and is equal to ∂(s)
v u. What is

somewhat more surprising is that the converse assertion that if ∂(w)
v u exists

then so does ∂(s)
v u. Theorem 26.18 is a generalization of Theorem 23.15 from

L2 to Lp. For the reader’s convenience, let us give a self-contained proof of
the version of the Banach - Alaoglu’s Theorem which will be used in the proof
of Theorem 26.18. (This is the same as Theorem 14.38 above.)

Proposition 26.16 (Weak-∗ Compactness: Banach - Alaoglu’s The-
orem). Let X be a separable Banach space and {fn} ⊂ X∗ be a bounded
sequence, then there exist a subsequence {f̃n} ⊂ {fn} such that lim

n→∞
fn(x) =

f(x) for all x ∈ X with f ∈ X∗.

Proof. Let D ⊂ X be a countable linearly independent subset of X such
that span(D) = X. Using Cantor’s diagonal trick, choose {f̃n} ⊂ {fn} such
that λx := lim

n→∞
f̃n(x) exist for all x ∈ D. Define f : span(D) → R by the

formula
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f(
∑
x∈D

axx) =
∑
x∈D

axλx

where by assumption # ({x ∈ D : ax 6= 0}) < ∞. Then f : span(D) → R is
linear and moreover f̃n(y)→ f(y) for all y ∈ span(D). Now

|f(y)| = lim
n→∞

∣∣∣f̃n(y)∣∣∣ ≤ lim sup
n→∞

‖f̃n‖ ‖y‖ ≤ C‖y‖ for all y ∈ span(D).

Hence by the B.L.T. Theorem 10.4, f extends uniquely to a bounded linear
functional on X. We still denote the extension of f by f ∈ X∗. Finally, if
x ∈ X and y ∈ span(D)

|f(x)− f̃n(x)| ≤ |f(x)− f(y)|+ |f(y)− f̃n(y)|+ |f̃n(y)− f̃n(x)|
≤ ‖f‖ ‖x− y‖+ ‖f̃n‖ ‖x− y‖+ |f(y)− f̃n(y)‖
≤ 2C‖x− y‖+ |f(y)− f̃n(y)| → 2C‖x− y‖ as n→∞.

Therefore

lim sup
n→∞

∣∣∣f(x)− f̃n(x)
∣∣∣ ≤ 2C‖x− y‖ → 0 as y → x.

Corollary 26.17. Let p ∈ (1,∞] and q = p
p−1 . Then to every bounded se-

quence {un}∞n=1 ⊂ Lp (Ω) there is a subsequence {ũn}∞n=1 and an element
u ∈ Lp(Ω) such that

lim
n→∞

〈ũn, g〉 = 〈u, g〉 for all g ∈ Lq (Ω) .

Proof. By Theorem 24.14, the map

v ∈ Lp(Ω)→ 〈v, ·〉 ∈ (Lq(Ω))∗

is an isometric isomorphism of Banach spaces. By Theorem 22.15, Lq(Ω) is
separable for all q ∈ [1,∞) and hence the result now follows from Proposition
26.16.

Theorem 26.18 (Weak and Strong Differentiability). Suppose p ∈
[1,∞), u ∈ Lp(Rd) and v ∈ Rd \ {0} . Then the following are equivalent:

1. There exists g ∈ Lp(Rd) and {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0
and

lim
n→∞

〈∂hn
v u, φ〉 = 〈g, φ〉 for all φ ∈ C∞c (Rd).

2. ∂(w)
v u exists and is equal to g ∈ Lp(Rd), i.e. 〈u, ∂vφ〉 = −〈g, φ〉 for all
φ ∈ C∞c (Rd).

3. There exists g ∈ Lp(Rd) and un ∈ C∞c (Rd) such that un
Lp

→ u and ∂vun
Lp

→
g as n→∞.
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4. ∂(s)
v u exists and is is equal to g ∈ Lp(Rd), i.e. ∂hv u→ g in Lp as h→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. – 4. above
are implied by the following condition.

1′. There exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and supn
∥∥∂hn

v u
∥∥
p
<

∞.

Proof. 4. =⇒ 1. is simply the assertion that strong convergence implies
weak convergence. 1. =⇒ 2. For φ ∈ C∞c (Rd), Eq. (26.8) and the dominated
convergence theorem implies

〈g, φ〉 = lim
n→∞

〈∂hn
v u, φ〉 = lim

n→∞
〈u, ∂hn

−vφ〉 = −〈u, ∂vφ〉.

2. =⇒ 3. Let η ∈ C∞c (Rd,R) such that
∫

Rd η(x)dx = 1 and let ηm(x) =
mdη(mx), then by Proposition 22.34, hm := ηm ∗ u ∈ C∞(Rd) for all m and

∂vhm(x) = ∂vηm ∗ u(x) =
∫

Rd

∂vηm(x− y)u(y)dy

= 〈u,−∂v [ηm (x− ·)]〉 = 〈g, ηm (x− ·)〉 = ηm ∗ g(x).

By Theorem 22.32, hm → u ∈ Lp(Rd) and ∂vhm = ηm ∗ g → g in Lp(Rd)
as m → ∞. This shows 3. holds except for the fact that hm need not have
compact support. To fix this let ψ ∈ C∞c (Rd, [0, 1]) such that ψ = 1 in a
neighborhood of 0 and let ψε(x) = ψ(εx) and (∂vψ)ε (x) := (∂vψ) (εx). Then

∂v (ψεhm) = ∂vψεhm + ψε∂vhm = ε (∂vψ)ε hm + ψε∂vhm

so that ψεhm → hm in Lp and ∂v (ψεhm) → ∂vhm in Lp as ε ↓ 0. Let
um = ψεm

hm where εm is chosen to be greater than zero but small enough so
that

‖ψεm
hm − hm‖p + ‖∂v (ψεm

hm)→ ∂vhm‖p < 1/m.

Then um ∈ C∞c (Rd), um → u and ∂vum → g in Lp as m → ∞. 3. =⇒ 4. By
the fundamental theorem of calculus

∂hv um(x) =
um(x+ hv)− um(x)

h

=
1
h

∫ 1

0

d

ds
um(x+ shv)ds =

∫ 1

0

(∂vum) (x+ shv)ds. (26.9)

and therefore,

∂hv um(x)− ∂vum(x) =
∫ 1

0

[(∂vum) (x+ shv)− ∂vum(x)] ds.

So by Minkowski’s inequality for integrals, Theorem 21.27,
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∥∥∂hv um(x)− ∂vum
∥∥
p
≤
∫ 1

0

‖(∂vum) (·+ shv)− ∂vum‖p ds

and letting m→∞ in this equation then implies∥∥∂hv u− g∥∥p ≤ ∫ 1

0

‖g(·+ shv)− g‖p ds.

By the dominated convergence theorem and Proposition 22.24, the right mem-
ber of this equation tends to zero as h→ 0 and this shows item 4. holds. (1′.
=⇒ 1. when p > 1) This is a consequence of Corollary 26.17 (or see Theorem
14.38 above) which asserts, by passing to a subsequence if necessary, that
∂hn
v u

w→ g for some g ∈ Lp(Rd).

Example 26.19. The fact that (1′) does not imply the equivalent conditions 1
– 4 in Theorem 26.18 when p = 1 is demonstrated by the following example.
Let u := 1[0,1], then∫

R

∣∣∣∣u(x+ h)− u(x)
h

∣∣∣∣ dx =
1
|h|

∫
R

∣∣1[−h,1−h](x)− 1[0,1](x)
∣∣ dx = 2

for |h| < 1. On the other hand the distributional derivative of u is ∂u(x) =
δ(x)− δ(x− 1) which is not in L1.

Alternatively, if there exists g ∈ L1(R, dm) such that

lim
n→∞

u(x+ hn)− u(x)
hn

= g(x) in L1

for some sequence {hn}∞n=1 as above. Then for φ ∈ C∞c (R) we would have on
one hand,∫

R

u(x+ hn)− u(x)
hn

φ(x)dx =
∫

R

φ(x− hn)− φ(x)
hn

u(x)dx

→ −
∫ 1

0

φ′(x)dx = (φ(0)− φ(1)) as n→∞,

while on the other hand,∫
R

u(x+ hn)− u(x)
hn

φ(x)dx→
∫

R
g(x)φ(x)dx.

These two equations imply∫
R
g(x)φ(x)dx = φ(0)− φ(1) for all φ ∈ C∞c (R) (26.10)

and in particular that
∫

R g(x)φ(x)dx = 0 for all φ ∈ Cc(R\ {0, 1}). By Corol-
lary 22.38, g(x) = 0 for m – a.e. x ∈ R\ {0, 1} and hence g(x) = 0 for m –
a.e. x ∈ R. But this clearly contradicts Eq. (26.10). This example also shows
that the unit ball in L1(R, dm) is not weakly sequentially compact. Compare
with Lemma 25.14 below.
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Corollary 26.20. If 1 ≤ p <∞, u ∈ Lp such that ∂vu ∈ Lp, then
∥∥∂hv u∥∥Lp ≤

‖∂vu‖Lp for all h 6= 0 and v ∈ Rd.

Proof. By Minkowski’s inequality for integrals, Theorem 21.27, we may
let m→∞ in Eq. (26.9) to find

∂hv u(x) =
∫ 1

0

(∂vu) (x+ shv)ds for a.e. x ∈ Rd

and ∥∥∂hv u∥∥Lp ≤
∫ 1

0

‖(∂vu) (·+ shv)‖Lp ds = ‖∂vu‖Lp .

Proposition 26.21 (A weak form of Weyls Lemma). If u ∈ L2(Rd) such
that f := 4u ∈ L2(Rd) then ∂αu ∈ L2

(
Rd
)

for |α| ≤ 2. Furthermore if k ∈ N0

and ∂βf ∈ L2
(
Rd
)

for all |β| ≤ k, then ∂αu ∈ L2
(
Rd
)

for |α| ≤ k + 2.

Proof. By Proposition 26.13, there exists un ∈ C∞c
(
Rd
)

such that un → u

and ∆un → ∆u = f in L2
(
Rd
)
. By integration by parts we find∫

Rd

|∇(un − um)|2 dm = (−∆(un − um), (un − um))L2

→ − (f − f, u− u) = 0 as m,n→∞

and hence by item 3. of Theorem 26.18, ∂iu ∈ L2 for each i. Since

‖∇u‖2L2 = lim
n→∞

∫
Rd

|∇un|2 dm = (−∆un, un)L2 → −(f, u) as n→∞

we also learn that

‖∇u‖2L2 = −(f, u) ≤ ‖f‖L2 · ‖u‖L2 . (26.11)

Let us now consider
d∑

i,j=1

∫
Rd

|∂i∂jun|2 dm = −
d∑

i,j=1

∫
Rd

∂jun∂
2
i ∂jundm

= −
d∑
j=1

∫
Rd

∂jun∂j∆undm =
d∑
j=1

∫
Rd

∂2
j un∆undm

=
∫

Rd

|∆un|2 dm = ‖∆un‖2L2 .

Replacing un by un − um in this calculation shows

d∑
i,j=1

∫
Rd

|∂i∂j(un − um)|2 dm = ‖∆(un − um)‖2L2 → 0 as m,n→∞

Page: 527 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



528 26 Weak and Strong Derivatives

and therefore by Lemma 26.4 (also see Exercise 26.4), ∂i∂ju ∈ L2
(
Rd
)

for all
i, j and

d∑
i,j=1

∫
Rd

|∂i∂ju|2 dm = ‖∆u‖2L2 = ‖f‖2L2 . (26.12)

Combining Eqs. (26.11) and (26.12) gives the estimate∑
|α|≤2

‖∂αu‖2L2 ≤ ‖u‖2L2 + ‖f‖L2 · ‖u‖L2 + ‖f‖2L2

= ‖u‖2L2 + ‖∆u‖L2 · ‖u‖L2 + ‖∆u‖2L2 . (26.13)

Let us now further assume ∂if = ∂i∆u ∈ L2
(
Rd
)
. Then for h ∈ R \ {0} ,

∂hi u ∈ L2(Rd) and ∆∂hi u = ∂hi ∆u = ∂hi f ∈ L2(Rd) and hence by Eq. (26.13)
and what we have just proved, ∂α∂hi u = ∂hi ∂

αu ∈ L2 and∑
|α|≤2

∥∥∂hi ∂αu∥∥2

L2(Rd)
≤
∥∥∂hi u∥∥2

L2 +
∥∥∂hi f∥∥L2 ·

∥∥∂hi u∥∥L2 +
∥∥∂hi f∥∥2

L2

≤ ‖∂iu‖2L2 + ‖∂if‖L2 · ‖∂iu‖L2 + ‖∂if‖2L2

where the last inequality follows from Corollary 26.20. Therefore applying
Theorem 26.18 again we learn that ∂i∂αu ∈ L2(Rd) for all |α| ≤ 2 and∑

|α|≤2

‖∂i∂αu‖2L2(Rd) ≤ ‖∂iu‖
2
L2 + ‖∂if‖L2 · ‖∂iu‖L2 + ‖∂if‖2L2

≤ ‖∇u‖2L2 + ‖∂if‖L2 · ‖∇u‖L2 + ‖∂if‖2L2

≤ ‖f‖L2 · ‖u‖L2

+ ‖∂if‖L2 ·
√
‖f‖L2 · ‖u‖L2 + ‖∂if‖2L2 .

The remainder of the proof, which is now an induction argument using the
above ideas, is left as an exercise to the reader.

Theorem 26.22. Suppose that Ω is an open subset of Rd and V is an open
precompact subset of Ω.

1. If 1 ≤ p <∞, u ∈ Lp(Ω) and ∂iu ∈ Lp(Ω), then ‖∂hi u‖Lp(V ) ≤ ‖∂iu‖Lp(Ω)

for all 0 < |h| < 1
2dist(V,Ωc).

2. Suppose that 1 < p ≤ ∞, u ∈ Lp(Ω) and assume there exists a constants
CV <∞ and εV ∈ (0, 1

2dist(V,Ωc)) such that

‖∂hi u‖Lp(V ) ≤ CV for all 0 < |h| < εV .

Then ∂iu ∈ Lp(V ) and ‖∂iu‖Lp(V ) ≤ CV . Moreover if C := supV⊂⊂Ω CV <
∞ then in fact ∂iu ∈ Lp(Ω) and ‖∂iu‖Lp(Ω) ≤ C.
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Proof. 1. Let U ⊂o Ω such that V̄ ⊂ U and Ū is a compact subset of Ω.
For u ∈ C1 (Ω) ∩ Lp(Ω), x ∈ B and 0 < |h| < 1

2dist(V,U c),

∂hi u(x) =
u(x+ hei)− u(x)

h
=
∫ 1

0

∂iu(x+ thei) dt

and in particular,

|∂hi u(x)| ≤
∫ 1

0

|∂u(x+ thei)|dt.

Therefore by Minikowski’s inequality for integrals,

‖∂hi u‖Lp(V ) ≤
∫ 1

0

‖∂u(·+ thei)‖Lp(V )dt ≤ ‖∂iu‖Lp(U). (26.14)

For general u ∈ Lp(Ω) with ∂iu ∈ Lp(Ω), by Proposition 26.12, there exists
un ∈ C∞c (Ω) such that un → u and ∂iun → ∂iu in Lploc(Ω). Therefore we may
replace u by un in Eq. (26.14) and then pass to the limit to find

‖∂hi u‖Lp(V ) ≤ ‖∂iu‖Lp(U) ≤ ‖∂iu‖Lp(Ω).

2. If ‖∂hi u‖Lp(V ) ≤ CV for all h sufficiently small then by Corollary 26.17
there exists hn → 0 such that ∂hn

i u
w→ v ∈ Lp(V ). Hence if ϕ ∈ C∞c (V ),∫

V

vϕdm = lim
n→∞

∫
Ω

∂hn
i uϕdm = lim

n→∞

∫
Ω

u∂−hn
i ϕdm

= −
∫
Ω

u∂iϕ dm = −
∫
V

u∂iϕ dm.

Therefore ∂iu = v ∈ Lp(V ) and ‖∂iu‖Lp(V ) ≤ ‖v‖Lp(V ) ≤ CV .
1 Finally if

C := supV⊂⊂Ω CV <∞, then by the dominated convergence theorem,

‖∂iu‖Lp(Ω) = lim
V ↑Ω
‖∂iu‖Lp(V ) ≤ C.

We will now give a couple of applications of Theorem 26.18.
1 Here we have used the result that if f ∈ Lp and fn ∈ Lp such that 〈fn, φ〉 → 〈f, φ〉

for all φ ∈ C∞c (V ) , then ‖f‖Lp(V ) ≤ lim infn→∞ ‖fn‖Lp(V ) . To prove this, we
have with q = p

p−1
that

|〈f, φ〉| = lim
n→∞

|〈fn, φ〉| ≤ lim inf
n→∞

‖fn‖Lp(V ) · ‖φ‖Lq(V )

and therefore,

‖f‖Lp(V ) = sup
φ 6=0

|〈f, φ〉|
‖φ‖Lq(V )

≤ lim inf
n→∞

‖fn‖Lp(V ) .
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Lemma 26.23. Let v ∈ Rd.

1. If h ∈ L1 and ∂vh exists in L1, then
∫

Rd ∂vh(x)dx = 0.
2. If p, q, r ∈ [1,∞) satisfy r−1 = p−1+q−1, f ∈ Lp and g ∈ Lq are functions

such that ∂vf and ∂vg exists in Lp and Lq respectively, then ∂v(fg) exists
in Lr and ∂v(fg) = ∂vf · g + f · ∂vg. Moreover if r = 1 we have the
integration by parts formula,

〈∂vf, g〉 = −〈f, ∂vg〉. (26.15)

3. If p = 1, ∂vf exists in L1 and g ∈ BC1(Rd) (i.e. g ∈ C1(Rd) with
g and its first derivatives being bounded) then ∂v(gf) exists in L1 and
∂v(fg) = ∂vf · g + f · ∂vg and again Eq. (26.15) holds.

Proof. 1) By item 3. of Theorem 26.18 there exists hn ∈ C∞c (Rd) such
that hn → h and ∂vhn → ∂vh in L1. Then∫

Rd

∂vhn(x)dx =
d

dt
|0
∫

Rd

hn(x+ hv)dx =
d

dt
|0
∫

Rd

hn(x)dx = 0

and letting n→∞ proves the first assertion. 2) Similarly there exists fn, gn ∈
C∞c (Rd) such that fn → f and ∂vfn → ∂vf in Lp and gn → g and ∂vgn → ∂vg
in Lq as n→∞. So by the standard product rule and Remark 26.2, fngn →
fg ∈ Lr as n→∞ and

∂v(fngn) = ∂vfn · gn + fn · ∂vgn → ∂vf · g + f · ∂vg in Lr as n→∞.

It now follows from another application of Theorem 26.18 that ∂v(fg) exists in
Lr and ∂v(fg) = ∂vf ·g+f ·∂vg. Eq. (26.15) follows from this product rule and
item 1. when r = 1. 3) Let fn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf
in L1 as n→∞. Then as above, gfn → gf in L1 and ∂v(gfn)→ ∂vg ·f+g∂vf
in L1 as n→∞. In particular if φ ∈ C∞c (Rd), then

〈gf, ∂vφ〉 = lim
n→∞

〈gfn, ∂vφ〉 = − lim
n→∞

〈∂v (gfn) , φ〉

= − lim
n→∞

〈∂vg · fn + g∂vfn, φ〉 = −〈∂vg · f + g∂vf, φ〉.

This shows ∂v(fg) exists (weakly) and ∂v(fg) = ∂vf · g + f · ∂vg. Again Eq.
(26.15) holds in this case by item 1. already proved.

Lemma 26.24. Let p, q, r ∈ [1,∞] satisfy p−1+q−1 = 1+r−1, f ∈ Lp, g ∈ Lq
and v ∈ Rd.

1. If ∂vf exists strongly in Lr, then ∂v(f ∗ g) exists strongly in Lp and

∂v(f ∗ g) = (∂vf) ∗ g.

2. If ∂vg exists strongly in Lq, then ∂v(f ∗ g) exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg.
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3. If ∂vf exists weakly in Lp and g ∈ C∞c (Rd), then f ∗g ∈ C∞(Rd), ∂v(f ∗g)
exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg = (∂vf) ∗ g.

Proof. Items 1 and 2. By Young’s inequality (Theorem 22.30) and simple
computations: ∥∥∥∥τ−hv(f ∗ g)− f ∗ gh

− (∂vf) ∗ g
∥∥∥∥
r

=
∥∥∥∥τ−hvf ∗ g − f ∗ gh

− (∂vf) ∗ g
∥∥∥∥
r

=
∥∥∥∥[τ−hvf − fh

− (∂vf)
]
∗ g
∥∥∥∥
r

≤
∥∥∥∥τ−hvf − fh

− (∂vf)
∥∥∥∥
p

‖g‖q

which tends to zero as h→ 0. The second item is proved analogously, or just
make use of the fact that f ∗ g = g ∗ f and apply Item 1. Using the fact that
g(x− ·) ∈ C∞c (Rd) and the definition of the weak derivative,

f ∗ ∂vg(x) =
∫

Rd

f(y) (∂vg) (x− y)dy = −
∫

Rd

f(y) (∂vg(x− ·)) (y)dy

=
∫

Rd

∂vf(y)g(x− y)dy = ∂vf ∗ g(x).

Item 3. is a consequence of this equality and items 1. and 2.

Proposition 26.25. Let Ω = (α, β) ⊂ R be an open interval and f ∈ L1
loc(Ω)

such that ∂(w)f = 0 in L1
loc(Ω). Then there exists c ∈ C such that f = c a.e.

More generally, suppose F : C∞c (Ω) → C is a linear functional such that
F (φ′) = 0 for all φ ∈ C∞c (Ω), where φ′(x) = d

dxφ(x), then there exists c ∈ C
such that

F (φ) = 〈c, φ〉 =
∫
Ω

cφ(x)dx for all φ ∈ C∞c (Ω). (26.16)

Proof. Before giving a proof of the second assertion, let us show it includes
the first. Indeed, if F (φ) :=

∫
Ω
φfdm and ∂(w)f = 0, then F (φ′) = 0 for all

φ ∈ C∞c (Ω) and therefore there exists c ∈ C such that∫
Ω

φfdm = F (φ) = c〈φ, 1〉 = c

∫
Ω

φfdm.

But this implies f = c a.e. So it only remains to prove the second assertion.
Let η ∈ C∞c (Ω) such that

∫
Ω
ηdm = 1. Given φ ∈ C∞c (Ω) ⊂ C∞c (R) , let

ψ(x) =
∫ x
−∞ (φ(y)− η(y)〈φ, 1〉) dy. Then ψ′(x) = φ(x) − η(x)〈φ, 1〉 and ψ ∈

C∞c (Ω) as the reader should check. Therefore,
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532 26 Weak and Strong Derivatives

0 = F (ψ) = F (φ− 〈φ, η〉η) = F (φ)− 〈φ, 1〉F (η)

which shows Eq. (26.16) holds with c = F (η). This concludes the proof,
however it will be instructive to give another proof of the first assertion.

Alternative proof of first assertion. Suppose f ∈ L1
loc(Ω) and ∂(w)f =

0 and fm := f∗ηm as is in the proof of Lemma 26.9. Then f ′m = ∂(w)f∗ηm = 0,
so fm = cm for some constant cm ∈ C. By Theorem 22.32, fm → f in L1

loc(Ω)
and therefore if J = [a, b] is a compact subinterval of Ω,

|cm − ck| =
1

b− a

∫
J

|fm − fk| dm→ 0 as m, k →∞.

So {cm}∞m=1 is a Cauchy sequence and therefore c := limm→∞ cm exists and
f = limm→∞ fm = c a.e.

We will say more about the connection of weak derivatives to pointwise
derivatives in Section 29.7 below.

26.2 Exercises

Exercise 26.1. Give another proof of Lemma 26.10 base on Proposition
26.12.

Exercise 26.2. Prove Proposition 26.13. Hints: 1. Use uε as defined in the
proof of Proposition 26.12 to show it suffices to consider the case where u ∈
C∞

(
Rd
)
∩ Lq

(
Rd
)

with ∂αu ∈ Lq
(
Rd
)

for all α ∈ Nd0. 2. Then let ψ ∈
C∞c (B(0, 1), [0, 1]) such that ψ = 1 on a neighborhood of 0 and let un(x) :=
u(x)ψ(x/n).

Exercise 26.3. Suppose p(ξ) is a polynomial in ξ ∈ Rd, p ∈ (1,∞), q := p
p−1 ,

u ∈ Lp such that p(∂)u ∈ Lp and v ∈ Lq such that p (−∂) v ∈ Lq. Show
〈p (∂)u, v〉 = 〈u, p (−∂) v〉.

Exercise 26.4. Let p ∈ [1,∞), α be a multi index (if α = 0 let ∂0 be the
identity operator on Lp),

D(∂α) := {f ∈ Lp(Rn) : ∂αf exists weakly in Lp(Rn)}

and for f ∈ D(∂α) (the domain of ∂α) let ∂αf denote the α – weak derivative
of f. (See Definition 26.3.)

1. Show ∂α is a densely defined operator on Lp, i.e. D(∂α) is a dense linear
subspace of Lp and ∂α : D(∂α)→ Lp is a linear transformation.

2. Show ∂α : D(∂α)→ Lp is a closed operator, i.e. the graph,

Γ (∂α) := {(f, ∂αf) ∈ Lp × Lp : f ∈ D(∂α)} ,

is a closed subspace of Lp × Lp.
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3. Show ∂α : D(∂α) ⊂ Lp → Lp is not bounded unless α = 0. (The norm on
D(∂α) is taken to be the Lp – norm.)

Exercise 26.5. Let p ∈ [1,∞), f ∈ Lp and α be a multi index. Show ∂αf
exists weakly (see Definition 26.3) in Lp iff there exists fn ∈ C∞c (Rn) and
g ∈ Lp such that fn → f and ∂αfn → g in Lp as n → ∞. Hints: See
exercises 26.2 and 26.4.

Exercise 26.6. 8.8 on p. 246.

Exercise 26.7. Assume n = 1 and let ∂ = ∂e1 where e1 = (1) ∈ R1 = R.

1. Let f(x) = |x| , show ∂f exists weakly in L1
loc(R) and ∂f(x) = sgn(x) for

m – a.e. x.
2. Show ∂(∂f) does not exists weakly in L1

loc(R).
3. Generalize item 1. as follows. Suppose f ∈ C(R,R) and there exists a

finite set Λ := {t1 < t2 < · · · < tN} ⊂ R such that f ∈ C1(R \ Λ,R).
Assuming ∂f ∈ L1

loc (R) , show ∂f exists weakly and ∂(w)f(x) = ∂f(x)
for m – a.e. x.

Exercise 26.8. Suppose that f ∈ L1
loc(Ω) and v ∈ Rd and {ej}nj=1 is the

standard basis for Rd. If ∂jf := ∂ej
f exists weakly in L1

loc(Ω) for all j =
1, 2, . . . , n then ∂vf exists weakly in L1

loc(Ω) and ∂vf =
∑n
j=1 vj∂jf.

Exercise 26.9. Suppose, f ∈ L1
loc(Rd) and ∂vf exists weakly and ∂vf = 0 in

L1
loc(Rd) for all v ∈ Rd. Then there exists λ ∈ C such that f(x) = λ for m –

a.e. x ∈ Rd. Hint: See steps 1. and 2. in the outline given in Exercise 26.10
below.

Exercise 26.10 (A generalization of Exercise 26.9). Suppose Ω is a
connected open subset of Rd and f ∈ L1

loc(Ω). If ∂αf = 0 weakly for α ∈ Zn+
with |α| = N + 1, then f(x) = p(x) for m – a.e. x where p(x) is a polynomial
of degree at most N. Here is an outline.

1. Suppose x0 ∈ Ω and ε > 0 such that C := Cx0(ε) ⊂ Ω and let ηn be a
sequence of approximate δ – functions such supp(ηn) ⊂ B0(1/n) for all n.
Then for n large enough, ∂α(f ∗ ηn) = (∂αf) ∗ ηn on C for |α| = N + 1.
Now use Taylor’s theorem to conclude there exists a polynomial pn of
degree at most N such that fn = pn on C.

2. Show p := limn→∞ pn exists on C and then let n→∞ in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on
C.

3. Use Taylor’s theorem to show if p and q are two polynomials on Rd which
agree on an open set then p = q.

4. Finish the proof with a connectedness argument using the results of steps
2. and 3. above.
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Exercise 26.11. Suppose Ω ⊂o Rd and v, w ∈ Rd. Assume f ∈ L1
loc(Ω)

and that ∂v∂wf exists weakly in L1
loc(Ω), show ∂w∂vf also exists weakly and

∂w∂vf = ∂v∂wf.

Exercise 26.12. Let d = 2 and f(x, y) = 1x≥0. Show ∂(1,1)f = 0 weakly in
L1
loc despite the fact that ∂1f does not exist weakly in L1

loc!
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28

Examples of Measures

In this chapter we are going to state a couple of construction theorems for
measures. The proofs of these theorems will be deferred until the next chapter,
also see Chapter 31. Our goal in this chapter is to apply these construction
theorems to produce a fairly broad class of examples of measures.

28.1 Extending Premeasures to Measures

Throughout this chapter, X will be a given set which will often be taken to
be a locally compact Hausdorff space.

Definition 28.1. Suppose that E ⊂ 2X is a collection of subsets of X and
µ : E → [0,∞] is a function. Then

1. µ is additive or finitely additive on E if

µ(E) =
n∑
i=1

µ(Ei) (28.1)

whenever E =
∐n
i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n < ∞. If in

addition E = A is an algebra and µ (∅) = 0, then µ is a finitely additive
measure.

2. µ is σ – additive (or countable additive) on E if item 1. holds even
when n =∞. If in addition E = A is an algebra and µ (∅) = 0, then µ is
called a premeasure on A.

3. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑
i=1

µ(Ei)

whenever E =
⋃n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).
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Theorem 28.2. Suppose that E ⊂ 2X is an elementary family (Definition
18.8), A = A(E) is the algebra generated by E (see Proposition 18.10) and
µ : E → [0,∞] is a function such that µ (∅) = 0.

1. If µ is additive on E , then µ has a unique extension to a finitely additive
measure on A which will still be denoted by µ.

2. If µ is also countably sub-additive on E , then µ is a premeasure on A.
3. If µ is a premeasure on A then

µ̄(A) = inf{
∞∑
n=1

µ(En) : A ⊂
∞∐
n=1

En with En ∈ E} (28.2)

= inf{
∞∑
n=1

µ(En) : A ⊂
∞⋃
n=1

En with En ∈ E} (28.3)

extends µ to a measure µ̄ on σ (A) = σ(E).
4. If we further assume µ is σ – finite on E , then µ̄ is the unique measure

on σ(E) such that µ̄|E = µ.

Proof. Item 1. is Proposition 30.3, item 2. is Proposition 30.5, item 3. is
contained in Theorem 30.18 (or see Theorems 30.15 or 31.41 for the σ – finite
case) and item 4. is a consequence of Theorem 19.55. The equivalence of Eqs.
(28.2) and (28.3) requires a little comment.

Suppose µ̄ is defined by Eq. (28.2) and A ⊂
⋃∞
n=1En with En ∈ E and let

Ẽn := En \ (E1 ∪ · · · ∪ En−1) ∈ A (E) , where E0 := ∅. Then A ⊂
∐∞
n=1 Ẽn

and by Proposition 18.10 Ẽn =
∐Nn

j=1En,j for some En,j ∈ E . Therefore,
A ⊂

∐∞
n=1

∐Nn

j=1En,j and hence

µ̄(A) ≤
∞∑
n=1

Nn∑
j=1

µ (En,j) =
∞∑
n=1

µ
(
Ẽn

)
≤

∞∑
n=1

µ (En) ,

which easily implies the equality in Eq. (28.3).

Example 28.3. The uniqueness assertion in item 4. of Theorem 28.2 may fail
if the σ – finiteness assumption is dropped. For example, let X = R and A
denote the algebra generated by

E := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} .

Then each of the following three distinct measures on BR restrict to the same
premeasure on A;

1. µ1 =∞ except on the empty set,
2. µ2 is counting measure, and
3. µ3(A) = µ2(A ∩D) where D is any dense subset of R.

The next exercise is a minor variant of Remark 19.2 and Proposition 19.3.
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Exercise 28.1. Suppose µ : A → [0,∞] is a finitely additive measure. Show

1. µ is a premeasure on A iff µ (An) ↑ µ(A) for all {An}∞n=1 ⊂ A such that
An ↑ A ∈ A.

2. Further assume µ is finite (i.e. µ (X) <∞). Then µ is a premeasure on A
iff µ(An) ↓ 0 for all {An}∞n=1 ⊂ A such that An ↓ ∅.

28.1.1 Regularity and Density Results

Definition 28.4. Given a collection of subsets, E , of X, let Eσ denote the
collection of subsets of X which are finite or countable unions of sets from
E . Similarly let Eδ denote the collection of subsets of X which are finite or
countable intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ =
(Eδ)σ , etc.

Lemma 28.5. Suppose that A ⊂ 2X is an algebra. Then:

1. Aσ is closed under taking countable unions and finite intersections.
2. Aδ is closed under taking countable intersections and finite unions.
3. {Ac : A ∈ Aσ} = Aδ and {Ac : A ∈ Aδ} = Aσ.

Proof. By construction Aσ is closed under countable unions. Moreover if
A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3.

Theorem 28.6 (Regularity Theorem). Suppose that µ is a σ – finite pre-
measure on an algebra A, µ̄ is the extension described in Theorem 28.2 and
B ∈ σ (A) . Then:

1.
µ̄ (B) := inf {µ̄ (C) : B ⊂ C ∈ Aσ} .

2. For any ε > 0 there exists A ⊂ B ⊂ C such that A ∈ Aδ, C ∈ Aσ and
µ̄(C \A) < ε.

3. There exists A ⊂ B ⊂ C such that A ∈ Aδσ, C ∈ Aσδ and µ̄(C \A) = 0.

Proof. 1. The first item is an easy consequence of the third item in The-
orem 28.2 with A = E .

2. Let Xm ∈ A such that µ̄ (Xm) < ∞ and Xm ↑ X as n → ∞ and let
Bm := Xm ∩ B. Then by item 1., there exists Cm ∈ Aσ such that Bm ⊂ Cm

and µ̄ (Cm \Bm) < ε2−(m+1). So, letting C =
∞⋃
m=1

Cm, C ∈ Aσ and

µ̄ (C \B) ≤
∞∑
m=1

µ̄ (Cm \B) ≤
∞∑
m=1

µ̄ (Cm \Bm) <
ε

2
.

Page: 541 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



542 28 Examples of Measures

Applying this result to Bc implies there exists D ∈ Aσ such that Bc ⊂ D and

µ̄ (B \Dc) = µ̄ (D \Bc) < ε

2
.

Therefore if we let A := Dc ∈ Aδ, then A ⊂ B and µ̄ (B \A) < ε/2 and
therefore

µ̄ (C \A) = µ̄ (B \A) + µ̄ (C \B) < ε.

3. By item 2 there exist Am ⊂ B ⊂ Cm with Cm ∈ Aσ, Am ∈ Aδ
and µ̄ (Cm \Am) < 1/m for all m. Letting A :=

∞⋃
m=1

Am ∈ Aδσ and C :=
∞⋂
m=1

Cm ∈ Aσδ, we have

µ̄ (C \A) ≤ µ̄ (Cm \Am)→ 0 as m→∞.

Remark 28.7. Using this result we may recover Corollary 22.18 and Theorem
22.14 which state, under the assumptions of Theorem 28.6;

1. for every ε > 0 and B ∈ σ (A) such that µ̄(B) < ∞, there exists D ∈ A
such that µ̄(B4D) < ε.

2. Sf (A, µ) is dense in Lp(µ) for all 1 ≤ p <∞.

Indeed by Theorem 28.6 (also see Corollary 32.10), there exists C ∈ Aσ
such B ⊂ C and µ̄(C \ B) < ε. Now write C = ∪∞n=1Cn with Cn ∈ A for
each n. By replacing Cn by ∪nk=1Ck ∈ A if necessary, we may assume that
Cn ↑ C as n→∞. Since Cn \B ↑ C \B, B \ Cn ↓ B \ C = ∅ as n→∞, and
µ̄(B \ C1) ≤ µ̄(B) <∞, we know that

lim
n→∞

µ̄(Cn \B) = µ̄(C \B) < ε and lim
n→∞

µ̄(B \ Cn) = µ̄(B \ C) = 0

Hence for n sufficiently large,

µ̄(B4Cn) = µ̄(Cn \B) + µ̄(B \ Cn) < ε.

Hence we are done with the first item by taking D = Cn ∈ A for an n
sufficiently large.

For the second item, notice that∫
X

|1B − 1D|pdµ = µ̄(B4D) < ε (28.4)

from which it easily follows that any simple function in Sf (M, µ) may be
approximated arbitrary well by an element from Sf (A, µ). This completes the
proof of item 2. since Sf (M, µ) is dense in Lp (µ) by Lemma 22.3.
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28.2 The Riesz-Markov Theorem

Now suppose that X is a locally compact Hausdorff space and B = BX is the
Borel σ – algebra on X. Open subsets of Rd and locally compact separable
metric spaces are examples of such spaces, see Section 14.3.

Definition 28.8. A linear functional I on Cc(X) is positive if I(f) ≥ 0 for
all f ∈ Cc(X, [0,∞)).

Proposition 28.9. If I is a positive linear functional on Cc(X) and K is a
compact subset of X, then there exists CK < ∞ such that |I(f)| ≤ CK‖f‖∞
for all f ∈ Cc(X) with supp(f) ⊂ K.

Proof. By Urysohn’s Lemma 15.8, there exits φ ∈ Cc(X, [0, 1]) such that
φ = 1 on K. Then for all f ∈ Cc(X,R) such that supp(f) ⊂ K, |f | ≤ ‖f‖∞φ
or equivalently ‖f‖∞φ ± f ≥ 0. Hence ‖f‖∞I(φ) ± I(f) ≥ 0 or equivalently
which is to say |I(f)| ≤ ‖f‖∞I(φ). Letting CK := I(φ), we have shown
that |I(f)| ≤ CK‖f‖∞ for all f ∈ Cc(X,R) with supp(f) ⊂ K. For general
f ∈ Cc(X,C) with supp(f) ⊂ K, choose |α| = 1 such that αI(f) ≥ 0. Then

|I(f)| = αI(f) = I(α f) = I(Re(αf)) ≤ CK‖Re (αf) ‖∞ ≤ CK‖f‖∞.

Example 28.10. If µ is a K-finite measure on X, then

Iµ(f) =
∫
X

fdµ ∀f ∈ Cc(X)

defines a positive linear functional on Cc(X). In the future, we will often
simply write µ(f) for Iµ(f).

The Riesz-Markov Theorem 28.16 below asserts that every positive linear
functional on Cc(X) comes from a K-finite measure µ.

Example 28.11. Let X = R and τ = τd = 2X be the discrete topology on X.
Now let µ(A) = 0 if A is countable and µ(A) =∞ otherwise. Since K ⊂ X is
compact iff # (K) <∞, µ is a K-finite measure on X and

Iµ(f) =
∫
X

fdµ = 0 for all f ∈ Cc(X).

This shows that the correspondence µ→ Iµ fromK-finite measures to positive
linear functionals on Cc (X) is not injective without further restriction.

Definition 28.12. Suppose that µ is a Borel measure on X and B ∈ BX . We
say µ is inner regular on B if

µ(B) = sup{µ(K) : K @@ B} (28.5)
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and µ is outer regular on B if

µ(B) = inf{µ(U) : B ⊂ U ⊂o X}. (28.6)

The measure µ is said to be a regular Borel measure on X, if it is both
inner and outer regular on all Borel measurable subsets of X.

Definition 28.13. A measure µ : BX → [0,∞] is a Radon measure on X
ifµ is a K-finite measure which is inner regular on all open subsets of X and
outer regular on all Borel subsets of X.

The measure in Example 28.11 is an example of a K-finite measure on X
which is not a Radon measure on X.

Example 28.14. If the topology on a set, X, is the discrete topology, then a
measure µ on BX is a Radon measure iff µ is of the form

µ =
∑
x∈X

µxδx (28.7)

where µx ∈ [0,∞) for all x ∈ X. To verify this first notice that BX = τX = 2X

and hence every measure on BX is necessarily outer regular on all subsets of
X. The measure µ is K-finite iff µx := µ ({x}) < ∞ for all x ∈ X. If µ is a
Radon measure, then for A ⊂ X we have, by inner regularity,

µ(A) = sup {µ(Λ) : Λ ⊂⊂ A} = sup

{∑
x∈Λ

µx : Λ ⊂⊂ A

}
=
∑
x∈A

µx.

On the other hand if µ is given by Eq. (28.7) and A ⊂ X, then

µ(A) =
∑
x∈A

µx = sup

{
µ(Λ) =

∑
x∈Λ

µx : Λ ⊂⊂ A

}

showing µ is inner regular on all (open) subsets of X.

Recall from Definition 14.26 that if U is an open subset of X, we write
f ≺ U to mean that f ∈ Cc(X, [0, 1]) with supp(f) := {f 6= 0} ⊂ U.

Notation 28.15 Given a positive linear functional, I, on Cc(X) define µ =
µI on BX by

µ(U) = sup{I(f) : f ≺ U} (28.8)

for all U ⊂o X and then define

µ(B) = inf{µ(U) : B ⊂ U and U is open}. (28.9)

Theorem 28.16 (Riesz-Markov Theorem). The map µ → Iµ taking
Radon measures on X to positive linear functionals on Cc(X) is bijective.
Moreover if I is a positive linear functional on Cc(X), the function µ := µI
defined in Notation 28.15 has the following properties.
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1. µ is a Radon measure on X and the map I → µI is the inverse to the
map µ→ Iµ.

2. For all compact subsets K ⊂ X,

µ(K) = inf{I(f) : 1K ≤ f ≺ X}. (28.10)

3. If ‖Iµ‖ denotes the dual norm of I = Iµ on Cc(X,R)∗, then ‖I‖ = µ(X).
In particular, the linear functional, Iµ, is bounded iff µ(X) <∞.

Proof. The proof of the surjectivity of the map µ→ Iµ and the assertion
in item 1. is the content of Theorem 30.21 below.

Injectivity of µ→ Iµ. Suppose that µ is a is a Radon measure on X. To
each open subset U ⊂ X let

µ0(U) := sup{Iµ(f) : f ≺ U}. (28.11)

It is evident that µ0(U) ≤ µ(U) because f ≺ U implies f ≤ 1U . Given a
compact subset K ⊂ U, Urysohn’s Lemma 15.8 implies there exists f ≺ U
such that f = 1 on K. Therefore,

µ(K) ≤
∫
X

fdµ ≤ µ0(U) ≤ µ(U) (28.12)

By assumption µ is inner regular on open sets, and therefore taking the supre-
mum of Eq. (28.12) over compact subsets, K, of U shows

µ(U) = µ0(U) = sup{Iµ(f) : f ≺ U}. (28.13)

If µ and ν are two Radon measures such that Iµ = Iν . Then by Eq. (28.13)
it follows that µ = ν on all open sets. Then by outer regularity, µ = ν on BX
and this shows the map µ→ Iµ is injective.

Item 2. LetK ⊂ X be a compact set, then by monotonicity of the integral,

µ(K) ≤ inf{Iµ(f) : f ∈ Cc(X) with f ≥ 1K}. (28.14)

To prove the reverse inequality, choose, by outer regularity, U ⊂o X such that
K ⊂ U and µ(U \K) < ε. By Urysohn’s Lemma 15.8 there exists f ≺ U such
that f = 1 on K and hence,

Iµ(f) =
∫
X

f dµ = µ(K) +
∫

U\K

f dµ ≤ µ(K) + µ(U \K) < µ(K) + ε.

Consequently,

inf{Iµ(f) : f ∈ Cc(X) with f ≥ 1K} < µ(K) + ε

and because ε > 0 was arbitrary, the reverse inequality in Eq. (28.14) holds
and Eq. (28.10) is verified.
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Item 3. If f ∈ Cc(X), then

|Iµ(f)| ≤
∫
X

|f | dµ =
∫

supp(f)

|f | dµ ≤ ‖f‖∞ µ(supp(f)) ≤ ‖f‖∞ µ(X)

(28.15)
and thus ‖Iµ‖ ≤ µ(X). For the reverse inequality let K be a compact subset
of X and use Urysohn’s Lemma 15.8 again to find a function f ≺ X such that
f = 1 on K. By Eq. (28.12) we have

µ(K) ≤
∫
X

fdµ = Iµ(f) ≤ ‖Iµ‖ ‖f‖∞ = ‖Iµ‖ ,

which by the inner regularity of µ on open sets implies

µ(X) = sup{µ(K) : K @@ X} ≤ ‖Iµ‖ .

Example 28.17 (Discrete Version of Theorem 28.16). Suppose X is a set, τ =
2X is the discrete topology on X and for x ∈ X, let ex ∈ Cc(X) be defined
by ex(y) = 1{x}(y). Let I be positive linear functional on Cc (X) and define
a Radon measure, µ, on X by

µ(A) :=
∑
x∈A

I(ex) for all A ⊂ X.

Then for f ∈ Cc(X) (so f is a complex valued function on X supported on a
finite set), ∫

X

fdµ =
∑
x∈X

f(x)I(ex) = I

(∑
x∈X

f(x)ex

)
= I(f),

so that I = Iµ. It is easy to see in this example that µ defined above is the
unique regular radon measure on X such that I = Iµ while example Example
28.11 shows the uniqueness is lost if the regularity assumption is dropped.

28.2.1 Regularity Results For Radon Measures

Proposition 28.18. If µ is a Radon measure on X then µ is inner regular
on all σ-finite Borel sets.

Proof. Suppose A ∈ BX and µ(A) < ∞ and ε > 0 is given. By outer
regularity of µ, there exist an open set U ⊂o X such that A ⊂ U and µ(U \
A) < ε. By inner regularity on open sets, there exists a compact set F @@ U
such that µ(U \ F ) < ε. Again by outer regularity of µ, there exist V ⊂o X
such that (U \A) ⊂ V and µ(V ) < ε. Then K := F \ V is compact set and
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Fig. 28.1. Constructing the compact set K.

K ⊂ F \ (U \A) = F ∩ (U ∩Ac)c = F ∩ (U c ∪A) = F ∩A,

see Figure 28.1. Since,

µ(K) = µ(F )− µ(F ∩ V ) ≈ µ(U) ≈ µ(A),

or more formally,

µ(K) = µ(F )− µ(F ∩ V ) ≥ µ(U)− ε− µ(F ∩ V )
≥ µ(U)− 2ε ≥ µ(A)− 3ε,

we see that µ(A \K) ≤ 3ε. This proves the proposition when µ(A) <∞.
If µ(A) = ∞ and there exists An ↑ A as n → ∞ with µ(An) < ∞.

Then by the first part, there exist compact set Kn such that Kn ⊂ An and
µ(An \Kn) < 1/n or equivalently µ(Kn) > µ(An)− 1/n→∞ as n→∞.

Corollary 28.19. Every σ-finite Radon measure, µ, is a regular Borel mea-
sure, i.e. µ is both outer and inner regular on all Borel subsets.

Notation 28.20 If (X, τ) is a topological space, let Fσ denote the collection
of sets formed by taking countable unions of closed sets and Gδ = τδ denote
the collection of sets formed by taking countable intersections of open sets.

Proposition 28.21. Suppose that µ is a σ -finite Radon measure and B ∈ B.
Then

1. For all ε > 0 there exists sets F ⊂ B ⊂ U with F closed, U open and
µ(U \ F ) < ε.

2. There exists A ∈ Fσ and C ∈ Gδ such that A ⊂ B ⊂ C such that and
µ(C \A) = 0.
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Proof. 1. Let Xn ∈ B such that Xn ↑ X and µ (Xn) < ∞ and choose
open set Un such that B ∩Xn ⊂ Un and µ (Un \ (B ∩Xn)) < ε2−(n+1). Then
U :=

⋃∞
n=1 Un is an open set such that

µ (U \B) ≤
∞∑
n=1

µ (Un \B) ≤
∞∑
n=1

µ (Un \ (B ∩Xn)) <
ε

2
.

Applying this same result to Bc allows us to find a closed set F such that
Bc ⊂ F c and

µ (B \ F ) = µ (F c \Bc) < ε

2
.

Thus F ⊂ B ⊂ U and µ (U \ F ) < ε as desired.
2. This a simple consequence of item 1.

Theorem 28.22. Let X be a locally compact Hausdorff space such that every
open set V ⊂o X is σ – compact, i.e. there exists Kn @@ V such that V =
∪nKn. Then any K-finite measure ν on X is a Radon measure and in fact is a
regular Borel measure. (The reader should check that if X is second countable,
then open sets are σ compact, see Exercise 14.8. In particular this condition
holds for Rn with the standard topology.)

Proof. By the Riesz-Markov Theorem 28.16, the positive linear functional,

I (f) :=
∫
X

fdν for all f ∈ Cc(X),

may be represented by a Radon measure µ on (X,B) , i.e. such that I (f) =∫
X

fdµ for all f ∈ Cc(X). By Corollary 28.19, µ is also a regular Borel measure

on (X,B) . So to finish the proof it suffices to show ν = µ. We will give two
proofs of this statement.

First Proof. The same arguments used in the proof of Lemma 18.57
shows σ (Cc (X)) = BX . Let K be a compact subset of X and use Urysohn’s
Lemma 15.8 to find ϕ ≺ X such that ϕ ≥ 1K . By a simple application of the
multiplicative system Theorem 18.51 one shows∫

X

ϕfdν =
∫
X

ϕfdµ

for all bounded BX = σ (Cc (X)) – measurable functions on X. Taking f = 1K
then shows that ν (K) = µ (K) with K @@ X. An application of Theorem
19.55 implies µ = ν on σ – algebra generated by the compact sets. This
completes the proof, since, by assumption, this σ – algebra contains all of the
open sets and hence is the Borel σ – algebra.

Second Proof. Since µ is a Radon measure on X, it follows from Eq.
(28.13), that
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µ(U) = sup


∫
X

fdµ : f ≺ U

 = sup


∫
X

fdν : f ≺ U

 ≤ ν (U) (28.16)

for all open subsets U of X. For each compact subset K ⊂ U, there exists, by
Uryshon’s Lemma 15.8, a function f ≺ U such that f ≥ 1K . Thus

ν(K) ≤
∫
X

fdν =
∫
X

fdµ ≤ µ (U) . (28.17)

Combining Eqs. (28.16) and (28.17) implies ν(K) ≤ µ(U) ≤ ν(U). By as-
sumption there exists compact sets, Kn ⊂ U, such that Kn ↑ U as n → ∞
and therefore by continuity of ν,

ν(U) = lim
n→∞

ν(Kn) ≤ µ(U) ≤ ν(U).

Hence we have shown, ν (U) = µ (U) for all U ∈ τ.
If B ∈ B = BX and ε > 0, by Proposition 28.21, there exists F ⊂ B ⊂ U

such that F is closed, U is open and µ(U \ F ) < ε. Since U \ F is open,
ν(U \ F ) = µ(U \ F ) < ε and therefore

ν (U)− ε ≤ ν (B) ≤ ν (U) and
µ (U)− ε ≤ µ (B) ≤ µ (U) .

Since ν (U) = µ (U) , ν (B) = ∞ iff µ (B) = ∞ and if ν (B) < ∞ then
|ν (B)− µ (B)| < ε. Because ε > 0 is arbitrary, we may conclude that ν (B) =
µ (B) for all B ∈ B.

Proposition 28.23 (Density of Cc (X) in Lp (µ)). If µ is a Radon measure
on X, then Cc(X) is dense in Lp(µ) for all 1 ≤ p <∞.

Proof. Let ε > 0 and B ∈ BX with µ(B) < ∞. By Proposition 28.18,
there exists K @@ B ⊂ U ⊂o X such that µ(U \K) < εp and by Urysohn’s
Lemma 15.8, there exists f ≺ U such that f = 1 on K. This function f
satisfies

‖f − 1B‖pp =
∫
X

|f − 1B |p dµ ≤
∫
U\K
|f − 1B |p dµ ≤ µ(U \K) < εp.

From this it easy to conclude that Cc (X) is dense in Sf (B, µ) – the simple
functions on X which are in L1 (µ) . Combining this with Lemma 22.3 which
asserts that Sf (B, µ) is dense in Lp (µ) completes the proof of the theorem.

Theorem 28.24 (Lusin’s Theorem). Suppose (X, τ) is a locally compact
Hausdorff space, BX is the Borel σ – algebra on X, and µ is a Radon measure
on (X,BX) . Also let ε > 0 be given. If f : X → C is a measurable function
such that µ(f 6= 0) < ∞, there exists a compact set K ⊂ {f 6= 0} such that
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f |K is continuous and µ({f 6= 0} \K) < ε. Moreover there exists φ ∈ Cc(X)
such that µ(f 6= φ) < ε and if f is bounded the function φ may be chosen so
that

‖φ‖u ≤ ‖f‖u := sup
x∈X
|f(x)| .

Proof. Suppose first that f is bounded, in which case∫
X

|f | dµ ≤ ‖f‖u µ(f 6= 0) <∞.

By Proposition 28.23, there exists fn ∈ Cc(X) such that fn → f in L1(µ) as
n→∞. By passing to a subsequence if necessary, we may assume ‖f − fn‖1 <
εn−12−n and hence by Chebyshev’s inequality (Lemma 19.17),

µ
(
|f − fn| > n−1

)
< ε2−n for all n.

Let E := ∪∞n=1

{
|f − fn| > n−1

}
, so that µ(E) < ε. On Ec, |f − fn| ≤ 1/n,

i.e. fn → f uniformly on Ec and hence f |Ec is continuous. By Proposition
28.18, there exists a compact set K and open set V such that

K ⊂ {f 6= 0} \ E ⊂ V

such that µ(V \K) < ε. Notice that

µ({f 6= 0} \K) = µ (({f 6= 0} \K) \ E) + µ (({f 6= 0} \K) ∩ E)
≤ µ(V \K) + µ(E) < 2ε.

By the Tietze extension Theorem 15.9, there exists F ∈ C(X) such that
f = F |K . By Urysohn’s Lemma 15.8 there exists ψ ≺ V such that ψ = 1 on
K. So letting φ = ψF ∈ Cc(X), we have φ = f on K, ‖φ‖∞ ≤ ‖f‖∞ and
since {φ 6= f} ⊂ E ∪ (V \ K), µ(φ 6= f) < 3ε. This proves the assertions in
the theorem when f is bounded.

Suppose that f : X → C is (possibly) unbounded and ε > 0 is given. Then
BN := {0 < |f | ≤ N} ↑ {f 6= 0} as N →∞ and therefore for all N sufficiently
large,

µ ({f 6= 0} \BN ) < ε/3.

Since µ is a Radon measure, Proposition 28.18, guarantee’s there is a compact
set C ⊂ {f 6= 0} such that µ ({f 6= 0} \ C) < ε/3. Therefore,

µ ({f 6= 0} \ (BN ∩ C)) < 2ε/3.

We may now apply the bounded case already proved to the function 1BN∩Cf
to find a compact subset K and an open set V such that K ⊂ V,

K ⊂ {1BN∩Cf 6= 0} = BN ∩ C ∩ {f 6= 0}

such thatµ ((BN ∩ C ∩ {f 6= 0}) \K) < ε/3 and φ ∈ Cc (X) such that φ =
1BN∩Cf = f on K. This completes the proof, since
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µ ({f 6= 0} \K) ≤ µ ((BN ∩ C ∩ {f 6= 0}) \K) + µ ({f 6= 0} \ (BN ∩ C)) < ε

which implies µ (f 6= φ) < ε.

Example 28.25. To illustrate Theorem 28.24, suppose that X = (0, 1), µ = m
is Lebesgue measure and f = 1(0,1)∩Q. Then Lusin’s theorem asserts for any
ε > 0 there exists a compact set K ⊂ (0, 1) such that m((0, 1) \K) < ε and
f |K is continuous. To see this directly, let {rn}∞n=1 be an enumeration of the
rationals in (0, 1),

Jn = (rn − ε2−n, rn + ε2−n) ∩ (0, 1) and W = ∪∞n=1Jn.

Then W is an open subset of X and µ(W ) < ε. Therefore Kn := [1/n, 1 −
1/n] \W is a compact subset of X and m(X \ Kn) ≤ 2

n + µ(W ). Taking n
sufficiently large we have m(X \ Kn) < ε and f |Kn

≡ 0 which is of course
continuous.

The following result is a slight generalization of Lemma 22.11.

Corollary 28.26. Let (X, τ) be a locally compact Hausdorff space, µ : BX →
[0,∞] be a Radon measure on X and h ∈ L1

loc(µ). If∫
X

fhdµ = 0 for all f ∈ Cc(X) (28.18)

then 1Kh = 0 for µ – a.e. for every compact subset K ⊂ X. (BRUCE: either
show h = 0 a.e. or give a counter example. Also, either prove or give a counter
example to the question to the statement the dν = ρdµ is a Radon measure if
ρ ≥ 0 and in L1

loc (µ) .)

Proof. By considering the real and imaginary parts of h we may assume
with out loss of generality that h is real valued. Let K be a compact subset of
X. Then 1Ksgn(h̄) ∈ L1 (µ) and by Proposition 28.23, there exists fn ∈ Cc (X)
such that limn→∞ ‖fn − 1Ksgn(h)‖L1(µ) = 0. Let φ ∈ Cc (X, [0, 1]) such that
φ = 1 on K and gn = φmin (−1,max (1, fn)) . Since

|gn − 1Ksgn(h)| ≤ |fn − 1Ksgn(h)|

we have found gn ∈ Cc (X,R) such that |gn| ≤ 1supp(φ) and gn → 1Ksgn(h) in
L1 (µ) . By passing to a sub-sequence if necessary we may assume the conver-
gence happens µ – almost everywhere. Using Eq. (28.18) and the dominated
convergence theorem (the dominating function is |h| 1supp(φ)) we conclude that

0 = lim
n→∞

∫
X

gnhdµ =
∫
X

1Ksgn(h̄)hdµ =
∫
K

|h| dµ

which shows h (x) = 0 for µ - a.e. x ∈ K.
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28.2.2 The dual of C0(X)

BRUCE: Compare and combine with results from Section 31.10.

Proposition 28.27. Suppose (X, τ) is a topological space and I is a bounded
linear functional on C0(X,R)∗. Then I = I+ − I− where I± ∈ C0(X,R)∗ are
positive linear functionals.

Proof. For f ∈ C0(X, [0,∞)), let

I+(f) := sup {I(g) : g ∈ C0(X, [0,∞)) and g ≤ f}

and notice that |I+(f)| ≤ ‖I‖ ‖f‖ . If c > 0, then I+(cf) = cI+(f). Suppose
that f1, f2 ∈ C0(X, [0,∞)) and gi ∈ C0(X, [0,∞)) such that gi ≤ fi, then
g1 + g2 ≤ f1 + f2 so that

I(g1) + I(g2) = I(g1 + g2) ≤ I+(f1 + f2)

and therefore
I+(f1) + I+(f2) ≤ I+(f1 + f2). (28.19)

Moreover, if g ∈ C0(X, [0,∞)) and g ≤ f1 + f2, let g1 = min(f1, g), so that

0 ≤ g2 := g − g1 ≤ f1 − g1 + f2 ≤ f2.

Hence I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2) for all such g and therefore,

I+(f1 + f2) ≤ I+(f1) + I+(f2). (28.20)

Combining Eqs. (28.19) and (28.20) shows that I+(f1 +f2) = I+(f1)+I+(f2).
For general f ∈ C0(X,R), let I+(f) = I+(f+)− I+(f−) where f+ = max(f, 0)
and f− = −min(f, 0). (Notice that f = f+ − f−.) If f = h − g with h, g ∈
C0(X,R), then g + f+ = h+ f− and therefore,

I+(g) + I+(f+) = I+(h) + I+(f−)

and hence I+(f) = I+(h)− I+(g). In particular,

I+(−f) = I+(f− − f+) = I+(f−)− I+(f+) = −I+(f)

so that I+(cf) = cI+(f) for all c ∈ R. Also,

I+(f + g) = I+(f+ + g+ − (f− + g−)) = I+(f+ + g+)− I+(f− + g−)
= I+(f+) + I+(g+)− I+(f−)− I+(g−)
= I+(f) + I+(g).

Therefore I+ is linear. Moreover,

|I+(f)| ≤ max (|I+(f+)| , |I+(f−)|) ≤ ‖I‖max (‖f+‖ , ‖f−‖) = ‖I‖ ‖f‖

which shows that ‖I+‖ ≤ ‖I‖ . Let I− = I+ − I ∈ C0(X,R)∗, then for f ≥ 0,

I−(f) = I+(f)− I(f) ≥ 0

by definition of I+, so I− ≥ 0 as well.
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Remark 28.28. The above proof works for functionals on linear spaces of
bounded functions which are closed under taking f ∧g and f ∨g. As an exam-
ple, let λ(f) =

∫ 1

0
f(x)dx for all bounded measurable functions f : [0, 1]→ R.

By the Hahn Banach theorem, we may extend λ to a linear functional Λ on
all bounded functions on [0, 1] in such a way that ‖Λ‖ = 1. Let Λ+ be as
above, then Λ+ = λ on bounded measurable functions and ‖Λ+‖ = 1. De-
fine µ(A) := Λ(1A) for all A ⊂ [0, 1] and notice that if A is measurable, the
µ(A) = m(A). So µ is a finitely additive extension of m to all subsets of [0, 1].

Exercise 28.2. Suppose that µ is a signed Radon measure and I = Iµ. Let
µ+ and µ− be the Radon measures associated to I±. Show that µ = µ+− µ−
is the Jordan decomposition of µ.

Solution to Exercise (28.2). Let X = P ∪P c where P is a positive set for
µ and P c is a negative set. Then for A ∈ BX ,

µ(P ∩A) = µ+(P ∩A)− µ−(P ∩A) ≤ µ+(P ∩A) ≤ µ+(A). (28.21)

To finish the proof we need only prove the reverse inequality. To this end let
ε > 0 and choose K @@ P ∩ A ⊂ U ⊂o X such that |µ| (U \ K) < ε. Let
f, g ∈ Cc(U, [0, 1]) with f ≤ g, then

I(f) = µ(f) = µ(f : K) + µ(f : U \K) ≤ µ(g : K) +O (ε)
≤ µ(K) +O (ε) ≤ µ(P ∩A) +O (ε) .

Taking the supremum over all such f ≤ g, we learn that I+(g) ≤ µ(P ∩A) +
O (ε) and then taking the supremum over all such g shows that

µ+(U) ≤ µ(P ∩A) +O (ε) .

Taking the infinum over all U ⊂o X such that P ∩A ⊂ U shows that

µ+(P ∩A) ≤ µ(P ∩A) +O (ε) (28.22)

From Eqs. (28.21) and (28.22) it follows that µ(P ∩A) = µ+(P ∩A). Since

I−(f) = sup
0≤g≤f

I(g)−I(f) = sup
0≤g≤f

I(g−f) = sup
0≤g≤f

−I(f−g) = sup
0≤h≤f

−I(h)

the same argument applied to −I shows that

−µ(P c ∩A) = µ−(P c ∩A).

Since

µ(A) = µ(P ∩A) + µ(P c ∩A) = µ+(P ∩A)− µ−(P c ∩A) and
µ(A) = µ+(A)− µ−(A)
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it follows that
µ+(A \ P ) = µ−(A \ P c) = µ−(A ∩ P ).

Taking A = P then shows that µ−(P ) = 0 and taking A = P c shows that
µ+(P c) = 0 and hence

µ(P ∩A) = µ+(P ∩A) = µ+(A) and
−µ(P c ∩A) = µ−(P c ∩A) = µ−(A)

as was to be proved.

Theorem 28.29. Let X be a locally compact Hausdorff space, M(X) be the
space of complex Radon measures on X and for µ ∈M (X) let ‖µ‖ = |µ|(X).
Then the map

µ ∈M(X)→ Iµ ∈ C0(X)∗

is an isometric isomorphism. Here again Iµ(f) :=
∫
X
f dµ.

Proof. To show that the map M(X) → C0(X)∗ is surjective, let I ∈
C0(X)∗ and then write I = Ire + iIim be the decomposition into real and
imaginary parts. Then further decompose these into there plus and minus
parts so

I = Ire+ − Ire− + i
(
Iim+ − Iim−

)
and let µre± and µim± be the corresponding positive Radon measures associated
to Ire± and Iim± . Then I = Iµ where

µ = µre+ − µre− + i
(
µim+ − µim−

)
.

To finish the proof it suffices to show ‖Iµ‖C0(X)∗ = ‖µ‖ = |µ|(X). We have

‖Iµ‖C0(X)∗ = sup
{∣∣∣∣∫

X

fdµ

∣∣∣∣ : f ∈ C0(X) 3 ‖f‖∞ ≤ 1
}

≤ sup
{∣∣∣∣∫

X

fdµ

∣∣∣∣ : f measurable and ‖f‖∞ ≤ 1
}

= ‖µ‖ .

To prove the opposite inequality, write dµ = gd |µ| with g a complex measur-
able function such that |g| = 1. By Proposition 28.23, there exist fn ∈ Cc(X)
such that fn → g in L1(|µ|) as n → ∞. Let gn = φ(fn) where φ : C→ C is
the continuous function defined by φ(z) = z if |z| ≤ 1 and φ(z) = z/ |z| if
|z| ≥ 1. Then |gn| ≤ 1 and gn → g in L1(µ). Thus

‖µ‖ = |µ| (X) =
∫
X

d |µ| =
∫
X

ḡdµ = lim
n→∞

∫
X

ḡndµ ≤ ‖Iµ‖C0(X)∗ .
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Exercise 28.3. Let (X, τ) be a compact Hausdorff space which supports a
positive measure ν on B = σ (τ) such that ν (X) 6=

∑
x∈X ν ({x}) , i.e. ν is a

not a counting type measure. (Example X = [0, 1] .) Then C (X) is not reflex-
ive. Hint: recall that C (X)∗ is isomorphic to complex measure on (X,B) .
Using this isomorphism, define λ ∈ C (X)∗∗ by

λ (µ) =
∑
x∈X

µ ({x})

and then show λ 6= f̂ for any f ∈ C (X) .

Solution to Exercise (28.3). Suppose there exists f ∈ C (X) such that
λ (µ) = f̂ (µ) = µ (f) for all complex measure µ. Taking µ = δx with x ∈ X
then

f (x) = µ (δx) = λ (δx) =
∑
y∈X

δx ({y}) = 1.

This shows f ≡ 1. However, this f can not work since

f̂ (ν) = ν (X) 6=
∑
x∈X

ν ({x}) = λ (ν) .

28.3 Classifying Radon Measures on R

Throughout this section, let X = R, E be the elementary class

E = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (28.23)

and A = A(E) be the algebra formed by taking finite disjoint unions of el-
ements from E , see Proposition 18.10. The aim of this section is to prove
Theorem 19.8 which we restate here for convenience.

Theorem 28.30. The collection of K-finite measure on (R,BR) are in one
to one correspondence with a right continuous non-decreasing functions, F :
R→ R, with F (0) = 0. The correspondence is as follows. If F is a right
continuous non-decreasing function F : R→ R, then there exists a unique
measure, µF , on BR such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a ≤ b <∞

and this measure may be defined by

µF (A) = inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂ ∪∞i=1(ai, bi]

}

= inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂
∞∐
i=1

(ai, bi]

}
(28.24)
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for allA ∈ BR. Conversely if µ is K-finite measure on (R,BR) , then

F (x) :=
{
−µ((x, 0]) if x ≤ 0
µ((0, x]) if x ≥ 0 (28.25)

is a right continuous non-decreasing function and this map is the inverse to
the map, F → µF .

There are three aspects to this theorem; namely the existence of the map
F → µF , the surjectivity of the map and the injectivity of this map. Assuming
the map F → µF exists, the surjectivity follows from Eq. (28.25) and the
injectivity is an easy consequence of Theorem 19.55. The rest of this section
is devoted to giving two proofs for the existence of the map F → µF .

Exercise 28.4. Show by direct means any measure µ = µF satisfying Eq.
(28.24) is outer regular on all Borel sets. Hint: it suffices to show if B :=∐∞
i=1(ai, bi], then there exists V ⊂o R such that µ (V \B) is as small as you

please.

28.3.1 Classifying Radon Measures on R using Theorem 28.2

Proposition 28.31. To each finitely additive measures µ : A → [0,∞] which
is finite on bounded sets there is a unique increasing function F : R̄→ R̄ such
that F (0) = 0, F−1({−∞}) ⊂ {−∞} , F−1({∞}) ⊂ {∞} and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (28.26)

Conversely, given an increasing function F : R̄→ R̄ such that F−1({−∞}) ⊂
{−∞} and F−1({∞}) ⊂ {∞} , there is a unique finitely additive measure
µ = µF on A such that the relation in Eq. (28.26) holds.

Proof. If F is going to exist, then

µ((0, b] ∩ R) = F (b)− F (0) = F (b) if b ∈ [0,∞],
µ((a, 0]) = F (0)− F (a) = −F (a) if a ∈ [−∞, 0]

from which we learn

F (x) =
{
−µ((x, 0]) if x ≤ 0
µ((0, x] ∩ R) if x ≥ 0.

Moreover, one easily checks using the additivity of µ that Eq. (28.26) holds
for this F. Conversely, suppose F : R̄→ R̄ is an increasing function such that
F−1({−∞}) ⊂ {−∞}, F−1({∞}) ⊂ {∞}. Define µ on E using the formula in
Eq. (28.26). The argument will be completed by showing µ is additive on E
and hence, by Proposition 30.3, has a unique extension to a finitely additive
measure on A. Suppose that
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28.3 Classifying Radon Measures on R 557

(a, b] =
n∐
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b]) = F (b)− F (a) =
n∑
i=1

[F (bi)− F (ai)] =
n∑
i=1

µ((ai, bi]).

Now let F : R→ R be an increasing function, F (±∞) := limx→±∞ F (x)
and µ = µF be the finitely additive measure on (R,A) described in Proposition
28.31. If µ happens to be a premeasure on A, then, letting An = (a, bn] with
bn ↓ b as n→∞, implies

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b), i.e. F is right continuous. The next proposition shows the
converse is true as well. Hence premeasures on A which are finite on bounded
sets are in one to one correspondences with right continuous increasing func-
tions which vanish at 0.

Proposition 28.32. To each right continuous increasing function F : R→ R
there exists a unique premeasure µ = µF on A such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a < b <∞.

Proof. As above, let F (±∞) := limx→±∞ F (x) and µ = µF be as in
Proposition 28.31. Because of Proposition 30.5, to finish the proof it suffices
to show µ is sub-additive on E .

First suppose that −∞ < a < b < ∞, J = (a, b], Jn = (an, bn] such that

J =
∞∐
n=1

Jn. We wish to show

µ(J) ≤
∞∑
n=1

µ(Jn). (28.27)

To do this choose numbers ã > a, b̃n > bn in which case I := (ã, b] ⊂ J,

J̃n := (an, b̃n] ⊃ J̃on := (an, b̃n) ⊃ Jn.

Since Ī = [a, b] is compact and Ī ⊂ J ⊂
∞⋃
n=1

J̃on there exists N <∞ such that
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I ⊂ Ī ⊂
N⋃
n=1

J̃on ⊂
N⋃
n=1

J̃n.

Hence by finite sub-additivity of µ,

F (b)− F (ã) = µ(I) ≤
N∑
n=1

µ(J̃n) ≤
∞∑
n=1

µ(J̃n).

Using the right continuity of F and letting ã ↓ a in the above inequality,

µ (J) = µ((a, b]) = F (b)− F (a) ≤
∞∑
n=1

µ
(
J̃n

)
=

∞∑
n=1

µ (Jn) +
∞∑
n=1

µ(J̃n \ Jn). (28.28)

Given ε > 0, we may use the right continuity of F to choose b̃n so that

µ(J̃n \ Jn) = F (b̃n)− F (bn) ≤ ε2−n ∀ n ∈ N.

Using this in Eq. (28.28) shows

µ(J) = µ((a, b]) ≤
∞∑
n=1

µ (Jn) + ε

which verifies Eq. (28.27) since ε > 0 was arbitrary.
The hard work is now done but we still have to check the cases where

a = −∞ or b =∞. For example, suppose that b =∞ so that

J = (a,∞) =
∞∐
n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =
∞∐
n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑
n=1

µ(Jn ∩ IM ) ≤
∞∑
n=1

µ(Jn).

Now let M →∞ in this last inequality to find that

µ((a,∞)) = F (∞)− F (a) ≤
∞∑
n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b = ∞ are
handled similarly.
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Corollary 28.33. The map F → µF in Theorem 28.30 exists.

Proof. This is simply a combination of Proposition 28.32 and Theorem
28.2.

28.3.2 Classifying Radon Measures on R using the Riesz-Markov
Theorem 28.16

For the moment letX be an arbitrary set. We are going to start by introducing
a simple integral associated to an additive measure, µ, on an algebra A ⊂ 2X .

Definition 28.34. Let µ be a finitely additive measure on an algebra A ⊂ 2X ,
S = Sf (A, µ) be the collection of simple functions defined in Notation 22.1 and
for f ∈ S defined the integral I(f) = Iµ(f) by

Iµ(f) =
∑
y∈R

yµ(f = y). (28.29)

The same proof used for Proposition 19.12 shows Iµ : S→ R is linear and
positive, i.e. I(f) ≥ 0 if f ≥ 0. Taking absolute values of Eq. (28.29) gives

|I(f)| ≤
∑
y∈R
|y|µ(f = y) ≤ ‖f‖∞ µ(f 6= 0) (28.30)

where ‖f‖∞ = supx∈X |f(x)| . For A ∈ A, let SA := {f ∈ S : {f 6= 0} ⊂ A}.
The estimate in Eq. (28.30) implies

|I(f)| ≤ µ(A) ‖f‖∞ for all f ∈ SA. (28.31)

Let S̄A denote the closure of SA inside `∞(X,R).

Proposition 28.35. Let (A, µ, I = Iµ) be as in Definition 28.34, then we
may extend I to

S̃ :=
⋃
{S̄A : A ∈ A with µ(A) <∞}

by defining I(f) = IA(f) when f ∈ S̄A with µ(A) < ∞. Moreover this exten-
sion is still positive.

Proof. Because of Eq. (28.31) and the B.L.T. Theorem 10.4, I has a
unique extension IA to S̄A ⊂ `∞(X,R) for any A ∈ A such that µ(A) < ∞.
The extension IA is still positive. Indeed, let f ∈ S̄A with f ≥ 0 and let
fn ∈ SA be a sequence such that ‖f − fn‖∞ → 0 as n→∞. Then fn∨0 ∈ SA
and

‖f − fn ∨ 0‖∞ ≤ ‖f − fn‖∞ → 0 as n→∞.

Therefore, IA(f) = limn→∞ IA(fn ∨ 0) ≥ 0.
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Now suppose that A,B ∈ A are sets such that µ(A) + µ(B) < ∞. Then
SA∪SB ⊂ SA∪B and so S̄A∪ S̄B ⊂ S̄A∪B . Therefore IA(f) = IA∪B(f) = IB(f)
for all f ∈ S̄A ∩ S̄B . Therefore I(f) := IA(f) for f ∈ S̄A is well defined.

We now specialize the previous results to the case where X = R, A = A(E)
with E as in Eq. (28.23), and F and µ are as in Proposition 28.31. In this
setting, for f ∈ S̃, we will write Iµ (f) as

∫∞
−∞ fdF or

∫∞
−∞ f(x)dF (x) and to

this integral as the Riemann Stieljtes integral of f relative to F.

Lemma 28.36. Using the notation above, the map f ∈ S̃→
∫∞
−∞ fdF is lin-

ear, positive and satisfies the estimate∣∣∣∣∫ ∞

−∞
fdF

∣∣∣∣ ≤ (F (b)− F (a)) ‖f‖∞ (28.32)

if supp(f) ⊂ (a, b). Moreover Cc(R,R) ⊂ S̃.

Proof. The only new point of the lemma is to prove Cc(R,R) ⊂ S̃, the
remaining assertions follow directly from Proposition 28.35. The fact that
Cc(R,R) ⊂ S̃ has essentially already been done in Example 19.23. In more
detail, let f ∈ Cc(R,R) and choose a < b such that supp(f) ⊂ (a, b). Then
define fk ∈ S as in Example 19.23, i.e.

fk(x) =
nk−1∑
l=0

min
{
f(x) : akl ≤ x ≤ akl+1

}
1(ak

l ,a
k
l+1]

(x)

where πk = {a = ak0 < ak1 < · · · < aknk
= b}, for k = 1, 2, 3, . . . , is a sequence

of refining partitions such that mesh(πk) → 0 as k → ∞. Since supp(f)
is compact and f is continuous, f is uniformly continuous on R. Therefore
‖f − fk‖∞ → 0 as k → ∞, showing f ∈ S̃. Incidentally, for f ∈ Cc(R,R), it
follows that∫ ∞

−∞
fdF = lim

k→∞

nk−1∑
l=0

min
{
f(x) : akl ≤ x ≤ akl+1

} [
F (akl+1)− F (akl )

]
.

(28.33)

The following Exercise is an abstraction of Lemma 28.36.

Exercise 28.5. Continue the notation of Definition 28.34 and Proposition
28.35. Further assume thatX is a metric space, there exists open setsXn ⊂o X
such that Xn ↑ X and for each n ∈ N and δ > 0 there exists a finite collection
of sets {Ai}ki=1 ⊂ A such that diam(Ai) < δ, µ(Ai) < ∞ and Xn ⊂ ∪ki=1Ai.

Then Cc(X,R) ⊂ S̃ and so I is well defined on Cc(X,R).

28.3.3 The Lebesgue-Stieljtes Integral

Notation 28.37 Given an increasing function F : R→ R, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) ∈ R̄. Since
F is increasing all of theses limits exists.
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Theorem 28.38. If F : R→ R is an increasing function (not necessarily
right continuous), there exists a unique measure µ = µF on BR such that∫ ∞

−∞
fdF =

∫
R
fdµ for all f ∈ Cc(R,R), (28.34)

where
∫∞
−∞ fdF is as in Lemma 28.36 above. This measure may also be char-

acterized as the unique measure on BR such that

µ ((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞. (28.35)

Moreover, if A ∈ BR then

µF (A) = inf

{ ∞∑
i=1

(F (bi+)− F (ai+)) : A ⊂ ∪∞i=1(ai, bi]

}

= inf

{ ∞∑
i=1

(F (bi+)− F (ai+)) : A ⊂
∞∐
i=1

(ai, bi]

}
. (28.36)

Proof. An application of the Riesz-Markov Theorem 28.16 implies there
exists a unique measure µ on BR such Eq. (28.34) is valid. Let −∞ < a < b <
∞, ε > 0 be small and ϕε(x) be the function defined in Figure 28.2, i.e. ϕε
is one on [a+ 2ε, b+ ε], linearly interpolates to zero on [b+ ε, b+ 2ε] and on
[a + ε, a + 2ε] and is zero on (a, b + 2ε)c. Since ϕε → 1(a,b] it follows by the

Fig. 28.2. .

dominated convergence theorem that

µ((a, b]) = lim
ε↓0

∫
R
ϕεdµ = lim

ε↓0

∫
R
ϕεdF. (28.37)

On the other hand we have

1(a+2ε,b+ε] ≤ ϕε ≤ 1(a+ε,b+2ε], (28.38)
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and therefore applying IF to both sides of Eq. (28.38) shows;

F (b+ ε)− F (a+ 2ε) =
∫

R
1(a+2ε,b+ε]dF

≤
∫

R
ϕεdF

≤
∫

R
1(a+ε,b+2ε]dF = F (b+ 2ε)− F (a+ ε).

Letting ε ↓ 0 in this equation and using Eq. (28.37) shows

F (b+)− F (a+) ≤ µ((a, b]) ≤ F (b+)− F (a+).

For the last assertion let

µ0(A) = inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂
∞∐
i=1

(ai, bi]

}
= inf {µ (B) : A ⊂ B ∈ Aσ} ,

where A is the algebra generated by the half open intervals on R. By mono-
tinicity of µ, it follows that

µ0 (A) ≥ µ (A) for all A ∈ B. (28.39)

For the reverse inequality, let A ⊂ V ⊂o R and notice by Exercise 13.14
that V =

∐∞
i=1 (ai, bi) for some collection of disjoint open intervals in R.

Since (ai, bi) ∈ Aσ (as the reader should verify!), it follows that V ∈ Aσ and
therefore,

µ0(A) ≤ inf {µ (V ) : A ⊂ V ⊂o R} = µ (A) .

Combining this with Eq. (28.39) shows µ0(A) = µ (A) which is precisely Eq.
(28.36).

Corollary 28.39. The map F → µF is a one to one correspondence between
right continuous non-decreasing functions F such that F (0) = 0 and Radon
(same as K - finite) measures on (R,BR) .

28.4 Kolmogorov’s Existence of Measure on Products
Spaces

Throughout this section, let {(Xα, τα)}α∈A be second countable locally com-
pact Hausdorff spaces and let X :=

∏
α∈A

Xα be equipped with the product

topology, τ := ⊗α∈Aτα. More generally for Λ ⊂ A, let XΛ :=
∏
α∈ΛXα and

τΛ := ⊗α∈Λτα and Λ ⊂ Γ ⊂ A, let πΛ,Γ : XΓ → XΛ be the projection map;
πΛ,Γ (x) = x|Λ for x ∈ XΓ . We will simply write πΛ for πΛ,A : X → XΛ.
(Notice that if Λ is a finite subset of A then (XΛ, τΛ) is still second countable
as the reader should verify.) LetM = ⊗α∈ABα be the product σ – algebra on
X = XA and BΛ = σ (τΛ) be the Borel σ – algebra on XΛ.
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Theorem 28.40 (Kolmogorov’s Existence Theorem). Suppose {µΛ : Λ ⊂⊂ A}
are probability measures on (XΛ,BΛ) satisfying the following compatibility
condition:

• (πΛ,Γ )∗ µΓ = µΛ whenever Λ ⊂ Γ ⊂⊂ A.

Then there exists a unique probability measure, µ, on (X,M) such that
(πΛ)∗ µ = µΛ whenever Λ ⊂⊂ A. Recall, see Exercise 19.8, that the condition
(πΛ)∗ µ = µΛ is equivalent to the statement;∫

X

F (πΛ(x))dµ(x) =
∫
XΛ

F (y)dµΛ(y) (28.40)

for all Λ ⊂⊂ A and F : XΛ → R bounded a measurable.

We will first prove the theorem in the following special case. The full proof
will be given after Exercise 28.6 below.

Theorem 28.41. Theorem 28.40 holds under the additional assumption that
each of the spaces, {(Xα, τα)}α∈A, are compact second countable and Haus-
dorff and A is countable.

Proof. Recall from Theorem 18.63 that the Borel σ – algebra, BΛ =
σ (τΛ) , and the product σ – algebra, ⊗α∈ΛBα, are the same for any Λ ⊂ A.
By Tychonoff’s Theorem 14.34 and Proposition 15.4,X andXΛ for any Λ ⊂ A
are still compact Hausdorff spaces which are second countable if Λ is finite.
By the Stone Weierstrass Theorem 15.31,

D := {f ∈ C(X) : f = F ◦ πΛ with F ∈ C(XΛ) and Λ ⊂⊂ A}

is a dense subspace of C(X). For f = F ◦ πΛ ∈ D, let

I(f) =
∫
XΛ

F ◦ πΛ(x)dµΛ(x). (28.41)

Let us verify that I is well defined. Suppose that f may also be expressed as
f = F ′ ◦ πΛ′ with Λ′ ⊂⊂ A and F ′ ∈ C(XΛ′). Let Γ := Λ ∪ Λ′ and define
G ∈ C (XΓ ) by G := F ◦ πΛ,Γ . Hence, using Exercise 19.8,∫

XΓ

GdµΓ =
∫
XΓ

F ◦ πΛ,Γ dµΓ =
∫
XΛ

F d
[
(πΛ,Γ )∗ µΓ

]
=
∫
XΛ

F dµΛ

wherein we have used the compatibility condition in the last equality. Simi-
larly, using G = F ′ ◦ πΛ′,Γ (as the reader should verify), one shows∫

XΓ

GdµΓ =
∫
XΛ′

F ′ dµΛ′ .

Therefore
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XΛ′

F ′ dµΛ′ =
∫
XΓ

GdµΓ =
∫
XΛ

F dµΛ,

which shows I in Eq. (28.41) is well defined.
Since |I(f)| ≤ ‖f‖∞, the B.L.T. Theorem 10.4 allows us to extend I from

the dense subspace, D, to a continuous linear functional, Ī , on C(X). Because
I was positive on D, it is easy to check that Ī is still positive on C(X). So by
the Riesz-Markov Theorem 28.16, there exists a Radon measure on B = M
such that Ī(f) =

∫
X

fdµ for all f ∈ C(X). By the definition of Ī in now follows

that ∫
XΛ

Fd (πΛ)∗ µ =
∫
XΛ

F ◦ πΛdµ = Ī(F ◦ πΛ) =
∫
XΛ

FdµΛ

for all F ∈ C(XΛ) and Λ ⊂⊂ A. Since XΛ is a second countable lo-
cally compact Hausdorff space, this identity implies, see Theorem 22.81, that
(πΛ)∗ µ = µΛ. The uniqueness assertion of the theorem follows from the
fact that the measure µ is determined uniquely by its values on the algebra
A := ∪Λ⊂⊂Aπ−1

Λ (BXΛ
) which generates B =M, see Theorem 19.55.

Exercise 28.6. Let (Y, τ) be a locally compact Hausdorff space and (Y ∗ =
Y ∪ {∞} , τ∗) be the one point compactification of Y. Then

BY ∗ := σ(τ∗) = {A ⊂ Y ∗ : A ∩ Y ∈ BY = σ(τ)}

or equivalently put

BY ∗ = BY ∪ {A ∪ {∞} : A ∈ BY } .

Also shows that (Y ∗ = Y ∪ {∞} , τ∗) is second countable if (Y, τ) was second
countable.

Proof. Proof of Theorem 28.40.
Case 1; A is a countable. Let (X∗

α = Xα ∪ {∞α} , τ∗α) be the one point
compactification of (Xα, τα) . For Λ ⊂ A, let X∗

Λ :=
∏
α∈Λ

X∗
α equipped with

the product topology and Borel σ – algebra, B∗Λ. Since Λ is at most countable,
the set,

XΛ :=
⋂
α∈A
{πα =∞α} ,

is a measurable subset of X∗
Λ. Therefore for each Λ ⊂⊂ A, we may extend µΛ

to a measure, µ̄Λ, on (X∗
Λ,B∗Λ) using the formula,

µ̄Λ (B) = µΛ (B ∩XΛ) for all B ∈ X∗
Λ.

1 Alternatively, use Theorems 28.22 and the uniquness assertion in Markov-Riesz
Theorem 28.16 to conclude (πΛ)∗ µ = µΛ.
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An application of Theorem 28.41 shows there exists a unique probability mea-
sure, µ̄, on X∗ := X∗

A such that (πΛ)∗ µ̄ = µ̄Λ for all Λ ⊂⊂ A. Since

X∗ \X =
⋃
α∈A
{πα =∞α}

and µ̄ ({πα =∞}) = µ̄{α} ({∞α}) = 0, it follows that µ̄ (X∗ \X) = 0. Hence
µ := µ̄|BX

is a probability measure on (X,BX) . Finally if B ∈ BX ⊂ BX∗ ,

µΛ (B) = µ̄Λ (B) = (πΛ)∗ µ̄ (B) = µ̄
(
π−1
Λ (B)

)
= µ̄

(
π−1
Λ (B) ∩X

)
= µ

(
πΛ|−1

X (B)
)

which shows µ is the required probability measure on BX .
Case 2; A is uncountable. By case 1. for each countable or finite subset

Γ ⊂ A there is a measure µΓ on (XΓ ,BΓ ) such that (πΛ,Γ )∗ µΓ = µΛ for all
Λ ⊂⊂ Γ. By Exercise 18.9,

M =
⋃{

π−1
Γ (BΓ ) : Γ is a countable subset of A

}
,

i.e. every B ∈M may be written in the form B = π−1
Γ (C) for some countable

subset, Γ ⊂ A, and C ∈ BΓ . For such a B we define µ (B) := µΓ (C) . It is left
to the reader to check that µ is well defined and that µ is a measure on M.
(Keep in mind the countable union of countable sets is countable.) If Λ ⊂⊂ A
and C ∈ BΛ, then

[(πΛ)∗ µ] (C) = µ
(
π−1
Λ (C)

)
:= µΛ (C) ,

i.e. (πΛ)∗ µ = µΛ as desired.

Corollary 28.42. Suppose that {µα}α∈A are probability measure on (Xα,Bα)
for all α ∈ A and if Λ ⊂⊂ A let µΛ := ⊗α∈Λµα be the product measure on
(XΛ,BΛ = ⊗α∈ΛBα) . Then there exists a unique probability measure, µ, on
(X,M) such that (πΛ)∗ µ = µΛ for all Λ ⊂⊂ A. (It is possible remove the
topology from this corollary, see Theorem 31.65 below.)

Exercise 28.7. Prove Corollary 28.42 by showing the measures µΛ :=
⊗α∈Λµα satisfy the compatibility condition in Theorem 28.40.

28.5 Weak Convergence Results

The following is an application of theorem 14.7 characterizing compact sets
in metric spaces. (BRUCE: add Helly’s selection principle here.)

Proposition 28.43. Suppose that (X, ρ) is a complete separable metric space
and µ is a probability measure on B = σ(τρ). Then for all ε > 0, there exists
Kε @@ X such that µ(Kε) ≥ 1− ε.
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Proof. Let {xk}∞k=1 be a countable dense subset of X. Then X =
∪kCxk

(1/n) for all n ∈ N. Hence by continuity of µ, there exists, for all
n ∈ N, Nn <∞ such that µ(Fn) ≥ 1− ε2−n where Fn := ∪Nn

k=1Cxk
(1/n). Let

K := ∩∞n=1Fn then

µ(X \K) = µ(∪∞n=1F
c
n)

≤
∞∑
n=1

µ(F cn) =
∞∑
n=1

(1− µ(Fn)) ≤
∞∑
n=1

ε2−n = ε

so that µ(K) ≥ 1 − ε. Moreover K is compact since K is closed and totally
bounded; K ⊂ Fn for all n and each Fn is 1/n – bounded.

Definition 28.44. A sequence of probability measures {Pn}∞n=1 is said to con-
verge to a probability P if for every f ∈ BC(X), Pn(f) → P (f). This is
actually weak-* convergence when viewing Pn ∈ BC(X)∗.

Proposition 28.45. The following are equivalent:

1. Pn
w→ P as n→∞

2. Pn(f)→ P (f) for every f ∈ BC(X) which is uniformly continuous.
3. lim supn→∞ Pn(F ) ≤ P (F ) for all F @ X.
4. lim infn→∞ Pn(G) ≥ P (G) for all G ⊂o X.
5. limn→∞ Pn(A) = P (A) for all A ∈ B such that P (bd(A)) = 0.

Proof. 1. =⇒ 2. is obvious. For 2. =⇒ 3.,

φ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if t ≥ 1
(28.42)

and let fn(x) := φ(nd(x, F )). Then fn ∈ BC(X, [0, 1]) is uniformly continu-
ous, 0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n→∞. Passing to the limit n→∞
in the equation

0 ≤ Pn(F ) ≤ Pn(fm)

gives
0 ≤ lim sup

n→∞
Pn(F ) ≤ P (fm)

and then lettingm→∞ in this inequality implies item 3. 3. ⇐⇒ 4. Assuming
item 3., let F = Gc, then

1− lim inf
n→∞

Pn(G) = lim sup
n→∞

(1− Pn(G)) = lim sup
n→∞

Pn(Gc)

≤ P (Gc) = 1− P (G)

which implies 4. Similarly 4. =⇒ 3. 3. ⇐⇒ 5. Recall that bd(A) = Ā \Ao,
so if P (bd(A)) = 0 and 3. (and hence also 4. holds) we have
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lim sup
n→∞

Pn(A) ≤ lim sup
n→∞

Pn(Ā) ≤ P (Ā) = P (A) and

lim inf
n→∞

Pn(A) ≥ lim inf
n→∞

Pn(Ao) ≥ P (Ao) = P (A)

from which it follows that limn→∞ Pn(A) = P (A). Conversely, let F @ X and
set Fδ := {x ∈ X : ρ(x, F ) ≤ δ} . Then

bd(Fδ) ⊂ Fδ \ {x ∈ X : ρ(x, F ) < δ} = Aδ

where Aδ := {x ∈ X : ρ(x, F ) = δ} . Since {Aδ}δ>0 are all disjoint, we must
have ∑

δ>0

P (Aδ) ≤ P (X) ≤ 1

and in particular the set Λ := {δ > 0 : P (Aδ) > 0} is at most countable. Let
δn /∈ Λ be chosen so that δn ↓ 0 as n→∞, then

P (Fδm
) = lim

n→∞
Pn(Fδn

) ≥ lim sup
n→∞

Pn(F ).

Let m→∞ this equation to conclude P (F ) ≥ lim supn→∞ Pn(F ) as desired.
To finish the proof we will now show 3. =⇒ 1. By an affine change of variables
it suffices to consider f ∈ C(X, (0, 1)) in which case we have

k∑
i=1

(i− 1)
k

1{ (i−1)
k ≤f< i

k} ≤ f ≤
k∑
i=1

i

k
1{ (i−1)

k ≤f< i
k}. (28.43)

Let Fi :=
{
i
k ≤ f

}
and notice that Fk = ∅, then we for any probability P

that

k∑
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)] ≤ P (f) ≤
k∑
i=1

i

k
[P (Fi−1)− P (Fi)] . (28.44)

Now

k∑
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)]

=
k∑
i=1

(i− 1)
k

P (Fi−1)−
k∑
i=1

(i− 1)
k

P (Fi)

=
k−1∑
i=1

i

k
P (Fi)−

k∑
i=1

i− 1
k

P (Fi) =
1
k

k−1∑
i=1

P (Fi)

and
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k∑
i=1

i

k
[P (Fi−1)− P (Fi)]

=
k∑
i=1

i− 1
k

[P (Fi−1)− P (Fi)] +
k∑
i=1

1
k

[P (Fi−1)− P (Fi)]

=
k−1∑
i=1

P (Fi) +
1
k

so that Eq. (28.44) becomes,

1
k

k−1∑
i=1

P (Fi) ≤ P (f) ≤ 1
k

k−1∑
i=1

P (Fi) + 1/k.

Using this equation with P = Pn and then with P = P we find

lim sup
n→∞

Pn(f) ≤ lim sup
n→∞

[
1
k

k−1∑
i=1

Pn(Fi) + 1/k

]

≤ 1
k

k−1∑
i=1

P (Fi) + 1/k ≤ P (f) + 1/k.

≤

Since k is arbitrary,
lim sup

n→∞
Pn(f) ≤ P (f).

This inequality also hold for 1− f and this implies lim infn→∞ Pn(f) ≥ P (f)
and hence limn→∞ Pn(f) = P (f) as claimed.

Definition 28.46. Let X be a topological space. A collection of probability
measures Λ on (X,BX) is said to be tight if for every ε > 0 there exists a
compact set Kε ∈ BX such that P (Kε) ≥ 1− ε for all P ∈ Λ.

Theorem 28.47. Suppose X is a separable metrizable space and Λ =
{Pn}∞n=1 is a tight sequence of probability measures on BX . Then there exists
a subsequence {Pnk

}∞k=1 which is weakly convergent to a probability measure
P on BX .

Proof. First suppose that X is compact. In this case C(X) is a Banach
space which is separable by the Stone – Weirstrass theorem, see Exercise 15.5.
By the Riesz theorem, Corollary 31.68, we know that C(X)∗ is in one to one
correspondence with complex measure on (X,BX). We have also seen that
C(X)∗ is metrizable and the unit ball in C(X)∗ is weak - * compact, see
Theorem 14.38. Hence there exists a subsequence {Pnk

}∞k=1 which is weak
-* convergent to a probability measure P on X. Alternatively, use the can-
tor’s diagonalization procedure on a countable dense set Γ ⊂ C(X) so find
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{Pnk
}∞k=1 such that Λ(f) := limk→∞ Pnk

(f) exists for all f ∈ Γ. Then for
g ∈ C(X) and f ∈ Γ, we have

|Pnk
(g)− Pnl

(g)| ≤ |Pnk
(g)− Pnk

(f)|+ |Pnk
(f)− Pnl

(f)|
+ |Pnl

(f)− Pnl
(g)|

≤ 2 ‖g − f‖∞ + |Pnk
(f)− Pnl

(f)|

which shows
lim sup

k,l→∞
|Pnk

(g)− Pnl
(g)| ≤ 2 ‖g − f‖∞ .

Letting f ∈ Λ tend to g in C(X) shows lim supk,l→∞ |Pnk
(g)− Pnl

(g)| = 0
and hence Λ(g) := limk→∞ Pnk

(g) for all g ∈ C(X). It is now clear that
Λ(g) ≥ 0 for all g ≥ 0 so that Λ is a positive linear functional on X and thus
there is a probability measure P such that Λ(g) = P (g).

General case. By Theorem 15.11 we may assume that X is a subset of
a compact metric space which we will denote by X̄. We now extend Pn to X̄
by setting P̄n(A) := P̄n(A∩ X̄) for all A ∈ BX̄ . By what we have just proved,
there is a subsequence

{
P̄ ′k := P̄nk

}∞
k=1

such that P̄ ′k converges weakly to a
probability measure P̄ on X̄. The main thing we now have to prove is that
“P̄ (X) = 1,” this is where the tightness assumption is going to be used. Given
ε > 0, let Kε ⊂ X be a compact set such that P̄n(Kε) ≥ 1− ε for all n. Since
Kε is compact in X it is compact in X̄ as well and in particular a closed
subset of X̄. Therefore by Proposition 28.45

P̄ (Kε) ≥ lim sup
k→∞

P̄
′

k(Kε) = 1− ε.

Since ε > 0 is arbitrary, this shows with X0 := ∪∞n=1K1/n satisfies P̄ (X0) = 1.
Because X0 ∈ BX ∩ BX̄ , we may view P̄ as a measure on BX by letting
P (A) := P̄ (A ∩ X0) for all A ∈ BX . Given a closed subset F ⊂ X, choose
F̃ @ X̄ such that F = F̃ ∩X. Then

lim sup
k→∞

P ′k(F ) = lim sup
k→∞

P̄ ′k(F̃ ) ≤ P̄ (F̃ ) = P̄ (F̃ ∩X0) = P (F ),

which shows P ′k
w→ P.

28.6 Haar Measures

To be written.

28.7 Hausdorff Measure

To be written.
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28.8 Exercises

Exercise 28.8. Let E ∈ BR with m(E) > 0. Then for any α ∈ (0, 1) there
exists a bounded open interval J ⊂ R such that m(E ∩ J) ≥ αm(J).2 Hints:
1. Reduce to the case where m(E) ∈ (0,∞). 2) Approximate E from the
outside by an open set V ⊂ R. 3. Make use of Exercise 13.14, which states
that V may be written as a disjoint union of open intervals.

Exercise 28.9. Let F : R→ R be a right continuous increasing function and
µ = µF be as in Theorem 28.30. For a < b, find the values of µ ({a}) , µ ([a, b)) ,
µ ([a, b]) and µ ((a, b)) in terms of the function F.

Exercise 28.10. Suppose that F ∈ C1(R) is an increasing function and µF
is the unique Borel measure on R such that µF ((a, b]) = F (b) − F (a) for all
a ≤ b. Show that dµF = ρdm for some function ρ ≥ 0. Find ρ explicitly in
terms of F.

Exercise 28.11. Suppose that F (x) = e1x≥3 + π1x≥7 and µF is the is the
unique Borel measure on R such that µF ((a, b]) = F (b)− F (a) for all a ≤ b.
Give an explicit description of the measure µF .

Exercise 28.12. Let (X,A, µ) be as in Definition 28.34 and Proposition
28.35, Y be a Banach space and S(Y ) := Sf (X,A, µ;Y ) be the collection
of functions f : X → Y such that #(f(X)) <∞, f−1({y}) ∈ A for all y ∈ Y
and µ(f 6= 0) <∞. We may define a linear functional I : S(Y )→ Y by

I(f) =
∑
y∈Y

yµ(f = y).

Verify the following statements.

1. Let ‖f‖∞ = supx∈X ‖f(x)‖Y be the sup norm on `∞(X,Y ), then for
f ∈ S(Y ),

‖I(f)‖Y ≤ ‖f‖∞ µ(f 6= 0).

Hence if µ(X) < ∞, I extends to a bounded linear transformation from
S̄(Y ) ⊂ `∞(X,Y ) to Y.

2. Assuming (X,A, µ) satisfies the hypothesis in Exercise 28.5, then
C(X,Y ) ⊂ S̄(Y ).

3. Now assume the notation in Section 28.3.3, i.e. X = [−M,M ] for some
M ∈ R and µ is determined by an increasing function F. Let π := {−M =
t0 < t1 < · · · < tn = M} denote a partition of J := [−M,M ] along with
a choice ci ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1. For f ∈ C([−M,M ], Y ), set

2 See also the Lebesgue differentiation Theorem 29.13 from which one may prove
the much stronger form of this theorem, namely for m -a.e. x ∈ E there exits
rα(x) > 0 such that m(E ∩ (x− r, x+ r)) ≥ αm((x− r, x+ r)) for all r ≤ rα(x).
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fπ := f(c0)1[t0,t1] +
n−1∑
i=1

f(ci)1(ti,ti+1].

Show that fπ ∈ S and

‖f − fπ‖F → 0 as |π| := max{(ti+1 − ti) : i = 0, 1, 2 . . . , n− 1} → 0.

Conclude from this that

I(f) = lim
|π|→0

n−1∑
i=0

f(ci)(F (ti+1)− F (ti)).

As usual we will write this integral as
∫M
−M fdF and as

∫M
−M f(t)dt if

F (t) = t.

Exercise 28.13. Let (X, τ) be a second countable locally compact Hausdorff
space and I : C0(X,R) → R be a positive linear functional. Show I is neces-
sarily bounded, i.e. there exists a C < ∞ such that |I(f)| ≤ C ‖f‖∞ for all
f ∈ C0(X,R). Hint: Let µ be the measure on BX coming from the Riesz Rep-
resentation theorem and for sake of contradiction suppose µ(X) = ‖I‖ =∞.
To reach a contradiction, construct a function f ∈ C0(X,R) such that
I(f) =∞.

Exercise 28.14. Suppose that I : C∞c (R,R)→ R is a positive linear func-
tional. Show

1. For each compact subset K @@ R there exists a constant CK < ∞ such
that

|I(f)| ≤ CK ‖f‖∞
whenever supp(f) ⊂ K.

2. Show there exists a unique Radon measure µ on BR (the Borel σ – algebra
on R) such that I(f) =

∫
R fdµ for all f ∈ C∞c (R,R).

28.8.1 The Laws of Large Number Exercises

For the rest of the problems of this section, let ν be a probability measure on
BR such that ∫

R
|x| dν(x) <∞.

By Corollary 28.42, there exists a unique measure µ on (X := RN,B := BRN =
⊗∞n=1BR) such that∫

X

f(x1, x2, . . . , xN )dµ(x) =
∫

RN

f(x1, x2, . . . , xN )dν(x1) . . . dν(xN ) (28.45)
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for allN ∈ N and bounded measurable functions f : RN → R, i.e. µ = ⊗∞n=1µn
with µn = ν for every n. We will also use the following notation:

Sn(x) :=
1
n

n∑
k=1

xk for x ∈ X,

m :=
∫

R
xdν(x)

σ2 :=
∫

R
(x−m)2dν(x) =

∫
R
x2dν(x)−m2, and

γ :=
∫

R
(x−m)4dν(x).

As is customary, m is said to be the mean or average of ν and σ2 is the
variance of ν.

Exercise 28.15 (Weak Law of Large Numbers). Assume σ2 <∞. Show∫
X
Sndµ = m.

‖Sn −m‖22 =
∫
X

(Sn −m)2 dµ =
σ2

n
,

and µ(|Sn −m| > ε) ≤ σ2

nε2 for all ε > 0 and n ∈ N.
Exercise 28.16 (A simple form of the Strong Law of Large Num-
bers). Suppose now that γ :=

∫
R(x−m)4dν(x) <∞. Show for all ε > 0 and

n ∈ N that

‖Sn −m‖44 =
∫
X

(Sn −m)4 dµ =
1
n4

(
nγ + 3n(n− 1)σ4

)
=

1
n2

[
n−1γ + 3

(
1− n−1

)
σ4
]

and

µ(|Sn −m| > ε) ≤
n−1γ + 3

(
1− n−1

)
σ4

ε4n2
.

Conclude from the last estimate and the first Borel Cantelli Lemma 19.20
that limn→∞ Sn(x) = m for µ – a.e. x ∈ X.
Exercise 28.17. Suppose γ :=

∫
R(x − m)4dν(x) < ∞ and m =

∫
R(x −

m)dν(x) 6= 0. For λ > 0 let Tλ : RN → RN be defined by Tλ(x) =
(λx1, λx2, . . . , λxn, . . . ), µλ = µ ◦ T−1

λ and

Xλ :=

x ∈ RN : lim
n→∞

1
n

n∑
j=1

xj = λ

 .

Show

µλ(Xλ′) = δλ,λ′ =
{

1 if λ = λ′

0 if λ 6= λ′

and use this to show if λ 6= 1, then dµλ 6= ρdµ for any measurable function
ρ : RN → [0,∞].
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29

Lebesgue Differentiation and the Fundamental
Theorem of Calculus

BRUCE: replace Rn by Rd in this section?

Notation 29.1 In this chapter, let B = BRn denote the Borel σ – algebra
on Rn and m be Lebesgue measure on B. If V is an open subset of Rn, let
L1
loc(V ) := L1

loc(V,m) and simply write L1
loc for L1

loc(Rn). We will also write
|A| for m(A) when A ∈ B.

Definition 29.2. A collection of measurable sets {E}r>0 ⊂ B is said to shrink
nicely to x ∈ Rn if (i) Er ⊂ Bx(r) for all r > 0 and (ii) there exists α > 0
such that m(Er) ≥ αm(Bx(r)). We will abbreviate this by writing Er ↓ {x}
nicely. (Notice that it is not required that x ∈ Er for any r > 0.

The main result of this chapter is the following theorem.

Theorem 29.3. Suppose that ν is a complex measure on (Rn,B) , then there
exists g ∈ L1(Rn,m) and a complex measure νs such that νs ⊥ m, dν =
gdm+ dνs, and for m - a.e. x,

g(x) = lim
r↓0

ν(Er)
m(Er)

(29.1)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} .

Proof. The existence of g and νs such that νs ⊥ m and dν = gdm + dνs
is a consequence of the Radon-Nikodym Theorem 24.34. Since

ν(Er)
m(Er)

=
1

m(Er)

∫
Er

g(x)dm(x) +
νs(Er)
m(Er)

Eq. (29.1) is a consequence of Theorem 29.13 and Corollary 29.15 below.
The rest of this chapter will be devoted to filling in the details of the proof

of this theorem.
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29.1 A Covering Lemma and Averaging Operators

Lemma 29.4 (Covering Lemma). Let E be a collection of open balls in Rn
and U = ∪B∈EB. If c < m(U), then there exists disjoint balls B1, . . . , Bk ∈ E

such that c < 3n
k∑
j=1

m(Bj).

Proof. Choose a compact set K ⊂ U such that m(K) > c and then
let E1 ⊂ E be a finite subcover of K. Choose B1 ∈ E1 to be a ball with
largest diameter in E1. Let E2 = {A ∈ E1 : A ∩ B1 = ∅}. If E2 is not empty,
choose B2 ∈ E2 to be a ball with largest diameter in E2. Similarly let E3 =
{A ∈ E2 : A ∩ B2 = ∅} and if E3 is not empty, choose B3 ∈ E3 to be a
ball with largest diameter in E3. Continue choosing Bi ∈ E for i = 1, 2, . . . , k
this way until Ek+1 is empty, see Figure 29.1 below. If B = B(x0, r) ⊂ Rn, let

Fig. 29.1. Picking out the large disjoint balls.

B∗ = B(x0, 3r) ⊂ Rn, that is B∗ is the ball concentric with B which has three
times the radius of B. We will now show K ⊂ ∪ki=1B

∗
i . For each A ∈ E1 there

exists a first i such that Bi ∩ A 6= ∅. In this case diam(A) ≤ diam(Bi) and
A ⊂ B∗i . Therefore A ⊂ ∪ki=1B

∗
i and hence K ⊂ ∪{A : A ∈ E1} ⊂ ∪ki=1B

∗
i .

Hence by sub-additivity,

c < m(K) ≤
k∑
i=1

m(B∗i ) ≤ 3n
k∑
i=1

m(Bi).

Definition 29.5. For f ∈ L1
loc, x ∈ Rn and r > 0 let

(Arf)(x) =
1

|Bx(r)|

∫
Bx(r)

fdm (29.2)

where Bx(r) = B(x, r) ⊂ Rn, and |A| := m(A).

Page: 574 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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Lemma 29.6. Let f ∈ L1
loc, then for each x ∈ Rn, (0,∞)such that r →

(Arf)(x) is continuous and for each r > 0, Rn such that x → (Arf) (x) is
measurable.

Proof. Recall that |Bx(r)| = m(E1)rn which is continuous in r. Also
limr→r0 1Bx(r)(y) = 1Bx(r0)(y) if |y| 6= r0 and since m ({y : |y| 6= r0}) = 0
(you prove!), limr→r0 1Bx(r)(y) = 1Bx(r0)(y) form -a.e. y. So by the dominated
convergence theorem,

lim
r→r0

∫
Bx(r)

fdm =
∫

Bx(r0)

fdm

and therefore
(Arf)(x) =

1
m(E1)rn

∫
Bx(r)

fdm

is continuous in r. Let gr(x, y) := 1Bx(r)(y) = 1|x−y|<r. Then gr is B ⊗ B –
measurable (for example write it as a limit of continuous functions or just
notice that F : Rn×Rn → R defined by F (x, y) := |x− y| is continuous) and
so that by Fubini’s theorem

x→
∫

Bx(r)

fdm =
∫

Bx(r)

gr(x, y)f(y)dm(y)

is B – measurable and hence so is x→ (Arf) (x).

29.2 Maximal Functions

Definition 29.7. For f ∈ L1(m), the Hardy - Littlewood maximal function
Hf is defined by

(Hf)(x) = sup
r>0

Ar |f | (x).

Lemma 29.6 allows us to write

(Hf)(x) = sup
r∈Q, r>0

Ar |f | (x)

and then to concluded that Hf is measurable.

Theorem 29.8 (Maximal Inequality). If f ∈ L1(m) and α > 0, then

m (Hf > α) ≤ 3n

α
‖f‖L1 .
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This should be compared with Chebyshev’s inequality which states that

m (|f | > α) ≤ ‖f‖L
1

α
.

Proof. Let Eα := {Hf > α}. For all x ∈ Eα there exists rx such that
Arx
|f | (x) > α, i.e.

|Bx(rx)| <
1
α

∫
Bx(rx)

fdm.

Since Eα ⊂ ∪x∈Eα
Bx(rx), if c < m(Eα) ≤ m(∪x∈Eα

Bx(rx)) then, using
Lemma 29.4, there exists x1, . . . , xk ∈ Eα and disjoint balls Bi = Bxi

(rxi
) for

i = 1, 2, . . . , k such that

c <
k∑
i=1

3n |Bi| <
∑ 3n

α

∫
Bi

|f | dm ≤ 3n

α

∫
Rn

|f | dm =
3n

α
‖f‖L1 .

This shows that c < 3nα−1‖f‖L1 for all c < m(Eα) which proves m(Eα) ≤
3nα−1‖f‖.

Theorem 29.9. If f ∈ L1
loc then lim

r↓0
(Arf)(x) = f(x) for m – a.e. x ∈ Rn.

Proof. With out loss of generality we may assume f ∈ L1(m). We now
begin with the special case where f = g ∈ L1(m) is also continuous. In this
case we find:

|(Arg)(x)− g(x)| ≤
1

|Bx(r)|

∫
Bx(r)

|g(y)− g(x)|dm(y)

≤ sup
y∈Bx(r)

|g(y)− g(x)| → 0 as r → 0.

In fact we have shown that (Arg)(x) → g(x) as r → 0 uniformly for x in
compact subsets of Rn. For general f ∈ L1(m),

|Arf(x)− f(x)| ≤ |Arf(x)−Arg(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
= |Ar(f − g)(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
≤ H(f − g)(x) + |Arg(x)− g(x)|+ |g(x)− f(x)|

and therefore,

lim
r↓0
|Arf(x)− f(x)| ≤ H(f − g)(x) + |g(x)− f(x)|.

So if α > 0, then

Eα :=
{

lim
r↓0
|Arf(x)− f(x)| > α

}
⊂
{
H(f − g) > α

2

}
∪
{
|g − f | > α

2

}
and thus
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m(Eα) ≤ m
(
H(f − g) > α

2

)
+m

(
|g − f | > α

2

)
≤ 3n

α/2
‖f − g‖L1 +

1
α/2
‖f − g‖L1

≤ 2(3n + 1)α−1‖f − g‖L1 ,

where in the second inequality we have used the Maximal inequality (Theorem
29.8) and Chebyshev’s inequality. Since this is true for all continuous g ∈
C(Rn) ∩ L1(m) and this set is dense in L1(m), we may make ‖f − g‖L1 as
small as we please. This shows that

m

({
x : lim

r↓0
|Arf(x)− f(x)| > 0

})
= m(∪∞n=1E1/n) ≤

∞∑
n=1

m(E1/n) = 0.

Corollary 29.10. If dµ = gdm with g ∈ L1
loc then

µ(Bx(r))
|Bx(r)|

= Arg(x)→ g(x) for m – a.e. x.

29.3 Lebesque Set

Definition 29.11. For f ∈ L1
loc(m), the Lebesgue set of f is

L (f) :=

x ∈ Rn : lim
r↓0

1
|Bx(r)|

∫
Bx(r)

|f(y)− f(x)|dy = 0


=
{
x ∈ Rn : lim

r↓0
(Ar |f(·)− f(x)|) (x) = 0

}
.

More generally, if p ∈ [1,∞) and f ∈ Lploc (m) , let

Lp (f) :=

x ∈ Rn : lim
r↓0

1
|Bx(r)|

∫
Bx(r)

|f(y)− f(x)|pdy = 0


Theorem 29.12. Suppose 1 ≤ p <∞ and f ∈ Lploc(m), then m

(
Rd \ Lp (f)

)
=

0.

Proof. For w ∈ C define gw(x) = |f(x)−w|p and Ew := {x : limr↓0 (Argw) (x) 6= gw(x)} .
Then by Theorem 29.9 m(Ew) = 0 for all w ∈ C and therefore m(E) = 0
where

E =
⋃

w∈Q+iQ
Ew.
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578 29 Lebesgue Differentiation and the Fundamental Theorem of Calculus

By definition of E, if x /∈ E then.

lim
r↓0

(Ar|f(·)− w|p)(x) = |f(x)− w|p

for all w ∈ Q+ iQ. Letting q := p
p−1 we have

|f(·)− f(x)|p ≤ (|f(·)− w|+ |w − f(x)|)p ≤ 2q (|f(·)− w|p + |w − f(x)|p) ,

(Ar|f(·)− f(x)|p)(x) ≤ 2q (Ar |f(·)− w|p) (x) + (Ar|w − f(x)|p) (x)
= 2q (Ar |f(·)− w|p) (x) + 2q|w − f(x)|

and hence for x /∈ E,

lim
r↓0

(Ar|f(·)− f(x)|p)(x) ≤ 2q|f(x)− w|p + 2q|w − f(x)|p = 22q|f(x)− w|p.

Since this is true for all w ∈ Q+ iQ, we see that

lim
r↓0

(Ar|f(·)− f(x)|p)(x) = 0 for all x /∈ E,

i.e. Ec ⊂ Lp (f) or equivalently (Lp (f))c ⊂ E. So m
(
Rd \ Lp (f)

)
≤ m(E) =

0.

Theorem 29.13 (Lebesque Differentiation Theorem). If f ∈ Lploc and
x ∈ Lp (f) (so in particular for m – a.e. x), then

lim
r↓0

1
m(Er)

∫
Er

|f(y)− f(x)|pdy = 0

and
lim
r↓0

1
m(Er)

∫
Er

f(y)dy = f(x)

when Er ↓ {x} nicely.

Proof. For x ∈ Lp (f) , by Hölder’s inequality (Theorem 21.2) or Jensen’s
inequality (Theorem 21.10), we have∣∣∣∣ 1

m(Er)

∫
Er

f(y)dy − f(x)
∣∣∣∣p =

∣∣∣∣ 1
m(Er)

∫
Er

(f(y)− f(x)) dy
∣∣∣∣p

≤ 1
m(Er)

∫
Er

|f(y)− f(x)|pdy

≤ 1
αm(Bx(r))

∫
Bx(r)

|f(y)− f(x)|pdy

which tends to zero as r ↓ 0 by Theorem 29.12. In the second inequality we
have used the fact that m(Bx(r) \Bx(r)) = 0.
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Lemma 29.14. Suppose λ is positive K – finite measure on B := BRn such
that λ ⊥ m. Then for m – a.e. x,

lim
r↓0

λ(Bx(r))
m(Bx(r))

= 0.

Proof. Let A ∈ B such that λ(A) = 0 and m(Ac) = 0. By the regularity
theorem (see Theorem 28.22, Corollary 31.42 or Exercise 32.4), for all ε > 0
there exists an open set Vε ⊂ Rn such that A ⊂ Vε and λ(Vε) < ε. Let

Fk :=
{
x ∈ A : lim

r↓0

λ(Bx(r))
m(Bx(r))

>
1
k

}
the for x ∈ Fk choose rx > 0 such that Bx(rx) ⊂ Vε (see Figure 29.2) and
λ(Bx(rx))
m(Bx(rx)) >

1
k , i.e.

m(Bx(rx)) < k λ(Bx(rx)).

Let E = {Bx(rx)}x∈Fk
and U :=

⋃
x∈Fk

Bx(rx) ⊂ Vε. Heuristically if all the

Fig. 29.2. Covering a small set with balls.

balls in E were disjoint and E were countable, then

m(Fk) ≤
∑
x∈Fk

m(Bx(rx)) < k
∑
x∈Fk

λ(Bx(rx))

= kλ(U) ≤ k λ(Vε) ≤ kε.

Since ε > 0 is arbitrary this would imply that m(Fk) = 0. To fix the above
argument, suppose that c < m(U) and use the covering lemma to find disjoint
balls B1, . . . , BN ∈ E such that
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c < 3n
N∑
i=1

m(Bi) < k3n
N∑
i=1

λ(Bi)

≤ k3nλ(U) ≤ k3nλ(Vε) ≤ k3nε.

Since c < m(U) is arbitrary we learn that m(Fk) ≤ m(U) ≤ k3nε and in par-
ticular that m(Fk) ≤ k3nε. Since ε > 0 is arbitrary, this shows that m(Fk) = 0
and therefore, m(F∞) = 0 where

F∞ :=
{
x ∈ A : lim

r↓0

λ(Bx(r))
m(Bx(r))

> 0
}

= ∪∞k=1Fk.

Since

{x ∈ Rn : lim
r↓0

λ(Bx(r))
m(Bx(r))

> 0} ⊂ F∞ ∪Ac

and m(Ac) = 0, we have shown

m({x ∈ Rn : lim
r↓0

λ(Bx(r))
m(Bx(r))

> 0}) = 0.

Corollary 29.15. Let λ be a complex or a K – finite signed measure (i.e.
ν(K) ∈ R for all K @@ Rn) such that λ ⊥ m. Then for m – a.e. x,

lim
r↓0

λ(Er)
m(Er)

= 0

whenever Er ↓ {x} nicely.

Proof. Recalling the λ ⊥ m implies |λ| ⊥ m, Lemma 29.14 and the
inequalities,

|λ(Er)|
m(Er)

≤ |λ|(Er)
αm(Bx(r))

≤ |λ|(Bx(r))
αm(Bx(r))

≤ |λ|(Bx(2r))
α2−nm(Bx(2r))

proves the result.

Proposition 29.16. TODO Add in almost everywhere convergence result of
convolutions by approximate δ – functions.

29.4 The Fundamental Theorem of Calculus

In this section we will restrict the results above to the one dimensional setting.
The following notation will be in force for the rest of this chapter: m denotes
one dimensional Lebesgue measure on B := BR, −∞ ≤ α < β ≤ ∞, A =
A[α,β] denote the algebra generated by sets of the form (a, b] ∩ [α, β] with
−∞ ≤ a < b ≤ ∞, Ac denotes those sets in A which are bounded, and B[α,β]

is the Borel σ – algebra on [α, β] ∩ R.
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Notation 29.17 Given a function F : R→ R̄ or F : R→ C, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) whenever
the limits exist. Notice that if F is a monotone functions then F (±∞) and
F (x±) exist for all x.

Theorem 29.18. Let F : R → R be increasing and define G(x) = F (x+).
Then

1. The function G is increasing and right continuous.
2. For x ∈ R, G(x) = limy↓x F (y−).
3. The set {x ∈ R : F (x+) > F (x−)} is countable and for each N > 0, and

moreover, ∑
x∈(−N,N ]

[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞. (29.3)

Proof. Item 1. is a consequence of Eq. (28.35) of Theorem 28.38. Never-
theless we will still give a direct proof here as well.

1. The following observation shows G is increasing: if x < y then

F (x−) ≤ F (x) ≤ F (x+) = G(x) ≤ F (y−) ≤ F (y) ≤ F (y+) = G(y).
(29.4)

Since G is increasing, G(x) ≤ G(x+). If y > x then G(x+) ≤ F (y) and
hence G(x+) ≤ F (x+) = G(x), i.e. G(x+) = G(x).

2. Since G(x) ≤ F (y−) ≤ F (y) for all y > x, it follows that

G(x) ≤ lim
y↓x

F (y−) ≤ lim
y↓x

F (y) = G(x)

showing G(x) = limy↓x F (y−).
3. By Eq. (29.4), if x 6= y then

(F (x−), F (x+)] ∩ (F (y−), F (y+)] = ∅.

Therefore, {(F (x−), F (x+)]}x∈R are disjoint possible empty intervals in
R. Let N ∈ N and α ⊂⊂ (−N,N) be a finite set, then∐

x∈α
(F (x−), F (x+)] ⊂ (F (−N), F (N)]

and therefore,∑
x∈α

[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞.

Since this is true for all α ⊂⊂ (−N,N ], Eq. (29.3) holds. Eq. (29.3) shows

ΓN := {x ∈ (−N,N)|F (x+)− F (x−) > 0}

is countable and hence so is

Γ := {x ∈ R|F (x+)− F (x−) > 0} = ∪∞N=1ΓN .
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Theorem 29.19. Let F : R → R be increasing and define G(x) = F (x+).
Then

1. {x ∈ R : F (x+) > F (x−)} is countable.
2. The function G increasing and right continuous.
3. For m – a.e. x, F ′(x) and G′(x) exists and F ′(x) = G′(x).
4. The function F ′ is in L1

loc(m) and there exists a unique positive measure
νs on (R,BR) such that

F (b+)− F (a+) =
∫ b

a

F ′dm+ νs((a, b]) for all −∞ < a < b <∞.

Moreover the measure νs is singular relative to m.

Proof. Properties (1) and (2) have already been proved in Theorem 29.18.
(3) Let νG denote the unique measure on B such that νG((a, b]) = G(b)−G(a)
for all a < b. By Theorem 29.3, for m - a.e. x, for all sequences {Er}r>0

which shrink nicely to {x} , lim
r↓0

(νG(Er)/m(Er)) exists and is independent of

the choice of sequence {Er}r>0 shrinking to {x} . Since (x, x + r] ↓ {x} and
(x− r, x] ↓ {x} nicely,

lim
r↓0

νG(x, x+ r])
m((x, x+ r])

= lim
r↓0

G(x+ r)−G(x)
r

=
d

dx+
G(x) (29.5)

and

lim
r↓0

νG((x− r, x])
m((x− r, x])

= lim
r↓0

G(x)−G(x− r)
r

= lim
r↓0

G(x− r)−G(x)
−r

=
d

dx−
G(x) (29.6)

exist and are equal for m - a.e. x, i.e. G′(x) exists for m -a.e. x. For x ∈ R, let

H(x) := G(x)− F (x) = F (x+)− F (x) ≥ 0.

Since F (x) = G(x) − H(x), the proof of (3) will be complete once we show
H ′(x) = 0 for m – a.e. x. From Theorem 29.18,

Λ := {x ∈ R : F (x+) > F (x)} ⊂ {x ∈ R : F (x+) > F (x−)}

is a countable set and∑
x∈(−N,N)

H(x) =
∑

x∈(−N,N)

(F (x+)−F (x)) ≤
∑

x∈(−N,N)

(F (x+)−F (x−)) <∞
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for all N < ∞. Therefore λ :=
∑
x∈R

H(x)δx (i.e. λ(A) :=
∑
x∈AH(x) for all

A ∈ BR) defines a Radon measure on BR. Since λ(Λc) = 0 and m(Λ) = 0, the
measure λ ⊥ m. By Corollary 29.15 for m - a.e. x,∣∣∣∣H(x+ r)−H(x)

r

∣∣∣∣ ≤ |H(x+ r)|+ |H(x)|
|r|

≤ H(x+ |r|) +H(x− |r|) +H(x)
|r|

≤ 2
λ([x− |r| , x+ |r|])

2 |r|

and the last term goes to zero as r → 0 because {[x− r, x+ r]}r>0 shrinks
nicely to {x} as r ↓ 0 and m([x− |r| , x+ |r|]) = 2 |r| . Hence we conclude for
m – a.e. x that H ′(x) = 0. (4) From Theorem 29.3, item (3) and Eqs. (29.5)
and (29.6), F ′ = G′ ∈ L1

loc(m) and dνG = F ′dm+ dνs where νs is a positive
measure such that νs ⊥ m. Applying this equation to an interval of the form
(a, b] gives

F (b+)− F (a+) = νG((a, b]) =
∫ b

a

F ′dm+ νs((a, b]).

The uniqueness of νs such that this equation holds is a consequence of Theo-
rem 19.55.

Our next goal is to prove an analogue of Theorem 29.19 for complex valued
F.

Definition 29.20. For −∞ ≤ a < b < ∞, a partition P of [a, b] is a fi-
nite subset of [a, b] ∩ R such that {a, b} ∩ R ⊂ P. For x ∈ P\ {b} , let
x+ = min {y ∈ P : y > x} and if x = b let x+ = b.

Proposition 29.21. Let ν be a complex measure on BR and let F be a func-
tion such that

F (b)− F (a) = ν((a, b]) for all a < b,

for example let F (x) = ν((−∞, x]) in which case F (−∞) = 0. The function
F is right continuous and for −∞ < a < b <∞,

|ν| (a, b] = sup
P

∑
x∈P
|ν(x, x+]| = sup

P

∑
x∈P
|F (x+)− F (x)| (29.7)

where supremum is over all partitions P of [a, b]. Moreover ν � m iff for all
ε > 0 there exists δ > 0 such that

n∑
i=1

|ν ((ai, bi])| =
n∑
i=1

|F (bi)− F (ai)| < ε (29.8)

whenever {(ai, bi) ∩ (a, b]}ni=1 are disjoint open intervals in (a, b] such that
n∑
i=1

(bi − ai) < δ.
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Proof. Eq. (29.7) follows from Proposition 24.33 and the fact that B =
σ(A) where A is the algebra generated by (a, b] ∩ R with a, b ∈ R̄. Equation
(29.8) is a consequence of Theorem 24.38 with A being the algebra of half open
intervals as above. Notice that {(ai, bi) ∩ (a, b]}ni=1 are disjoint intervals iff

{(ai, bi] ∩ (a, b]}ni=1 are disjoint intervals,
n∑
i=1

(bi−ai) = m ((a, b] ∩ ∪ni=1(ai, bi])

and the general element A ∈ A(a,b] is of the form A = (a, b] ∩ ∪ni=1(ai, bi].

Definition 29.22. Given a function F : R ∩ [α, β]→ C let νF be the unique
additive measure on Ac such that νF ((a, b]) = F (b)−F (a) for all a, b ∈ [α, β]
with a < b and also define

TF ([a, b]) = sup
P

∑
x∈P
|νF (x, x+]| = sup

P

∑
x∈P
|F (x+)− F (x)|

where supremum is over all partitions P of [a, b]. We will also abuse no-
tation and define TF (b) := TF ([α, b]). A function F : R ∩ [α, β]→ C is
said to be of bounded variation if TF (β) := TF ([α, β]) < ∞ and we
write F ∈ BV ([α, β]). If α = −∞ and β = +∞, we will simply denote
BV ([−∞,+∞]) by BV.

Definition 29.23. A function F : R→ C is said to be of normalized bounded
variation if F ∈ BV, F is right continuous and F (−∞) := limx→−∞ F (x) = 0.
We will abbreviate this by saying F ∈ NBV. (The condition: F (−∞) = 0 is
not essential and plays no role in the discussion below.)

Definition 29.24. A function F : R ∩ [α, β]→ C is absolutely continuous
if for all ε > 0 there exists δ > 0 such that

n∑
i=1

|F (bi)− F (ai)| < ε (29.9)

whenever {(ai, bi)}ni=1 are disjoint open intervals in R∩[α, β] such that
n∑
i=1

(bi−

ai) < δ.

Lemma 29.25. Let F : R∩ [α, β]→ C be any function and and a < b < c with
a, b, c ∈ R ∩ [α, β] then

1.
TF ([a, c]) = TF ([a, b]) + TF ([b, c]). (29.10)

2. Letting a = α in this expression implies

TF (c) = TF (b) + TF ([b, c]) (29.11)

and in particular TF is monotone increasing.
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3. If TF (b) <∞ for some b ∈ R ∩ [α, β] then

TF (a+)− TF (a) ≤ lim sup
y↓a
|F (y)− F (a)| (29.12)

for all a ∈ R ∩ [α, b). In particular TF is right continuous if F is right
continuous.

4. If α = −∞ and TF (b) < ∞ for some b ∈ (−∞, β] ∩ R then TF (−∞) :=
limb↓−∞ TF (b) = 0.

Proof. (1 – 2) By the triangle inequality, if P and P′ are partition of [a, c]
such that P ⊂ P′, then∑

x∈P
|F (x+)− F (x)| ≤

∑
x∈P′
|F (x+)− F (x)|.

So if P is a partition of [a, c], then P ⊂ P′ := P∪{b} implies∑
x∈P
|F (x+)− F (x)| ≤

∑
x∈P′
|F (x+)− F (x)|

=
∑

x∈P′∩[a,b]

|F (x+)− F (x)|+
∑

x∈P′∩[b,c]

|F (x+)− F (x)|

≤ TF ([a, b]) + TF ([b, c]).

Thus we see that TF ([a, c]) ≤ TF ([a, b])+TF ([b, c]). Similarly if P1 is a partition
of [a, b] and P2 is a partition of [b, c], then P = P1 ∪ P2 is a partition of [a, c]
and∑
x∈P1

|F (x+)−F (x)|+
∑
x∈P2

|F (x+)−F (x)| =
∑
x∈P
|F (x+)−F (x)| ≤ TF ([a, c]).

From this we conclude TF ([a, b]) + TF ([b, c]) ≤ TF ([a, c]) which finishes the
proof of Eqs. (29.10) and (29.11). (3) Let a ∈ R∩[α, b) and given ε > 0 let P
be a partition of [a, b] such that

TF (b)− TF (a) = TF ([a, b]) ≤
∑
x∈P
|F (x+)− F (x)|+ ε. (29.13)

Let y ∈ (a, a+), then∑
x∈P
|F (x+)− F (x)|+ ε ≤

∑
x∈P∪{y}

|F (x+)− F (x)|+ ε

= |F (y)− F (a)|+
∑

x∈P\{y}

|F (x+)− F (x)|+ ε

≤ |F (y)− F (a)|+ TF ([y, b]) + ε. (29.14)

Combining Eqs. (29.13) and (29.14) shows
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TF (y)− TF (a) + TF ([y, b]) = TF (b)− TF (a)
≤ |F (y)− F (a)|+ TF ([y, b]) + ε.

Since y ∈ (a, a+) is arbitrary we conclude that

TF (a+)− TF (a) = lim sup
y↓a

TF (y)− TF (a) ≤ lim sup
y↓a
|F (y)− F (a)|+ ε.

Since ε > 0 is arbitrary this proves Eq. (29.12). (4) Suppose that TF (b) <∞
and given ε > 0 let P be a partition of [α, b] such that

TF (b) ≤
∑
x∈P
|F (x+)− F (x)|+ ε.

Let x0 = minP then by the previous equation

TF (x0) + TF ([x0, b]) = TF (b) ≤
∑
x∈P
|F (x+)− F (x)|+ ε

≤ TF ([x0, b]) + ε

which shows, using the monotonicity of TF , that TF (−∞) ≤ TF (x0) ≤ ε.
Since ε > 0 we conclude that TF (−∞) = 0.

The following lemma should help to clarify Proposition 29.21 and Defini-
tion 29.24.

Lemma 29.26. Let ν and F be as in Proposition 29.21 and A be the algebra
generated by (a, b] ∩ R with a, b ∈ R̄.. Then the following are equivalent:

1. ν � m
2. |ν| � m
3. For all ε > 0 there exists a δ > 0 such that TF (A) < ε whenever m(A) < δ.
4. For all ε > 0 there exists a δ > 0 such that |νF (A)| < ε whenever m(A) <
δ.

Moreover, condition 4. shows that we could replace the last statement in
Proposition 29.21 by: ν � m iff for all ε > 0 there exists δ > 0 such that∣∣∣∣∣

n∑
i=1

ν ((ai, bi])

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

[F (bi)− F (ai)]

∣∣∣∣∣ < ε

whenever {(ai, bi) ∩ (a, b]}ni=1 are disjoint open intervals in (a, b] such that
n∑
i=1

(bi − ai) < δ.

Proof. This follows directly from Lemma 24.35 and Theorem 24.38.

Lemma 29.27.
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1. Monotone functions F : R ∩ [α, β]→ R are in BV ([α, β]).
2. Linear combinations of functions in BV are in BV, i.e. BV is a vector

space.
3. If F : R ∩ [α, β]→ C is absolutely continuous then F is continuous and
F ∈ BV ([α, β]).

4. If −∞ < α < β < ∞ and F : R ∩ [α, β]→ R is a differentiable function
such that supx∈R |F ′(x)| = M < ∞, then F is absolutely continuous and
TF ([a, b]) ≤M(b− a) for all α ≤ a < b ≤ β.

5. Let f ∈ L1(R ∩ [α, β],m) and set

F (x) =
∫

(α,x]

fdm (29.15)

for x ∈ [α, b] ∩ R. Then F : R ∩ [α, β]→ C is absolutely continuous.

Proof.

1. If F is monotone increasing and P is a partition of (a, b] then∑
x∈P
|F (x+)− F (x)| =

∑
x∈P

(F (x+)− F (x)) = F (b)− F (a)

so that TF ([a, b]) = F (b) − F (a). Also note that F ∈ BV iff F (∞) −
F (−∞) <∞.

2. Item 2. follows from the triangle inequality.
3. Since F is absolutely continuous, there exists δ > 0 such that whenever
a < b < a+ δ and P is a partition of (a, b],∑

x∈P
|F (x+)− F (x)| ≤ 1.

This shows that TF ([a, b]) ≤ 1 for all a < b with b−a < δ. Thus using Eq.
(29.10), it follows that TF ([a, b]) ≤ N <∞ if b− a < Nδ for an N ∈ N.

4. Suppose that {(ai, bi)}ni=1 ⊂ (a, b] are disjoint intervals, then by the mean
value theorem,

n∑
i=1

|F (bi)− F (ai)| ≤
n∑
i=1

|F ′(ci)| (bi − ai) ≤Mm (∪ni=1(ai, bi))

≤M
n∑
i=1

(bi − ai) ≤M(b− a)

form which it clearly follows that F is absolutely continuous. Moreover
we may conclude that TF ([a, b]) ≤M(b− a).

5. Let ν be the positive measure dν = |f | dm on (a, b]. Let {(ai, bi)}ni=1 ⊂
(a, b] be disjoint intervals as above, then
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n∑
i=1

|F (bi)− F (ai)| =
n∑
i=1

∣∣∣∣∣
∫

(ai,bi]

fdm

∣∣∣∣∣
≤

n∑
i=1

∫
(ai,bi]

|f | dm

=
∫
∪n

i=1(ai,bi]

|f | dm = ν(∪ni=1(ai, bi]). (29.16)

Since ν is absolutely continuous relative to m for all ε > 0 there exist
δ > 0 such that ν(A) < ε if m(A) < δ. Taking A = ∪ni=1(ai, bi] in Eq.
(29.16) shows that F is absolutely continuous. It is also easy to see from
Eq. (29.16) that TF ([a, b]) ≤

∫
(a,b]
|f | dm.

Theorem 29.28. Let F : R→ C be a function, then

1. F ∈ BV iff ReF ∈ BV and ImF ∈ BV.
2. If F : R→ R is in BV then the functions F± := (TF ± F ) /2 are bounded

and increasing functions.
3. F : R → R is in BV iff F = F+ − F− where F± are bounded increasing

functions.
4. If F ∈ BV then F (x±) exist for all x ∈ R̄. Let G(x) := F (x+).
5. F ∈ BV then {x : limy→x F (y) 6= F (x)} is a countable set and in partic-

ular G(x) = F (x+) for all but a countable number of x ∈ R.
6. If F ∈ BV, then for m – a.e. x, F ′(x) and G′(x) exist and F ′(x) = G′(x).

Proof.

1. Item 1. is a consequence of the inequalities

|F (b)− F (a)| ≤ |ReF (b)− ReF (a)|+|ImF (b)− ImF (a)| ≤ 2 |F (b)− F (a)| .

2. By Lemma 29.25, for all a < b,

TF (b)− TF (a) = TF ([a, b]) ≥ |F (b)− F (a)| (29.17)

and therefore
TF (b)± F (b) ≥ TF (a)± F (a)

which shows that F± are increasing. Moreover from Eq. (29.17), for b ≥ 0
and a ≤ 0,

|F (b)| ≤ |F (b)− F (0)|+ |F (0)| ≤ TF (0, b] + |F (0)|
≤ TF (0,∞) + |F (0)|

and similarly
|F (a)| ≤ |F (0)|+ TF (−∞, 0)

which shows that F is bounded by |F (0)| + TF (∞). Therefore F± is
bounded as well.

Page: 588 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



29.4 The Fundamental Theorem of Calculus 589

3. By Lemma 29.27 if F = F+ − F−, then

TF ([a, b]) ≤ TF+([a, b]) + TF−([a, b])
= |F+(b)− F+(a)|+ |F−(b)− F−(a)|

which is bounded showing that F ∈ BV. Conversely if F is bounded
variation, then F = F+ − F− where F± are defined as in Item 2.

Items 4. – 6. follow from Items 1. – 3. and Theorem 29.19.

Theorem 29.29. Suppose that F : R→ C is in BV, then

|TF (x+)− TF (x)| ≤ |F (x+)− F (x)| (29.18)

for all x ∈ R. If we further assume that F is right continuous then there exists
a unique measure ν on B = BR. such that

ν((−∞, x]) = F (x)− F (−∞) for all x ∈ R. (29.19)

Proof. Since F ∈ BV, F (x+) exists for all x ∈ R and hence Eq. (29.18) is
a consequence of Eq. (29.12). Now assume that F is right continuous. In this
case Eq. (29.18) shows that TF (x) is also right continuous. By considering
the real and imaginary parts of F separately it suffices to prove there exists a
unique finite signed measure ν satisfying Eq. (29.19) in the case that F is real
valued. Now let F± = (TF ± F ) /2, then F± are increasing right continuous
bounded functions. Hence there exists unique measure ν± on B such that

ν±((−∞, x]) = F±(x)− F±(−∞) ∀x ∈ R.

The finite signed measure ν := ν+−ν− satisfies Eq. (29.19). So it only remains
to prove that ν is unique. Suppose that ν̃ is another such measure such that
(29.19) holds with ν replaced by ν̃. Then for (a, b],

|ν| (a, b] = sup
P

∑
x∈P
|F (x+)− F (x)| = |ν̃| (a, b]

where the supremum is over all partition of (a, b]. This shows that |ν| = |ν̃|
on A ⊂ B – the algebra generated by half open intervals and hence |ν| = |ν̃| .
It now follows that |ν| + ν and |ν̃| + ν̃ are finite positive measure on B such
that

(|ν|+ ν) ((a, b]) = |ν| ((a, b]) + (F (b)− F (a))
= |ν̃| ((a, b]) + (F (b)− F (a))
= (|ν̃|+ ν̃) ((a, b])

from which we infer that |ν| + ν = |ν̃| + ν̃ = |ν| + ν̃ on B. Thus ν = ν̃.
Alternatively, one may prove the uniqueness by showing that C := {A ∈
B : ν(A) = ν̃(A)} is a monotone class which contains A or using the π – λ
theorem.
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Theorem 29.30. Suppose that F ∈ NBV and νF is the measure defined by
Eq. (29.19), then

dνF = F ′dm+ dνs (29.20)

where νs ⊥ m and in particular for −∞ < a < b <∞,

F (b)− F (a) =
∫ b

a

F ′dm+ νs((a, b]). (29.21)

Proof. By Theorem 29.3, there exists f ∈ L1(m) and a complex measure
νs such that for m -a.e. x,

f(x) = lim
r↓0

ν(Er)
m(Er)

, (29.22)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} , νs ⊥ m and

dνF = fdm+ dνs.

From Eq. (29.22) it follows that

lim
h↓0

F (x+ h)− F (x)
h

= lim
h↓0

νF ((x, x+ h])
h

= f(x) and

lim
h↓0

F (x− h)− F (x)
−h

= lim
h↓0

νF ((x− h, x])
h

= f(x)

for m – a.e. x, i.e. d
dx+F (x) = d

dx−F (x) = f(x) for m –a.e. x. This implies
that F is m – a.e. differentiable and F ′(x) = f(x) for m – a.e. x.

Corollary 29.31. Let F : R→ C be in NBV, then

1. νF ⊥ m iff F ′ = 0 m a.e.
2. νF � m iff νs = 0 iff

νF ((a, b]) =
∫

(a,b]

F ′(x)dm(x) for all a < b. (29.23)

Proof.

1. If F ′(x) = 0 for m a.e. x, then by Eq. (29.20), νF = νs ⊥ m. If νF ⊥
m, then by Eq. (29.20), F ′dm = dνF − dνs ⊥ dm and by Lemma 24.8
F ′dm = 0, i.e. F ′ = 0 m -a.e.

2. If νF � m, then dνs = dνF − F ′dm � dm which implies, by Lemma
24.26, that νs = 0. Therefore Eq. (29.21) becomes (29.23). Now let

ρ(A) :=
∫
A

F ′(x)dm(x) for all A ∈ B.

Page: 590 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



29.4 The Fundamental Theorem of Calculus 591

Recall by the Radon - Nikodym theorem that
∫

R |F
′(x)| dm(x) < ∞ so

that ρ is a complex measure on B. So if Eq. (29.23) holds, then ρ = νF on
the algebra generated by half open intervals. Therefore ρ = νF as in the
uniqueness part of the proof of Theorem 29.29. Therefore dνF = F ′dm
and hence νs = 0.

Theorem 29.32. Suppose that F : [a, b]→ C is a measurable function. Then
the following are equivalent:

1. F is absolutely continuous on [a, b].
2. There exists f ∈ L1([a, b]), dm) such that

F (x)− F (a) =
∫ x

a

fdm ∀x ∈ [a, b] (29.24)

3. F ′ exists a.e., F ′ ∈ L1([a, b], dm) and

F (x)− F (a) =
∫ x

a

F ′dm ∀x ∈ [a, b]. (29.25)

Proof. In order to apply the previous results, extend F to R by F (x) =
F (b) if x ≥ b and F (x) = F (a) if x ≤ a. 1. =⇒ 3. If F is absolutely continuous
then F is continuous on [a, b] and F −F (a) = F −F (−∞) ∈ NBV by Lemma
29.27. By Proposition 29.21, νF � m and hence Item 3. is now a consequence
of Item 2. of Corollary 29.31. The assertion 3. =⇒ 2. is trivial. 2. =⇒ 1. If 2.
holds then F is absolutely continuous on [a, b] by Lemma 29.27.

Corollary 29.33 (Integration by parts). Suppose −∞ < a < b < ∞ and
F,G : [a, b]→ C are two absolutely continuous functions. Then∫ b

a

F ′Gdm = −
∫ b

a

FG′dm+ FG|ba.

Proof. Suppose that {(ai, bi)}ni=1 is a sequence of disjoint intervals in [a, b],
then

n∑
i=1

|F (bi)G(bi)− F (ai)G(ai)|

≤
n∑
i=1

|F (bi)| |G(bi)−G(ai)|+
n∑
i=1

|F (bi)− F (ai)| |G(ai)|

≤ ‖F‖∞
n∑
i=1

|G(bi)−G(ai)|+ ‖G‖∞
n∑
i=1

|F (bi)− F (ai)| .

From this inequality, one easily deduces the absolutely continuity of the prod-
uct FG from the absolutely continuity of F and G. Therefore,
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FG|ba =
∫ b

a

(FG)′dm =
∫ b

a

(F ′G+ FG′)dm.

29.5 Alternative method to the Fundamental Theorem
of Calculus

For simplicity assume that α = −∞, β =∞, F ∈ BV,

Ac := {A ∈ A : A is bounded} ,

and Sc(A) denote simple functions of the form f =
∑n
i=1 λi1Ai

with Ai ∈ Ac.
Let ν0 = ν0

F be the finitely additive set function on such that ν0((a, b]) =
F (b) − F (a) for all −∞ < a < b < ∞. As in the case of an increasing
function F (see Lemma 28.36 and the text preceding it) we may define a
linear functional, IF : Sc(A)→ C, by

IF (f) =
∑
λ∈C

λν0(f = λ).

If we write f =
∑N
i=1 λi1(ai,bi] with {(ai, bi]}Ni=1 pairwise disjoint subsets of

Ac inside (a, b] we learn

|IF (f)| =

∣∣∣∣∣
N∑
i=1

λi(F (bi)− F (ai)

∣∣∣∣∣ ≤
N∑
i=1

|λi| |F (bi)− F (ai)| ≤ ‖f‖∞ TF ((a, b]).

(29.26)
In the usual way this estimate allows us to extend IF to the those compactly
supported functions, Sc(A), in the closure of Sc(A). As usual we will still
denote the extension of IF to Sc(A) by IF and recall that Sc(A) contains
Cc(R,C). The estimate in Eq. (29.26) still holds for this extension and in
particular we have

|I(f)| ≤ TF (∞) · ‖f‖∞ for all f ∈ Cc(R,C).

Therefore I extends uniquely by continuity to an element of C0(R,C)∗. So
by appealing to the complex Riesz Theorem (Corollary 31.68) there exists a
unique complex measure ν = νF such that

IF (f) =
∫

R
fdν for all f ∈ Cc(R). (29.27)

This leads to the following theorem.

Theorem 29.34. To each function F ∈ BV there exists a unique mea-
sure ν = νF on (R,BR) such that Eq. (29.27) holds. Moreover, F (x+) =
limy↓x F (y) exists for all x ∈ R and the measure ν satisfies

ν((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞. (29.28)
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Remark 29.35. By applying Theorem 29.34 to the function x → F (−x) one
shows every F ∈ BV has left hand limits as well, i.e F (x−) = limy↑x F (y)
exists for all x ∈ R.

Proof. We must still prove F (x+) exists for all x ∈ R and Eq. (29.28)
holds. To prove let ψb and φε be the functions shown in Figure 29.3 below.
The reader should check that ψb ∈ Sc(A). Notice that

Fig. 29.3. A couple of functions in Sc(A).

IF (ψb+ε) = IF (ψα + 1(α,b+ε]) = IF (ψα) + F (b+ ε)− F (α)

and since ‖φε − ψb+ε‖∞ = 1,

|I(φε)− IF (ψb+ε)| = |IF (φε − ψb+ε)|
≤ TF ([b+ ε, b+ 2ε]) = TF (b+ 2ε)− TF (b+ ε),

which implies O (ε) := I(φε)−IF (ψb+ε)→ 0 as ε ↓ 0 because TF is monotonic.
Therefore,

I(φε) = IF (ψb+ε) + I(φε)− IF (ψb+ε)
= IF (ψα) + F (b+ ε)− F (α) +O (ε) . (29.29)

Because φε converges boundedly to ψb as ε ↓ 0, the dominated convergence
theorem implies
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lim
ε↓0

I(φε) = lim
ε↓0

∫
R
φεdν =

∫
R
ψbdν =

∫
R
ψαdν + ν((α, b]).

So we may let ε ↓ 0 in Eq. (29.29) to learn F (b+) exists and∫
R
ψαdν + ν((α, b]) = IF (ψα) + F (b+)− F (α).

Similarly this equation holds with b replaced by a, i.e.∫
R
ψαdν + ν((α, a]) = IF (ψα) + F (a+)− F (α).

Subtracting the last two equations proves Eq. (29.28).

29.5.1 Proof of Theorem 29.30.

Proof. Given Theorem 29.34 we may now prove Theorem 29.30 in the same
we proved Theorem 29.19.

29.6 Examples:

These are taken from I. P. Natanson,“Theory of functions of a real variable,”
p.269. Note it is proved in Natanson or in Rudin that the fundamental theorem
of calculus holds for f ∈ C([0, 1]) such that f ′(x) exists for all x ∈ [0, 1] and
f ′ ∈ L1. Now we give a couple of examples.

Example 29.36. In each case f ∈ C([−1, 1]).

1. Let f(x) = |x|3/2 sin 1
x with f(0) = 0, then f is everywhere differentiable

but f ′ is not bounded near zero. However, the function f ′ ∈ L1([−1, 1]).
2. Let f(x) = x2 cos π

x2 with f(0) = 0, then f is everywhere differentiable
but f ′ /∈ L1

loc(−ε, ε). Indeed, if 0 /∈ (α, β) then∫ β

α

f ′(x)dx = f(β)− f(α) = β2 cos
π

β2
− α2 cos

π

α2
.

Now take αn :=
√

2
4n+1 and βn = 1/

√
2n. Then

∫ βn

αn

f ′(x)dx =
2

4n+ 1
cos

π(4n+ 1)
2

− 1
2n

cos 2nπ =
1
2n

and noting that {(αn, βn)}∞n=1 are all disjoint, we find
∫ ε
0
|f ′(x)| dx =∞.
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Example 29.37. Let C ⊂ [0, 1] denote the cantor set constructed as follows.
Let C1 = [0, 1] \ (1/3, 2/3), C2 := C1 \ [(1/9, 2/9) ∪ (7/9, 8/9)] , etc., so that
we keep removing the middle thirds at each stage in the construction. Then

C := ∩∞n=1Cn =

x =
∞∑
j=0

aj3−j : aj ∈ {0, 2}


and

m(C) = 1−
(

1
3

+
2
9

+
22

33
+ . . .

)
= 1− 1

3

∞∑
n=0

(
2
3

)n
= 1− 1

3
1

1− 2/3
= 0.

Associated to this set is the so called cantor function F (x) := limn→∞ fn(x)
where the {fn}∞n=1 are continuous non-decreasing functions such that fn(0) =
0, fn(1) = 1 with the fn pictured in Figure 29.4 below. From the pictures one

Fig. 29.4. Constructing the Cantor function.

sees that {fn} are uniformly Cauchy, hence there exists F ∈ C([0, 1]) such
that F (x) := limn→∞ fn(x). The function F has the following properties,
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596 29 Lebesgue Differentiation and the Fundamental Theorem of Calculus

1. F is continuous and non-decreasing.
2. F ′(x) = 0 for m – a.e. x ∈ [0, 1] because F is flat on all of the middle third

open intervals used to construct the cantor set C and the total measure
of these intervals is 1 as proved above.

3. The measure on B[0,1] associated to F, namely ν([0, b]) = F (b) is singular
relative to Lebesgue measure and ν ({x}) = 0 for all x ∈ [0, 1]. Notice that
ν ([0, 1]) = 1.

29.7 The connection of Weak and pointwise derivatives

Theorem 29.38. Suppose f ∈ L1
loc(Ω). Then there exists a complex measure

µ on BΩ such that

− 〈f, φ′〉 = µ(φ) :=
∫
Ω

φdµ for all φ ∈ C∞c (Ω) (29.30)

iff there exists a right continuous function F of bounded variation such that
F = f a.e. In this case µ = µF , i.e. µ((a, b]) = F (b)−F (a) for all −∞ < a <
b <∞.

Proof. Suppose f = F a.e. where F is as above and let µ = µF be the
associated measure on BΩ . Let G(t) = F (t) − F (−∞) = µ((−∞, t]), then
using Fubini’s theorem and the fundamental theorem of calculus,

−〈f, φ′〉 = −〈F, φ′〉 = −〈G,φ′〉 = −
∫
Ω

φ′(t)
[∫

Ω

1(−∞,t](s)dµ(s)
]
dt

= −
∫
Ω

∫
Ω

φ′(t)1(−∞,t](s)dtdµ(s) =
∫
Ω

φ(s)dµ(s) = µ(φ).

Conversely if Eq. (29.30) holds for some measure µ, let F (t) := µ((−∞, t])
then working backwards from above,

−〈f, φ′〉 = µ(φ) =
∫
Ω

φ(s)dµ(s) = −
∫
Ω

∫
Ω

φ′(t)1(−∞,t](s)dtdµ(s)

= −
∫
Ω

φ′(t)F (t)dt.

This shows ∂(w) (f − F ) = 0 and therefore by Proposition 26.25, f = F + c
a.e. for some constant c ∈ C. Since F + c is right continuous with bounded
variation, the proof is complete.

Proposition 29.39. Let Ω ⊂ R be an open interval and f ∈ L1
loc(Ω). Then

∂wf exists in L1
loc(Ω) iff f has a continuous version f̃ which is absolutely

continuous on all compact subintervals of Ω. Moreover, ∂wf = f̃ ′ a.e., where
f̃ ′(x) is the usual pointwise derivative.
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Proof. If f is locally absolutely continuous and φ ∈ C∞c (Ω) with
supp(φ) ⊂ [a, b] ⊂ Ω, then by integration by parts, Corollary 29.33,∫

Ω

f ′φdm =
∫ b

a

f ′φdm = −
∫ b

a

fφ′dm+ fφ|ba = −
∫
Ω

fφ′dm.

This shows ∂wf exists and ∂wf = f ′ ∈ L1
loc(Ω). Now suppose that ∂wf exists

in L1
loc(Ω) and a ∈ Ω. Define F ∈ C (Ω) by F (x) :=

∫ x
a
∂wf(y)dy. Then F

is absolutely continuous on compacts and therefore by fundamental theorem
of calculus for absolutely continuous functions (Theorem 29.32), F ′(x) exists
and is equal to ∂wf(x) for a.e. x ∈ Ω. Moreover, by the first part of the
argument, ∂wF exists and ∂wF = ∂wf, and so by Proposition 26.25 there is
a constant c such that

f̃(x) := F (x) + c = f(x) for a.e. x ∈ Ω.

Definition 29.40. Let X and Y be metric spaces. A function u : X → Y is
said to be Lipschitz if there exists C <∞ such that

dY (u(x), u(x′)) ≤ CdX(x, x′) for all x, x′ ∈ X

and said to be locally Lipschitz if for all compact subsets K ⊂ X there exists
CK <∞ such that

dY (u(x), u(x′)) ≤ CKdX(x, x′) for all x, x′ ∈ K.

Proposition 29.41. Let u ∈ L1
loc(Ω). Then there exists a locally Lipschitz

function ũ : Ω → C such that ũ = u a.e. iff ∂iu ∈ L1
loc(Ω) exists and is locally

(essentially) bounded for i = 1, 2, . . . , d.

Proof. Suppose u = ũ a.e. and ũ is Lipschitz and let p ∈ (1,∞) and V be a
precompact open set such that V̄ ⊂W and let Vε :=

{
x ∈ Ω : dist(x, V̄ ) ≤ ε

}
.

Then for ε < dist(V̄ , Ωc), Vε ⊂ Ω and therefore there is constant C(V, ε) <∞
such that |ũ(y)− ũ(x)| ≤ C(V, ε) |y − x| for all x, y ∈ Vε. So for 0 < |h| ≤ 1
and v ∈ Rd with |v| = 1,∫

V

∣∣∣∣u(x+ hv)− u(x)
h

∣∣∣∣p dx =
∫
V

∣∣∣∣ ũ(x+ hv)− ũ(x)
h

∣∣∣∣p dx ≤ C(V, ε) |v|p .

Therefore Theorem 26.18 may be applied to conclude ∂vu exists in Lp and
moreover,

lim
h→0

ũ(x+ hv)− ũ(x)
h

= ∂vu(x) for m – a.e. x ∈ V.

Since there exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and
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|∂vu(x)| = lim
n→∞

∣∣∣∣ ũ(x+ hnv)− ũ(x)
hn

∣∣∣∣ ≤ C(V ) for a.e. x ∈ V,

it follows that ‖∂vu‖∞ ≤ C(V ) where C(V ) := limε↓0 C(V, ε). Conversely,
let Ωε := {x ∈ Ω : dist(x,Ωc) > ε} and η ∈ C∞c (B(0, 1), [0,∞)) such that∫

Rn η(x)dx = 1, ηm(x) = mnη(mx) and um := u ∗ ηm as in the proof of
Theorem 26.18. Suppose V ⊂o Ω with V̄ ⊂ Ω and ε is sufficiently small. Then
um ∈ C∞(Ωε), ∂vum = ∂vu ∗ ηm, |∂vum(x)| ≤ ‖∂vu‖L∞(Vm−1 ) =: C(V,m) <
∞ and therefore for x, y ∈ V̄ with |y − x| ≤ ε,

|um(y)− um(x)| =
∣∣∣∣∫ 1

0

d

dt
um(x+ t(y − x))dt

∣∣∣∣
=
∣∣∣∣∫ 1

0

(y − x) · ∇um(x+ t(y − x))dt
∣∣∣∣

≤
∫ 1

0

|y − x| · |∇um(x+ t(y − x))| dt ≤ C(V,m) |y − x|

(29.31)

By passing to a subsequence if necessary, we may assume that limm→∞ um(x) =
u(x) for m – a.e. x ∈ V̄ and then letting m→∞ in Eq. (29.31) implies

|u(y)− u(x)| ≤ C(V ) |y − x| for all x, y ∈ V \ E and |y − x| ≤ ε (29.32)

where E ⊂ V̄ is a m – null set. Define ũV : V̄ → C by ũV = u on V̄ \Ec and
ũV (x) = limy→x

y /∈E

u(y) if x ∈ E. Then clearly ũV = u a.e. on V̄ and it is easy

to show ũV is well defined and ũV : V̄ → C is continuous and still satisfies

|ũV (y)− ũV (x)| ≤ CV |y − x| for x, y ∈ V̄ with |y − x| ≤ ε.

Since ũV is continuous on V̄ there exists MV < ∞ such that |ũV | ≤ MV on
V̄ . Hence if x, y ∈ V̄ with |x− y| ≥ ε, we find

|ũV (y)− ũV (x)|
|y − x|

≤ 2M
ε

and hence

|ũV (y)− ũV (x)| ≤ max
{
CV ,

2MV

ε

}
|y − x| for x, y ∈ V̄

showing ũV is Lipschitz on V̄ . To complete the proof, choose precompact
open sets Vn such that Vn ⊂ V̄n ⊂ Vn+1 ⊂ Ω for all n and for x ∈ Vn let
ũ(x) := ũVn(x).

Here is an alternative way to construct the function ũV above. For x ∈
V \ E,
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|um(x)− u(x)| =
∣∣∣∣∫
V

u(x− y)η(my)mndy − u(x)
∣∣∣∣ = ∣∣∣∣∫

V

[u(x− y/m)− u(x)] η(y)dy
∣∣∣∣

≤
∫
V

|u(x− y/m)− u(x)| η(y)dy ≤ C

m

∫
V

|y| η(y)dy

wherein the last equality we have used Eq. (29.32) with V replaced by Vε for
some small ε > 0. Letting K := C

∫
V
|y| η(y)dy <∞ we have shown

‖um − u‖∞ ≤ K/m→ 0 as m→∞

and consequently

‖um − un‖∞ = ‖um − un‖∞ ≤ 2K/m→ 0 as m→∞.

Therefore, un converges uniformly to a continuous function ũV .
The next theorem is from Chapter 1. of Maz’ja [15].

Theorem 29.42. Let p ≥ 1 and Ω be an open subset of Rd, x ∈ Rd be written
as x = (y, t) ∈ Rd−1 × R,

Y :=
{
y ∈ Rd−1 : ({y} × R) ∩Ω 6= ∅

}
and u ∈ Lp(Ω). Then ∂tu exists weakly in Lp(Ω) iff there is a version ũ of
u such that for a.e. y ∈ Y the function t → ũ(y, t) is absolutely continuous,
∂tu(y, t) = ∂ũ(y,t)

∂t a.e., and
∥∥∂ũ
∂t

∥∥
Lp(Ω)

<∞.

Proof. For the proof of Theorem 29.42, it suffices to consider the case
where Ω = (0, 1)d. Write x ∈ Ω as x = (y, t) ∈ Y × (0, 1) = (0, 1)d−1 × (0, 1)
and ∂tu for the weak derivative ∂ed

u. By assumption∫
Ω

|∂tu(y, t)| dydt = ‖∂tu‖1 ≤ ‖∂tu‖p <∞

and so by Fubini’s theorem there exists a set of full measure, Y0 ⊂ Y, such
that ∫ 1

0

|∂tu(y, t)| dt <∞ for y ∈ Y0.

So for y ∈ Y0, the function v(y, t) :=
∫ t
0
∂tu(y, τ)dτ is well defined and ab-

solutely continuous in t with ∂
∂tv(y, t) = ∂tu(y, t) for a.e. t ∈ (0, 1). Let

ξ ∈ C∞c (Y ) and η ∈ C∞c ((0, 1)) , then integration by parts for absolutely
functions implies∫ 1

0

v(y, t)η̇(t)dt = −
∫ 1

0

∂

∂t
v(y, t)η(t)dt for all y ∈ Y0.

Multiplying both sides of this equation by ξ(y) and integrating in y shows
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Ω

v(x)η̇(t)ξ(y)dydt = −
∫
Ω

∂

∂t
v(y, t)η(t)ξ(y)dydt

= −
∫
Ω

∂tu(y, t)η(t)ξ(y)dydt.

Using the definition of the weak derivative, this equation may be written as∫
Ω

u(x)η̇(t)ξ(y)dydt = −
∫
Ω

∂tu(x)η(t)ξ(y)dydt

and comparing the last two equations shows∫
Ω

[v(x)− u(x)] η̇(t)ξ(y)dydt = 0.

Since ξ ∈ C∞c (Y ) is arbitrary, this implies there exists a set Y1 ⊂ Y0 of full
measure such that∫

Ω

[v(y, t)− u(y, t)] η̇(t)dt = 0 for all y ∈ Y1

from which we conclude, using Proposition 26.25, that u(y, t) = v(y, t)+C(y)
for t ∈ Jy where md−1 (Jy) = 1, here mk denotes k – dimensional Lebesgue
measure. In conclusion we have shown that

u(y, t) = ũ(y, t) :=
∫ t

0

∂tu(y, τ)dτ + C(y) for all y ∈ Y1 and t ∈ Jy. (29.33)

We can be more precise about the formula for ũ(y, t) by integrating both sides
of Eq. (29.33) on t we learn

C(y) =
∫ 1

0

dt

∫ t

0

∂τu(y, τ)dτ −
∫ 1

0

u(y, t)dt

=
∫ 1

0

(1− τ) ∂τu(y, τ)dτ −
∫ 1

0

u(y, t)dt

=
∫ 1

0

[(1− t) ∂tu(y, t)− u(y, t)] dt

and hence

ũ(y, t) :=
∫ t

0

∂τu(y, τ)dτ +
∫ 1

0

[(1− τ) ∂τu(y, τ)− u(y, τ)] dτ

which is well defined for y ∈ Y0. For the converse suppose that such a ũ exists,
then for φ ∈ C∞c (Ω) ,∫

Ω

u(y, t)∂tφ(y, t)dydt =
∫
Ω

ũ(y, t)∂tφ(y, t)dtdy

= −
∫
Ω

∂ũ(y, t)
∂t

φ(y, t)dtdy
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wherein we have used integration by parts for absolutely continuous functions.
From this equation we learn the weak derivative ∂tu(y, t) exists and is given
by ∂ũ(y,t)

∂t a.e.

29.8 Exercises

Exercise 29.1. Folland 3.22 on p. 100.

Exercise 29.2. Folland 3.24 on p. 100.

Exercise 29.3. Folland 3.25 on p. 100.

Exercise 29.4. Folland 3.27 on p. 107.

Exercise 29.5. Folland 3.29 on p. 107.

Exercise 29.6. Folland 3.30 on p. 107.

Exercise 29.7. Folland 3.33 on p. 108.

Exercise 29.8. Folland 3.35 on p. 108.

Exercise 29.9. Folland 3.37 on p. 108.

Exercise 29.10. Folland 3.39 on p. 108.

Exercise 29.11. Folland 3.40 on p. 108.

Exercise 29.12. Folland 8.4 on p. 239.
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30

Constructing Measures Via Carathéodory

The main goals of this chapter is to prove the two measure construction The-
orems 28.2 and 28.16. Throughout this chapter, X will be a given set. The
following definition is a continuation of the terminology introduced in Defini-
tion 28.1.

Definition 30.1. Suppose that E ⊂ 2X is a collection of subsets of X and
µ : E → [0,∞] is a function. Then

1. µ is super-additive (finitely super-additive) on E if

µ(E) ≥
n∑
i=1

µ(Ei) (30.1)

whenever E =
∐n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).

2. µ is monotonic if µ (A) ≤ µ (B) for all A,B ∈ E with A ⊂ B.

Remark 30.2. If E = A is an algebra and µ is finitely additive on A, then µ is
sub-additive on A iff

µ(A) ≤
∞∑
i=1

µ(Ai) for A =
∞∐
i=1

Ai (30.2)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets. Indeed if A =⋃∞
i=1Bi with A ∈ A and Bi ∈ A, then A =

∐∞
i=1Ai where Ai := Bi \

(B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of µ and
Eq. (30.2)

µ(A) ≤
∞∑
i=1

µ(Ai) ≤
∞∑
i=1

µ(Bi).
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30.1 Construction of Premeasures

Proposition 30.3 (Construction of Finitely Additive Measures). Sup-
pose E ⊂ 2X is an elementary family (see Definition 18.8) and A = A(E) is
the algebra generated by E . Then every additive function µ : E → [0,∞] ex-
tends uniquely to an additive measure (which we still denote by µ) on A.

Proof. Since (by Proposition 18.10) every element A ∈ A is of the form
A =

∐
iEi for a finite collection of Ei ∈ E , it is clear that if µ extends to a

measure then the extension is unique and must be given by

µ(A) =
∑
i

µ(Ei). (30.3)

To prove existence, the main point is to show that µ(A) in Eq. (30.3) is well
defined; i.e. if we also have A =

∐
j Fj with Fj ∈ E , then we must show∑

i

µ(Ei) =
∑
j

µ(Fj). (30.4)

But Ei =
∐
j (Ei ∩ Fj) and the property that µ is additive on E implies

µ(Ei) =
∑
j µ(Ei ∩ Fj) and hence∑

i

µ(Ei) =
∑
i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, or by symmetry,∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (30.4) holds. It
is now easy to verify that µ extended to A as in Eq. (30.3) is an additive
measure on A.

Proposition 30.4. Suppose that A ⊂ 2X is an algebra and µ : A → [0,∞] is
a finitely additive measure on A. Then µ is automatically super-additive on
A.

Proof. Since

A =

(
N∐
i=1

Ai

)
∪

(
A \

N⋃
i=1

Ai

)
,

µ(A) =
N∑
i=1

µ(Ai) + µ

(
A \

N⋃
i=1

Ai

)
≥

N∑
i=1

µ(Ai).

Letting N →∞ in this last expression shows that µ(A) ≥
∞∑
i=1

µ(Ai).
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Proposition 30.5. Suppose that E ⊂ 2X is an elementary family, A = A(E)
and µ : A → [0,∞] is a finitely additive measure. Then µ is a premeasure on
A iff µ is sub-additive on E .

Proof. Clearly if µ is a premeasure on A then µ is σ-additive and hence
sub-additive on E . Because of Proposition 30.4, to prove the converse it suffices
to show that the sub-additivity of µ on E implies the sub-additivity of µ on
A.

So suppose A =
∞∐
n=1

An with A ∈ A and each An ∈ A which we express

as A =
∐k
j=1Ej with Ej ∈ E and An =

∐Nn

i=1En,i with En,i ∈ E . Then

Ej = A ∩ Ej =
∞∐
n=1

An ∩ Ej =
∞∐
n=1

Nn∐
i=1

En,i ∩ Ej

which is a countable union and hence by assumption,

µ(Ej) ≤
∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =
k∑
j=1

µ(Ej) ≤
k∑
j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=
∞∑
n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =
∞∑
n=1

Nn∑
i=1

µ (En,i) =
∞∑
n=1

µ (An) ,

which proves (using Remark 30.2) the sub-additivity of µ on A.

30.1.1 Extending Premeasures to Aσ

Proposition 30.6. Let µ be a premeasure on an algebra A, then µ has a
unique extension (still called µ) to a countably additive function on Aσ. More-
over the extended function µ satisfies the following properties.1

1. (Continuity) If An ∈ A and An ↑ A ∈ Aσ, then µ (An) ↑ µ (A) as
n→∞.

2. (Strong Additivity) If A,B ∈ Aσ, then

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (30.5)

3. (Sub-Additivity on Aσ) The function µ is sub-additive on Aσ.
1 The remaining results in this proposition may be skipped in which case the reader

should also skip Section 30.3.
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Proof. Suppose {An}∞n=1 ⊂ A, A0 := ∅, and A = ∪∞n=1An ∈ Aσ. By
replacing each An by An \ (A1 ∪ · · · ∪An−1) if necessary we may assume that
collection of sets {An}∞n=1 are pairwise disjoint. Hence every element A ∈ Aσ
may be expressed as a disjoint union, A =

∞∐
n=1

An with An ∈ A. With A

expressed this way we must define

µ (A) :=
∞∑
n=1

µ (An) .

The proof that µ (A) is well defined follows the same argument used in the

proof of Proposition 30.3. Explicitly, suppose also that A =
∞∐
k=1

Bk with

Bk ∈ A, then for each n, An =
∐∞
k=1(An ∩ Bk) and therefore because µ

is a premeasure,

µ(An) =
∞∑
k=1

µ(An ∩Bk).

Summing this equation on n shows,
∞∑
n=1

µ(An) =
∞∑
n=1

∞∑
k=1

µ(An ∩Bk) =
∞∑
k=1

∞∑
n=1

µ(An ∩Bk)

wherein the last equality we have used Tonelli’s theorem for sums. By sym-
metry we also have

∞∑
k=1

µ(Bk) =
∞∑
k=1

∞∑
n=1

µ(An ∩Bk)

and comparing the last two equations gives
∑∞
n=1 µ(An) =

∑∞
k=1 µ(Bk) which

shows the extension of µ to Aσ is well defined.
Countable additive of µ on Aσ. If {An}∞n=1 is a collection of pairwise

disjoint subsets of Aσ, then there exists Ani ∈ A such that An =
∐∞
i=1Ani

for all n, and therefore,

µ (∪∞n=1An) = µ

 ∞∐
i,n=1

Ani

 :=
∞∑

i,n=1

µ (Ani)

=
∞∑
n=1

∞∑
i=1

µ (Ani) =
∞∑
n=1

µ (An) .

Again there are no problems in manipulating the above sums since all sum-
mands are non-negative.

Continuity of µ. Suppose An ∈ A and An ↑ A ∈ Aσ. Then An =
n∐
i=1

Bi

and A =
∞∐
i=1

Bi where Bn := An \ (A1 ∪ · · · ∪An−1) ∈ A. So by definition of

µ (A) ,
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µ (A) =
∞∑
i=1

µ (Bi) = lim
n→∞

n∑
i=1

µ (Bi) = lim
n→∞

µ (An)

which proves the continuity assertion.
Strong additivity of µ. Let A and B be in Aσ and choose An, Bn ∈ A

such that An ↑ A and Bn ↑ B as n→∞ then

µ (An ∪Bn) + µ (An ∩Bn) = µ (An) + µ (Bn) . (30.6)

Indeed if µ (An) + µ (Bn) = ∞ the identity is true because ∞ = ∞ and if
µ (An) + µ (Bn) <∞ the identity follows from the finite additivity of µ on A
and the set identity,

An ∪Bn = [An ∩Bn] ∪ [An \ (An ∩Bn)] ∪ [Bn \ (An ∩Bn)] .

Since An ∪Bn ↑ A∪B and An ∩Bn ↑ A∩B, Eq. (30.5) follows by passing to
the limit as n→∞ in Eq. (30.6) while making use of the continuity property
of µ.

Sub-Additivity on Aσ. Suppose An ∈ Aσ and A = ∪∞n=1An. Choose
An,j ∈ A such that An :=

∐∞
j=1An,j , let {Bk}∞k=1 be an enumeration of the

collection of sets, {An,j : n, j ∈ N} , and define Ck := Bk \(B1 ∪ · · · ∪Bk−1) ∈
A with the usual convention that B0 = ∅. Then A =

∐∞
k=1 Ck and therefore

by the definition of µ on Aσ and the monotonicity of µ on A,

µ (A) =
∞∑
k=1

µ (Ck) ≤
∞∑
k=1

µ (Bk) =
∞∑
n=1

∞∑
j=1

µ (An,j) =
∞∑
n=1

µ (An) .

In future we will tacitly assume that any premeasure, µ, on an algebra, A,
has been extended to Aσ as described in Proposition 30.6.

30.2 Outer Measures

Definition 30.7. A function ν : 2X → [0,∞] is an outer measure if ν(∅) =
0, ν is monotonic and sub-additive.

Proposition 30.8 (Example of an outer measure.). Let E ⊂ 2X be ar-
bitrary collection of subsets of X such that ∅, X ∈ E . Let ρ : E → [0,∞] be a
function such that ρ(∅) = 0. For any A ⊂ X, define

ρ∗(A) = inf

{ ∞∑
i=1

ρ(Ei) : A ⊂
∞⋃
i=1

Ei with Ei ∈ E

}
. (30.7)

Then ρ∗ is an outer measure.
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Proof. It is clear that ρ∗ is monotonic and ρ∗(∅) = 0. Suppose for i ∈ N,
Ai ∈ 2X and ρ∗(Ai) <∞; otherwise there will be nothing to prove. Let ε > 0

and choose Eij ∈ E such that Ai ⊂
∞⋃
j=1

Eij and ρ∗(Ai) ≥
∞∑
j=1

ρ(Eij) − 2−iε.

Since
∞⋃
i=1

Ai ⊂
∞⋃

i,j=1

Eij ,

ρ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

∞∑
j=1

ρ(Eij) ≤
∞∑
i=1

(ρ∗(Ai) + 2−iε) =
∞∑
i=1

ρ∗(Ai) + ε.

Since ε > 0 is arbitrary in this inequality, we have shown ρ∗ is sub-additive.
The following lemma is an easy consequence of Proposition 30.6 and the

remarks in the proof of Theorem 28.2.

Lemma 30.9. Suppose that µ is a premeasure on an algebra A and µ∗ is the
outer measure associated to µ as in Proposition 30.8. Then

µ∗ (B) = inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ⊂ X

and µ∗ = µ on A, where µ has been extended to Aσ as described in Proposition
30.6.

Lemma 30.10. Suppose (X, τ) is a locally compact Hausdorff space, I is a
positive linear functionals on Cc(X), and let µ : τ → [0,∞] be defined in
Eq. (28.8). Then µ is sub-additive on τ and the associate outer measure,
µ∗ : 2X → [0,∞] associated to µ as in Proposition 30.8 may be described by

µ∗ (E) = inf {µ (U) : E ⊂ U ⊂o X} . (30.8)

In particular µ∗ = µ on τ.

Proof. Let {Uj}∞j=1 ⊂ τ, U := ∪∞j=1Uj , f ≺ U and K = supp(f). Since
K is compact, K ⊂ ∪nj=1Uj for some n ∈ N sufficiently large. By Proposition
15.16 (partitions of unity proposition) we may choose hj ≺ Uj such that∑n
j=1 hj = 1 on K. Since f =

∑n
j=1 hjf and hjf ≺ Uj ,

I (f) =
n∑
j=1

I (hjf) ≤
n∑
j=1

µ (Uj) ≤
∞∑
j=1

µ (Uj) .

Since this is true for all f ≺ U we conclude µ (U) ≤
∑∞
j=1 µ (Uj) proving

the countable sub-additivity of µ on τ. The remaining assertions are a direct
consequence of this sub-additivity.

30.3 *The σ – Finite Extension Theorem

This section may be skipped (at the loss of some motivation), since the results
here will be subsumed by those in Section 30.4 below.
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Notation 30.11 (Inner Measure) If µ is a finite (i.e. µ (X) < ∞) pre-
measure on an algebra A, we extend µ to Aδ by defining

µ (A) := µ (X)− µ (Ac) . (30.9)

(Note: µ (Ac) is defined since Ac ∈ Aσ.) Also let

µ∗ (B) := sup {µ (A) : Aδ 3 A ⊂ B} ∀ B ⊂ X

and define
M =M (µ) := {B ⊂ X : µ∗ (B) = µ∗ (B)} (30.10)

and µ̄ := µ∗|M. In words, B is in M iff B may be well approximated from
both inside and out by sets µ can measure.

Remark 30.12. If A ∈ Aσ ∩ Aδ, then A,Ac ∈ Aσ and so by the strong addi-
tivity of µ, µ (A) +µ (Ac) = µ (X) from which it follows that the extension of
µ to Aδ is consistent with the extension of µ to Aσ.

Lemma 30.13. Let µ be a finite premeasure on an algebra A ⊂ 2X and
continue the setup in Notation 30.11.

1. If A ∈ Aδ and C ∈ Aσ with A ⊂ C, then

µ (C \A) = µ (C)− µ (A) . (30.11)

2. For all B ⊂ X, µ∗ (B) = µ (X)− µ∗ (Bc) , and

M := {B ⊂ X : µ (X) = µ∗ (B) + µ∗ (Bc)} . (30.12)

3. As subset B ⊂ X is inM iff for all ε > 0 there exists A ∈ Aδ and C ∈ Aσ
such that A ⊂ B ⊂ C and µ (C \A) < ε. In particular A ⊂M.

4. µ is additive on Aδ.

Proof. 1. The strong additivity Eq. (30.5) with B = C ∈ Aσ and A being
replaced by Ac ∈ Aσ implies

µ (Ac ∪ C) + µ (C \A) = µ (Ac) + µ (C) .

Since X = Ac ∪ C and µ (Ac) = µ (X)− µ (A) , the previous equality implies
Eq. (30.11).

2. For the second assertion we have

µ∗ (B) = sup {µ (A) : Aδ 3 A ⊂ B}
= sup {µ (X)− µ (Ac) : Aδ 3 A ⊂ B}
= sup {µ (X)− µ (C) : Aδ 3 Cc ⊂ B}
= µ (X)− inf {µ (C) : Bc ⊂ C ∈ Aσ}
= µ (X)− µ∗ (Bc) .
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Thus the condition that µ∗ (B) = µ∗ (B) is equivalent to requiring that

µ (X) = µ∗ (X) = µ∗ (Bc) + µ∗ (B) . (30.13)

3. By definition B ⊂ X iff µ∗ (B) = µ∗ (B) which happens iff for each ε > 0
there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C)−µ (A) < ε;
i.e. by item 1, µ (C \A) < ε. The containment, A ⊂ M, follows from what
we have just proved or is a direct consequence of µ being additive on A and
the fact that µ∗ = µ∗ = µ on A.

4. Suppose A,B ∈ Aδ are disjoint sets, then by the strong additivity of µ
on Aσ (use Eq. (30.5) with A and B being replaced by Ac and Bc respectively)
gives

2µ (X)− µ (A ∪B) = µ (X) + µ ([A ∪B]c) = µ (Ac ∪Bc) + µ (Ac ∩Bc)
= µ (Ac) + µ (Bc) = 2µ (X)− µ (A)− µ (B) ,

i.e. µ (A ∪B) = µ (A) + µ (B) .

Theorem 30.14 (Finite Premeasure Extension Theorem). If µ is a
finite premeasure on an algebra A, then M =M (µ) (as in Eq. (30.10)) is a
σ – algebra, A ⊂M and µ̄ = µ∗|M is a countably additive measure such that
µ̄ = µ on A.

Proof. By Lemma 30.13, φ,X ∈ A ⊂ M and from Eq. (30.12) it follows
thatM is closed under complementation. Now suppose N ∈ {2, 3, . . . }∪ {∞}
and Bi ∈M for i < N. Given ε > 0, by Lemma 30.13 there exists Ai ⊂ Bi ⊂
Ci with Ai ∈ Aδ and Ci ∈ Aσ such that µ (Ci \Ai) < ε2−i for all i < N. Let
B = ∪i<NBi, C := ∪i<NCi and A := ∪i<NAi so that A ⊂ B ⊂ C ∈ Aσ.

For the moment assume N <∞, then A ∈ Aδ, C \A = C ∩Ac ∈ Aσ,

C \A = ∪i<N (Ci \A) ⊂ ∪i<N (Ci \Ai) ∈ Aσ

and so by the sub-additivity of µ on Aσ (Proposition 30.6),

µ (C \A) ≤
∑
i<N

µ (Ci \Ai) <
∑
i<N

ε2−i < ε.

Since ε > 0 was arbitrary, it follows again by Lemma 30.13 that B ∈ M and
we have shownM is an algebra.

Now suppose that N =∞. BecauseM is an algebra, to showM is a σ –
algebra it suffices to show B = ∪∞i=1Bi ∈M under the additional assumption
that the collection of sets, {Bi}∞i=1 , are also pairwise disjoint in which case
the sets, {Ai}∞i=1 , are pairwise disjoint. Since µ is additive on Aδ (Lemma
30.13), for any n ∈ N,

n∑
i=1

µ (Ci) ≤
n∑
i=1

[
µ (Ai) + ε2−i

]
≤ µ (∪ni=1Ai) + ε.
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This implies, using

µ (∪ni=1Ai) = µ (X)− µ ([∪ni=1Ai]
c) ≤ µ (X) ,

that
∞∑
i=1

µ (Ci) = lim
n→∞

n∑
i=1

µ (Ci) ≤ µ (X) + ε <∞. (30.14)

Let n ∈ N and An :=
∐n
i=1Ai ∈ Aδ. Then Aδ 3 An ⊂ B ⊂ C ∈ Aσ,

C \An ∈ Aσ and

C \An = ∪∞i=1 (Ci \An) ⊂ [∪ni=1 (Ci \Ai)] ∪
[
∪∞i=n+1Ci

]
∈ Aσ.

Therefore, using the sub-additivity of µ on Aσ and the estimate (30.14),

µ (C \An) ≤
n∑
i=1

µ (Ci \Ai) +
∞∑

i=n+1

µ (Ci)

≤ ε+
∞∑

i=n+1

µ (Ci)→ ε as n→∞.

Since ε > 0 was arbitrary it now follows from Lemma 30.9 that B ∈ M.
Moreover, since

µ∗ (Bi) ≤ µ (Ci) ≤ µ (Ai) + 2−iε,
n∑
i=1

(
µ∗ (Bi)− 2−iε

)
≤

n∑
i=1

µ (Ai) = µ (An) ≤ µ∗ (B) .

Letting n→∞ in this equation implies
∞∑
i=1

µ∗ (Bi)− ε ≤ µ∗ (B) ≤
∞∑
i=1

µ∗ (Bi) .

Because ε > 0 was arbitrary, it follows that
∑∞
i=1 µ

∗ (Bi) = µ∗ (B) and we
have also shown µ̄ = µ∗|M is a measure onM.

Exercise 30.1. Keeping the same hypothesis and notation as in Theorem
30.14 and suppose B ∈M. Show there exists A ⊂ B ⊂ C such that A ∈ Aδσ,
C ∈ Aσδ and µ̄(C \ A) = 0. (Hint: see the proof of Theorem 28.6 where the
same statement is proved withM replaced by σ (A) .) Conclude from this that
µ̄ is the completion of µ̄|σ(A). (See Lemma 19.47 for more about completion
of measures.)

Exercise 30.2. Keeping the same hypothesis and notation as in Theorem
30.14, show M =M′ where M′ consists of those subset B ⊂ X such that

µ∗ (E) = µ∗ (B ∩ E) + µ∗ (Bc ∩ E) ∀ E ⊂ X. (30.15)

Hint: To verify Eq. (30.15) holds for B ∈ M, “approximate” E ⊂ X from
the outside by a set C ∈ Aσ and then make use the sub-additivity, the mono-
tonicity of µ∗ and the fact that µ∗ is a measure onM.
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Theorem 30.15. Suppose that µ is a σ – finite premeasure on an algebra A.
Then

µ̄ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ∈ σ (A) (30.16)

defined a measure on σ (A) and this measure is the unique measure on σ (A)
which extends µ.

Proof. The uniqueness of the extension µ̄ was already proved in Theorem
19.55. For existence, let {Xn}∞n=1 ⊂ A be chosen so that µ (Xn) < ∞ for all
n and Xn ↑ X as n→∞ and let

µn (A) := µn (A ∩Xn) for all A ∈ A.

Each µn is a premeasure (as is easily verified) on A and hence by Theorem
30.14 each µn has an extension, µ̄n, to a measure on σ (A) . Since the measure
µ̄n are increasing, µ̄ := limn→∞ µ̄n is a measure which extends µ, see Exercise
19.4.

The proof will be completed by verifying that Eq. (30.16) holds by repeat-
ing an argument already used in the proof of Theorem 28.6. Let B ∈ σ (A) ,
Bm = Xm ∩B and ε > 0 be given. By Theorem 30.14, there exists Cm ∈ Aσ
such that Bm ⊂ Cm ⊂ Xm and µ̄(Cm \ Bm) = µ̄m(Cm \ Bm) < ε2−n. Then
C := ∪∞m=1Cm ∈ Aσ and, as usual,

µ̄(C \B) ≤ µ̄

( ∞⋃
m=1

(Cm \B)

)
≤

∞∑
m=1

µ̄(Cm \B) ≤
∞∑
m=1

µ̄(Cm \Bm) < ε.

Thus
µ̄ (B) ≤ µ̄ (C) = µ̄ (B) + µ̄(C \B) ≤ µ̄ (B) + ε

which proves the first item since ε > 0 was arbitrary.

30.4 General Extension and Construction Theorem

Exercise 30.2 motivates the following definition.

Definition 30.16. Let µ∗ : 2X → [0,∞] be an outer measure. Define the
µ∗-measurable sets to be

M(µ∗) := {B ⊂ X : µ∗(E) ≥ µ∗(E ∩B) + µ∗(E ∩Bc) ∀ E ⊂ X}.

Because of the sub-additivity of µ∗, we may equivalently define M(µ∗) by

M(µ∗) = {B ⊂ X : µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc) ∀ E ⊂ X}. (30.17)

Theorem 30.17 (Carathéodory’s Construction Theorem). Let µ∗ be
an outer measure on X and M :=M(µ∗). Then M is a σ-algebra and µ :=
µ∗|M is a complete measure.
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Proof. Clearly ∅, X ∈ M and if A ∈ M then Ac ∈ M. So to show that
M is an algebra we must show that M is closed under finite unions, i.e. if
A,B ∈M and E ∈ 2X then

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ(E \ (A ∪B)).

Using the definition of M three times, we have

µ∗(E) = µ∗(E ∩A) + µ∗(E \A) (30.18)
= µ∗(E ∩A ∩B) + µ∗((E ∩A) \B)

+ µ∗((E \A) ∩B) + µ∗((E \A) \B). (30.19)

By the sub-additivity of µ∗ and the set identity,

E ∩ (A ∪B) = (E ∩A) ∪ (E ∩B)
= [((E ∩A) \B) ∪ (E ∩A ∩B)] ∪ [((E ∩B) \A) ∪ (E ∩A ∩B)]
= [E ∩A ∩B] ∪ [(E ∩A) \B] ∪ [(E \A) ∩B] ,

we have

µ∗(E ∩A ∩B) + µ∗((E ∩A) \B) + µ∗((E \A) ∩B) ≥ µ∗ (E ∩ (A ∪B)) .

Using this inequality in Eq. (30.19) shows

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E \ (A ∪B)) (30.20)

which implies A ∪ B ∈ M. So M is an algebra. Now suppose A,B ∈ M are
disjoint, then taking E = A ∪B in Eq. (30.18) implies

µ∗(A ∪B) = µ∗(A) + µ∗(B)

and µ = µ∗|M is finitely additive onM.
We now must show thatM is a σ – algebra and the µ is σ – additive. Let

Ai ∈M (without loss of generality assume Ai∩Aj = ∅ if i 6= j) Bn =
⋃n
i=1Ai,

and B =
∞⋃
j=1

Aj , then for E ⊂ X we have

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn)
= µ∗(E ∩An) + µ∗(E ∩Bn−1).

and so by induction,

µ∗(E ∩Bn) =
n∑
k=1

µ∗(E ∩Ak). (30.21)

Therefore we find that

Page: 613 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



614 30 Constructing Measures Via Carathéodory

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bcn)

=
n∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Bcn)

≥
n∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc)

where the last inequality is a consequence of the monotonicity of µ∗ and the
fact that Bc ⊂ Bcn. Letting n→∞ in this equation shows that

µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc)

≥ µ∗(∪k(E ∩Ak)) + µ∗(E \B)
= µ∗(E ∩B) + µ∗(E \B) ≥ µ∗(E),

wherein we have used the sub-additivity µ∗ twice. Hence B ∈M and we have
shown M is a σ – algebra. Since µ∗(E) ≥ µ∗(E ∩ Bn) we may let n→∞ in
Eq. (30.21) to find

µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Ak).

Letting E = B = ∪Ak in this inequality then implies µ∗(B) ≥
∞∑
k=1

µ∗(Ak) and

hence, by the sub-additivity of µ∗, µ∗(B) =
∞∑
k=1

µ∗(Ak). Therefore, µ = µ∗|M
is countably additive onM.

Finally we show µ is complete. If N ⊂ F ∈ M and µ(F ) = 0 = µ∗(F ),
then µ∗(N) = 0 and

µ∗(E) ≤ µ∗(E ∩N) + µ∗(E ∩N c) = µ∗(E ∩N c) ≤ µ∗(E).

which shows that N ∈M.

30.4.1 Extensions of General Premeasures

In this subsection let X be a set, A be a subalgebra of 2X and µ0 : A → [0,∞]
be a premeasure on A.

Theorem 30.18. Let A ⊂ 2X be an algebra, µ be a premeasure on A and
µ∗ be the associated outer measure as defined in Eq. (30.7) with ρ = µ. Let
M :=M(µ∗) ⊃ σ(A), then:

1. A ⊂M(µ∗) and µ∗|A = µ.
2. µ̄ = µ∗|M is a measure on M which extends µ.
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3. If ν :M→ [0,∞] is another measure such that ν = µ on A and B ∈M,
then ν(B) ≤ µ̄(B) and ν(B) = µ̄(B) whenever µ̄(B) <∞.

4. If µ is σ-finite on A then the extension, µ̄, of µ to M is unique and
moreover M = σ (A)

µ̄|σ(A)
.

Proof. Recall from Proposition 30.6 and Lemma 30.9 that µ extends to a
countably additive function on Aσ and µ∗ = µ on A.

1. Let A ∈ A and E ⊂ X such that µ∗(E) <∞. Given ε > 0 choose pairwise
disjoint sets, Bj ∈ A, such that E ⊂ B :=

∐∞
j=1Bj and

µ∗(E) + ε ≥ µ (B) =
∞∑
j=1

µ(Bj).

Since A ∩ E ⊂
∐∞
j=1(Bj ∩ Ac) and E ∩ Ac ⊂

∐∞
j=1(Bj ∩ Ac), using the

sub-additivity of µ∗ and the additivity of µ on A we have,

µ∗(E) + ε ≥
∞∑
j=1

µ(Bj) =
∞∑
j=1

[µ(Bj ∩A) + µ(Bj ∩Ac)]

≥ µ∗(E ∩A) + µ∗(E ∩Ac).

Since ε > 0 is arbitrary this shows that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)

and therefore that A ∈M(µ∗).
2. This is a direct consequence of item 1. and Theorem 30.17.
3. If A :=

∐∞
j=1Aj with {Aj}∞j=1 ⊂ A being a collection of pairwise disjoint

sets, then

ν (A) =
∞∑
j=1

ν(Aj) =
∞∑
j=1

µ(Aj) = µ (A) .

This shows ν = µ = µ̄ on Aσ. Consequently, if B ∈M, then

ν(B) ≤ inf {ν (A) : B ⊂ A ∈ Aσ}
= inf {µ (A) : B ⊂ A ∈ Aσ} = µ∗(B) = µ̄(B). (30.22)

If µ̄(B) < ∞ and ε > 0 is given, there exists A ∈ Aσ such that B ⊂ A
and µ̄ (A) = µ (A) ≤ µ̄ (B) + ε. From Eq. (30.22), this implies

ν (A \B) ≤ µ̄(A \B) ≤ ε.

Therefore,

ν (B) ≤ µ̄ (B) ≤ µ̄ (A) = ν (A) = ν (B) + ν (A \B) ≤ ν (B) + ε

which shows µ̄(B) = ν(B) because ε > 0 was arbitrary.
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4. For the σ – finite case, choose Xj ∈M such that Xj ↑ X and µ̄(Xj) <∞
then

µ̄(B) = lim
j→∞

µ̄(B ∩Xj) = lim
j→∞

ν(B ∩Xj) = ν(B).

Theorem 30.19 (Regularity Theorem). Suppose that µ is a σ – finite
premeasure on an algebra A, µ̄ is the extension described in Theorem 30.18
and B ∈M :=M (µ∗) . Then:

1.
µ̄ (B) := inf {µ̄ (C) : B ⊂ C ∈ Aσ} .

2. For any ε > 0 there exists A ⊂ B ⊂ C such that A ∈ Aδ, C ∈ Aσ and
µ̄(C \A) < ε.

3. There exists A ⊂ B ⊂ C such that A ∈ Aδσ, C ∈ Aσδ and µ̄(C \A) = 0.
4. The σ-algebra, M, is the completion of σ (A) with respect to µ̄|σ(A).

Proof. The proofs of items 1. – 3. are the same as the proofs of the
corresponding results in Theorem 28.6 and so will be omitted. Moreover, item
4. is a simple consequence of item 3. and Proposition 19.6.

The following proposition shows that measures may be “restricted” to
non-measurable sets.

Proposition 30.20. Suppose that (X,M, µ) is a probability space and Ω ⊂ X
is any set. Let MΩ := {A ∩Ω : A ∈M} and set P (A ∩ Ω) := µ∗(A ∩ Ω).
Then P is a measure on the σ - algebra MΩ . Moreover, if P ∗ is the outer
measure generated by P, then P ∗(A) = µ∗(A) for all A ⊂ Ω.

Proof. Let A,B ∈M such that A ∩B = ∅. Then since A ∈M ⊂M(µ∗)
it follows from Eq. (30.15) with E := (A ∪B) ∩Ω that

µ∗((A ∪B) ∩Ω) = µ∗((A ∪B) ∩Ω ∩A) + µ∗((A ∪B) ∩Ω ∩Ac)
= µ∗(Ω ∩A) + µ∗(B ∩Ω)

which shows that P is finitely additive. Now suppose A =
∐∞
j=1Aj with

Aj ∈M and let Bn :=
∐∞
j=n+1Aj ∈M. By what we have just proved,

µ∗(A ∩Ω) =
n∑
j=1

µ∗(Aj ∩Ω) + µ∗(Bn ∩Ω) ≥
n∑
j=1

µ∗(Aj ∩Ω).

Passing to the limit as n → ∞ in this last expression and using the sub-
additivity of µ∗ we find

∞∑
j=1

µ∗(Aj ∩Ω) ≥ µ∗(A ∩Ω) ≥
∞∑
j=1

µ∗(Aj ∩Ω).
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Thus

µ∗(A ∩Ω) =
∞∑
j=1

µ∗(Aj ∩Ω)

and we have shown that P = µ∗|MΩ
is a measure. Now let P ∗ be the outer

measure generated by P. For A ⊂ Ω, we have

P ∗(A) = inf {P (B) : A ⊂ B ∈MΩ}
= inf {P (B ∩Ω) : A ⊂ B ∈M}
= inf {µ∗(B ∩Ω) : A ⊂ B ∈M} (30.23)

and since µ∗(B ∩Ω) ≤ µ∗(B),

P ∗(A) ≤ inf {µ∗(B) : A ⊂ B ∈M}
= inf {µ(B) : A ⊂ B ∈M} = µ∗(A).

On the other hand, for A ⊂ B ∈M, we have µ∗(A) ≤ µ∗(B∩Ω) and therefore
by Eq. (30.23)

µ∗(A) ≤ inf {µ∗(B ∩Ω) : A ⊂ B ∈M} = P ∗(A).

and we have shown
µ∗(A) ≤ P ∗(A) ≤ µ∗(A).

30.5 Proof of the Riesz-Markov Theorem 28.16

This section is devoted to completing the proof of the Riesz-Markov Theorem
28.16.

Theorem 30.21. Suppose (X, τ) is a locally compact Hausdorff space, I is
a positive linear functional on Cc(X) and µ := µI be as in Notation 28.15.
Then µ is a Radon measure on X such that I = Iµ, i.e.

I (f) =
∫
X

fdµ for all f ∈ Cc (X) .

Proof. Let µ : τ → [0,∞] be as in Eq. (28.8) and µ∗ : 2X → [0,∞] be the
associate outer measure as in Proposition 30.8. As we have seen in Lemma
30.10, µ is sub-additive on τ and

µ∗ (E) = inf {µ (U) : E ⊂ U ⊂o X} .

By Theorem 30.17, M := M (µ∗) is a σ-algebra and µ∗|M is a measure on
M.
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To show BX ⊂ M it suffices to show U ∈ M for all U ∈ τ, i.e. we must
show;

µ∗ (E) ≥ µ∗ (E ∩ U) + µ∗ (E \ U) (30.24)

for every E ⊂ X such that µ∗ (E) <∞. First suppose E is open, in which case
E ∩U is open as well. Let f ≺ E ∩U and K := supp(f). Then E \U ⊂ E \K
and if g ≺ E \K ∈ τ then f + g ≺ E (see Figure 30.1) and hence

µ∗ (E) ≥ I (f + g) = I (f) + I (g) .

Taking the supremum of this inequality over g ≺ E \K shows

µ∗ (E) ≥ I (f) + µ∗ (E \K) ≥ I (f) + µ∗ (E \ U) .

Taking the supremum of this inequality over f ≺ U shows Eq. (30.24) is valid
for E ∈ τ.

Fig. 30.1. Constructing a function g which approximates 1E\U .

For general E ⊂ X, let V ∈ τ with E ⊂ V, then

µ∗ (V ) ≥ µ∗ (V ∩ U) + µ∗ (V \ U) ≥ µ∗ (E ∩ U) + µ∗ (E \ U)

and taking the infimum of this inequality over such V shows Eq. (30.24) is
valid for general E ⊂ X. Thus U ∈M for all U ∈ τ and therefore BX ⊂M.

Up to this point it has been shown that µ = µ∗|BX
is a measure which, by

very construction, is outer regular. We now verify that µ satisfies Eq. (28.10),
namely that µ (K) = ν (K) for all compact sets K ⊂ X where

ν (K) := inf {I (f) : f ∈ Cc (X, [0, 1]) 3 f ≥ 1K} .

To do this let f ∈ Cc (X, [0, 1]) with f ≥ 1K and ε > 0 be given. Let
Uε := {f > 1− ε} ∈ τ and g ≺ Uε, then g ≤ (1− ε)−1

f and hence
I (g) ≤ (1− ε)−1

I (f) . Taking the supremum of this inequality over all g ≺ Uε
then gives,
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µ (K) ≤ µ (Uε) ≤ (1− ε)−1
I (f) .

Since ε > 0 was arbitrary, we learn µ (K) ≤ I (f) for all 1K ≤ f ≺ X and
therefore, µ (K) ≤ ν (K) . Now suppose that U ∈ τ and K ⊂ U. By Urysohn’s
Lemma 15.8 (also see Lemma 14.27), there exists f ≺ U such that f ≥ 1K
and therefore

µ (K) ≤ ν (K) ≤ I (f) ≤ µ (U) .

By the outer regularity of µ, we have

µ (K) ≤ ν (K) ≤ inf {µ (U) : K ⊂ U ⊂o X} = µ (K) ,

i.e.

µ (K) = ν (K) = inf {I (f) : f ∈ Cc (X, [0, 1]) 3 f ≥ 1K} . (30.25)

This inequality clearly establishes that µ isK-finite and therefore Cc (X, [0,∞)) ⊂
L1 (µ) .

Next we will establish,

I (f) = Iµ (f) :=
∫
X

fdµ (30.26)

for all f ∈ Cc (X) . By the linearity, it suffices to verify Eq. (30.26) holds for
f ∈ Cc (X, [0,∞)) . To do this we will use the “layer cake method” to slice f
into thin pieces. Explicitly, fix an N ∈ N and for n ∈ N let

fn := min
(

max
(
f − n− 1

N
, 0
)
,

1
N

)
, (30.27)

see Figure 30.2. It should be clear from Figure 30.2 that f =
∑∞
n=1 fn with

the sum actually being a finite sum since fn ≡ 0 for all n sufficiently large.
Let K0 := supp(f) and Kn :=

{
f ≥ n

N

}
. Then (again see Figure 30.2) for all

n ∈ N,
1Kn ≤ Nfn ≤ 1Kn−1

which upon integrating on µ gives

µ (Kn) ≤ NIµ (fn) ≤ µ (Kn−1) . (30.28)

Moreover, if U is any open set containing Kn−1, then Nfn ≺ U and so by Eq.
(30.25) and the definition of µ, we have

µ (Kn) ≤ NI (fn) ≤ µ (U) . (30.29)

From the outer regularity of µ, it follows from Eq. (30.29) that

µ (Kn) ≤ NI (fn) ≤ µ (Kn−1) . (30.30)

As a consequence of Eqs. (30.28) and (30.30), we have
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Fig. 30.2. This sequence of figures shows how the function fn is constructed. The
idea is to think of f as describing a “cake” set on a “table,” X. We then slice the
cake into slabs, each of which is placed back on the table. Each of these slabs is
described by one of the functions, fn, as in Eq. (30.27).

N |Iµ (fn)− I (fn)| ≤ µ (Kn−1)− µ (Kn) = µ (Kn−1 \Kn) .

Therefore

|Iµ (f)− I (f)| =

∣∣∣∣∣
∞∑
n=1

Iµ (fn)− I (fn)

∣∣∣∣∣ ≤
∞∑
n=1

|Iµ (fn)− I (fn)|

≤ 1
N

∞∑
n=1

µ (Kn−1 \Kn) =
1
N
µ (K0)→ 0 as N →∞

which establishes Eq. (30.26).
It now only remains to show µ is inner regular on open sets to complete

the proof. If U ∈ τ and µ (U) < ∞, then for any ε > 0 there exists f ≺ U
such that

µ (U) ≤ I (f) + ε =
∫
X

fdµ+ ε ≤ µ (supp(f)) + ε.

Hence if K = supp(f), we have K ⊂ U and µ (U \K) < ε and this shows
µ is inner regular on open sets with finite measure. Finally if U ∈ τ and
µ (U) = ∞, there exists fn ≺ U such that I (fn) ↑ ∞ as n → ∞. Then,
letting Kn = supp(fn), we have Kn ⊂ U and µ (Kn) ≥ I (fn) and therefore
µ (Kn) ↑ µ (U) =∞.
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30.6 More Motivation of Carathéodory’s Construction Theorem 30.17 621

30.6 More Motivation of Carathéodory’s Construction
Theorem 30.17

The next Proposition helps to motivate this definition and the Carathéodory’s
construction Theorem 30.17.

Proposition 30.22. Suppose E = M is a σ – algebra, ρ = µ : M → [0,∞]
is a measure and µ∗ is defined as in Eq. (30.7). Then

1. For A ⊂ X
µ∗(A) = inf{µ(B) : B ∈M and A ⊂ B}.

In particular, µ∗ = µ on M.
2. Then M⊂M(µ∗), i.e. if A ∈M and E ⊂ X then

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac). (30.31)

3. Assume further that µ is σ – finite on M, then M(µ∗) = M̄ = M̄µ and
µ∗|M(µ∗) = µ̄ where (M̄ = M̄µ, µ̄) is the completion of (M, µ) .

Proof. Item 1. If Ei ∈ M such that A ⊂ ∪Ei = B and Ẽi = Ei \ (E1 ∪
· · · ∪ Ei−1) then ∑

µ(Ei) ≥
∑

µ(Ẽi) = µ(B)

so
µ∗(A) ≤

∑
µ(Ẽi) = µ(B) ≤

∑
µ(Ei).

Therefore, µ∗(A) = inf{µ(B) : B ∈M and A ⊂ B}.
Item 2. If µ∗(E) =∞ Eq. (30.31) holds trivially. So assume that µ∗(E) <

∞. Let ε > 0 be given and choose, by Item 1., B ∈ M such that E ⊂ B and
µ(B) ≤ µ∗(E) + ε. Then

µ∗(E) + ε ≥ µ(B) = µ(B ∩A) + µ(B ∩Ac)
≥ µ∗(E ∩A) + µ∗(E ∩Ac).

Since ε > 0 is arbitrary we are done.
Item 3. Let us begin by assuming the µ(X) < ∞. We have already seen

that M⊂M(µ∗). Suppose that A ∈ 2X satisfies,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)∀E ∈ 2X . (30.32)

By Item 1., there exists Bn ∈M such that A ⊂ Bn and µ∗(Bn) ≤ µ∗(A) + 1
n

for all n ∈ N. Therefore B = ∩Bn ⊃ A and µ(B) ≤ µ∗(A) + 1
n for all n which

implies that µ(B) ≤ µ∗(A) which implies that µ(B) = µ∗(A). Similarly there
exists C ∈ M such that Ac ⊂ C and µ∗(Ac) = µ(C). Taking E = X in Eq.
(30.32) shows

µ(X) = µ∗(A) + µ∗(Ac) = µ(B) + µ(C)
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so
µ(Cc) = µ(X)− µ (C) = µ(B).

Thus letting D = Cc, we have

D ⊂ A ⊂ B and µ(D) = µ∗(A) = µ(B)

so µ(B \D) = 0 and hence

A = D ∪ [(B\D) ∩A]

where D ∈M and (B\D) ∩A ∈ N showing that A ∈ M̄ and µ∗(A) = µ̄(A).
Now if µ is σ – finite, choose Xn ∈M such that µ(Xn) <∞ and Xn ↑ X.

Given A ∈M(µ∗) set An = Xn ∩A. Therefore

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀ E ∈ 2X .

Replace E by Xn to learn,

µ∗(Xn) = µ∗(An) + µ∗(Xn \A) = µ∗(An) + µ∗(Xn \An).

The same argument as above produces sets Dn ⊂ An ⊂ Bn such that µ(Dn) =
µ∗(An) = µ(Bn). Hence An = Dn ∪Nn and Nn := (Bn \Dn) ∩ An ∈ N . So
we learn that

A = D ∪N := (∪Dn) ∪ (∪Nn) ∈M∪N = M̄.

We also see that µ∗(A) = µ(D) since D ⊂ A ⊂ D ∪ F where F ∈ M such
that N ⊂ F and

µ(D) = µ∗(D) ≤ µ∗(A) ≤ µ(D ∪ F ) = µ(D).
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31

The Daniell – Stone Construction of
Integration and Measures

Now that we have developed integration theory relative to a measure on a
σ – algebra, it is time to show how to construct the measures that we have
been using. This is a bit technical because there tends to be no “explicit”
description of the general element of the typical σ – algebras. On the other
hand, we do know how to explicitly describe algebras which are generated by
some class of sets E ⊂ 2X . Therefore, we might try to define measures on σ(E)
by there restrictions to A(E). Theorem 19.55 or Theorem 32.6 shows this is a
plausible method.

So the strategy of this section is as follows: 1) construct finitely additive
measure on an algebra, 2) construct “integrals” associated to such finitely
additive measures, 3) extend these integrals (Daniell’s method) when possible
to a larger class of functions, 4) construct a measure from the extended integral
(Daniell – Stone construction theorem).

In this chapter, X will be a given set and we will be dealing with certain
spaces of extended real valued functions f : X → R̄ on X.

Notation 31.1 Given functions f, g : X → R̄, let f + g denote the collection
of functions h : X → R̄ such that h(x) = f(x) + g(x) for all x for which
f(x) + g(x) is well defined, i.e. not of the form ∞−∞.

For example, if X = {1, 2, 3} and f(1) = ∞, f(2) = 2 and f(3) = 5
and g(1) = g(2) = −∞ and g(3) = 4, then h ∈ f + g iff h(2) = −∞ and
h(3) = 7. The value h(1) may be chosen freely. More generally if a, b ∈ R and
f, g : X → R̄ we will write af + bg for the collection of functions h : X → R̄
such that h(x) = af(x) + bg(x) for those x ∈ X where af(x) + bg(x) is well
defined with the values of h(x) at the remaining points being arbitrary. It
will also be useful to have some explicit representatives for af + bg which we
define, for α ∈ R̄, by

(af + bg)α(x) =
{
af(x) + bg(x) when defined

α otherwise. (31.1)

We will make use of this definition with α = 0 and α =∞ below.
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Notation 31.2 Given a collection of extended real valued functions C on X,
let C+ := {f ∈ C : f ≥ 0} – denote the subset of positive functions f ∈ C.

Definition 31.3. A set, L, of extended real valued functions on X is an ex-
tended vector space (or a vector space for short) if L is closed under scalar
multiplication and addition in the following sense: if f, g ∈ L and λ ∈ R then
(f +λg) ⊂ L. A vector space L is said to be an extended lattice (or a lattice
for short) if it is also closed under the lattice operations;

f ∨ g = max(f, g) and f ∧ g = min(f, g).

A linear functional I on L is a function I : L→ R such that

I(f + λg) = I(f) + λI(g) for all f, g ∈ L and λ ∈ R. (31.2)

A linear functional I is positive if I(f) ≥ 0 when f ∈ L+.

Equation (31.2) is to be interpreted as I(h) = I(f) + λI(g) for all h ∈
(f+λg), and in particular I is required to take the same value on all members
of (f + λg).

Remark 31.4. Notice that an extended lattice L is closed under the absolute
value operation since |f | = f ∨ 0 − f ∧ 0 = f ∨ (−f). Also if I is positive
on L then I(f) ≤ I(g) when f, g ∈ L and f ≤ g. Indeed, f ≤ g implies
(g − f)0 ≥ 0, so

0 = I(0) ≤ I((g − f)0) = I(g)− I(f)

and hence I(f) ≤ I(g). If L is a vector space of real-valued functions on X,
then L is a lattice iff f+ = f ∨ 0 ∈ L for all f ∈ L. This is because

|f | = f+ + (−f)+,

f ∨ g =
1
2

(f + g + |f − g|) and

f ∧ g =
1
2

(f + g − |f − g|) .

In the remainder of this chapter we fix a sub-lattice, S ⊂ `∞ (X,R) and a
positive linear functional I : S→ R.

Definition 31.5 (Property (D)). A non-negative linear functional I on S is
said to be continuous under monotone limits if I(fn) ↓ 0 for all {fn}∞n=1 ⊂ S+

satisfying (pointwise) fn ↓ 0. A positive linear functional on S satisfying
property (D) is called a Daniell integral on S. We will also write S as D(I)
– the domain of I.

Lemma 31.6. Let I be a non-negative linear functional on a lattice S. Then
property (D) is equivalent to either of the following two properties:
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D1 If φ, φn ∈ S satisfy; φn ≤ φn+1 for all n and φ ≤ limn→∞ φn, then I(φ) ≤
limn→∞ I(φn).

D2 If uj ∈ S+ and φ ∈ S is such that φ ≤
∑∞
j=1 uj then I(φ) ≤

∑∞
j=1 I(uj).

Proof. (D) =⇒ (D1) Let φ, φn ∈ S be as in D1. Then φ ∧ φn ↑ φ and
φ− (φ ∧ φn) ↓ 0 which implies

I(φ)− I(φ ∧ φn) = I(φ− (φ ∧ φn)) ↓ 0.

Hence
I(φ) = lim

n→∞
I(φ ∧ φn) ≤ lim

n→∞
I(φn).

(D1) =⇒ (D2) Apply (D1) with φn =
∑n
j=1 uj . (D2) =⇒ (D) Suppose φn ∈ S

with φn ↓ 0 and let un = φn − φn+1. Then
∑N
n=1 un = φ1 − φN+1 ↑ φ1 and

hence

I(φ1) ≤
∞∑
n=1

I(un) = lim
N→∞

N∑
n=1

I(un)

= lim
N→∞

I(φ1 − φN+1) = I(φ1)− lim
N→∞

I(φN+1)

from which it follows that limN→∞ I(φN+1) ≤ 0. Since I(φN+1) ≥ 0 for all N
we conclude that limN→∞ I(φN+1) = 0.

31.0.1 Examples of Daniell Integrals

Proposition 31.7. Suppose that (X, τ) is locally compact Hausdorff space
and I is a positive linear functional on S := Cc(X,R). Then for each compact
subset K ⊂ X there is a constant CK < ∞ such that |I(f)| ≤ CK ‖f‖∞ for
all f ∈ Cc(X,R) with supp(f) ⊂ K. Moreover, if fn ∈ Cc(X, [0,∞)) and
fn ↓ 0 (pointwise) as n→∞, then I(fn) ↓ 0 as n→∞ and in particular I
is necessarily a Daniell integral on S.

Proof. Let f ∈ Cc(X,R) with supp(f) ⊂ K. By Lemma 15.8 there exists
ψK ≺ X such that ψK = 1 on K. Since ‖f‖∞ ψK ± f ≥ 0,

0 ≤ I(‖f‖∞ ψK ± f) = ‖f‖∞ I(ψK)± I(f)

from which it follows that |I(f)| ≤ I(ψK) ‖f‖∞ . So the first assertion holds
with CK = I(ψK) < ∞. Now suppose that fn ∈ Cc(X, [0,∞)) and fn ↓ 0 as
n→∞. Let K = supp(f1) and notice that supp(fn) ⊂ K for all n. By Dini’s
Theorem (see Exercise 14.3), ‖fn‖∞ ↓ 0 as n→∞ and hence

0 ≤ I(fn) ≤ CK ‖fn‖∞ ↓ 0 as n→∞.
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For example if X = R and F is an increasing function on R, then I (f) :=∫
R fdF is a Daniell integral on Cc(R,R), see Lemma 28.36. However it is not

generally true in this case that I(fn) ↓ 0 for all fn ∈ S (S is the collection of
compactly supported step functions on R) such that fn ↓ 0. The next example
and proposition addresses this question.

Example 31.8. Suppose F : R→ R is an increasing function which is not right
continuous at x0 ∈ R. Then, letting fn = 1(x0,x0+n−1] ∈ S, we have fn ↓ 0 as
n→∞ but∫

R
fndF = F

(
x0 + n−1

)
− F (x0)→ F (x0+)− F (x0) 6= 0.

Proposition 31.9. Let (A, µ,S = Sf (A, µ), I = Iµ) be as in Definition 28.34.
If µ is a premeasure (Definition 30.1) on A, then

∀ fn ∈ S with fn ↓ 0 =⇒ I(fn) ↓ 0 as n→∞. (31.3)

Hence I is a Daniell integral on S.

Proof. Let ε > 0 be given. Then

fn = fn1fn>εf1 + fn1fn≤εf1 ≤ f11fn>εf1 + εf1,

I(fn) ≤ I (f11fn>εf1) + εI(f1) =
∑
a>0

aµ (f1 = a, fn > εa) + εI(f1),

and hence

lim sup
n→∞

I(fn) ≤
∑
a>0

a lim sup
n→∞

µ (f1 = a, fn > εa) + εI(f1). (31.4)

Because, for a > 0,

A 3 {f1 = a, fn > εa} ↓ ∅ as n→∞

and µ (f1 = a) < ∞, lim supn→∞ µ (f1 = a, fn > εa) = 0. Combining this
with Eq. (31.4) and making use of the fact that ε > 0 is arbitrary we learn
lim supn→∞ I(fn) = 0.

31.1 Extending a Daniell Integral

In the remainder of this chapter we fix a lattice, S, of bounded functions,
f : X → R, and a positive linear functional I : S→ R satisfying Property (D)
of Definition 31.5.

Lemma 31.10. Suppose that {fn} , {gn} ⊂ S.
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31.1 Extending a Daniell Integral 627

1. If fn ↑ f and gn ↑ g with f, g : X → (−∞,∞] such that f ≤ g, then

lim
n→∞

I(fn) ≤ lim
n→∞

I(gn). (31.5)

2. If fn ↓ f and gn ↓ g with f, g : X → [−∞,∞) such that f ≤ g, then Eq.
(31.5) still holds.

In particular, in either case if f = g, then

lim
n→∞

I(fn) = lim
n→∞

I(gn).

Proof.

1. Fix n ∈ N, then gk ∧ fn ↑ fn as k →∞ and gk ∧ fn ≤ gk and hence

I(fn) = lim
k→∞

I(gk ∧ fn) ≤ lim
k→∞

I(gk).

Passing to the limit n→∞ in this equation proves Eq. (31.5).
2. Since −fn ↑ (−f) and −gn ↑ (−g) and −g ≤ (−f), what we just proved

shows

− lim
n→∞

I(gn) = lim
n→∞

I(−gn) ≤ lim
n→∞

I(−fn) = − lim
n→∞

I(fn)

which is equivalent to Eq. (31.5).

Definition 31.11. Let

S↑ = {f : X → (−∞,∞] : ∃ fn ∈ S such that fn ↑ f}

and
S↓ = {f : X → [−∞,∞) : ∃ fn ∈ S such that fn ↓ f} .

Because of Lemma 31.10, for f ∈ S↑ and g ∈ S↓ we may define

I↑ (f) = lim
n→∞

I (fn) if S 3 fn ↑ f

and
I↓ (g) = lim

n→∞
I (gn) if S 3 gn ↓ g.

If f ∈ S↑ ∩S↓, then there exists fn, gn ∈ S such that fn ↑ f and gn ↓ f. Hence
S 3 (gn − fn) ↓ 0 and hence by the continuity property (D),

I↓ (f)− I↑ (f) = lim
n→∞

[I (gn)− I (fn)] = lim
n→∞

I (gn − fn) = 0.

Therefore I↓ = I↑ on S↑ ∩ S↓.
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628 31 The Daniell – Stone Construction of Integration and Measures

Notation 31.12 Using the above comments we may now simply write I (f)
for I↑ (f) or I↓ (f) when f ∈ S↑ or f ∈ S↓. Henceforth we will now view I as
a function on S↑ ∩ S↑.

Again because of Lemma 31.10, let I↑ := I|S↑ or I↓ := I|S↓ are positive
functionals; i.e. if f ≤ g then I(f) ≤ I(g).

Exercise 31.1. Show S↓ = −S↑ and for f ∈ S↓∪S↑ that I(−f) = −I(f) ∈ R̄.

Proposition 31.13. The set S↑ and the extension of I to S↑ in Definition
31.11 satisfies:

1. (Monotonicity) I(f) ≤ I(g) if f, g ∈ S↑ with f ≤ g.
2. S↑ is closed under the lattice operations, i.e. if f, g ∈ S↑ then f ∧ g ∈ S↑

and f ∨ g ∈ S↑. Moreover, if I(f) <∞ and I(g) <∞, then I(f ∨ g) <∞
and I(f ∧ g) <∞.

3. (Positive Linearity) I (f + λg) = I(f)+λI(g) for all f, g ∈ S↑ and λ ≥ 0.
4. f ∈ S+

↑ iff there exists φn ∈ S+ such that f =
∑∞
n=1 φn. Moreover, I(f) =∑∞

m=1 I(φm).
5. If fn ∈ S+

↑ , then
∑∞
n=1 fn =: f ∈ S+

↑ and I(f) =
∑∞
n=1 I(fn).

Remark 31.14. Similar results hold for the extension of I to S↓ in Definition
31.11.

Proof.

1. Monotonicity follows directly from Lemma 31.10.
2. If fn, gn ∈ S are chosen so that fn ↑ f and gn ↑ g, then fn∧gn ↑ f ∧g and
fn ∨ gn ↑ f ∨ g. If we further assume that I(g) < ∞, then f ∧ g ≤ g and
hence I(f ∧g) ≤ I(g) <∞. In particular it follows that I(f ∧0) ∈ (−∞, 0]
for all f ∈ S↑. Combining this with the identity,

I(f) = I (f ∧ 0 + f ∨ 0) = I (f ∧ 0) + I(f ∨ 0) ,

shows I(f) < ∞ iff I(f ∨ 0) < ∞. Since f ∨ g ≤ f ∨ 0 + g ∨ 0, if both
I(f) <∞ and I(g) <∞ then

I(f ∨ g) ≤ I (f ∨ 0) + I (g ∨ 0) <∞.

3. Let fn, gn ∈ S be chosen so that fn ↑ f and gn ↑ g, then (fn + λgn) ↑
(f + λg) and therefore

I (f + λg) = lim
n→∞

I (fn + λgn) = lim
n→∞

I(fn) + λ lim
n→∞

I(gn)

= I(f) + λI(g).

4. Let f ∈ S+
↑ and fn ∈ S be chosen so that fn ↑ f. By replacing fn by fn∨0

if necessary we may assume that fn ∈ S+. Now set φn = fn−fn−1 ∈ S for
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n = 1, 2, 3, . . . with the convention that f0 = 0 ∈ S. Then
∑∞
n=1 φn = f

and

I(f) = lim
n→∞

I(fn) = lim
n→∞

I(
n∑

m=1

φm) = lim
n→∞

n∑
m=1

I(φm) =
∞∑
m=1

I(φm).

Conversely, if f =
∑∞
m=1 φm with φm ∈ S+, then fn :=

∑n
m=1 φm ↑ f as

n→∞ and fn ∈ S+.
5. Using Item 4., fn =

∑∞
m=1 φn,m with φn,m ∈ S+. Thus

f =
∞∑
n=1

∞∑
m=1

φn,m = lim
N→∞

∑
m,n≤N

φn,m ∈ S↑

and

I(f) = lim
N→∞

I(
∑

m,n≤N

φn,m) = lim
N→∞

∑
m,n≤N

I(φn,m)

=
∞∑
n=1

∞∑
m=1

I(φn,m) =
∞∑
n=1

I(fn).

Definition 31.15. Given an arbitrary function g : X → R̄, let

I∗(g) = inf {I(f) : g ≤ f ∈ S↑} ∈ R̄ and

I∗(g) = sup {I(f) : S↓ 3 f ≤ g} ∈ R̄.

with the convention that sup ∅ = −∞ and inf ∅ = +∞.

Definition 31.16. A function g : X → R̄ is integrable if I∗(g) = I∗(g) ∈ R.
Let

L1(I) :=
{
g : X → R̄ : I∗(g) = I∗(g) ∈ R

}
and for g ∈ L1(I), let Ī(g) denote the common value I∗(g) = I∗(g).

Remark 31.17. A function g : X → R̄ is integrable iff for any ε > 0 there exists
f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I)1 such that f ≤ g ≤ h and I(h − f) < ε.
Indeed if g is integrable, then I∗(g) = I∗(g) and there exists f ∈ S↓ ∩ L1(I)
and h ∈ S↑ ∩ L1(I) such that f ≤ g ≤ h and 0 ≤ I∗(g) − I(f) < ε/2 and
0 ≤ I(h)−I∗(g) < ε/2. Adding these two inequalities implies 0 ≤ I(h)−I(f) =
I(h − f) < ε. Conversely, if there exists f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I)
such that f ≤ g ≤ h and I(h− f) < ε, then

I(f) = I∗(f) ≤ I∗(g) ≤ I∗(h) = I(h) and
I(f) = I∗(f) ≤ I∗(g) ≤ I∗(h) = I(h)

1 Equivalently, f ∈ S↓ with I(f) > −∞ and h ∈ S↑ with I(h) <∞.
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and therefore

0 ≤ I∗(g)− I∗(g) ≤ I(h)− I(f) = I(h− f) < ε.

Since ε > 0 is arbitrary, this shows I∗(g) = I∗(g).

Proposition 31.18. Given functions f, g : X → R̄, then:

1. I∗(λf) = λI∗(f) for all λ ≥ 0.
2. (Chebyshev’s Inequality.) Suppose f : X → [0,∞] is a function and α ∈

(0,∞), then I∗(1{f≥α}) ≤ 1
αI

∗(f) and if I∗(f) <∞ then I∗(1{f=∞}) = 0.
3. I∗ is sub-additive, i.e. if I∗(f)+I∗(g) is not of the form∞−∞ or −∞+∞,

then
I∗(f + g) ≤ I∗(f) + I∗(g). (31.6)

This inequality is to be interpreted to mean,

I∗(h) ≤ I∗(f) + I∗(g) for all h ∈ (f + g).

4. I∗(−g) = −I∗(g).
5. I∗(g) ≤ I∗(g).
6. If f ≤ g then I∗(f) ≤ I∗(g) and I∗(f) ≤ I∗(g).
7. If g ∈ S↑ and I(g) < ∞ or g ∈ S↓ and I(g) > −∞ then I∗(g) = I∗(g) =
I(g).

Proof.

1. Suppose that λ > 0 (the λ = 0 case being trivial), then

I∗(λf) = inf {I(h) : λf ≤ h ∈ S↑} = inf
{
I(h) : f ≤ λ−1h ∈ S↑

}
= inf {I(λg) : f ≤ g ∈ S↑} = λ inf {I(g) : f ≤ g ∈ S↑} = λI∗(f).

2. For α ∈ (0,∞), α1{f≥α} ≤ f and therefore,

αI∗(1{f≥α}) = I∗(α1{f≥α}) ≤ I∗(f).

Since N1{f=∞} ≤ f for all N ∈ (0,∞),

NI∗(1{f=∞}) = I∗(N1{f=∞}) ≤ I∗(f).

So if I∗(f) < ∞, this inequality implies I∗(1{f=∞}) = 0 because N is
arbitrary.

3. If I∗(f) + I∗(g) = ∞ the inequality is trivial so we may assume that
I∗(f), I∗(g) ∈ [−∞,∞). If I∗(f) + I∗(g) = −∞ then we may assume, by
interchanging f and g if necessary, that I∗(f) = −∞ and I∗(g) <∞. By
definition of I∗, there exists fn ∈ S↑ and gn ∈ S↑ such that f ≤ fn and
g ≤ gn and I(fn) ↓ −∞ and I(gn) ↓ I∗(g). Since f + g ≤ fn + gn ∈ S↑,
(i.e. h ≤ fn + gn for all h ∈ (f + g) which holds because fn, gn > −∞)
and
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I(fn + gn) = I(fn) + I(gn) ↓ −∞+ I∗(g) = −∞,
it follows that I∗(f + g) = −∞, i.e. I∗(h) = −∞ for all h ∈ f + g.
Henceforth we may assume I∗(f), I∗(g) ∈ R. Let k ∈ (f + g) and f ≤
h1 ∈ S↑ and g ≤ h2 ∈ S↑. Then k ≤ h1 + h2 ∈ S↑ because if (for example)
f(x) = ∞ and g(x) = −∞, then h1(x) = ∞ and h2(x) > −∞ since
h2 ∈ S↑. Thus h1(x) + h2(x) = ∞ ≥ k(x) no matter the value of k(x).
It now follows from the definitions that I∗(k) ≤ I(h1) + I(h2) for all
f ≤ h1 ∈ S↑ and g ≤ h2 ∈ S↑. Therefore,

I∗(k) ≤ inf {I(h1) + I(h2) : f ≤ h1 ∈ S↑ and g ≤ h2 ∈ S↑}
= I∗(f) + I∗(g)

and since k ∈ (f + g) is arbitrary we have proven Eq. (31.6).
4. From the definitions and Exercise 31.1,

I∗(−g) = sup {I(f) : f ≤ −g ∈ S↓} = sup {I(f) : g ≤ −f ∈ S↑}
= sup {I(−h) : g ≤ h ∈ S↑} = − inf {I(h) : g ≤ h ∈ S↑}
= −I∗(g).

5. The assertion is trivially true if I∗(g) = I∗(g) = ∞ or I∗(g) = I∗(g) =
−∞. So we now assume that I∗(g) and I∗(g) are not both ∞ or −∞.
Since 0 ∈ (g − g) and I∗(g − g) ≤ I∗(g) + I∗(−g) (by Item 1),

0 = I∗(0) ≤ I∗(g) + I∗(−g) = I∗(g)− I∗(g)

provided the right side is well defined which it is by assumption. So again
we deduce that I∗(g) ≤ I∗(g).

6. If f ≤ g then

I∗(f) = inf {I(h) : f ≤ h ∈ S↑} ≤ inf {I(h) : g ≤ h ∈ S↑} = I∗(g)

and

I∗(f) = sup {I(h) : S↓ 3 h ≤ f} ≤ sup {I(h) : S↓ 3 h ≤ g} = I∗(g).

7. Let g ∈ S↑ with I(g) <∞ and choose gn ∈ S such that gn ↑ g. Then

I∗(g) ≥ I∗(g) ≥ I(gn)→ I(g) as n→∞.

Combining this with

I∗(g) = inf {I(f) : g ≤ f ∈ S↑} = I(g)

shows
I∗(g) ≥ I∗(g) ≥ I(g) = I∗(g)

and hence I∗(g) = I(g) = I∗(g). If g ∈ S↓ and I(g) > −∞, then by what
we have just proved,

I∗(−g) = I(−g) = I∗(−g).

This finishes the proof since I∗(−g) = −I∗(g) and I(−g) = −I(g).
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Lemma 31.19 (Countable Sub-additivity of I∗). Let fn : X → [0,∞] be
a sequence of functions and F :=

∑∞
n=1 fn. Then

I∗(F ) = I∗(
∞∑
n=1

fn) ≤
∞∑
n=1

I∗(fn). (31.7)

Proof. Suppose
∑∞
n=1 I

∗(fn) <∞, for otherwise the result is trivial. Let
ε > 0 be given and choose gn ∈ S+

↑ such that fn ≤ gn and I(gn) = I∗(fn)+εn
where

∑∞
n=1 εn ≤ ε. (For example take εn ≤ 2−nε.) Then

∑∞
n=1 gn =: G ∈ S+

↑ ,
F ≤ G and so

I∗(F ) ≤ I∗(G) = I(G) =
∞∑
n=1

I(gn) =
∞∑
n=1

(I∗(fn) + εn) ≤
∞∑
n=1

I∗(fn) + ε.

Since ε > 0 is arbitrary, the proof is complete.

Proposition 31.20. The space L1(I) is an extended lattice and Ī : L1(I) →
R is linear in the sense of Definition 31.3.

Proof. Let us begin by showing that L1(I) is a vector space. Suppose that
g1, g2 ∈ L1(I), and g ∈ (g1 + g2). Given ε > 0 there exists fi ∈ S↓ ∩L1(I) and
hi ∈ S↑ ∩L1(I) such that fi ≤ gi ≤ hi and I(hi − fi) < ε/2. Let us now show

f1(x) + f2(x) ≤ g(x) ≤ h1(x) + h2(x) ∀x ∈ X. (31.8)

This is clear at points x ∈ X where g1(x) + g2(x) is well defined. The other
case to consider is where g1(x) = ∞ = −g2(x) in which case h1(x) = ∞
and f2(x) = −∞ while , h2(x) > −∞ and f1(x) < ∞ because h2 ∈ S↑ and
f1 ∈ S↓. Therefore, f1(x) + f2(x) = −∞ and h1(x) + h2(x) = ∞ so that
Eq. (31.8) is valid no matter how g(x) is chosen. Since f1 + f2 ∈ S↓ ∩ L1(I),
h1 + h2 ∈ S↑ ∩ L1(I) and

Ī(gi) ≤ I(fi) + ε/2 and − ε/2 + I(hi) ≤ Ī(gi),

we find

Ī(g1) + Ī(g2)− ε ≤ I(f1) + I(f2) = I(f1 + f2) ≤ I∗(g) ≤ I∗(g)
≤ I(h1 + h2) = I(h1) + I(h2) ≤ Ī(g1) + Ī(g2) + ε.

Because ε > 0 is arbitrary, we have shown that g ∈ L1(I) and Ī(g1)+ Ī(g2) =
Ī(g), i.e. Ī(g1 + g2) = Ī(g1) + Ī(g2). It is a simple matter to show λg ∈ L1(I)
and Ī(λg) = λĪ(g) for all g ∈ L1(I) and λ ∈ R. For example if λ = −1 (the
most interesting case), choose f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I) such that
f ≤ g ≤ h and I(h− f) < ε. Therefore,
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S↓ ∩ L1(I) 3 −h ≤ −g ≤ −f ∈ S↑ ∩ L1(I)

with I(−f − (−h)) = I(h − f) < ε and this shows that −g ∈ L1(I) and
Ī(−g) = −Ī(g). We have now shown that L1(I) is a vector space of extended
real valued functions and Ī : L1(I)→ R is linear. To show L1(I) is a lattice, let
g1, g2 ∈ L1(I) and fi ∈ S↓ ∩L1(I) and hi ∈ S↑ ∩L1(I) such that fi ≤ gi ≤ hi
and I(hi − fi) < ε/2 as above. Then using Proposition 31.13 and Remark
31.14,

S↓ ∩ L1(I) 3 f1 ∧ f2 ≤ g1 ∧ g2 ≤ h1 ∧ h2 ∈ S↑ ∩ L1(I).

Moreover,
0 ≤ h1 ∧ h2 − f1 ∧ f2 ≤ h1 − f1 + h2 − f2,

because, for example, if h1 ∧ h2 = h1 and f1 ∧ f2 = f2 then

h1 ∧ h2 − f1 ∧ f2 = h1 − f2 ≤ h2 − f2.

Therefore,

I (h1 ∧ h2 − f1 ∧ f2) ≤ I (h1 − f1 + h2 − f2) < ε

and hence by Remark 31.17, g1 ∧ g2 ∈ L1(I). Similarly

0 ≤ h1∨h2 − f1∨f2 ≤ h1 − f1 + h2 − f2,

because, for example, if h1∨h2 = h1 and f1∨f2 = f2 then

h1∨h2 − f1∨f2 = h1 − f2 ≤ h1 − f1.

Therefore,
I (h1∨h2 − f1∨f2) ≤ I (h1 − f1 + h2 − f2) < ε

and hence by Remark 31.17, g1∨g2 ∈ L1(I).

Theorem 31.21 (Monotone convergence theorem). If fn ∈ L1(I) and
fn ↑ f, then f ∈ L1(I) iff limn→∞ Ī(fn) = supn Ī(fn) < ∞ in which case
Ī(f) = limn→∞ Ī(fn).

Proof. If f ∈ L1(I), then by monotonicity Ī(fn) ≤ Ī(f) for all n and there-
fore limn→∞ Ī(fn) ≤ Ī(f) <∞. Conversely, suppose ` := limn→∞ Ī(fn) <∞
and let g :=

∑∞
n=1(fn+1−fn)0. The reader should check that f ≤ (f1+g)∞ ∈

(f1 + g) . So by Lemma 31.19,

I∗(f) ≤ I∗((f1 + g)∞) ≤ I∗(f1) + I∗(g)

≤ I∗(f1) +
∞∑
n=1

I∗ ((fn+1 − fn)0) = Ī(f1) +
∞∑
n=1

Ī (fn+1 − fn)

= Ī(f1) +
∞∑
n=1

[
Ī(fn+1)− Ī(fn)

]
= Ī(f1) + `− Ī(f1) = `. (31.9)

Because fn ≤ f, it follows that Ī(fn) = I∗(fn) ≤ I∗(f) which upon passing
to limit implies ` ≤ I∗(f). This inequality and the one in Eq. (31.9) shows
I∗(f) ≤ ` ≤ I∗(f) and therefore, f ∈ L1(I) and Ī(f) = ` = limn→∞ Ī(fn).
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Lemma 31.22 (Fatou’s Lemma). Suppose {fn} ⊂
[
L1(I)

]+
, then inf fn ∈

L1(I). If lim infn→∞ Ī(fn) <∞, then lim infn→∞ fn ∈ L1(I) and in this case

Ī(lim inf
n→∞

fn) ≤ lim inf
n→∞

Ī(fn).

Proof. Let gk := f1 ∧ · · · ∧ fk ∈ L1(I), then gk ↓ g := infn fn. Since −gk ↑
−g, −gk ∈ L1(I) for all k and Ī(−gk) ≤ Ī(0) = 0, it follow from Theorem
31.21 that −g ∈ L1(I) and hence so is infn fn = g ∈ L1(I). By what we have
just proved, uk := infn≥k fn ∈ L1(I) for all k. Notice that uk ↑ lim infn→∞ fn,
and by monotonicity that Ī(uk) ≤ Ī(fk) for all k. Therefore,

lim
k→∞

Ī(uk) = lim inf
k→∞

Ī(uk) ≤ lim inf
k→∞

Ī(fn) <∞

and by the monotone convergence Theorem 31.21, lim infn→∞ fn = limk→∞ uk ∈
L1(I) and

Ī(lim inf
n→∞

fn) = lim
k→∞

Ī(uk) ≤ lim inf
n→∞

Ī(fn).

Before stating the dominated convergence theorem, it is helpful to remove
some of the annoyances of dealing with extended real valued functions. As we
have done when studying integrals associated to a measure, we can do this by
modifying integrable functions by a “null” function.

Definition 31.23. A function n : X → R̄ is a null function if I∗(|n|) = 0.
A subset E ⊂ X is said to be a null set if 1E is a null function. Given two
functions f, g : X → R̄ we will write f = g a.e. if {f 6= g} is a null set.

Here are some basic properties of null functions and null sets.

Proposition 31.24. Suppose that n : X → R̄ is a null function and f : X →
R̄ is an arbitrary function. Then

1. n ∈ L1(I) and Ī(n) = 0.
2. The function n · f is a null function.
3. The set {x ∈ X : n(x) 6= 0} is a null set.
4. If E is a null set and f ∈ L1(I), then 1Ecf ∈ L1(I) and Ī(f) = Ī(1Ecf).
5. If g ∈ L1(I) and f = g a.e. then f ∈ L1(I) and Ī(f) = Ī(g).
6. If f ∈ L1(I), then E := {|f | =∞} is a null set.

Proof.

1. If n is null, using ±n ≤ |n| we find I∗(±n) ≤ I∗(|n|) = 0, i.e. I∗(n) ≤ 0
and −I∗(n) = I∗(−n) ≤ 0. Thus it follows that I∗(n) ≤ 0 ≤ I∗(n) and
therefore n ∈ L1(I) with Ī (n) = 0.

2. Since |n · f | ≤ ∞ · |n| , I∗ (|n · f |) ≤ I∗ (∞ · |n|) . For k ∈ N, k |n| ∈ L1(I)
and Ī(k |n|) = kI (|n|) = 0, so k |n| is a null function. By the monotone
convergence Theorem 31.21 and the fact k |n| ↑ ∞ · |n| ∈ L1(I) as k ↑ ∞,
Ī (∞ · |n|) = limk→∞ Ī (k |n|) = 0. Therefore ∞· |n| is a null function and
hence so is n · f.
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3. Since 1{n 6=0} ≤ ∞ · 1{n 6=0} = ∞ · |n| , I∗
(
1{n 6=0}

)
≤ I∗ (∞ · |n|) = 0

showing {n 6= 0} is a null set.
4. Since 1Ef ∈ L1(I) and Ī (1Ef) = 0,

f1Ec = (f − 1Ef)0 ∈ (f − 1Ef) ⊂ L1(I)

and Ī(f1Ec) = Ī(f)− Ī(1Ef) = Ī(f).
5. Letting E be the null set {f 6= g} , then 1Ecf = 1Ecg ∈ L1(I) and 1Ef is

a null function and therefore, f = 1Ef + 1Ecf ∈ L1(I) and

Ī(f) = Ī(1Ef) + Ī(f1Ec) = Ī(1Ecf) = Ī(1Ecg) = Ī(g).

6. By Proposition 31.20, |f | ∈ L1(I) and so by Chebyshev’s inequality (Item
2 of Proposition 31.18), {|f | =∞} is a null set.

Theorem 31.25 (Dominated Convergence Theorem). Suppose that
{fn : n ∈ N} ⊂ L1(I) such that f := lim fn exists pointwise and there exists
g ∈ L1(I) such that |fn| ≤ g for all n. Then f ∈ L1(I) and

lim
n→∞

Ī(fn) = Ī( lim
n→∞

fn) = Ī(f).

Proof. By Proposition 31.24, the set E := {g =∞} is a null set and
Ī(1Ecfn) = Ī(fn) and Ī(1Ecg) = Ī(g). Since

Ī(1Ec(g ± fn)) ≤ 2Ī(1Ecg) = 2Ī(g) <∞,

we may apply Fatou’s Lemma 31.22 to find 1Ec (g ± f) ∈ L1(I) and

Ī(1Ec (g ± f)) ≤ lim inf
n→∞

Ī(1Ec (g ± fn))

= lim inf
n→∞

{
Ī(1Ecg)± Ī(1Ecfn)

}
= lim inf

n→∞

{
Ī(g)± Ī(fn)

}
.

Since f = 1Ecf a.e. and 1Ecf = 1
21Ec (g + f − (g + f)) ∈ L1(I), Proposition

31.24 implies f ∈ L1(I). So the previous inequality may be written as

Ī(g)± Ī(f) = Ī(1Ecg)± Ī(1Ecf)

= Ī(1Ec (g ± f)) ≤ Ī(g) +
{

lim infn→∞ Ī(fn)
− lim supn→∞ Ī(fn),

wherein we have used lim infn→∞(−an) = − lim sup an. These two inequal-
ities imply lim supn→∞ Ī(fn) ≤ Ī(f) ≤ lim infn→∞ Ī(fn) which shows that
lim
n→∞

Ī(fn) exists and is equal to Ī(f).
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31.2 The Structure of L1(I)

Let S↑↓ (I) denote the collections of functions f : X → R̄ for which there
exists fn ∈ S↑ ∩ L1(I) such that fn ↓ f as n → ∞ and limn→∞ Ī(fn) >
−∞. Applying the monotone convergence theorem to f1 − fn, it follows that
f1 − f ∈ L1(I) and hence −f ∈ L1(I) so that S↑↓ (I) ⊂ L1(I).

Lemma 31.26. Let f : X → R̄ be a function. If I∗(f) ∈ R, then there exists
g ∈ S↑↓ (I) such that f ≤ g and I∗(f) = Ī(g). (Consequently, n : X → [0, ,∞)
is a positive null function iff there exists g ∈ S↑↓ (I) such that g ≥ n and
Ī(g) = 0.) Moreover, f ∈ L1(I) iff there exists g ∈ S↑↓ (I) such that g ≥ f
and f = g a.e.

Proof. By definition of I∗(f) we may choose a sequence of functions gk ∈
S↑ ∩ L1(I) such that gk ≥ f and Ī(gk) ↓ I∗(f). By replacing gk by g1 ∧ · · · ∧
gk if necessary (g1 ∧ · · · ∧ gk ∈ S↑ ∩ L1(I) by Proposition 31.13), we may
assume that gk is a decreasing sequence. Then limk→∞ gk =: g ≥ f and, since
limk→∞ Ī(gk) = I∗(f) > −∞, g ∈ S↑↓ (I) . By the monotone convergence
theorem applied to g1 − gk,

Ī(g1 − g) = lim
k→∞

Ī(g1 − gk) = Ī(g1)− I∗(f),

so Ī(g) = I∗(f). Now suppose that f ∈ L1(I), then (g − f)0 ≥ 0 and

Ī ((g − f)0) = Ī (g)− Ī(f) = Ī(g)− I∗(f) = 0.

Therefore (g − f)0 is a null functions and hence so is ∞ · (g − f)0. Because

1{f 6=g} = 1{f<g} ≤ ∞ · (g − f)0,

{f 6= g} is a null set so if f ∈ L1(I) there exists g ∈ S↑↓ (I) such that f = g
a.e. The converse statement has already been proved in Proposition 31.24.

Proposition 31.27. Suppose that I and S are as above and J is another
Daniell integral on a vector lattice T such that S ⊂ T and I = J |S. (We
abbreviate this by writing I ⊂ J.) Then L1(I) ⊂ L1(J) and Ī = J̄ on L1(I),
or in abbreviated form: if I ⊂ J then Ī ⊂ J̄ .

Proof. From the construction of the extensions, it follows that S↑ ⊂ T↑
and the I = J on S↑. Similarly, it follows that S↑↓ (I) ⊂ T↑↓ (J) and Ī = J̄
on S↑↓ (I) . From Lemma 31.26 we learn, if n ≥ 0 is an I – null function then
there exists g ∈ S↑↓ (I) ⊂ T↑↓ (J) such that n ≤ g and 0 = I(g) = J(g).
This shows that n is also a J – null function and in particular every I –
null set is a J – null set. Again by Lemma 31.26, if f ∈ L1(I) there exists
g ∈ S↑↓ (I) ⊂ T↑↓ (J) such that {f 6= g} is an I – null set and hence a J – null
set. So by Proposition 31.24, f ∈ L1(J) and I(f) = I(g) = J(g) = J(f).
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31.3 Relationship to Measure Theory

Definition 31.28. A function f : X → [0,∞] is said to I-measurable (or
just measurable) if f ∧ g ∈ L1(I) for all g ∈ L1(I).

Lemma 31.29. The set of non-negative measurable functions is closed under
pairwise minimums and maximums and pointwise limits.

Proof. Suppose that f, g : X → [0,∞] are measurable functions. The fact
that f ∧ g and f ∨ g are measurable (i.e. (f ∧ g) ∧ h and (f ∨ g) ∨ h are in
L1(I) for all h ∈ L1(I)) follows from the identities

(f ∧ g) ∧ h = f ∧ (g ∧ h) and (f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h)

and the fact that L1(I) is a lattice. If fn : X → [0,∞] is a sequence of
measurable functions such that f = limn→∞ fn exists pointwise, then for
h ∈ L1(I), we have h ∧ fn → h ∧ f . By the dominated convergence theorem
(using |h ∧ fn| ≤ |h|) it follows that h∧f ∈ L1(I). Since h ∈ L1(I) is arbitrary
we conclude that f is measurable as well.

Lemma 31.30. A non-negative function f on X is measurable iff φ ∧ f ∈
L1(I) for all φ ∈ S.

Proof. Suppose f : X → [0,∞] is a function such that φ ∧ f ∈ L1(I)
for all φ ∈ S and let g ∈ S↑ ∩ L1(I). Choose φn ∈ S such that φn ↑ g as
n → ∞, then φn ∧ f ∈ L1(I) and by the monotone convergence Theorem
31.21, φn ∧ f ↑ g ∧ f ∈ L1(I). Similarly, using the dominated convergence
Theorem 31.25, it follows that g ∧ f ∈ L1(I) for all g ∈ S↑↓ (I) . Finally
for any h ∈ L1(I), there exists g ∈ S↑↓ (I) such that h = g a.e. and hence
h ∧ f = g ∧ f a.e. and therefore by Proposition 31.24, h ∧ f ∈ L1(I). This
completes the proof since the converse direction is trivial.

Definition 31.31. A set A ⊂ X is measurable if 1A is measurable and A
integrable if 1A ∈ L1(I). Let R denote the collection of measurable subsets
of X.

Remark 31.32. Suppose that f ≥ 0, then f ∈ L1(I) iff f is measurable and
I∗(f) < ∞. Indeed, if f is measurable and I∗(f) < ∞, there exists g ∈
S↑ ∩ L1(I) such that f ≤ g. Since f is measurable, f = f ∧ g ∈ L1(I). In
particular if A ∈ R, then A is integrable iff I∗(1A) <∞.

Lemma 31.33. The set R is a ring which is a σ – algebra if 1 is measurable.
(Notice that 1 is measurable iff 1 ∧ φ ∈ L1(I) for all φ ∈ S. This condition is
clearly implied by assuming 1 ∧ φ ∈ S for all φ ∈ S. This will be the typical
case in applications.)
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Proof. Suppose that A,B ∈ R, then A∩B and A∪B are in R by Lemma
31.29 because

1A∩B = 1A ∧ 1B and 1A∪B = 1A ∨ 1B .

If Ak ∈ R, then the identities,

1∪∞k=1Ak
= lim
n→∞

1∪n
k=1Ak

and 1∩∞k=1Ak
= lim
n→∞

1∩n
k=1Ak

along with Lemma 31.29 shows that ∪∞k=1Ak and ∩∞k=1Ak are in R as well.
Also if A,B ∈ R and g ∈ S, then

g ∧ 1A\B = g ∧ 1A − g ∧ 1A∩B + g ∧ 0 ∈ L1(I) (31.10)

showing the A \ B ∈ R as well.2 Thus we have shown that R is a ring. If
1 = 1X is measurable it follows that X ∈ R and R becomes a σ – algebra.

Lemma 31.34 (Chebyshev’s Inequality). Suppose that 1 is measurable.

1. If f ∈
[
L1(I)

]+ then, for all α ∈ R, the set {f > α} is measurable. More-
over, if α > 0 then {f > α} is integrable and Ī(1{f>α}) ≤ α−1Ī(f).

2. σ(S) ⊂ R.

Proof.

1. If α < 0, {f > α} = X ∈ R since 1 is measurable. So now assume that
α ≥ 0. If α = 0 let g = f ∈ L1(I) and if α > 0 let g = α−1f −

(
α−1f

)
∧ 1.

(Notice that g is a difference of two L1(I) – functions and hence in L1(I).)
The function g ∈

[
L1(I)

]+ has been manufactured so that {g > 0} =
{f > α}. Now let φn := (ng) ∧ 1 ∈

[
L1(I)

]+ then φn ↑ 1{f>α} as n→∞
showing 1{f>α} is measurable and hence that {f > α} is measurable.
Finally if α > 0,

1{f>α} = 1{f>α} ∧
(
α−1f

)
∈ L1(I)

showing the {f > α} is integrable and

Ī(1{f>α}) = Ī(1{f>α} ∧
(
α−1f

)
) ≤ Ī(α−1f) = α−1Ī(f).

2. Since f ∈ S+ is R measurable by (1) and S = S+−S+, it follows that any
f ∈ S is R measurable, σ(S) ⊂ R.

2 Indeed, for x ∈ A ∩ B, x ∈ A \ B and x ∈ Ac, Eq. (31.10) evaluated at x states,
respectively, that

g ∧ 0 = g ∧ 1− g ∧ 1 + g ∧ 0,

g ∧ 1 = g ∧ 1− g ∧ 0 + g ∧ 0 and

g ∧ 0 = g ∧ 0− g ∧ 0 + g ∧ 0,

all of which are true.
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Lemma 31.35. Let 1 be measurable. Define µ± : R → [0,∞] by

µ+(A) = I∗(1A) and µ−(A) = I∗(1A)

Then µ± are measures on R such that µ− ≤ µ+ and µ−(A) = µ+(A) whenever
µ+(A) <∞.

Notice by Remark 31.32 that

µ+(A) =
{
Ī(1A) if A is integrable
∞ if A ∈ R but A is not integrable.

Proof. Since 1∅ = 0, µ±(∅) = Ī(0) = 0 and if A,B ∈ R, A ⊂ B then
µ+(A) = I∗(1A) ≤ I∗(1B) = µ+(B) and similarly, µ−(A) = I∗(1A) ≤
I∗(1B) = µ−(B). Hence µ± are monotonic. By Remark 31.32 if µ+(A) < ∞
then A is integrable so

µ−(A) = I∗(1A) = Ī(1A) = I∗(1A) = µ+(A).

Now suppose that {Ej}∞j=1 ⊂ R is a sequence of pairwise disjoint sets and let
E := ∪∞j=1Ej ∈ R. If µ+(Ei) =∞ for some i then by monotonicity µ+(E) =

∞ as well. If µ+(Ej) < ∞ for all j then fn :=
∑n
j=1 1Ej ∈

[
L1(I)

]+ with
fn ↑ 1E . Therefore, by the monotone convergence theorem, 1E is integrable
iff

lim
n→∞

Ī(fn) =
∞∑
j=1

µ+(Ej) <∞

in which case 1E ∈ L1(I) and limn→∞ Ī(fn) = Ī(1E) = µ+(E). Thus we have
shown that µ+ is a measure and µ−(E) = µ+(E) whenever µ+(E) <∞. The
fact the µ− is a measure will be shown in the course of the proof of Theorem
31.38.

Example 31.36. Suppose X is a set, S = {0} is the trivial vector space and
I(0) = 0. Then clearly I is a Daniel integral,

I∗(g) =
{
∞ if g(x) > 0 for some x
0 if g ≤ 0

and similarly,

I∗(g) =
{
−∞ if g(x) < 0 for some x
0 if g ≥ 0.

Therefore, L1(I) = {0} and for any A ⊂ X we have 1A ∧ 0 = 0 ∈ S so that
R = 2X . Since 1A /∈ L1(I) = {0} unless A = ∅ set, the measure µ+ in Lemma
31.35 is given by µ+(A) = ∞ if A 6= ∅ and µ+(∅) = 0, i.e. µ+(A) = I∗(1A)
while µ− ≡ 0.
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Lemma 31.37. For A ∈ R, let

α(A) := sup{µ+(B) : B ∈ R, B ⊂ A and µ+(B) <∞},

then α is a measure on R such that α(A) = µ+(A) whenever µ+(A) < ∞.
If ν is any measure on R such that ν(B) = µ+(B) when µ+(B) < ∞, then
α ≤ ν. Moreover, α ≤ µ−.

Proof. Clearly α(A) = µ+(A) whenever µ+(A) < ∞. Now let A =
∪∞n=1An with{An}∞n=1 ⊂ R being a collection of pairwise disjoint subsets.
Let Bn ⊂ An with µ+(Bn) <∞, then BN := ∪Nn=1Bn ⊂ A and µ+(BN ) <∞
and hence

α(A) ≥ µ+(BN ) =
N∑
n=1

µ+(Bn)

and since Bn ⊂ An with µ+(Bn) < ∞ is arbitrary it follows that α(A) ≥∑N
n=1 α(An) and hence letting N → ∞ implies α(A) ≥

∑∞
n=1 α(An). Con-

versely, if B ⊂ A with µ+(B) <∞, then B ∩An ⊂ An and µ+(B ∩An) <∞.
Therefore,

µ+(B) =
∞∑
n=1

µ+(B ∩An) ≤
∞∑
n=1

α(An)

for all such B and hence α(A) ≤
∑∞
n=1 α(An). Using the definition of α and

the assumption that ν(B) = µ+(B) when µ+(B) <∞,

α(A) = sup{ν(B) : B ∈ R, B ⊂ A and µ+(B) <∞} ≤ ν(A),

showing α ≤ ν. Similarly,

α(A) = sup{Ī(1B) : B ∈ R, B ⊂ A and µ+(B) <∞}
= sup{I∗(1B) : B ∈ R, B ⊂ A and µ+(B) <∞} ≤ I∗(1A) = µ−(A).

Theorem 31.38 (Stone). Suppose that 1 is measurable and µ+ and µ− are
as defined in Lemma 31.35, then:

1. L1(I) = L1(X,R, µ+) = L1(µ+) and for integrable f ∈ L1(µ+),

Ī(f) =
∫
X

fdµ+. (31.11)

2. If ν is any measure on R such that S ⊂ L1(ν) and

Ī(f) =
∫
X

fdν for all f ∈ S (31.12)

then µ−(A) ≤ ν(A) ≤ µ+(A) for all A ∈ R with µ−(A) = ν(A) = µ+(A)
whenever µ+(A) <∞.
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3. Letting α be as defined in Lemma 31.37, µ− = α and hence µ− is a
measure. (So µ+ is the maximal and µ− is the minimal measure for which
Eq. (31.12) holds.)

4. Conversely if ν is any measure on σ(S) such that ν(A) = µ+(A) when
A ∈ σ(S) and µ+(A) <∞, then Eq. (31.12) is valid.

Proof.

1. Suppose that f ∈
[
L1(I)

]+
, then Lemma 31.34 implies that f is R mea-

surable. Given n ∈ N, let

φn :=
22n∑
k=1

k

2n
1{ k

2n<f≤ k+1
2n } = 2−n

22n∑
k=1

1{ k
2n<f}. (31.13)

Then we know { k2n < f} ∈ R and that 1{ k
2n<f} = 1{ k

2n<f} ∧
(

2n

k f
)
∈

L1(I), i.e. µ+

(
k
2n < f

)
< ∞. Therefore φn ∈

[
L1(I)

]+ and φn ↑ f. Sup-
pose that ν is any measure such that ν(A) = µ+(A) when µ+(A) < ∞,
then by the monotone convergence theorems for Ī and the Lebesgue inte-
gral,

Ī(f) = lim
n→∞

Ī(φn) = lim
n→∞

2−n
22n∑
k=1

Ī(1{ k
2n<f}) = lim

n→∞
2−n

22n∑
k=1

µ+

(
k

2n
< f

)

= lim
n→∞

2−n
22n∑
k=1

ν

(
k

2n
< f

)
= lim
n→∞

∫
X

φndν =
∫
X

fdν. (31.14)

This shows that f ∈
[
L1(ν)

]+ and that Ī(f) =
∫
X
fdν. Since every f ∈

L1(I) is of the form f = f+ − f− with f± ∈
[
L1(I)

]+
, it follows that

L1(I) ⊂ L1(µ+) ⊂ L1(ν) ⊂ L1(α) and Eq. (31.12) holds for all f ∈ L1(I).
Conversely suppose that f ∈

[
L1(µ+)

]+
. Define φn as in Eq. (31.13).

Chebyshev’s inequality implies that µ+( k2n < f) < ∞ and hence { k2n <
f} is I – integrable. Again by the monotone convergence for Lebesgue
integrals and the computations in Eq. (31.14),

∞ >

∫
X

fdµ+ = lim
n→∞

Ī(φn)

and therefore by the monotone convergence theorem for Ī , f ∈ L1(I) and∫
X

fdµ+ = lim
n→∞

Ī(φn) = Ī(f).

2. Suppose that ν is any measure such that Eq. (31.12) holds. Then by the
monotone convergence theorem,
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I(f) =
∫
X

fdν for all f ∈ S↑ ∪ S↓.

Let A ∈ R and assume that µ+(A) < ∞, i.e. 1A ∈ L1(I). Then there
exists f ∈ S↑ ∩ L1(I) such that 1A ≤ f and integrating this inequality
relative to ν implies

ν(A) =
∫
X

1Adν ≤
∫
X

fdν = Ī(f).

Taking the infimum of this equation over those f ∈ S↑ such that 1A ≤ f
implies ν(A) ≤ I∗(1A) = µ+(A). If µ+(A) = ∞ in this inequality holds
trivially. Similarly, if A ∈ R and f ∈ S↓ such that 0 ≤ f ≤ 1A, then

ν(A) =
∫
X

1Adν ≥
∫
X

fdν = Ī(f).

Taking the supremum of this equation over those f ∈ S↓ such that 0 ≤
f ≤ 1A then implies ν(A) ≥ µ−(A). So we have shown that µ− ≤ ν ≤ µ+.

3. By Lemma 31.37, ν = α is a measure as in (2) satisfying α ≤ µ− and
therefore µ− ≤ α and hence we have shown that α = µ−. This also shows
that µ− is a measure.

4. This can be done by the same type of argument used in the proof of (1).

Proposition 31.39 (Uniqueness). Suppose that 1 is measurable and there
exists a function χ ∈ L1(I) such that χ(x) > 0 for all x. Then there is only
one measure µ on σ(S) such that

Ī(f) =
∫
X

fdµ for all f ∈ S.

Remark 31.40. The existence of a function χ ∈ L1(I) such that χ(x) > 0 for
all x is equivalent to the existence of a function χ ∈ S↑ such that Ī(χ) < ∞
and χ(x) > 0 for all x ∈ X. Indeed by Lemma 31.26, if χ ∈ L1(I) there exists
χ̃ ∈ S↑ ∩ L1(I) such χ̃ ≥ χ.

Proof. As in Remark 31.40, we may assume χ ∈ S↑ ∩ L1(I). The sets
Xn := {χ > 1/n} ∈ σ(S) ⊂ R satisfy µ(Xn) ≤ nĪ(χ) < ∞. The proof is
completed using Theorem 31.38 to conclude, for any A ∈ σ(S), that

µ+(A) = lim
n→∞

µ+(A ∩Xn) = lim
n→∞

µ−(A ∩Xn) = µ−(A).

Since µ− ≤ µ ≤ µ+ = µ−, we see that µ = µ+ = µ−.
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31.4 Extensions of premeasures to measures

Theorem 31.41. Let X be a set, A be a subalgebra of 2X and µ0 be a pre-
measure on A which is σ – finite on A, i.e. there exists Xn ∈ A such that
µ0(Xn) < ∞ and Xn ↑ X as n → ∞. Then µ0 has a unique extension to a
measure, µ, on M := σ(A). Moreover, if A ∈ M and ε > 0 is given, there
exists B ∈ Aσ such that A ⊂ B and µ(B \A) < ε. In particular,

µ(A) = inf{µ0(B) : A ⊂ B ∈ Aσ} (31.15)

= inf{
∞∑
n=1

µ0(An) : A ⊂
∞∐
n=1

An with An ∈ A}. (31.16)

Proof. Let (A, µ0, I = Iµ0) be as in Definition 28.34. By Proposition 31.9,
I is a Daniell integral on the lattice S = Sf (A, µ0). It is clear that 1 ∧ φ ∈ S
for all φ ∈ S. Since 1Xn ∈ S+ and

∑∞
n=1 1Xn > 0 on X, by Remark 31.45

there exists χ ∈ S↑ such that I(χ) < ∞ and χ > 0. So the hypothesis of
Theorem 31.44 hold and hence there exists a unique measure µ on M such
that I(f) =

∫
X
fdµ for all f ∈ S. Taking f = 1A with A ∈ A and µ0(A) <∞

shows µ(A) = µ0(A). For general A ∈ A, we have

µ(A) = lim
n→∞

µ(A ∩Xn) = lim
n→∞

µ0(A ∩Xn) = µ0(A).

The fact that µ is the only extension of µ0 to M follows from Theorem 32.6
or Theorem 19.55. It is also can be proved using Theorem 31.44. Indeed, if ν
is another measure onM such that ν = µ on A, then Iν = I on S. Therefore
by the uniqueness assertion in Theorem 31.44, µ = ν on M. By Eq. (31.20),
for A ∈M,

µ(A) = I∗(1A) = inf {I(f) : f ∈ S↑ with 1A ≤ f}

= inf
{∫

X

fdµ : f ∈ S↑ with 1A ≤ f
}
.

For the moment suppose µ(A) < ∞ and ε > 0 is given. Choose f ∈ S↑ such
that 1A ≤ f and ∫

X

fdµ = I(f) < µ(A) + ε. (31.17)

Let fn ∈ S be a sequence such that fn ↑ f as n→∞ and for α ∈ (0, 1) set

Bα := {f > α} = ∪∞n=1 {fn > α} ∈ Aσ.

Then A ⊂ {f ≥ 1} ⊂ Bα and by Chebyshev’s inequality,

µ(Bα) ≤ α−1

∫
X

fdµ = α−1I(f)

which combined with Eq. (31.17) implies µ(Bα) < µ(A)+ε for all α sufficiently
close to 1. For such α we then have A ⊂ Bα ∈ Aσ and µ(Bα \A) = µ(Bα)−
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µ(A) < ε. For general A ∈ A, choose Xn ↑ X with Xn ∈ A. Then there exists
Bn ∈ Aσ such that µ(Bn \ (An ∩ Xn)) < ε2−n. Define B := ∪∞n=1Bn ∈ Aσ.
Then

µ(B \A) = µ (∪∞n=1 (Bn \A)) ≤
∞∑
n=1

µ ((Bn \A))

≤
∞∑
n=1

µ ((Bn \ (A ∩Xn)) < ε.

Eq. (31.15) is an easy consequence of this result and the fact that µ(B) =
µ0(B).

Corollary 31.42 (Regularity of µ). Let A ⊂ 2X be an algebra of sets,
M = σ(A) and µ :M→ [0,∞] be a measure onM which is σ – finite on A.
Then

1. For all A ∈M,

µ(A) = inf {µ(B) : A ⊂ B ∈ Aσ} . (31.18)

2. If A ∈M and ε > 0 are given, there exists B ∈ Aσ such that A ⊂ B and
µ(B \A) < ε.

3. For all A ∈ M and ε > 0 there exists B ∈ Aδ such that B ⊂ A and
µ(A \B) < ε.

4. For any B ∈M there exists A ∈ Aδσ and C ∈ Aσδ such that A ⊂ B ⊂ C
and µ(C \A) = 0.

5. The linear space S := Sf (A, µ) is dense in Lp(µ) for all p ∈ [1,∞), briefly

put, Sf (A, µ)
Lp(µ)

= Lp(µ).

Proof. Items 1. and 2. follow by applying Theorem 31.41 to µ0 = µ|A.
Items 3. and 4. follow from Items 1. and 2. as in the proof of Corollary 32.10
above. Item 5. This has already been proved in Theorem 22.15 but we will
give yet another proof here. When p = 1 and g ∈ L1(µ;R), there exists, by
Eq. (31.20), h ∈ S↑ such that g ≤ h and ‖h− g‖1 =

∫
X

(h − g)dµ < ε. Let
{hn}∞n=1 ⊂ S be chosen so that hn ↑ h as n → ∞. Then by the dominated
convergence theorem, ‖hn − g‖1 → ‖h− g‖1 < ε as n → ∞. Therefore for
n large we have hn ∈ S with ‖hn − g‖1 < ε. Since ε > 0 is arbitrary this

shows, Sf (A, µ)
L1(µ)

= L1(µ). Now suppose p > 1, g ∈ Lp(µ;R) and Xn ∈ A
are sets such that Xn ↑ X and µ(Xn) < ∞. By the dominated convergence
theorem, 1Xn

· [(g ∧ n) ∨ (−n)] → g in Lp(µ) as n → ∞, so it suffices to
consider g ∈ Lp(µ;R) with {g 6= 0} ⊂ Xn and |g| ≤ n for some large n ∈ N.
By Hölder’s inequality, such a g is in L1(µ). So if ε > 0, by the p = 1 case, we
may find h ∈ S such that ‖h− g‖1 < ε. By replacing h by (h ∧ n)∨ (−n) ∈ S,
we may assume h is bounded by n as well and hence
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‖h− g‖pp =
∫
X

|h− g|p dµ =
∫
X

|h− g|p−1 |h− g| dµ

≤ (2n)p−1
∫
X

|h− g| dµ < (2n)p−1
ε.

Since ε > 0 was arbitrary, this shows S is dense in Lp(µ;R).

Remark 31.43. If we drop the σ – finiteness assumption on µ0 we may loose
uniqueness assertion in Theorem 31.41. For example, let X = R, BR and
A be the algebra generated by E := {(a, b] ∩ R : −∞ ≤ a < b ≤ ∞}. Recall
BR = σ(E). LetD ⊂ R be a countable dense set and define µD(A) := #(D∩A).
Then µD(A) = ∞ for all A ∈ A such that A 6= ∅. So if D′ ⊂ R is another
countable dense subset of R, µD′ = µD on A while µD 6= µD′ on BR. Also
notice that µD is σ – finite on BR but not on A.

It is now possible to use Theorem 31.41 to give a proof of Theorem 19.8, see
subsection 30.4.1 below. However rather than do this now let us give another
application of Theorem 31.41 based on Proposition 31.9 and use the result to
prove Theorem 19.8.

31.4.1 A Useful Version: BRUCE: delete this if incorporated
above.

We are now in a position to state the main construction theorem. The theorem
we state here is not as general as possible but it will suffice for our present
purposes.

Theorem 31.44 (Daniell-Stone). Let S be a lattice of bounded functions
on a set X such that 1 ∧ φ ∈ S for all φ ∈ S and let I be a Daniel integral on
S. Further assume there exists χ ∈ S↑ such that I(χ) < ∞ and χ(x) > 0 for
all x ∈ X. Then there exists a unique measure µ on M := σ(S) such that

I(f) =
∫
X

fdµ for all f ∈ S. (31.19)

Moreover, for all g ∈ L1(X,M, µ),

sup {I(f) : S↓ 3 f ≤ g} =
∫
X

gdµ = inf {I(h) : g ≤ h ∈ S↑} . (31.20)

Proof. Only a sketch of the proof will be given here. Full details may be
found in Section 31 below. Existence. For g : X → R̄, define

I∗(g) := inf{I(h) : g ≤ h ∈ S↑},

I∗(g) := sup{I(f) : S↓ 3 f ≤ g}

and set
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L1(I) := {g : X → R̄ : I∗(g) = I∗(g) ∈ R}.

For g ∈ L1(I), let Ī(g) = I∗(g) = I∗(g). Then, as shown in Proposition 31.20,
L1(I) is a “extended” vector space and Ī : L1(I) → R is linear as defined in
Definition 31.3 below. By Proposition 31.18, if f ∈ S↑ with I(f) < ∞ then
f ∈ L1(I). Moreover, Ī obeys the monotone convergence theorem, Fatou’s
lemma, and the dominated convergence theorem, see Theorem 31.21, Lemma
31.22 and Theorem 31.25 respectively. Let

R :=
{
A ⊂ X : 1A ∧ f ∈ L1(I) for all f ∈ S

}
and for A ∈ R set µ(A) := I∗(1A). It can then be shown: 1) R is a σ algebra
(Lemma 31.33) containing σ(S) (Lemma 31.34), µ is a measure on R (Lemma
31.35), and that Eq. (31.19) holds. In fact it is shown in Theorem 31.38 and
Proposition 31.39 below that L1(X,M, µ) ⊂ L1(I) and

Ī(g) =
∫
X

gdµ for all g ∈ L1(X,M, µ).

The assertion in Eq. (31.20) is a consequence of the definition of L1(I) and Ī
and this last equation. Uniqueness. Suppose that ν is another measure on
σ(S) such that

I(f) =
∫
X

fdν for all f ∈ S.

By the monotone convergence theorem and the definition of I on S↑,

I(f) =
∫
X

fdν for all f ∈ S↑.

Therefore if A ∈ σ(S) ⊂ R,

µ(A) = I∗(1A) = inf{I(h) : 1A ≤ h ∈ S↑}

= inf{
∫
X

hdν : 1A ≤ h ∈ S↑} ≥
∫
X

1Adν = ν(A)

which shows ν ≤ µ. If A ∈ σ(S) ⊂ R with µ(A) <∞, then, by Remark 31.32
below, 1A ∈ L1(I) and therefore

µ(A) = I∗(1A) = Ī(1A) = I∗(1A) = sup{I(f) : S↓ 3 f ≤ 1A}

= sup{
∫
X

fdν : S↓ 3 f ≤ 1A} ≤ ν(A).

Hence µ(A) ≤ ν(A) for all A ∈ σ(S) and ν(A) = µ(A) when µ(A) < ∞.
To prove ν(A) = µ(A) for all A ∈ σ(S), let Xn := {χ ≥ 1/n} ∈ σ(S). Since
1Xn
≤ nχ,

µ(Xn) =
∫
X

1Xn
dµ ≤

∫
X

nχdµ = nI(χ) <∞.
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31.5 Riesz Representation Theorem 647

Since χ > 0 on X, Xn ↑ X and therefore by continuity of ν and µ,

ν(A) = lim
n→∞

ν(A ∩Xn) = lim
n→∞

µ(A ∩Xn) = µ(A)

for all A ∈ σ(S).

Remark 31.45. To check the hypothesis in Theorem 31.44 that there exists
χ ∈ S↑ such that I(χ) <∞ and χ(x) > 0 for all x ∈ X, it suffices to find φn ∈
S+ such that

∑∞
n=1 φn > 0 onX. To see this let Mn := max (‖φn‖∞ , I(φn) , 1)

and define χ :=
∑∞
n=1

1
Mn2nφn, then χ ∈ S↑, 0 < χ ≤ 1 and I(χ) ≤ 1 <∞.

31.5 Riesz Representation Theorem

Definition 31.46. Given a second countable locally compact Hausdorff space
(X, τ), let M+ denote the collection of positive measures, µ, on BX := σ(τ)
with the property that µ(K) < ∞ for all compact subsets K ⊂ X. Such a
measure µ will be called a Radon measure on X. For µ ∈ M+ and f ∈
Cc(X,R) let Iµ(f) :=

∫
X
fdµ.

BRUCE: Consolidate the next theorem and Theorem 31.63.

Theorem 31.47 (Riesz Representation Theorem). Let (X, τ) be a sec-
ond countable3 locally compact Hausdorff space. Then the map µ→ Iµ taking
M+ to positive linear functionals on Cc(X,R) is bijective. Moreover every
measure µ ∈M+ has the following properties:

1. For all ε > 0 and B ∈ BX , there exists F ⊂ B ⊂ U such that U is open
and F is closed and µ(U \ F ) < ε. If µ(B) <∞, F may be taken to be a
compact subset of X.

2. For all B ∈ BX there exists A ∈ Fσ and C ∈ τδ (τδ is more conventionally
written as Gδ) such that A ⊂ B ⊂ C and µ(C \A) = 0.

3. For all B ∈ BX ,

µ(B) = inf{µ(U) : B ⊂ U and U is open} (31.21)
= sup{µ(K) : K ⊂ B and K is compact}. (31.22)

4. For all open subsets, U ⊂ X,

µ(U) = sup{
∫
X

fdµ : f ≺ X} = sup{Iµ(f) : f ≺ X}. (31.23)

3 The second countability is assumed here in order to avoid certain technical issues.
Recall from Lemma 18.57 that under these assumptions, σ(S) = BX . Also recall
from Uryshon’s metrizatoin theorem that X is metrizable. We will later remove
the second countability assumption.
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648 31 The Daniell – Stone Construction of Integration and Measures

5. For all compact subsets K ⊂ X,

µ(K) = inf{Iµ(f) : 1K ≤ f ≺ X}. (31.24)

6. If ‖Iµ‖ denotes the dual norm on Cc(X,R)∗, then ‖Iµ‖ = µ(X). In par-
ticular Iµ is bounded iff µ(X) <∞.

7. Cc(X,R) is dense in Lp(µ;R) for all 1 ≤ p <∞.

Proof. First notice that Iµ is a positive linear functional on S := Cc(X,R)
for all µ ∈M+ and S is a lattice such that 1∧ f ∈ S for all f ∈ S. Proposition
31.7shows that any positive linear functional, I, on S := Cc(X,R) is a Daniell
integral on S. By Lemma 14.23, there exists compact sets Kn ⊂ X such that
Kn ↑ X. By Urysohn’s lemma, there exists φn ≺ X such that φn = 1 on Kn.
Since φn ∈ S+ and

∑∞
n=1 φn > 0 on X it follows from Remark 31.45 that

there exists χ ∈ S↑ such that χ > 0 on X and I(χ) < ∞. So the hypothesis
of the Daniell – Stone Theorem 31.44 hold and hence there exists a unique
measure µ on σ(S) =BX (Lemma 18.57) such that I = Iµ. Hence the map
µ→ Iµ taking M+ to positive linear functionals on Cc(X,R) is bijective. We
will now prove the remaining seven assertions of the theorem.

1. Suppose ε > 0 and B ∈ BX satisfies µ(B) <∞. Then 1B ∈ L1(µ) so there
exists functions fn ∈ Cc(X,R) such that fn ↑ f, 1B ≤ f, and∫

X

fdµ = I(f) < µ(B) + ε. (31.25)

Let α ∈ (0, 1) and Ua := {f > α} ∪∞n=1 {fn > α} ∈ τ. Since 1B ≤ f,
B ⊂ {f ≥ 1} ⊂ Uα and by Chebyshev’s inequality, µ(Uα) ≤ α−1

∫
X
fdµ =

α−1I(f). Combining this estimate with Eq. (31.25) shows µ(Uα \ B) =
µ(Uα) − µ(B) < ε for α sufficiently closet to 1. For general B ∈ BX ,
by what we have just proved, there exists open sets Un ⊂ X such that
B ∩Kn ⊂ Un and µ(Un \ (B ∩Kn)) < ε2−n for all n. Let U = ∪∞n=1Un,
then B ⊂ U ∈ τ and

µ(U \B) = µ(∪∞n=1 (Un \B)) ≤
∞∑
n=1

µ(Un \B)

≤
∞∑
n=1

µ(Un \ (B ∩Kn)) ≤
∞∑
n=1

ε2−n = ε.

Applying this result to Bc shows there exists a closed set F @ X such
that Bc ⊂ F c and

µ(B \ F ) = µ(F c \Bc) < ε.

So we have produced F ⊂ B ⊂ U such that µ(U \F ) = µ(U \B) + µ(B \
F ) < 2ε. If µ(B) < ∞, using B \ (Kn ∩ F ) ↑ B \ F as n → ∞, we may
choose n sufficiently large so that µ(B \ (Kn ∩ F )) < ε. Hence we may
replace F by the compact set F ∩Kn if necessary.
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31.5 Riesz Representation Theorem 649

2. Choose Fn ⊂ B ⊂ Un such Fn is closed, Un is open and µ(Un \Fn) < 1/n.
Let B = ∪nFn ∈ Fσ and C := ∩Un ∈ τδ. Then A ⊂ B ⊂ C and

µ(C \A) ≤ µ(Fn \ Un) <
1
n
→ 0 as n→∞.

3. From Item 1, one easily concludes that

µ(B) = inf {µ(U) : B ⊂ U ⊂o X}

for all B ∈ BX and

µ(B) = sup {µ(K) : K @@ B}

for all B ∈ BX with µ(B) <∞. So now suppose B ∈ BX and µ(B) =∞.
Using the notation at the end of the proof of Item 1., we have µ(F ) =∞
and µ(F ∩Kn) ↑ ∞ as n→∞. This shows sup {µ(K) : K @@ B} =∞ =
µ(B) as desired.

4. For U ⊂o X, let
ν(U) := sup{Iµ(f) : f ≺ U}.

It is evident that ν(U) ≤ µ(U) because f ≺ U implies f ≤ 1U . Let K be a
compact subset of U. By Urysohn’s Lemma 15.8, there exists f ≺ U such
that f = 1 on K. Therefore,

µ(K) ≤
∫
X

fdµ ≤ ν(U) (31.26)

and we have

µ(K) ≤ ν(U) ≤ µ(U) for all U ⊂o X and K @@ U. (31.27)

By Item 3.,

µ(U) = sup{µ(K) : K @@ U} ≤ ν(U) ≤ µ(U)

which shows that µ(U) = ν(U), i.e. Eq. (31.23) holds.
5. Now suppose K is a compact subset of X. From Eq. (31.26),

µ(K) ≤ inf{Iµ(f) : 1K ≤ f ≺ X} ≤ µ(U)

for any open subset U such that K ⊂ U. Consequently by Eq. (31.21),

µ(K) ≤ inf{Iµ(f) : 1K ≤ f ≺ X} ≤ inf{µ(U) : K ⊂ U ⊂o X} = µ(K)

which proves Eq. (31.24).
6. For f ∈ Cc(X,R),

|Iµ(f)| ≤
∫
X

|f | dµ ≤ ‖f‖∞ µ(supp(f)) ≤ ‖f‖∞ µ(X) (31.28)
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which shows ‖Iµ‖ ≤ µ(X). Let K @@ X and f ≺ X such that f = 1 on
K. By Eq. (31.26),

µ(K) ≤
∫
X

fdµ = Iµ(f) ≤ ‖Iµ‖ ‖f‖∞ = ‖Iµ‖

and therefore,

µ(X) = sup{µ(K) : K @@ X} ≤ ‖Iµ‖ .

7. This has already been proved by two methods in Theorem 22.8 but
we will give yet another proof here. When p = 1 and g ∈ L1(µ;R),
there exists, by Eq. (31.20), h ∈ S↑ = Cc(X,R)↑ such that g ≤ h and
‖h− g‖1 =

∫
X

(h − g)dµ < ε. Let {hn}∞n=1 ⊂ S = Cc(X,R) be chosen
so that hn ↑ h as n → ∞. Then by the dominated convergence theorem
(notice that |hn| ≤ |h1| + |h|), ‖hn − g‖1 → ‖h− g‖1 < ε as n → ∞.
Therefore for n large we have hn ∈ Cc(X,R) with ‖hn − g‖1 < ε. Since

ε > 0 is arbitrary this shows, Sf (A, µ)
L1(µ)

= L1(µ). Now suppose p > 1,
g ∈ Lp(µ;R) and {Kn}∞n=1 are as above. By the dominated convergence
theorem, 1Kn (g ∧ n) ∨ (−n) → g in Lp(µ) as n → ∞, so it suffices to
consider g ∈ Lp(µ;R) with supp(g) ⊂ Kn and |g| ≤ n for some large
n ∈ N. By Hölder’s inequality, such a g is in L1(µ). So if ε > 0, by the
p = 1 case, there exists h ∈ S such that ‖h− g‖1 < ε. By replacing h by
(h ∧ n) ∨ (−n) ∈ S, we may assume h is bounded by n in which case

‖h− g‖pp =
∫
X

|h− g|p dµ =
∫
X

|h− g|p−1 |h− g| dµ

≤ (2n)p−1
∫
X

|h− g| dµ < (2n)p−1
ε.

Since ε > 0 was arbitrary, this shows S is dense in Lp(µ;R).

Remark 31.48. We may give a direct proof of the fact that µ→ Iµ is injective.
Indeed, suppose µ, ν ∈ M+ satisfy Iµ(f) = Iν(f) for all f ∈ Cc(X,R). By
Theorem 22.8, if A ∈ BX is a set such that µ(A) + ν(A) < ∞, there exists
fn ∈ Cc(X,R) such that fn → 1A in L1(µ+ ν). Since fn → 1A in L1(µ) and
L1(ν),

µ(A) = lim
n→∞

Iµ(fn) = lim
n→∞

Iν(fn) = ν(A).

For general A ∈ BX , choose compact subsets Kn ⊂ X such that Kn ↑ X.
Then

µ(A) = lim
n→∞

µ(A ∩Kn) = lim
n→∞

ν(A ∩Kn) = ν(A)

showing µ = ν. Therefore the map µ→ Iµ is injective.
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31.5 Riesz Representation Theorem 651

Theorem 31.49 (Lusin’s Theorem). Suppose (X, τ) is a locally compact
and second countable Hausdorff space, BX is the Borel σ – algebra on X, and
µ is a measure on (X,BX) which is finite on compact sets of X. Also let ε > 0
be given. If f : X → C is a measurable function such that µ(f 6= 0) < ∞,
there exists a compact set K ⊂ {f 6= 0} such that f |K is continuous and
µ({f 6= 0} \K) < ε. Moreover there exists φ ∈ Cc(X) such that µ(f 6= φ) < ε
and if f is bounded the function φ may be chosen so that ‖φ‖∞ ≤ ‖f‖∞ :=
supx∈X |f(x)| .

Proof. Suppose first that f is bounded, in which case∫
X

|f | dµ ≤ ‖f‖µ µ(f 6= 0) <∞.

By Theorem 22.8 or Item 7. of Theorem 31.47, there exists fn ∈ Cc(X) such
that fn → f in L1(µ) as n → ∞. By passing to a subsequence if necessary,
we may assume ‖f − fn‖1 < εn−12−n for all n and thus µ

(
|f − fn| > n−1

)
<

ε2−n for all n. Let E := ∪∞n=1

{
|f − fn| > n−1

}
, so that µ(E) < ε. On Ec,

|f − fn| ≤ 1/n, i.e. fn → f uniformly on Ec and hence f |Ec is continuous.
Let A := {f 6= 0} \ E. By Theorem 31.47 (or see Exercises 32.4 and 32.5)
there exists a compact set K and open set V such that K ⊂ A ⊂ V such that
µ(V \K) < ε. Notice that

µ({f 6= 0} \K) ≤ µ(A \K) + µ(E) < 2ε.

By the Tietze extension Theorem 15.9, there exists F ∈ C(X) such that
f = F |K . By Urysohn’s Lemma 15.8 there exists ψ ≺ V such that ψ = 1 on
K. So letting φ = ψF ∈ Cc(X), we have φ = f on K, ‖φ‖∞ ≤ ‖f‖∞ and
since {φ 6= f} ⊂ E∪ (V \K), µ(φ 6= f) < 3ε. This proves the assertions in the
theorem when f is bounded. Suppose that f : X → C is (possibly) unbounded.
By Lemmas 18.57 and 14.23, there exists compact sets {KN}∞N=1 of X such
that KN ↑ X. Hence BN := KN ∩ {0 < |f | ≤ N} ↑ {f 6= 0} as N → ∞.
Therefore if ε > 0 is given there exists an N such that µ({f 6= 0} \ BN ) < ε.
We now apply what we have just proved to 1BN

f to find a compact set
K ⊂ {1BN

f 6= 0} , and open set V ⊂ X and φ ∈ Cc(V ) ⊂ Cc(X) such that
µ(V \ K) < ε, µ({1BN

f 6= 0} \ K) < ε and φ = f on K. The proof is now
complete since

{φ 6= f} ⊂ ({f 6= 0} \BN ) ∪ ({1BN
f 6= 0} \K) ∪ (V \K)

so that µ(φ 6= f) < 3ε.
To illustrate Theorem 31.49, suppose that X = (0, 1), µ = m is Lebesgue

measure and f = 1(0,1)∩Q. Then Lusin’s theorem asserts for any ε > 0 there
exists a compact set K ⊂ (0, 1) such that m((0, 1) \ K) < ε and f |K is
continuous. To see this directly, let {rn}∞n=1 be an enumeration of the rationals
in (0, 1),
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Jn = (rn − ε2−n, rn + ε2−n) ∩ (0, 1) and W = ∪∞n=1Jn.

Then W is an open subset of X and µ(W ) < ε. Therefore Kn := [1/n, 1 −
1/n] \W is a compact subset of X and m(X \ Kn) ≤ 2

n + µ(W ). Taking n
sufficiently large we have m(X \Kn) < ε and f |Kn

≡ 0 is continuous.

31.6 The General Riesz Representation by Daniell
Integrals (Move Later?)

This section is rather a mess and is certainly not complete. Here is the upshot
of what I understand at this point.

When using the Daniell integral to construct measures on locally compact
Hausdorff spaces the natural answer is in terms of measures on the Baire σ –
algebra. To get the Rudin or Folland version of the theorem one has to extend
this measure to the Borel σ – algebra. Checking all of the details here seems
to be rather painful. Just as painful and giving the full proof in Rudin!! Argh.

Definition 31.50. Let X be a locally compact Hausdorff space. The Baire σ
– algebra on X is B0

X := σ(Cc(X)).

Notice that if f ∈ Cc(X,R) then f = f+ − f− with f± ∈ Cc(X,R+).
Therefore B0

X is generated by sets of the form K := {f ≥ α} ⊂ supp(f) with
α > 0. Notice that K is compact and K = ∩∞n=1 {f > α− 1/n} showing K is
a compact Gδ. Thus we have shown B0

X ⊂ σ(compact G′δs). For the converse
we will need the following exercise.

Exercise 31.2. Suppose that X is a locally compact Hausdorff space and
K ⊂ X is a compact Gδ then there exists f ∈ Cc(X, [0, 1]) such that f = 1 on
K and f < 1 on Kc.

Solution to Exercise (31.2). Let Vn ⊂o X be sets such that Vn ↓ K as
n→∞ and use Uryhson’s Lemma to find fn ∈ Cc(Vn, [0, 1]) such that fn = 1
on K. Let f =

∑∞
n=1 2−nfn. Hence if x ∈ Kc, then x /∈ Vn for some n and

hence f(x) <
∑∞
n=1 2−n = 1.

This exercise shows that σ(compact G′δs) ⊂ σ(Cc(X)). Indeed, if K is a
compact Gδ then by Exercise 31.2, there exist f ≺ X such that f = 1 on K
and f < 1 on Kc. Therefore 1K = limn→∞ fn is B0

X – measurable. Therefore
we have proved B0

X = σ(compact G′δs).

Definition 31.51. Let (X, τ) be a local compact topological space. We say
that E ⊂ X is bounded if E ⊂ K for some compact set K and E is σ –
bounded if E ⊂ ∪Kn for some sequence of compact sets {Kn}∞n=1 .

Lemma 31.52. If A ∈ B0
X , then either A or Ac is σ – bounded.
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Proof. Let

F := {A ⊂ X : either A or Ac is σ – bounded}.

Clearly X ∈ F and F is closed under complementation. Moreover if Ai ∈ F
then A = ∪iAi ∈ F . Indeed, if each Ai is σ – bounded then A is σ – bounded
and if some Acj is σ – bounded then

Ac = ∩iAci ⊂ Acj

is σ – bounded. Therefore, F is a σ – algebra containing the compact G′δs and
therefore B0

X ⊂ F .
Now the σ – algebra B0

X is called and may not necessarily be as large as
the Borel σ – algebra. However if every open subset of X is σ – compact, then
the Borel BX and and the Baire σ – algebras are the same. Indeed, if U ⊂o X
and Kn ↑ U with Kn being compact. There exists fn ≺ U such that fn = 1
on Kn. Now f := limn→∞ fn = 1U showing U ∈ σ(Cc(X)) = B0

X .

Lemma 31.53. In Halmos on p.221 it is shown that a compact Baire set is
necessarily a compact Gδ.

Proof. Let K be a compact Baire set and let KGδ denote the space of
compact Gδ ’s. Recall in general that if D is some collection of subsets of a
space X, then

σ(D) = ∪{σ(E) : E is a countable subset of D} .

This is because the right member of this equation is a σ – algebra. Therefore,
there exist {Cn}∞n=1 ⊂ KGδ such that K ∈ σ ({Cn}∞n=1) . Let fn ∈ C(X, [0, 1])
such that Cn = {fn = 0}, see Exercise 31.2 above. Now define

d(x, y) :=
∞∑
n=1

2−n |fn(x)− fn(y)| .

Then d would be a metric on X except for the fact that d(x, y) may be zero
even though x 6= y. Let X ∼ y iff d(x, y) = 0 iff fn(x) = fn(y) for all n
It is easily seen that ∼ is an equivalence relation and Z := X/ ∼ with the
induced metric d̄ is a metric space. Also let π : X → Z be the canonical
projection map. Notice that if x ∈ Cn then y ∈ Cn for all x ∼ y, and therefore
π−1(π(Cn)) = Cn for all n. In particular this shows that

K ∈ σ ({Cn}∞n=1) ⊂ π
−1 (P(Z)) ,

i.e. K = π−1(π(K)). Now π is continuous, since if x ∈ X and y ∈
∩Nk=1{|fk(y)− fk(x)| < ε} ⊂o X then

d̄(π(x), π(y)) = d(x, y) < ε+ 2−N+1
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which can be made as small as we please. Hence π(K) is compact and hence
closed in Z. Let Wn := {z ∈ Z : d̄π(K)(z) < 1/n}, then Wn is open in Z and
Wn ↓ π(K) as n→∞. Let Vn := π−1(Wn), open in X since π is continuous,
then Vn ↓ K as n→∞.

The following facts are taken from Halmos, section 50 starting on p. 216.

Theorem 31.54. 1. It K @@ X and K ⊂ U ∪ V with U, V ∈ τ, then K =
K1 ∪K2 with K1 @@ U and K2 @@ V.

2. If K @@ X and F @ X are disjoint, then there exists f ∈ C(X, [0, 1])
such that f = 0 on K and f = 1 on F.

3. If f is a real valued continuous function, then for all c ∈ R the sets
{f ≥ c} , {f ≤ c} and {f = c} are closed Gδ.

4. If K @@ U ⊂o X then there exists K @@ U0 ⊂ K0 ⊂ U such that K0 is
a compact Gδ and U0 is a σ – compact open set.

5. If X is separable, then every compact subset of X is a Gδ. (I think the
proof of this point is wrong in Halmos!)

Proof. 1. K \U and K \V are disjoint compact sets and hence there exists
two disjoint open sets U ′ and V ′ such that

K \ U ⊂ V ′ and K \ V ⊂ U ′.

Let K1 := K \V ′ ⊂ U and K2 = K \U ′ ⊂ V. 2. Tietze extension theorem with
elementary proof in Halmos. 3. {f ≤ c} = ∩∞n=1 {f < c+ 1/n} with similar
formula for the other cases. The converse has already been mentioned. 4. For
each x ∈ K, let Vx be an open neighborhood of K such that V̄x @@ U,
and set V = ∪x∈ΛVx where Λ ⊂⊂ K is a finite set such that K ⊂ V. Since
V̄ = ∪x∈ΛV̄x is compact, we may replace U by V if necessary and assume that
U is bounded. Let f ∈ C(X, [0, 1]) such that f = 0 on K and f = 1 on U c.
Take U0 = {f < 1/2} and K0 = {f ≤ 1/2}. Then K @@ U0 ⊂ K0 ⊂ U, K0 is
compact Gδ and U0 is a σ – compact open set since U0 = ∪∞n=3{f ≤ 1/2+1/n}.
5. Let K @@ X, and D be a countable dense subset of X. For all x /∈ K there
exist disjoint open sets Vx and Ux such that x ∈ Ux and K ⊂ Vx. (I don’t see
how to finish this off at the moment.)

31.7 Regularity Results

Proposition 31.55. Let X be a compact Hausdorff space and µ be a Baire
measure on B0

X . Then for each A ∈ B0
X and ε > 0 there exists K ⊂ A ⊂ V

where K is a compact Gδ and V is an open, Baire and σ -compact, such that
µ(V \K) < ε.

Proof. Let I(f) =
∫
X
fdµ for f ∈ S := C(X), so that I is a Daniell

integral on C(X). Since 1 ∈ S, the measure µ from the Daniell – Stone con-
struction theorem is the same as the measure µ. Hence for g ∈ L1(µ), we
have
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sup {I(f) : f ∈ S↓ with f ≤ h} =
∫
X

gdµ

= inf
{∫

hdµ : h ∈ S↑ with g ≤ h
}
.

Suppose ε > 0 and B ∈ B0
X are given. There exists hn ∈ S such that hn ↑ h,

1B ≤ h, and µ(h) < µ(B)+ε. The condition 1B ≤ h, implies 1B ≤ 1{h≥1} ≤ h
and hence

µ(B) ≤ µ(h ≥ 1) ≤ µ(h) < µ(B) + ε. (31.29)

Moreover, letting

Vm := ∪∞n=1 {hn > 1− 1/m} = ∪∞n=1 ∪∞k=1 {hn ≥ 1− 1/m+ 1/k}

(a σ – compact, open Baire set) we have Vm ↓ {h ≥ 1} ⊃ B hence µ(Vm) ↓
µ(h ≥ 1) ≥ µ(B) as m → ∞. Combining this observation with Eq. (31.29),
we may choose m sufficiently large so that B ⊂ Vm and

µ(Vm \B) = µ(Vm)− µ(B) < ε.

Hence there exists V ∈ τ such that B ⊂ V and µ(V \B) < ε. Similarly, there
exists f ∈ S↓ such that f ≤ 1B and µ(B) < µ(f) + ε. We clearly may assume
that f ≥ 0. Let fn ∈ S be chosen so that fn ↓ f as n→∞. Since 0 ≤ f ≤ 1B
we have

0 ≤ f ≤ 1{f>0} ≤ 1B

so that {f > 0} ⊂ B and µ(B) < µ(f > 0) + ε. For each m ∈ N, let

Km := ∩∞n=1 {fn ≥ 1/m} = ∩∞k=1 ∩∞n=1 {fn > 1/m− 1/k} ,

a compact Gδ, then Km ↑ {f > 0} as m → ∞. Therefore for large m we will
have µ(B) < µ(Km) + ε, i.e. Km ⊂ B and µ(B \Km) < ε.

Remark 31.56. The above proof does not in general work when X is a locally
compact Hausdorff space and µ is a finite Baire measure on B0

X since it may
happen that µ 6= µ+, i.e. µ+(X) might be infinite, see Example 31.57 below.
However, if µ+(X) <∞, then the above proof works in this context as well.

Example 31.57. Let X be an uncountable and τ = 2X be the discrete topology
on X. In this case K ⊂ X is compact iff K is a finite set. Since every set is
open, K is necessarily a Gδ and hence a Baire set. So B0

X is the σ – algebra
generated by the finite subsets of X. We may describe B0

X by A ∈ B0
X iff A is

countable or Ac is countable. For A ∈ B0
X , let

µ(A) =
{

0 if A is countable
1 if Ac is uncountable

To see that µ is a measure suppose that A is the disjoint union of
{An} ⊂ B0

X . If An is countable for all n, then A is countable and µ(A) =
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0 =
∑∞
n=1 µ(An). If Acm is countable for some m, then Ai ⊂ Acm is countable

for all i 6= m. Therefore,
∑∞
n=1 µ(An) = 1, now Ac = ∩Acn ⊂ Acm is countable

as well, so µ(A) = 1. Therefore µ is a measure.
The measure µ is clearly a finite Baire measure on B0

X which is non-
regular. Letting I(f) =

∫
X
fdµ for all f ∈ S = Cc(X) – the functions with

finite support, then I(f) = 0 for all f. If B ⊂ X is a set such that Bc is
countable, there are no functions f ∈ (Cc(X))↑ such that 1B ≤ f. Therefore
µ+(B) = I∗(1B) =∞. That is

µ+(A) =
{

0 if A is countable
∞ otherwise.

On the other hand, one easily sees that µ−(A) = 0 for all A ∈ B0
X . The

measure µ− represents I as well.

Definition 31.58. A Baire measure µ on a locally compact Hausdorff space
is regular if for each A ∈ B0

X , (B0
X – being the Baire σ – algebra)

µ(A) = sup {µ(K) : K ⊂ A and K is a compact Gδ} .

Proposition 31.59. t µ be a Baire measure on X and set

ν(A) := sup {µ(K) : K ⊂ A and K is a compact Gδ} .

Then ν(A) = µ(A) for any σ – bounded sets A and ν is a regular Baire
measure on X.

Proof. Let A be a σ – bounded set and Kn be compact Gδ ’s (which
exist by Theorem 31.54) such that A ⊂ ∪Kn. By replacing Kn by ∪nk=1Kk if
necessary, we may assume that Kn is increasing in n. By Proposition 31.55,
there exists compact G′δs, Cn, such that Cn ⊂ A ∩Kn and µ(A ∩Kn \Cn) <
ε2−n for all n. Let CN := ∪Nn=1Cn, then CN is a compact Gδ, CN ⊂ A and
µ(A∩KN \CN ) < ε for all N. From this equation it follows that µ(A\CN ) < ε
for large N if µ(A) < ∞ and µ(CN ) → ∞ if µ(A) = ∞. In either case we
conclude that ν(A) = µ(A). Now let us show that ν is a measure on B0

X .
Suppose A =

∐∞
n=1An and Kn ⊂ An for each n with Kn being a compact

Gδ. Then KN := ∪Nn=1Kn is also a compact Gδ and since KN ⊂ A, it follows
that

ν(A) ≥ µ(KN ) =
N∑
n=1

µ(Kn).

Since Kn ⊂ An are arbitrary, we learn that ν(A) ≥
∑N
n=1 ν(An) for all N and

hence letting N →∞ shows

ν(A) ≥
∞∑
n=1

ν(An).
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We now wish to prove the converse inequality. Owing to the above inequality,
it suffices not to consider the case where

∑∞
n=1 ν(An) <∞. Let K ⊂ A be a

compact Gδ. Then

µ(K) =
∞∑
n=1

µ(K ∩An) =
∞∑
n=1

ν(K ∩An) ≤
∞∑
n=1

ν(An)

and sinceK is arbitrary, it follows that ν(A) ≤
∑∞
n=1 ν(An). So ν is a measure.

Finally if A ∈ B0
X , then

sup {ν(K) : K ⊂ A and K is a compact Gδ}
= sup {µ(K) : K ⊂ A and K is a compact Gδ} = ν(A)

showing ν is regular.

Corollary 31.60. Suppose that µ is a finite Baire measure on X such

µ(X) := sup {µ(K) : K ⊂ X and K is a compact Gδ} ,

then µ = ν, in particular µ is regular.

Proof. The assumption asserts that µ(X) = ν(X). Since µ = ν on the π
– class consisting of the compact G′δs, we may apply Theorem 19.55 to learn
µ = ν.

Proposition 31.61. Suppose that µ is a Baire measure on X, then for all
A ∈ B0

X which is σ – bounded and ε > 0 there exists V ∈ τ ∩ B0
X such that

A ⊂ V and µ(V \A) < ε. Moreover if µ is regular then

µ(A) = inf
{
µ(V ) : A ⊂ V ∈ τ ∩ B0

X

}
. (31.30)

holds for all A ∈ B0
X .

Proof. Suppose A is σ – bounded Baire set. Let Kn be compact Gδ ’s
(which exist by Theorem 31.54) such that A ⊂ ∪Kn. By replacing Kn by
∪nk=1Kk if necessary, we may assume that Kn is increasing in n. By Propo-
sition 31.55 (applied to dµn := 1U0

n
dµ with U0

n an open Baire set such that
Kn ⊂ U0

n and U0
n ⊂ Cn where Cn is a compact Baire set, see Theorem

31.54), there exists open Baire sets Vn of X such that A ∩ Kn ⊂ Vn and
µ(Vn \ A ∩ Kn) < ε2−n for all n. Let V = ∪∞n=1Vn ∈ τ ∩ B0

X , A ⊂ V and
µ(V \ A) < ε. Now suppose that µ is regular and A ∈ B0

X . If µ(A) = ∞
then clearly inf

{
µ(V ) : A ⊂ V ∈ τ ∩ B0

X

}
= ∞. So we will now assume that

µ(A) <∞. By inner regularity, there exists compact G′δs, Kn, such that Kn ↑,
Kn ⊂ A for all n and µ(A \Kn) ↓ 0 as n→∞. Letting B = ∪Kn ⊂ A, then
B is a σ – bounded set, µ(A \B) = 0. Since B is σ – bounded there exists an
open Baire V such that B ⊂ V and µ(V \ B) is a small as we please. These
remarks reduce the problem to considering the truth of the proposition for
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the null set A \B. So we now assume that µ(A) = 0. If A is σ – bounded we
are done by the first part of the proposition, so we will now assume that A is
not σ – bounded. By Lemma 31.52, it follows that Ac is σ – bounded. (I am
a little stuck here, so assume for now that µ(X) < ∞. in which case we do
not use the fact that Ac can be assumed to be σ – bounded.) If µ(X) < ∞
and ε > 0 is given, by inner regularity there exists a compact Baire subset
K ⊂ Ac such that

ε > µ(Ac \K) = µ(Kc \A)

and since A ⊂ Kc is an open, Baire set the proof is finished when µ is a finite
measure.

Example 31.62. 1) Suppose that X = R with the standard topology and µ is
counting measure on X. Then clearly µ is not finite on all compact sets, so
µ is not K-finite measure. 2) Let X = R and τ = τd = 2X be the discrete
topology on X. Now let µ(A) = 0 if A is countable and µ(A) =∞ otherwise.
Then µ(K) = 0 <∞ if K is τd – compact yet µ is not inner regular on open
sets, i.e. all sets. So again µ is not Radon. Moreover, the functional

Iµ(f) =
∫
X

fdµ = 0 for all f ∈ Cc(X).

This shows that with out the restriction that µ is Radon in Example 28.17,
the correspondence µ→ Iµ is not injective.

Theorem 31.63 (Riesz Representation Theorem). Let X be a locally
compact Hausdorff space. The map ν → Iν taking Radon measures on X to
positive linear functionals on Cc(X) is bijective. Moreover if I is a positive
linear functionals on Cc(X), then I = Iν where ν is the unique Radon measure
ν such that ν(U) = sup{I(f) : f ≺ U} for all U ⊂o X.

Proof. Given a positive linear functional on Cc(X), the Daniell - Stone
integral construction theorem gives the existence of a measure µ on B0

X :=
σ(Cc(X)) (the Baire σ – algebra) such that∫

X

fdµ = I(f) for all f ∈ Cc(X)

and for g ∈ L1(µ),

sup {I(f) : S↓ 3 f ≤ g} =
∫
X

gdµ = inf {I(h) : g ≤ h ∈ S↑}

with S := Cc(X,R). Suppose that K is a compact subset of X and E ⊂ K
is a Baire set. Let f ≺ X be a function such that f = 1 on K, then 1E ≤ f
implies µ(E) = I(1E) ≤ I(f) < ∞. Therefore any bounded (i.e. subset of a
compact set) Baire set E has finite measure. Suppose that K is a compact
Baire set, i.e. a compact Gδ, and f is as in Exercise 31.2, then
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µ(K) ≤
∫
fndµ = I(fn) <∞

showing µ is finite on compact Baire sets and by the dominated convergence
theorem that

µ(K) = lim
n→∞

I(fn)

showing µ is uniquely determined on compact Baire sets. Suppose that A ∈ B0
X

and µ(A) = I∗(1A) < ∞. Given ε > 0, there exists f ∈ S↑ such that 1A ≤ f
and µ(f) < µ(A)+ ε. Let fn ∈ Cc(X) such that fn ↑ f, then 1A ≤ 1{f≥1} ≤ f
which shows

µ(A) ≤ µ(f ≥ 1) ≤
∫
fdµ = I(f) < µ(A) + ε.

Let Vm := ∪∞n=1 {fn > 1− 1/m} , then Vm is open and Vm ↓ {f ≥ 1} as
m→∞. Notice that

µ(Vm) = lim
n→∞

µ (fn > 1− 1/m) ≤ µ (f > 1− 1/m)

≤ 1
1− 1/m

µ(f) <
1

1− 1/m
(µ(A) + ε)

showing µ(Vm) < µ(A) + ε for all m large enough. Therefore if A ∈ B0
X and

µ(A) < ∞, there exists a Baire open set, V, such A ⊂ V and µ(V \ A) is
as small as we please. Suppose that A ∈ B0

X is a σ – bounded Baire set,
then using Item 4. of Theorem 31.54 there exists compact Gδ, Kn, such that
A ⊂ ∪Kn. Hence there exists Vn open Baire sets such that Kn ∩A ⊂ Vn and
µ(Vn \Kn ∩ A) < ε2−n for all n. Now let V := ∪Vn, an open Baire set, then
A ⊂ V and µ(V \A) < ε. Hence we have shown if A is σ – bounded then

µ(A) = inf {µ(V ) : A ⊂ V ⊂o X and V is Baire.}

Again let AandKn be as above. ReplacingKn by ∪nk=1Kk we may also assume
that Kn ↑ as n ↑ . Then Kn ∩A is a bounded Baire set. Let Fn be a compact
Gδ such that Kn ∩ A ⊂ Fn and choose σ – compact open set Vn such that
Fn \ Kn ∩ A ⊂ Vn and µ(Vn \ (Fn \Kn ∩A)) < ε2−n. ....... In the end the
desired measure ν should be defined by

ν(U) = sup{I(f) : f ≺ U} for all U ⊂o X

and for general A ∈ BX we set

ν(A) := inf {ν(U) : A ⊂ U ⊂o X} .

Let us note that if f ≺ U and K = supp(f), then there exists K ⊂ U0 ⊂
K0 ⊂ U as in Theorem 31.54. Therefore, f ≤ 1K0 and hence I(f) ≤ µ(K0)
which shows that
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ν(U) ≤ sup {µ(K0) : K0 ⊂ U and K0 is a compact Gδ} .

The converse inequality is easily proved by letting g ≺ U such that g = 1 on
K0. Then µ(K0) ≤ I(g) ≤ ν(U) and hence

ν(U) = sup {µ(K0) : K0 ⊂ U and K0 is a compact Gδ} .

Let us note that ν is sub-additive on open sets ,see p. 314 of Royden. Let

ν∗(A) := inf {ν(U) : A ⊂ U ⊂o X}

Then ν∗ is an outer measure as well I think and N := {A ⊂ X : ν∗(A) =
0} is closed under countable unions. Moreover if E is Baire measurable and
E ∈ N , then there exists O open ν(O) < ε and E ⊂ O. Hence for all compact
Gδ, K ⊂ O, µ(K) < ε. Royden uses assumed regularity here to show that
ν(E) = 0. I don’t see how to get this assume regularity at this point.

31.8 Metric space regularity results resisted

Proposition 31.64. Let (X, d) be a metric space and µ be a measure on
M = BX which is σ – finite on τ := τd.

1. For all ε > 0 and B ∈M there exists an open set V ∈ τ and a closed set
F such that F ⊂ B ⊂ V and µ(V \ F ) ≤ ε.

2. For all B ∈M, there exists A ∈ Fσ and C ∈ Gδ such that A ⊂ B ⊂ C and
µ(C \A) = 0. Here Fσ denotes the collection of subsets of X which may be
written as a countable union of closed sets and Gδ = τδ is the collection
of subsets of X which may be written as a countable intersection of open
sets.

3. The space BCf (X) of bounded continuous functions on X such that µ(f 6=
0) <∞ is dense in Lp(µ).

Proof. Let S := BCf (X), I(f) :=
∫
X
fdµ for f ∈ S and Xn ∈ τ be chosen

so that µ(Xn) <∞ and Xn ↑ X as n→∞. Then 1 ∧ f ∈ S for all f ∈ S and
if φn = 1 ∧

(
ndXc

n

)
∈ S+, then φn ↑ 1 as n → ∞ and so by Remark 31.45

there exists χ ∈ S↑ such that χ > 0 on X and I(χ) < ∞. Similarly if V ∈ τ,
the function gn := 1 ∧

(
nd(Xn∩V )c

)
∈ S and gn → 1V as n → ∞ showing

σ(S) =BX . If fn ∈ S+ and fn ↓ 0 as n → ∞, it follows by the dominated
convergence theorem that I(fn) ↓ 0 as n → ∞. So the hypothesis of the
Daniell – Stone Theorem 31.44 hold and hence µ is the unique measure on
BX such that I = Iµ and for B ∈ BX and

µ(B) = I∗(1B) = inf {I(f) : f ∈ S↑ with 1B ≤ f}

= inf
{∫

X

fdµ : f ∈ S↑ with 1B ≤ f
}
.

Page: 660 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



31.9 General Product Measures 661

Suppose ε > 0 and B ∈ BX are given. There exists fn ∈ BCf (X) such
that fn ↑ f, 1B ≤ f, and µ(f) < µ(B) + ε. The condition 1B ≤ f, implies
1B ≤ 1{f≥1} ≤ f and hence that

µ(B) ≤ µ(f ≥ 1) ≤ µ(f) < µ(B) + ε. (31.31)

Moreover, letting Vm := ∪∞n=1 {fn ≥ 1− 1/m} ∈ τd, we have Vm ↓ {f ≥ 1} ⊃
B hence µ(Vm) ↓ µ(f ≥ 1) ≥ µ(B) as m → ∞. Combining this observation
with Eq. (31.31), we may choose m sufficiently large so that B ⊂ Vm and

µ(Vm \B) = µ(Vm)− µ(B) < ε.

Hence there exists V ∈ τ such that B ⊂ V and µ(V \ B) < ε. Applying this
result to Bc shows there exists F @ X such that Bc ⊂ F c and

µ(B \ F ) = µ(F c \Bc) < ε.

So we have produced F ⊂ B ⊂ V such that µ(V \F ) = µ(V \B)+µ(B \F ) <
2ε. The second assertion is an easy consequence of the first and the third
follows in similar manner to any of the proofs of Item 7. in Theorem 31.47.

31.9 General Product Measures

In this section we drop the topological assumptions used in the last section.

Theorem 31.65. Let {(Xα,Mα, µα)}α∈A be a collection of probability spaces,
that is µα(Xa) = 1 for all α ∈ A. Let X :=

∏
α∈A

Xα, M = σ(πα : α ∈ A) and

for Λ ⊂⊂ A let XΛ :=
∏
α∈ΛXα and πΛ : X → XΛ be the projection map

πΛ(x) = x|Λ and µΛ :=
∏
α∈Λ µα be product measure on MΛ := ⊗α∈ΛMα.

Then there exists a unique measure µ on M such that (πΛ)∗ µ = µΛ for all
Λ ⊂⊂ A, i.e. if f : XΛ → R is a bounded measurable function then∫

X

f(πΛ(x))dµ(x) =
∫
XΛ

f(y)dµΛ(y). (31.32)

Proof. Let S denote the collection of functions f : X → R such that there
exists Λ ⊂⊂ A and a bounded measurable function F : XΛ → R such that
f = F ◦ πΛ. For f = F ◦ πΛ ∈ S, let I(f) =

∫
XΛ

FdµΛ. Let us verify that
I is well defined. Suppose that f may also be expressed as f = G ◦ πΓ with
Γ ⊂⊂ A and G : XΓ → R bounded and measurable. By replacing Γ by Γ ∪Λ
if necessary, we may assume that Λ ⊂ Γ. Making use of Fubini’s theorem we
learn
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XΓ

G(z) dµΓ (z) =
∫
XΛ×XΓ\Λ

F ◦ πΛ(x) dµΛ(x)dµΓ\Λ(y)

=
∫
XΛ

F ◦ πΛ(x) dµΛ(x) ·
∫
XΓ\Λ

dµΓ\Λ(y)

= µΓ\Λ
(
XΓ\Λ

)
·
∫
XΛ

F ◦ πΛ(x) dµΛ(x)

=
∫
XΛ

F ◦ πΛ(x) dµΛ(x),

wherein we have used the fact that µΛ(XΛ) = 1 for all Λ ⊂⊂ A since µα(Xα) =
1 for all α ∈ A. It is now easy to check that I is a positive linear functional on
the lattice S. We will now show that I is a Daniel integral. Suppose that fn ∈
S+ is a decreasing sequence such that infn I(fn) = ε > 0. We need to show
f := limn→∞ fn is not identically zero. As in the proof that I is well defined,
there exists Λn ⊂⊂ A and bounded measurable functions Fn : XΛn → [0,∞)
such that Λn is increasing in n and fn = Fn ◦ πΛn for each n. For k ≤ n, let
F kn : XΛk

→ [0,∞) be the bounded measurable function

F kn (x) =
∫
XΛn\Λk

Fn(x× y)dµΛn\Λk
(y)

where x×y ∈ XΛn
is defined by (x× y) (α) = x(α) if α ∈ Λk and (x× y) (α) =

y(α) for α ∈ Λn \Λk. By convention we set Fnn = Fn. Since fn is decreasing it
follows that F kn+1 ≤ F kn for all k and n ≥ k and therefore F k := limn→∞ F kn
exists. By Fubini’s theorem,

F kn (x) =
∫
XΛn\Λk

F k+1
n (x× y)dµΛk+1\Λk

(y) when k + 1 ≤ n

and hence letting n→∞ in this equation shows

F k(x) =
∫
XΛn\Λk

F k+1(x× y)dµΛk+1\Λk
(y) (31.33)

for all k. Now∫
XΛ1

F 1(x)dµΛ1(x) = lim
n→∞

∫
XΛ1

F 1
n(x)dµΛ1(x) = lim

n→∞
I(fn) = ε > 0

so there exists
x1 ∈ XΛ1 such that F 1(x1) ≥ ε.

From Eq. (31.33) with k = 1 and x = x1 it follows that

ε ≤
∫
XΛ2\Λ1

F 2(x1 × y)dµΛ2\Λ1(y)
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and hence there exists

x2 ∈ XΛ2\Λ1 such that F 2(x1 × x2) ≥ ε.

Working this way inductively using Eq. (31.33) implies there exists

xi ∈ XΛi\Λi−1 such that Fn(x1 × x2 × · · · × xn) ≥ ε

for all n. Now Fnk ≥ Fn for all k ≤ n and in particular for k = n, thus

Fn(x1 × x2 × · · · × xn) = Fnn (x1 × x2 × · · · × xn)
≥ Fn(x1 × x2 × · · · × xn) ≥ ε (31.34)

for all n. Let x ∈ X be any point such that

πΛn
(x) = x1 × x2 × · · · × xn

for all n. From Eq. (31.34) it follows that

fn(x) = Fn ◦ πΛn
(x) = Fn(x1 × x2 × · · · × xn) ≥ ε

for all n and therefore f(x) := limn→∞ fn(x) ≥ ε showing f is not zero.
Therefore, I is a Daniel integral and there exists by Theorem 31.47 a unique
measure µ on (X,σ(S) =M) such that

I(f) =
∫
X

fdµ for all f ∈ S.

Taking f = 1A ◦ πΛ in this equation implies

µΛ(A) = I(f) = µ ◦ π−1
Λ (A)

and the result is proved.

Remark 31.66. (Notion of kernel needs more explanation here.) The above
theorem may be Jazzed up as follows. Let {(Xα,Mα)}α∈A be a collection
of measurable spaces. Suppose for each pair Λ ⊂ Γ ⊂⊂ A there is a kernel
µΛ,Γ (x, dy) for x ∈ XΛ and y ∈ XΓ\Λ such that if Λ ⊂ Γ ⊂ K ⊂⊂ A then

µΛ,K(x, dy × dz) = µΛ,Γ (x, dy)µΓ,K(x× y, dz).

Then there exists a unique measure µ onM such that∫
X

f(πΛ(x))dµ(x) =
∫
XΛ

f(y)dµ∅,Λ(y)

for all Λ ⊂⊂ A and f : XΛ → R bounded and measurable. To prove this asser-
tion, just use the proof of Theorem 31.65 replacing µΓ\Λ(dy) by µΛ,Γ (x, dy)
everywhere in the proof.

Page: 663 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



664 31 The Daniell – Stone Construction of Integration and Measures

31.10 Daniel Integral approach to dual spaces

BRUCE: compare and consolidate with Section 28.2.2.

Proposition 31.67. Let S be a vector lattice of bounded real functions on a
set X. We equip S with the sup-norm topology and suppose I ∈ S∗. Then there
exists I± ∈ S∗ which are positive such that then I = I+ − I−.

Proof. For f ∈ S+, let

I+(f) := sup
{
I(g) : g ∈ S+ and g ≤ f

}
.

One easily sees that |I+(f)| ≤ ‖I‖ ‖f‖ for all f ∈ S+ and I+(cf) = cI+(f) for
all f ∈ S+ and c > 0. Let f1, f2 ∈ S+. Then for any gi ∈ S+ such that gi ≤ fi,
we have S+ 3 g1 + g2 ≤ f1 + f2 and hence

I(g1) + I(g2) = I(g1 + g2) ≤ I+(f1 + f2).

Therefore,

I+(f1) + I+(f2) = sup{I(g1) + I(g2) : S+ 3 gi ≤ fi} ≤ I+(f1 + f2). (31.35)

For the opposite inequality, suppose g ∈ S+ and g ≤ f1 + f2. Let g1 = f1 ∧ g,
then

0 ≤ g2 := g − g1 = g − f1 ∧ g =
{

0 if g ≤ f1
g − f1 if g ≥ f1

≤
{

0 if g ≤ f1
f1 + f2 − f1 if g ≥ f1

≤ f2.

Since g = g1 + g2 with S+ 3 gi ≤ fi,

I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2)

and since S+ 3 g ≤ f1 + f2 was arbitrary, we may conclude

I+(f1 + f2) ≤ I+(f1) + I+(f2). (31.36)

Combining Eqs. (31.35) and (31.36) shows that

I+(f1 + f2) = I+(f1) + I+(f2) for all fi ∈ S+. (31.37)

We now extend I+ to S by defining, for f ∈ S,

I+(f) = I+(f+)− I+(f−)

where f+ = f ∨ 0 and f− = − (f ∧ 0) = (−f)∨ 0. (Notice that f = f+ − f−.)
We will now shows that I+ is linear. If c ≥ 0, we may use (cf)± = cf± to
conclude that
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I+(cf) = I+(cf+)− I+(cf−) = cI+(f+)− cI+(f−) = cI+(f).

Similarly, using (−f)± = f∓ it follows that I+(−f) = I+(f−) − I+(f+) =
−I+(f). Therefore we have shown

I+(cf) = cI+(f) for all c ∈ R and f ∈ S.

If f = u− v with u, v ∈ S+ then

v + f+ = u+ f− ∈ S+

and so by Eq. (31.37), I+(v) + I+(f+) = I+(u) + I+(f−) or equivalently

I+(f) = I+(f+)− I+(f−) = I+(u)− I+(v). (31.38)

Now if f, g ∈ S, then

I+(f + g) = I+(f+ + g+ − (f− + g−))
= I+(f+ + g+)− I+(f− + g−)
= I+(f+) + I+(g+)− I+(f−)− I+(g−)
= I+(f) + I+(g),

wherein the second equality we used Eq. (31.38). The last two paragraphs
show I+ : S→ R is linear. Moreover,

|I+(f)| = |I+(f+)− I+(f−)| ≤ max (|I+(f+)| , |I+(f−)|)
≤ ‖I‖max (‖f+‖ , ‖f−‖) = ‖I‖ ‖f‖

which shows that ‖I+‖ ≤ ‖I‖ . That is I+ is a bounded positive linear
functional on S. Let I− = I+ − I ∈ S∗. Then by definition of I+(f),
I−(f) = I+(f) − I(f) ≥ 0 for all S 3 f ≥ 0. Therefore I = I+ − I− with
I± being positive linear functionals on S.

Corollary 31.68. Suppose X is a second countable locally compact Hausdorff
space and I ∈ C0(X,R)∗, then there exists µ = µ+ − µ− where µ is a finite
signed measure on BR such that I(f) =

∫
R fdµ for all f ∈ C0(X,R). Similarly

if I ∈ C0(X,C)∗ there exists a complex measure µ such that I(f) =
∫

R fdµ
for all f ∈ C0(X,C). TODO Add in the isometry statement here.

Proof. Let I = I+ − I− be the decomposition given as above. Then we
know there exists finite measure µ± such that

I±(f) =
∫
X

fdµ± for all f ∈ C0(X,R).

and therefore I(f) =
∫
X
fdµ for all f ∈ C0(X,R) where µ = µ+ − µ−.

Moreover the measure µ is unique. Indeed if I(f) =
∫
X
fdµ for some finite

signed measure µ, then the next result shows that I±(f) =
∫
X
fdµ± where µ±

is the Hahn decomposition of µ. Now the measures µ± are uniquely determined
by I±. The complex case is a consequence of applying the real case just proved
to Re I and Im I.
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Proposition 31.69. Suppose that µ is a signed Radon measure and I = Iµ.
Let µ+ and µ− be the Radon measures associated to I±, then µ = µ+ − µ− is
the Jordan decomposition of µ.

Proof. Let X = P ∪P c where P is a positive set for µ and P c is a negative
set. Then for A ∈ BX ,

µ(P ∩A) = µ+(P ∩A)− µ−(P ∩A) ≤ µ+(P ∩A) ≤ µ+(A). (31.39)

To finish the proof we need only prove the reverse inequality. To this end let
ε > 0 and choose K @@ P ∩ A ⊂ U ⊂o X such that |µ| (U \ K) < ε. Let
f, g ∈ Cc(U, [0, 1]) with f ≤ g, then

I(f) = µ(f) = µ(f : K) + µ(f : U \K) ≤ µ(g : K) +O (ε)
≤ µ(K) +O (ε) ≤ µ(P ∩A) +O (ε) .

Taking the supremum over all such f ≤ g, we learn that I+(g) ≤ µ(P ∩A) +
O (ε) and then taking the supremum over all such g shows that

µ+(U) ≤ µ(P ∩A) +O (ε) .

Taking the infimum over all U ⊂o X such that P ∩A ⊂ U shows that

µ+(P ∩A) ≤ µ(P ∩A) +O (ε) (31.40)

From Eqs. (31.39) and (31.40) it follows that µ(P ∩A) = µ+(P ∩A). Since

I−(f) = sup
0≤g≤f

I(g)−I(f) = sup
0≤g≤f

I(g−f) = sup
0≤g≤f

−I(f−g) = sup
0≤h≤f

−I(h)

the same argument applied to −I shows that

−µ(P c ∩A) = µ−(P c ∩A).

Since

µ(A) = µ(P ∩A) + µ(P c ∩A) = µ+(P ∩A)− µ−(P c ∩A) and
µ(A) = µ+(A)− µ−(A)

it follows that
µ+(A \ P ) = µ−(A \ P c) = µ−(A ∩ P ).

Taking A = P then shows that µ−(P ) = 0 and taking A = P c shows that
µ+(P c) = 0 and hence

µ(P ∩A) = µ+(P ∩A) = µ+(A) and
−µ(P c ∩A) = µ−(P c ∩A) = µ−(A)

as was to be proved.
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32

Class Arguments

32.1 Monotone Class and π – λ Theorems

Definition 32.1. Let C ⊂ 2X be a collection of sets.

1. C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

2. C is a π – class if it is closed under finite intersections and
3. C is a λ–class if C satisfies the following properties:

a) X ∈ C
b) If A,B ∈ C and A ∩ B = ∅, then A ∪ B ∈ C. (Closed under disjoint

unions.)
c) If A,B ∈ C and A ⊃ B, then A \ B ∈ C. (Closed under proper

differences.)
d) If An ∈ C and An ↑ A, then A ∈ C. (Closed under countable increasing

unions.)
4. C is a λ0 – class if C satisfies conditions a) – c) but not necessarily d).

Remark 32.2. Notice that every λ – class is also a monotone class.

(The reader wishing to shortcut this section may jump to Theorem 32.5
where he/she should then only read the second proof.)

Lemma 32.3 (Monotone Class Theorem). Suppose A ⊂ 2X is an algebra
and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then
Bcn ↓ Bc and so
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C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bcn ↓ C ∩Bc and
C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C,
i.e. B ∈ C(C). This shows that C(C) is closed under increasing limits and
a similar argument shows that C(C) is closed under decreasing limits. Thus
we have shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C,
then A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows
that A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and
C(A) is a monotone class containing A, we conclude that C(A) = C for any
A ∈ A. Let B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This
observation and the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C
for all B ∈ C. Again since C is the smallest monotone class containing A and
C(B) is a monotone class we conclude that C(B) = C for all B ∈ C. That is
to say, if A,B ∈ C then A ∈ C = C(B) and hence A ∩B, A ∩Bc, Ac ∩B ∈ C.
So C is closed under complements (since X ∈ A ⊂ C) and finite intersections
and increasing unions from which it easily follows that C is a σ – algebra.

Let E ⊂ 2X×Y be given by

E =M×N = {A×B : A ∈M, B ∈ N}

and recall from Exercise 18.2 that E is an elementary family. Hence the algebra
A = A(E) generated by E consists of sets which may be written as disjoint
unions of sets from E .

Lemma 32.4. If D is a λ0 – class which contains a π – class, C, then D
contains A (C) – the algebra generated by C.

Proof. We will give two proofs of this lemma. The first proof is “construc-
tive” and makes use of Proposition 18.6 which tells how to construct A(C)
from C. The key to the first proof is the following claim which will be proved
by induction.

Claim. Let C̃0 = C and C̃n denote the collection of subsets of X of the
form

Ac1 ∩ · · · ∩Acn ∩B = B \A1 \A2 \ · · · \An. (32.1)

with Ai ∈ C and B ∈ C ∪ {X} . Then C̃n ⊂ D for all n, i.e. C̃ := ∪∞n=0C̃n ⊂ D.
By assumption C̃0 ⊂ D and when n = 1,

B \A1 = B \ (A1 ∩B) ∈ D

when A1, B ∈ C ⊂ D since A1 ∩ B ∈ C ⊂ D. Therefore, C̃1 ⊂ D. For the
induction step, let B ∈ C ∪ {X} and Ai ∈ C ∪ {X} and let En denote the set
in Eq. (32.1) We now assume C̃n ⊂ D and wish to show En+1 ∈ D, where

En+1 = En \An+1 = En \ (An+1 ∩ En).
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Because
An+1 ∩ En = Ac1 ∩ · · · ∩Acn ∩ (B ∩An+1) ∈ C̃n ⊂ D

and (An+1 ∩ En) ⊂ En ∈ C̃n ⊂ D, we have En+1 ∈ D as well. This finishes
the proof of the claim.

Notice that C̃ is still a multiplicative class and from Proposition 18.6 (using
the fact that C is a multiplicative class), A(C) consists of finite unions of
elements from C̃. By applying the claim to C̃, Ac1 ∩ · · · ∩Acn ∈ D for all Ai ∈ C̃
and hence

A1 ∪ · · · ∪An = (Ac1 ∩ · · · ∩Acn)
c ∈ D.

Thus we have shown A(C) ⊂ D which completes the proof.
Second Proof. With out loss of generality, we may assume that D is the

smallest λ0 – class containing C for if not just replace D by the intersection
of all λ0 – classes containing C. Let

D1 := {A ∈ D : A ∩ C ∈ D ∀ C ∈ C}.

Then C ⊂ D1 and D1 is also a λ0–class as we now check. a) X ∈ D1. b) If
A,B ∈ D1 with A∩B = ∅, then (A∪B)∩C = (A ∩ C)

∐
(B ∩ C) ∈ D for all

C ∈ C. c) If A,B ∈ D1 with B ⊂ A, then (A \B) ∩C = A ∩C \ (B ∩C) ∈ D
for all C ∈ C. Since C ⊂ D1 ⊂ D and D is the smallest λ0 – class containing C
it follows that D1 = D. From this we conclude that if A ∈ D and B ∈ C then
A ∩B ∈ D. Let

D2 := {A ∈ D : A ∩D ∈ D ∀ D ∈ D}.

Then D2 is a λ0–class (as you should check) which, by the above paragraph,
contains C. As above this implies that D = D2, i.e. we have shown that
D is closed under finite intersections. Since λ0 – classes are closed under
complementation, D is an algebra and hence A (C) ⊂ D. In fact D = A(C).

This Lemma along with the monotone class theorem immediately implies
Dynkin’s very useful “π – λ theorem.”

Theorem 32.5 (π – λ Theorem). If D is a λ class which contains a contains
a π – class, C, then σ(C) ⊂ D.

Proof. First Proof. Since D is a λ0 – class, Lemma 32.4 implies that
A(C) ⊂ D and so by Remark 32.2 and Lemma 32.3, σ(C) ⊂ D. Let us pause
to give a second, stand-alone, proof of this Theorem.

Second Proof. With out loss of generality, we may assume that D is the
smallest λ – class containing C for if not just replace D by the intersection of
all λ – classes containing C. Let

D1 := {A ∈ D : A ∩ C ∈ D ∀ C ∈ C}.

Then C ⊂ D1 and D1 is also a λ–class because as we now check. a) X ∈ D1. b)
If A,B ∈ D1 with A∩B = ∅, then (A∪B)∩C = (A ∩ C)

∐
(B ∩ C) ∈ D for
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all C ∈ C. c) If A,B ∈ D1 with B ⊂ A, then (A \B)∩C = A∩C \(B∩C) ∈ D
for all C ∈ C. d) If An ∈ D1 and An ↑ A as n → ∞, then An ∩ C ∈ D for
all C ∈ D and hence An ∩ C ↑ A ∩ C ∈ D. Since C ⊂ D1 ⊂ D and D is the
smallest λ – class containing C it follows that D1 = D. From this we conclude
that if A ∈ D and B ∈ C then A ∩B ∈ D.

Let
D2 := {A ∈ D : A ∩D ∈ D ∀ D ∈ D}.

Then D2 is a λ–class (as you should check) which, by the above paragraph,
contains C. As above this implies that D = D2, i.e. we have shown that D is
closed under finite intersections. Since λ – classes are closed under comple-
mentation, D is an algebra which is closed under increasing unions and hence
is closed under arbitrary countable unions, i.e. D is a σ – algebra. Since C ⊂ D
we must have σ(C) ⊂ D and in fact σ(C) = D.

32.1.1 Some other proofs of previously proved theorems

Proof. Other Proof of Corollary 18.54. Let D := {A ⊂ X : 1A ∈ H}. Then
by assumption C ⊂ D and since 1 ∈ H we know X ∈ D. If A,B ∈ D are
disjoint then 1A∪B = 1A + 1B ∈ H so that A ∪ B ∈ D and if A,B ∈ D and
A ⊂ B, then 1B\A = 1B − 1A ∈ H. Finally if An ∈ D and An ↑ A as n→∞
then 1An → 1A boundedly so 1A ∈ H and hence A ∈ D. So D is λ – class
containing C and hence D contains σ(C). From this it follows that H contains
1A for all A ∈ σ(C) and hence all σ(C) – measurable simple functions by
linearity. The proof is now complete with an application of the approximation
Theorem 18.42 along with the assumption that H is closed under bounded
convergence.

Proof. Other Proof of Theorems 18.51 and 18.52. Let F be R or C. Let C
be the family of all sets of the form:

B := {x ∈ X : f1(x) ∈ R1, . . . , fm(x) ∈ Rm} (32.2)

where m = 1, 2, . . . , and for k = 1, 2, . . . ,m, fk ∈M and Rk is an open inter-
val if F = R or Rk is an open rectangle in C if F = C. The family C is easily
seen to be a π – system such that σ(M) = σ(C). So By Corollary 18.54, to fin-
ish the proof it suffices to show 1B ∈ H for all B ∈ C. It is easy to construct,
for each k, a uniformly bounded sequence of continuous functions

{
φkn
}∞
n=1

on F converging to the characteristic function 1Rk
. By Weierstrass’ theo-

rem, there exists polynomials pkm(x) such that
∣∣pkn(x)− φkn(x)∣∣ ≤ 1/n for

|x| ≤ ‖φk‖∞ in the real case and polynomials pkm(z, z̄) in z and z̄ such that∣∣pkn(z, z̄)− φkn(z)∣∣ ≤ 1/n for |z| ≤ ‖φk‖∞ in the complex case. The functions

Fn :=p1
n(f1)p

2
n(f2) . . . p

m
n (fm) (real case)

Fn :=p1
n(f1f̄1)p

2
n(f2, f̄2) . . . p

m
n (fm, f̄m) (complex case)
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on X are uniformly bounded, belong to H and converge pointwise to 1B as
n → ∞, where B is the set in Eq. (32.2). Thus 1B ∈ H and the proof is
complete.

Theorem 32.6 (Uniqueness). Suppose that E ⊂ 2X is an elementary class
and M = σ(E) (the σ – algebra generated by E). If µ and ν are two measures
on M which are σ – finite on E and such that µ = ν on E then µ = ν on M.

Proof. Let A := A(E) be the algebra generated by E . Since every element
of A is a disjoint union of elements from E , it is clear that µ = ν on A.
Henceforth we may assume that E = A. We begin first with the special case
where µ(X) <∞ and hence ν(X) = µ(X) <∞. Let

C = {A ∈M : µ(A) = ν(A)}

The reader may easily check that C is a monotone class. Since A ⊂ C, the
monotone class lemma asserts thatM = σ(A) ⊂ C ⊂M showing that C =M
and hence that µ = ν on M. For the σ – finite case, let Xn ∈ A be sets such
that µ(Xn) = ν(Xn) <∞ and Xn ↑ X as n→∞. For n ∈ N, let

µn(A) := µ(A ∩Xn) and νn(A) = ν(A ∩Xn) (32.3)

for all A ∈ M. Then one easily checks that µn and νn are finite measure on
M such that µn = νn on A. Therefore, by what we have just proved, µn = νn
onM. Hence or all A ∈M, using the continuity of measures,

µ(A) = lim
n→∞

µ(A ∩Xn) = lim
n→∞

ν(A ∩Xn) = ν(A).

Using Dynkin’s π – λ Theorem 32.5 we may strengthen Theorem 32.6 to
the following.

Proof. Second Proof of Theorem 19.55. As in the proof of Theorem
32.6, it suffices to consider the case where µ and ν are finite measure such
that µ(X) = ν(X) < ∞. In this case the reader may easily verify from the
basic properties of measures that

D = {A ∈M : µ(A) = ν(A)}

is a λ – class. By assumption C ⊂ D and hence by the π– λ theorem, D
contains M = σ(C).

32.2 Regularity of Measures

Definition 32.7. Suppose that E is a collection of subsets of X, let Eσ denote
the collection of subsets of X which are finite or countable unions of sets from
E . Similarly let Eδ denote the collection of subsets of X which are finite or
countable intersections of sets from E . We also write Eσδ for (Eσ)δ and Eδσ
for (Eδ)σ , etc.
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Remark 32.8. Notice that if A is an algebra and C = ∪Ci and D = ∪Dj with
Ci, Dj ∈ Aσ, then

C ∩D = ∪i,j (Ci ∩Dj) ∈ Aσ
so that Aσ is closed under finite intersections.

The following theorem shows how recover a measure µ on σ(A) from its
values on an algebra A.

Theorem 32.9 (Regularity Theorem). Let A ⊂ 2X be an algebra of sets,
M = σ(A) and µ :M→ [0,∞] be a measure onM which is σ – finite on A.
Then for all A ∈M,

µ(A) = inf {µ(B) : A ⊂ B ∈ Aσ} . (32.4)

Moreover, if A ∈ M and ε > 0 are given, then there exists B ∈ Aσ such that
A ⊂ B and µ(B \A) ≤ ε.

Proof. For A ⊂ X, define

µ∗(A) = inf {µ(B) : A ⊂ B ∈ Aσ} .

We are trying to show µ∗ = µ on M. We will begin by first assuming that µ
is a finite measure, i.e. µ(X) <∞. Let

F = {B ∈M : µ∗ (B) = µ(B)} = {B ∈M : µ∗ (B) ≤ µ(B)}.

It is clear that A ⊂ F , so the finite case will be finished by showing F is
a monotone class. Suppose Bn ∈ F , Bn ↑ B as n → ∞ and let ε > 0 be
given. Since µ∗(Bn) = µ(Bn) there exists An ∈ Aσ such that Bn ⊂ An and
µ(An) ≤ µ(Bn) + ε2−n i.e.

µ(An \Bn) ≤ ε2−n.

Let A = ∪nAn ∈ Aσ, then B ⊂ A and

µ(A \B) = µ(∪n(An \B)) ≤
∞∑
n=1

µ((An \B))

≤
∞∑
n=1

µ((An \Bn)) ≤
∞∑
n=1

ε2−n = ε.

Therefore,
µ∗(B) ≤ µ(A) ≤ µ(B) + ε

and since ε > 0 was arbitrary it follows that B ∈ F . Now suppose that Bn ∈ F
and Bn ↓ B as n→∞ so that

µ(Bn) ↓ µ(B) as n→∞.
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As above choose An ∈ Aσ such that Bn ⊂ An and

0 ≤ µ(An)− µ(Bn) = µ(An \Bn) ≤ 2−n.

Combining the previous two equations shows that limn→∞ µ(An) = µ(B).
Since µ∗(B) ≤ µ(An) for all n, we conclude that µ∗(B) ≤ µ(B), i.e. that
B ∈ F . Since F is a monotone class containing the algebra A, the monotone
class theorem asserts that

M = σ(A) ⊂ F ⊂M

showing the F = M and hence that µ∗ = µ on M. For the σ – finite case,
let Xn ∈ A be sets such that µ(Xn) < ∞ and Xn ↑ X as n → ∞. Let µn
be the finite measure on M defined by µn(A) := µ(A ∩Xn) for all A ∈ M.
Suppose that ε > 0 and A ∈ M are given. By what we have just proved, for
all A ∈M, there exists Bn ∈ Aσ such that A ⊂ Bn and

µ ((Bn ∩Xn) \ (A ∩Xn)) = µn(Bn \A) ≤ ε2−n.

Notice that since Xn ∈ Aσ, Bn ∩Xn ∈ Aσ and

B := ∪∞n=1 (Bn ∩Xn) ∈ Aσ.

Moreover, A ⊂ B and

µ(B \A) ≤
∞∑
n=1

µ((Bn ∩Xn) \A) ≤
∞∑
n=1

µ((Bn ∩Xn) \ (A ∩Xn))

≤
∞∑
n=1

ε2−n = ε.

Since this implies that

µ(A) ≤ µ(B) ≤ µ(A) + ε

and ε > 0 is arbitrary, this equation shows that Eq. (32.4) holds.

Corollary 32.10. Let A ⊂ 2X be an algebra of sets,M = σ(A) and µ :M→
[0,∞] be a measure on M which is σ – finite on A. Then for all A ∈M and
ε > 0 there exists B ∈ Aδ such that B ⊂ A and

µ(A \B) < ε.

Furthermore, for any B ∈ M there exists A ∈ Aδσ and C ∈ Aσδ such that
A ⊂ B ⊂ C and µ(C \A) = 0.

Proof. By Theorem 32.9, there exist C ∈ Aσ such that Ac ⊂ C and
µ(C \ Ac) ≤ ε. Let B = Cc ⊂ A and notice that B ∈ Aδ and that C \ Ac =
Bc ∩A = A \B, so that
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µ(A \B) = µ(C \Ac) ≤ ε.

Finally, given B ∈ M, we may choose An ∈ Aδ and Cn ∈ Aσ such that
An ⊂ B ⊂ Cn and µ(Cn \ B) ≤ 1/n and µ(B \ An) ≤ 1/n. By replacing AN
by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑ and Cn ↓ as n
increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)
≤ 2/n→ 0 as n→∞.

For Exercises 32.1 – 32.3 let τ ⊂ 2X be a topology, M = σ(τ) and µ
:M→ [0,∞) be a finite measure, i.e. µ(X) <∞.

Exercise 32.1. Let

F := {A ∈M : µ(A) = inf {µ(V ) : A ⊂ V ∈ τ}} . (32.5)

1. Show F may be described as the collection of set A ∈M such that for all
ε > 0 there exists V ∈ τ such that A ⊂ V and µ(V \A) < ε.

2. Show F is a monotone class.

Exercise 32.2. Give an example of a topology τ onX = {1, 2} and a measure
µ onM = σ(τ) such that F defined in Eq. (32.5) is notM.

Exercise 32.3. Suppose now τ ⊂ 2X is a topology with the property that to
every closed set C ⊂ X, there exists Vn ∈ τ such that Vn ↓ C as n→∞. Let
A = A(τ) be the algebra generated by τ.

1. With the aid of Exercise 18.1, show that A ⊂ F . Therefore by exercise
32.1 and the monotone class theorem, F =M, i.e.

µ(A) = inf {µ(V ) : A ⊂ V ∈ τ} .

2. Show this result is equivalent to following statement: for every ε > 0 and
A ∈M there exist a closed set C and an open set V such that C ⊂ A ⊂ V
and µ(V \ C) < ε. (Hint: Apply part 1. to both A and Ac.)

Exercise 32.4 (Generalization to the σ – finite case). Let τ ⊂ 2X be
a topology with the property that to every closed set F ⊂ X, there exists
Vn ∈ τ such that Vn ↓ F as n → ∞. Also let M = σ(τ) and µ :M→ [0,∞]
be a measure which is σ – finite on τ.

1. Show that for all ε > 0 and A ∈ M there exists an open set V ∈ τ and a
closed set F such that F ⊂ A ⊂ V and µ(V \ F ) ≤ ε.

2. Let Fσ denote the collection of subsets of X which may be written as a
countable union of closed sets. Use item 1. to show for all B ∈ M, there
exists C ∈ τδ (τδ is customarily written as Gδ) and A ∈ Fσ such that
A ⊂ B ⊂ C and µ(C \A) = 0.
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32.2.1 Another proof of Theorem 28.22

Proof. The main part of this proof is an application of Exercise 32.4. So we
begin by checking the hypothesis of this exercise. Suppose that C @ X is a
closed set, then by assumption there existsKn @@ X such that Cc = ∪∞n=1Kn.
Letting VN := ∩Nn=1K

c
n ⊂o X, by taking complements of the last equality we

find that VN ↓ C as N →∞. Also by assumption there exists Kn @@ X such
that Kn ↑ X as n → ∞. For each x ∈ Kn, let Vx ⊂o X be a precompact
neighborhood of x. By compactness of Kn there is a finite set Λ ⊂⊂ Kn such
that Kn ⊂ Vn := ∪x∈ΛVx. Since V̄ = ∪x∈ΛV̄x is a finite union of compact
set, V̄n is compact and hence µ(Vn) ≤ µ(V̄n) < ∞. Since X = ∪Kn ⊂ ∪Vn
we learn that µ is σ finite on open sets of X. By Exercise 32.4, we conclude
that for all ε > 0 and A ∈ BX there exists V ⊂o X and F @ X such that
F ⊂ A ⊂ V and µ(V \ F ) < ε. For this F and V we have

µ(A) ≤ µ(V ) = µ(A) + µ(V \A) ≤ µ(A) + µ(V \ F ) < µ(A) + ε (32.6)

and
µ(F ) ≤ µ(A) = µ(F ) + µ(A \ F ) < µ(F ) + ε. (32.7)

From Eq. (32.6) we see that µ is outer regular on BX . To finish the proof of
inner regularity, let Kn @@ X such that Kn ↑ X. If µ(A) =∞, it follows from
Eq. (32.7) that µ(F ) = ∞. Since F ∩Kn ↑ F, µ(F ∩Kn) ↑ ∞ = µ(A) which
shows that µ is inner regular on A because F ∩Kn is a compact subset of A
for each n. If µ(A) <∞, we again have F ∩Kn ↑ F and hence by Eq. (32.7)
for n sufficiently large we still have

µ(F ∩Kn) ≤ µ(A) < µ(F ∩Kn) + ε

from which it follows that µ is inner regular on A.

Exercise 32.5 (Metric Space Examples). Suppose that (X, d) is a metric
space and τd is the topology of d – open subsets of X. To each set F ⊂ X and
ε > 0 let

Fε = {x ∈ X : dF (x) < ε} = ∪x∈FBx(ε) ∈ τd.

Show that if F is closed, then Fε ↓ F as ε ↓ 0 and in particular Vn := F1/n ∈ τd
are open sets decreasing to F. Therefore the results of Exercises 32.3 and 32.4
apply to measures on metric spaces with the Borel σ – algebra, B = σ(τd).

Corollary 32.11. Let X ⊂ Rn be an open set and B = BX be the Borel σ –
algebra on X equipped with the standard topology induced by open balls with
respect to the Euclidean distance. Suppose that µ : B → [0,∞] is a measure
such that µ(K) <∞ whenever K is a compact set.

1. Then for all A ∈ B and ε > 0 there exist a closed set F and an open set
V such that F ⊂ A ⊂ V and µ(V \ F ) < ε.

2. If µ(A) <∞, the set F in item 1. may be chosen to be compact.
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3. For all A ∈ B we may compute µ(A) using

µ(A) = inf{µ(V ) : A ⊂ V and V is open} (32.8)
= sup{µ(K) : K ⊂ A and K is compact}. (32.9)

Proof. For k ∈ N, let

Kk := {x ∈ X : |x| ≤ k and dXc(x) ≥ 1/k} . (32.10)

Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ X as k →∞ since1

{x ∈ X : |x| < k and dXc(x) > 1/k} ⊂ Ko
k

and {x ∈ X : |x| < k and dXc(x) > 1/k} ↑ X as k → ∞.This shows µ is σ –
finite on τX and Item 1. follows from Exercises 32.4 and 32.5. If µ(A) < ∞
and F ⊂ A ⊂ V as in item 1. Then Kk ∩ F ↑ F as k → ∞ and therefore
since µ(V ) < ∞, µ(V \Kk ∩ F ) ↓ µ(V \ F ) as k → ∞. Hence by choosing k
sufficiently large, µ(V \Kk∩F ) < ε and we may replace F by the compact set
F∩Kk and item 1. still holds. This proves item 2. Item 3. Item 1. easily implies
that Eq. (32.8) holds and item 2. implies Eq. (32.9) holds when µ(A) <∞. So
we need only check Eq. (32.9) when µ(A) =∞. By Item 1. there is a closed set
F ⊂ A such that µ(A\F ) < 1 and in particular µ(F ) =∞. Since Kn∩F ↑ F,
and Kn ∩ F is compact, it follows that the right side of Eq. (32.9) is infinite
and hence equal to µ(A).

32.2.2 Second Proof of Theorem 22.13

Proof. Second Proof of Theorem 22.13 Since Sf (M, µ) is dense in Lp(µ)
it suffices to show any φ ∈ Sf (M, µ) may be well approximated by f ∈
BCf (X).Moreover, to prove this it suffices to show for A ∈M with µ(A) <∞
that 1A may be well approximated by an f ∈ BCf (X). By Exercises 32.4 and
32.5, for any ε > 0 there exists a closed set F and an open set V such that
F ⊂ A ⊂ V and µ(V \ F ) < ε. (Notice that µ(V ) < µ(A) + ε <∞.) Let f be
as in Eq. (6.4), then f ∈ BCf (X) and since |1A − f | ≤ 1V \F ,∫

|1A − f |p dµ ≤
∫

1V \F dµ = µ(V \ F ) ≤ ε (32.11)

or equivalently
‖1A − f‖ ≤ ε1/p.

Since ε > 0 is arbitrary, we have shown that 1A can be approximated in Lp(µ)
arbitrarily well by functions from BCf (X)).

1 In fact this is an equality, but we will not need this here.
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33

Fourier Transform

The underlying space in this section is Rn with Lebesgue measure. The Fourier
inversion formula is going to state that

f(x) =
(

1
2π

)n ∫
Rn

dξeiξ·x
∫

Rn

dyf(y)e−iy·ξ. (33.1)

If we let ξ = 2πη, this may be written as

f(x) =
∫

Rn

dηei2πη·x
∫

Rn

dyf(y)e−i2πy·η

and we have removed the multiplicative factor of
(

1
2π

)n in Eq. (33.1) at the
expense of placing factors of 2π in the arguments of the exponentials. Another
way to avoid writing the 2π’s altogether is to redefine dx and dξ and this is
what we will do here.

Notation 33.1 Let m be Lebesgue measure on Rn and define:

dx =
(

1√
2π

)n
dm(x) and dξ :=

(
1√
2π

)n
dm(ξ).

To be consistent with this new normalization of Lebesgue measure we will
redefine ‖f‖p and 〈f, g〉 as

‖f‖p =
(∫

Rn

|f(x)|p dx
)1/p

=

((
1
2π

)n/2 ∫
Rn

|f(x)|p dm(x)

)1/p

and
〈f, g〉 :=

∫
Rn

f(x)g(x)dx when fg ∈ L1.

Similarly we will define the convolution relative to these normalizations by
fFg :=

(
1
2π

)n/2
f ∗ g, i.e.
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fFg(x) =
∫

Rn

f(x− y)g(y)dy =
∫

Rn

f(x− y)g(y)
(

1
2π

)n/2
dm(y).

The following notation will also be convenient; given a multi-index α ∈ Zn+,
let |α| = α1 + · · ·+ αn,

xα :=
n∏
j=1

x
αj

j , ∂
α
x =

(
∂

∂x

)α
:=

n∏
j=1

(
∂

∂xj

)αj

and

Dα
x =

(
1
i

)|α|(
∂

∂x

)α
=
(

1
i

∂

∂x

)α
.

Also let
〈x〉 := (1 + |x|2)1/2

and for s ∈ R let
νs(x) = (1 + |x|)s.

33.1 Fourier Transform

Definition 33.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=
∫

Rn

e−ix·ξf(x)dx (33.2)

g∨(x) = F−1g(x) =
∫

Rn

eix·ξg(ξ)dξ = Fg(−x) (33.3)

The next theorem summarizes some more basic properties of the Fourier
transform.

Theorem 33.3. Suppose that f, g ∈ L1. Then

1. f̂ ∈ C0(Rn) and
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1 .

2. For y ∈ Rn, (τyf) ˆ(ξ) = e−iy·ξ f̂(ξ) where, as usual, τyf(x) := f(x− y).
3. The Fourier transform takes convolution to products, i.e. (fFg)ˆ = f̂ ĝ.

4. For f, g ∈ L1, 〈f̂ , g〉 = 〈f, ĝ〉.
5. If T : Rn → Rn is an invertible linear transformation, then

(f ◦ T )∧ (ξ) = |detT |−1
f̂(
(
T−1

)∗
ξ) and

(f ◦ T )∨ (ξ) = |detT |−1
f∨(
(
T−1

)∗
ξ)

6. If (1 + |x|)kf(x) ∈ L1, then f̂ ∈ Ck and ∂αf̂ ∈ C0 for all |α| ≤ k.
Moreover,

∂αξ f̂(ξ) = F [(−ix)α f(x)] (ξ) (33.4)

for all |α| ≤ k.
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7. If f ∈ Ck and ∂αf ∈ L1 for all |α| ≤ k, then (1 + |ξ|)kf̂(ξ) ∈ C0 and

(∂αf)ˆ (ξ) = (iξ)αf̂(ξ) (33.5)

for all |α| ≤ k.
8. Suppose g ∈ L1(Rk) and h ∈ L1(Rn−k) and f = g ⊗ h, i.e.

f(x) = g(x1, . . . , xk)h(xk+1, . . . , xn),

then f̂ = ĝ ⊗ ĥ.

Proof. Item 1. is the Riemann Lebesgue Lemma 22.37. Items 2. – 5. are
proved by the following straight forward computations:

(τyf) ˆ(ξ) =
∫

Rn

e−ix·ξf(x− y)dx =
∫

Rn

e−i(x+y)·ξf(x)dx = e−iy·ξ f̂(ξ),

〈f̂ , g〉 =
∫

Rn

f̂(ξ)g(ξ)dξ =
∫

Rn

dξg(ξ)
∫

Rn

dxe−ix·ξf(x)

=
∫

Rn×Rn

dxdξe−ix·ξg(ξ)f(x) =
∫

Rn×Rn

dxĝ(x)f(x) = 〈f, ĝ〉,

(fFg)ˆ (ξ) =
∫

Rn

e−ix·ξfFg(x)dx =
∫

Rn

e−ix·ξ
(∫

Rn

f(x− y)g(y)dy
)

dx

=
∫

Rn

dy
∫

Rn

dxe−ix·ξf(x− y)g(y)

=
∫

Rn

dy
∫

Rn

dxe−i(x+y)·ξf(x)g(y)

=
∫

Rn

dye−iy·ξg(y)
∫

Rn

dxe−ix·ξf(x) = f̂(ξ)ĝ(ξ)

and letting y = Tx so that dx = |detT |−1 dy

(f ◦ T )ˆ (ξ) =
∫

Rn

e−ix·ξf(Tx)dx =
∫

Rn

e−iT
−1y·ξf(y) |detT |−1 dy

= |detT |−1
f̂(
(
T−1

)∗
ξ).

Item 6. is simply a matter of differentiating under the integral sign which is
easily justified because (1 + |x|)kf(x) ∈ L1. Item 7. follows by using Lemma
22.36 repeatedly (i.e. integration by parts) to find

(∂αf)ˆ (ξ) =
∫

Rn

∂αx f(x)e−ix·ξdx = (−1)|α|
∫

Rn

f(x)∂αx e
−ix·ξdx

= (−1)|α|
∫

Rn

f(x)(−iξ)αe−ix·ξdx = (iξ)αf̂(ξ).

Since ∂αf ∈ L1 for all |α| ≤ k, it follows that (iξ)αf̂(ξ) = (∂αf)ˆ (ξ) ∈ C0 for
all |α| ≤ k. Since
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(1 + |ξ|)k ≤

(
1 +

n∑
i=1

|ξi|

)k
=
∑
|α|≤k

cα |ξα|

where 0 < cα <∞,∣∣∣(1 + |ξ|)k f̂(ξ)
∣∣∣ ≤ ∑

|α|≤k

cα

∣∣∣ξαf̂(ξ)
∣∣∣→ 0 as ξ →∞.

Item 8. is a simple application of Fubini’s theorem.

Example 33.4. If f(x) = e−|x|
2/2 then f̂(ξ) = e−|ξ|

2/2, in short

Fe−|x|
2/2 = e−|ξ|

2/2 and F−1e−|ξ|
2/2 = e−|x|

2/2. (33.6)

More generally, for t > 0 let

pt(x) := t−n/2e−
1
2t |x|

2
(33.7)

then
p̂t(ξ) = e−

t
2 |ξ|

2
and (p̂t)∨(x) = pt(x). (33.8)

By Item 8. of Theorem 33.3, to prove Eq. (33.6) it suffices to con-
sider the 1 – dimensional case because e−|x|

2/2 =
∏n
i=1 e

−x2
i /2. Let g(ξ) :=(

Fe−x2/2
)

(ξ) , then by Eq. (33.4) and Eq. (33.5),

g′(ξ) = F
[
(−ix) e−x

2/2
]
(ξ) = iF

[
d

dx
e−x

2/2

]
(ξ) = i(iξ)F

[
e−x

2/2
]
(ξ) = −ξg(ξ).

(33.9)
Lemma 20.26 implies

g(0) =
∫

R
e−x

2/2dx =
1√
2π

∫
R
e−x

2/2dm(x) = 1,

and so solving Eq. (33.9) with g(0) = 1 gives F
[
e−x

2/2
]
(ξ) = g(ξ) = e−ξ

2/2

as desired. The assertion that F−1e−|ξ|
2/2 = e−|x|

2/2 follows similarly or by
using Eq. (33.3) to conclude,

F−1
[
e−|ξ|

2/2
]
(x) = F

[
e−|−ξ|

2/2
]
(x) = F

[
e−|ξ|

2/2
]
(x) = e−|x|

2/2.

The results in Eq. (33.8) now follow from Eq. (33.6) and item 5 of Theorem
33.3. For example, since pt(x) = t−n/2p1(x/

√
t),

(p̂t)(ξ) = t−n/2
(√

t
)n

p̂1(
√
tξ) = e−

t
2 |ξ|

2
.

This may also be written as (p̂t)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that

pt is an even function,

(p̂t)∨(x) = F p̂t(−x) = t−n/2Fp 1
t
(−x) = t−n/2tn/2pt(−x) = pt(x).
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33.2 Schwartz Test Functions

Definition 33.5. A function f ∈ C(Rn,C) is said to have rapid decay or
rapid decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN < ∞ such that
|f(x)| ≤ CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said
to have (at most) polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C < ∞ such that |f(x)| ≤ C(1 + |x|)N for all
x ∈ Rn.

Definition 33.6 (Schwartz Test Functions). Let S denote the space of
functions f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid
decay and let

‖f‖N,α = sup
x∈Rn

∣∣(1 + |x|)N∂αf(x)
∣∣

so that
S =

{
f ∈ C∞(Rn) : ‖f‖N,α <∞ for all N and α

}
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its
derivatives have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for
all multi-indices α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)

Remark 33.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in
L2(Rn).

Exercise 33.1. Let
L =

∑
|α|≤k

aα(x)∂α (33.10)

with aα ∈ P. Show L(S) ⊂ S and in particular ∂αf and xαf are back in S
for all multi-indices α.

Notation 33.8 Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function
aα(x) is a smooth function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.
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Proposition 33.9. Let p(x, ξ) be as above and assume each aα(x) is a poly-
nomial in x. Then for f ∈ S,

(p(x,Dx)f)∧ (ξ) = p(−Dξ, ξ)f̂ (ξ) (33.11)

and
p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ). (33.12)

Proof. The identities (−Dξ)
α
e−ix·ξ = xαe−ix·ξ and Dα

x e
ix·ξ = ξαeix·ξ

imply, for any polynomial function q on Rn,

q(−Dξ)e−ix·ξ = q(x)e−ix·ξ and q(Dx)eix·ξ = q(ξ)eix·ξ. (33.13)

Therefore using Eq. (33.13) repeatedly,

(p(x,Dx)f)∧ (ξ) =
∫

Rn

∑
|α|≤N

aα(x)Dα
xf(x) · e−ix·ξdξ

=
∫

Rn

∑
|α|≤N

Dα
xf(x) · aα(−Dξ)e−ix·ξdξ

=
∫

Rn

f(x)
∑
|α|≤N

(−Dx)
α [
aα(−Dξ)e−ix·ξ

]
dξ

=
∫

Rn

f(x)
∑
|α|≤N

aα(−Dξ)
[
ξαe−ix·ξ

]
dξ = p(−Dξ, ξ)f̂ (ξ)

wherein the third inequality we have used Lemma 22.36 to do repeated in-
tegration by parts, the fact that mixed partial derivatives commute in the
fourth, and in the last we have repeatedly used Corollary 19.43 to differenti-
ate under the integral. The proof of Eq. (33.12) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)
∫

Rn

f(x)e−ix·ξdx =
∫

Rn

f(x)p(ξ,−x)e−ix·ξdx

=
∑
|α|≤N

∫
Rn

f(x)(−x)αaα(ξ)e−ix·ξdx

=
∑
|α|≤N

∫
Rn

f(x)(−x)αaα(−Dx)e−ix·ξdx

=
∑
|α|≤N

∫
Rn

e−ix·ξaα(Dx) [(−x)αf(x)]dx

= [p(Dx,−x)f(x)]∧(ξ).

Corollary 33.10. The Fourier transform preserves the space S, i.e. F(S) ⊂
S.
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Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with each aα(x) being a polynomial
function in x. If f ∈ S then p(Dx,−x)f ∈ S ⊂ L1 and so by Eq. (33.12),
p(ξ,Dξ)f̂(ξ) is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Taking p(x, ξ) = (1 + |ξ|2)Nξα with N ∈ Z+ in this estimate shows f̂(ξ) and
all of its derivatives have rapid decay, i.e. f̂ is in S.

33.3 Fourier Inversion Formula

Theorem 33.11 (Fourier Inversion Theorem). Suppose that f ∈ L1 and
f̂ ∈ L1, then

1. there exists f0 ∈ C0(Rn) such that f = f0 a.e.
2. f0 = F−1F f and f0 = FF−1f,
3. f and f̂ are in L1 ∩ L∞ and
4. ‖f‖2 =

∥∥∥f̂∥∥∥
2
.

In particular, F : S → S is a linear isomorphism of vector spaces.

Proof. First notice that f̂ ∈ C0 (Rn) ⊂ L∞ and f̂ ∈ L1 by assumption, so
that f̂ ∈ L1 ∩ L∞. Let pt(x) := t−n/2e−

1
2t |x|

2
be as in Example 33.4 so that

p̂t(ξ) = e−
t
2 |ξ|

2
and p̂∨t = pt. Define f0 := f̂∨ ∈ C0 then

f0(x) = (f̂)∨(x) =
∫

Rn

f̂(ξ)eiξ·xdξ = lim
t↓0

∫
Rn

f̂(ξ)eiξ·xp̂t(ξ)dξ

= lim
t↓0

∫
Rn

∫
Rn

f(y)eiξ·(x−y)p̂t(ξ)dξ dy

= lim
t↓0

∫
Rn

f(y)pt(y)dy = f(x) a.e.

wherein we have used Theorem 22.32 in the last equality along with the obser-
vations that pt(y) = p1(y/

√
t) and

∫
Rn p1(y)dy = 1. In particular this shows

that f ∈ L1 ∩ L∞. A similar argument shows that F−1F f = f0 as well. Let
us now compute the L2 – norm of f̂ ,

‖f̂‖22 =
∫

Rn

f̂(ξ)f̂(ξ)dξ =
∫

Rn

dξf̂(ξ)
∫

Rn

dxf(x)eix·ξ

=
∫

Rn

dx f(x)
∫

Rn

dξf̂(ξ)eix·ξ

=
∫

Rn

dx f(x)f(x) = ‖f‖22

because
∫

Rn dξf̂(ξ)eix·ξ = F−1f̂(x) = f(x) a.e.
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Corollary 33.12. By the B.L.T. Theorem 10.4, the maps F|S and F−1|S
extend to bounded linear maps F̄ and F̄−1 from L2 → L2. These maps satisfy
the following properties:

1. F̄ and F̄−1 are unitary and are inverses to one another as the notation
suggests.

2. For f ∈ L2 we may compute F̄ and F̄−1 by

F̄f(ξ) = L2– lim
R→∞

∫
|x|≤R

f(x)e−ix·ξdx and (33.14)

F̄−1f(ξ) = L2– lim
R→∞

∫
|x|≤R

f(x)eix·ξdx. (33.15)

3. We may further extend F̄ to a map from L1 +L2 → C0 +L2 (still denote
by F̄) defined by F̄f = ĥ+F̄g where f = h+g ∈ L1+L2. For f ∈ L1+L2,
F̄f may be characterized as the unique function F ∈ L1

loc(Rn) such that

〈F, φ〉 = 〈f, φ̂〉 for all φ ∈ C∞c (Rn). (33.16)

Moreover if Eq. (33.16) holds then F ∈ C0+L2 ⊂ L1
loc(Rn) and Eq.(33.16)

is valid for all φ ∈ S.

Proof. Item 1., If f ∈ L2 and φn ∈ S such that φn → f in L2, then
F̄f := limn→∞ φ̂n. Since φ̂n ∈ S ⊂ L1, we may concluded that

∥∥∥φ̂n∥∥∥
2

= ‖φn‖2
for all n. Thus ∥∥F̄f∥∥

2
= lim
n→∞

∥∥∥φ̂n∥∥∥
2

= lim
n→∞

‖φn‖2 = ‖f‖2

which shows that F̄ is an isometry from L2 to L2 and similarly F̄−1 is an
isometry. Since F̄−1F̄ = F−1F = id on the dense set S, it follows by conti-
nuity that F̄−1F̄ = id on all of L2. Hence F̄F̄−1 = id, and thus F̄−1 is the
inverse of F̄ . This proves item 1.

Item 2. Let f ∈ L2 and R < ∞ and set fR(x) := f(x)1|x|≤R. Then
fR ∈ L1∩L2. Let φ ∈ C∞c (Rn) be a function such that

∫
Rn φ(x)dx = 1 and set

φk(x) = knφ(kx). Then fRFφk → fR ∈ L1∩L2 with fRFφk ∈ C∞c (Rn) ⊂ S.
Hence

F̄fR = L2– lim
k→∞

F (fRFφk) = FfR a.e.

where in the second equality we used the fact that F is continuous on L1.
Hence

∫
|x|≤R f(x)e−ix·ξdx represents F̄fR(ξ) in L2. Since fR → f in L2, Eq.

(33.14) follows by the continuity of F̄ on L2.
Item 3. If f = h+ g ∈ L1 + L2 and φ ∈ S, then

〈ĥ+ F̄g, φ〉 = 〈h, φ〉+ 〈F̄g, φ〉 = 〈h, φ̂〉+ lim
R→∞

〈F
(
g1|·|≤R

)
, φ〉

= 〈h, φ̂〉+ lim
R→∞

〈g1|·|≤R, φ̂〉 = 〈h+ g, φ̂〉. (33.17)
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In particular if h + g = 0 a.e., then 〈ĥ + F̄g, φ〉 = 0 for all φ ∈ S and since
ĥ+ F̄g ∈ L1

loc it follows from Corollary 22.38 that ĥ+ F̄g = 0 a.e. This shows
that F̄f is well defined independent of how f ∈ L1 + L2 is decomposed into
the sum of an L1 and an L2 function. Moreover Eq. (33.17) shows Eq. (33.16)
holds with F = ĥ + F̄g ∈ C0 + L2 and φ ∈ S. Now suppose G ∈ L1

loc and
〈G,φ〉 = 〈f, φ̂〉 for all φ ∈ C∞c (Rn). Then by what we just proved, 〈G,φ〉 =
〈F, φ〉 for all φ ∈ C∞c (Rn) and so an application of Corollary 22.38 shows
G = F ∈ C0 + L2.

Notation 33.13 Given the results of Corollary 33.12, there is little danger
in writing f̂ or Ff for F̄f when f ∈ L1 + L2.

Corollary 33.14. If f and g are L1 functions such that f̂ , ĝ ∈ L1, then

F(fg) = f̂Fĝ and F−1(fg) = f∨Fg∨.

Since S is closed under pointwise products and F : S → S is an isomorphism
it follows that S is closed under convolution as well.

Proof. By Theorem 33.11, f, g, f̂ , ĝ ∈ L1 ∩L∞ and hence f · g ∈ L1 ∩L∞
and f̂Fĝ ∈ L1 ∩ L∞. Since

F−1
(
f̂Fĝ

)
= F−1

(
f̂
)
· F−1 (ĝ) = f · g ∈ L1

we may conclude from Theorem 33.11 that

f̂Fĝ = FF−1
(
f̂Fĝ

)
= F(f · g).

Similarly one shows F−1(fg) = f∨Fg∨.

Corollary 33.15. Let p(x, ξ) and p(x,Dx) be as in Notation 33.8 with each
function aα(x) being a smooth function of x ∈ Rn. Then for f ∈ S,

p(x,Dx)f(x) =
∫

Rn

p(x, ξ)f̂ (ξ) eix·ξdξ. (33.18)

Proof. For f ∈ S, we have

p(x,Dx)f(x) = p(x,Dx)
(
F−1f̂

)
(x) = p(x,Dx)

∫
Rn

f̂ (ξ) eix·ξdξ

=
∫

Rn

f̂ (ξ) p(x,Dx)eix·ξdξ =
∫

Rn

f̂ (ξ) p(x, ξ)eix·ξdξ.

If p(x, ξ) is a more general function of (x, ξ) then that given in Notation 33.8,
the right member of Eq. (33.18) may still make sense, in which case we may
use it as a definition of p(x,Dx). A linear operator defined this way is called
a pseudo differential operator and they turn out to be a useful class of
operators to study when working with partial differential equations.

Page: 687 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



688 33 Fourier Transform

Corollary 33.16. Suppose p(ξ) =
∑

|α|≤N aαξ
α is a polynomial in ξ ∈ Rn

and f ∈ L2. Then p(∂)f exists in L2 (see Definition 26.3) iff ξ → p(iξ)f̂(ξ) ∈
L2 in which case

(p(∂)f)ˆ (ξ) = p(iξ)f̂(ξ) for a.e. ξ.

In particular, if g ∈ L2 then f ∈ L2 solves the equation, p(∂)f = g iff
p(iξ)f̂(ξ) = ĝ(ξ) for a.e. ξ.

Proof. By definition p(∂)f = g in L2 iff

〈g, φ〉 = 〈f, p(−∂)φ〉 for all φ ∈ C∞c (Rn). (33.19)

If follows from repeated use of Lemma 26.23 that the previous equation is
equivalent to

〈g, φ〉 = 〈f, p(−∂)φ〉 for all φ ∈ S(Rn). (33.20)

This may also be easily proved directly as well as follows. Choose ψ ∈ C∞c (Rn)
such that ψ(x) = 1 for x ∈ B0(1) and for φ ∈ S(Rn) let φn(x) := ψ(x/n)φ(x).
By the chain rule and the product rule (Eq. 37.5 of Appendix 37),

∂αφn(x) =
∑
β≤α

(
α

β

)
n−|β|

(
∂βψ

)
(x/n) · ∂α−βφ(x)

along with the dominated convergence theorem shows φn → φ and ∂αφn →
∂αφ in L2 as n→∞. Therefore if Eq. (33.19) holds, we find Eq. (33.20) holds
because

〈g, φ〉 = lim
n→∞

〈g, φn〉 = lim
n→∞

〈f, p(−∂)φn〉 = 〈f, p(−∂)φ〉.

To complete the proof simply observe that 〈g, φ〉 = 〈ĝ, φ∨〉 and

〈f, p(−∂)φ〉 = 〈f̂ , [p(−∂)φ]∨〉 = 〈f̂(ξ), p(iξ)φ∨(ξ)〉

= 〈p(iξ)f̂(ξ), φ∨(ξ)〉

for all φ ∈ S(Rn). From these two observations and the fact that F is bijective
on S, one sees that Eq. (33.20) holds iff ξ → p(iξ)f̂(ξ) ∈ L2 and ĝ(ξ) =
p(iξ)f̂(ξ) for a.e. ξ.

33.4 Summary of Basic Properties of F and F−1

The following table summarizes some of the basic properties of the Fourier
transform and its inverse.

f ←→ f̂ or f∨

Smoothness ←→ Decay at infinity
∂α ←→ Multiplication by (±iξ)α
S ←→ S

L2(Rn) ←→ L2(Rn)
Convolution←→ Products.
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33.5 Fourier Transforms of Measures and Bochner’s
Theorem

To motivate the next definition suppose that µ is a finite measure on Rn which
is absolutely continuous relative to Lebesgue measure, dµ(x) = ρ(x)dx. Then
it is reasonable to require

µ̂(ξ) := ρ̂(ξ) =
∫

Rn

e−iξ·xρ(x)dx =
∫

Rn

e−iξ·xdµ(x)

and

(µFg) (x) := ρFg(x) =
∫

Rn

g(x− y)ρ(x)dx =
∫

Rn

g(x− y)dµ(y)

when g : Rn → C is a function such that the latter integral is defined, for
example assume g is bounded. These considerations lead to the following
definitions.

Definition 33.17. The Fourier transform, µ̂, of a complex measure µ on BRn

is defined by

µ̂(ξ) =
∫

Rn

e−iξ·xdµ(x) (33.21)

and the convolution with a function g is defined by

(µFg) (x) =
∫

Rn

g(x− y)dµ(y)

when the integral is defined.

It follows from the dominated convergence theorem that µ̂ is continuous.
Also by a variant of Exercise 22.12, if µ and ν are two complex measure on
BRn such that µ̂ = ν̂, then µ = ν. The reader is asked to give another proof
of this fact in Exercise 33.4 below.

Example 33.18. Let σt be the surface measure on the sphere St of radius t
centered at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ|

.

Indeed,

σ̂t(ξ) =
∫
tS2

e−ix·ξdσ(x) = t2
∫
S2
e−itx·ξdσ(x)

= t2
∫
S2
e−itx3|ξ|dσ(x) = t2

∫ 2π

0

dθ

∫ π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
∫ 1

−1

e−itu|ξ|du = 2πt2
1

−it |ξ|
e−itu|ξ||u=1

u=−1 = 4πt2
sin t |ξ|
t |ξ|

.
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Definition 33.19. A function χ : Rn → C is said to be positive (semi)
definite iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all
m ∈ N and {ξj}mj=1 ⊂ R

n.

Lemma 33.20. If χ ∈ C(Rn,C) is a positive definite function, then

1. χ(0) ≥ 0.
2. χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
3. |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
4. For all f ∈ S(Rd), ∫

Rn×Rn

χ(ξ − η)f(ξ)f(η)dξdη ≥ 0. (33.22)

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C
which proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=
[

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

]
is positive definite from which we conclude χ(ξ−η) = χ(η − ξ) (since A = A∗

by definition) and

0 ≤ det
[

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

]
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows
by approximating the integral in Eq. (33.22) by Riemann sums,∫

Rn×Rn

χ(ξ − η)f(ξ)f(η)dξdη = lim
mesh→0

∑
χ(ξk − ξj)f(ξj)f(ξk) ≥ 0.

The details are left to the reader.

Lemma 33.21. If µ is a finite positive measure on BRn , then χ := µ̂ ∈
C(Rn,C) is a positive definite function.

Proof. As has already been observed after Definition 33.17, the dominated
convergence theorem implies µ̂ ∈ C(Rn,C). Since µ is a positive measure (and
hence real),

µ̂(−ξ) =
∫

Rn

eiξ·xdµ(x) =
∫

Rn

e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ Rn, the matrix
A := {µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,
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m∑
k,j=1

µ̂(ξk − ξj)λkλ̄j =
∫

Rn

m∑
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x)

=
∫

Rn

m∑
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=
∫

Rn

∣∣∣∣∣
m∑
k=1

e−iξk·xλk

∣∣∣∣∣
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 33.22 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive
definite function, then there exists a unique positive measure µ on BRn such
that χ = µ̂.

Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would have∫
Rn

fdµ =
∫

Rn

(f∨)ˆ dµ =
∫

Rn

f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=
∫

Rn

χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0.
For general f ∈ S we have

I(|f |2) =
∫

Rn

χ(ξ)
(
|f |2

)∨
(ξ)dξ =

∫
Rn

χ(ξ)
(
f∨Ff̄∨

)
(ξ)dξ

=
∫

Rn

χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =
∫

Rn

χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=
∫

Rn

χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0.

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

IFpt(x) := I(pt(x− ·)) = I(
∣∣∣√pt(x− ·)∣∣∣2)

which is non-negative by above computation and because
√
pt(x− ·) ∈ S.

Using

[pt(x− ·)]∨ (ξ) =
∫

Rn

pt(x− y)eiy·ξdy =
∫

Rn

pt(y)ei(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,
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〈IFpt, ψ〉 =
∫

Rn

I(pt(x− ·))ψ(x)dx

=
∫

Rn

∫
Rn

χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξdx

=
∫

Rn

χ(ξ)ψ∨(ξ)e−t|ξ|
2/2dξ

which coupled with the dominated convergence theorem shows

〈IFpt, ψ〉 →
∫

Rn

χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0〈IFpt, ψ〉 ≥ 0. Let K ⊂ R be a compact set
and ψ ∈ Cc(R, [0,∞)) be a function such that ψ = 1 on K. If f ∈ C∞c (R,R)
is a smooth function with supp(f) ⊂ K, then 0 ≤ ‖f‖∞ ψ − f ∈ S and hence

0 ≤ 〈I, ‖f‖∞ ψ − f〉 = ‖f‖∞ 〈I, ψ〉 − 〈I, f〉

and therefore 〈I, f〉 ≤ ‖f‖∞ 〈I, ψ〉. Replacing f by −f implies, −〈I, f〉 ≤
‖f‖∞ 〈I, ψ〉 and hence we have proved

|〈I, f〉| ≤ C(supp(f)) ‖f‖∞ (33.23)

for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each
compact subset of Rn. Because of the estimate in Eq. (33.23), it follows that
I|DRn has a unique extension I to Cc(Rn,R) still satisfying the estimates in
Eq. (33.23) and moreover this extension is still positive. So by the Riesz –
Markov Theorem 31.47, there exists a unique Radon – measure µ on Rn such
that such that 〈I, f〉 = µ(f) for all f ∈ Cc(Rn,R). To finish the proof we must
show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =
∫

Rn

χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R).

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing
as |x| increases. Let fε(x) := f(εx), then by Theorem 33.3,

F−1
[
e−iηxfε(x)

]
(ξ) = ε−nf∨(

ξ − η
ε

)

and therefore∫
Rn

e−iηxfε(x)dµ(x) =
∫

Rn

χ(ξ)ε−nf∨(
ξ − η
ε

)dξ. (33.24)

Because
∫

Rn f
∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ

– function Theorem 22.32 to Eq. (33.24) to find∫
Rn

e−iηxfε(x)dµ(x)→ χ(η) as ε ↓ 0. (33.25)
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33.6 Supplement: Heisenberg Uncertainty Principle 693

On the the other hand, when η = 0, the monotone convergence theorem
implies µ(fε) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now
knowing the µ is a finite measure we may use the dominated convergence
theorem to concluded

µ(e−iηxfε(x))→ µ(e−iηx) = µ̂(η) as ε ↓ 0

for all η. Combining this equation with Eq. (33.25) shows µ̂(η) = χ(η) for all
η ∈ Rn.

33.6 Supplement: Heisenberg Uncertainty Principle

Suppose that H is a Hilbert space and A,B are two densely defined sym-
metric operators on H. More explicitly, A is a densely defined symmetric
linear operator on H means there is a dense subspace DA ⊂ H and a lin-
ear map A : DA → H such that (Aφ,ψ) = (φ,Aψ) for all φ, ψ ∈ DA.
Let DAB := {φ ∈ H : φ ∈ DB and Bφ ∈ DA} and for φ ∈ DAB let
(AB)φ = A(Bφ) with a similar definition of DBA and BA. Moreover, let
DC := DAB ∩ DBA and for φ ∈ DC , let

Cφ =
1
i
[A,B]φ =

1
i

(AB −BA)φ.

Notice that for φ, ψ ∈ DC we have

(Cφ,ψ) =
1
i
{(ABφ,ψ)− (BAφ,ψ)} =

1
i
{(Bφ,Aψ)− (Aφ,Bψ)}

=
1
i
{(φ,BAψ)− (φ,ABψ)} = (φ,Cψ),

so that C is symmetric as well.

Theorem 33.23 (Heisenberg Uncertainty Principle). Continue the
above notation and assumptions,

1
2
|(ψ,Cψ)| ≤

√
‖Aψ‖2 − (ψ,Aψ) ·

√
‖Bψ‖2 − (ψ,Bψ) (33.26)

for all ψ ∈ DC . Moreover if ‖ψ‖ = 1 and equality holds in Eq. (33.26), then

(A− (ψ,Aψ))ψ = iλ(B − (ψ,Bψ))ψ or
(B − (ψ,Bψ)) = iλψ(A− (ψ,Aψ))ψ (33.27)

for some λ ∈ R.

Proof. By homogeneity (33.26) we may assume that ‖ψ‖ = 1. Let a :=
(ψ,Aψ), b = (ψ,Bψ), Ã = A− aI, and B̃ = B − bI. Then we have still have
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[Ã, B̃] = [A− aI,B − bI] = iC.

Now

i(ψ,Cψ) = (ψ, iCψ) = (ψ, [Ã, B̃]ψ) = (ψ, ÃB̃ψ)− (ψ, B̃Ãψ)

= (Ãψ, B̃ψ)− (B̃ψ, Ãψ) = 2i Im(Ãψ, B̃ψ)

from which we learn

|(ψ,Cψ)| = 2
∣∣∣Im(Ãψ, B̃ψ)

∣∣∣ ≤ 2
∣∣∣(Ãψ, B̃ψ)

∣∣∣ ≤ 2
∥∥∥Ãψ∥∥∥∥∥∥B̃ψ∥∥∥

with equality iff Re(Ãψ, B̃ψ) = 0 and Ãψ and B̃ψ are linearly dependent, i.e.
iff Eq. (33.27) holds. The result follows from this equality and the identities∥∥∥Ãψ∥∥∥2

= ‖Aψ − aψ‖2 = ‖Aψ‖2 + a2 ‖ψ‖2 − 2aRe(Aψ,ψ)

= ‖Aψ‖2 + a2 − 2a2 = ‖Aψ‖2 − (Aψ,ψ)

and ∥∥∥B̃ψ∥∥∥ = ‖Bψ‖2 − (Bψ,ψ).

Example 33.24. As an example, take H = L2(R), A = 1
i ∂x and B = Mx

with DA := {f ∈ H : f ′ ∈ H} (f ′ is the weak derivative) and DB :={
f ∈ H :

∫
R |xf(x)|2 dx <∞

}
. In this case,

DC = {f ∈ H : f ′, xf and xf ′ are in H}

and C = −I on DC . Therefore for a unit vector ψ ∈ DC ,

1
2
≤
∥∥∥∥1
i
ψ′ − aψ

∥∥∥∥
2

· ‖xψ − bψ‖2

where a = i
∫

R ψψ̄
′dm 1 and b =

∫
R x |ψ(x)|2 dm(x). Thus we have

1
4

=
1
4

∫
R
|ψ|2 dm ≤

∫
R

(k − a)2
∣∣∣ψ̂(k)

∣∣∣2 dk · ∫
R

(x− b)2 |ψ(x)|2 dx. (33.28)

Equality occurs if there exists λ ∈ R such that
1 The constant a may also be described as

a = i

∫
R
ψψ̄′dm =

√
2πi

∫
R
ψ̂(ξ)

(
ψ̄′

)ˆ
(ξ)dξ

=

∫
R
ξ
∣∣∣ψ̂(ξ)

∣∣∣2 dm(ξ).
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33.6 Supplement: Heisenberg Uncertainty Principle 695

iλ (x− b)ψ(x) = (
1
i
∂x − a)ψ(x) a.e.

Working formally, this gives rise to the ordinary differential equation (in weak
form),

ψx = [−λ(x− b) + ia]ψ (33.29)

which has solutions (see Exercise 33.5 below)

ψ = C exp
(∫

R
[−λ(x− b) + ia] dx

)
= C exp

(
−λ

2
(x− b)2 + iax

)
. (33.30)

Let λ = 1
2t and choose C so that ‖ψ‖2 = 1 to find

ψt,a,b(x) =
(

1
2t

)1/4

exp
(
− 1

4t
(x− b)2 + iax

)
are the functions which saturate the Heisenberg uncertainty principle in Eq.
(33.28).

33.6.1 Exercises

Exercise 33.2. Let f ∈ L2(Rn) and α be a multi-index. If ∂αf exists in
L2(Rn) then F(∂αf) = (iξ)α f̂(ξ) in L2(Rn) and conversely if

(
ξ → ξαf̂(ξ)

)
∈

L2(Rn) then ∂αf exists.

Exercise 33.3. Suppose p(ξ) is a polynomial in ξ ∈ Rd and u ∈ L2 such that
p (∂)u ∈ L2. Show

F (p (∂)u) (ξ) = p(iξ)û (ξ) ∈ L2.

Conversely if u ∈ L2 such that p(iξ)û (ξ) ∈ L2, show p (∂)u ∈ L2.

Exercise 33.4. Suppose µ is a complex measure on Rn and µ̂(ξ) is its Fourier
transform as defined in Definition 33.17. Show µ satisfies,

〈µ̂, φ〉 :=
∫

Rn

µ̂(ξ)φ(ξ)dξ = µ(φ̂) :=
∫

Rn

φ̂dµ for all φ ∈ S

and use this to show if µ is a complex measure such that µ̂ ≡ 0, then µ ≡ 0.

Exercise 33.5. Show that ψ described in Eq. (33.30) is the general solution
to Eq. (33.29). Hint: Suppose that φ is any solution to Eq. (33.29) and ψ is
given as in Eq. (33.30) with C = 1. Consider the weak – differential equation
solved by φ/ψ.
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696 33 Fourier Transform

33.6.2 More Proofs of the Fourier Inversion Theorem

Exercise 33.6. Suppose that f ∈ L1(R) and assume that f continuously
differentiable in a neighborhood of 0, show

lim
M→∞

∫ ∞

−∞

sinMx

x
f(x)dx = πf(0) (33.31)

using the following steps.

1. Use Example 20.14 to deduce,

lim
M→∞

∫ 1

−1

sinMx

x
dx = lim

M→∞

∫ M

−M

sinx
x

dx = π.

2. Explain why

0 = lim
M→∞

∫
|x|≥1

sinMx · f(x)
x

dx and

0 = lim
M→∞

∫
|x|≤1

sinMx · f(x)− f(0)
x

dx.

3. Add the previous two equations and use part (1) to prove Eq. (33.31).

Exercise 33.7 (Fourier Inversion Formula). Suppose that f ∈ L1(R)
such that f̂ ∈ L1(R).

1. Further assume that f is continuously differentiable in a neighborhood of
0. Show that

Λ :=
∫

R
f̂(ξ)dξ = f(0).

Hint: by the dominated convergence theorem, Λ := limM→∞
∫
|ξ|≤M f̂(ξ)dξ.

Now use the definition of f̂(ξ), Fubini’s theorem and Exercise 33.6.
2. Apply part 1. of this exercise with f replace by τyf for some y ∈ R to

prove

f(y) =
∫

R
f̂(ξ)eiy·ξdξ (33.32)

provided f is now continuously differentiable near y.

The goal of the next exercises is to give yet another proof of the Fourier
inversion formula.

Notation 33.25 For L > 0, let CkL(R) denote the space of Ck – 2πL periodic
functions:

CkL(R) :=
{
f ∈ Ck(R) : f(x+ 2πL) = f(x) for all x ∈ R

}
.

Page: 696 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



33.6 Supplement: Heisenberg Uncertainty Principle 697

Also let 〈·, ·〉L denote the inner product on the Hilbert space HL :=
L2([−πL, πL]) given by

〈f |g〉L :=
1

2πL

∫
[−πL,πL]

f(x)ḡ(x)dx.

Exercise 33.8. Recall that
{
χLk (x) := eikx/L : k ∈ Z

}
is an orthonormal basis

for HL and in particular for f ∈ HL,

f =
∑
k∈Z
〈f, χLk 〉LχLk (33.33)

where the convergence takes place in L2([−πL, πL]). Suppose now that f ∈
C2
L(R)2. Show (by two integration by parts)

∣∣(fL, χLk )L
∣∣ ≤ L2

k2
‖f ′′‖∞

where ‖g‖∞ denote the uniform norm of a function g. Use this to conclude
that the sum in Eq. (33.33) is uniformly convergent and from this conclude
that Eq. (33.33) holds pointwise.

Exercise 33.9 (Fourier Inversion Formula on S). Let f ∈ S(R), L > 0
and

fL(x) :=
∑
k∈Z

f(x+ 2πkL). (33.34)

Show:

1. The sum defining fL is convergent and moreover that fL ∈ C∞L (R).
2. Show (fL, χLk )L = 1√

2πL
f̂(k/L).

3. Conclude from Exercise 33.8 that

fL(x) =
1√
2πL

∑
k∈Z

f̂(k/L)eikx/L for all x ∈ R. (33.35)

4. Show, by passing to the limit, L → ∞, in Eq. (33.35) that Eq. (33.32)
holds for all x ∈ R. Hint: Recall that f̂ ∈ S.

Exercise 33.10. Folland 8.13 on p. 254.

Exercise 33.11. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 33.12. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution ?? below.)

2 We view C2
L(R) as a subspace of HL by identifying f ∈ C2

L(R) with f |[−πL,πL] ∈
HL.
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Exercise 33.13. Folland 8.16 on p. 255.

Exercise 33.14. Folland 8.17 on p. 255.

Exercise 33.15. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 33.16. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 33.17. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 33.18. Folland 8.31 on p. 263. (Poisson Summation formula prob-
lem.)
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34

Constant Coefficient partial differential
equations

Suppose that p(ξ) =
∑

|α|≤k aαξ
α with aα ∈ C and

L = p(Dx) := Σ|α|≤NaαD
α
x = Σ|α|≤Naα

(
1
i
∂x

)α
. (34.1)

Then for f ∈ S
L̂f(ξ) = p(ξ)f̂(ξ),

that is to say the Fourier transform takes a constant coefficient partial differ-
ential operator to multiplication by a polynomial. This fact can often be used
to solve constant coefficient partial differential equation. For example suppose
g : Rn → C is a given function and we want to find a solution to the equation
Lf = g. Taking the Fourier transform of both sides of the equation Lf = g
would imply p(ξ)f̂(ξ) = ĝ(ξ) and therefore f̂(ξ) = ĝ(ξ)/p(ξ) provided p(ξ)
is never zero. (We will discuss what happens when p(ξ) has zeros a bit more
later on.) So we should expect

f(x) = F−1

(
1
p(ξ)

ĝ(ξ)
)

(x) = F−1

(
1
p(ξ)

)
Fg(x).

Definition 34.1. Let L = p(Dx) as in Eq. (34.1). Then we let σ(L) :=Ran(p) ⊂
C and call σ(L) the spectrum of L. Given a measurable function G : σ(L)→
C, we define (a possibly unbounded operator) G(L) : L2(Rn,m)→ L2(Rn,m)
by

G(L)f := F−1MG◦pF
where MG◦p denotes the operation on L2(Rn,m) of multiplication by G ◦ p,
i.e.

MG◦pf = (G ◦ p) f
with domain given by those f ∈ L2 such that (G ◦ p) f ∈ L2.

At a formal level we expect

G(L)f = F−1 (G ◦ p) Fg.



700 34 Constant Coefficient partial differential equations

34.1 Elliptic examples

As a specific example consider the equation(
−∆+m2

)
f = g (34.2)

where f, g : Rn → C and ∆ =
∑n
i=1 ∂

2/∂x2
i is the usual Laplacian on Rn. By

Corollary 33.16 (i.e. taking the Fourier transform of this equation), solving
Eq. (34.2) with f, g ∈ L2 is equivalent to solving(

|ξ|2 +m2
)
f̂(ξ) = ĝ(ξ). (34.3)

The unique solution to this latter equation is

f̂(ξ) =
(
|ξ|2 +m2

)−1

ĝ(ξ)

and therefore,

f(x) = F−1

((
|ξ|2 +m2

)−1

ĝ(ξ)
)

(x) =:
(
−∆+m2

)−1
g(x).

We expect

F−1

((
|ξ|2 +m2

)−1

ĝ(ξ)
)

(x) = GmFg(x) =
∫

Rn

Gm(x− y)g(y)dy,

where

Gm(x) := F−1
(
|ξ|2 +m2

)−1

(x) =
∫

Rn

1
m2 + |ξ|2

eiξ·xdξ.

At the moment F−1
(
|ξ|2 +m2

)−1

only makes sense when n = 1, 2, or 3

because only then is
(
|ξ|2 +m2

)−1

∈ L2(Rn).
For now we will restrict our attention to the one dimensional case, n = 1,

in which case

Gm(x) =
1√
2π

∫
R

1
(ξ +mi) (ξ −mi)

eiξxdξ. (34.4)

The function Gm may be computed using standard complex variable contour
integration methods to find, for x ≥ 0,

Gm(x) =
1√
2π

2πi
ei

2mx

2im
=

1
2m

√
2πe−mx

and since Gm is an even function,
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34.1 Elliptic examples 701

Gm(x) = F−1
(
|ξ|2 +m2

)−1

(x) =
√

2π
2m

e−m|x|. (34.5)

This result is easily verified to be correct, since

F

[√
2π

2m
e−m|x|

]
(ξ) =

√
2π

2m

∫
R
e−m|x|e−ix·ξdx

=
1

2m

(∫ ∞

0

e−mxe−ix·ξdx+
∫ 0

−∞
emxe−ix·ξdx

)
=

1
2m

(
1

m+ iξ
+

1
m− iξ

)
=

1
m2 + ξ2

.

Hence in conclusion we find that
(
−∆+m2

)
f = g has solution given by

f(x) = GmFg(x) =
√

2π
2m

∫
R
e−m|x−y|g(y)dy =

1
2m

∫
R
e−m|x−y|g(y)dy.

Question. Why do we get a unique answer here given that f(x) =
A sinh(x) +B cosh(x) solves (

−∆+m2
)
f = 0?

The answer is that such an f is not in L2 unless f = 0! More generally it is
worth noting that A sinh(x) +B cosh(x) is not in P unless A = B = 0.

What about when m = 0 in which case m2 + ξ2 becomes ξ2 which has a
zero at 0. Noting that constants are solutions to ∆f = 0, we might look at

lim
m↓0

(Gm(x)− 1) = lim
m↓0

√
2π

2m
(e−m|x| − 1) = −

√
2π
2
|x| .

as a solution, i.e. we might conjecture that

f(x) := −1
2

∫
R
|x− y| g(y)dy

solves the equation −f ′′ = g. To verify this we have

f(x) := −1
2

∫ x

−∞
(x− y) g(y)dy − 1

2

∫ ∞

x

(y − x) g(y)dy

so that

f ′(x) = −1
2

∫ x

−∞
g(y)dy +

1
2

∫ ∞

x

g(y)dy and

f ′′(x) = −1
2
g(x)− 1

2
g(x).
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34.2 Poisson Semi-Group

Let us now consider the problems of finding a function (x0, x) ∈ [0,∞)×Rn →
u(x0, x) ∈ C such that(

∂2

∂x2
0

+∆

)
u = 0 with u(0, ·) = f ∈ L2(Rn). (34.6)

Let û(x0, ξ) :=
∫

Rn u(x0, x)e−ix·ξdx denote the Fourier transform of u in the
x ∈ Rn variable. Then Eq. (34.6) becomes(

∂2

∂x2
0

− |ξ|2
)
û(x0, ξ) = 0 with û(0, ξ) = f̂(ξ) (34.7)

and the general solution to this differential equation ignoring the initial con-
dition is of the form

û(x0, ξ) = A(ξ)e−x0|ξ| +B(ξ)ex0|ξ| (34.8)

for some function A(ξ) and B(ξ). Let us now impose the extra condition that
u(x0, ·) ∈ L2(Rn) or equivalently that û(x0, ·) ∈ L2(Rn) for all x0 ≥ 0. The
solution in Eq. (34.8) will not have this property unless B(ξ) decays very
rapidly at ∞. The simplest way to achieve this is to assume B = 0 in which
case we now get a unique solution to Eq. (34.7), namely

û(x0, ξ) = f̂(ξ)e−x0|ξ|.

Applying the inverse Fourier transform gives

u(x0, x) = F−1
[
f̂(ξ)e−x0|ξ|

]
(x) =:

(
e−x0

√
−∆f

)
(x)

and moreover (
e−x0

√
−∆f

)
(x) = Px0 ∗ f(x)

where Px0(x) = (2π)−n/2
(
F−1e−x0|ξ|

)
(x). From Exercise 34.1,

Px0(x) = (2π)−n/2
(
F−1e−x0|ξ|

)
(x) = cn

x0

(x2
0 + |x|2)(n+1)/2

where

cn = (2π)−n/2
Γ ((n+ 1)/2)√

π2n/2
=
Γ ((n+ 1)/2)
2nπ(n+1)/2

.

Hence we have proved the following proposition.

Proposition 34.2. For f ∈ L2(Rn),

e−x0
√
−∆f = Px0 ∗ f for all x0 ≥ 0

and the function u(x0, x) := e−x0
√
−∆f(x) is C∞ for (x0, x) ∈ (0,∞) × Rn

and solves Eq. (34.6).
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34.3 Heat Equation on Rn

The heat equation for a function u : R+ × Rn → C is the partial differential
equation (

∂t −
1
2
∆

)
u = 0 with u(0, x) = f(x), (34.9)

where f is a given function on Rn. By Fourier transforming Eq. (34.9) in the
x – variables only, one finds that (34.9) implies that(

∂t +
1
2
|ξ|2
)
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ). (34.10)

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then

shows that

u(t, x) = F−1
(
e−t|ξ|

2/2f̂(ξ)
)

(x) =
(
F−1

(
e−t|ξ|

2/2
)

Ff
)

(x) =: et∆/2f(x).

From Example 33.4,

F−1
(
e−t|ξ|

2/2
)

(x) = pt(x) = t−n/2e−
1
2t |x|

2

and therefore,

u(t, x) =
∫

Rn

pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 34.3. Let

ρ(t, x, y) := (2πt)−n/2 e−|x−y|
2/2t (34.11)

be the heat kernel on Rn. Then(
∂t −

1
2
∆x

)
ρ(t, x, y) = 0 and lim

t↓0
ρ(t, x, y) = δx(y), (34.12)

where δx is the δ – function at x in Rn. More precisely, if f is a contin-
uous bounded (can be relaxed considerably) function on Rn, then u(t, x) =∫

Rn ρ(t, x, y)f(y)dy is a solution to Eq. (34.9) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
(
∂t − 1

2∆x

)
ρ(t, x, y) = 0 and an

application of Theorem 22.32 shows limt↓0 ρ(t, x, y) = δx(y) or equivalently
that limt↓0

∫
Rn ρ(t, x, y)f(y)dy = f(x) uniformly on compact subsets of Rn.

This shows that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.
This notation suggests that we should be able to compute the solution to

g to (∆−m2)g = f using
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704 34 Constant Coefficient partial differential equations

g(x) =
(
m2 −∆

)−1
f(x) =

∫ ∞

0

(
e−(m2−∆)tf

)
(x)dt =

∫ ∞

0

(
e−m

2tp2tFf
)

(x)dt,

a fact which is easily verified using the Fourier transform. This gives us a
method to compute Gm(x) from the previous section, namely

Gm(x) =
∫ ∞

0

e−m
2tp2t(x)dt =

∫ ∞

0

(2t)−n/2e−m
2t− 1

4t |x|
2
dt.

We make the change of variables, λ = |x|2 /4t (t = |x|2 /4λ, dt = − |x|
2

4λ2 dλ) to
find

Gm(x) =
∫ ∞

0

(2t)−n/2e−m
2t− 1

4t |x|
2
dt =

∫ ∞

0

(
|x|2

2λ

)−n/2
e−m

2|x|2/4λ−λ |x|
2

(2λ)2
dλ

=
2(n/2−2)

|x|n−2

∫ ∞

0

λn/2−2e−λe−m
2|x|2/4λdλ. (34.13)

In case n = 3, Eq. (34.13) becomes

Gm(x) =
√
π√

2 |x|

∫ ∞

0

1√
πλ

e−λe−m
2|x|2/4λdλ =

√
π√

2 |x|
e−m|x|

where the last equality follows from Exercise 34.1. Hence when n = 3 we have
found(

m2 −∆
)−1

f(x) = GmFf(x) = (2π)−3/2

∫
R3

√
π√

2 |x− y|
e−m|x−y|f(y)dy

=
∫

R3

1
4π |x− y|

e−m|x−y|f(y)dy. (34.14)

The function 1
4π|x|e

−m|x| is called the Yukawa potential.
Let us work out Gm(x) for n odd. By differentiating Eq. (34.26) of Exercise

34.1 we find∫ ∞

0

dλλk−1/2e−
1
4λx

2
e−λm

2
=
∫ ∞

0

dλ
1√
λ
e−

1
4λx

2
(
− d

da

)k
e−λa|a=m2

=
(
− d

da

)k √
π√
a
e−

√
ax = pm,k(x)e−mx

where pm,k(x) is a polynomial in x with deg pm = k with

pm,k(0) =
√
π

(
− d

da

)k
a−1/2|a=m2 =

√
π(

1
2

3
2
. . .

2k − 1
2

)m2k+1

= m2k+1
√
π2−k(2k − 1)!!.
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34.3 Heat Equation on Rn 705

Letting k−1/2 = n/2−2 and m = 1 we find k = n−1
2 −2 ∈ N for n = 3, 5, . . . .

and we find ∫ ∞

0

λn/2−2e−
1
4λx

2
e−λdλ = p1,k(x)e−x for all x > 0.

Therefore,

Gm(x) =
2(n/2−2)

|x|n−2

∫ ∞

0

λn/2−2e−λe−m
2|x|2/4λdλ =

2(n/2−2)

|x|n−2 p1,n/2−2(m |x|)e−m|x|.

Now for even m, I think we get Bessel functions in the answer. (BRUCE:
look this up.) Let us at least work out the asymptotics of Gm(x) for x→∞.
To this end let

ψ(y) :=
∫ ∞

0

λn/2−2e−(λ+λ−1y2)dλ = yn−2

∫ ∞

0

λn/2−2e−(λy2+λ−1)dλ

The function fy(λ) := (y2λ+ λ−1) satisfies,

f ′y(λ) =
(
y2 − λ−2

)
and f ′′y (λ) = 2λ−3 and f ′′′y (λ) = −6λ−4

so by Taylor’s theorem with remainder we learn

fy(λ) ∼= 2y + y3(λ− y−1)2 for all λ > 0,

see Figure 34.3 below.

Plot of f4 and its second order Taylor approximation.

So by the usual asymptotics arguments,
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706 34 Constant Coefficient partial differential equations

ψ(y) ∼= yn−2

∫
(−ε+y−1,y−1+ε)

λn/2−2e−(λy2+λ−1)dλ

∼= yn−2

∫
(−ε+y−1,y−1+ε)

λn/2−2 exp
(
−2y − y3(λ− y−1)2

)
dλ

∼= yn−2e−2y

∫
R
λn/2−2 exp

(
−y3(λ− y−1)2

)
dλ (let λ→ λy−1)

= e−2yyn−2y−n/2+1

∫
R
λn/2−2 exp

(
−y(λ− 1)2

)
dλ

= e−2yyn−2y−n/2+1

∫
R
(λ+ 1)n/2−2 exp

(
−yλ2

)
dλ.

The point is we are still going to get exponential decay at ∞.
When m = 0, Eq. (34.13) becomes

G0(x) =
2(n/2−2)

|x|n−2

∫ ∞

0

λn/2−1e−λ
dλ

λ
=

2(n/2−2)

|x|n−2 Γ (n/2− 1)

where Γ (x) in the gamma function defined in Eq. (20.41). Hence for “reason-
able” functions f (and n 6= 2)

(−∆)−1f(x) = G0Ff(x) = 2(n/2−2)Γ (n/2− 1)(2π)−n/2
∫

Rn

1
|x− y|n−2 f(y)dy

=
1

4πn/2
Γ (n/2− 1)

∫
Rn

1
|x− y|n−2 f(y)dy.

The function
G̃0(x, y) :=

1
4πn/2

Γ (n/2− 1)
1

|x− y|n−2

is a “Green’s function” for −∆. Recall from Exercise 20.16 that, for n = 2k,
Γ (n2 − 1) = Γ (k − 1) = (k − 2)!, and for n = 2k + 1,

Γ (
n

2
− 1) = Γ (k − 1/2) = Γ (k − 1 + 1/2) =

√
π

1 · 3 · 5 · · · · · (2k − 3)
2k−1

=
√
π

(2k − 3)!!
2k−1

where (−1)!! =: 1.

Hence

G̃0(x, y) =
1
4

1
|x− y|n−2

{ 1
πk (k − 2)! if n = 2k
1
πk

(2k−3)!!
2k−1 if n = 2k + 1

and in particular when n = 3,

G̃0(x, y) =
1
4π

1
|x− y|

which is consistent with Eq. (34.14) with m = 0.
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34.4 Wave Equation on Rn 707

34.4 Wave Equation on Rn

Let us now consider the wave equation on Rn,

0 =
(
∂2
t −∆

)
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x). (34.15)

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ) with

û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ). (34.16)

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t |ξ|
|ξ|

and hence we should have

u(t, x) = F−1

(
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t |ξ|
|ξ|

)
(x)

= F−1 cos (t |ξ|) Ff(x) + F−1 sin t |ξ|
|ξ|

Fg (x)

=
d

dt
F−1

[
sin t |ξ|
|ξ|

]
Ff(x) + F−1

[
sin t |ξ|
|ξ|

]
Fg (x) . (34.17)

The question now is how interpret this equation. In particular what
are the inverse Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ|

|ξ| . Since
d
dtF

−1 sin t|ξ|
|ξ| Ff(x) = F−1 cos (t |ξ|)Ff(x), it really suffices to understand

F−1
[

sin t|ξ|
|ξ|

]
. The problem we immediately run into here is that sin t|ξ|

|ξ| ∈
L2(Rn) iff n = 1 so that is the case we should start with.

Again by complex contour integration methods one can show(
F−1ξ−1 sin tξ

)
(x) =

π√
2π

(
1x+t>0 − 1(x−t)>0

)
=

π√
2π

(1x>−t − 1x>t) =
π√
2π

1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Again this easily
seen to be correct because

F
[

π√
2π

1[−t,t](x)
]

(ξ) =
1
2

∫
R

1[−t,t](x)e−iξ·xdx =
1
−2iξ

e−iξ·x|t−t

=
1

2iξ
[
eiξt − e−iξt

]
= ξ−1 sin tξ.
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708 34 Constant Coefficient partial differential equations

Therefore, (
F−1ξ−1 sin tξ

)
Ff(x) =

1
2

∫ t

−t
f(x− y)dy

and the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1
2

∫ t

−t
f(x− y)dy +

1
2

∫ t

−t
g(x− y)dy

=
1
2

(f(x− t) + f(x+ t)) +
1
2

∫ t

−t
g(x− y)dy

=
1
2

(f(x− t) + f(x+ t)) +
1
2

∫ x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
(
∂2
t − ∂2

x

)
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0
and hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f ′(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f ′(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f ′(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +
∫ t

0

{g(x+ 2τ) + f ′(x+ 2τ)} dτ

= f(x) +
∫ t

0

g(x+ 2τ)dτ +
1
2
f(x+ 2τ)|t0

=
1
2

(f(x) + f(x+ 2t)) +
∫ t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation gives

u(t, x) =
1
2

(f(x− t) + f(x+ t)) +
∫ t

0

g(x− t+ 2τ)dτ

and then letting y = x− t+ 2τ in the last integral shows again that

Page: 708 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



34.4 Wave Equation on Rn 709

u(t, x) =
1
2

(f(x− t) + f(x+ t)) +
1
2

∫ x+t

x−t
g(y)dy.

When n > 3 it is necessary to treat F−1
[

sin t|ξ|
|ξ|

]
as a “distribution” or

“generalized function,” see Section 35 below. So for now let us take n = 3, in
which case from Example 33.18 it follows that

F−1

[
sin t |ξ|
|ξ|

]
=

t

4πt2
σt = tσ̄t (34.18)

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total mea-

sure one. Hence from Eq. (34.17) the solution to the three dimensional wave
equation should be given by

u(t, x) =
d

dt
(tσ̄tFf(x)) + tσ̄tFg (x) . (34.19)

Using this definition in Eq. (34.19) gives

u(t, x) =
d

dt

{
t

∫
St

f(x− y)dσ̄t(y)
}

+ t

∫
St

g(x− y)dσ̄t(y)

=
d

dt

{
t

∫
S1

f(x− tω)dσ̄1(ω)
}

+ t

∫
S1

g(x− tω)dσ̄1(ω)

=
d

dt

{
t

∫
S1

f(x+ tω)dσ̄1(ω)
}

+ t

∫
S1

g(x+ tω)dσ̄1(ω). (34.20)

Proposition 34.4. Suppose f ∈ C3(R3) and g ∈ C2(R3), then u(t, x) de-
fined by Eq. (34.20) is in C2

(
R× R3

)
and is a classical solution of the wave

equation in Eq. (34.15).

Proof. The fact that u ∈ C2
(
R× R3

)
follows by the usual differen-

tiation under the integral arguments. Suppose we can prove the proposi-
tion in the special case that f ≡ 0. Then for f ∈ C3(R3), the function
v(t, x) = +t

∫
S1
g(x+ tω)dσ̄1(ω) solves the wave equation 0 =

(
∂2
t −∆

)
v(t, x)

with v(0, x) = 0 and vt(0, x) = g(x). Differentiating the wave equation
in t shows u = vt also solves the wave equation with u(0, x) = g(x) and
ut(0, x) = vtt(0, x) = −∆xv(0, x) = 0. These remarks reduced the problems
to showing u in Eq. (34.20) with f ≡ 0 solves the wave equation. So let

u(t, x) := t

∫
S1

g(x+ tω)dσ̄1(ω). (34.21)

We now give two proofs the u solves the wave equation. Proof 1. Since solving
the wave equation is a local statement and u(t, x) only depends on the values
of g in B(x, t) we it suffices to consider the case where g ∈ C2

c

(
R3
)
. Taking

the Fourier transform of Eq. (34.21) in the x variable shows
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710 34 Constant Coefficient partial differential equations

û(t, ξ) = t

∫
S1

dσ̄1(ω)
∫

R3
g(x+ tω)e−iξ·xdx

= t

∫
S1

dσ̄1(ω)
∫

R3
g(x)e−iξ·xeitω·ξdx = ĝ(ξ)t

∫
S1

eitω·ξdσ̄1(ω)

= ĝ(ξ)t
sin |tk|
|tk|

= ĝ(ξ)
sin (t |ξ|)
|ξ|

wherein we have made use of Example 33.18. This completes the proof since
û(t, ξ) solves Eq. (34.16) as desired. Proof 2. Differentiating

S(t, x) :=
∫
S1

g(x+ tω)dσ̄1(ω)

in t gives

St(t, x) =
1
4π

∫
S1

∇g(x+ tω) · ωdσ(ω)

=
1
4π

∫
B(0,1)

∇ω · ∇g(x+ tω)dm(ω)

=
t

4π

∫
B(0,1)

∆g(x+ tω)dm(ω)

=
1

4πt2

∫
B(0,t)

∆g(x+ y)dm(y)

=
1

4πt2

∫ t

0

dr r2
∫
|y|=r

∆g(x+ y)dσ(y)

where we have used the divergence theorem, made the change of variables
y = tω and used the disintegration formula in Eq. (20.34),∫
Rd

f(x)dm(x) =
∫

[0,∞)×Sn−1

f(r ω) dσ(ω)rn−1dr =
∫ ∞

0

dr

∫
|y|=r

f(y)dσ(y).

Since u(t, x) = tS(t, x) if follows that
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34.4 Wave Equation on Rn 711

Fig. 34.1. The geometry of the solution to the wave equation in three dimensions.
The observer sees a flash at t = 0 and x = 0 only at time t = |x| . The wave progates
sharply with speed 1.

utt(t, x) =
∂

∂t
[S(t, x) + tSt(t, x)]

= St(t, x) +
∂

∂t

[
1

4πt

∫ t

0

dr r2
∫
|y|=r

∆g(x+ y)dσ(y)

]

= St(t, x)−
1

4πt2

∫ t

0

dr

∫
|y|=r

∆g(x+ y)dσ(y)

+
1

4πt

∫
|y|=t

∆g(x+ y)dσ(y)

= St(t, x)− St(t, x) +
t

4πt2

∫
|y|=1

∆g(x+ tω)dσ(ω)

= t∆u(t, x)

as required.
The solution in Eq. (34.20) exhibits a basic property of wave equations,

namely finite propagation speed. To exhibit the finite propagation speed, sup-
pose that f = 0 (for simplicity) and g has compact support near the origin,
for example think of g = δ0(x). Then x+ tw = 0 for some w iff |x| = t. Hence
the “wave front” propagates at unit speed and the wave front is sharp. See
Figure 34.1 below.

The solution of the two dimensional wave equation may be found using
“Hadamard’s method of decent” which we now describe. Suppose now that
f and g are functions on R2 which we may view as functions on R3 which
happen not to depend on the third coordinate. We now go ahead and solve
the three dimensional wave equation using Eq. (34.20) and f and g as initial
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712 34 Constant Coefficient partial differential equations

Fig. 34.2. The geometry of the solution to the wave equation in two dimensions. A
flash at 0 ∈ R2 looks like a line of flashes to the fictitious 3 – d observer and hence
she sees the effect of the flash for t ≥ |x| . The wave still propagates with speed 1.
However there is no longer sharp propagation of the wave front, similar to water
waves.

conditions. It is easily seen that the solution u(t, x, y, z) is again independent
of z and hence is a solution to the two dimensional wave equation. See figure
34.2 below.

Notice that we still have finite speed of propagation but no longer sharp
propagation. The explicit formula for u is given in the next proposition.

Proposition 34.5. Suppose f ∈ C3(R2) and g ∈ C2(R2), then

u(t, x) :=
∂

∂t

[
t

2π

∫∫
D1

f(x+ tw)√
1− |w|2

dm(w)

]

+
t

2π

∫∫
D1

g(x+ tw)√
1− |w|2

dm(w)

is in C2
(
R× R2

)
and solves the wave equation in Eq. (34.15).

Proof. As usual it suffices to consider the case where f ≡ 0. By symmetry
u may be written as
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34.5 Elliptic Regularity 713

u(t, x) = 2t
∫
S+

t

g(x− y)dσ̄t(y) = 2t
∫
S+

t

g(x+ y)dσ̄t(y)

where S+
t is the portion of St with z ≥ 0. The surface S+

t may be parametrized
by R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

{
(u, v) : u2 + v2 ≤ t2

}
.

In these coordinates we have

4πt2dσ̄t =
∣∣∣(−∂u√t2 − u2 − v2,−∂v

√
t2 − u2 − v2, 1

)∣∣∣ dudv
=
∣∣∣∣( u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1
)∣∣∣∣ dudv

=

√
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

∫
Dt

g(x+ (u, v,
√
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1
2π

sgn(t)
∫
Dt

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1
2π

sgn(t)
∫∫

Dt

g(x+ w)√
t2 − |w|2

dm(w)

=
1
2π

sgn(t)
t2

|t|

∫∫
D1

g(x+ tw)√
1− |w|2

dm(w)

=
1
2π
t

∫∫
D1

g(x+ tw)√
1− |w|2

dm(w)

34.5 Elliptic Regularity

The following theorem is a special case of the main theorem (Theorem 34.10)
of this section.

Theorem 34.6. Suppose that M ⊂o Rn, v ∈ C∞(M) and u ∈ L1
loc(M) sat-

isfies ∆u = v weakly, then u has a (necessarily unique) version ũ ∈ C∞(M).

Proof. We may always assume n ≥ 3, by embedding the n = 1 and n = 2
cases in the n = 3 cases. For notational simplicity, assume 0 ∈M and we will
show u is smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a
neighborhood of 0 and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} and α = 1
in a neighborhood of 0 as well. Then formally, we have with β := 1− α,
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714 34 Constant Coefficient partial differential equations

G ∗ (θv) = G ∗ (θ∆u) = G ∗ (θ∆(αu+ βu))
= G ∗ (∆(αu) + θ∆(βu)) = αu+G ∗ (θ∆(βu))

so that
u(x) = G ∗ (θv) (x)−G ∗ (θ∆(βu))(x)

for x ∈ supp(α). The last term is formally given by

G ∗ (θ∆(βu))(x) =
∫

Rn

G(x− y)θ(y)∆(β(y)u(y))dy

=
∫

Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy

which makes sense for x near 0. Therefore we find

u(x) = G ∗ (θv) (x)−
∫

Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy.

Clearly all of the above manipulations were correct if we know u were C2 to
begin with. So for the general case, let un = u ∗ δn with {δn}∞n=1 – the usual
sort of δ – sequence approximation. Then ∆un = v ∗ δn =: vn away from ∂M
and

un(x) = G ∗ (θvn) (x)−
∫

Rn

β(y)∆y [G(x− y)θ(y)] · un(y)dy. (34.22)

Since un → u in L1
loc(O) where O is a sufficiently small neighborhood of 0, we

may pass to the limit in Eq. (34.22) to find u(x) = ũ(x) for a.e. x ∈ O where

ũ(x) := G ∗ (θv) (x)−
∫

Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy.

This concluded the proof since ũ is smooth for x near 0.

Definition 34.7. We say L = p(Dx) as defined in Eq. (34.1) is elliptic
if pk(ξ) :=

∑
|α|=k aαξ

α is zero iff ξ = 0. We will also say the polynomial
p(ξ) :=

∑
|α|≤k aαξ

α is elliptic if this condition holds.

Remark 34.8. If p(ξ) :=
∑

|α|≤k aαξ
α is an elliptic polynomial, then there

exists A < ∞ such that inf |ξ|≥A |p(ξ)| > 0. Since pk(ξ) is everywhere non-
zero for ξ ∈ Sn−1 and Sn−1 ⊂ Rn is compact, ε := inf |ξ|=1 |pk(ξ)| > 0. By
homogeneity this implies

|pk(ξ)| ≥ ε |ξ|k for all ξ ∈ An.

Since

|p(ξ)| =

∣∣∣∣∣∣pk(ξ) +
∑
|α|<k

aαξ
α

∣∣∣∣∣∣ ≥ |pk(ξ)| −
∣∣∣∣∣∣
∑
|α|<k

aαξ
α

∣∣∣∣∣∣
≥ ε |ξ|k − C

(
1 + |ξ|k−1

)
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34.5 Elliptic Regularity 715

for some constant C < ∞ from which it is easily seen that for A sufficiently
large,

|p(ξ)| ≥ ε

2
|ξ|k for all |ξ| ≥ A.

For the rest of this section, let L = p(Dx) be an elliptic operator and
M ⊂0 Rn. As mentioned at the beginning of this section, the formal solution
to Lu = v for v ∈ L2 (Rn) is given by

u = L−1v = G ∗ v

where
G(x) :=

∫
Rn

1
p(ξ)

eix·ξdξ.

Of course this integral may not be convergent because of the possible zeros of
p and the fact 1

p(ξ) may not decay fast enough at infinity. We we will introduce
a smooth cut off function χ(ξ) which is 1 on C0(A) := {x ∈ Rn : |x| ≤ A} and
supp(χ) ⊂ C0(2A) where A is as in Remark 34.8. Then for M > 0 let

GM (x) =
∫

Rn

(1− χ(ξ))χ(ξ/M)
p(ξ)

eix·ξdξ, (34.23)

δ(x) := χ∨(x) =
∫

Rn

χ(ξ)eix·ξdξ, and δM (x) = Mnδ(Mx). (34.24)

Notice
∫

Rn δ(x)dx = Fδ(0) = χ(0) = 1, δ ∈ S since χ ∈ S and

LGM (x) =
∫

Rn

(1− χ(ξ))χ(ξ/M)eix·ξdξ =
∫

Rn

[χ(ξ/M)− χ(ξ)] eix·ξdξ

= δM (x)− δ(x)

provided M > 2.

Proposition 34.9. Let p be an elliptic polynomial of degree m. The function
GM defined in Eq. (34.23) satisfies the following properties,

1. GM ∈ S for all M > 0.
2. LGM (x) = Mnδ(Mx)− δ(x).
3. There exists G ∈ C∞c (Rn \ {0}) such that for all multi-indecies α,

limM→∞ ∂αGM (x) = ∂αG(x) uniformly on compact subsets in Rn \ {0} .

Proof. We have already proved the first two items. For item 3., we notice
that

(−x)β DαGM (x) =
∫

Rn

(1− χ(ξ))χ(ξ/M)ξα

p(ξ)
(−D)βξ e

ix·ξdξ

=
∫

Rn

Dβ
ξ

[
(1− χ(ξ)) ξα

p(ξ)
χ(ξ/M)

]
eix·ξdξ

=
∫

Rn

Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· χ(ξ/M)eix·ξdξ +RM (x)
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716 34 Constant Coefficient partial differential equations

where

RM (x) =
∑
γ<β

(
β

γ

)
M |γ|−|β|

∫
Rn

Dγ
ξ

(1− χ(ξ)) ξα

p(ξ)
·
(
Dβ−γχ

)
(ξ/M)eix·ξdξ.

Using ∣∣∣∣Dγ
ξ

[
ξα

p(ξ)
(1− χ(ξ))

]∣∣∣∣ ≤ C |ξ||α|−m−|γ|
and the fact that

supp(
(
Dβ−γχ

)
(ξ/M)) ⊂ {ξ ∈ Rn : A ≤ |ξ| /M ≤ 2A}

= {ξ ∈ Rn : AM ≤ |ξ| ≤ 2AM}

we easily estimate

|RM (x)| ≤ C
∑
γ<β

(
β

γ

)
M |γ|−|β|

∫
{ξ∈Rn:AM≤|ξ|≤2AM}

|ξ||α|−m−|γ| dξ

≤ C
∑
γ<β

(
β

γ

)
M |γ|−|β|M |α|−m−|γ|+n = CM |α|−|β|−m+n.

Therefore, RM → 0 uniformly in x as M →∞ provided |β| > |α| −m+ n. It
follows easily now that GM → G in C∞c (Rn \ {0}) and furthermore that

(−x)β DαG(x) =
∫

Rn

Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided β is sufficiently large. In particular we have shown,

DαG(x) =
1

|x|2k

∫
Rn

(−∆ξ)
k (1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided m−|α|+2k > n, i.e. k > (n−m+ |α|) /2. We are now ready to use
this result to prove elliptic regularity for the constant coefficient case.

Theorem 34.10. Suppose L = p(Dξ) is an elliptic differential operator on
Rn, M ⊂o Rn, v ∈ C∞(M) and u ∈ L1

loc(M) satisfies Lu = v weakly, then u
has a (necessarily unique) version ũ ∈ C∞(M).

Proof. For notational simplicity, assume 0 ∈ M and we will show u is
smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a neighbor-
hood of 0 and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} , and α = 1 in a
neighborhood of 0 as well. Then formally, we have with β := 1− α,

GM ∗ (θv) = GM ∗ (θLu) = GM ∗ (θL(αu+ βu))
= GM ∗ (L(αu) + θL(βu))
= δM ∗ (αu)− δ ∗ (αu) +GM ∗ (θL(βu))
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so that

δM ∗ (αu) (x) = GM ∗ (θv) (x)−GM ∗ (θL(βu))(x) + δ ∗ (αu) . (34.25)

Since

F [GM ∗ (θv)] (ξ) = ĜM (ξ) (θv)ˆ (ξ) =
(1− χ(ξ))χ(ξ/M)

p(ξ)
(θv)ˆ (ξ)

→ (1− χ(ξ))
p(ξ)

(θv)ˆ (ξ) as M →∞

with the convergence taking place in L2 (actually in S), it follows that

GM ∗ (θv)→ “G ∗ (θv) ”(x) :=
∫

Rn

(1− χ(ξ))
p(ξ)

(θv)ˆ (ξ)eix·ξdξ

= F−1

[
(1− χ(ξ))

p(ξ)
(θv)ˆ (ξ)

]
(x) ∈ S.

So passing the the limit, M → ∞, in Eq. (34.25) we learn for almost every
x ∈ Rn,

u(x) = G ∗ (θv) (x)− lim
M→∞

GM ∗ (θL(βu))(x) + δ ∗ (αu) (x)

for a.e. x ∈ supp(α). Using the support properties of θ and β we see for x
near 0 that (θL(βu))(y) = 0 unless y ∈ supp(θ) and y /∈ {α = 1} , i.e. unless
y is in an annulus centered at 0. So taking x sufficiently close to 0, we find
x − y stays away from 0 as y varies through the above mentioned annulus,
and therefore

GM ∗ (θL(βu))(x) =
∫

Rn

GM (x− y)(θL(βu))(y)dy

=
∫

Rn

L∗y {θ(y)GM (x− y)} · (βu) (y)dy

→
∫

Rn

L∗y {θ(y)G(x− y)} · (βu) (y)dy as M →∞.

Therefore we have shown,

u(x) = G ∗ (θv) (x)−
∫

Rn

L∗y {θ(y)G(x− y)} · (βu) (y)dy + δ ∗ (αu) (x)

for almost every x in a neighborhood of 0. (Again it suffices to prove this
equation and in particular Eq. (34.25) assuming u ∈ C2(M) because of the
same convolution argument we have use above.) Since the right side of this
equation is the linear combination of smooth functions we have shown u has
a smooth version in a neighborhood of 0.
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718 34 Constant Coefficient partial differential equations

Remarks 34.11 We could avoid introducing GM (x) if deg(p) > n, in which
case (1−χ(ξ))

p(ξ) ∈ L1 and so

G(x) :=
∫

Rn

(1− χ(ξ))
p(ξ)

eix·ξdξ

is already well defined function with G ∈ C∞(Rn \{0})∩BC(Rn). If deg(p) <
n, we may consider the operator Lk = [p(Dx)]

k = pk(Dx) where k is chosen
so that k · deg(p) > n. Since Lu = v implies Lku = Lk−1v weakly, we see to
prove the hypoellipticity of L it suffices to prove the hypoellipticity of Lk.

34.6 Exercises

Exercise 34.1. Using

1
|ξ|2 +m2

=
∫ ∞

0

e−λ(|ξ|2+m2)dλ,

the identity in Eq. (34.5) and Example 33.4, show for m > 0 and x ≥ 0 that

e−mx =
m√
π

∫ ∞

0

dλ
1√
λ
e−

1
4λx

2
e−λm

2
(let λ→ λ/m2) (34.26)

=
∫ ∞

0

dλ
1√
πλ

e−λe−
m2
4λ x

2
. (34.27)

Use this formula and Example 33.4 to show, in dimension n, that

F
[
e−m|x|

]
(ξ) = 2n/2

Γ ((n+ 1)/2)√
π

m

(m2 + |ξ|2)(n+1)/2

where Γ (x) in the gamma function defined in Eq. (20.41). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)
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35

Elementary Generalized Functions /
Distribution Theory

This chapter has been highly influenced by Friedlander’s book [7].

35.1 Distributions on U ⊂o Rn

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC
∞(K) (35.1)

denote the set of smooth functions on U with compact support in U.

Definition 35.1. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff
there is a compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ
in C∞(K).

Definition 35.2 (Distributions on U ⊂o Rn). A generalized function T
on U ⊂o Rn is a continuous linear functional on D(U), i.e. T : D(U) → C
is linear and limn→∞〈T, φk〉 = 0 for all {φk} ⊂ D(U) such that φk → 0 in
D(U). We denote the space of generalized functions by D′(U).

Proposition 35.3. Let T : D(U)→ C be a linear functional. Then T ∈ D′(U)
iff for all K @@ U, there exist n ∈ N and C <∞ such that

|T (φ)| ≤ Cpn(φ) for all φ ∈ C∞(K). (35.2)

Proof. Suppose that {φk} ⊂ D(U) such that φk → 0 in D(U). Let K be
a compact set such that supp(φk) ⊂ K for all k. Since limk→∞ pn(φk) = 0, it
follows that if Eq. (35.2) holds that limn→∞〈T, φk〉 = 0. Conversely, suppose
that there is a compact set K @@ U such that for no choice of n ∈ N and
C < ∞, Eq. (35.2) holds. Then we may choose non-zero φn ∈ C∞(K) such
that

|T (φn)| ≥ npn(φn) for all n.
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Let ψn = 1
npn(φn)φn ∈ C∞(K), then pn(ψn) = 1/n → 0 as n → ∞ which

shows that ψn → 0 in D(U). On the other hence |T (ψn)| ≥ 1 so that
limn→∞〈T, ψn〉 6= 0. Alternate Proof:The definition of T being continu-
ous is equivalent to T |C∞(K) being sequentially continuous for all K @@ U.
Since C∞(K) is a metric space, sequential continuity and continuity are the
same thing. Hence T is continuous iff T |C∞(K) is continuous for all K @@ U.
Now T |C∞(K) is continuous iff a bound like Eq. (35.2) holds.

Definition 35.4. Let Y be a topological space and Ty ∈ D′(U) for all y ∈ Y.
We say that Ty → T ∈ D′(U) as y → y0 iff

lim
y→y0

〈Ty, φ〉 = 〈T, φ〉 for all φ ∈ D(U).

35.2 Examples of distributions and related computations

Example 35.5. Let µ be a positive Radon measure on U and f ∈ L1
loc(U).

Define T ∈ D′(U) by 〈Tf , φ〉 =
∫
U
φfdµ for all φ ∈ D(U). Notice that if

φ ∈ C∞(K) then

|〈Tf , φ〉| ≤
∫
U

|φf | dµ =
∫
K

|φf | dµ ≤ CK ‖φ‖∞

where CK :=
∫
K
|f | dµ <∞. Hence Tf ∈ D′(U). Furthermore, the map

f ∈ L1
loc(U)→ Tf ∈ D′(U)

is injective. Indeed, Tf = 0 is equivalent to∫
U

φfdµ = 0 for all φ ∈ D(U). (35.3)

for all φ ∈ C∞(K). By the dominated convergence theorem and the usual
convolution argument, this is equivalent to∫

U

φfdµ = 0 for all φ ∈ Cc(U). (35.4)

Now fix a compact set K @@ U and φn ∈ Cc(U) such that φn → sgn(f)1K
in L1(µ). By replacing φn by χ(φn) if necessary, where

χ(z) =
{
z if |z| ≤ 1
z
|z| if |z| ≥ 1,

we may assume that |φn| ≤ 1. By passing to a further subsequence, we may
assume that φn → sgn(f)1K a.e.. Thus we have
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0 = lim
n→∞

∫
U

φnfdµ =
∫
U

sgn(f)1Kfdµ =
∫
K

|f | dµ.

This shows that |f(x)| = 0 for µ -a.e. x ∈ K. Since K is arbitrary and U is
the countable union of such compact sets K, it follows that f(x) = 0 for µ
-a.e. x ∈ U.

The injectivity may also be proved slightly more directly as follows. As
before, it suffices to prove Eq. (35.4) implies that f(x) = 0 for µ – a.e. x. We
may further assume that f is real by considering real and imaginary parts
separately. Let K @@ U and ε > 0 be given. Set A = {f > 0} ∩ K, then
µ(A) <∞ and hence since all σ finite measure on U are Radon, there exists
F ⊂ A ⊂ V with F compact and V ⊂o U such that µ(V \ F ) < δ. By
Uryshon’s lemma, there exists φ ∈ Cc(V ) such that 0 ≤ φ ≤ 1 and φ = 1 on
F. Then by Eq. (35.4)

0 =
∫
U

φfdµ =
∫
F

φfdµ+
∫
V \F

φfdµ =
∫
F

φfdµ+
∫
V \F

φfdµ

so that ∫
F

fdµ =

∣∣∣∣∣
∫
V \F

φfdµ

∣∣∣∣∣ ≤
∫
V \F
|f | dµ < ε

provided that δ is chosen sufficiently small by the ε – δ definition of absolute
continuity. Similarly, it follows that

0 ≤
∫
A

fdµ ≤
∫
F

fdµ+ ε ≤ 2ε.

Since ε > 0 is arbitrary, it follows that
∫
A
fdµ = 0. Since K was arbitrary, we

learn that ∫
{f>0}

fdµ = 0

which shows that f ≤ 0 µ – a.e. Similarly, one shows that f ≥ 0 µ – a.e. and
hence f = 0 µ – a.e.

Example 35.6. Let us now assume that µ = m and write 〈Tf , φ〉 =
∫
U
φfdm.

For the moment let us also assume that U = R. Then we have

1. limM→∞ TsinMx = 0
2. limM→∞ TM−1 sinMx = πδ0 where δ0 is the point measure at 0.
3. If f ∈ L1(Rn, dm) with

∫
Rn fdm = 1 and fε(x) = ε−nf(x/ε), then

limε↓0 Tfε
= δ0. As a special case,

consider limε↓0
ε

π(x2+ε2) = δ0.

Definition 35.7 (Multiplication by smooth functions). Suppose that
g ∈ C∞(U) and T ∈ D′(U) then we define gT ∈ D′(U) by

〈gT, φ〉 = 〈T, gφ〉 for all φ ∈ D(U).

It is easily checked that gT is continuous.
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Definition 35.8 (Differentiation). For T ∈ D′(U) and i ∈ {1, 2, . . . , n} let
∂iT ∈ D′(U) be the distribution defined by

〈∂iT, φ〉 = −〈T, ∂iφ〉 for all φ ∈ D(U).

Again it is easy to check that ∂iT is a distribution.

More generally if L =
∑

|α|≤m aα∂
α with aα ∈ C∞(U) for all α, then LT

is the distribution defined by

〈LT, φ〉 = 〈T,
∑
|α|≤m

(−1)|α|∂α (aαφ)〉 for all φ ∈ D(U).

Hence we can talk about distributional solutions to differential equations of
the form LT = S.

Example 35.9. Suppose that f ∈ L1
loc and g ∈ C∞(U), then gTf = Tgf . If

further f ∈ C1(U), then ∂iTf = T∂if . If f ∈ Cm(U), then LTf = TLf .

Example 35.10. Suppose that a ∈ U, then

〈∂iδa, φ〉 = −∂iφ(a)

and more generally we have

〈Lδa, φ〉 =
∑
|α|≤m

(−1)|α|∂α (aαφ) (a).

Example 35.11. Consider the distribution T := T|x| for x ∈ R, i.e. take U = R.
Then

d

dx
T = Tsgn(x) and

d2

d2x
T = 2δ0.

More generally, suppose that f is piecewise C1, the

d

dx
Tf = Tf ′ +

∑
(f(x+)− f(x−)) δx.

Example 35.12. Consider T = Tln|x| on D(R). Then

〈T ′, φ〉 = −
∫

R
ln |x|φ′(x)dx = − lim

ε↓0

∫
|x|>ε

ln |x|φ′(x)dx

= − lim
ε↓0

∫
|x|>ε

ln |x|φ′(x)dx

= lim
ε↓0

∫
|x|>ε

1
x
φ(x)dx− lim

ε↓0
[ln ε(φ(ε)− φ(−ε))]

= lim
ε↓0

∫
|x|>ε

1
x
φ(x)dx.
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We will write T ′ = PV 1
x in the future. Here is another formula for T ′,

〈T ′, φ〉 = lim
ε↓0

∫
1≥|x|>ε

1
x
φ(x)dx+

∫
|x|>1

1
x
φ(x)dx

= lim
ε↓0

∫
1≥|x|>ε

1
x

[φ(x)− φ(0)]dx+
∫
|x|>1

1
x
φ(x)dx

=
∫

1≥|x|

1
x

[φ(x)− φ(0)]dx+
∫
|x|>1

1
x
φ(x)dx.

Please notice in the last example that 1
x /∈ L1

loc (R) so that T1/x is not well
defined. This is an example of the so called division problem of distributions.
Here is another possible interpretation of 1

x as a distribution.

Example 35.13. Here we try to define 1/x as limy↓0
1

x±iy , that is we want to
define a distribution T± by

〈T±, φ〉 := lim
y↓0

∫
1

x± iy
φ(x)dx.

Let us compute T+ explicitly,

lim
y↓0

∫
R

1
x+ iy

φ(x)dx

= lim
y↓0

∫
|x|≤1

1
x+ iy

φ(x)dx+ lim
y↓0

∫
|x|>1

1
x+ iy

φ(x)dx

= lim
y↓0

∫
|x|≤1

1
x+ iy

[φ(x)− φ(0)] dx+ φ(0) lim
y↓0

∫
|x|≤1

1
x+ iy

dx

+
∫
|x|>1

1
x
φ(x)dx

= PV

∫
R

1
x
φ(x)dx+ φ(0) lim

y↓0

∫
|x|≤1

1
x+ iy

dx.

Now by deforming the contour we have∫
|x|≤1

1
x+ iy

dx =
∫
ε<|x|≤1

1
x+ iy

dx+
∫
Cε

1
z + iy

dz

where Cε : z = εeiθ with θ : π → 0. Therefore,

lim
y↓0

∫
|x|≤1

1
x+ iy

dx = lim
y↓0

∫
ε<|x|≤1

1
x+ iy

dx+ lim
y↓0

∫
Cε

1
z + iy

dz

=
∫
ε<|x|≤1

1
x
dx+

∫
Cε

1
z
dz = 0− π.

Hence we have shown that T+ = PV 1
x − iπδ0. Similarly, one shows that

T− = PV 1
x + iπδ0. Notice that it follows from these computations that T− −

T+ = i2πδ0. Notice that
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1
x− iy

− 1
x+ iy

=
2iy

x2 + y2

and hence we conclude that limy↓0
y

x2+y2 = πδ0 – a result that we saw in
Example 35.6, item 3.

Example 35.14. Suppose that µ is a complex measure on R and F (x) =
µ((−∞, x]), then T ′F = µ. Moreover, if f ∈ L1

loc(R) and T ′f = µ, then
f = F + C a.e. for some constant C.

Proof. Let φ ∈ D := D(R), then

〈T ′F , φ〉 = −〈TF , φ′〉 = −
∫

R
F (x)φ′(x)dx = −

∫
R
dx

∫
R
dµ(y)φ′(x)1y≤x

= −
∫

R
dµ(y)

∫
R
dxφ′(x)1y≤x =

∫
R
dµ(y)φ(y) = 〈µ, φ〉

by Fubini’s theorem and the fundamental theorem of calculus. If T ′f = µ, then
T ′f−F = 0 and the result follows from Corollary 35.16 below.

Lemma 35.15. Suppose that T ∈ D′(Rn) is a distribution such that ∂iT = 0
for some i, then there exists a distribution S ∈ D′(Rn−1) such that 〈T, φ〉 =
〈S, φ̄i〉 for all φ ∈ D(Rn) where

φ̄i =
∫

R
τteiφdt ∈ D(Rn−1).

Proof. To simplify notation, assume that i = n and write x ∈ Rn as
x = (y, z) with y ∈ Rn−1 and z ∈ R. Let θ ∈ C∞c (R) such that

∫
R θ(z)dz = 1

and for ψ ∈ D(Rn−1), let ψ ⊗ θ(x) = ψ(y)θ(z). The mapping

ψ ∈ D(Rn−1) ∈ ψ ⊗ θ ∈ D(Rn)

is easily seen to be sequentially continuous and therefore 〈S, ψ〉 := 〈T, ψ ⊗ θ〉
defined a distribution in D′(Rn). Now suppose that φ ∈ D(Rn). If φ = ∂nf for
some f ∈ D(Rn) we would have to have

∫
φ(y, z)dz = 0. This is not generally

true, however the function φ− φ̄⊗ θ does have this property. Define

f(y, z) :=
∫ z

−∞

[
φ(y, z′)− φ̄(y)θ(z′)

]
dz′,

then f ∈ D(Rn) and ∂nf = φ− φ̄⊗ θ. Therefore,

0 = −〈∂nT, f〉 = 〈T, ∂nf〉 = 〈T, φ〉 − 〈T, φ̄⊗ θ〉 = 〈T, φ〉 − 〈S, φ̄〉.
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Corollary 35.16. Suppose that T ∈ D′(Rn) is a distribution such that there
exists m ≥ 0 such that

∂αT = 0 for all |α| = m,

then T = Tp where p(x) is a polynomial on Rn of degree less than or equal to
m− 1, where by convention if deg(p) = −1 then p := 0.

Proof. The proof will be by induction on n andm. The corollary is trivially
true when m = 0 and n is arbitrary. Let n = 1 and assume the corollary holds
for m = k − 1 with k ≥ 1. Let T ∈ D′(R) such that 0 = ∂kT = ∂k−1∂T. By
the induction hypothesis, there exists a polynomial, q, of degree k − 2 such
that T ′ = Tq. Let p(x) =

∫ x
0
q(z)dz, then p is a polynomial of degree at most

k−1 such that p′ = q and hence T ′p = Tq = T ′. So (T −Tp)′ = 0 and hence by
Lemma 35.15, T − Tp = TC where C = 〈T − Tp, θ〉 and θ is as in the proof of
Lemma 35.15. This proves the he result for n = 1. For the general induction,
suppose there exists (m,n) ∈ N2 with m ≥ 0 and n ≥ 1 such that assertion
in the corollary holds for pairs (m′, n′) such that either n′ < n of n′ = n and
m′ ≤ m. Suppose that T ∈ D′(Rn) is a distribution such that

∂αT = 0 for all |α| = m+ 1.

In particular this implies that ∂α∂nT = 0 for all |α| = m − 1 and hence by
induction ∂nT = Tqn where qn is a polynomial of degree at most m − 1 on
Rn. Let pn(x) =

∫ z
0
qn(y, z′)dz′ a polynomial of degree at most m on Rn. The

polynomial pn satisfies, 1) ∂αpn = 0 if |α| = m and αn = 0 and 2) ∂npn = qn.
Hence ∂n(T − Tpn

) = 0 and so by Lemma 35.15,

〈T − Tpn , φ〉 = 〈S, φ̄n〉

for some distribution S ∈ D′(Rn−1). If α is a multi-index such that αn = 0
and |α| = m, then

0 = 〈∂αT − ∂αTpn
, φ〉 = 〈T − Tpn

, ∂αφ〉 = 〈S, (∂αφ)n〉
= 〈S, ∂αφ̄n〉 = (−1)|α|〈∂αS, φ̄n〉.

and in particular by taking φ = ψ ⊗ θ, we learn that 〈∂αS, ψ〉 = 0 for all ψ ∈
D(Rn−1). Thus by the induction hypothesis, S = Tr for some polynomial (r)
of degree at most m on Rn−1. Letting p(y, z) = pn(y, z)+ r(y) – a polynomial
of degree at most m on Rn, it is easily checked that T = Tp.

Example 35.17. Consider the wave equation

(∂t − ∂x) (∂t + ∂x)u(t, x) =
(
∂2
t − ∂2

x

)
u(t, x) = 0.

From this equation one learns that u(t, x) = f(x + t) + g(x − t) solves the
wave equation for f, g ∈ C2. Suppose that f is a bounded Borel measurable
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function on R and consider the function f(x + t) as a distribution on R. We
compute

〈(∂t − ∂x) f(x+ t), φ(x, t)〉 =
∫

R2
f(x+ t) (∂x − ∂t)φ(x, t)dxdt

=
∫

R2
f(x) [(∂x − ∂t)φ] (x− t, t)dxdt

= −
∫

R2
f(x)

d

dt
[φ(x− t, t)] dxdt

= −
∫

R
f(x) [φ(x− t, t)] |t=∞t=−∞dx = 0.

This shows that (∂t − ∂x) f(x + t) = 0 in the distributional sense. Similarly,
(∂t + ∂x) g(x − t) = 0 in the distributional sense. Hence u(t, x) = f(x + t) +
g(x− t) solves the wave equation in the distributional sense whenever f and
g are bounded Borel measurable functions on R.

Example 35.18. Consider f(x) = ln |x| for x ∈ R2 and let T = Tf . Then,
pointwise we have

∇ ln |x| = x

|x|2
and ∆ ln |x| = 2

|x|2
− 2x · x

|x|4
= 0.

Hence ∆f(x) = 0 for all x ∈ R2 except at x = 0 where it is not defined. Does
this imply that ∆T = 0? No, in fact ∆T = 2πδ as we shall now prove. By
definition of ∆T and the dominated convergence theorem,

〈∆T, φ〉 = 〈T,∆φ〉 =
∫

R2
ln |x|∆φ(x)dx = lim

ε↓0

∫
|x|>ε

ln |x|∆φ(x)dx.

Using the divergence theorem,∫
|x|>ε

ln |x|∆φ(x)dx

= −
∫
|x|>ε

∇ ln |x| · ∇φ(x)dx+
∫
∂{|x|>ε}

ln |x|∇φ(x) · n(x)dS(x)

=
∫
|x|>ε

∆ ln |x|φ(x)dx−
∫
∂{|x|>ε}

∇ ln |x| · n(x)φ(x)dS(x)

+
∫
∂{|x|>ε}

ln |x| (∇φ(x) · n(x)) dS(x)

=
∫
∂{|x|>ε}

ln |x| (∇φ(x) · n(x)) dS(x)

−
∫
∂{|x|>ε}

∇ ln |x| · n(x)φ(x)dS(x),
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where n(x) is the outward pointing normal, i.e. n(x) = −x̂ := x/ |x| . Now∣∣∣∣∣
∫
∂{|x|>ε}

ln |x| (∇φ(x) · n(x)) dS(x)

∣∣∣∣∣ ≤ C (ln ε−1
)
2πε→ 0 as ε ↓ 0

where C is a bound on (∇φ(x) · n(x)) . While∫
∂{|x|>ε}

∇ ln |x| · n(x)φ(x)dS(x) =
∫
∂{|x|>ε}

x̂

|x|
· (−x̂)φ(x)dS(x)

= −1
ε

∫
∂{|x|>ε}

φ(x)dS(x)

→ −2πφ(0) as ε ↓ 0.

Combining these results shows

〈∆T, φ〉 = 2πφ(0).

Exercise 35.1. Carry out a similar computation to that in Example 35.18 to
show

∆T1/|x| = −4πδ

where now x ∈ R3.

Example 35.19. Let z = x+ iy, and ∂̄ = 1
2 (∂x + i∂y). Let T = T1/z, then

∂̄T = πδ0 or imprecisely ∂̄
1
z

= πδ(z).

Proof. Pointwise we have ∂̄ 1
z = 0 so we shall work as above. We then have

〈∂̄T, φ〉 = −〈T, ∂̄φ〉 = −
∫

R2

1
z
∂̄φ(z)dm(z)

= − lim
ε↓0

∫
|z|>ε

1
z
∂̄φ(z)dm(z)

= lim
ε↓0

∫
|z|>ε

∂̄
1
z
φ(z)dm(z)

− lim
ε↓0

∫
∂{|z|>ε}

1
z
φ(z)

1
2

(n1(z) + in2(z)) dσ(z)

= 0− lim
ε↓0

∫
∂{|z|>ε}

1
z
φ(z)

1
2

(
−z
|z|

)
dσ(z)

=
1
2

lim
ε↓0

∫
∂{|z|>ε}

1
|z|
φ(z)dσ(z)

= π lim
ε↓0

1
2πε

∫
∂{|z|>ε}

φ(z)dσ(z) = πφ(0).
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35.3 Other classes of test functions

(For what follows, see Exercises 13.26 and 13.27 of Chapter 18.

Notation 35.20 Suppose that X is a vector space and {pn}∞n=0 is a family
of semi-norms on X such that pn ≤ pn+1 for all n and with the property that
pn(x) = 0 for all n implies that x = 0. (We allow for pn = p0 for all n in
which case X is a normed vector space.) Let τ be the smallest topology on X
such that pn(x− ·) : X → [0,∞) is continuous for all n ∈ N and x ∈ X. For
n ∈ N, x ∈ X and ε > 0 let Bn(x, ε) := {y ∈ X : pn(x− y) < ε} .

Proposition 35.21. The balls B := {Bn(x, ε) : n ∈ N, x ∈ X and ε > 0} for
a basis for the topology τ. This topology is the same as the topology induced
by the metric d on X defined by

d(x, y) =
∞∑
n=0

2−n
pn(x− y)

1 + pn(x− y)
.

Moreover, a sequence {xk} ⊂ X is convergent to x ∈ X iff limk→∞ d(x, xk) =
0 iff limn→∞ pn(x, xk) = 0 for all n ∈ N and {xk} ⊂ X is Cauchy in X iff
limk,l→∞ d(xl, xk) = 0 iff limk,l→∞ pn(xl, xk) = 0 for all n ∈ N.

Proof. Suppose that z ∈ Bn(x, ε) ∩Bm(y, δ) and assume with out loss of
generality that m ≥ n. Then if pm(w − z) < α, we have

pm(w − y) ≤ pm(w − z) + pm(z − y) < α+ pm(z − y) < δ

provided that α ∈ (0, δ − pm(z − y)) and similarly

pn(w − x) ≤ pm(w − x) ≤ pm(w − z) + pm(z − x) < α+ pm(z − x) < ε

provided that α ∈ (0, ε− pm(z − x)). So choosing

δ =
1
2

min (δ − pm(z − y), ε− pm(z − x)) ,

we have shown that Bm(z, α) ⊂ Bn(x, ε)∩Bm(y, δ). This shows that B forms
a basis for a topology. In detail, V ⊂o X iff for all x ∈ V there exists n ∈ N
and ε > 0 such that Bn(x, ε) := {y ∈ X : pn(x− y) < ε} ⊂ V. Let τ(B) be
the topology generated by B. Since|pn(x− y)− pn(x− z)| ≤ pn(y−z), we see
that pn(x−·) is continuous on relative to τ(B) for each x ∈ X and n ∈ N. This
shows that τ ⊂ τ(B). On the other hand, since pn(x− ·) is τ – continuous, it
follows that Bn(x, ε) = {y ∈ X : pn(x− y) < ε} ∈ τ for all x ∈ X, ε > 0 and
n ∈ N. This shows that B ⊂ τ and therefore that τ(B) ⊂ τ. Thus τ = τ(B).
Given x ∈ X and ε > 0, let Bd(x, ε) = {y ∈ X : d(x, y) < ε} be a d – ball.
Choose N large so that

∑∞
n=N+1 2−n < ε/2. Then y ∈ BN (x, ε/4) we have

d(x, y) = pN (x− y)
N∑
n=0

2−n + ε/2 < 2
ε

4
+ ε/2 < ε

Page: 728 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



35.3 Other classes of test functions 729

which shows that BN (x, ε/4) ⊂ Bd(x, ε). Conversely, if d(x, y) < ε, then

2−n
pn(x− y)

1 + pn(x− y)
< ε

which implies that

pn(x− y) <
2−nε

1− 2−nε
=: δ

when 2−nε < 1 which shows that Bn(x, δ) contains Bd(x, ε) with ε and δ as
above. This shows that τ and the topology generated by d are the same. The
moreover statements are now easily proved and are left to the reader.

Exercise 35.2. Keeping the same notation as Proposition 35.21 and further
assume that {p′n}n∈N is another family of semi-norms as in Notation 35.20.
Then the topology τ ′ determined by {p′n}n∈N is weaker then the topology τ
determined by {pn}n∈N (i.e. τ ′ ⊂ τ) iff for every n ∈ N there is an m ∈ N and
C <∞ such that p′n ≤ Cpm.

Lemma 35.22. Suppose that X and Y are vector spaces equipped with se-
quences of norms {pn} and {qn} as in Notation 35.20. Then a linear map
T : X → Y is continuous if for all n ∈ N there exists Cn < ∞ and mn ∈ N
such that qn(Tx) ≤ Cnpmn

(x) for all x ∈ X. In particular, f ∈ X∗ iff
|f(x)| ≤ Cpm(x) for some C < ∞ and m ∈ N. (We may also characterize
continuity by sequential convergence since both X and Y are metric spaces.)

Proof. Suppose that T is continuous, then {x : qn(Tx) < 1} is an open
neighborhood of 0 in X. Therefore, there exists m ∈ N and ε > 0 such that
Bm(0, ε) ⊂ {x : qn(Tx) < 1} . So for x ∈ X and α < 1, αεx/pm(x) ∈ Bm(0, ε)
and thus

qn(
αε

pm(x)
Tx) < 1 =⇒ qn(Tx) <

1
αε
pm(x)

for all x. Letting α ↑ 1 shows that qn(Tx) ≤ 1
εpm(x) for all x ∈ X. Conversely,

if T satisfies
qn(Tx) ≤ Cnpmn

(x) for all x ∈ X,

then

qn(Tx− Tx′) = qn(T (x− x′)) ≤ Cnpmn(x− x′) for all x, y ∈ X.

This shows Tx′ → Tx as x′ → x, i.e. that T is continuous.

Definition 35.23. A Fréchet space is a vector space X equipped with a family
{pn} of semi-norms such that X is complete in the associated metric d.

Example 35.24. Let K @@ Rn and C∞(K) := {f ∈ C∞c (Rn) : supp(f) ⊂ K} .
For m ∈ N, let

pm(f) :=
∑
|α|≤m

‖∂αf‖∞ .
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Then (C∞(K), {pm}∞m=1) is a Fréchet space. Moreover the derivative opera-
tors {∂k} and multiplication by smooth functions are continuous linear maps
from C∞(K) to C∞(K). If µ is a finite measure on K, then T (f) :=

∫
K
∂αfdµ

is an element of C∞(K)∗ for any multi index α.

Example 35.25. Let U ⊂o Rn and for m ∈ N, and a compact set K @@ U let

pKm(f) :=
∑
|α|≤m

‖∂αf‖∞,K :=
∑
|α|≤m

max
x∈K
|∂αf(x)| .

Choose a sequence Km @@ U such that Km ⊂ Ko
m+1 ⊂ Km+1 @@ U for

all m and set qm(f) = pKm
m (f). Then (C∞(K), {pm}∞m=1) is a Fréchet space

and the topology in independent of the choice of sequence of compact sets K
exhausting U. Moreover the derivative operators {∂k} and multiplication by
smooth functions are continuous linear maps from C∞(U) to C∞(U). If µ is
a finite measure with compact support in U, then T (f) :=

∫
K
∂αfdµ is an

element of C∞(U)∗ for any multi index α.

Proposition 35.26. A linear functional T on C∞(U) is continuous, i.e. T ∈
C∞(U)∗ iff there exists a compact set K @@ U, m ∈ N and C <∞ such that

|〈T, φ〉| ≤ CpKm(φ) for all φ ∈ C∞(U).

Notation 35.27 Let νs(x) := (1+ |x|)s (or change to νs(x) = (1+ |x|2)s/2 =
〈x〉s?) for x ∈ Rn and s ∈ R.

Example 35.28. Let S denote the space of functions f ∈ C∞(Rn) such that f
and all of its partial derivatives decay faster that (1 + |x|)−m for all m > 0 as
in Definition 33.6. Define

pm(f) =
∑
|α|≤m

‖(1 + | · |)m∂αf(·)‖∞ =
∑
|α|≤m

‖(µm∂αf(·)‖∞ ,

then (S, {pm}) is a Fréchet space. Again the derivative operators {∂k} and
multiplication by function f ∈ P are examples of continuous linear operators
on S. For an example of an element T ∈ S∗, let µ be a measure on Rn such
that ∫

(1 + |x|)−Nd|µ|(x) <∞

for some N ∈ N. Then T (f) :=
∫
K
∂αfdµ defines and element of S∗.

Proposition 35.29. The Fourier transform F : S → S is a continuous linear
transformation.

Proof. For the purposes of this proof, it will be convenient to use the
semi-norms

p′m(f) =
∑
|α|≤m

∥∥(1 + | · |2)m∂αf(·)
∥∥
∞ .
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This is permissible, since by Exercise 35.2 they give rise to the same topology
on S. Let f ∈ S and m ∈ N, then

(1 + |ξ|2)m∂αf̂(ξ) = (1 + |ξ|2)mF ((−ix)αf) (ξ)
= F [(1−∆)m ((−ix)αf)] (ξ)

and therefore if we let g = (1−∆)m ((−ix)αf) ∈ S,∣∣∣(1 + |ξ|2)m∂αf̂(ξ)
∣∣∣ ≤ ‖g‖1 =

∫
Rn

|g(x)| dx

=
∫

Rn

|g(x)| (1 + |x|2)n 1
(1 + |x|2)n

dξ

≤ C
∥∥∥|g(·)| (1 + |·|2)n

∥∥∥
∞

where C =
∫

Rn
1

(1+|x|2)n dξ < ∞. Using the product rule repeatedly, it is not
hard to show∥∥∥|g(·)| (1 + |·|2)n

∥∥∥
∞

=
∥∥∥(1 + |·|2)n(1−∆)m ((−ix)αf)

∥∥∥
∞

≤ k
∑

|β|≤2m

∥∥∥(1 + |·|2)n+|α|/2∂βf
∥∥∥
∞

≤ kp′2m+n(f)

for some constant k <∞. Combining the last two displayed equations implies
that p′m(f̂) ≤ Ckp′2m+n(f) for all f ∈ S, and thus F is continuous.

Proposition 35.30. The subspace C∞c (Rn) is dense in S(Rn).

Proof. Let θ ∈ C∞c (Rn) such that θ = 1 in a neighborhood of 0 and set
θm(x) = θ(x/m) for all m ∈ N. We will now show for all f ∈ S that θmf
converges to f in S. The main point is by the product rule,

∂α (θmf − f) (x) =
∑
β≤α

(
α

β

)
∂α−βθm(x)∂βf(x)− f

=
∑

β≤α:β 6=α

(
α

β

)
1

m|α−β| ∂
α−βθ(x/m)∂βf(x).

Since max
{∥∥∂βθ∥∥∞ : β ≤ α

}
is bounded it then follows from the last equation

that ‖µt∂α (θmf − f)‖∞ = O(1/m) for all t > 0 and α. That is to say θmf →
f in S.

Lemma 35.31 (Peetre’s Inequality). For all x, y ∈ Rn and s ∈ R,

(1 + |x+ y|)s ≤ min
{

(1 + |y|)|s|(1 + |x|)s, (1 + |y|)s(1 + |x|)|s|
}

(35.5)
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that is to say νs(x + y) ≤ ν|s|(x)νs(y) and νs(x + y) ≤ νs(x)ν|s|(y) for all
s ∈ R, where νs(x) = (1 + |x|)s as in Notation 35.27. We also have the same
results for 〈x〉, namely

〈x+ y〉s ≤ 2|s|/2 min
{
〈x〉|s|〈y〉s, 〈x〉s〈y〉|s|

}
. (35.6)

Proof. By elementary estimates,

(1 + |x+ y|) ≤ 1 + |x|+ |y| ≤ (1 + |x|)(1 + |y|)

and so for Eq. (35.5) holds if s ≥ 0. Now suppose that s < 0, then

(1 + |x+ y|)s ≥ (1 + |x|)s(1 + |y|)s

and letting x→ x− y and y → −y in this inequality implies

(1 + |x|)s ≥ (1 + |x+ y|)s(1 + |y|)s.

This inequality is equivalent to

(1 + |x+ y|)s ≤ (1 + |x|)s(1 + |y|)−s = (1 + |x|)s(1 + |y|)|s|.

By symmetry we also have

(1 + |x+ y|)s ≤ (1 + |x|)|s|(1 + |y|)s.

For the proof of Eq. (35.6

〈x+ y〉2 = 1 + |x+ y|2 ≤ 1 + (|x|+ |y|)2 = 1 + |x|2 + |y|2 + 2 |x| |y|

≤ 1 + 2 |x|2 + 2 |y|2 ≤ 2(1 + |x|2)(1 + |y|2) = 2〈x〉2〈y〉2.

From this it follows that 〈x〉−2 ≤ 2〈x+ y〉−2〈y〉2 and hence

〈x+ y〉−2 ≤ 2〈x〉−2〈y〉2.

So if s ≥ 0, then
〈x+ y〉s ≤ 2s/2〈x〉s〈y〉s

and
〈x+ y〉−s ≤ 2s/2〈x〉−s〈y〉s.

Proposition 35.32. Suppose that f, g ∈ S then f ∗ g ∈ S.

Proof. First proof. Since F(f ∗ g) = f̂ ĝ ∈ S it follows that f ∗ g =
F−1(f̂ ĝ) ∈ S as well. For the second proof we will make use of Peetre’s
inequality. We have for any k, l ∈ N that
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νt(x) |∂α(f ∗ g)(x)| = νt(x) |∂αf ∗ g(x)| ≤ νt(x)
∫
|∂αf(x− y)| |g(y)| dy

≤ Cνt(x)
∫
ν−k(x− y)ν−l(y)dy ≤ Cνt(x)

∫
ν−k(x)νk(y)ν−l(y)dy

= Cνt−k(x)
∫
νk−l(y)dy.

Choosing k = t and l > t+ n we learn that

νt(x) |∂α(f ∗ g)(x)| ≤ C
∫
νk−l(y)dy <∞

showing ‖νt∂α(f ∗ g)‖∞ <∞ for all t ≥ 0 and α ∈ Nn.

35.4 Compactly supported distributions

Definition 35.33. For a distribution T ∈ D′(U) and V ⊂o U, we say T |V = 0
if 〈T, φ〉 = 0 for all φ ∈ D(V ).

Proposition 35.34. Suppose that V := {Vα}α∈A is a collection of open subset
of U such that T |Vα = 0 for all α, then T |W = 0 where W = ∪α∈AVα.

Proof. Let {ψα}α∈A be a smooth partition of unity subordinate to V, i.e.
supp(ψα) ⊂ Vα for all α ∈ A, for each point x ∈W there exists a neighborhood
Nx ⊂o W such that #{α ∈ A : supp(ψα)∩Nx 6= ∅} <∞ and 1W =

∑
α∈A ψα.

Then for φ ∈ D(W ), we have φ =
∑
α∈A φψα and there are only a finite

number of nonzero terms in the sum since supp(φ) is compact. Since φψα ∈
D(Vα) for all α,

〈T, φ〉 = 〈T,
∑
α∈A

φψα〉 =
∑
α∈A
〈T, φψα〉 = 0.

Definition 35.35. The support, supp(T ), of a distribution T ∈ D′(U) is the
relatively closed subset of U determined by

U \ supp(T ) = ∪{V ⊂o U : T |V = 0} .

By Proposition 35.26, supp(T ) may described as the smallest (relatively)
closed set F such that T |U\F = 0.

Proposition 35.36. If f ∈ L1
loc(U), then supp(Tf ) = ess sup(f), where

ess sup(f) := {x ∈ U : m({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}

as in Definition 22.25.
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734 35 Elementary Generalized Functions / Distribution Theory

Proof. The key point is that Tf |V = 0 iff f = 0 a.e. on V and therefore

U \ supp(Tf ) = ∪{V ⊂o U : f1V = 0 a.e.} .

On the other hand,

U \ ess sup(f) = {x ∈ U : m({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪{x ∈ U : f1V = 0 a.e. for some neighborhood V of x}
= ∪{V ⊂o U : f1V = 0 a.e.}

Definition 35.37. Let E ′(U) := {T ∈ D′(U) : supp(T ) ⊂ U is compact} –
the compactly supported distributions in D′(U).

Lemma 35.38. Suppose that T ∈ D′(U) and f ∈ C∞(U) is a function such
that K := supp(T ) ∩ supp(f) is a compact subset of U. Then we may define
〈T, f〉 := 〈T, θf〉, where θ ∈ D(U) is any function such that θ = 1 on a
neighborhood of K. Moreover, if K @@ U is a given compact set and F @@ U
is a compact set such that K ⊂ F o, then there exists m ∈ N and C <∞ such
that

|〈T, f〉| ≤ C
∑
|β|≤m

∥∥∂βf∥∥∞,F
(35.7)

for all f ∈ C∞(U) such that supp(T ) ∩ supp(f) ⊂ K. In particular if T ∈
E ′(U) then T extends uniquely to a linear functional on C∞(U) and there is
a compact subset F @@ U such that the estimate in Eq. (35.7) holds for all
f ∈ C∞(U).

Proof. Suppose that θ̃ is another such cutoff function and let V be an open
neighborhood of K such that θ = θ̃ = 1 on V. Setting g :=

(
θ − θ̃

)
f ∈ D(U)

we see that

supp(g) ⊂ supp(f) \ V ⊂ supp(f) \K = supp(f) \ supp(T ) ⊂ U \ supp(T ),

see Figure 35.1 below. Therefore,

0 = 〈T, g〉 = 〈T,
(
θ − θ̃

)
f〉 = 〈T, θf〉 − 〈T, θ̃f〉

which shows that 〈T, f〉 is well defined. Moreover, if F @@ U is a compact set
such that K ⊂ F o and θ ∈ C∞c (F 0) is a function which is 1 on a neighborhood
of K, we have

|〈T, f〉| = |〈T, θf〉| = C
∑
|α|≤m

‖∂α (θf)‖∞ ≤ C
∑
|β|≤m

∥∥∂βf∥∥∞,F

and this estimate holds for all f ∈ C∞(U) such that supp(T )∩ supp(f) ⊂ K.
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35.4 Compactly supported distributions 735

Fig. 35.1. Intersecting the supports.

Theorem 35.39. The restriction of T ∈ C∞(U)∗ to C∞c (U) defines an ele-
ment in E ′(U). Moreover the map

T ∈ C∞(U)∗ i→ T |D(U) ∈ E ′(U)

is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given S ∈ E ′(U) and θ ∈ C∞c (U) such that θ = 1 on K = supp(S) then
i−1(S) = θS, where θS ∈ C∞(U)∗ defined by

〈θS, φ〉 = 〈S, θφ〉 for all φ ∈ C∞(U).

Proof. Suppose that T ∈ C∞(U)∗ then there exists a compact set K @@
U, m ∈ N and C <∞ such that

|〈T, φ〉| ≤ CpKm(φ) for all φ ∈ C∞(U)

where pKm is defined in Example 35.25. It is clear using the sequential notion of
continuity that T |D(U) is continuous on D(U), i.e. T |D(U) ∈ D′(U). Moreover,
if θ ∈ C∞c (U) such that θ = 1 on a neighborhood of K then

|〈T, θφ〉 − 〈T, φ〉| = |〈T, (θ − 1)φ〉| ≤ CpKm((θ − 1)φ) = 0,

which shows θT = T. Hence supp(T ) = supp(θT ) ⊂ supp(θ) @@ U showing
that T |D(U) ∈ E ′(U). Therefore the map i is well defined and is clearly linear.
I also claim that i is injective because if T ∈ C∞(U)∗ and i(T ) = T |D(U) ≡ 0,
then 〈T, φ〉 = 〈θT, φ〉 = 〈T |D(U), θφ〉 = 0 for all φ ∈ C∞(U). To show i is
surjective suppose that S ∈ E ′(U). By Lemma 35.38 we know that S extends
uniquely to an element S̃ of C∞(U)∗ such that S̃|D(U) = S, i.e. i(S̃) = S. and
K = supp(S).

Page: 735 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



736 35 Elementary Generalized Functions / Distribution Theory

Lemma 35.40. The space E ′(U) is a sequentially dense subset of D′(U).

Proof. Choose Kn @@ U such that Kn ⊂ Ko
n+1 ⊂ Kn+1 ↑ U as n → ∞.

Let θn ∈ C∞c (K0
n+1) such that θn = 1 on K. Then for T ∈ D′(U), θnT ∈ E ′(U)

and θnT → T as n→∞.

35.5 Tempered Distributions and the Fourier Transform

The space of tempered distributions S ′ (Rn) is the continuous dual to S =
S(Rn). A linear functional T on S is continuous iff there exists k ∈ N and
C <∞ such that

|〈T, φ〉| ≤ Cpk(φ) := C
∑
|α|≤k

‖νk∂αφ‖∞ (35.8)

for all φ ∈ S. Since D = D (Rn) is a dense subspace of S any element T ∈ S ′
is determined by its restriction to D. Moreover, if T ∈ S ′ it is easy to see that
T |D ∈ D′. Conversely and element T ∈ D′ satisfying an estimate of the form
in Eq. (35.8) for all φ ∈ D extend uniquely to an element of S ′. In this way
we may view S ′ as a subspace of D′.

Example 35.41. Any compactly supported distribution is tempered, i.e.
E ′(U) ⊂ S ′(Rn) for any U ⊂o Rn.

One of the virtues of S ′ is that we may extend the Fourier transform to
S ′. Recall that for L1 functions f and g we have the identity,

〈f̂ , g〉 = 〈f, ĝ〉.

This suggests the following definition.

Definition 35.42. The Fourier and inverse Fourier transform of a tempered
distribution T ∈ S ′ are the distributions T̂ = FT ∈ S ′ and T∨ = F−1T ∈
S ′defined by

〈T̂ , φ〉 = 〈T, φ̂〉 and 〈T∨, φ〉 = 〈T, φ∨〉 for all φ ∈ S.

Since F : S → S is a continuous isomorphism with inverse F−1, one easily
checks that T̂ and T∨ are well defined elements of S and that F−1 is the
inverse of F on S ′.

Example 35.43. Suppose that µ is a complex measure on Rn. Then we may
view µ as an element of S ′ via 〈µ, φ〉 =

∫
φdµ for all φ ∈ S ′. Then by Fubini-

Tonelli,

〈µ̂, φ〉 = 〈µ, φ̂〉 =
∫
φ̂(x)dµ(x) =

∫ [∫
φ(ξ)e−ix·ξdξ

]
dµ(x)

=
∫ [∫

φ(ξ)e−ix·ξdµ(x)
]
dξ
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35.5 Tempered Distributions and the Fourier Transform 737

which shows that µ̂ is the distribution associated to the continuous func-
tion ξ →

∫
e−ix·ξdµ(x).

∫
e−ix·ξdµ(x)We will somewhat abuse notation and

identify the distribution µ̂ with the function ξ →
∫
e−ix·ξdµ(x). When

dµ(x) = f(x)dx with f ∈ L1, we have µ̂ = f̂ , so the definitions are all
consistent.

Corollary 35.44. Suppose that µ is a complex measure such that µ̂ = 0, then
µ = 0. So complex measures on Rn are uniquely determined by their Fourier
transform.

Proof. If µ̂ = 0, then µ = 0 as a distribution, i.e.
∫
φdµ = 0 for all φ ∈ S

and in particular for all φ ∈ D. By Example 35.5 this implies that µ is the
zero measure.

More generally we have the following analogous theorem for compactly
supported distributions.

Theorem 35.45. Let S ∈ E ′(Rn), then Ŝ is an analytic function and Ŝ(z) =
〈S(x), e−ix·z〉. Also if supp(S) @@ B(0,M), then Ŝ(z) satisfies a bound of the
form ∣∣∣Ŝ(z)

∣∣∣ ≤ C(1 + |z|)meM |Im z|

for some m ∈ N and C <∞. If S ∈ D(Rn), i.e. if S is assumed to be smooth,
then for all m ∈ N there exists Cm <∞ such that∣∣∣Ŝ(z)

∣∣∣ ≤ Cm(1 + |z|)−meM |Im z|.

Proof. The function h(z) = 〈S(ξ), e−iz·ξ〉 for z ∈ Cn is analytic since the
map z ∈ Cn → e−iz·ξ ∈ C∞(ξ ∈ Rn) is analytic and S is complex linear.
Moreover, we have the bound

|h(z)| =
∣∣〈S(ξ), e−iz·ξ〉

∣∣ ≤ C ∑
|α|≤m

∥∥∂αξ e−iz·ξ∥∥∞,B(0,M)

= C
∑
|α|≤m

∥∥zαe−iz·ξ∥∥∞,B(0,M)

≤ C
∑
|α|≤m

|z||α|
∥∥e−iz·ξ∥∥∞,B(0,M)

≤ C(1 + |z|)meM |Im z|.

If we now assume that S ∈ D(Rn), then∣∣∣zαŜ(z)
∣∣∣ = ∣∣∣∣∫

Rn

S(ξ)zαe−iz·ξdξ
∣∣∣∣ = ∣∣∣∣∫

Rn

S(ξ)(i∂ξ)αe−iz·ξdξ
∣∣∣∣

=
∣∣∣∣∫

Rn

(−i∂ξ)αS(ξ)e−iz·ξdξ
∣∣∣∣ ≤ eM |Im z|

∫
Rn

|∂ξαS(ξ)| dξ

showing

Page: 737 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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|zα|
∣∣∣Ŝ(z)

∣∣∣ ≤ eM |Im z| ‖∂αS‖1

and therefore

(1 + |z|)m
∣∣∣Ŝ(z)

∣∣∣ ≤ CeM |Im z|
∑
|α|≤m

‖∂αS‖1 ≤ Ce
M |Im z|.

So to finish the proof it suffices to show h = Ŝ in the sense of distributions1.
For this let φ ∈ D, K @@ Rn be a compact set for ε > 0 let

φ̂ε(ξ) = (2π)−n/2εn
∑
x∈εZn

φ(x)e−ix·ξ.

This is a finite sum and

sup
ξ∈K

∣∣∣∂α (φ̂ε(ξ)− φ̂(ξ)
)∣∣∣

= sup
ξ∈K

∣∣∣∣∣∣
∑
y∈εZn

∫
y+ε(0,1]n

(
(−iy)α φ(y)e−iy·ξ − (−ix)α φ(x)e−ix·ξ

)
dx

∣∣∣∣∣∣
≤
∑
y∈εZn

∫
y+ε(0,1]n

sup
ξ∈K

∣∣yαφ(y)e−iy·ξ − xαφ(x)e−ix·ξ
∣∣ dx

By uniform continuity of xαφ(x)e−ix·ξ for (ξ, x) ∈ K × Rn (φ has compact
support),

δ(ε) = sup
ξ∈K

sup
y∈εZn

sup
x∈y+ε(0,1]n

∣∣yαφ(y)e−iy·ξ − xαφ(x)e−ix·ξ
∣∣→ 0 as ε ↓ 0

which shows
sup
ξ∈K

∣∣∣∂α (φ̂ε(ξ)− φ̂(ξ)
)∣∣∣ ≤ Cδ(ε)

where C is the volume of a cube in Rn which contains the support of φ. This
shows that φ̂ε → φ̂ in C∞(Rn). Therefore,

1 This is most easily done using Fubini’s Theorem 36.2 for distributions proved
below. This proof goes as follows. Let θ, η ∈ D(Rn) such that θ = 1 on a neigh-
borhood of supp(S) and η = 1 on a neighborhood of supp(φ) then

〈h, φ〉 = 〈φ(x), 〈S(ξ), e−ix·ξ〉〉 = 〈η(x)φ(x), 〈S(ξ), θ(ξ)e−ix·ξ〉〉

= 〈φ(x), 〈S(ξ), η(x)θ(ξ)e−ix·ξ〉〉.

We may now apply Theorem 36.2 to conclude,

〈h, φ〉 = 〈S(ξ), 〈φ(x), η(x)θ(ξ)e−ix·ξ〉〉 = 〈S(ξ), θ(ξ)〈φ(x), e−ix·ξ〉〉 = 〈S(ξ), 〈φ(x), e−ix·ξ〉〉

= 〈S(ξ), φ̂(ξ)〉.
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35.5 Tempered Distributions and the Fourier Transform 739

〈Ŝ, φ〉 = 〈S, φ̂〉 = lim
ε↓0
〈S, φ̂ε〉 = lim

ε↓0
(2π)−n/2εn

∑
x∈εZn

φ(x)〈S(ξ), e−ix·ξ〉

= lim
ε↓0

(2π)−n/2εn
∑
x∈εZn

φ(x)h(x) =
∫

Rn

φ(x)h(x)dx = 〈h, φ〉.

Remark 35.46. Notice that

∂αŜ(z) = 〈S(x), ∂αz e
−ix·z〉 = 〈S(x), (−ix)αe−ix·z〉 = 〈(−ix)αS(x), e−ix·z〉

and (−ix)αS(x) ∈ E ′(Rn). Therefore, we find a bound of the form∣∣∣∂αŜ(z)
∣∣∣ ≤ C(1 + |z|)m

′
eM |Im z|

where C and m′ depend on α. In particular, this shows that Ŝ ∈ P, i.e. S ′ is
preserved under multiplication by Ŝ.

The converse of this theorem holds as well. For the moment we only have
the tools to prove the smooth converse. The general case will follow by using
the notion of convolution to regularize a distribution to reduce the question
to the smooth case.

Theorem 35.47. Let S ∈ S(Rn) and assume that Ŝ is an analytic function
and there exists an M <∞ such that for all m ∈ N there exists Cm <∞ such
that ∣∣∣Ŝ(z)

∣∣∣ ≤ Cm(1 + |z|)−meM |Im z|.

Then supp(S) ⊂ B(0,M).

Proof. By the Fourier inversion formula,

S(x) =
∫

Rn

Ŝ(ξ)eiξ·xdξ

and by deforming the contour, we may express this integral as

S(x) =
∫

Rn+iη

Ŝ(ξ)eiξ·xdξ =
∫

Rn

Ŝ(ξ + iη)ei(ξ+iη)·xdξ

for any η ∈ Rn. From this last equation it follows that

|S(x)| ≤ e−η·x
∫

Rn

∣∣∣Ŝ(ξ + iη)
∣∣∣ dξ ≤ Cme−η·xeM |η|

∫
Rn

(1 + |ξ + iη|)−mdξ

≤ Cme−η·xeM |η|
∫

Rn

(1 + |ξ|)−mdξ ≤ C̃me−η·xeM |η|

where C̃m <∞ if m > n. Letting η = λx with λ > 0 we learn
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|S(x)| ≤ C̃m exp
(
−λ |x|2 +M |x|

)
= C̃me

λ|x|(M−|x|). (35.9)

Hence if |x| > M, we may let λ→∞ in Eq. (35.9) to show S(x) = 0. That is
to say supp(S) ⊂ B(0,M).

Let us now pause to work out some specific examples of Fourier transform
of measures.

Example 35.48 (Delta Functions). Let a ∈ Rn and δa be the point mass mea-
sure at a, then

δ̂a(ξ) = e−ia·ξ.

In particular it follows that

F−1e−ia·ξ = δa.

To see the content of this formula, let φ ∈ S. Then∫
e−ia·ξφ∨(ξ)dξ = 〈e−ia·ξ,F−1φ〉 = 〈F−1e−ia·ξ, φ〉 = 〈δa, φ〉 = φ(a)

which is precisely the Fourier inversion formula.

Example 35.49. Suppose that p(x) is a polynomial. Then

〈p̂, φ〉 = 〈p, φ̂〉 =
∫
p(ξ)φ̂(ξ)dξ.

Now

p(ξ)φ̂(ξ) =
∫
φ(x)p(ξ)e−iξ·xdx =

∫
φ(x)p(i∂x)e−iξ·xdx

=
∫
p(−i∂x)φ(x)e−iξ·xdx = F (p(−i∂)φ) (ξ)

which combined with the previous equation implies

〈p̂, φ〉 =
∫
F (p(−i∂)φ) (ξ)dξ =

(
F−1F (p(−i∂)φ)

)
(0) = p(−i∂)φ(0)

= 〈δ0, p(−i∂)φ〉 = 〈p(i∂)δ0, φ〉.

Thus we have shown that p̂ = p(i∂)δ0.

Lemma 35.50. Let p(ξ) be a polynomial in ξ ∈ Rn, L = p(−i∂) (a constant
coefficient partial differential operator) and T ∈ S ′, then

Fp(−i∂)T = pT̂ .

In particular if T = δ0, we have

Fp(−i∂)δ0 = p · δ̂0 = p.

Page: 740 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



35.5 Tempered Distributions and the Fourier Transform 741

Proof. By definition,

〈FLT, φ〉 = 〈LT, φ̂〉 = 〈p(−i∂)T, φ̂〉 = 〈T, p(i∂)φ̂〉

and

p(i∂ξ)φ̂(ξ) = p(i∂ξ)
∫
φ(x)e−ix·ξdx =

∫
p(x)φ(x)e−ix·ξdx = (pφ) ˆ.

Thus
〈FLT, φ〉 = 〈T, p(i∂)φ̂〉 = 〈T, (pφ) ˆ〉 = 〈T̂ , pφ〉 = 〈pT̂ , φ〉

which proves the lemma.

Example 35.51. Let n = 1, −∞ < a < b <∞, and dµ(x) = 1[a,b](x)dx. Then

µ̂(ξ) =
∫ b

a

e−ix·ξdx =
1√
2π

e−ix·ξ

−iξ
|ba =

1√
2π

e−ib·ξ − e−ia·ξ

−iξ

=
1√
2π

e−ia·ξ − e−ib·ξ

iξ
.

So by the inversion formula we may conclude that

F−1

(
1√
2π

e−ia·ξ − e−ib·ξ

iξ

)
(x) = 1[a,b](x) (35.10)

in the sense of distributions. This also true at the Level of L2 – functions.
When a = −b and b > 0 these formula reduce to

F1[−b,b] =
1√
2π

eib·ξ − e−ib·ξ

iξ
=

2√
2π

sin bξ
ξ

and
F−1 2√

2π
sin bξ
ξ

= 1[−b,b].

Let us pause to work out Eq. (35.10) by first principles. For M ∈ (0,∞)
let νN be the complex measure on Rn defined by

dνM (ξ) =
1√
2π

1|ξ|≤M
e−ia·ξ − e−ib·ξ

iξ
dξ,

then
1√
2π

e−ia·ξ − e−ib·ξ

iξ
= lim
M→∞

νM in the S ′ topology.

Hence

F−1

(
1√
2π

e−ia·ξ − e−ib·ξ

iξ

)
(x) = lim

M→∞
F−1νM
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and

F−1νM (ξ) =
∫ M

−M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ.

Since is ξ → 1√
2π

e−ia·ξ−e−ib·ξ

iξ eiξx is a holomorphic function on C we may
deform the contour to any contour in C starting at −M and ending at M. Let
ΓM denote the straight line path from −M to −1 along the real axis followed
by the contour eiθ for θ going from π to 2π and then followed by the straight
line path from 1 to M. Then∫

|ξ|≤M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ =

∫
ΓM

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ

=
∫
ΓM

1√
2π

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dξ

=
1

2πi

∫
ΓM

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dm(ξ).

By the usual contour methods we find

lim
M→∞

1
2πi

∫
ΓM

eiyξ

ξ
dm(ξ) =

{
1 if y > 0
0 if y < 0

and therefore we have

F−1

(
1√
2π

e−ia·ξ − e−ib·ξ

iξ

)
(x) = lim

M→∞
F−1νM (x) = 1x>a− 1x>b = 1[a,b](x).

Example 35.52. Let σt be the surface measure on the sphere St of radius t
centered at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ|

.

Indeed,

σ̂t(ξ) =
∫
tS2

e−ix·ξdσ(x) = t2
∫
S2
e−itx·ξdσ(x)

= t2
∫
S2
e−itx3|ξ|dσ(x) = t2

∫ 2π

0

dθ

∫ π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
∫ 1

−1

e−itu|ξ|du = 2πt2
1

−it |ξ|
e−itu|ξ||u=1

u=−1 = 4πt2
sin t |ξ|
t |ξ|

.

By the inversion formula, it follows that

F−1 sin t |ξ|
|ξ|

=
t

4πt2
σt = tσ̄t

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure

one.
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Let us again pause to try to compute this inverse Fourier transform di-
rectly. To this end, let fM (ξ) := sin t|ξ|

t|ξ| 1|ξ|≤M . By the dominated convergence

theorem, it follows that fM → sin t|ξ|
t|ξ| in S ′, i.e. pointwise on S. Therefore,

〈F−1 sin t |ξ|
t |ξ|

, φ〉 = 〈 sin t |ξ|
t |ξ|

,F−1φ〉 = lim
M→∞

〈fM ,F−1φ〉 = lim
M→∞

〈F−1fM , φ〉

and

(2π)3/2F−1fM (x) = (2π)3/2
∫

R3

sin t |ξ|
t |ξ|

1|ξ|≤Meiξ·xdξ

=
∫ M

r=0

∫ 2π

θ=0

∫ π

φ=0

sin tr
tr

eir|x| cosφr2 sinφdrdφdθ

=
∫ M

r=0

∫ 2π

θ=0

∫ 1

u=−1

sin tr
tr

eir|x|ur2drdudθ

= 2π
∫ M

r=0

sin tr
t

eir|x| − e−ir|x|

ir |x|
rdr

=
4π
t |x|

∫ M

r=0

sin tr sin r |x| dr

=
4π
t |x|

∫ M

r=0

1
2

(cos(r(t+ |x|)− cos(r(t− |x|)) dr

=
4π
t |x|

1
2(t+ |x|)

(sin(r(t+ |x|)− sin(r(t− |x|)) |Mr=0

=
4π
t |x|

1
2

(
sin(M(t+ |x|)

t+ |x|
− sin(M(t− |x|)

t− |x|

)
Now make use of the fact that sinMx

x → πδ(x) in one dimension to finish the
proof.

35.6 Wave Equation

Given a distribution T and a test function φ, we wish to define T ∗ φ ∈ C∞
by the formula

T ∗ φ(x) = “
∫
T (y)φ(x− y)dy” = 〈T, φ(x− ·)〉.

As motivation for wanting to understand convolutions of distributions let us
reconsider the wave equation in Rn,

0 =
(
∂2
t −∆

)
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x).
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Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ)with

û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ).

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t |ξ|
|ξ|

and hence we should have

u(t, x) = F−1

(
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t |ξ|
|ξ|

)
(x)

= F−1 cos (t |ξ|) ∗ f(x) + F−1 sin t |ξ|
|ξ|

∗ g (x)

=
d

dt
F−1 sin t |ξ|

|ξ|
∗ f(x) + F−1 sin t |ξ|

|ξ|
∗ g (x) .

The question now is how interpret this equation. In particular what are the in-
verse Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ|

|ξ| . Since d
dtF

−1 sin t|ξ|
|ξ| ∗

f(x) = F−1 cos (t |ξ|) ∗ f(x), it really suffices to understand F−1 sin t|ξ|
|ξ| . This

was worked out in Example 35.51 when n = 1 where we found(
F−1ξ−1 sin tξ

)
(x) =

π√
2π

(
1x+t>0 − 1(x−t)>0

)
=

π√
2π

(1x>−t − 1x>t) =
π√
2π

1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Therefore,

(
F−1ξ−1 sin tξ

)
∗ f(x) =

1
2

∫ t

−t
f(x− y)dy

Therefore the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1
2

∫ t

−t
f(x− y)dy +

1
2

∫ t

−t
g(x− y)dy

=
1
2

(f(x− t) + f(x+ t)) +
1
2

∫ t

−t
g(x− y)dy

=
1
2

(f(x− t) + f(x+ t)) +
1
2

∫ x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely
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0 =
(
∂2
t − ∂2

x

)
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0
and hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f ′(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f ′(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f ′(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +
∫ t

0

{g(x+ 2τ) + f ′(x+ 2τ)} dτ.

= f(x) +
∫ t

0

g(x+ 2τ)dτ +
1
2
f(x+ 2τ)|t0

=
1
2

(f(x) + f(x+ 2t)) +
∫ t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation then implies

u(t, x) =
1
2

(f(x− t) + f(x+ t)) +
∫ t

0

g(x− t+ 2τ)dτ.

Finally, letting y = x− t+ 2τ in the last integral gives

u(t, x) =
1
2

(f(x− t) + f(x+ t)) +
1
2

∫ x+t

x−t
g(y)dy

as derived using the Fourier transform.
For the three dimensional case we have

u(t, x) =
d

dt
F−1 sin t |ξ|

|ξ|
∗ f(x) + F−1 sin t |ξ|

|ξ|
∗ g (x)

=
d

dt
(tσ̄t ∗ f(x)) + tσ̄t ∗ g (x) .

The question is what is µ ∗ g(x) where µ is a measure. To understand the
definition, suppose first that dµ(x) = ρ(x)dx, then we should have

µ ∗ g(x) = ρ ∗ g(x) =
∫

Rn

g(x− y)ρ(x)dx =
∫

Rn

g(x− y)dµ(y).
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Thus we expect our solution to the wave equation should be given by

u(t, x) =
d

dt

{
t

∫
St

f(x− y)dσ̄t(y)
}

+ t

∫
St

g(x− y)dσ̄t(y)

=
d

dt

{
t

∫
S1

f(x− tω)dω
}

+ t

∫
S1

g(x− tω)dω

=
d

dt

{
t

∫
S1

f(x+ tω)dω
}

+ t

∫
S1

g(x+ tω)dω (35.11)

where dω := dσ̄1(ω). Notice the sharp propagation of speed. To understand
this suppose that f = 0 for simplicity and g has compact support near the
origin, for example think of g = δ0(x), the x+ tw = 0 for some w iff |x| = t.
Hence the wave front propagates at unit speed in a sharp way. See figure
below.

Fig. 35.2. The geometry of the solution to the wave equation in three dimensions.

We may also use this solution to solve the two dimensional wave equation
using Hadamard’s method of decent. Indeed, suppose now that f and g are
function on R2 which we may view as functions on R3 which do not depend
on the third coordinate say. We now go ahead and solve the three dimensional
wave equation using Eq. (35.11) and f and g as initial conditions. It is easily
seen that the solution u(t, x, y, z) is again independent of z and hence is a
solution to the two dimensional wave equation. See figure below.

Notice that we still have finite speed of propagation but no longer sharp
propagation. In fact we can work out the solution analytically as follows.
Again for simplicity assume that f ≡ 0. Then
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35.6 Wave Equation 747

Fig. 35.3. The geometry of the solution to the wave equation in two dimensions.

u(t, x, y) =
t

4π

∫ 2π

0

dθ

∫ π

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

=
t

2π

∫ 2π

0

dθ

∫ π/2

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

and letting u = sinφ, so that du = cosφdφ =
√

1− u2dφ we find

u(t, x, y) =
t

2π

∫ 2π

0

dθ

∫ 1

0

du√
1− u2

ug((x, y) + ut(cos θ, sin θ))

and then letting r = ut we learn,

u(t, x, y) =
1
2π

∫ 2π

0

dθ

∫ t

0

dr√
1− r2/t2

r

t
g((x, y) + r(cos θ, sin θ))

=
1
2π

∫ 2π

0

dθ

∫ t

0

dr√
t2 − r2

rg((x, y) + r(cos θ, sin θ))

=
1
2π

∫∫
Dt

g((x, y) + w))√
t2 − |w|2

dm(w).

Here is a better alternative derivation of this result. We begin by using
symmetry to find

u(t, x) = 2t
∫
S+

t

g(x− y)dσ̄t(y) = 2t
∫
S+

t

g(x+ y)dσ̄t(y)

where S+
t is the portion of St with z ≥ 0. This sphere is parametrized by

R(u, v) = (u, v,
√
t2 − u2 − v2) with (u, v) ∈ Dt :=

{
(u, v) : u2 + v2 ≤ t2

}
. In

these coordinates we have
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4πt2dσ̄t =
∣∣∣(−∂u√t2 − u2 − v2,−∂v

√
t2 − u2 − v2, 1

)∣∣∣ dudv
=
∣∣∣∣( u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1
)∣∣∣∣ dudv

=

√
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

∫
S+

t

g(x+ (u, v,
√
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1
2π

sgn(t)
∫
S+

t

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1
2π

sgn(t)
∫∫

Dt

g((x, y) + w))√
t2 − |w|2

dm(w)

as before. (I should check on the sgn(t) term.)

35.7 Appendix: Topology on C∞
c (U)

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC
∞(K) (35.12)

denote the set of smooth functions on U with compact support in U. Our
goal is to topologize C∞c (U) in a way which is compatible with he topologies
defined in Example 35.24 above. This leads us to the inductive limit topology
which we now pause to introduce.

Definition 35.53 (Indcutive Limit Topology). Let X be a set, Xα ⊂ X
for α ∈ A (A is an index set) and assume that τα ⊂ 2Xα is a topology on Xα

for each α. Let iα : Xα → X denote the inclusion maps. The inductive limit
topology on X is the largest topology τ on X such that iα is continuous for
all α ∈ A. That is to say, τ = ∩α∈Aiα∗(τα), i.e. a set U ⊂ X is open (U ∈ τ)
iff i−1

α (A) = A ∩Xα ∈ τα for all α ∈ A.

Notice that C ⊂ X is closed iff C ∩Xα is closed in Xα for all α. Indeed,
C ⊂ X is closed iff Cc = X \C ⊂ X is open, iff Cc ∩Xα = Xα \C is open in
Xα iff Xα ∩ C = Xα \ (Xα \ C) is closed in Xα for all α ∈ A.

Definition 35.54. Let D(U) denote C∞c (U) equipped with the inductive limit
topology arising from writing C∞c (U) as in Eq. (35.12) and using the Fréchet
topologies on C∞(K) as defined in Example 35.24.
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For each K @@ U, C∞(K) is a closed subset of D(U). Indeed if F is
another compact subset of U, then C∞(K)∩C∞(F ) = C∞(K ∩ F ), which is
a closed subset of C∞(F ). The set U ⊂ D(U) defined by

U =

ψ ∈ D(U) :
∑
|α|≤m

‖∂α(ψ − φ)‖∞ < ε

 (35.13)

for some φ ∈ D(U) and ε > 0 is an open subset of D(U). Indeed, if K @@ U,
then

U ∩ C∞(K) =

ψ ∈ C∞(K) :
∑
|α|≤m

‖∂α(ψ − φ)‖∞ < ε


is easily seen to be open in C∞(K).

Proposition 35.55. Let (X, τ) be as described in Definition 35.53 and f :
X → Y be a function where Y is another topological space. Then f is contin-
uous iff f ◦ iα : Xα → Y is continuous for all α ∈ A.

Proof. Since the composition of continuous maps is continuous, it follows
that f ◦ iα : Xα → Y is continuous for all α ∈ A if f : X → Y is continuous.
Conversely, if f ◦ iα is continuous for all α ∈ A, then for all V ⊂o Y we have

τα 3 (f ◦ iα)−1 (V ) = i−1
α (f−1(V )) = f−1(V ) ∩Xα for all α ∈ A

showing that f−1(V ) ∈ τ.

Lemma 35.56. Let us continue the notation introduced in Definition 35.53.
Suppose further that there exists αk ∈ A such that X ′

k := Xαk
↑ X as k →∞

and for each α ∈ A there exists an k ∈ N such that Xα ⊂ X ′
k and the

inclusion map is continuous. Then τ = {A ⊂ X : A ∩X ′
k ⊂o X ′

k for all k}
and a function f : X → Y is continuous iff f |X′

k
: X ′

k → Y is continuous
for all k. In short the inductive limit topology on X arising from the two
collections of subsets {Xα}α∈A and {X ′

k}k∈N are the same.

Proof. Suppose that A ⊂ X, if A ∈ τ then A ∩ X ′
k = A ∩ Xαk

⊂o X ′
k

by definition. Now suppose that A ∩ X ′
k ⊂o X ′

k for all k. For α ∈ A choose
k such that Xα ⊂ X ′

k, then A ∩ Xα = (A ∩X ′
k) ∩ Xα ⊂o Xα since A ∩ X ′

k

is open in X ′
k and by assumption that Xα is continuously embedded in X ′

k,
V ∩Xα ⊂o Xα for all V ⊂o X ′

k. The characterization of continuous functions
is prove similarly.

Let Kk @@ U for k ∈ N such that Ko
k ⊂ Kk ⊂ Ko

k+1 ⊂ Kk+1 for all
k and Kk ↑ U as k → ∞. Then it follows for any K @@ U, there exists
an k such that K ⊂ Ko

k ⊂ Kk. One now checks that the map C∞(K) em-
beds continuously into C∞(Kk) and moreover, C∞(K) is a closed subset of
C∞(Kk+1). Therefore we may describe D(U) as C∞c (U) with the inductively
limit topology coming from ∪k∈NC

∞(Kk).
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Lemma 35.57. Suppose that {φk}∞k=1 ⊂ D(U), then φk → φ ∈ D(U) iff
φk − φ→ 0 ∈ D(U).

Proof. Let φ ∈ D(U) and U ⊂ D(U) be a set. We will begin by showing
that U is open in D(U) iff U − φ is open in D(U). To this end let Kk be
the compact sets described above and choose k0 sufficiently large so that
φ ∈ C∞(Kk) for all k ≥ k0. Now U − φ ⊂ D(U) is open iff (U − φ)∩C∞(Kk)
is open in C∞(Kk) for all k ≥ k0. Because φ ∈ C∞(Kk), we have (U − φ) ∩
C∞(Kk) = U ∩ C∞(Kk) − φ which is open in C∞(Kk) iff U ∩ C∞(Kk) is
open C∞(Kk). Since this is true for all k ≥ k0 we conclude that U − φ is an
open subset of D(U) iff U is open in D(U). Now φk → φ in D(U) iff for all
φ ∈ U ⊂o D(U), φk ∈ U for almost all k which happens iff φk − φ ∈ U − φ
for almost all k. Since U − φ ranges over all open neighborhoods of 0 when U
ranges over the open neighborhoods of φ, the result follows.

Lemma 35.58. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff there
is a compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ in
C∞(K).

Proof. If φk → φ in C∞(K), then for any open set V ⊂ D(U) with φ ∈ V
we have V ∩ C∞(K) is open in C∞(K) and hence φk ∈ V ∩ C∞(K) ⊂ V for
almost all k. This shows that φk → φ ∈ D(U). For the converse, suppose that
there exists {φk}∞k=1 ⊂ D(U) which converges to φ ∈ D(U) yet there is no
compact set K such that supp(φk) ⊂ K for all k. Using Lemma35.57, we may
replace φk by φk − φ if necessary so that we may assume φk → 0 in D(U).
By passing to a subsequences of {φk} and {Kk} if necessary, we may also
assume there xk ∈ Kk+1 \Kk such that φk(xk) 6= 0 for all k. Let p denote the
semi-norm on C∞c (U) defined by

p(φ) =
∞∑
k=0

sup
{
|φ(x)|
|φk(xk)|

: x ∈ Kk+1 \Ko
k

}
.

One then checks that

p(φ) ≤

(
N∑
k=0

1
|φk(xk)|

)
‖φ‖∞

for φ ∈ C∞(KN+1). This shows that p|C∞(KN+1) is continuous for all N and
hence p is continuous on D(U). Since p is continuous on D(U) and φk → 0
in D(U), it follows that limk→∞ p(φk) = p(limk→∞ φk) = p(0) = 0. While on
the other hand, p(φk) ≥ 1 by construction and hence we have arrived at a
contradiction. Thus for any convergent sequence {φk}∞k=1 ⊂ D(U) there is a
compact set K @@ U such that supp(φk) ⊂ K for all k. We will now show
that {φk}∞k=1 is convergent to φ in C∞(K). To this end let U ⊂ D(U) be
the open set described in Eq. (35.13), then φk ∈ U for almost all k and in
particular, φk ∈ U ∩ C∞(K) for almost all k. (Letting ε > 0 tend to zero
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shows that supp(φ) ⊂ K, i.e. φ ∈ C∞(K).) Since sets of the form U ∩C∞(K)
with U as in Eq. (35.13) form a neighborhood base for the C∞(K) at φ, we
concluded that φk → φ in C∞(K).

Definition 35.59 (Distributions on U ⊂o Rn). A generalized function on
U ⊂o Rn is a continuous linear functional on D(U). We denote the space of
generalized functions by D′(U).

Proposition 35.60. Let f : D(U) → C be a linear functional. Then the
following are equivalent.

1. f is continuous, i.e. f ∈ D′(U).
2. For all K @@ U, there exist n ∈ N and C <∞ such that

|f(φ)| ≤ Cpn(φ) for all φ ∈ C∞(K). (35.14)

3. For all sequences {φk} ⊂ D(U) such that φk → 0 in D(U), limk→∞ f(φk) =
0.

Proof. 1) ⇐⇒ 2). If f is continuous, then by definition of the inductive
limit topology f |C∞(K) is continuous. Hence an estimate of the type in Eq.
(35.14) must hold. Conversely if estimates of the type in Eq. (35.14) hold for
all compact sets K, then f |C∞(K) is continuous for all K @@ U and again
by the definition of the inductive limit topologies, f is continuous on D′(U).
1) ⇐⇒ 3) By Lemma 35.58, the assertion in item 3. is equivalent to saying
that f |C∞(K) is sequentially continuous for all K @@ U. Since the topology on
C∞(K) is first countable (being a metric topology), sequential continuity and
continuity are the same think. Hence item 3. is equivalent to the assertion that
f |C∞(K) is continuous for all K @@ U which is equivalent to the assertion
that f is continuous on D′(U).

Proposition 35.61. The maps (λ, φ) ∈ C×D(U)→ λφ ∈ D(U) and (φ, ψ) ∈
D(U)×D(U)→ φ+ ψ ∈ D(U) are continuous. (Actually, I will have to look
up how to decide to this.) What is obvious is that all of these operations are
sequentially continuous, which is enough for our purposes.
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Convolutions involving distributions

36.1 Tensor Product of Distributions

Let X ⊂o Rn and Y ⊂o Rm and S ∈ D′(X) and T ∈ D′(Y ). We wish to define
S ⊗ T ∈ D′(X × Y ). Informally, we should have

〈S ⊗ T, φ〉 =
∫
X×Y

S(x)T (y)φ(x, y)dxdy

=
∫
X

dxS(x)
∫
Y

dyT (y)φ(x, y) =
∫
Y

dyT (y)
∫
X

dxS(x)φ(x, y).

Of course we should interpret this last equation as follows,

〈S ⊗ T, φ〉 = 〈S(x), 〈T (y), φ(x, y)〉〉 = 〈T (y), 〈S(x), φ(x, y)〉〉. (36.1)

This formula takes on particularly simple form when φ = u⊗v with u ∈ D(X)
and v ∈ D(Y ) in which case

〈S ⊗ T, u⊗ v〉 = 〈S, u〉〈T, v〉. (36.2)

We begin with the following smooth version of the Weierstrass approximation
theorem which will be used to show Eq. (36.2) uniquely determines S ⊗ T.

Theorem 36.1 (Density Theorem). Suppose that X ⊂o Rn and Y ⊂o Rm,
then D(X)⊗D(Y ) is dense in D(X × Y ).

Proof. First let us consider the special case where X = (0, 1)n and Y =
(0, 1)m so that X × Y = (0, 1)m+n. To simplify notation, let m + n = k and
Ω = (0, 1)k and πi : Ω → (0, 1) be projection onto the ith factor of Ω. Suppose
that φ ∈ C∞c (Ω) andK = supp(φ).We will view φ ∈ C∞c (Rk) by setting φ = 0
outside of Ω. Since K is compact πi(K) ⊂ [ai, bi] for some 0 < ai < bi < 1. Let
a = min {ai : i = 1, . . . , k} and b = max {bi : i = 1, . . . , k} . Then supp(φ) =
K ⊂ [a, b]k ⊂ Ω. As in the proof of the Weierstrass approximation theorem,
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let qn(t) = cn(1 − t2)n1|t|≤1 where cn is chosen so that
∫

R qn(t)dt = 1. Also
set Qn = qn ⊗ · · · ⊗ qn, i.e. Qn(x) =

∏k
i=1 qn(xi) for x ∈ Rk. Let

fn(x) := Qn ∗ φ(x) = ckn

∫
Rk

φ(y)
k∏
i=1

(1− (xi − yi)2)n1|xi−yi|≤1dyi. (36.3)

By standard arguments, we know that ∂αfn → ∂αφ uniformly on Rk as n→
∞. Moreover for x ∈ Ω, it follows from Eq. (36.3) that

fn(x) := ckn

∫
Ω

φ(y)
k∏
i=1

(1− (xi − yi)2)ndyi = pn(x)

where pn(x) is a polynomial in x. Notice that pn ∈ C∞((0, 1))⊗· · ·⊗C∞((0, 1))
so that we are almost there.1 We need only cutoff these functions so that they
have compact support. To this end, let θ ∈ C∞c ((0, 1)) be a function such that
θ = 1 on a neighborhood of [a, b] and define

φn = (θ ⊗ · · · ⊗ θ) fn
= (θ ⊗ · · · ⊗ θ) pn ∈ C∞c ((0, 1))⊗ · · · ⊗ C∞c ((0, 1)).

I claim now that φn → φ in D(Ω). Certainly by construction supp(φn) ⊂
[a, b]k @@ Ω for all n. Also

∂α(φ− φn) = ∂α(φ− (θ ⊗ · · · ⊗ θ) fn)
= (θ ⊗ · · · ⊗ θ) (∂αφ− ∂αfn) +Rn (36.4)

where Rn is a sum of terms of the form ∂β (θ ⊗ · · · ⊗ θ) · ∂γfn with β 6= 0.
Since ∂β (θ ⊗ · · · ⊗ θ) = 0 on [a, b]k and ∂γfn converges uniformly to zero on
Rk \ [a, b]k, it follows that Rn → 0 uniformly as n→∞. Combining this with
Eq. (36.4) and the fact that ∂αfn → ∂αφ uniformly on Rk as n → ∞, we
see that φn → φ in D(Ω). This finishes the proof in the case X = (0, 1)n

and Y = (0, 1)m. For the general case, let K = supp(φ) @@ X × Y and
K1 = π1(K) @@ X and K2 = π2(K) @@ Y where π1 and π2 are projections
from X × Y to X and Y respectively. Then K @ K1 × K2 @@ X × Y.
Let {Vi}ai=1 and {Uj}bj=1 be finite covers of K1 and K2 respectively by open

1 One could also construct fn ∈ C∞(R)⊗k such that ∂αfn → ∂αf uniformlly as
n→∞ using Fourier series. To this end, let φ̃ be the 1 – periodic extension of φ
to Rk. Then φ̃ ∈ C∞periodic(Rk) and hence it may be written as

φ̃(x) =
∑

m∈Zk

cme
i2πm·x

where the
{
cm : m ∈ Zk

}
are the Fourier coefficients of φ̃ which decay faster that

(1+ |m|)−l for any l > 0. Thus fn(x) :=
∑

m∈Zk:|m|≤n cme
i2πm·x ∈ C∞(R)⊗k and

∂αfn → ∂αφ unifromly on Ω as n→∞.
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sets Vi = (ai, bi) and Uj = (cj , dj) with ai, bi ∈ X and cj , dj ∈ Y. Also let
αi ∈ C∞c (Vi) for i = 1, . . . , a and βj ∈ C∞c (Uj) for j = 1, . . . , b be functions
such that

∑a
i=1 αi = 1 on a neighborhood of K1 and

∑b
j=1 βj = 1 on a

neighborhood of K2. Then φ =
∑a
i=1

∑b
j=1 (αi ⊗ βj)φ and by what we have

just proved (after scaling and translating) each term in this sum, (αi ⊗ βj)φ,
may be written as a limit of elements in D(X) ⊗ D(Y ) in the D(X × Y )
topology.

Theorem 36.2 (Distribution-Fubini-Theorem). Let S ∈ D′(X), T ∈
D′(Y ), h(x) := 〈T (y), φ(x, y)〉 and g(y) := 〈S(x), φ(x, y)〉. Then h =
hφ ∈ D(X), g = gφ ∈ D(Y ), ∂αh(x) = 〈T (y), ∂αxφ(x, y)〉 and ∂βg(y) =
〈S(x), ∂βy φ(x, y)〉 for all multi-indices α and β. Moreover

〈S(x), 〈T (y), φ(x, y)〉〉 = 〈S, h〉 = 〈T, g〉 = 〈T (y), 〈S(x), φ(x, y)〉〉. (36.5)

We denote this common value by 〈S⊗T, φ〉 and call S⊗T the tensor product
of S and T. This distribution is uniquely determined by its values on D(X)⊗
D(Y ) and for u ∈ D(X) and v ∈ D(Y ) we have

〈S ⊗ T, u⊗ v〉 = 〈S, u〉〈T, v〉.

Proof. Let K = supp(φ) @@ X × Y and K1 = π1(K) and K2 = π2(K).
Then K1 @@ X and K2 @@ Y and K ⊂ K1 × K2 ⊂ X × Y. If x ∈ X
and y /∈ K2, then φ(x, y) = 0 and more generally ∂αxφ(x, y) = 0 so that
{y : ∂αxφ(x, y) 6= 0} ⊂ K2. Thus for all x ∈ X, supp(∂αφ(x, ·)) ⊂ K2 ⊂ Y. By
the fundamental theorem of calculus,

∂βy φ(x+ v, y)− ∂βy φ(x, y) =
∫ 1

0

∂xv∂
β
y φ(x+ τv, y)dτ (36.6)

and therefore∥∥∂βy φ(x+ v, ·)− ∂βy φ(x, ·)
∥∥
∞ ≤ |v|

∫ 1

0

∥∥∇x∂βy φ(x+ τv, ·)
∥∥
∞ dτ

≤ |v|
∥∥∇x∂βy φ∥∥∞ → 0 as ν → 0.

This shows that x ∈ X → φ(x, ·) ∈ D(Y ) is continuous. Thus h is continuous
being the composition of continuous functions. Letting v = tei in Eq. (36.6)
we find

∂βy φ(x+ tei, y)− ∂βy φ(x, y)
t

− ∂

∂xi
∂βy φ(x, y)

=
∫ 1

0

[
∂

∂xi
∂βy φ(x+ τtei, y)−

∂

∂xi
∂βy φ(x, y)

]
dτ

and hence

Page: 755 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



756 36 Convolutions involving distributions∥∥∥∥∥∂βy φ(x+ tei, ·)− ∂βy φ(x, ·)
t

− ∂

∂xi
∂βy φ(x, ·)

∥∥∥∥∥
∞

≤
∫ 1

0

∥∥∥∥ ∂

∂xi
∂βy φ(x+ τtei, ·)−

∂

∂xi
∂βy φ(x, ·)

∥∥∥∥
∞
dτ

which tends to zero as t→ 0. Thus we have checked that

∂

∂xi
φ(x, ·) = D′(Y )– lim

t→0

φ(x+ tei, ·)− φ(x, ·)
t

and therefore,

h(x+ tei)− h(x)
t

= 〈T, φ(x+ tei, ·)− φ(x, ·)
t

〉 → 〈T, ∂

∂xi
φ(x, ·)〉

as t → 0 showing ∂ih(x) exists and is given by 〈T, ∂
∂xi

φ(x, ·)〉. By what
we have proved above, it follows that ∂ih(x) = 〈T, ∂

∂xi
φ(x, ·)〉 is continu-

ous in x. By induction on |α| , it follows that ∂αh(x) exists and is continuous
and ∂αh(x) = 〈T (y), ∂αxφ(x, y)〉 for all α. Now if x /∈ K1, then φ(x, ·) ≡ 0
showing that {x ∈ X : h(x) 6= 0} ⊂ K1 and hence supp(h) ⊂ K1 @@ X.
Thus h has compact support. This proves all of the assertions made about
h. The assertions pertaining to the function g are prove analogously. Let
〈Γ, φ〉 = 〈S(x), 〈T (y), φ(x, y)〉〉 = 〈S, hφ〉 for φ ∈ D(X ×Y ). Then Γ is clearly
linear and we have

|〈Γ, φ〉| = |〈S, hφ〉|

≤ C
∑
|α|≤m

‖∂αxhφ‖∞,K1
= C

∑
|α|≤m

‖〈T (y), ∂αxφ(·, y)〉‖∞,K1

which combined with the estimate

|〈T (y), ∂αxφ(x, y)〉| ≤ C
∑
|β|≤p

∥∥∂βy ∂αxφ(x, y)〉
∥∥
∞,K2

shows
|〈Γ, φ〉| ≤ C

∑
|α|≤m

∑
|β|≤p

∥∥∂βy ∂αxφ(x, y)〉
∥∥
∞,K1×K2

.

So Γ is continuous, i.e. Γ ∈ D′(X × Y ), i.e.

φ ∈ D(X × Y )→ 〈S(x), 〈T (y), φ(x, y)〉〉

defines a distribution. Similarly,

φ ∈ D(X × Y )→ 〈T (y), 〈S(x), φ(x, y)〉〉

also defines a distribution and since both of these distributions agree on the
dense subspace D(X)⊗D(Y ), it follows they are equal.
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Theorem 36.3. If (T, φ) is a distribution test function pair satisfying one of
the following three conditions

1. T ∈ E ′(Rn) and φ ∈ C∞(Rn)
2. T ∈ D′(Rn) and φ ∈ D(Rn) or
3. T ∈ S ′(Rn) and φ ∈ S(Rn),

let
T ∗ φ(x) = “

∫
T (y)φ(x− y)dy” = 〈T, φ(x− ·)〉. (36.7)

Then T ∗ φ ∈ C∞(Rn), ∂α(T ∗ φ) = (∂αT ∗ φ) = (T ∗ ∂αφ) for all α and
supp(T ∗ φ) ⊂ supp(T ) + supp(φ). Moreover if (3) holds then T ∗ φ ∈ P – the
space of smooth functions with slow decrease.

Proof. I will supply the proof for case (3) since the other cases are similar
and easier. Let h(x) := T ∗ φ(x). Since T ∈ S ′(Rn), there exists m ∈ N and
C < ∞ such that |〈T, φ〉| ≤ Cpm(φ) for all φ ∈ S, where pm is defined in
Example 35.28. Therefore,

|h(x)− h(y)| = |〈T, φ(x− ·)− φ(y − ·)〉| ≤ Cpm(φ(x− ·)− φ(y − ·))

= C
∑
|α|≤m

‖µm(∂αφ(x− ·)− ∂αφ(y − ·))‖∞ .

Let ψ := ∂αφ, then

ψ(x− z)− ψ(y − z) =
∫ 1

0

∇ψ(y + τ(x− y)− z) · (x− y)dτ (36.8)

and hence

|ψ(x− z)− ψ(y − z)| ≤ |x− y| ·
∫ 1

0

|∇ψ(y + τ(x− y)− z)| dτ

≤ C |x− y|
∫ 1

0

µ−M (y + τ(x− y)− z)dτ

for any M <∞. By Peetre’s inequality,

µ−M (y + τ(x− y)− z) ≤ µ−M (z)µM (y + τ(x− y))

so that

|∂αφ(x− z)− ∂αφ(y − z)| ≤ C |x− y|µ−M (z)
∫ 1

0

µM (y + τ(x− y))dτ

≤ C(x, y) |x− y|µ−M (z) (36.9)

where C(x, y) is a continuous function of (x, y). Putting all of this together
we see that
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758 36 Convolutions involving distributions

|h(x)− h(y)| ≤ C̃(x, y) |x− y| → 0 as x→ y,

showing h is continuous. Let us now compute a partial derivative of h. Suppose
that v ∈ Rn is a fixed vector, then by Eq. (36.8),

φ(x+ tv − z)− φ(x− z)
t

− ∂vφ(x− z)

=
∫ 1

0

∇φ(x+ τtv − z) · vdτ − ∂vφ(x− z)

=
∫ 1

0

[∂vφ(x+ τtv − z)− ∂vφ(x− z)] dτ.

This then implies∣∣∣∣∂αz {φ(x+ tv − z)− φ(x− z)
t

− ∂vφ(x− z)
}∣∣∣∣

=
∣∣∣∣∫ 1

0

∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)] dτ
∣∣∣∣

≤
∫ 1

0

|∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)]| dτ.

But by the same argument as above, it follows that

|∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)]| ≤ C(x+ τtv, x) |τtv|µ−M (z)

and thus ∣∣∣∣∂αz {φ(x+ tv − z)− φ(x− z)
t

− ∂vφ(x− z)
}∣∣∣∣

≤ tµ−M (z)
∫ 1

0

C(x+ τtv, x)τdτ |v|µ−M (z).

Putting this all together shows∥∥∥∥µM∂αz {φ(x+ tv − z)− φ(x− z)
t

− ∂vφ(x− z)
}∥∥∥∥

∞
= O(t)

→ 0 as t→ 0.

That is to say φ(x+tv−·)−φ(x−·)
t → ∂vφ(x− ·) in S as t→ 0. Hence since T is

continuous on S, we learn

∂v (T ∗ φ) (x) = ∂v〈T, φ(x− ·)〉 = lim
t→0
〈T, φ(x+ tv − ·)− φ(x− ·)

t
〉

= 〈T, ∂vφ(x− ·)〉 = T ∗ ∂vφ(x).

By the first part of the proof, we know that ∂v(T ∗φ) is continuous and hence
by induction it now follows that T ∗ φ is C∞ and ∂αT ∗ φ = T ∗ ∂αφ. Since
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T ∗ ∂αφ(x) = 〈T (z), (∂αφ) (x− z)〉 = (−1)α〈T (z), ∂αz φ(x− z)〉
= 〈∂αz T (z), φ(x− z)〉 = ∂αT ∗ φ(x)

the proof is complete except for showing T ∗ φ ∈ P. For the last statement,
it suffices to prove |T ∗ φ(x)| ≤ CµM (x) for some C < ∞ and M < ∞. This
goes as follows

|h(x)| = |〈T, φ(x− ·)〉| ≤ Cpm(φ(x− ·)) = C
∑
|α|≤m

‖µm(∂αφ(x− ·)‖∞

and using Peetre’s inequality, |∂αφ(x− z)| ≤ Cµ−m(x− z) ≤ Cµ−m(z)µm(x)
so that

‖µm(∂αφ(x− ·)‖∞ ≤ Cµm(x).

Thus it follows that |T ∗ φ(x)| ≤ Cµm(x) for some C < ∞. If x ∈ Rn \
(supp(T ) + supp(φ)) and y ∈ supp(φ) then x − y /∈ supp(T ) for otherwise
x = x− y + y ∈ supp(T ) + supp(φ). Thus

supp(φ(x− ·)) = x− supp(φ) ⊂ Rn \ supp(T )

and hence h(x) = 〈T, φ(x−·)〉 = 0 for all x ∈ Rn \ (supp(T ) + supp(φ)) . This
implies that {h 6= 0} ⊂ supp(T ) + supp(φ) and hence

supp(h) = {h 6= 0} ⊂ supp(T ) + supp(φ).

As we have seen in the previous theorem, T ∗ φ is a smooth function and
hence may be used to define a distribution in D′(Rn) by

〈T ∗ φ, ψ〉 =
∫
T ∗ φ(x)ψ(x)dx =

∫
〈T, φ(x− ·)〉ψ(x)dx.

Using the linearity of T we might expect that∫
〈T, φ(x− ·)〉ψ(x)dx = 〈T,

∫
φ(x− ·)ψ(x)dx〉

or equivalently that
〈T ∗ φ, ψ〉 = 〈T, φ̃ ∗ ψ〉 (36.10)

where φ̃(x) := φ(−x).

Theorem 36.4. Suppose that if (T, φ) is a distribution test function pair sat-
isfying one the three condition in Theorem 36.3, then T ∗ φ as a distribution
may be characterized by

〈T ∗ φ, ψ〉 = 〈T, φ̃ ∗ ψ〉 (36.11)

for all ψ ∈ D(Rn). Moreover, if T ∈ S ′ and φ ∈ S then Eq. (36.11) holds for
all ψ ∈ S.
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Proof. Let us first assume that T ∈ D′ and φ, ψ ∈ D and θ ∈ D be a
function such that θ = 1 on a neighborhood of the support of ψ. Then

〈T ∗ φ, ψ〉 =
∫

Rn

〈T, φ(x− ·)〉ψ(x)dx = 〈ψ(x), 〈T (y), φ(x− y)〉〉

= 〈θ(x)ψ(x), 〈T (y), φ(x− y)〉〉
= 〈ψ(x), θ(x)〈T (y), φ(x− y)〉〉
= 〈ψ(x), 〈T (y), θ(x)φ(x− y)〉〉.

Now the function, θ(x)φ(x − y) ∈ D(Rn × Rn), so we may apply Fubini’s
theorem for distributions to conclude that

〈T ∗ φ, ψ〉 = 〈ψ(x), 〈T (y), θ(x)φ(x− y)〉〉
= 〈T (y), 〈ψ(x), θ(x)φ(x− y)〉〉
= 〈T (y), 〈θ(x)ψ(x), φ(x− y)〉〉
= 〈T (y), 〈ψ(x), φ(x− y)〉〉
= 〈T (y), ψ ∗ φ̃(y)〉 = 〈T, ψ ∗ φ̃〉

as claimed. If T ∈ E ′, let α ∈ D(Rn) be a function such that α = 1 on a
neighborhood of supp(T ), then working as above,

〈T ∗ φ, ψ〉 = 〈ψ(x), 〈T (y), θ(x)φ(x− y)〉〉
= 〈ψ(x), 〈T (y), α(y)θ(x)φ(x− y)〉〉

and since α(y)θ(x)φ(x− y) ∈ D(Rn×Rn) we may apply Fubini’s theorem for
distributions to conclude again that

〈T ∗ φ, ψ〉 = 〈T (y), 〈ψ(x), α(y)θ(x)φ(x− y)〉〉
= 〈α(y)T (y), 〈θ(x)ψ(x), φ(x− y)〉〉
= 〈T (y), 〈ψ(x), φ(x− y)〉〉 = 〈T, ψ ∗ φ̃〉.

Now suppose that T ∈ S ′ and φ, ψ ∈ S. Let φn, ψn ∈ D be a sequences such
that φn → φ and ψn → ψ in S, then using arguments similar to those in the
proof of Theorem 36.3, one shows

〈T ∗ φ, ψ〉 = lim
n→∞

〈T ∗ φn, ψn〉 = lim
n→∞

〈T, ψn ∗ φ̃n〉 = 〈T, ψ ∗ φ̃〉.

Theorem 36.5. Let U ⊂o Rn, then D(U) is sequentially dense in E ′(U).
When U = Rn we have E ′(Rn) is a dense subspace of S ′(Rn) ⊂ D′(Rn).
Hence we have the following inclusions,

D(U) ⊂ E ′(U) ⊂ D′(U),
D(Rn) ⊂ E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn) and
D(Rn) ⊂ S(Rn) ⊂ S ′(Rn) ⊂ D′(Rn)

with all inclusions being dense in the next space up.
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Proof. The key point is to show D(U) is dense in E ′(U). Choose θ ∈
C∞c (Rn) such that supp(θ) ⊂ B(0, 1), θ = θ and

∫
θ(x)dx = 1. Let θm(x) =

m−nθ(mx) so that supp(θm) ⊂ B(0, 1/m). An element in T ∈ E ′(U) may be
viewed as an element in E ′(Rn) in a natural way. Namely if χ ∈ C∞c (U) such
that χ = 1 on a neighborhood of supp(T ), and φ ∈ C∞(Rn), let 〈T, φ〉 =
〈T, χφ〉. Define Tm = T ∗ θm. It is easily seen that supp(Tn) ⊂ supp(T ) +
B(0, 1/m) ⊂ U for all m sufficiently large. Hence Tm ∈ D(U) for large enough
m. Moreover, if ψ ∈ D(U), then

〈Tm, ψ〉 = 〈T ∗ θm, ψ〉 = 〈T, θm ∗ ψ〉 = 〈T, θm ∗ ψ〉 → 〈T, ψ〉

since θm ∗ ψ → ψ in D(U) by standard arguments. If U = Rn, T ∈ E ′(Rn) ⊂
S ′(Rn) and ψ ∈ S, the same argument goes through to show 〈Tm, ψ〉 → 〈T, ψ〉
provided we show θm ∗ ψ → ψ in S(Rn) as m → ∞. This latter is proved by
showing for all α and t > 0, I

‖µt (∂αθm ∗ ψ − ∂αψ)‖∞ → 0 as m→∞,

which is a consequence of the estimates:

|∂αθm ∗ ψ(x)− ∂αψ(x)| = |θm ∗ ∂αψ(x)− ∂αψ(x)|

=
∣∣∣∣∫ θm(y) [∂αψ(x− y)− ∂αψ(x)] dy

∣∣∣∣
≤ sup

|y|≤1/m

|∂αψ(x− y)− ∂αψ(x)|

≤ 1
m

sup
|y|≤1/m

|∇∂αψ(x− y)|

≤ 1
m
C sup
|y|≤1/m

µ−t(x− y)

≤ 1
m
Cµ−t(x− y) sup

|y|≤1/m

µt(y)

≤ 1
m
C
(
1 +m−1

)t
µ−t(x).

Definition 36.6 (Convolution of Distributions). Suppose that T ∈ D′
and S ∈ E ′, then define T ∗ S ∈ D′ by

〈T ∗ S, φ〉 = 〈T ⊗ S, φ+〉

where φ+(x, y) = φ(x+y) for all x, y ∈ Rn. More generally we may define T ∗S
for any two distributions having the property that supp(T ⊗ S) ∩ supp(φ+) =
[supp(T )× supp(S)] ∩ supp(φ+) is compact for all φ ∈ D.
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Proposition 36.7. Suppose that T ∈ D′ and S ∈ E ′ then T ∗S is well defined
and

〈T ∗ S, φ〉 = 〈T (x), 〈S(y), φ(x+ y)〉〉 = 〈S(y), 〈T (x), φ(x+ y)〉〉. (36.12)

Moreover, if T ∈ S ′ then T ∗S ∈ S ′ and F(T ∗S) = ŜT̂ . Recall from Remark
35.46 that Ŝ ∈ P so that ŜT̂ ∈ S ′.

Proof. Let θ ∈ D be a function such that θ = 1 on a neighborhood of
supp(S), then by Fubini’s theorem for distributions,

〈T ⊗ S, φ+〉 = 〈T ⊗ S(x, y), θ(y)φ(x+ y)〉 = 〈T (x)S(y), θ(y)φ(x+ y)〉
= 〈T (x), 〈S(y), θ(y)φ(x+ y)〉〉 = 〈T (x), 〈S(y), φ(x+ y)〉〉

and

〈T ⊗ S, φ+〉 = 〈T (x)S(y), θ(y)φ(x+ y)〉 = 〈S(y), 〈T (x), θ(y)φ(x+ y)〉〉
= 〈S(y), θ(y)〈T (x), φ(x+ y)〉〉 = 〈S(y), 〈T (x), φ(x+ y)〉〉

proving Eq. (36.12). Suppose that T ∈ S ′, then

|〈T ∗ S, φ〉| = |〈T (x), 〈S(y), φ(x+ y)〉〉| ≤ C
∑
|α|≤m

‖µm∂αx 〈S(y), φ(·+ y)〉‖∞

= C
∑
|α|≤m

‖µm〈S(y), ∂αφ(·+ y)〉‖∞

and

|〈S(y), ∂αφ(x+ y)〉| ≤ C
∑
|β|≤p

sup
y∈K

∣∣∂β∂αφ(x+ y)
∣∣

≤ Cpm+p(φ) sup
y∈K

µ−m−p(x+ y)

≤ Cpm+p(φ)µ−m−p(x) sup
y∈K

µm+p(y)

= C̃µ−m−p(x)pm+p(φ).

Combining the last two displayed equations shows

|〈T ∗ S, φ〉| ≤ Cpm+p(φ)

which shows that T ∗ S ∈ S ′. We still should check that

〈T ∗ S, φ〉 = 〈T (x), 〈S(y), φ(x+ y)〉〉 = 〈S(y), 〈T (x), φ(x+ y)〉〉

still holds for all φ ∈ S. This is a matter of showing that all of the expressions
are continuous in S when restricted to D. Explicitly, let φm ∈ D be a sequence
of functions such that φm → φ in S, then
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〈T ∗ S, φ〉 = lim
n→∞

〈T ∗ S, φn〉 = lim
n→∞

〈T (x), 〈S(y), φn(x+ y)〉〉 (36.13)

and

〈T ∗ S, φ〉 = lim
n→∞

〈T ∗ S, φn〉 = lim
n→∞

〈S(y), 〈T (x), φn(x+ y)〉〉. (36.14)

So it suffices to show the map φ ∈ S → 〈S(y), φ(·+ y)〉 ∈ S is continuous and
φ ∈ S → 〈T (x), φ(x+ ·)〉 ∈ C∞(Rn) are continuous maps. These may verified
by methods similar to what we have been doing, so I will leave the details to
the reader. Given these continuity assertions, we may pass to the limits in Eq.
(36.13d (36.14) to learn

〈T ∗ S, φ〉 = 〈T (x), 〈S(y), φ(x+ y)〉〉 = 〈S(y), 〈T (x), φ(x+ y)〉〉

still holds for all φ ∈ S. The last and most important point is to show F(T ∗
S) = ŜT̂ . Using

φ̂(x+ y) =
∫

Rn

φ(ξ)e−iξ·(x+y)dξ =
∫

Rn

φ(ξ)e−iξ·ye−iξ·xdξ

= F
(
φ(ξ)e−iξ·y

)
(x)

and the definition of F on S ′ we learn

〈F(T ∗ S), φ〉 = 〈T ∗ S, φ̂〉 = 〈S(y), 〈T (x), φ̂(x+ y)〉〉
= 〈S(y), 〈T (x),F

(
φ(ξ)e−iξ·y

)
(x)〉〉

= 〈S(y), 〈T̂ (ξ), φ(ξ)e−iξ·y〉〉. (36.15)

Let θ ∈ D be a function such that θ = 1 on a neighborhood of supp(S) and
assume φ ∈ D for the moment. Then from Eq. (36.15) and Fubini’s theorem
for distributions we find

〈F(T ∗ S), φ〉 = 〈S(y), θ(y)〈T̂ (ξ), φ(ξ)e−iξ·y〉〉
= 〈S(y), 〈T̂ (ξ), φ(ξ)θ(y)e−iξ·y〉〉
= 〈T̂ (ξ), 〈S(y), φ(ξ)θ(y)e−iξ·y〉〉
= 〈T̂ (ξ), φ(ξ)〈S(y), e−iξ·y〉〉
= 〈T̂ (ξ), φ(ξ)Ŝ(ξ)〉 = 〈Ŝ(ξ)T̂ (ξ), φ(ξ)〉. (36.16)

Since F(T ∗ S) ∈ S ′ and ŜT̂ ∈ S ′, we conclude that Eq. (36.16) holds for all
φ ∈ S and hence F(T ∗ S) = ŜT̂ as was to be proved.

36.2 Elliptic Regularity

Theorem 36.8 (Hypoellipticity). Suppose that p(x) =
∑

|α|≤m aαξ
α is a

polynomial on Rn and L is the constant coefficient differential operator
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L = p(
1
i
∂) =

∑
|α|≤m

aα(
1
i
∂)α =

∑
|α|≤m

aα(−i∂)α.

Also assume there exists a distribution T ∈ D′(Rn) such that R := δ − LT ∈
C∞(Rn) and T |Rn\{0} ∈ C∞(Rn \ {0}). Then if v ∈ C∞(U) and u ∈ D′(U)
solves Lu = v then u ∈ C∞(U). In particular, all solutions u to the equation
Lu = 0 are smooth.

Proof. We must show for each x0 ∈ U that u is smooth on a neighborhood
of x0. So let x0 ∈ U and θ ∈ D(U) such that 0 ≤ θ ≤ 1 and θ = 1 on
neighborhood V of x0. Also pick α ∈ D(V ) such that 0 ≤ α ≤ 1 and α = 1
on a neighborhood of x0. Then

θu = δ ∗ (θu) = (LT +R) ∗ (θu) = (LT ) ∗ (θu) +R ∗ (θu)
= T ∗ L (θu) +R ∗ (θu)
= T ∗ {αL (θu) + (1− α)L (θu)}+R ∗ (θu)
= T ∗ {αLu+ (1− α)L (θu)}+R ∗ (θu)
= T ∗ (αv) +R ∗ (θu) + T ∗ [(1− α)L (θu)] .

Since αv ∈ D(U) and T ∈ D′(Rn) it follows that R ∗ (θu) ∈ C∞(Rn). Also
since R ∈ C∞(Rn) and θu ∈ E ′(U), R ∗ (θu) ∈ C∞(Rn). So to show θu, and
hence u, is smooth near x0 it suffices to show T ∗ g is smooth near x0 where
g := (1− α)L (θu) . Working formally for the moment,

T ∗ g(x) =
∫

Rn

T (x− y)g(y)dy =
∫

Rn\{α=1}
T (x− y)g(y)dy

which should be smooth for x near x0 since in this case x − y 6= 0 when
g(y) 6= 0. To make this precise, let δ > 0 be chosen so that α = 1 on a
neighborhood of B(x0, δ) so that supp(g) ⊂ B(x0, δ)

c
. For φ ∈ D(B(x0, δ/2),

〈T ∗ g, φ〉 = 〈T (x), 〈g(y), φ(x+ y)〉〉 = 〈T, h〉

where h(x) := 〈g(y), φ(x+ y)〉. If |x| ≤ δ/2

supp(φ(x+ ·)) = supp(φ)− x ⊂ B(x0, δ/2)− x ⊂ B(x0, δ)

so that h(x) = 0 and hence supp(h) ⊂ B(x0, δ/2)
c
. Hence if we let γ ∈

D(B(0, δ/2)) be a function such that γ = 1 near 0, we have γh ≡ 0, and thus

〈T ∗ g, φ〉 = 〈T, h〉 = 〈T, h− γh〉 = 〈(1− γ)T, h〉 = 〈[(1− γ)T ] ∗ g, φ〉.

Since this last equation is true for all φ ∈ D(B(x0, δ/2)), T ∗g = [(1− γ)T ]∗g
on B(x0, δ/2) and this finishes the proof since [(1− γ)T ]∗g ∈ C∞(Rn) because
(1− γ)T ∈ C∞(Rn).
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Definition 36.9. Suppose that p(x) =
∑

|α|≤m aαξ
α is a polynomial on Rn

and L is the constant coefficient differential operator

L = p(
1
i
∂) =

∑
|α|≤m

aα(
1
i
∂)α =

∑
|α|≤m

aα(−i∂)α.

Let σp(L)(ξ) :=
∑

|α|=m aαξ
α and call σp(L) the principle symbol of L. The

operator L is said to be elliptic provided that σp(L)(ξ) 6= 0 if ξ 6= 0.

Theorem 36.10 (Existence of Parametrix). Suppose that L = p( 1
i ∂) is

an elliptic constant coefficient differential operator, then there exists a dis-
tribution T ∈ D′(Rn) such that R := δ − LT ∈ C∞(Rn) and T |Rn\{0} ∈
C∞(Rn \ {0}).

Proof. The idea is to try to find T such that LT = δ. Taking the Fourier
transform of this equation implies that p(ξ)T̂ (ξ) = 1 and hence we should try
to define T̂ (ξ) = 1/p(ξ). The main problem with this definition is that p(ξ)
may have zeros. However, these zeros can not occur for large ξ by the ellipticity
assumption. Indeed, let q(ξ) := σp(L)(ξ) =

∑
|α|=m aαξ

α, r(ξ) = p(ξ)−q(ξ) =∑
|α|<m aαξ

α and let c = min {|q(ξ)| : |ξ| = 1} ≤ max {|q(ξ)| : |ξ| = 1} =: C.
Then because |q(·)| is a nowhere vanishing continuous function on the compact
set S := {ξ ∈ Rn : |ξ| = 1|} , 0 < c ≤ C < ∞. For ξ ∈ Rn, let ξ̂ = ξ/ |ξ| and
notice

|p(ξ)| = |q(ξ)| − |r(ξ)| ≥ c |ξ|m − |r(ξ)| = |ξ|m (c− |r(ξ)|
|ξ|m

) > 0

for all |ξ| ≥ M with M sufficiently large since limξ→∞
|r(ξ)|
|ξ|m = 0. Choose

θ ∈ D(Rn) such that θ = 1 on a neighborhood of B(0,M) and let

h(ξ) =
1− θ(ξ)
p(ξ)

=
β(ξ)
p(ξ)

∈ C∞(Rn)

where β = 1−θ. Since h(ξ) is bounded (in fact limξ→∞ h(ξ) = 0), h ∈ S ′(Rn)
so there exists T := F−1h ∈ S ′(Rn) is well defined. Moreover,

F (δ − LT ) = 1− p(ξ)h(ξ) = 1− β(ξ) = θ(ξ) ∈ D(Rn)

which shows that

R := δ − LT ∈ S(Rn) ⊂ C∞(Rn).

So to finish the proof it suffices to show

T |Rn\{0} ∈ C∞(Rn \ {0}).

To prove this recall that
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F (xαT ) = (i∂)αT̂ = (i∂)αh.

By the chain rule and the fact that any derivative of β is has compact support
in B(0,M)

c
and any derivative of 1

p is non-zero on this set,

∂αh = β∂α
1
p

+ rα

where rα ∈ D(Rn). Moreover,

∂i
1
p

= −∂ip
p2

and ∂j∂i
1
p

= −∂j
∂ip

p2
= −∂j∂ip

p2
+ 2

∂ip

p3

from which it follows that∣∣∣∣β(ξ)∂i
1
p
(ξ)
∣∣∣∣ ≤ C |ξ|−(m+1) and

∣∣∣∣β(ξ)∂j∂i
1
p

∣∣∣∣ ≤ C |ξ|−(m+2)
.

More generally, one shows by inductively that∣∣∣∣β(ξ)∂α
1
p

∣∣∣∣ ≤ C |ξ|−(m+|α|)
. (36.17)

In particular, if k ∈ N is given and α is chosen so that |α|+m > n+ k, then
|ξ|k ∂αh(ξ) ∈ L1(ξ) and therefore

xαT = F−1 [(i∂)αh] ∈ Ck(Rn).

Hence we learn for any k ∈ N, we may choose p sufficiently large so that

|x|2p T ∈ Ck(Rn).

This shows that T |Rn\{0} ∈ C∞(Rn \ {0}).
Here is the induction argument that proves Eq. (36.17). Let qα :=

p|α|+1∂αp−1 with q0 = 1, then

∂i∂
αp−1 = ∂i

(
p−|α|−1qα

)
= (− |α| − 1) p−|α|−2qα∂ip+ p−|α|−1∂iqα

so that
qα+ei = p|α|+2∂i∂

αp−1 = (− |α| − 1) qα∂ip+ p∂iqα.

It follows by induction that qα is a polynomial in ξ and letting dα := deg(qα),
we have dα+ei ≤ dα + m − 1 with d0 = 1. Again by induction this implies
dα ≤ |α| (m− 1). Therefore

∂αp−1 =
qα

p|α|+1
∼ |ξ|dα−m(|α|+1) = |ξ||α|(m−1)−m(|α|+1) = |ξ|−(m+|α|)

as claimed in Eq. (36.17).
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37

Multinomial Theorems and Calculus Results

Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn, α! := α1! · · ·αn!,

xα :=
n∏
j=1

x
αj

j and ∂αx =
(
∂

∂x

)α
:=

n∏
j=1

(
∂

∂xj

)αj

.

We also write
∂vf(x) :=

d

dt
f(x+ tv)|t=0.

37.1 Multinomial Theorems and Product Rules

For a = (a1, a2, . . . , an) ∈ Cn, m ∈ N and (i1, . . . , im) ∈ {1, 2, . . . , n}m let
α̂j (i1, . . . , im) = # {k : ik = j} . Then(

n∑
i=1

ai

)m
=

n∑
i1,...,im=1

ai1 . . . aim =
∑
|α|=m

C(α)aα

where

C(α) = # {(i1, . . . , im) : α̂j (i1, . . . , im) = αj for j = 1, 2, . . . , n}

I claim that C(α) = m!
α! . Indeed, one possibility for such a sequence

(a1, . . . , aim) for a given α is gotten by choosing

(
α1︷ ︸︸ ︷

a1, . . . , a1,

α2︷ ︸︸ ︷
a2, . . . , a2, . . . ,

αn︷ ︸︸ ︷
an, . . . , an).

Now there are m! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these m! permuta-
tions we must divide by the number of permutation which just rearrange the
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groups of ai’s among themselves for each i. There are α! := α1! · · ·αn! such
permutations. Therefore, C(α) = m!/α! as advertised. So we have proved(

n∑
i=1

ai

)m
=
∑
|α|=m

m!
α!
aα. (37.1)

Now suppose that a, b ∈ Rn and α is a multi-index, we have

(a+ b)α =
∑
β≤α

α!
β!(α− β)!

aβbα−β =
∑

β+δ=α

α!
β!δ!

aβbδ (37.2)

Indeed, by the standard Binomial formula,

(ai + bi)αi =
∑
βi≤αi

αi!
βi!(αi − βi)!

aβibαi−βi

from which Eq. (37.2) follows. Eq. (37.2) generalizes in the obvious way to

(a1 + · · ·+ ak)
α =

∑
β1+···+βk=α

α!
β1! · · ·βk!

aβ1
1 . . . aβk

k (37.3)

where a1, a2, . . . , ak ∈ Rn and α ∈ Zn+.
Now let us consider the product rule for derivatives. Let us begin with the

one variable case (write dnf for f (n) = dn

dxn f) where we will show by induction
that

dn(fg) =
n∑
k=0

(
n

k

)
dkf · dn−kg. (37.4)

Indeed assuming Eq. (37.4) we find

dn+1(fg) =
n∑
k=0

(
n

k

)
dk+1f · dn−kg +

n∑
k=0

(
n

k

)
dkf · dn−k+1g

=
n+1∑
k=1

(
n

k − 1

)
dkf · dn−k+1g +

n∑
k=0

(
n

k

)
dkf · dn−k+1g

=
n+1∑
k=1

[(
n

k − 1

)
+
(
n

k

)]
dkf · dn−k+1g + dn+1f · g + f · dn+1g.

Since (
n

k − 1

)
+
(
n

k

)
=

n!
(n− k + 1)!(k − 1)!

+
n!

(n− k)!k!

=
n!

(k − 1)! (n− k)!

[
1

(n− k + 1)
+

1
k

]
=

n!
(k − 1)! (n− k)!

n+ 1
(n− k + 1) k

=
(
n+ 1
k

)
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the result follows.
Now consider the multi-variable case

∂α(fg) =

(
n∏
i=1

∂αi
i

)
(fg) =

n∏
i=1

[
αi∑
ki=0

(
αi
ki

)
∂ki
i f · ∂

αi−ki
i g

]

=
α1∑
k1=0

· · ·
αn∑
kn=0

n∏
i=1

(
αi
ki

)
∂kf · ∂α−kg =

∑
k≤α

(
α

k

)
∂kf · ∂α−kg

where k = (k1, k2, . . . , kn) and(
α

k

)
:=

n∏
i=1

(
αi
ki

)
=

α!
k!(α− k)!

.

So we have proved

∂α(fg) =
∑
β≤α

(
α

β

)
∂βf · ∂α−βg. (37.5)

37.2 Taylor’s Theorem

Theorem 37.1. Suppose X ⊂ Rn is an open set, x : [0, 1] → X is a C1 –
path, and f ∈ CN (X,C). Let vs := x(1)−x(s) and v = v1 = x(1)−x(0), then

f(x(1)) =
N−1∑
m=0

1
m!

(∂mv f) (x(0)) +RN (37.6)

where

RN =
1

(N − 1)!

∫ 1

0

(
∂ẋ(s)∂

N−1
vs

f
)
(x(s))ds =

1
N !

∫ 1

0

(
− d

ds
∂Nvs

f

)
(x(s))ds.

(37.7)
and 0! := 1.

Proof. By the fundamental theorem of calculus and the chain rule,

f(x(t)) = f(x(0))+
∫ t

0

d

ds
f(x(s))ds = f(x(0))+

∫ t

0

(
∂ẋ(s)f

)
(x(s))ds (37.8)

and in particular,

f(x(1)) = f(x(0)) +
∫ 1

0

(
∂ẋ(s)f

)
(x(s))ds.

This proves Eq. (37.6) when N = 1. We will now complete the proof using
induction on N. Applying Eq. (37.8) with f replaced by 1

(N−1)!

(
∂ẋ(s)∂

N−1
vs

f
)

gives
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1
(N − 1)!

(
∂ẋ(s)∂

N−1
vs

f
)
(x(s)) =

1
(N − 1)!

(
∂ẋ(s)∂

N−1
vs

f
)
(x(0))

+
1

(N − 1)!

∫ s

0

(
∂ẋ(s)∂

N−1
vs

∂ẋ(t)f
)
(x(t))dt

= − 1
N !

(
d

ds
∂Nvs

f

)
(x(0))− 1

N !

∫ s

0

(
d

ds
∂Nvs

∂ẋ(t)f

)
(x(t))dt

wherein we have used the fact that mixed partial derivatives commute to show
d
ds∂

N
vs
f = N∂ẋ(s)∂

N−1
vs

f. Integrating this equation on s ∈ [0, 1] shows, using
the fundamental theorem of calculus,

RN =
1
N !
(
∂Nv f

)
(x(0))− 1

N !

∫
0≤t≤s≤1

(
d

ds
∂Nvs

∂ẋ(t)f

)
(x(t))dsdt

=
1
N !
(
∂Nv f

)
(x(0)) +

1
(N + 1)!

∫
0≤t≤1

(
∂Nwt

∂ẋ(t)f
)
(x(t))dt

=
1
N !
(
∂Nv f

)
(x(0)) +RN+1

which completes the inductive proof.

Remark 37.2. Using Eq. (37.1) with ai replaced by vi∂i (although {vi∂i}ni=1

are not complex numbers they are commuting symbols), we find

∂mv f =

(
n∑
i=1

vi∂i

)m
f =

∑
|α|=m

m!
α!
vα∂α.

Using this fact we may write Eqs. (37.6) and (37.7) as

f(x(1)) =
∑

|α|≤N−1

1
α!
vα∂αf(x(0)) +RN

and

RN =
∑
|α|=N

1
α!

∫ 1

0

(
− d

ds
vαs ∂

αf

)
(x(s))ds.

Corollary 37.3. Suppose X ⊂ Rn is an open set which contains x(s) = (1−
s)x0 + sx1 for 0 ≤ s ≤ 1 and f ∈ CN (X,C). Then

f(x1) =
N−1∑
m=0

1
m!

(∂mv f) (x0) +
1
N !

∫ 1

0

(
∂Nv f

)
(x(s))dνN (s) (37.9)

=
∑
|α|<N

1
α!
∂αf(x(0))(x1 − x0)α +

∑
α:|α|=N

1
α!

[∫ 1

0

∂αf(x(s))dνN (s)
]

(x1 − x0)α

(37.10)
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where v := x1 − x0 and dνN is the probability measure on [0, 1] given by

dνN (s) := N(1− s)N−1ds. (37.11)

If we let x = x0 and y = x1 − x0 (so x+ y = x1) Eq. (37.10) may be written
as

f(x+ y) =
∑
|α|<N

∂αx f(x)
α!

yα +
∑

α:|α|=N

1
α!

(∫ 1

0

∂αx f(x+ sy)dνN (s)
)
yα.

(37.12)

Proof. This is a special case of Theorem 37.1. Notice that

vs = x(1)− x(s) = (1− s)(x1 − x0) = (1− s)v

and hence

RN =
1
N !

∫ 1

0

(
− d

ds
(1− s)N∂Nv f

)
(x(s))ds =

1
N !

∫ 1

0

(
∂Nv f

)
(x(s))N(1−s)N−1ds.

Example 37.4. Let X = (−1, 1) ⊂ R, β ∈ R and f(x) = (1− x)β . The reader
should verify

f (m)(x) = (−1)mβ(β − 1) . . . (β −m+ 1)(1− x)β−m

and therefore by Taylor’s theorem (Eq. (??) with x = 0 and y = x)

(1− x)β = 1 +
N−1∑
m=1

1
m!

(−1)mβ(β − 1) . . . (β −m+ 1)xm +RN (x) (37.13)

where

RN (x) =
xN

N !

∫ 1

0

(−1)Nβ(β − 1) . . . (β −N + 1)(1− sx)β−NdνN (s)

=
xN

N !
(−1)Nβ(β − 1) . . . (β −N + 1)

∫ 1

0

N(1− s)N−1

(1− sx)N−β
ds.

Now for x ∈ (−1, 1) and N > β,

0 ≤
∫ 1

0

N(1− s)N−1

(1− sx)N−β
ds ≤

∫ 1

0

N(1− s)N−1

(1− s)N−β
ds =

∫ 1

0

N(1− s)β−1ds =
N

β

and therefore,

|RN (x)| ≤ |x|N

(N − 1)!
|(β − 1) . . . (β −N + 1)| =: ρN .

Page: 773 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



774 37 Multinomial Theorems and Calculus Results

Since
lim sup

N→∞

ρN+1

ρN
= |x| · lim sup

N→∞

N − β
N

= |x| < 1

and so by the Ratio test, |RN (x)| ≤ ρN → 0 (exponentially fast) as N →∞.
Therefore by passing to the limit in Eq. (37.13) we have proved

(1− x)β = 1 +
∞∑
m=1

(−1)m

m!
β(β − 1) . . . (β −m+ 1)xm (37.14)

which is valid for |x| < 1 and β ∈ R. An important special cases is β = −1
in which case, Eq. (37.14) becomes 1

1−x =
∑∞
m=0 x

m, the standard geometric
series formula. Another another useful special case is β = 1/2 in which case
Eq. (37.14) becomes

√
1− x = 1 +

∞∑
m=1

(−1)m

m!
1
2
(
1
2
− 1) . . . (

1
2
−m+ 1)xm

= 1−
∞∑
m=1

(2m− 3)!!
2mm!

xm for all |x| < 1. (37.15)
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38

Zorn’s Lemma and the Hausdorff Maximal
Principle

Definition 38.1. A partial order ≤ on X is a relation with following proper-
ties

(i) If x ≤ y and y ≤ z then x ≤ z.
(ii)If x ≤ y and y ≤ x then x = y.
(iii)x ≤ x for all x ∈ X.

Example 38.2. Let Y be a set and X = 2Y . There are two natural partial
orders on X.

1. Ordered by inclusion, A ≤ B is A ⊂ B and
2. Ordered by reverse inclusion, A ≤ B if B ⊂ A.

Definition 38.3. Let (X,≤) be a partially ordered set we say X is linearly
a totally ordered if for all x, y ∈ X either x ≤ y or y ≤ x. The real numbers
R with the usual order ≤ is a typical example.

Definition 38.4. Let (X,≤) be a partial ordered set. We say x ∈ X is a
maximal element if for all y ∈ X such that y ≥ x implies y = x, i.e. there is
no element larger than x. An upper bound for a subset E of X is an element
x ∈ X such that x ≥ y for all y ∈ E.

Example 38.5. Let

X =
{
a = {1} b = {1, 2} c = {3} d = {2, 4} e = {2}

}
ordered by set inclusion. Then b and d are maximal elements despite that fact
that b � a and a � b. We also have

• If E = {a, e, c}, then E has no upper bound.

Definition 38.6. • If E = {a, e}, then b is an upper bound.
• E = {e}, then b and d are upper bounds.
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Theorem 38.7. The following are equivalent.

1. The axiom of choice: to each collection, {Xα}α∈A , of non-empty sets
there exists a “choice function,” x : A→

∐
α∈A

Xα such that x(α) ∈ Xα for

all α ∈ A, i.e.
∏
α∈AXα 6= ∅.

2. The Hausdorff Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If X is partially ordered set such that every linearly
ordered subset of X has an upper bound, then X has a maximal element.1

Proof. (2⇒ 3) Let X be a partially ordered subset as in 3 and let F =
{E ⊂ X : E is linearly ordered} which we equip with the inclusion partial
ordering. By 2. there exist a maximal element E ∈ F . By assumption, the
linearly ordered set E has an upper bound x ∈ X. The element x is maximal,
for if y ∈ Y and y ≥ x, then E ∪{y} is still an linearly ordered set containing
E. So by maximality of E, E = E∪{y} , i.e. y ∈ E and therefore y ≤ x showing
which combined with y ≥ x implies that y = x.2 (3⇒ 1) Let {Xα}α∈A be
a collection of non-empty sets, we must show

∏
α∈AXα is not empty. Let G

denote the collection of functions g : D(g) →
∐
α∈AXα such that D(g) is a

subset of A, and for all α ∈ D(g), g(α) ∈ Xα. Notice that G is not empty, for
we may let α0 ∈ A and x0 ∈ Xα and then set D(g) = {α0} and g(α0) = x0

to construct an element of G. We now put a partial order on G as follows. We
say that f ≤ g for f, g ∈ G provided that D(f) ⊂ D(g) and f = g|D(f). If
Φ ⊂ G is a linearly ordered set, let D(h) = ∪g∈ΦD(g) and for α ∈ D(g) let
h(α) = g(α). Then h ∈ G is an upper bound for Φ. So by Zorn’s Lemma there
exists a maximal element h ∈ G. To finish the proof we need only show that
D(h) = A. If this were not the case, then let α0 ∈ A \ D(h) and x0 ∈ Xα0 .
We may now define D(h̃) = D(h) ∪ {α0} and

1 If X is a countable set we may prove Zorn’s Lemma by induction. Let {xn}∞n=1

be an enumeration of X, and define En ⊂ X inductively as follows. For n = 1
let E1 = {x1}, and if En have been chosen, let En+1 = En ∪ {xn+1} if xn+1

is an upper bound for En otherwise let En+1 = En. The set E = ∪∞n=1En is a
linearly ordered (you check) subset of X and hence by assumption E has an upper
bound, x ∈ X. I claim that his element is maximal, for if there exists y = xm ∈ X
such that y ≥ x, then xm would be an upper bound for Em−1 and therefore
y = xm ∈ Em ⊂ E. That is to say if y ≥ x, then y ∈ E and hence y ≤ x, so
y = x. (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similarly one may show that 3 ⇒ 2. Let F = {E ⊂ X : E is linearly ordered}
and order F by inclusion. If M ⊂ F is linearly ordered, let E = ∪M =

⋃
A∈M

A.

If x, y ∈ E then x ∈ A and y ∈ B for some A,B ⊂M. Now M is linearly ordered
by set inclusion so A ⊂ B or B ⊂ A i.e. x, y ∈ A or x, y ∈ B. Since A and B are
linearly order we must have either x ≤ y or y ≤ x, that is to say E is linearly
ordered. Hence by 3. there exists a maximal element E ∈ F which is the assertion
in 2.
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h̃(α) =
{
h(α) if α ∈ D(h)
x0 if α = α0.

Then h ≤ h̃ while h 6= h̃ violating the fact that h was a maximal element.
(1⇒ 2) Let (X,≤) be a partially ordered set. Let F be the collection of
linearly ordered subsets of X which we order by set inclusion. Given x0 ∈ X,
{x0} ∈ F is linearly ordered set so that F 6= ∅. Fix an element P0 ∈ F . If P0

is not maximal there exists P1 ∈ F such that P0  P1. In particular we may
choose x /∈ P0 such that P0 ∪ {x} ∈ F . The idea now is to keep repeating
this process of adding points x ∈ X until we construct a maximal element
P of F . We now have to take care of some details. We may assume with out
loss of generality that F̃ = {P ∈ F : P is not maximal} is a non-empty set.
For P ∈ F̃ , let P ∗ = {x ∈ X : P ∪ {x} ∈ F} . As the above argument shows,
P ∗ 6= ∅ for all P ∈ F̃ . Using the axiom of choice, there exists f ∈

∏
P∈F̃ P

∗.
We now define g : F → F by

g(P ) =
{

P if P is maximal
P ∪ {f(x)} if P is not maximal. (38.1)

The proof is completed by Lemma 38.8 below which shows that g must have
a fixed point P ∈ F . This fixed point is maximal by construction of g.

Lemma 38.8. The function g : F → F defined in Eq. (38.1) has a fixed
point.3

Proof. The idea of the proof is as follows. Let P0 ∈ F be chosen
arbitrarily. Notice that Φ =

{
g(n)(P0)

}∞
n=0
⊂ F is a linearly ordered set and it

is therefore easily verified that P1 =
∞⋃
n=0

g(n)(P0) ∈ F . Similarly we may repeat

the process to construct P2 =
∞⋃
n=0

g(n)(P1) ∈ F and P3 =
∞⋃
n=0

g(n)(P2) ∈ F ,

etc. etc. Then take P∞ = ∪∞n=0Pn and start again with P0 replaced by P∞.
Then keep going this way until eventually the sets stop increasing in size, in
which case we have found our fixed point. The problem with this strategy is
that we may never win. (This is very reminiscent of constructing measurable
sets and the way out is to use measure theoretic like arguments.) Let us now
start the formal proof. Again let P0 ∈ F and let F1 = {P ∈ F : P0 ⊂ P}.
Notice that F1 has the following properties:

1. P0 ∈ F1.
2. If Φ ⊂ F1 is a totally ordered (by set inclusion) subset then ∪Φ ∈ F1.
3. If P ∈ F1 then g(P ) ∈ F1.

3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set P ∈ F with a maximal number of elements. In this case the
condition that P ⊂ g(P ) would imply that P = g(P ), otherwise g(P ) would have
more elements than P.
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Let us call a general subset F ′ ⊂ F satisfying these three conditions a
tower and let

F0 = ∩{F ′ : F ′ is a tower} .

Standard arguments show that F0 is still a tower and clearly is the smallest
tower containing P0. (Morally speaking F0 consists of all of the sets we were
trying to constructed in the “idea section” of the proof.) We now claim that
F0 is a linearly ordered subset of F . To prove this let Γ ⊂ F0 be the linearly
ordered set

Γ = {C ∈ F0 : for all A ∈ F0 either A ⊂ C or C ⊂ A} .

Shortly we will show that Γ ⊂ F0 is a tower and hence that F0 = Γ. That is
to say F0 is linearly ordered. Assuming this for the moment let us finish the
proof. Let P ≡ ∪F0 which is in F0 by property 2 and is clearly the largest
element in F0. By 3. it now follows that P ⊂ g(P ) ∈ F0 and by maximality of
P, we have g(P ) = P, the desired fixed point. So to finish the proof, we must
show that Γ is a tower. First off it is clear that P0 ∈ Γ so in particular Γ is
not empty. For each C ∈ Γ let

ΦC := {A ∈ F0 : either A ⊂ C or g(C) ⊂ A} .

We will begin by showing that ΦC ⊂ F0 is a tower and therefore that ΦC = F0.
1. P0 ∈ ΦC since P0 ⊂ C for all C ∈ Γ ⊂ F0. 2. If Φ ⊂ ΦC ⊂ F0 is totally
ordered by set inclusion, then AΦ := ∪Φ ∈ F0. We must show AΦ ∈ ΦC , that
is that AΦ ⊂ C or C ⊂ AΦ. Now if A ⊂ C for all A ∈ Φ, then AΦ ⊂ C and
hence AΦ ∈ ΦC . On the other hand if there is some A ∈ Φ such that g(C) ⊂ A
then clearly g(C) ⊂ AΦ and again AΦ ∈ ΦC . 3. Given A ∈ ΦC we must show
g(A) ∈ ΦC , i.e. that

g(A) ⊂ C or g(C) ⊂ g(A). (38.2)

There are three cases to consider: either A  C, A = C, or g(C) ⊂ A. In the
case A = C, g(C) = g(A) ⊂ g(A) and if g(C) ⊂ A then g(C) ⊂ A ⊂ g(A)
and Eq. (38.2) holds in either of these cases. So assume that A  C. Since
C ∈ Γ, either g(A) ⊂ C (in which case we are done) or C ⊂ g(A). Hence we
may assume that

A  C ⊂ g(A).

Now if C were a proper subset of g(A) it would then follow that g(A)\A would
consist of at least two points which contradicts the definition of g. Hence we
must have g(A) = C ⊂ C and again Eq. (38.2) holds, so ΦC is a tower. It is
now easy to show Γ is a tower. It is again clear that P0 ∈ Γ and Property
2. may be checked for Γ in the same way as it was done for ΦC above. For
Property 3., if C ∈ Γ we may use ΦC = F0 to conclude for all A ∈ F0, either
A ⊂ C ⊂ g(C) or g(C) ⊂ A, i.e. g(C) ∈ Γ. Thus Γ is a tower and we are
done.
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39

Nets

In this section (which may be skipped) we develop the notion of nets. Nets are
generalization of sequences. Here is an example which shows that for general
topological spaces, sequences are not always adequate.

Example 39.1. Equip CR with the topology of pointwise convergence, i.e. the
product topology and consider C(R,C) ⊂ CR. If {fn} ⊂ C(R,C) is a sequence
which converges such that fn → f ∈ CR pointwise then f is a Borel measurable
function. Hence the sequential limits of elements in C(R,C) is necessarily
contained in the Borel measurable functions which is properly contained in
CR. In short the sequential closure of C(R,C) is a proper subset of CR. On
the other hand we have C(R,C) = CR. Indeed a typical open neighborhood
of f ∈ CR is of the form

N = {g ∈ CR : |g(x)− f(x)| < ε for x ∈ Λ},

where ε > 0 and Λ is a finite subset of R. Since N ∩ C(R,C) 6= ∅ it follows
that f ∈ C(R,C).

Definition 39.2. A directed set (A,≤) is a set with a relation “≤” such
that

1. α ≤ α for all α ∈ A.
2. If α ≤ β and β ≤ γ then α ≤ γ.
3. A is cofinite, i.e. α, β ∈ A there exists γ ∈ A such that α ≤ γ and β ≤ γ.

A net is function x : A → X where A is a directed set. We will often
denote a net x by {xα}α∈A.

Example 39.3 (Directed sets).

1. A = 2X ordered by inclusion, i.e. α ≤ β if α ⊂ β. If α ≤ β and β ≤ γ then
α ⊂ β ⊂ γ and hence α ≤ γ. Similalry if α, β ∈ 2X then α, β ≤ α∪β =: γ.

2. A = 2X ordered by reverse inclusion, i.e. α ≤ β if β ⊂ α. If α ≤ β and
β ≤ γ then α ⊇ β ⊇ γ and so α ≤ γ and if α, β ∈ A then α, β ≤ α ∩ β.
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3. Let A = N equipped with the usual ordering on N. In this case nets are
simply sequences.

Definition 39.4. Let {xα}α∈A ⊂ X be a net then:

1. xα converges to x ∈ X (written xα → x) iff for all V ∈ τx, xα ∈ V
eventually, i.e. there exists β = βV ∈ A such that xα ∈ V for all α ≥ β.

2. x is a cluster point of {xα}α∈A if for all V ∈ τx, xα ∈ V frequently,
i.e. for all β ∈ A there exists α ≥ β such that xα ∈ V.

Proposition 39.5. Let X be a topological space and E ⊂ X. Then

1. x is an accumulation point of E (see Definition 13.29) iff there exists net
{xα} ⊂ E \ {x} such that xα → x.

2. x ∈ Ē iff there exists {xα} ⊂ E such that xα → x.

Proof.

1. Suppose x is an accumulation point of E and let A = τx be ordered by
reverse set inclusion. To each α ∈ A = τx choose xα ∈ (α\{x})∩E which
is possible sine x is an accumulation point of E. Then given V ∈ τx for
all α ≥ V (i.e. and α ⊂ V ), xα ∈ V and hence xα → x. Conversely if
{xα}α∈A ⊂ E \ {x} and xα → x then for all V ∈ τx there exists β ∈ A
such that xα ∈ V for all α ≥ β. In particular xα ∈ (E \ {x}) ∩ V 6= ∅ and
so x ∈ acc(E) – the accumulation points of E.

2. If {xα} ⊂ E such that xα → x then for all V ∈ τx there exists β ∈ A such
that xα ∈ V ∩ E for all α ≥ β. In particular V ∩ E 6= ∅ for all V ∈ τx
and this implies x ∈ Ē. For the converse recall Proposition 13.31 implies
E = E ∪ acc(E). If x ∈ acc(E) there exists a net {xα} ⊂ E such that
xα → x by item 1. If x ∈ E we may simply take xn = x for all n ∈ A := N.

Proposition 39.6. Let X and Y be two topological spaces and f : X → Y
be a function. Then f is continuous at x ∈ X iff f(xα) → f(x) for all nets
xα → x.

Proof. If f is continuous at x and xα → x then for any V ∈ τf(x) there
exists W ∈ τx such that f(W ) ⊂ V. Since xα ∈ W eventually, f(xα) ∈ V
eventually and we have shown f(xα) → f(x). Conversely, if f is not contin-
uous at x then there exists W ∈ τf(x) such that f(V ) * W for all V ∈ τx.
Let A = τx be ordered by reverse set inclusion and for V ∈ τx choose (axiom
of choice) xV ∈ V such that f(xV ) /∈ W. Then xV → x since for any U ∈ τx,
xV ∈ U if V ≥ U (i.e. V ⊂ U). On the over hand f(xV ) /∈ W for all V ∈ τx
showing f(xV )9 f(x).

Definition 39.7 ( Subnet). A net 〈yβ〉β∈B is a subnet of a net 〈xα〉α∈A if
there exists a map β ∈ B → αβ ∈ A such that
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1. yβ = xαβ
for all β ∈ B and

2. for all α0 ∈ A there exists β0 ∈ B such that αβ ≥ α0 whenever β ≥ β0,
i.e. αβ ≥ α0 eventually.

Proposition 39.8. A point x ∈ X is a cluster point of a net 〈xα〉α∈A iff
there exists a subnet 〈yβ〉β∈B such that yβ → x.

Proof. Suppose 〈yβ〉β∈B is a subnet of 〈xα〉α∈A such that yβ = xαβ
→ x.

Then for W ∈ τx and α0 ∈ A there exists β0 ∈ B such that yβ = xαβ
∈ W

for all β ≥ β0. Choose β1 ∈ B such that αβ ≥ α0 for all β ≥ β1 then choose
β3 ∈ B such that β3 ≥ β1 and β3 ≥ β2 then αβ ≥ α0 and xαβ

∈ W for all
β ≥ β3 which implies xα ∈ W frequently. Conversely assume x is a cluster
point of a net 〈xα〉α∈A. We mak B := τx × A into a directed set by defining
(U,α) ≤ (U ′, α′) iff α ≤ α′ and U ⊇ U ′. For all (U, γ) ∈ B = τx × A,
choose α(U,γ) ≥ γ in A such that y(U,γ) = xα(U,γ) ∈ U. Then if α0 ∈ A for all
(U ′, γ′) ≥ (U,α0), i.e. γ′ ≥ α0 and U ′ ⊂ U, α(U ′,γ′) ≥ γ′ ≥ α0. Now if W ∈ τx
is given, then y(U,γ) ∈ U ⊂ W for all U ⊂ W . Hence fixing α ∈ A we see if
(U, γ) ≥ (W,α) then y(U,γ) = xα(U,γ) ∈ U ⊂W showing that y(U,γ) → x.

Exercise 39.1 (Folland #34, p. 121). Let 〈xα〉α∈A be a net in a topological
space and for each α ∈ A let Eα ≡ {xβ : β ≥ α}. Then x is a cluster point of
〈xα〉 iff x ∈

⋂
α∈A

Eα.

Solution to Exercise (39.1). If x is a cluster point, then given W ∈ τx we
know Eα ∩W 6= ∅ for all α ∈ E since xβ ∈ W frequently thus x ∈ Eα for all
α, i.e. x ∈

⋂
α∈A

Eα. Conversely if x is not a cluster point of 〈xα〉 then there

exists W ∈ τx and α ∈ A such that xβ /∈ W for all β ≥ α, i.e. W ∩ Eα = ∅.
But this shows x /∈ Eα and hence x /∈

⋂
α∈A

Eα.

Theorem 39.9. A topological space X is compact iff every net has a cluster
point iff every net has a convergent subnet.

Proof. Suppose X is compact, 〈xα〉α∈A ⊂ X is a net and let Fα :=
{xβ : β ≥ α}. Then Fα is closed for all α ∈ A, Fα ⊂ Fα′ if α ≥ α′ and
Fα1 ∩· · ·∩Fαn

⊇ Fγ whenever γ ≥ αi for i = 1, . . . , n. (Such a γ always exists
since A is a directed set.) Therefore Fα1 ∩ · · · ∩Fαn

6= ∅ i.e. {Fα}α∈A has the
finite intersection property and since X is compact this implies there exists
x ∈

⋂
α∈a

Fα By Exercise 39.1, it follows that x is a cluster point of 〈xα〉α∈A.

Conversely, if X is not compact let {Uj}j∈J be an infinite cover with no finite
subcover. Let A be the directed set A = {α ⊂ J : # (α) <∞} with α ≤ β iff
α ⊂ β. Define a net 〈xα〉α∈A in X by choosing

xα ∈ X \

⋃
j∈α

Uj

 6= ∅ for all α ∈ A.
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This net has no cluster point. To see this suppose x ∈ X and j ∈ J is chosen
so that x ∈ Uj . Then for all α ≥ {j} (i.e. j ∈ α), xα /∈

⋃
γ∈α

Uα ⊇ Uj and

in particular xα /∈ Uj . This shows xα /∈ Uj frequently and hence x is not a
cluster point.
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40

Assigned Problems

Only hand in the problems with (*) after them. However, you should make
sure that you are able to do all of the problems.

Fall Quarter, 2003

40.1 Homework #1 is Due Monday, October 6, 2003.

Exercises: 2.1*, 2.2, 2.3*, 2.4*, 2.5, 3.1, 3.2, 3.3*, 3.8*, 4.3*, 4.4, 4.5*, 4.6*

40.2 Homework #2 is Due Monday, October 13, 2003.

Exercises: 4.7, 4.9, 4.10* (Hint: use 4.9), 4.11*, 4.12*, 4.13, 4.14, 4.15*, 6.2*,
6.3*, 6.4*, 6.7, 6.8, 6.9*, 6.10, 6.11*, 6.12*, (Hint: use the dominated conver-
gence theorem.)

40.3 Homework #3 is Due Wednesday, October 22, 2003.

Exercises: 6.13, 7.1*, 7.2*, 7.3*, 7.5, 7.6*, 7.7*, 7.9*, 7.11* (definitely do this
problem)

40.4 Homework #4 is Due Friday October 31, 2003.

Exercises: 10.1, 10.2, 10.3*, 10.6*, 10.12*, 10.14*, 10.15, 10.18, 10.20*, 10.21*
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40.5 Homework #5, 240A - 2003 due Monday,
November 10, 2003.

Exercises: 10.4*, 10.5*, 13.1, 13.2*, 13.3, 13.4*, 13.7*, 18.1*, 18.2, 18.3*, 18.4*

40.6 Homework #6, 240A - 2003 Due Wednesday,
November 19, 2003.

Exercises: 13.5, 13.6*, 13.24*, 13.25*, 13.28*, 18.5, 18.6*, 18.9*, 18.10*, 18.11*

40.7 Homework #7 is Due Friday, December 5, 2003.

19.2, 19.3*, 19.4*, 19.5*, 19.6*, 19.7*, 19.8*, 19.9, 19.11*(Hint: ”Fatou times
two.”), 19.15*, 19.17* and 19.18* (= Folland p. 60: (# 2.31b,e)*).
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Winter Quarter, 2004

40.8 Homework #8 is Due Wednesday January 14, 2004

20.3, 20.6*, 20.7, 20.8*, 20.9, 20.10*, 20.11*, 20.12, 20.16*, 20.18*

40.9 Homework #9 is Due Wednesday January 21, 2004

21.1*,21.9*, 21.12*, 20.19*.

40.10 Homework #10 is Due Wednesday January 28,
2004

Chapter 21. 21.2, 21.5*, 21.6, 21.7*, 21.13**$.
Chapter 10. 13.14*, 13.15, 13.17*, 13.18*, 13.19*

40.11 Homework #11 is Due Wednesday February 4,
2004.

Chapter 10. 13.10*, 13.11*, 13.12*, 13.20, 13.21, 13.22*, 13.23
Chapter 11. 14.2, 14.3*$, 14.4, 14.5*, 14.6*, 14.7, 14.8*, 14.9, 14.10, 14.11*,

14.15

40.12 Homework #12 is Due Friday February 13, 2004.

Chapter 21. 21.3*, 21.4
Chapter 11. 14.16*, 14.17*, 14.18, 14.19*, 14.20*, 14.22*
Chapter 12. 15.1, 15.2*, 15.5*, 15.7, 15.8*, 15.9, 15.10

40.13 Homework #13 is Due Friday, February 27, 2004.

Chapter 12. 15.7*, 15.8*, 15.9, 15.10 (just look at this one)
Chapter 22. 22.1*, 22.5, 22.11*, 22.12*, 22.13*

40.14 Homework #14 is Due Friday, March 5, 2004.

Chapter 14. 8.1*, 8.2, 8.3*, 8.5, 8.6, 8.8, 8.9*
Chapter 22. 22.3, 22.4*, 22.8*, 22.9*, 22.10*
Chapter 23. 23.7*
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40.15 Homework #15 is Due Friday, March 12, 2004.

Chapter 14. 8.7*, 8.15*
Chapter 23. 23.1*, 23.2*, 23.3, 23.4*, 23.5*, 23.8*, 23.10*
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Spring Quarter, 2004

40.16 Homework #16 is Due Monday, April 02, 2004.

Chapter 23. 23.6*, 23.16*, 23.17, 23.18, 23.19, 23.20*, 23.21*

40.17 Homework #17 is Due Friday, April 09, 2004.

Chapter 24. 24.3, 24.4*, 24.5*, 24.6*, 24.7*, 24.8, 24.12*, 24.15*

40.18 Homework #18 is Due Monday, April 19, 2004.

Chapter 25. 25.1, 25.2*, 25.3*, 25.4, 25.6*, 25.8*, 25.15*, 25.16*,

Chapter 16. 16.1*, 16.2*.

40.19 Homework #19 is Due Monday, April 26, 2004.

Chapter 25. 25.10, 25.18*, 25.21*, 25.22*, 25.26*, 25.28*, 25.31*, 25.36*,
25.37*

40.20 Homework #20 is Due Monday, May 3, 2004.

Chapter 28. 28.4, 28.6, 28.8*, 28.9*, 28.10*, 28.11*, 28.13*, 28.15, 28.16, 28.17

Chapter 29. 29.1*, 29.2*, 29.3*
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41

Study Guides

41.1 Study Guide For Math 240A: Fall 2003

41.1.1 Basic things you should know about numbers and limits

1. I am taking for granted that you know the basic properties of R and C
and that they are complete.

2. Should know how to compute lim an, lim sup an and lim inf an and their
basic properties. See Lemma 4.2 and Proposition 4.5 for example.

41.1.2 Basic things you should know about topological and
measurable spaces:

1. You should know the basic definitions, Definition 13.1 and Definition 18.1.
2. It would be good to understand the notion of generating a topology or a σ

– algebra by either a collection of sets or functions. This is key to under-
standing product topologies and product σ – algebras. See Propositions
13.7, 13.21 and 18.4 and Definition 18.24 and Proposition 18.25.

3. You should be able to check whether a given function is continuous or
measurable. Hints:
a) If possible avoid going back to the definition of continuity or measura-

bility. Do this by using the stability properties of continuous (measur-
able) functions. For example continuous (measurable) functions are
stable under compositions and algebraic operations, under uniform
(pointwise) limits and sums. Measurable functions are also stable un-
der taking sup, inf lim inf and lim sup of a sequence of measruable
functions, see Proposition 18.36. Also recall if we are using the Borel
σ – algebras, then continuous functions are automatically measurable.

b) It is also possible to check continuity and measurability by splitting the
space up and checking continuity and measurability on the individual
pieces. See Proposition 13.19 and Exercise 13.7 and Proposition 18.29.
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c) If you must go back to first principles, then the fact that σ
(
f−1(E)

)
=

f−1(σ(E)) and τ
(
f−1(E)

)
= f−1(τ(E)) is key, see Lemma 18.22 and

13.14 respectively.
4. Dynkin’s multiplicative system Theorems 18.51 and 18.52 are extremely

useful for understanding the structure of measurable functions. They are
also very useful for proving general theorems which are to hold for all
bounded measurable functions. See the examples following Theorem 18.52
and the examples in Section 19.7.
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41.1.3 Basic things you should know about Metric Spaces

1. The associated topology, see Example 13.3.
2. How to find the closure of a set. I typically would use the sequential

definition of closure here.
3. Continuity is equivalent to the sequential notion of continuity, see Section

6.1.
4. The continuity properties of the metric, see Lemma 6.6.
5. The notions of Cauchy sequences and completeness.

41.1.4 Basic things you should know about Banach spaces

1. They are complete normed spaces.
2. `p (µ) – spaces are Banach spaces, see Theorems 5.6, 5.8, and 7.5. Later

we will see that all of these theorem hold for more general Lp (µ) – spaces
as well.

3. BC (X) is a closed subset of the Banach space `∞ (X) and hence is a
Banach space, see Lemma 7.3.

4. The space of operators L (X,Y ) between two Banach spaces is a Banach
space. In particular the dual space X∗ is a Banach space, see Proposition
7.12.

5. How to find the norm of an operator and the basic properties of the
operator norm, Lemma 7.10.

6. Boundedness of an operator is equivalent to continuity, Proposition 7.8.
7. Small perturbations of an invertible operator is still invertible, see Propo-

sition 7.21 and Corollary 7.22.

41.1.5 The Riemann integral

The material on Riemann integral in Chapter 10 served as an illustration
of much of the general Banach space theory described above. We also saw
interesting applications to linear ODE.

However the most important result from Chapter 10 is the Weierstrass
Approximation Theorem 10.34 and its complex version in Corollary 10.36.
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41.1.6 Basic things you should know about Lebesgue integration
theory and infinite sums

Recall that the Lebesgue integral relative to a counting type measure corre-
sponds to an infinite sum, see Lemma 19.15. As a rule one does not need to
go back to the definitions of integrals to work with them. The key points to
working with integrals (and hence sums as well) are the following facts.

1. The integral is linear and satisfies the monotonicity properties:
∫
f ≤

∫
g

if f ≤ g a.e. and
∣∣∫ f ∣∣ ≤ ∫ |f | .

2. The monotone convergence Theorem 19.16 and its Corollary 19.18 about
interchanging sums and integrals.

3. The dominated convergence Theorem 19.38 and its Corollary 19.39 about
interchanging sums and integrals.

4. Fatou’s Lemma 19.28 is used to a lesser extent.
5. Fubini and Tonelli theorems for computing multiple integrals. We have

not done this yet for integrals, but the result for sums is in Theorems 4.22
and 4.23.

6. To compute integrals involving Lebesgue measure you will need to know
the basic properties of Lebesgue measure, Theorem 19.10 and the funda-
mental theorem of calculus, Theorem 19.40.

7. You should understand when it is permissible to differentiate past the
integral, see Corollary 19.43.

Remark 41.1. Again let me stress that the above properties are typically all
that are needed to work with integrals (sums). In particular to understand∫
X
fdµ for a general measurable f it suffices to understand:

1. If A ∈ M, then
∫
X

1Adµ = µ (A) . By linearity of the integral this deter-
mines

∫
X
fdµ on simple functions f.

2. Using either the monotone or dominated convergence theorem along with
the approximation Theorem 18.42,

∫
X
fdµ may be written as a limit of

integrals of simple functions.
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41.2 Study Guide For Math 240B: Winter 2004

41.2.1 Basic things you should know about Multiple Integrals:

1. Product measures, Fubini and Tonelli theorems for computing multiple
integrals, see Theorems 20.8 and 20.9. Keep in mind Driver’s “rule;” if
you see a multiple integral you should probably try to change the order
of integration.

2. Lebesgue Measure on Rd and the change of variables formula, see Theorem
20.19. Also how to work in “abstract polar” coordinates, see Theorem
20.28.

41.2.2 Basic things you should know about Lp – spaces

1. Lp – spaces are Banach spaces, Theorems 21.19 and 21.20.
2. Key inequalities:

a) Holder inequality, Theorem 21.2.
b) Minkowski’s Inequality, Theorem 21.4.
c) Jensen’s Inequality, Theorem 21.10.
d) Chebyshev’s inequality, Lemma 21.14.
e) Minkowski’s Inequality for Integrals, Theorem 21.27.

You should be able to use these inequalities in basic situations.
3. Recall that the Lp(µ) – norm controls two types of behaviors of f, namely

the “behavior at infinity” and the behavior of “local singularities.” See
the comments after Theorem 21.20.

4. You should have some feeling for the different modes of convergence, see
Section 21.2.

41.2.3 Additional Basic things you should know about topological
spaces:

1. The operations of closure, boundary and interior and in particular the
interaction of closure with relative topologies. See Proposition 13.31 and
Lemma 13.32.

2. The basic definitions of first countability, second countability, separability,
density, etc., see Section 13.4.

3. The basic properties of connected sets, Theorems 13.48, 13.49, 13.50 and
Proposition 13.53.

4. Compactness:
a) The continuous image of compact sets are compact, Exercise 14.2.
b) Dini’s Theorem, Exercise 14.3.
c) Equivalent characterizations of compactness in metric spaces, Theo-

rem 14.7. Also see Corollary 14.9. You should be able to check com-
pactness of a set in basic situations.
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d) Extreme value theorem (Exercise 14.5), uniform continuity (Exercise
14.6).

e) The consequences for normed vector spaces, see Theorem 14.12, Corol-
lary 14.13, Corollary 14.14 and Theorem 14.15.

f) Ascoli-Arzela Theorem 14.29 for checking function space compactness.
g) The definition of a compact operator, Definition 14.16.
h) The notions of locally and σ - compact spaces, Section 14.3.
i) Tychonoff’s Theorem 14.34, i.e. the product of compact sets is still

compact.

41.2.4 Things you should know about Locally Compact Hausdorff
Spaces:

1. Know the definition.
2. They have lots of open sets and lots of continuous functions, see Propo-

sitions 15.5 and 15.7 and Urysohn’s Lemma 15.8 for LCH Spaces and the
Locally Compact Tietz Extension Theorem15.9.

3. Basic knowledge of partitions of unity, Section 15.2.
4. Alexanderov Compactification, Proposition 15.24. (Probably will not ap-

pear on any test.)
5. The Stone-Weierstrass Theorem, see Theorem 15.31 and Corollary 15.32.

41.2.5 Approximation Theorems and Convolutions

1. The density of Cc(X) in Lp(µ) for all p ∈ [1,∞) when (X, τ) is a second
countable locally compact Hausdorff space and µ : BX → [0,∞] be a
K-finite measure, see Theorem 22.8. See the important special cases in
Corollaries 22.9 and 22.10. Also see the closely related Lemma 22.11.

2. Density of smaller spaces of functions by using the results in item 1. with
the Stone Weierstrass theorem, see Exercises 22.11 – 22.14.

3. The density of Sf (A, µ) in Lp(µ) when µ is σ - finite on A andM = σ (A) ,
see Theorem 22.14. Also see Theorem 22.15 on the separability of Lp -
spaces and Example 22.16.

4. Convolution
a) Know the Definition 22.20
b) Know ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p , Proposition 22.23.
c) Understand the basic properties of convolution in Lemma 22.27.
d) Understand Theorem 22.32 about approximate δ – functions.
e) Know that f ∗ g is smooth if g ∈ C∞c

(
Rd
)
, see Proposition 22.34.

Coupling this with Theorem 22.32 shows (for example): 1) continuous
functions may be locally approximated by C∞ - functions, 2) C∞c

(
Rd
)

is dense in Lp
(
Rd, µ

)
where p ∈ [1,∞) and µ is any K – finite mea-

sure on BRd (see Corollary 22.38 more generally), 3) there are C∞

versions of Urysohn’s Lemma (Corollary 22.35) and smooth versions
of partitions of unity, see Section 22.2.1.
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f) The integration by parts Lemma 22.36 is also often very useful.

41.2.6 Things you should know about Hilbert Spaces

1. The definition and the fact that L2 (µ) is an example.
2. The Schwarz Inequality Theorem 8.2 and the fact that the Hilbert norm

is a norm, Corollary 8.3.
3. The notions of orthogonality, see Proposition 8.5.
4. The Best Approximation Theorem 8.10 and the Projection Theorem 8.13,

see also Corollary 8.14.
5. The very important Riesz Theorem 8.15.
6. The notion of the adjoint of operators and their properties in Proposition

8.16 and Lemma 8.17.
7. The notions of orthonormal bases on Hilbert Spaces and their basic prop-

erties, see Section 8.1. Basically the results of this section, show you may
manipulate with orthonormal bases on Hilbert spaces as you would in
finite dimensional inner product spaces. Understand the examples in Ex-
ample 23.2 and the important Fourier Series example in Theorem 23.10.

8. Many of the basic properties about Hilbert spaces can easily be deduced
from your knowledge about `2 (X) and the fact that every Hilbert space
is unitarily equivalent (see Definition 8.29) to such a Hilbert space, see
Exercise 8.7.

9. The notion of the spectrum of an operator, Definition 8.30.
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Function
continuous, 50, 194
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Hahn-Banach Theorem, 491
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Homeomorphism, 194

Minikowski functional, 490

Neighborhood, 193
base, 193

open, 193

Open, see Sets
Open cover, 199

Product topology, 200

Reflexive, see Banach space

Sets
closed, 193
open, 193

Sub-base, see Topology
Summable, 27

Topological Space, 193
Topology, 193

base, 195
discrete, 194
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trivial, 194
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