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Part 1

Background Material






1

Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.

a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c) Integration relative to different weights or densities including singular
weights.
d) Characterization of dual spaces.
e) Completeness.
2. Infinite dimensional Linear algebra.
3. ODE and PDE.
4. Harmonic and Fourier Analysis.
5. Probability Theory






2

Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative inte-
gers and Z = Ny U (—N) — the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter [3| below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let Y~ denote the collection of all
functions f + X — Y. If X = N, we will say that f € YN is a sequence
with values in Y and often write f, for f(n) and express f as {fn}or; -

If X = {1,2,...,N}, we will write Y~ in place of Y{12N}t and denote
feYN by f=(f1,fo...,fn) where f, = f(n).

Notation 2.2 More generally if {X, : o € A} is a collection of non-empty

sets, let X4 = [] Xa and m : Xa — X be the canonical projection map
acA
defined by wo(x) = xo. If If X, = X for some fized space X, then we will

write [] Xo as XA rather than X 4.
acA

Recall that an element x € X 4 is a “choice function,” i.e. an assignment
To = z(a) € X, for each a € A. The axiom of choice (See Appendix [38])
states that X 4 # () provided that X, # ) for each a € A.

Notation 2.3 Given a set X, let 2% denote the power set of X — the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={ze X :ax)=1} C X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.
For A € 2% let



6 2 Set Operations
A =X\A={zeX: :x ¢ A}
and more generally if A, B C X let
B\A:={zxeB:x¢ A} = AnB".
We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\ B).

As usual if {A},; is an indexed collection of subsets of X we define the
union and the intersection of this collection by

Uacrdo :={z€eX:Fael 5 zecA,} and
Nacilo ={zeX :z€ AVael}.

Notation 2.4 We will also write HaeI A, for UgerAn in the case that
{Aa}oer are pairwise disjoint, i.e. Aq N Ag =0 if o # 3.

Notice that U is closely related to 3 and N is closely related to V. For
example let {4, }°7 | be a sequence of subsets from X and define

{410} ={zeX :#{n:z € A,} =} and
{4, a.a.} :=={zr € X : z € A, for all n sufficiently large}.

(One should read {A,, i.0.} as A, infinitely often and {4,, a.a.} as A, almost
always.) Then z € {4,, i.0.} iff

VNeNdn>N>zxe€A,
and this may be expressed as

{4, 1.0.} =NX_1 Un>nN 4p.
Similarly, x € {4, a.a.} iff

dNeN>Vn>N, x€ A,
which may be written as

{4, a.a.} =UN_1 Np>n Ay,

Definition 2.5. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).
1. If A C X is a subset of a countable set X then A is countable.

2. Any infinite subset A C N is in one to one correspondence with N.
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2 Set Operations 7

3. A non-empty set X is countable iff there exists a surjective map, g : N —
X.

4. If X and Y are countable then X XY is countable.

5. Suppose for each m € N that A, is a countable subset of a set X, then
A =UX_1 A is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X
is uncountable. In particular 2% is uncountable for any infinite set X.

Proof. 1. If f: X — N is an injective map then so is the restriction, f|a,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

f(n+1)=min A\ {f(1),...,f(n)}.

Since A is infinite the process continues indefinitely. The function f: N — A
defined this way is a bijection. 3. If g : N — X is a surjective map, let

f(z) =ming™! ({z}) = min{n € N: f(n) = z}.

Then f: X — N is injective which combined with item 2. (taking A = f(X))
shows X is countable. Conversely if f : X — N is injective let o € X be
a fixed point and define g : N — X by g(n) = f~!(n) for n € f(X) and
g(n) = xg otherwise. 4. Let us first construct a bijection, h, from N to N x N.
To do this put the elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...

and then “count” these elements by counting the sets {(¢,7) : ¢ + j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3), etc. etc. If f : N—=X and g : N =Y are
surjective functions, then the function (f x g) oh : N =X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) forall (m,n) e Nx N.5.If A = () then A
is countable by definition so we may assume A # (). With out loss of generality
we may assume A; # () and by replacing A,, by A; if necessary we may also
assume A,, # @ for all m. For each m € N let a,, : N —A,, be a surjective
function and then define f : Nx N — U°_, A, by f(m,n) := an(n). The
function f is surjective and hence so is the composition, foh : N — X x Y,
where h : N — N x N is the bijection defined above. 6. Let us begin by showing
9N = {0, 1}" is uncountable. For sake of contradiction suppose f : N — {0,1}"
is a surjection and write f (n) as (f1 (n), fa(n), fz(n),...). Now define a €
{0,1}" by a, := 1 — fu(n). By construction f, (n) # a, for all n and so
a ¢ f (N). This contradicts the assumption that f is surjective and shows 2~
is uncountable. For the general case, since Y5 C YX for any subset Yy C Y,
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8 2 Set Operations

if Y5¥ is uncountable then so is YX. In this way we may assume Yj is a two
point set which may as well be Yy = {0, 1} . Moreover, since X is an infinite
set we may find an injective map  : N — X and use this to set up an
injection, 4 : 2V — 2% by setting i (a) (z,,) = ay, for alln € N and i (a) (z) = 0
if ¢ {r,:n€N}. If 2% were countable we could find a surjective map
f:2% — N in which case foi:2Y¥ — N would be surjective as well. However
this is impossible since we have already seed that 2V is uncountable. ]

We end this section with some notation which will be used frequently in
the sequel.

Notation 2.7 If f : X — Y is a function and £ C 2V let
JIE = FNE) = BB € g},

If G C 2%, let
fG:={Ac2Y|f1(A) g}

Definition 2.8. Let £ C 2% be a collection of sets, A C X, iq: A — X be
the inclusion map (ia(x) = x for all x € A) and

Ea=i"()={ANE:E€¢&}.

2.1 Exercises

Let f: X — Y be a function and {A;};c; be an indexed family of subsets of
Y, verify the following assertions.

Exercise 2.1. (N;e1A4;)° = U;er AS.

Exercise 2.2. Suppose that B C Y, show that B\ (U;cr4;) = Nier (B \ 4;).
Exercise 2.3. f1(UjerA;) = Uier f1(A).

Exercise 2.4. f~1(NierA;) = Nierf 1 (A;).

Exercise 2.5. Find a counter example which shows that f(CND) = f(C)N
f(D) need not hold.
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3

A Brief Review of Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R, nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q:{m:m,nez:n#()}.
n
As usual, for ¢ € Q, we define

={ 4802
—qif ¢ <0.
Notice that if ¢ € Q and |¢| < % for all n, then ¢ = 0. Indeed ¢ # 0 then
lgf = 2 for some m,n € N and hence |¢| > 1. A similar argument shows
q>0iff g > —% for all n € N. These trivial remarks will be used in the future
without further reference.

Definition 3.1. A sequence {q, }..., C Q converges toq € Q if|g— q,| — 0
as n — 00, i.e. if for all N € N, |¢ — q,| < % for a.a. n. As usual if {gn}e,
converges to q we will write ¢, — q as n — 00 or ¢ = limy,_.o0 Gn.-

o0

Definition 3.2. A sequence {q,},_, C Q is Cauchy if |¢, — qgm| — 0 as
m,n — oo. More precisely we require for each N € N that |G — qn| < % for
a.a. pairs (m,n).

Exercise 3.1. Show that all convergent sequences {qn}f:;1 C Q are Cauchy
and that all Cauchy sequences {g, },_, are bounded — i.e. there exists M € N
such that

lgn| < M for all n € N.

Exercise 3.2. Suppose {¢, },., and {r,}, -, are Cauchy sequences in Q.
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1. Show {gn 4+ rn}rey and {gn - 7 },o, are Cauchy.
Now assume that {g, },-, and {r,} - are convergent sequences in Q.
2. Show {q,, + 1}y {qn - Tn},—, are convergent in Q and
lim (¢, +7,) = lim ¢, + lim r, and
n—oo n—oo n—oo
lim (gprn) = lim g, - lim 7.
n—oo n—oo n—oo
3. If we further assume g,, < r,, for all n, show lim,, o ¢, < lim,, o 7. (It
suffices to consider the case where g, = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
[B-14) below, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{gn}.~; C Q which is not convergent in Q.

1. Recall that there is no element g € Q such that ¢% = 2E| To each n € N
let m,, € N be chosen so that

m2 (my, + 1)2
2 < 2< o (3.1)

— Mmn

and let g, := ==

o0 .

2. Verify that g2 — 2 as n — oo and that {¢n},—; is a Cauchy sequence in
Q.
3. Show {g¢y},-; does not have a limit in Q.

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences a = {a,},., C Q and say
a,b € C are equivalent (write a ~ b) iff lim, . |an — b,| = 0. (The reader
should check that “ ~ 7 is an equivalence relation.)

Definition 3.3. A real number is an equivalence class, @ :={b€C:b~ a}
associated to some element a € C. The collection of real numbers will be
denoted by R. For g € Q, let i (q) = a where a is the constant sequence a,, = q
for allm € N. We will simply write 0 for i (0) and 1 fori(1).

Exercise 3.4. Given a,b € R show that the definitions

—a=(—a), at+tb:=(a+b)anda-b:=a-b

! This fact also shows that the intermediate value theorem, (See Theorem [13.50)
below.) fails when working with continuous functions defined over Q.
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3.1 The Real Numbers 11

are well defined. Here —a, a + b and a - b denote the sequences {—a,} -,

{an + by}, and {a, - by}, | respectively. Further verify that with these op-
erations, R becomes a field and the map 7 : Q — R is injective homomorphism
of fields. Hint: if @ # 0 show that @ may be represented by a sequence a € C
with |a,| > & for all n and some N € N. For this representative show the
sequence a1 = {a;l}zozl € C. The multiplicative inverse to @ may now be

constructed as: % =al:= {agl}f;r
Definition 3.4. Let a,b € R. Then

1. a > 0 if there exists an N € N such that a,, > ﬁ for a.a. n.

2.a > 0 iff either a > 0 or a = 0. Equivalently (as the reader should verify),
a >0 iff for all N € N, a,, > —% for a.a. n.

3. Writea>borb<aifa—b>0

4. Writea>borb<a ifd—BEO.

Exercise 3.5. Show “ > 7 make R into a linearly ordered field and the map
1 : Q — R preserves order. Namely if a,b € R then

1. exactly one of the following relations hold: @ < bora>bora=bh.
2.Ifa>0andb>0thena+b>0and a-b>0.
3. If g,r € Q then ¢ < riff i (q) <i(r).

The absolute value of a real number a is defined analogously to that of
a rational number by
_ a ifa>0
lal =

—aifa<0’
Observe this definition is consistent with our previous definition of the abso-
lute value on Q, namely i (|g|) = |i(¢)|. Also notice that @ = 0 (i.e. a ~ 0

where 0 denotes the constant sequence of all zeros) iff for all N € N, |a,,| < %
for a.a. n. This is equivalent to saying |a| < ¢ (%) forall N e Niffa=0.

Exercise 3.6. Given @, b € R show
|ab| = |a| |b| and |a+b| < |a| + [b] .
The latter inequality being referred to as the triangle inequality.
By exercise [50]
la| = |a—b+b| <|a—b|+|b|

and hence B -
la| — [b] < |a — b

and by reversing the roles of @ and b we also have

—(lal - [p]) = |8 — lal < [b—a| = |a—B|.
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12 3 A Brief Review of Real and Complex Numbers

Therefore ||a| — |b|| < |a — b| and in particular if {a,},.; C R converges to
a € R then
[lan] — lal| < |an, —al — 0 as n — oo.

Definition 3.5. A sequence {a,} ., C R converges to a € R if |a — a,| —
0 as n — oo, i.e. if for all N € N, |a—a,| <1 (%) for a.a. n. As before if
{a,},2, converges to a we will write @, — @ as n — 0o or @ = lim,_, Gy,

Remark 3.6. The field i (Q) is dense in R in the sense that if @ € R there
exists {gn},—, C Q such that i(g,) — a as n — oco. Indeed, simply let
qn = an Where a represents a. Since a is a Cauchy sequence, to any N € N
there exits M € N such that

1 1
—Ngam—angﬁforallm,nzM

and therefore

|
A/~
==
N~
IN

1
z‘(am)—asz‘(> for all m > M.
N
This shows
. _ ) _ 1
i (gm) —a| = li(am) —al < <N) for all m > M

and since N is arbitrary that i (g,,) — @ as m — oo.

oo

Definition 3.7. A sequence {a,},_; C R is Cauchy if |a, — @n| — 0 as
m,n — oo. More precisely we require for each N € N that |Gy, — ap| < @ (%)
for a.a. pairs (m,n).

Exercise 3.7. The analogues of the results in Exercises[3.I] and [3:2] hold with
Q replaced by R. (We now say a subset A C R is bounded if there exists
M € N such that |\ < i (M) for all A € A.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Proof. Suppose that {a (m)},._, is a Cauchy sequence in R. By Remark
we may choose g, € Q such that

la(m) —i(gm)| <i(m™"') for all m € N.

Given N € N, choose M € N such that |a(m)—a(n)| < i (N7!) for all
m,n > M. Then
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3.1 The Real Numbers 13

i (gm) =i (gn)| < [P (gm) —a(m)[ +a(m) —a(n)|+ |a(n) —i(gn)l
<i(m ) 4+i(n ) +i(NT!

and therefore
|gm — qn] < m~t+nt 4+ N~ for all m,n > M.

It now follows that ¢ = {gm },._, € C and therefore g represents a point g € R.
Using Remark and the triangle inequality,

|a(m) —ql <la(m)—i(gm)l+i(gm) - ql
<i(m™)+i(gn) —q — 0asm— oo
)

and therefore lim,, ., @ (m) = q. [

Definition 3.9. A number M € R is an upper bound for a set A C R if
A< M for all X\ € A and a number m € R is an lower bound for a set
ACR i XN>m for all X € A. Upper and lower bounds need not exist. If A
has upper (lower) bound, A is said to be bounded from above (below).

Theorem 3.10. To each non-empty set A C R which is bounded from above
(below) there is a unique least upper bound denoted by sup A € R (respec-
tively greatest lower bound denoted by inf A € R).

Proof. Suppose A is bounded from above and for each n € N, let m,, € Z

be the smallest integer such that i (%) is an upper bound for A. The sequence
qn = G is Cauchy because ¢, € [¢gn — 27", ¢, NQ for all m > n, ie.

|G — qn| <2700 — 0 a5 m,n — oo.

Passing to the limit, n — oo, in the inequality i (g,) > A, which is valid for
all A € A implies
g= lim i(g,) > A forall A € A.

Thus q is an upper bound for A. If there were another upper bound M € R for
A such that M < g, it would follow that M < i(g,) < g for some n. But this
is a contradiction because {g,}.., is a decreasing sequence, i (g,) > i (gm)
for all m > n and therefore i (¢,,) >  for all n. Therefore g is the unique least
upper bound for A. The existence of lower bounds is proved analogously. m

Proposition 3.11. If {a,},, C R is an increasing (decreasing) sequence
which is bounded from above (below), then {a,} -, is convergent and

lim a, =sup{a,:n €N} (lim a, =inf{a, :n € N}).
n—oo

n—00

If A C R is a set bounded from above then there exists {\,} C A such that
An T M :=sup A, asn — oo, i.e. {\,} is increasing and lim, o A\, = M.
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14 3 A Brief Review of Real and Complex Numbers

Proof. Let M :=sup {a, : n € N}, then for each N € N there must exist
m € N such that M — i (Nfl) < a, < M. Since a,, is increasing, it follows
that
M—i(N_l) < a, < M for all n > m.

From this we conclude that lim a,, exists and lima,, = M. If M = sup A, for
each n € N we may choose \,, € A such that

M—i(n™") <X <M. (3.2)

By replacing A, by max {\,..., )\n}ﬂ if necessary we may assume that A, is
increasing in n. It now follows easily from Eq. (3.2) that lim, oo A, = M. &

3.1.1 The Decimal Representation of a Real Number

Let ae Rora€eQ, m,n€Zand S := Z?:nak. If « =1 then Z;n:nakz
m —n + 1 while for o # 1,

OéS— S — am—i—l _ an

and solving for S gives the important geometric summation formula,

m m+1l _ n
k=n

Taking a = 107! in Eq. (3.3)) implies

i‘: 10—k — 10-(m+H —10-» 1 1-10"(m""
—~ - wt-1 10t 9

and in particular, for all M > n,
m 1 M
: —k _ —k
,,}Enwzlo T 9.1071 = ZIO )
k=n k=n

Let D denote those sequences « € {0,1,2,... ,9}Z with the following prop-
erties:

1. there exists N € N such that a_,, = 0 for all n > N and
2. an # 0 for some n € Z.

2 The notation, max A, denotes sup A along with the assertion that supA € A.
Similarly, min A = inf A along with the assertion that inf A € A.
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3.1 The Real Numbers 15

Associated to each « € D is the sequence a = a (a) defined by

Ay 1= Zn: aklofk.

k=—00
Since for m > n,
- = 1 1
lom —an = | 3 @l07F <9 B 107F <95—00 = 1o
k=n+1 k=n+1
it follows that
|am—an\§m—>0asm,n—>oo.

Therefore a = a () € C and we may define a map D : {£1} x D — R defined
by D (g,a) = ea(a). As is customary we will denote D (¢, ) = ea () as

€ Q.. .0Q.O QD ... ... (3.4)

where m is the largest integer in Z such that ap =0 for all k <m. If m >0
the expression in Eq. (3.4) should be interpreted as

€-0.0...00mam+1 - --

An element a € D has a tail of all 9’s starting at N € N if a,, = 9 and for
allm > N and ay_1 # 9. If a has a tail of 9’s starting at N € N, then for
n> N,

N—-1 n
ap (o) = Z 1077 +9 Z 107F
k=N

k=—o0

N-1
1—10-(=N)
= Z ak107k+ 9 : 0

10N-1 9
k=—oc0
N—1
— Z ozklO*k +10" V=D as n — oo.
k=—o00

If o/ is the digits in the decimal expansion of ZkN;_loo apl0=F 4+ 10 (V=1
then
o' €D :={a €D: «a does not have a tail of all 9’s}.

and we have just shown that D (e,a) = D (e, ') . In particular this implies

D ({£1} xD') = D ({£1} x D). (3.5)
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16 3 A Brief Review of Real and Complex Numbers

Theorem 3.12 (Decimal Representation). The map
D : {#1} x D'— R\ {0}
s a bijection.

Proof. Suppose D (¢,«) = D (4, 3) for some (e, «) and (4, ) in {£1} x D.
Since D (e,) > 0ife =1 and D (e,a) < 0if ¢ = —1 it follows that e = d. Let
a = a(a) and b = a(8) be the sequences associated to « and § respectively.
Suppose that @ # ( and let j € Z be the position where o and ( first
disagree, i.e. &, = B, for all n < j while a; # 3;. For sake of definiteness
suppose 3; > «;. Then for n > j we have

b —an = (B — ;) 1077 + > (B —ay) 107
k=j+1
. n ) 1
>1077 — —F>1077 — -
> 10 9 Z 107% > 10 9557 =0
k=j+1

Therefore b,, —a,, > 0 for all n and lim (b, — a,,) =0iff §; = a;+1 and B =9
and ag = 0 for all k > j. In summary, D (¢,a) = D (9, 3) with « # 3 implies
either o or 8 has an infinite tail of nines which shows that D is injective when
restricted to {1} x I’. To see that D is surjective it suffices to show any
b€ R with 0 < b < 1 is in the range of D. For each n € N, let a,, = .oy ...,
with «; € {0,1,2,...,9} such that

i(an) <b<i(a,)+i(107"). (3.6)

Since a1 = an + apy1 10~ (1) for some ant1 € {0,1,2,...,9}, we see that
Gpt1l = .01 ...0p0n41, 1.e. the first n digits in the decimal expansion of a, 41
are the same as in the decimal expansion of a,,. Hence this defines «,, uniquely
for all n > 1. By setting a,, = 0 when n < 0, we have constructed from b an
element o € D. Because of Eq. , D(1,a) =b. |

Notation 3.13 From now on we will identify Q with i (Q) C R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form m10~™ for some m € Z and n € N) has a unique decimal expansion.

Corollary 3.14. The set (0,1) := {a € R:0 < a < 1} is uncountable while
Qn(0,1) is countable.

Proof. By Theorem theset {0,1,2..., S}N can be mapped injectively
into (0,1) and therefore it follows from Lemma [2.6|that (0, 1) is uncountable.
For each m € N, let A,, := {2 :n e Nwithn<m}. Since QN (0,1) =
Ue_1 Ay, and # (Ay,) < oo for all m, another application of Lemma [2.6]shows
Qn(0,1) is countable. |
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3.2 The Complex Numbers 17

3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R? equipped with multipli-
cation rule

(a,b)(c,d) := (ac — bd, bc + ad) (3.7

and the usual rule for vector addition. As is standard we will write 0 = (0,0),
1 = (1,0) and i = (0,1) so that every element z of C may be written as
z = zl1 + yi which in the future will be written simply as z = x + iy. If
z=x+ 1y, let Rez =z and Im z = y.

Writing z = a + ib and w = ¢ + id, the multiplication rule in Eq. (3.7))
becomes
(a+b)(c+id) := (ac — bd) + i(bc + ad) (3.8)

and in particular 12 = 1 and 2 = —1.

Proposition 3.16. The complex numbers C with the above multiplication
rule satisfies the usual definitions of a field. For example wz = zw and
z(wy +we) = zwy + zws, etc. Moreover if z # 0, z has a multiplicative
inverse given by
-1 a . b
27 = —1 .
a?+b  a?+b?

(3.9)

Proof. The proof is a straightforward verification. Only the last assertion
will be verified here. Suppose z = a + ib # 0, we wish to find w = ¢ + id such
that zw = 1 and this happens by Eq. (3.8) iff

ac —bd =1 and (3.10)
bc+ad = 0. (3.11)
Solving these equations for ¢ and d gives ¢ = (LQLW and d = faz—ibz as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a + ib with a,b € R
let z=a—1b and

2] := V2Z = Va2 + b2 = \/|Re z|* + [Im 2.

See Exercise[3. for the existence of the square root as a positive real number.

Notice that

Rez:%(erZ) and Imz:%(sz)- (3.12)
i

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1.

Wl

:Z’
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18 3 A Brief Review of Real and Complex Numbers

2.0 =Zw and Z+ W = z + w.

4. |zw| = |z| |w| and in particular |2"| = |z|" for all n € N.

5. |Rez| <|z| and |Im z| < |2|

6. |z 4+ w| < |z + |wl|.

7.2=0iff |z| = 0. i

8. If 2 # 0 then 271 = e (also written as 1) is the inverse of z.
9. 127 = 12| and more generally |2"| = |2|" for all n € Z.

Proof. All of these properties are direct computations except for possibly
the triangle inequality in item 6 which is verified by the following computation;

2+ w’ = (2 + w) GFw) = |2 + [w]® + wz + w2
= 2> + |w|® + wz + wz
= |2)* + |w|® + 2Re (w2) < |2]> + |w|* + 2|2 |w]
= (2] + [w])*.
]

Definition 3.19. A sequence {z,},., C C is Cauchy if |z, — 2| — 0 as
m,n — oo and is convergent to z € C if |z — z,| — 0 as n — co. As usual
if {zn}zo:l converges to z we will write z, — z as n — 00 or z = limy,_, o 2y

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if z,, = a,, + ib, € C, then
1. {z,},=, C Cis Cauchy iff {a,},—, C R and {b,} -, C R are Cauchy
and
2. z, > 2z=a+1ibasn— xiff a,, — a and b,, — b as n — 0.

3.3 Exercises

Exercise 3.8. Show to every a € R with a > 0 there exists a unique number
b € R such that b > 0 and b? = a. Of course we will call b = y/a. Also show
that @ — v/a is an increasing function on [0, c0). Hint: To construct b = v/a
for a > 0, to each n € N let m,, € Ny be chosen so that

2 nt 1) 2 nt 1)
mn<a§<m+>i_e_i(7n;><a§i (mn +1)°
n

n2 n2 n2

and let g, := ™=. Then show b = {g,}.—, € R satisfies b > 0 and b = a.

n n=1
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4

Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R := RU {£o0} , i.e. it
is R with two new points called oo and —oco. We use the following conventions,
+00-0=0, £oo+a = +o0 for anya € R, 0o+ 00 = 00 and —0o — 00 = —00
while 0o — 0o is not defined. A sequence a, € R is said to converge to oo
(—o0) if for all M € R there exists m € N such that a, > M (a, < M) for
allm > m.

Lemma 4.2. Suppose {a,}rr, and {b,}—, are convergent sequences in R,
then:

1. If an < by, for a.a. n then limy, o0 an < limy o0 by
2. If c e R, lim,, . (cay,) = clim, o ay.
3. If {an + by }o | is convergent and
lim (a, +b,) = lim a, + lim b, (4.1)

n—oo n—oo n—oo

provided the right side is not of the form co — oco.
4. {anbn}f;l is convergent and

lim (a,b,) = lim a, - lim b, (4.2)

n—oo n—oo n—oo
provided the right hand side is not of the for oo - 0.

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

oo ifa<l
lim (a,, + b,) = 0 ifa=1
—0ifa>1

while
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lim a, + lim b,“ ="00 — 0.
n—oo n—oo

This shows that the requirement that the right side of Eq. is not of form
00 — 00 is necessary in Lemma Similarly by considering the examples
a, =n and b, = n~* with a > 0 shows the necessity for assuming right hand
side of Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.

Proof of Eq. . Let a := lim, .o a, and b = lim,_,, b,. Case 1.,
suppose b = co in which case we must assume a > —oo. In this case, for every
M > 0, there exists N such that b, > M and a,, > a — 1 for all n > N and
this implies

ap +b,>M-+a—1foralln> N.

Since M is arbitrary it follows that a, 4+ b, — 0o as n — b = co. The cases
where b = —oco or @ = o0 are handled similarly. Case 2. If a,b € R, then for
every € > 0 there exists IV € N such that

la —a,| <eand |b—1b,| <eforaln>N.
Therefore,
la+b—(an+by)|=la—an+b—0, <la—a,|+|b—0b,| <2

for all n > N. Since n is arbitrary, it follows that lim, . (an + b,) = a + .

Proof of Eq. (4.2). It will be left to the reader to prove the case
where lima, and limb, exist in R. I will only consider the case where
a = lim, . a, # 0 and lim, ., b, = oo here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let o := min (%,1). Given
any M < oo, there exists N € N such that a, > o and b, > M for alln > N
and for this choice of N, a,b, > Ma for all n > N. Since o > 0 is fixed and
M is arbitrary it follows that lim,, . (anb,) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup 4 = oo
if oo € A or A is not bounded from above and inf A = —co if —oco € A or A is
not bounded from below. We will also use the conventions that sup ) = —oo
and inf ) = +o0.

Notation 4.3 Suppose that {xn}zo:l C R is a sequence of numbers. Then

lim inf x, = lim inf{xy : &k > n} and (4.3)
lim sup z, = lim sup{zy:k > n}. (4.4)

We will also write lim for liminf and lim for limsup .

Remark 4.4. Notice that if ag := inf{xy : kK > n} and by := sup{ay : k >
n}, then {a;} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R and
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4.1 Limsups, Liminfs and Extended Limits 21
lim inf x, =supinf{zy : k> n} and
n—oo n

lim sup z, = infsup{zy : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 4.5. Let {a,}5°; and {b,}32, be two sequences of real numbers.
Then

1. liminf, .o a, <limsup,,_,., @, and lim, .o a, exists in R iff

lim inf @, = lim sup a, € R.

n—oo n—oo

2. There is a subsequence {an, }3>, of {an}Se; such that limg_ o an, =
lim sup,,_, o @n.
3.
lim sup (a, + b,) <lim sup a, + lim sup b, (4.5)

n—00 n—oo n—00

whenever the right side of this equation is not of the form oo — co.
4. If ap, > 0 and b, > 0 for all n € N, then

lim sup (apb,) < lim sup a, -lim sup by, (4.6)

provided the right hand side of (@ is not of the form 0 - oco or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an
exercise to the reader. Since

inf{a : k > n} <sup{ay : k > n} Vn,

lim inf a, <lim sup a,.

n—00 n— o0

Now suppose that liminf, .. a, = limsup,_, ., a, = a € R. Then for all
€ > 0, there is an integer N such that

a—e<inf{ag: k> N} <sup{ar: k> N} <a+e,

i.e.
a—e<ap<a-+eforal k> N.

Hence by the definition of the limit, limg .o ax = a. If liminf, .. a, = oo,
then we know for all M € (0, 00) there is an integer N such that

M <inf{ay : k> N}

and hence lim,,_, ., a, = 0o. The case where limsup,,_, ., a, = —oo is handled
similarly.
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22 4 Limits and Sums

Conversely, suppose that lim, . a, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |A — a,| < e for all n > N(e),
i.e.

A—e<a, <A+c¢eforalln> N(e).

From this we learn that

A—e<lim inf a, <lim sup a, < A +e¢.

n—0o0 n— o0
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A4,

n—00 n— oo

i.e. that A = liminf, . a, = limsup,,_,, an. If A = o0, then for all M > 0
there exists N(M) such that a, > M for all n > N(M). This show that
liminf, . a, > M and since M is arbitrary it follows that

oo < lim inf a, <lim sup a,.
n—oo n— oo

The proof for the case A = —o0 is analogous to the A = oo case. ]

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
«a CC X to denote that « is a finite subset of X and write 2;( for those
a CC X.

Definition 4.6. Suppose that a : X — [0,00] is a function and F C X is a
subset, then

Za: Za(m) = sup{Za(x):aCC F}

zeF TEQ
Remark 4.7. Suppose that X =N ={1,2,3,...} and a : X — [0, 00], then

N

Za = Z a(n) == ngnoo a(n).
N n=1

n=1

Indeed for all N, 25:1 a(n) < Y ya, and thus passing to the limit we learn
that

oo

Z a(n) < Za.
N

n=1
Conversely, if « CC N, then for all N large enough so that « C {1,2,..., N},
we have > a < Zi:[:l a(n) which upon passing to the limit implies that
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4.2 Sums of positive functions 23

Mx

D ac<

[ n

a(n).

Il
-

Taking the supremum over « in the previous equation shows

Zaﬁ Za(n)
N n=1

Remark 4.8. Suppose a : X — [0,00] and ) a < oo, then {z € X : a(x) > 0}
is at most countable. To see this first notice that for any € > 0, the set
{z : a(x) > €} must be finite for otherwise > a = co. Thus

{reX:a(z)>0}= Uiozl{;v ca(z) > 1/k}

which shows that {z € X : a(x) > 0} is a countable union of finite sets and
thus countable by Lemma [2.6]

Lemma 4.9. Suppose that a,b: X — [0,00] are two functions, then

Z Za+2band
Z)\af)\Za

for all A > 0.

I will only prove the first assertion, the second being easy. Let a« CC X be
a finite set, then

D (a+b) = Za+2b<2a+2b
which after taking sups over a shows that
da+b) <D a+d b
X X X
Similarly, if o, 3 CC X, then

Za+2b<2a+2b—z a+b) < ;a—i-b.

aug aug aug

Taking sups over a and 8 then shows that

da+d) b<> (atb).
X X X
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24 4 Limits and Sums

Lemma 4.10. Let X and Y be sets, R C X xY and suppose that a : R — R
is a function. Let ;R :={y €Y : (z,y) € R} and R, :={z € X : (z,y) € R}.
Then

sup a(z,y) = sup sup a(x,y) = sup sup a(zx,y) and

(z,y)ER reX yea R yeY z€R,
inf a(x,y) = inf inf a(x,y) = inf inf a(z,y).
(z,y)ER ( y) zeX yEx R ( y) yeY z€R,, ( y)
(Recall the conventions: sup ) = —oo and inf ) = 400.)

Proof. Let M = sup, ,yep a(®,y), Nz := sup,e, g a(z,y). Then a(z,y) <
M for all (z,y) € R implies N, = sup,¢ g a(r,y) < M and therefore that

sup sup a(z,y) = sup N, < M. (4.7)
rzeX yeEx R reX

Similarly for any (z,y) € R,

a(x,y) < Ny < sup N, = sup sup a(z,y)

reX rzeX yex R
and therefore
M = sup a(z,y) < sup sup a(z,y) (4.8)
(z,y)ER reEX yEa R

Equations (4.7) and (4.8)) show that

sup a(z,y) = sup sup a(x,y).
(z,y)ER rzeX ye R

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function —a. [ |

Fig. 4.1. The x and y — slices of aset R C X x Y.
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4.2 Sums of positive functions 25

Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that f, : X — [0,00] is an increasing sequence of functions and

f(x)ZZZIHD jg(x)::s%pj%(x)

n—oo

Then

Jin > =21
X X

Proof. We will give two proves.
First proof. Let

2 ={ACX:Acc X}

Then
lim an = supin = sup sup an = sup supin
nee noae2¥ 75 ag2¥ n
= sug{ nh_)rr;ton = as;];; gnh_{rgo fn
=sup } f= Zf
OzEQX

(o3

Second Proof. Let S,, =3 fn, and S =3 f. Since f, < f,,, < f for all
n < m, it follows that
Sp <Sm <8

which shows that lim,,_, . 5, exists and is less that S, i.e.
A= lim Y fa <> f. (4.9)
Noting that > fn <>y fn =Sn < A for all @ CC X and in particular,

anSAforallnandach.

Letting n tend to infinity in this equation shows that

Y f<Aforallacc X

and then taking the sup over all « CC X gives

Yf<A=1im Y fa (4.10)
X T
which combined with Eq. (4.9)) proves the theorem. [
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26 4 Limits and Sums

Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that f, : X — [0, 0]
is a sequence of functions, then

th inf f, <lim inf Z I
X n—oo n—oo X

Proof. Define g; := ugf]; fn so that gx T liminf, . f, as & — oo. Since

gr < fn forall k < n,
ngSanforallnzk
X X

and therefore
E gr < lim inf E fn for all k.
X n—oo X

We may now use the monotone convergence theorem to let & — oo to find

o . MCT .. L
§llmn1££ofn—;klir&gk = kllrgo;g’“ghmnlﬂgo;f”'

Remark 4.13.1f A = 3y a < oo, then for all ¢ > 0 there exists a. CC X
such that
A> Za >A—¢

for all @« CC X containing a. or equivalently,
A-— Z a
e

for all « CC X containing a.. Indeed, choose . so that Z% a>A—=¢.

<e (4.11)

4.3 Sums of complex functions

Definition 4.14. Suppose that a : X — C is a function, we say that
o= Y ato
X reX

exists and is equal to A € C, if for all e > 0 there is a finite subset o, C X
such that for all « CC X containing ae we have

A—Za

<e.
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4.3 Sums of complex functions 27
The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a,b : X — C are two functions such that ) a
and )" b exist, then )~ (a + \b) exists for all X € C and

D a+Ab)=> a+Ar) b

X

Definition 4.16 (Summable). We call a function a : X — C summable if
Z la] < oo.
X

Proposition 4.17. Let a : X — C be a function, then )y a exists iff
Yoy lal < oo, i.e. iff a is summable. Moreover if a is summable, then

Za §Z|a|.

Proof. If )" |a] < oo, then " (Rea)™ < oo and dox (Ima)* < oo
and hence by Remark [£.13] these sums exists in the sense of Definition [£.14]
Therefore by Lemma >y @ exists and

Za = Z (Rea)” — Z (Rea)” +1 (Z (Ima)™ — Z (Ima)) .

X X X X

Conversely, if > |a| = oo then, because |a| < |[Rea|+ [Ima|, we must

have
Z [Rea| = oo or Z Ima| = co.
X X

Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where

at(z) = max(a(z),0) and a~ (z) = max(—a(z),0). (4.12)

Then |a| = a™ +a~ and
oo=Z|a|:Za++Za_
X X X

which shows that either Yy a™ = oo or Yy a~ = co. Suppose, with out loss
of generality, that ) a® = co. Let X’ := {z € X : a(z) > 0}, then we know
that )y, @ = oo which means there are finite subsets o, C X’ C X such
that >0, a > n for all n. Thus if @« CC X is any finite set, it follows that
limy, 00 Y 20, ua @ = 00, and therefore ) a can not exist as a number in R.
Finally if a is summable, write ) a = pe’ with p > 0 and 6 € R, then
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28 4 Limits and Sums
Za =p= e_wZa = Ze_wa
X X X
= ZRe [e_wa] < Z (Re [e‘iea])Jr
X X
< Z {Re [e_wa} ’ < Z ’e‘iea‘ < Z lal .
X X

X

Alternatively, this may be proved by approximating ) y a by a finite sum and
then using the triangle inequality of || . ]

Remark 4.18. Suppose that X = N and a : N — C is a sequence, then it is
not necessarily true that

a(n) = Z a(n). (4.13)
n=1 neN
This is because
) N
Z a(n) = ngnoo a(n)
n=1 n=1

depends on the ordering of the sequence a where as ), . a(n) does not. For
example, take a(n) = (—1)"/n then ) _yla(n)] = oo ie. Y ya(n) does
not exist while >~ 7, a(n) does exist. On the other hand, if

> latm) =) la(n)| < oo
n=1

neN

then Eq. (4.13) is valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that f, : X — C is a sequence of functions on X such that f(x) =
lim,, o fn(x) € C exists for all x € X. Further assume there is a dominat-
ing function g: X — [0,00) such that

|fr(2)] < g(z) for allz € X andn € N (4.14)

and that g is summable. Then

Jim 3 fu@) = 3 f) (1.15)

zeX zeX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By con-
sidering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,
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4.3 Sums of complex functions

D (g )= lim inf (9= f,) <lim inf > (g% fn)
X X

X
= g+lim inf (ian> .
X

X

Since liminf, . (—a,) = —limsup,,_, ., an, we have shown,
liminf, oo D 5 fn
DIVED DIED DYER it ivhmasts
X X X hm Supn%oo ZX fTL
and therefore

lim sup an < Zf < limniBgton.
X X

n—oo
X

This shows that lim )" fhexists and is equal to )y f.
n—oo

29

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that |f| <
g and in particular that f is summable. Given € > 0, let & CC X such that

ZQS&

Then for § CC X such that o C £,

=Dt =D = fa)
B B B
SN = Il =D U = fal + D1 = Sl
B a B\
<= fal+2> g
o B\
<D Nf = fal + 22

and hence that
STF=Y Fa| <Y ful 22
B B a
Since this last equation is true for all such 8 CC X, we learn that
D =Dt
X X

which then implies that

Sz‘fffn‘+2€
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30 4 Limits and Sums

SF=> fn

lim sup
n—oo

< lim su E — ful + 2¢
hS : p |f = fal
= 2¢.

Because € > 0 is arbitrary we conclude that
D ED D
X X

which is the same as Eq. (4.15)). ]

Remark 4.20. Theorem may easily be generalized as follows. Suppose
fns> 9n, g are summable functions on X such that f, — f and g,, — g pointwise,

[fn] < gnand )"y gn — Y g asn — oco. Then f is summable and Eq. (4.15])
still holds. For the proof we use Fatou’s Lemma to again conclude

D (gE )= lim inf (g £ fo) <lim inf D" (ga £ fr)
X X

X
= g g + lim inf (j: E fn>
X n—oo X

and then proceed exactly as in the first proof of Theorem 4.19

lim sup =0.

n—oo

4.4 Tterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that a : X — C is function and F C X is a subset
such that a(z) =0 for all v ¢ F. Then Y, a exists iff > y a exists and when

the sums exists,
E a= g a.
X F

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose that a : X xY —
[0, 00], then
d o a=) D a=) ) e
XxY X Y Y X
Proof. It suffices to show, by symmetry, that
D a=) ) a
XxY X v

Let A CC X x Y. The for any « CC X and f CC Y such that A C a x 3, we
have
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4.4 Tterated sums and the Fubini and Tonelli Theorems 31

ZA:aS Zazzgaﬁ;;aﬁ;;a,

axf [eY

ie. > 4 a <) >y a. Taking the sup over A in this last equation shows
RSP
X XY X v

For the reverse inequality, for each x € X choose 5% CC X such that 5% T as

n T and
> a(z,y) = Jim > a(z,y).

yey yeEBY

If « CC X is a given finite subset of X, then

Z a(z,y) = lim Z a(z,y) for all z € a

yeY YEPBn

where 8, = Uzea [ CC X. Hence

S Y=Y Jin Y ateg) = i 3 Y alwy)

rEaycY rTEQ YELBn TEX YEL,
= lim E a(z,y) < g a.
n—00
(z,y)€axfn XxY

Since « is arbitrary, it follows that

Z Za(m,y) = asCuCpXZ Za(m,y) < Z a

rzeX yey rEayey XxY
which completes the proof. [

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that a : X x
Y — C is a summable function, i.e. by Theorem[[.29 any one of the following
equivalent conditions hold:

1.3 x ey laf < oo,
2.3 >y lal < oo or
3.2y dox lal < oo
Then
Y 0= Y=Y Y
X Y

Y X

Proof. If ¢ : X — R is real valued the theorem follows by applying
Theorem to a* — the positive and negative parts of a. The general result
holds for complex valued functions a by applying the real version just proved
to the real and imaginary parts of a. ]
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4.5 Exercises

Exercise 4.1. Now suppose for each n € N := {1,2,...} that f, : X - R is
a function. Let
D:={reX: lim f,(x)=+oc0}
n—oo

show that
D =N%o1 UNey Npsn{z € X @ fi(z) > M}, (4.16)

Exercise 4.2. Let f,, : X — R be as in the last problem. Let

C:={xeX: lim f,(z) exists in R}.

Find an expression for C' similar to the expression for D in (4.16). (Hint: use
the Cauchy criteria for convergence.)

4.5.1 Limit Problems
Exercise 4.3. Show liminf,, ,o(—ay,) = —limsup,,_, . an.

Exercise 4.4. Suppose that limsup,, ., a, = M € R, show that there is a
subsequence {a,, }%2, of {a,}n%, such that limy_ o an, = M.

Exercise 4.5. Show that

lim sup(a,, + b,) < limsup a,, + limsup by, (4.17)

n—oo n—oo n—oo

provided that the right side of Eq. (4.17)) is well defined, i.e. no oo — 0o or
—00 + 00 type expressions. (It is OK to have oo+ 00 = 00 or —00 — 00 = —00,
etc.)

Exercise 4.6. Suppose that a, > 0 and b,, > 0 for all n € N. Show

lim sup(a,by,) < limsup a, - limsup by, (4.18)

n—oo n—oo n—oo

provided the right hand side of (4.18) is not of the form 0 - co or oo - 0.
Exercise 4.7. Prove Lemma [£.15
Exercise 4.8. Prove Lemma [4.21]

Let {a,}22, and {b,}52; be two sequences of real numbers.
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4.5 Exercises 33
4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 Forug € R"™ and § > 0, let By, () := {z € R" : |z — ug| < ¢}
be the ball in R™ centered at ug with radius 0.

Exercise 4.9. Suppose U C R™ is a set and ug € U is a point such that
U N (By(0)\{ug}) # 0 for all § > 0. Let G : U \ {ug} — C be a function
on U \ {up}. Show that lim,,,,, G(u) exists and is equal to A € (CE| iff for all
sequences {u,},~; C U\ {up} which converge to ug (i.e. limy,_ oo up, = ug)
we have lim,, o, G(u,) = A.

Exercise 4.10. Suppose that Y isaset, U CR"isaset,and f: UxY — C
is a function satisfying:

1. For each y €Y, the function u € U — f(u,y) is continuous on UE|
2. There is a summable function g : Y — [0, 00) such that

|f(u,y)| < g(y) forally € Y and u € U.

Show that

F(u):= ) f(u.y) (4.19)

yey

is a continuous function for v € U.

Exercise 4.11. Suppose that Y is a set, J = (a,b) C R is an interval, and
f:JxY — Cis a function satisfying:

1. For each y € Y, the function u — f(u,y) is differentiable on .J,
2. There is a summable function g : Y — [0, 00) such that

‘aauf(u,y)‘ <g(y) forally €Y and u € J.

3. There is a ug € J such that >y |f(uo,y)| < cc.
Show:
a) forall u € J that >y [f(u,y)| < occ.

! More explicitly, limy_, G(u) = X means for every every ¢ > 0 there exists a
0 > 0 such that

|G(u) — A| < € whenerver u € U N (Byy(0) \ {uo}).

2 Tosay g := f(-,y) is continuous on U means that g : U — C is continuous relative
to the metric on R™ restricted to U.
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34 4 Limits and Sums
b) Let F(u):=3_ oy f(u,y), show I is differentiable on J and that
)= 32 2 fuy)
ou”
yey
(Hint: Use the mean value theorem.)

Exercise 4.12 (Differentiation of Power Series). Suppose R > 0 and
{a,},2, is a sequence of complex numbers such that > >~ |a,|r"™ < oo for
all r € (0, R). Show, using Exercise f(z) =377 ap,a™ is continuously
differentiable for z € (—R, R) and

o0 o0
fl(x) = Z na,z" ' = Z nap,z™ L.
n=0 n=1

Exercise 4.13. Show the functions

= nz%”:: (4.20)
) x n l.2n+1
sinz = nz:%(—l) @nil) and (4.21)
& n 1.277,
cosx = go (-1) @] (4.22)

are infinitely differentiable and they satisfy

d
%em =% with ¥ =1
d sinz = cosx with sin (0) =0
— sinz = cosz with sin (0) =
dz
d
7 COST =~ sinz with cos (0) = 1.

Exercise 4.14. Continue the notation of Exercise .13}

1. Use the product and the chain rule to show,

— [efmemy)} —0

and conclude from this, that e %e(*t¥%) = ¢¥ for all z,y € R. In particular
taking y = 0 this implies that e=* = 1/e® and hence that e(*+¥%) = ¢V,
Use this result to show e” T oo as x T oo and e” | 0 as x | —o0.

Remark: since e” > Zﬁ:}:O fT' when x > 0, it follows that lim,_, % =0
for any n € N, i.e. e” grows at a rate faster than any polynomial in = as
r — O0.
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2. Use the product rule to show

i (COS2 x + sin? x) =0

dx
and use this to conclude that cos? z + sin® z = 1 for all = € R.

Exercise 4.15. Let {a, } - be a summable sequence of complex numbers,

n—=—oo

ie. Y07 lan| < oo. For t >0 and x € R, define

o0
F(t,z) = Z ane " e

n=—oo

where as usual €' = cos(z) + i sin(z), this is motivated by replacing z in Eq.

(4.20) by iz and comparing the result to Egs. (4.21)) and (4.22)).

1. F(t, x) is continuous for (¢, z) € [0,00)xR. Hint: Let Y = Z and u = (¢, z)
and use Exercise

2. OF (t,x)/0t, OF (t,x)/0x and §*F(t,x)/0z? exist for t > 0 and = € R.
Hint: Let Y = Z and u = t for computing 0F (t,z)/0t and u = x for
computing OF(t,x)/0x and 9*F(t,x)/dx?. See Exercise

3. F satisfies the heat equation, namely

OF(t,z)/0t = 0*F(t,z)/0x* for t > 0 and x € R.
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5

P — spaces, Minkowski and Holder Inequalities

In this chapter, let u : X — (0,00) be a given function. Let F denote either
R or C. For p € (0,00) and f: X — T, let

£l = (Y 1F @) pla)) /P
reX

and for p = oo let

[[flloc = sup{[f(x)

cx e X},
Also, for p > 0, let
Pp) ={f: X = F: | fllp < oo}
In the case where pu(z) =1 for all x € X we will simply write ¢P(X) for £° ().

Definition 5.1. A norm on a vector space Z is a function ||-|| : Z — [0, 00)
such that

1. (Homogeneity) |INf]| = |A| || f]] for all X € F and f € Z.
2. (Triangle inequality) || f + gl| < || || + [lgl| for all f,g € Z.
3. (Positive definite) ||f|| = 0 implies f = 0.

A functionp : Z — [0,00) satisfying properties 1. and 2. but not necessarily
3. above will be called a semi-norm on Z.

A pair (Z,||-||) where Z is a vector space and ||-|| is a norm on Z is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 5.2. For p € [1,00], (P (w), || - lp) s a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is
the content of Minkowski’s Inequality proved in Theorem below. [
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Proposition 5.3. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) =0 (for simplicity) and lim f(s) = oo. Let g = f~!
and for s,t > 0 let

F(s) = /OS f(sds" and G(t) = /Ot g(t"dt'.
Then for all s,t > 0,
st < F(s) + G(t)
and equality holds iff t = f(s).
Proof. Let
As:={(o,7):0<7 < f(o) for 0 < o < s} and

By :={(0,7):0< 0o < g(r) for 0 <7 <t}

then as one sees from Figure[5.1] [0, s] x [0,¢] C A; U B. (In the figure: s = 3,
t =1, As is the region under ¢ = f(s) for 0 < s < 3 and B is the region to
the left of the curve s = g(t) for 0 < ¢t < 1.) Hence if m denotes the area of a
region in the plane, then

st =m([0,s] x [0,t]) < m(As) +m(B;) = F(s) + G(¢).

As it stands, this proof is a bit on the intuitive side. However, it will become
rigorous if one takes m to be Lebesgue measure on the plane which will be
introduced later. We can also give a calculus proof of this theorem under the
additional assumption that f is C'*. (This restricted version of the theorem is
all we need in this section.) To do this fix ¢ > 0 and let

h(s) = st — F(s) = /Os(t — f(o0))do.

If o > g(t) = f~1(t), then t — f(o) < 0 and hence if s > g(t), we have

s g(t) s
h(s) = / (t = f(0))do = / (t — F(0))do + / (= oo

g(t)
< / (t — F(0))do = h(g(#)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s € (0,t] and hence at a point where 0 = h/(s) = t — f(s). The only
solution to this equation is s = g(t) and we have thus shown

g(t)
st — F(s) = hs) < / (t — f(0))do = h(g(t))
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5 ¢P — spaces, Minkowski and Holder Inequalities 39
with equality when s = g(t). To finish the proof we must show Og(t) (t —
f(o))do = G(t). This is verified by making the change of variables o = g(7
and then integrating by parts as follows:

g(t) t t
/0 (t - f(0))do = / (t = f(g(r))g ()dr = / (t — r)g'(r)dr
:/0 g(T)dT = G(t).

1
05/

0 0.5 1 15 2 25 3 3.5

s

Fig. 5.1. A picture proof of Proposition

Definition 5.4. The conjugate exponent q € [1,00] to p € [1,00] is q := %
with the conventions that ¢ = 0o if p=1 and ¢ =1 if p = co. Notice that q is
characterized by any of the following identities:
1 1
=L+ leg p-L =t andalp—1) =p. (5.1)
P q p q
Lemma 5.5. Letp € (1,00) and q := p%l € (1,00) be the conjugate exponent.
Then

sP 4
st< —+ — foralls,t >0
p q
with equality if and only if t9 = sP.

Proof. Let F(s) = % for p > 1. Then f(s) = sP~1 =t and g(t) = t7 1 =
t9~1 wherein we have used ¢ — 1 = p/(p—1) — 1 = 1/ (p — 1). Therefore
G(t) = t?/q and hence by Proposition

sP 4
st < — + —
p q
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with equality iff ¢t = s?~1, i.e. t9 = s7P=1) = sP_ For those who do not want
to use Proposition [5.3] here is a direct calculus proof. Fix ¢ > 0 and let
sP
h(s):=st— —.
p

Then h (0) = 0, lims_. h(s) = —co and A’ (s) =t — sP~! which equals zero
iff s = ¢51. Since

D p
Py Py q
n(et) =t - Ut T =tq(1—1>=t,

it follows from the first derivative test that
N 14 14
maxh = max{h(O) R (tﬁ)} = max{O, } =—.
q

So we have shown

sP 7 R 1
st — — < — with equality iff ¢t = sP7".
p q

Theorem 5.6 (Holder’s inequality). Let p,q € [1,00] be conjugate expo-
nents. For all f,g: X — T,

gl < 1£1lp - llgllq- (5-2)

€ (1,00) and f and g are not identically zero, then equality holds in Eq.

(nfnL)p B (nLi'q)q' (5.3)

.4 i

Proof. The proof of Eq. (5.2) for p € {1,00} is easy and will be left to
the reader. The cases where || f||; = 0 or oo or ||g|l, = 0 or co are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and

0 < [[fllg: lgllp < co. Letting s = | f (x)| /| f]l, and t = |g|/||gllq in Lemmal[.5]

implies
f@g@)] 1 1f@F 1 lg@I°
Ifllplglle — 2 Wflle— a llgll?

o
WS

with equality iff

S @ _ e 9@

=5 = . (5.4)
[1£1lp gl
Multiplying this equation by p (z) and then summing on z gives
1 1
If9ll1 <Z4i--1
Ifllpllglls ~ 2 q
with equality iff Eq. (5.4) holds for all x € X, i.e. iff Eq. (5.3) holds. ]
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Definition 5.7. For a complex number X € C, let

A FAF#D

sen(}) = { o if A= 0.

For A\, € C we will write sgn(A\) = sgn(u) if either Ay =0 or Ay # 0 and
sgn(A) = sgn(u).

Theorem 5.8 (Minkowski’s Inequality). If 1 < p < oo and f,g € (P(u)
then

1f +gllp < [1f1lp + llgllp- (5.5)
Moreover, assuming f and g are not identically zero, equality holds in Eq.
i
sgn(f) = sgn(g) when p=1 and
f =cg for some ¢ > 0 when p € (1,0).

Proof. For p=1,
If+gllh =D 1f+aln <D (fln+lgw) =D Iflu+> lglp
X X X X
with equality iff
[fl+ 19l =1f+g| <= sgn(f)=sgn(g).
For p = o0,
I1f+gllec = sup If+gl < Sl)l(p(lfl +lgl)

< sup |f| +sup|g] = || flloo + [|9]lco-
X X

Now assume that p € (1, 00). Since

[f + 9" < 2max (|f],[g]))" = 2" max (|f[", g") < 2 (|" + |9I")

it follows that
I+ gl < 28 (II£1I5 + llglk) < oo

Eq. (5.5)) is easily verified if || f + ¢||, = 0, so we may assume || f + g||, > 0.
Multiplying the inequality,

lf+gl” =1f+gllf + 9P < (If1 + lgD)f + glP* (5.6)

by u, then summing on = and applying Holder’s inequality two times gives
SUF+glPu <D I IF+alP 7 n+d gl If +gP
X X X

< (1Fllp + lgllo) 11 + gl lg- (5.7)
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42 5 (P — spaces, Minkowski and Holder Inequalities
Since gq(p — 1) = p, as in Eq. (5.1]),
g e = (f+ g )= |f+alfu=f+glt.  (58)
X

X
Combining Egs. (5.7) and (5.8) shows
£+ gll5 < (ULFlle + llgllp) 1F + gll5/ (5.9)

and solving this equation for | f + g||, (making use of Eq. ) implies Eq.
. Now suppose that f and g are not identically zero and p € (1,00).
Equality holds in Eq. iff equality holds in Eq. (5.9) iff equality holds in
Eq. and Eq. (5.6). The latter happens iff

sgn(f) = sgn(g) and

] )” f +gI” < 9] >p
<f||p 17+~ \Jal,) (5.10)

wherein we have used

( |f +gP? )q_ f +glP

11+ glP=lq If + gl
Finally Eq. (5.10) is equivalent |f| = c|g| with ¢ = (|| f||,/llgllp) > 0 and this
equality along with sgn(f) = sgn(g) implies f = cg. ]

5.1 Exercises

Exercise 5.1. Generalize Proposition as follows. Let a € [—00,0] and

f:RNJ[a,00) — [0,00) be a continuous strictly increasing function such that

lim f(s) =00, f(a) =0ifa > —oo or lim,_,_o f(s) =0if a = —oco. Also let
>

g:filab:f(o) Oa
s t
F(s) = Nds' and G(t) = "dt'.
(9= [ fs)as nd G0 = [ ot
Then for all s,t > 0,
st < F(s)+ Gt Vbd) < F(s)+ G(t)

and equality holds iff t = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e’+(tv1)In(tvl) —(tv1) <e’+tlnt—t.

Hint: Refer to Figures[5.2] and [5.3].
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Fig. 5.2. Comparing areas when ¢t > b goes the same way as in the text.
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Fig. 5.3. When ¢t < b, notice that g(t) < 0 but G(t) > 0. Also notice that G(t) is
no longer needed to estimate st.
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6

Metric Spaces

Definition 6.1. A function d: X x X — [0,00) is called a metric if

1. (Symmetry) d(z,y) = d(y,z) for all z,y € X
2. (Non-degenerate) d(xz,y) = 0 if and only if c =y € X
3. (Triangle inequality) d(x, z) < d(z,y) + d(y, z) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) (see Definition is a
metric space with d(z,y) := ||z —y||. Thus the space ¢’(u) (as in Theorem
is a metric space for all p € [1,00]. Also any subset of a metric space
is a metric space. For example a surface X in R? is a metric space with the
distance between two points on X being the usual distance in R3.

Definition 6.2. Let (X,d) be a metric space. The open ball B(x,§) C X
centered at x € X with radius § > 0 is the set

B(z,0) :={y € X : d(z,y) < ¢}.

We will often also write B(x,6) as B.(8). We also define the closed ball
centered at x € X with radius 6 > 0 as the set Cy(0) :={y € X : d(z,y) < }.

Definition 6.3. A sequence {z,},., in a metric space (X,d) is said to be
convergent if there exists a point x € X such that lim, o d(z,z,) = 0. In
this case we write lim, o x, = of T, — T as n — oo.

Exercise 6.1. Show that x in Definition [6.3]is necessarily unique.

Definition 6.4. A set E C X is bounded if E C B(x,R) for some z € X
and R < co. A set F C X is closed iff every convergent sequence {x,} -,
which is contained in F' has its limit back in F. A set V C X is open iff V¢
is closed. We will write F' T X to indicate the F is a closed subset of X and
V C, X to indicate the V is an open subset of X. We also let T4 denote the
collection of open subsets of X relative to the metric d.
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Definition 6.5. A subset A C X is a neighborhood of x if there exists an
open set V. C, X such that x € V C A. We will say that A C X is an open
neighborhood of x if A is open and x € A.

Exercise 6.2. Let F be a collection of closed subsets of X, show NF :=
NrerF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fy}y_, are closed sets then U}_, F}; is closed. (By taking complements, this
shows that the collection of open sets, 74, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 6.6. For any non empty subset A C X, let d4(x) := inf{d(z,a)|a €
A}, then
da(z) —da(y)| < d(z,y) Yo,y € X (6.1)

and in particular if x,, — x in X then da (x,) — da () as n — oo. Moreover
the set F. :={x € X|da(z) > €} is closed in X.

Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y)+d(y,a).
Take the inf over a in the above equation shows that
da(z) <d(z,y) +daly) Vo,yeX.

Therefore, da(x) —da(y) < d(z,y) and by interchanging x and y we also have
that da(y ) da(z) < d(z,y) which implies Eq. (6.1)). If z,, — = € X, then by

Eq. (6.1,

|[da(z) — da(z,)| < d(x,2,) = 0 asn — o0

so that lim, .o da (z,) = da(z). Now suppose that {z,} -, C F. and
T, — x in X, then
da(x)= lim dg (z,) > €

since d 4 (z,,) > € for all n. This shows that « € F. and hence Fy is closed. m

Corollary 6.7. The function d satisfies,

|d(x,y) —d(z,y")| < d(y,y') + d(x,2").

In particular d : X x X — [0,00) is “continuous” in the sense that d(x,y)
is close to d(z',y') if x is close to ' and y is close to y'. (The notion of
continuity will be developed shortly.)
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6.1 Continuity 49

Proof. By Lemma [6.0] for single point sets and the triangle inequality for
the absolute value of real numbers,

|d(x7y) - d(a:/,y/)| < ‘d(x’y)

|
2
=
Qd\
_l’_
B
—~
=
Ny
\_>
|
o
—
a\
@
-

Ezample 6.8. Let x € X and § > 0, then C, (§) and B, (6)° are closed subsets
of X. For example if {y,} -, C C; (0) and y, — y € X, then d (yn,z) < § for
all n and using Corollary it follows d (y,z) < ¢, i.e. y € C, (J) . A similar
proof shows B, (§)° is open, see Exercise

Exercise 6.3. Show that V' C X is open iff for every x € V there isa d > 0
such that B,(d) C V. In particular show B, () is open for all x € X and
6 > 0. Hint: by definition V is not open iff V¢ is not closed.

Lemma 6.9 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and F, := {z € X|da(z) > e} C X
be as in Lemma[6.6. Then F. T A® ase | 0.

Proof. It is clear that d4(z) = 0 for x € A so that F. C A€ for each € > 0
and hence U.soF. C A°. Now suppose that z € A° C, X. By Exercise [6.3]
there exists an € > 0 such that B,(¢) C A° ie. d(z,y) > ¢ for all y € A.
Hence = € F. and we have shown that A° C U.>oF:. Finally it is clear that
F. C F., whenever ¢’ < ¢. n

Definition 6.10. Given a set A contained a metric space X, let A C X be
the closure of A defined by

A={reX:3{z,} CA>z= lim x,}.

That is to say A contains all limit points of A. We say A is dense in X if
A =X, i.e. every element x € X is a limit of a sequence of elements from A.

Exercise 6.4. Given A C X, show A is a closed set and in fact
A=n{F:ACF C X with F closed}. (6.2)

That is to say A is the smallest closed set containing A.

6.1 Continuity

Suppose that (X, p) and (Y,d) are two metric spaces and f : X — YV is a
function.
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50 6 Metric Spaces

Definition 6.11. A function f : X — Y is continuous at x € X if for all
e > 0 there is a 6 > 0 such that

d(f(z), f(z")) < & provided that p(x,z") <. (6.3)
The function f is said to be continuous if f is continuous at all points x € X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 6.12 (Local Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f: X — Y is a function defined in a neighborhood
of a point x € X. Then the following are equivalent:

1. f is continuous at © € X.

2. For all neighborhoods A C'Y of f(x), f~1(A) is a neighborhood of x € X.

3. For all sequences {x,},~, C X such that © = lim, oo Tn, {f(zn)} is
convergent in'Y and

lim f(z,)=7f ( lim wn) .
n—oo n—oo

Proof. 1 = 2. If A CY is a neighborhood of f (z), there exists € > 0
such that By, (¢) C A and because f is continuous there exists a § > 0 such
that Eq. (6.3 holds. Therefore

By (6) C 71 (By) (€)) C f71(A)

showing f~! (A) is a neighborhood of z. 2 = 3. Suppose that {z,} —, C X
and & = lim, o Z,. Then for any € > 0, By(,) (¢) is a neighborhood of f (x)
and so f~! (Bj() (¢)) is a neighborhood of  which must containing B, (6)
for some & > 0. Because z,, — , it follows that z,, € B, (§) C f~! (B (¢))
for a.a. n and this implies f (x,) € By(y) (¢) for a.a. n, i.e. d(f(x), f (z,)) <€
for a.a. n. Since € > 0 is arbitrary it follows that lim, . f (z,) = f ().
3. = 1. We will show not 1. = not 3. If f is not continuous at x, there
exists an € > 0 such that for all n € N there exists a point x,, € X with
p(xn, ) < 2 yet d(f(zn),f(x)) > e. Hence x,, — x as n — oo yet f(z,)
does not converge to f (z). ]
Here is a global version of the previous lemma.

Lemma 6.13 (Global Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f : X — Y is a function defined on all of X. Then
the following are equivalent:

f is continuous.
YV)er, foralV € 14, ice. f71(V) is open in X if V is open in'Y.

1.
2. v
3. f71(C) is closed in X if C is closed in'Y.

-
=
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4. For all convergent sequences {z,} C X, {f(xn)} is convergent in' Y and
lim f(x,)=f ( lim xn) .

Proof. Since f~!(4¢) = [f~! (A)]C, it is easily seen that 2. and 3. are
equivalent. So because of Lemma [6.12 it only remains to show 1. and 2. are
equivalent. If f is continuous and V' C Y is open, then for every z € f=1 (V),
V is a neighborhood of f(x) and so f=! (V) is a neighborhood of z. Hence
f~1(V) is a neighborhood of all of its points and from this and Exercise
it follows that f~! (V) is open. Conversely if + € X and A C Y is a
neighborhood of f (), then there exists V' C, X such that f(z) € V C A.
Hence z € f~1 (V) C f~!(A) and by assumption f~! (V) is open showing
/71 (A) is a neighborhood of z. Therefore f is continuous at x and since x € X
was arbitrary, f is continuous. [

Ezxample 6.14. The function d4 defined in Lemma is continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y,x) is continuous
for each x € X.

Exercise 6.5. Use Example and Lemma to recover the results of
Example

The next result shows that there are lots of continuous functions on a
metric space (X, d) .

Lemma 6.15 (Urysohn’s Lemma for Metric Spaces). Let (X,d) be a

metric space and suppose that A and B are two disjoint closed subsets of X.
Then d ()
B\X

)= — B\

0= 0@ + do(@

defines a continuous function, f : X — [0,1], such that f(z) =1 forx € A
and f(z) =0 ifz € B.

forze X (6.4)

Proof. By Lemma d4 and dp are continuous functions on X. Since
A and B are closed, da(z) > 0if x ¢ A and dg(z) > 0 if z ¢ B. Since
ANB =10, da(z)+dp(z) > 0 for all 2 and (da + dg) " is continuous as well.
The remaining assertions about f are all easy to verify. ]

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F C V C X with F being closed and V' being open, then there exists f €
C (X, [0,1])) such that f =1 on F while f =0 on V¢. This of course follows
from Lemma [6.15] by taking A = F and B = V°.

6.2 Completeness in Metric Spaces

Definition 6.16 (Cauchy sequences). A sequence {z,},., in a metric
space (X,d) is Cauchy provided that
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52 6 Metric Spaces

lim d(z,,zm) =0.

m,n— oo

Exercise 6.6. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of ratio-
nal numbers and d(z,y) = |z — y|. Choose a sequence {z,} -, C Q which
converges to v2 € R, then {x,}°, is (Q,d) — Cauchy but not (Q,d) — con-
vergent. The sequence does converge in R however.

Definition 6.17. A metric space (X,d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 6.7. Let (X, d) be a complete metric space. Let A C X be a subset
of X viewed as a metric space using d|4x 4. Show that (A, d|sx ) is complete
iff A is a closed subset of X.

Ezxample 6.18. Examples 2. — 4. of complete metric spaces will be verified in
Chapter [7] below.

1. X =R and d(z,y) = |z — y|, see Theorem [3.§ above.

2. X =R"and d(z,y) = ||z — yll, = X (1 — v:)*.

3. X =/(P(u) for p € [1,00] and any weight function p: X — (0, 00).

4. X = C([0,1],R) — the space of continuous functions from [0, 1] to R and
d(1.9) = s |7(0) = g(0)].

telo

This is a special case of Lemma [7.3] below.
5. Let X = C([0,1],R) and

dUﬂ%zAlﬂﬂ-ﬂﬂMt

You are asked in Exercise to verify that (X, d) is a metric space which
is not complete.

Exercise 6.8 (Completions of Metric Spaces). Suppose that (X,d) is
a (not necessarily complete) metric space. Using the following outline show
there exists a complete metric space (X' , cf) and an isometric map i : X — X
such that i (X) is dense in X, see Definition m

1. Let C denote the collection of Cauchy sequences a = {a,}.., C X. Given
two element a,b € C show

dc (a,b) := lim d(ap,by,) exists,

n—oo

de (a,b) > 0 for all a,b € C and d¢ satisfies the triangle inequality,
de (a,c¢) < dc (a,b) + de (b,c) for all a,b,c € C.

Thus (C, dc) would be a metric space if it were true that d¢(a,b) = 0 iff
a = b. This however is false, for example if a,, = b,, for all n > 100, then
dc(a,b) = 0 while a need not equal b.
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2. Define two elements a,b € C to be equivalent (write a ~ b) whenever
dc(a,b) = 0. Show “ ~ ” is an equivalence relation on C and that
de (a/,b') = dc (a,b) if a ~ a’ and b ~ . (Hint: see Corollary [6.7})

3. Given a € Clet @:= {b € C: b~ a} denote the equivalence class contain-
ing a and let X := {@: a € C} denote the collection of such equivalence
classes. Show that d (@,b) := dc (a,b) is well defined on X x X and verify
()_(, d) is a metric space.

4. For € X let i (x) = @ where a is the constant sequence, a,, = x for all n.
Verify that i : X — X is an isometric map and that i (X) is dense in X.

5. Verify (X, d) is complete. Hint: if {a(m)},,_, is a Cauchy sequence in X
choose b,, € X such that d (i (by,),a(m)) < 1/m. Then show a(m) — b
where b= {by,}_;

6.3 Supplementary Remarks

6.3.1 Word of Caution

Ezample 6.19. Let (X,d) be a metric space. It is always true that B,(e) C
C,(g) since C,(e) is a closed set containing B, (g). However, it is not always
true that B,(e) = Cy(¢). For example let X = {1,2} and d(1,2) = 1, then
Bi(1) = {1}, B1(1) = {1} while C1(1) = X. For another counter example,
take

X={(z,y) eR®>:z=00rz=1}

with the usually Euclidean metric coming from the plane. Then

B,o)(1) = {(0,y) e R? : |y| < 1},
B,0)(1) = {(0,y) € R*: |y| <1}, while

C,0)(1) = Bo,0y(1) U{(0,1)} .

In spite of the above examples, Lemmas and below shows that
for certain metric spaces of interest it is true that B,(e) = Cy(¢).

Lemma 6.20. Suppose that (X,||) is a normed vector space and d is the
metric on X defined by d(z,y) = | —y|. Then

B, (e) = Cy(e) and
bd(Bq(e)) = {y € X : d(z,y) = €}.
where the boundary operation, bd(-) is defined in Definition below.

Proof. We must show that C' := C,(¢) C B,(¢) =: B. For y € C, let
v =1y — x, then
| = ly — x| = d(z,y) <e.

Let @, = 1 —1/n so that a, T 1 as n — oo. Let y, = z + a,v, then
d(z,yn) = and(z,y) < ¢, so that y, € By(e) and d(y,yn) =1 —a, — 0 as
n — oo. This shows that y,, — y as n — oo and hence that y € B. [
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=

Fig. 6.1. An almost length minimizing curve joining x to y.

6.3.2 Riemannian Metrics
This subsection is not completely self contained and may safely be skipped.

Lemma 6.21. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(z,y) =inf {{(0) : 0(0) =z and o(1) =y}

where (o) is the length of the curve o. We define {(c) = oo if o is not
piecewise smooth.
Then

B,(e) = Cy(e) and
bd(B,(¢)) ={y € X : d(x,y) =€}

where the boundary operation, bd(-) is defined in Definition below.

Proof. Let C := C,(¢) C B.(¢) =: B. We will show that C C B by
showing B¢ C C. Suppose that y € B¢ and choose d > 0 such that B, (d) N
B = (). In particular this implies that

By(6) N By(e) = 0.

We will finish the proof by showing that d(z,y) > ¢ 4+ ¢ > ¢ and hence
that y € C°. This will be accomplished by showing: if d(z,y) < € + 0 then
By(0) N By(e) # 0. If d(x,y) < max(e,d) then either x € By(J) or y € By(e).
In either case By(d) N By(e) # (). Hence we may assume that max(e,d) <
d(z,y) < e+ 6. Let @ > 0 be a number such that

max(e,d) < d(z,y) <a<e+§

and choose a curve o from z to y such that ¢(o) < a. Also choose 0 < ¢’ < §
such that 0 < a—0’ < & which can be done since a—§ < €. Let k(t) = d(y, o(t))
a continuous function on [0,1] and therefore £([0,1]) C R is a connected
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set which contains 0 and d(z,y). Therefore there exists ¢y, € [0, 1] such that
d(y,o(to)) = k(to) = ¢'. Let z = o(ty) € By(d) then

A, 2) < U(0lfo107) = £0) = U(olgon) <@ —d(z,y) = a— ' <
and therefore z € B, () N B,(8) # 0. L]

Remark 6.22. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(xz,y) =inf {{(0) : 0(0) = z and o(1) = y} .

Let o be a curve from z to y and let € = ¢(0) — d(x,y). Then for all 0 < u <
v <1,
d(o(u),0(v)) < (o) + &

So if ¢ is within ¢ of a length minimizing curve from z to y that o, . is
within e of a length minimizing curve from o(u) to o(v). In particular if
d(z,y) = £(o) then d(o(u),o(v)) = £(0]jy,y) forall 0 <u < v <1, ie. if o
is a length minimizing curve from x to y that o, . is a length minimizing
curve from o(u) to o(v).

To prove these assertions notice that

d(z,y) +e=L(0) = £(jo,u)) + U0 |ju,0)) + £(0][w1])
> d(x7 U(U)) + E(Uhu,v]) + d(O’(’U), y)

and therefore

é(a‘[u,v]) < ( 7y) +e— d(xv a(u)) - d(a(v),y)
< u

d
d(o(u),o(v)) + €.

X
g
6.4 Exercises

Exercise 6.9. Let (X,d) be a metric space. Suppose that {x,}>2, C X is a
sequence and set €, := d(Zp, Tny1). Show that for m > n that

m—1 e’}
d(l‘n,l‘m) S Z €k S Zak-
k=n k=n

Conclude from this that if

(o) o0
Zek = Zd(xn,zn+1) < 00
k=1 n=1

then {x,}22, is Cauchy. Moreover, show that if {x,}>2, is a convergent
sequence and x = lim,, ., x, then

d(ﬂl‘, Z'n) < Z Ek-
k=n
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Exercise 6.10. Show that (X, d) is a complete metric space iff every sequence
{z,}22, C X such that Y 7, d(@p, zn41) < 00 is a convergent sequence in
X. You may find it useful to prove the following statements in the course of
the proof.

L. If {z,} is Cauchy sequence, then there is a subsequence y; := x,, such
that Z_;x;l d(yj+1, yj) < 0.

2. If {z,};2, is Cauchy and there exists a subsequence y; := x,, of {z,}
such that o = lim; . y; exists, then lim, . x, also exists and is equal
to x.

Exercise 6.11. Suppose that f : [0,00) — [0,00) is a C? — function such
that f(0) =0, f/ > 0 and f” < 0 and (X, p) is a metric space. Show that
d(z,y) = f(p(z,y)) is a metric on X. In particular show that

o plz,y)
H9) = T

is a metric on X. (Hint: use calculus to verify that f(a +0) < f(a) + f(b) for
all a,b € [0,00).)

Exercise 6.12. Let {(X,,d,)},~, be a sequence of metric spaces, X :=
[1,2, X,, and for z = (z(n)),—, and y = (y(n)),—, in X let

= on du(z(n),y(n)
d(z,y) = ;2 L+ dn(z(n), g(n)’

Show:

1. (X, d) is a metric space,

2. a sequence {xy},-, C X converges to z € X iff xx(n) — z(n) € X,, as
k — oo for each n € N and

3. X is complete if X,, is complete for all n.

Exercise 6.13. Suppose (X, p) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if F/: X — Y and G : X — Y are two continuous functions
such that FF = G on A then FF = G on X. Hint: consider the set C :=
{reX:F(x)=G(z)}.

2. Suppose f : A — Y is a function which is uniformly continuous, i.e. for
every € > () there exists a § > 0 such that

d(f(a),f(b)) <eforall a,be A with p(a,b) <.

Show there is a unique continuous function F' : X — Y such that F' = f on
A. Hint: each point « € X is a limit of a sequence consisting of elements
from A.

3.Let X =R =Y and A = Q C X, find a function f : Q@ — R which is
continuous on Q but does not extend to a continuous function on R.
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Banach Spaces

Let (X, |]|) be a normed vector space and d(x,y) := ||z — y|| be the asso-
ciated metric on X. We say {z,} -, C X converges to z € X (and write
lim,, 0o &, = 2 Or Z, — ) if

0= lim d(z,z,) = lim ||z —x,|.
n—oo n—oo

Similarly {xn}zozl C X is said to be a Cauchy sequence if

0= lim d(zm,z,) =

lim ||z, — 2, -
m,n— o0 m,n— oo

Definition 7.1 (Banach space). A normed vector space (X,|||) is a Ba-
nach space if the associated metric space (X,d) is complete, i.e. all Cauchy
sequences are convergent.

Remark 7.2. Since ||z|| = d(z,0), it follows from Lemma that ||| is a
continuous function on X and that

izl = llylll < [l =yl for all z,y € X.

It is also easily seen that the vector addition and scalar multiplication are
continuos on any normed space as the reader is asked to verify in Exercise
These facts will often be used in the sequel without further mention.

7.1 Examples

Lemma 7.3. Suppose that X is a set then the bounded functions, £>°(X), on
X is a Banach space with the norm

= 1Ifllo = sup [f(2)].
reX

Moreover if X is a metric space (more generally a topological space, see Chap-
ter [13) the set BC(X) C (>*°(X) = B(X) is closed subspace of {*°(X) and
hence is also a Banach space.



58 7 Banach Spaces

Proof. Let {f,} —, C £>°(X) be a Cauchy sequence. Since for any z € X,
we have

[fn(@) = fm(@)] < [ fn = fmlloo (7.1)

which shows that {f,(x)},—, C F is a Cauchy sequence of numbers. Because F
(F =R or C) is complete, f(x) := lim, o fn(x) exists for all z € X. Passing
to the limit n — oo in Eq. ((7.1) implies

[f (@) = fm(2)| <lim inf [|fn = fimll
n—oo
and taking the supremum over x € X of this inequality implies
If = fmllo < lim inf [|fn = fimllo — 0 as m — oo

showing f,,, — f in £>°(X). For the second assertion, suppose that {f,} ., C
BC(X) C £°(X) and f, — f € £°°(X). We must show that f € BC(X), i.e.
that f is continuous. To this end let x,y € X, then

[f(z) = )l < [f(@) = fu(@)| + [ful2) = fu(@)] + [fnly) = F(y)]
<2|f = falloo + [fn(@) = fu(y)]-

Thus if ¢ > 0, we may choose n large so that 2| f — f,||, < /2 and
then for this n there exists an open neighborhood V, of x € X such that
|fn(x) — fuly)| < e/2 for y € V. Thus |f(z) — f(y)| < ¢ for y € V,, showing
the limiting function f is continuous.

Here is an application of this theorem.

Theorem 7.4 (Metric Space Tietze Extension Theorem). Let (X,d)
be a metric space, D be a closed subset of X, —00o < a < b < o0 and f €
C(D,la,b]). (Here we are viewing D as a metric space with metric dp :=
dpxp.) Then there exists F € C(X,[a,b]) such that F|p = f.

Proof.

1. By scaling and translation (i.e. by replacing f by (b — a)f1 (f —a)), it
suffices to prove Theorem [7.4 with a = 0 and b = 1.

2. Suppose « € (0,1] and f : D — [0,a] is continuous function. Let A :=
710, 2a)) and B := f~([2c, o]). By Lemmathere exists a function
g € C(X,[0,a/3]) such that g =0 on A and § = 1 on B. Letting g := g,
we have g € C(X,[0,a/3]) such that g = 0 on A and g = «/3 on B.
Further notice that

2
0< f(z)—g(z) < 3¢ for all z € D.
3. Now suppose f : D — [0,1] is a continuous function as in step 1. Let

g1 € C(X,[0,1/3]) be as in step 2, see Figure with & = 1 and let
fi:=f—gilp € C(D,[0,2/3]). Apply step 2. with « = 2/3 and f = f; to
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7.1 Examples 59

find g2 € C(Xa [07 %%D such that f2 = f - (gl +g2) |D € C(D7 [07 (%)2])
Continue this way inductively to find g, € C(X, |0, % (%)nfl]) such that

N N
F =S gulp = fx € C(D, 0, (;) D). (7.2)

4. Define F := Y | g,. Since

2
-3

"t 11
= - = 17
3 3

n=1

(o) (o) 1
n=1
the series defining F' is uniformly convergent so F' € C(X, [0, 1]). Passing

to the limit in Eq. (7.2)) shows f = F|p.

€

Fig. 7.1. Reducing f by subtracting off a globally defined function g1

C(X,00,3)
]

Theorem 7.5 (Completeness of (P(u)). Let X be a set and 1 : X — (0,00)

be a given function. Then for any p € [1,00], (¢P(p),-||,,)) is a Banach space.
Proof. We have already proved this for p = co in Lemma [7.3] so we now

assume that p € [1,00). Let {f,},—; C ¢’(u) be a Cauchy sequence. Since for

any x € X,
1
—— fa = full, = 0as m,n — oo

fn x)— fm x S
i) = i) <
it follows that {f,(z)},—, is a Cauchy sequence of numbers and f(z) :=
lim,, o fn(x) exists for all z € X. By Fatou’s Lemma,
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60 7 Banach Spaces
1o = fIE =2 p- lim inf[fy = ful? < lim inf) g |fo— finl?
X X
= lim inf | f, — fm|lb — 0 as n — oo.
m—0o0
This then shows that f = (f — fn) + fn € (1) (being the sum of two ¢F —
functions) and that f, £, I ]

Remark 7.6. Let X be a set, Y be a Banach space and ¢*°(X,Y") denote the
bounded functions f : X — Y equipped with the norm

1= 1Al = sup [1F (@)l -
reX

If X is a metric space (or a general topological space, see Chapter , let
BC(X,Y) denote those f € £°>°(X,Y) which are continuous. The same proof
used in Lemmal|7.3|shows that £*°(X,Y") is a Banach space and that BC(X,Y)
is a closed subspace of ¢*°(X,Y). Similarly, if 1 < p < co we may define

1/p
PXY)=f: X =Y |fll,= (Z ||f($)||§’/> < oo

zeX

The same proof as in Theorem |7.5( would then show that (Ep (X,Y), ||Hp> is

a Banach space.

7.2 Bounded Linear Operators Basics

Definition 7.7. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(x)]| < C|lz||x for all x € X. We denote the best constant by ||T||, i.e.

T ()|
| T|| = sup =sup {[|T(z)| : [|=|| = 1}.
z#0 ||z o#0

The number ||T|| is called the operator norm of T.

Proposition 7.8. Suppose that X and Y are normed spaces and T : X — Y
18 a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(c)T is bounded.

Proof. (a) = (b) trivial. (b) = (c¢) If T continuous at 0 then there exist § >
0 such that ||T(x)| < 1if ||z|] < §. Therefore for any x € X, ||T (dz/||z|]) || < 1
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which implies that | T(z)|| < %z and hence |T|| < 3 < cc. (¢c) = (a) Let
x € X and € > 0 be given. Then

[Ty =Tl =Ty —o) | < T lly -zl <e

provided |ly — z|| < ¢/||T|| := 0. |
For the next three exercises, let X = R*"and Y =R and T : X — Y

be a linear transformation so that T is given by matrix multiplication by an

m X n matrix. Let us identify the linear transformation 7" with this matrix.

Exercise 7.1. Assume the norms on X and Y are the ¢! — norms, i.e. for
xR ||z|]| = Z?=1 |z;| . Then the operator norm of T is given by

m

T = Tiil -

Il @%anl 11
im

Exercise 7.2. Suppose that norms on X and Y are the £*° — norms, i.e. for

z € R", ||z|| = maxi<;j<pn |z;|. Then the operator norm of T is given by

n

T| = il
1Tl = max > ITs|

j=1
Exercise 7.3. Assume the norms on X and Y are the ¢ — norms, i.e. for
z e R, |z|* = Z?:l 3. Show |T|I? is the largest eigenvalue of the matrix
TtT : R® — R™. Hint: Use the spectral theorem for orthogonal matrices.

Notation 7.9 Let L(X,Y) denote the bounded linear operators from X toY
and L(X) = L(X,X). If Y = F we write X* for L(X,F) and call X* the
(continuous) dual space to X.

Lemma 7.10. Let X, Y be normed spaces, then the operator norm ||-| on
L(X,Y) is a norm. Moreover if Z is another normed space and T : X —'Y
and S :Y — Z are linear maps, then ||ST|| < ||S|||T||, where ST := SoT.

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A, B € L(X,Y) then the triangle inequality is verified as follows:

| Az + Ba| _ | As] + [ Bz

|A+ B|| = sup <
z#£0 [l z#£0 [|z]]
|| Az|| | B||
<s + su = [|All + |IB]|-
z#0 |7l x#£0 |||

For the second assertion, we have for x € X, that

STl < STl < IS {]-
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From this inequality and the definition of ||ST||, it follows that || ST <
ISIIT. .

The reader is asked to prove the following continuity lemma in Exercise
1.9

Lemma 7.11. Let X, Y and Z be normed spaces. Then the maps
(S,2) e L(X,)Y)x X — Sz €Y

and
(S,7)e L(X,Y)x L(Y,Z) — ST € L(X, Z)

are continuous relative to the norms
1S, 2) L x,vyxx == ISllLxyy + 12l x and
1S, Dl x vyxrv.z) = IS xyy + 1Tl v,z
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.

Proposition 7.12. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y),|| - |lop) is @ Banach space. In particular the dual
space X* is always a Banach space.

Proof. Let {T},},~, be a Cauchy sequence in L(X,Y). Then for each
r e X,
ITnx — Tzl < || Th — Tl ||2]] — 0 as m,n — oo

showing {T,,x} ~, is Cauchy in Y. Using the completeness of Y, there exists
an element Tz € Y such that

lim ||T,x — Tz| = 0.
The map T : X — Y is linear map, since for z,z’ € X and A € F we have
T(x+ ') = lim T, (z + \2') = lim [Tho+ N2 =Tz + T2,
n—oo n—o0

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

[Tz — Toz|| < Tz — Tnzl| + | Tmz — Toz|| < T2 — Tz + (| T — Tal| 12|
and therefore
ITe — Tyl < lim_in (|7 — Tyl + [T — Tl 2]

= ||l - lim inf [Ty — Tol-

Hence
IT —T,| <lim inf ||T,, —T,| — 0 asn — oc.
Thus we have shown that T, — T in L(X,Y") as desired. ]

The following characterization of a Banach space will sometimes be useful
in the sequel.
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Theorem 7.13. A normed space (X, | - ||) 4s a Banach space iff for every
00 N
sequence {x,}oo | such that Y |lz,|| < co implies imn_.oo > p = § exists
n=1 n=1
in X (that is to say every absolutely convergent series is a convergent series
o0

in X.) As usual we will denote s by > xn.

n=1
Proof. This is very similar to Exercise (=)If X is complete and
00 N
> ||zn]] < oo then sequence sy := Y x, for N € N is Cauchy because (for
n— n=1
N > M)

N
sy — sa| < Z |zn|| — 0 as M, N — co.
n=M+1
N
Therefore s = Z Ty = My Z x, exists in X. («<=) Suppose that

n=1
{zp}2, is a Cauchy sequence and let {yx = xn, }72, be a subsequence of

{z,},2, such that Z lyn+1 — ynll < co. By assumption

n=1
N [e%S)
UNHL= Y1 = D (Yni1 —n) = 5= D (Ynt1 — yn) € X as N — oo,
n=1 n=1

This shows that limpy_, ., yn exists and is equal to z := y; + s. Since {xn}fbozl
is Cauchy,

|z —2nll < [lz =yl + llyx — 2all — 0 as k,n — oo
showing that lim,, .~ , exists and is equal to z. [ |

Ezample 7.14. Here is another proof of Theorem [7.12] which makes use of
Proposition Suppose that T,, € L(X,Y) is a sequence of operators such

that >~ ||7,]| < co. Then

n=1
[eS) [
S Tall < S 1Tl flz] < o0
n=1 n=1

o0
and therefore by the completeness of Y, Sz := > T,z = limy_ o Sy exists
n=1

N
in Y, where Sy := >_ T),. The reader should check that S : X — Y so defined
n=1
is linear. Since,

N 00
ISz = Jim Syl < lim 37 [Toal < 3 Tl 2]
=1 =
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S is bounded and -
IS <> Tl (7.3)
n=1
Similarly,

|Sz — Syz|| = Nlim ISnvz — S|

N 0o
< gim S Tlel = Y 1Tl el
— 00
n=M+1 n=M+1

and therefore,

1S = Sarll < S N Tull = 0 as M — oc.
n=M

For the remainder of this section let X be an infinite set, p: X — (0, 00)
be a given function and p,q € [1,00] such that ¢ = p/(p — 1) . it will also be
convenient to define 6, : X — R for z € X by

_Jlify=2
5r(y){01fy7éx.

Notation 7.15 Let ¢o (X) denote those functions f € £ (X) which “vanish
at 00,” i.e. for every € > 0 there exists a finite subset Ae C X such that
|f (z)| < e whenever x ¢ A.. Also let ¢y (X) denote those functions f: X — F
with finite support, i.e.

e (X) = {f € 62 (X) : # (o € X : [ () £ 0}) < o0}
Exercise 7.4. Show ¢f(X) is a dense subspace of the Banach spaces

(Ep (1), ||||p> for 1 < p < oo, while the closure of ¢y (X) inside the Ba-

nach space, (£>°(X),|||l.,) is co (X). Note from this it follows that ¢y (X)
is a closed subspace of £*° (X). (See Proposition [15.23| below where this last
assertion is porved in a more general context.)

Theorem 7.16. Let X be any set, p: X — (0,00) be a function, p € [1, o0,
q = p/(p—1) be the conjugate exponent and for f € (1 () define ¢y :
e (u) — F by

¢r(9) =D f(@)g(z)p ().

reX
Then
1. ¢¢ (g) is well defined and ¢5 € 0P (p)" .
2. The map
Feti(u) L ore(p) (7.4)

s a isometric linear map of Banach spaces.
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3. If p € [1,00), then the map in Eq. is also surjective and hence,
0P (p)* is isometrically isomorphic to €9 () .
4. When p = oo, the map

fet (n) — ¢5 €co(X)

is an isometric and surjective, i.e. {* (u) is isometrically isomorphic to
Co (X)* .

(See Theorem below for a continuation of this theorem.)
Proof.

1. By Holder’s inequality,

YU @)y @) @) < IIfN, all,

zeX

which shows that ¢ is well defined. The ¢¢ : 2 (1) — F is linear by the

linearity of sums and since

65 ()| =D fla < f @) g @) p (@) < £l lgll,
xeX zeX
we learn that
16l e < 171, - (7.5)

Therefore ¢y € P ( )
2. The map ¢ in Eq. ( is linear in f by the linearity properties of infinite

sums. For p € (1, oo) deﬁne g (z) = sgn(f () |f (x)]*"" where

oy [FifzA0
sgn(z) == { |0| 4. 0
Then
HM=ZWM”%w:Zwmﬁ”mm
zeX zeX
= > 1f @) @) = I£I
reX
and

=Y f@sen(f @) If @ ule) =Y If @]1f @) ()

zeX zeX

=m%ﬂ:wmﬁﬂmwﬁ
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Hence [[¢7]lsp(,y- = || f]l, which combined with Eq. (7.5) shows [|¢ s[4,y =
[ 1, - For p= o0, let g (x) = sgn(f (z)), then [|g||, =1 and

|65 (@) = > f (x) sgn(f (2))u ()

zeX

oI = 1711 llgll oo

zeX

which shows [[@¢ ||y (1= = If[l¢1(,,) - Combining this with Eq. (7.5) shows
Hd)ngoc(u)* = ||f||el(“) . For p=1,

05 (02)| = p (@) [f ()] = [f ()] ][0zl

and therefore |71 ()« = |f ()] for all z € X. Hence [[¢yl 1,0+ = 1 flloo

which combined with Eq. (7.5)) shows ||¢f||l1(u)* =|fllo

Suppose that p € [1,00) and A € P (u)" or p = oo and A € ¢ (X)".
We wish to find f € ¢9(u) such that A = ¢;. If such an f exists, then
A(dz) = f(x)p(x) and so we must define f(z) := A(0;) /u(x). As a
preliminary estimate,

o) = |A(0z)] H)\Hzp(u)* ||5:r||zp(#)

T&= T <
Wl e @]

p(z)

— [Nl [ @)

When p = 1 and ¢ = oo, this implies || f|l., < [|Allp(,y» < o0. If p € (1, 0]
and A CC X, then

1A = D IF (@) =3 f(@)sen(f (@) |f @) p(x)
TeA T€EA
=S A @ I @) e
—ZEZAWC) gu(f () [f (@)" " p(2)
= A (0a)sen(f (@) |f ()]
zEA
_)\<Zbgn (z)|7' 6 )
z€EA
<Al - || sen(f (@) |£ ()" 6
zeA

p

Since
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1/p
> senl(f @) If @) (ZJf |l <>>

z€A

zeA

1/p
= (Z If (z)|? ($)> = Hf”%f/l,u)

zeA

which is also valid for p = oo provided || f H;l/ (Oj . = 1. Combining the last

two displayed equations shows

e a gy < TN Loy IFNELES

and solving this inequality for Hf”ZQ(A,u) (using ¢ — ¢/p = 1) implies
[f1leaca,uy < IAllgo(,uy- Taking the supremum of this inequality on A cC X
shows || fllga(y < I Mlgo (e - -6 f € €4 (n) . Since A = ¢ agree on ¢y (X)
and ¢y (X) is a dense subspace of ¢ (u) for p < co and ¢y (X) is dense
subspace of ¢ (X) when p = oo, it follows that A = ¢y.

7.3 General Sums in Banach Spaces

Definition 7.17. Suppose X is a normed space.

1. Suppose that {xn}ff | 18 a sequence in X, then we say > - | ¥, converges
in X and Y 0 xn =5 if

ngnoozlzn =s in X.

2. Suppose that {x, : « € A} is a given collection of vectors in X. We say
the sum ) . 4 To converges in X and write s =), o € X if for all
€ > 0 there exists a finite set I'. C A such that Hs D JcaH < ¢ for
any A CC A such that I'. C A.

Warning: As usual if ) ., [|za|l < co then ) 42, exists in X, see
Exercise However, unlike the case of real valued sums the existence of
> aca Ta does not imply > 4 [[za| < oo. See Proposition below, from
which one may manufacture counter-examples to this false premise.

Lemma 7.18. Suppose that {x, € X : a € A} is a given collection of vectors
in a normed space, X.
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Mfs =3 nca®a € X exists and T : X — Y is a bounded linear map

between normed spaces, then Tz, exists in'Y and

a€cA
Ts:TZxa: ZT:EQ.
acA acA

If s =) caTa evists in X then for every e > 0 there exists [. CC A
such that ||} cx Tal| <& forall ACC A\ I

If s = Y pca®a evists in X, the set I' := {a € A:x, # 0} is al most
countable. Moreover if I' is infinite and {an}fle is an enumeration of I
then

oo N
s= Z Ty, = A}im Z Ty, - (7.6)
n=1 e n=1

. If we further assume that X is a Banach space and suppose for all € > 0

there exists I, CC A such that HZaeA xaH < ¢ whenever A CC A\ I,
then Y ca Ta evists in X.

Proof.

. Let I. be as in Definition and A CC A such that I, C A. Then

Ts—ZTxa

acA

<7l

S—El‘a

ac

<||T|le

which shows that ), T'r, exists and is equal to T's.

. Suppose that s = Y7 _, z, exists and € > 0. Let I. CC A be as in

Definition Then for A CC A\ I,

e =] T v Y

acA acl UA a€cl:
< E To — S|| + E To — S|| < 2e.
acel-UA a€cl,

It s =37 ca®a exists in X, for each n € N there exists a finite subset

I, C A such that HZaGA xaH < % for all A cC A\ I,,. Without loss of

generality we may assume z, # 0 for all a € I},. Let Iy, := U2 [}, — a

countable subset of A. Then for any 3 ¢ I'», we have {3} NI, =0 and

therefore
gl = || 3 vl <
ac{s}

— 0 asn — oo.

S

Let {ay, },—, be an enumeration of I" and define yy := {a, : 1 <n < N}.
Since for any M € N, vy will eventually contain [y, for N sufficiently
large, we have
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N

5 — E T,

n=1

lim sup

1
<— —>0as M — .
N—o0 M

Therefore Eq. (7.6]) holds.
4. For n € N, let I, CC A such that ||ZaeAxaH < % for all A CcC A\ I},.

Define v, := Up_;I} C A and s, := Zae% Zo. Then for m > n,

|S$m — Snll = Z Tl <1/n— 0 as myn — oo.
A€Ym \Vn

Therefore {sn}zozl is Cauchy and hence convergent in X, because X is a
Banach space. Let s := lim,, .o $,. Then for A CC A such that v, C A,
we have

1
<lls=sall +|| D @a <lls = sall +—.
a€A\vn

s—Exa

acA

Since the right side of this equation goes to zero as n — oo, it follows that
Y acA Ta exists and is equal to s.

7.4 Inverting Elements in L(X)

Definition 7.19. A linear map T : X — Y is an isometry if | Tz|y = ||z|x
for allz € X. T is said to be invertible if T is a bijection and T! is bounded.

Notation 7.20 We will write GL(X,Y) for those T € L(X,Y) which are
invertible. If X =Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 7.21. Suppose X is a Banach space and A € L(X) := L(X, X)
o0

satisfies Y ||A™]| < co. Then I — A is invertible and
n=0

1 o0 o0
(I—A)"t= = > A" and ||(T— )7 <A™
n=0 n=0

In particular if |Al| < 1 then the above formula holds and

1
— _1 S —
=470 = Ty
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o0
Proof. Since L(X) is a Banach space and ) ||A"| < oo, it follows from
n=0
Theorem [7.13] that

N
s v e= i 30
exists in L(X). Moreover, by Lemma

(I-AN)S=(1-24 hm Sy = hm (I—A)Sn

N — o0

. _ no_ ; _ AN+1 _
= Jlim (1 A)ZA lim (I — ANt =1

N—oo
n=0

and similarly S (I — A) = I. This shows that (I — A)~! exists and is equal to
S. Moreover, (I — A)~! is bounded because

[T =17 =S <147

n=0

If we further assume ||A]| < 1, then ||A"| < ||A]|" and

Z 4 < 3 1A = <

n=0
]
Corollary 7.22. Let X and Y be Banach spaces. Then GL(X,Y) is an open

(possibly empty) subset of L(X,Y). More specifically, if A € GL(X,Y) and
B e L(X,Y) satisfies

IB— Al <A77} (7.7)
then B € GL(X,Y)
BT =) [Ix—A'B]" A" € L(Y, X), (7.8)
n=0
(TR 7 — (7.9)
1—[[A-H[||A - B
e |- A BJ
B 'A< . 7.10
157 = A7 < T (710)
In particular the map
A€ GL(X,Y)— A~ e GL(Y, X) (7.11)

18 continuous.
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Proof. Let A and B be as above, then
B=A—-(A-B)=A[Ix - A" (A-B))] = A(Ix — A)
where A : X — X is given by
A=A A-B)=1Ix - A'B.
Now
Al =[[AT A= B)[| < A7 A= Bl < IATHIATH ! = 1.

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

1

B l=(Ix—-A)TA" ' =[Ix-A(A-B))] 4.
Taking norms of the previous equation gives
1
B < ||[(Ix =)A< |A7t
15700 < e = 7 147 < 1A

S
ST AA- Bl

which is the bound in Eq. (7.9). The bound in Eq. (7.10]) holds because

1B - A7

1B7 (4~ B)A™H| < [ BT [|[47*[ 114 - B]
AP IA- Bl
S - [ATT[A - Bl

For an application of these results to linear ordinary differential equations,
see Section [10.3]

7.5 Exercises

Exercise 7.5. Let (X, ||-||) be a normed space over F (R or C). Show the map
Nzyy) eFx X xX s+ Aye X

is continuous relative to the norm on F x X x X defined by

1 2 ) e s x o= AL+ (2l + lyll-

(See Exercise|13.25|for more on the metric associated to this norm.) Also show
that ||-|| : X — [0, 00) is continuous.
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72 7 Banach Spaces

Exercise 7.6. Let X = N and for p,q € [1,00) let [|-[|, denote the ¢P(N) —
norm. Show |-, and ||-||, are inequivalent norms for p # ¢ by showing

IIfH
70 171,

P —xifp<yq

Exercise 7.7. Suppose that (X, ||-]|) is a normed space and S C X is a linear
subspace.

1. Show the closure S of S is also a linear subspace.
2. Now suppose that X is a Banach space. Show that S with the inherited
norm from X is a Banach space iff S is closed.

Exercise 7.8. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.

Exercise 7.9. Suppose that X,Y and Z are Banach spacesand @ : X xY —
Z is a bilinear form, i.e. we are assuming € X — Q (x,y) € Z is linear for
eachy €Y andy € Y — Q(x,y) € Z is linear for each z € X. Show Q is
continuous relative to the product norm, [|(z,v)| .y = lzllx + llylly , on
X x Y iff there is a constant M < oo such that

1Q (z,9)ll 2 < M |[z[|x - [lylly for all (z,y) € X xY. (7.12)

Then apply this result to prove Lemma
Exercise 7.10. Let d : C(R) x C(R) — [0, 00) be defined by

n_ If =gl
2"
Z TS =gl

where || f[ln == sup{|f(2)] : |z < n} = max{[f(z)| : [«| <n}.

1. Show that d is a metric on C'(R).

2. Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — o0
iff f, converges to f uniformly on bounded subsets of R.

3. Show that (C(R),d) is a complete metric space.

Exercise 7.11. Let X = C([0,1],R) and for f € X, let

£y :=/O |f(t) dt.

Show that (X, [|-||;) is normed space and show by example that this space is
not complete. Hint: For the last assertion find a sequence of { fn} ., CX
which is “trying” to converge to the function f = 1[%,1 ¢ X.

Exercise 7.12. Let (X, ||-||;) be the normed space in Exercise Compute
the closure of A when

Page: 72  job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



7.5 Exercises 73

1.A={feX:f(1/2)=0}.
2.A:{feX:supte[O)l}f(t)§5}.

3.A:{f€X:f01/2f(t)dt:0}.

Exercise 7.13. Suppose {z, € X : a € A} is a given collection of vectors in
a Banach space X. Show ) ., x4 exists in X and

S zaf <3 flaal

acA a€A

if > callzall < co. That is to say “absolute convergence” implies con-
vergence in a Banach space.

Exercise 7.14. Suppose X is a Banach space and {f,, : n € N} is a sequence
in X such that lim, .o f, = f € X. Show sy = %25:1 fn for N € N is
still a convergent sequence and

Exercise 7.15 (Dominated Convergence Theorem Again). Let X be a
Banach space, A be a set and suppose f, : A — X is a sequence of functions
such that f () := lim,_— fn (@) exists for all & € A. Further assume there
exists a summable function g : A — [0,00) such that ||f,, (a)] < g (a) for all
a € A. Show > 4 f () exists in X and

Tim 3 fu(a) = Y (o).

acA a€cA
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8

Hilbert Space Basics

Definition 8.1. Let H be a complex vector space. An inner product on H is
a function, (-|-) : H x H — C, such that

1. {azx + by|z) = a(z|z) + bly|z) i.e. x — (x|z) is linear.

2. (zly) = (ylx).
3. ||z||? := (z|z) > 0 with equality ||z|* = 0 iff z = 0.

Notice that combining properties (1) and (2) that  — (z|z) is conjugate
linear for fixed z € H, i.e.

(zlax + by) = afzlz) + b{zly).

The following identity will be used frequently in the sequel without further
mention,

lz +yl* = (x +ylz +y) = llz]* + lylI* + (oly) + (ylz)
= [l2ll* + lyll* + 2Re(ay). (8.1)

Theorem 8.2 (Schwarz Inequality). Let (H,(:|-)) be an inner product
space, then for all x,y € H

[{zly)| < llzllllyll

and equality holds iff © and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and
observe; if # = oy for some o € C, then (z|y) = a||y||* and hence

2
[(zly)| = led [yl = llzllly]l-

Now suppose that @ € H is arbitrary, let z := z — ||ly||=?(x|y)y. (So z is the
“orthogonal projection” of z onto y, see Figure [8.1]) Then
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:MZ= X~ (*)‘I)H
; ﬂaua—

o P
¢ /R {%,) 4

gy

Fig. 8.1. The picture behind the proof of the Schwarz inequality.

) 1P el o (ely)
os||z|2=Hw— o| = el + Iyl? - 2Re(a] 22 )
Il Wl Pk

2
— ||.’1?||2 _ |<x|y>|2
ly112

from which it follows that 0 < ||y||?||z||*> — [{(x|y)|? with equality iff 2 = 0 or
equivalently iff z = ||y|| =% (z|y)y. [

Corollary 8.3. Let (H, (-|-)) be an inner product space and ||z| := /{x|z).
Then the Hilbertian norm, ||-||, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H,||-||).

Proof. If z,y € H, then, using the Schwarz’s inequality,

lz +yl* = llz]1* + lly]* + 2Re(zly)
<l + iyl + 2ll= iyl = (el + lyI)*.

Taking the square root of this inequality shows ||| satisfies the triangle in-
equality.
Checking that ||-|| satisfies the remaining axioms of a norm is now routine

and will be left to the reader. If x, 2"y, y’ € H, then

[(zly) = (@'ly)] = [(z — 2ly) + (@'ly — )]
< lyllll = 2"l + ll="[Hly — /|l
< llyllllz = 2" + (]l + lz = 2D lly = o/l
= llylllz — "I + lzlllly — o'l + = — " lllly — &/l

from which it follows that (-|-) is continuous. ]

Definition 8.4. Let (H, (:|-)) be an inner product space, we say x,y € H are
orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a set,
x € H is orthogonal to A (write x L A) iff (xzly) =0 for ally € A. Let
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At ={x € H:z L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if x 1 y for all distinct elements x,y € S. If S further
satisfies, ||x|| =1 for all x € S, then S is said to be orthonormal set.

Proposition 8.5. Let (H, (:|-)) be an inner product space then
1. (Parallelogram Law)
Iz +ylI* + o = yl* = 2]|z]|* + 2l|y]|* (8.2)

for all x,y € H.
2. (Pythagorean Theorem) If S C H is a finite orthogonal set, then

2
ol =Sl (83)
zeS

zeS

3. If A C H is a set, then AL is a closed linear subspace of H.
Remark 8.6. See Proposition [8.47] for the “converse” of the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;
lz +ylI* + [l — y|*
= llzl? + llyll* + 2Re(z[y) + ||z [|* + [ly]|* — 2Re(z]y)
= 2|z|1* + 2[ly|1?,

and
2

Soall =0"2D w = (zly)

zeS zeS yeSs z,yes
=) (ale) = ll=]*.
zeS z€S

Item 3. is a consequence of the continuity of (-|-) and the fact that
A+ = Ngea Nul((:|z))
where Nul({-|z)) = {y € H : (y|z) = 0} — a closed subspace of H. |

Definition 8.7. A Hilbert space is an inner product space (H,(:|-)) such
that the induced Hilbertian norm is complete.

Ezample 8.8. Suppose X is a set and p : X — (0,00), then H := (2 (u) is a
Hilbert space when equipped with the inner product,
(flg) = f(@)g(@) ().
zeX

In Exercise[8.7]you will show every Hilbert space H is “equivalent” to a Hilbert
space of this form with = 1.
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More example of Hilbert spaces will be given later after we develop the
Lebesgue integral, see Example 23.1] below.

Definition 8.9. A subset C' of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] :== {tx + (1 — )y : 0 <t < 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 8.10 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed convex subset of H. Then for any x € H
there exists a unique y € M such that

—y|| =d(z, M) = inf ||z — z|.
I~ yl = d(e, M) = inf [l |
Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x —y) L M.

Proof. Uniqueness. By replacing M by M —xz:={m —xz:m € M} we
may assume z = 0. Let § := d(0, M) = inf,, e ||m|| and y, z € M, see Figure

Fig. 8.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

2llyl1* + 2ll2l* = ly + 21 + lly — 2II?
2

+
Y2y — 2l > 482 + ly— 2% (84)

2

|

Hence if ||y|| = ||z|| = §, then 262 +26% > 46% + ||y — 2|2, so that ||y — z||> = 0.
Therefore, if a minimizer for d(0, -)|ps exists, it is unique.

Existence. Let y, € M be chosen such that |y,|| = d, — § = d(0, M).
Taking y = y,,, and z = y,, in Eq. shows

2077, + 267 > 462 + [[yn — yiml|*-
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Passing to the limit m,n — oo in this equation implies,

20% + 20% > 46% + limsup |yn — ym||*,
m,n— oo
i.e. imsup,, ,, oo [[Un — Yml[* = 0. Therefore, by completeness of H, {yn},~,
is convergent. Because M is closed, y := lim y, € M and because the norm
n—oo
is continuous,

lyll = tim [y =6 = d(0, ).

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and x € H. Let y € M be the
closest point in M to x. Then for w € M, the function

9(t) = llz — (y + tw)|* = [l — y|* - 2tRe(z — ylw) + *[w]?

has a minimum at ¢ = 0 and therefore 0 = ¢’(0) = —2Re(z — y|w). Since
w € M is arbitrary, this implies that (z —y) L M.

Finally suppose y € M is any point such that (z —y) L M. Then for
z € M, by Pythagorean’s theorem,

lz = 2l? = llz =y +y—21* =z =yl + ly = 2> > ]2 -y

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest
to x. [ |

Definition 8.11. Suppose that A : H — H is a bounded operator. The
adjoint of A, denote A*, is the unique operator A* : H — H such that
(Az|y) = (x|A*y). (The proof that A* exists and is unique will be given in
Proposz'tz'on below.) A bounded operator A : H — H is self - adjoint or
Hermitian if A= A*.

Definition 8.12. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py : H — H such that
for x € H, Py (x) is the unique element in M such that (x — Py(z)) L M.

Theorem 8.13 (Projection Theorem). Let H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection Py; satisfies:

1. Py is linear and hence we will write Pyrx rather than Pyy(x).
2. P, = Py (Pu is a projection).

3. Py, = Py, (Pag is self-adjoint).

4. Ran(Py) = M and Nul(Py) = M*.

Proof.
1. Let 1,290 € H and « € F, then Pyyx1 + aPyxe € M and

Pyxy + aPyxo — (21 + axs) = [Py — x1 + a(Pyze — x2)] € M+

showing Pyrxz1 + aPyxa = Py(x1 4+ axs), i.e. Py is linear.
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2. Obviously Ran(Py) = M and Py = x for all x € M. Therefore P}, =
Pyy.
3. Let z,y € H, then since (z — Pyx) and (y — Pyy) are in M+,
(Puzly) = (Puz|Puy +y — Puy) = (Puz|Puy)
= (Puz + (z — Puz)|Pay) = (2| Puy).
4. We have already seen, Ran(Py) = M and Pyx =0iffz =2 —0€ M*,
i.e. Nul(Py) = M+.
|

Corollary 8.14. If M C H 1is a proper closed subspace of a Hilbert space H,
then H=M & M~*.

Proof. Given z € H, let y = Py so that « —y € M*'. Then z =
y+(x—y) e M+M*- Ifze MAML, then z L z, ie. ||z]|* = (z]z) = 0. So
Mn M+ ={0}. ]

Exercise 8.1. Suppose M is a subset of H, then M~++ = span(M).
Theorem 8.15 (Riesz Theorem). Let H* be the dual space of H (Notation

, The map
ze H-Ls (|2) e H* (8.5)
18 a conjugate linemEI isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

{z|2)| < ||z||||z]| for all z € H

with equality when = = z. This implies that |[jz| 5. = [[(:|2)|l g = 2]
Therefore j is isometric and this implies j is injective. To finish the proof we
must show that j is surjective. So let f € H* which we assume, with out
loss of generality, is non-zero. Then M =Nul(f) — a closed proper subspace
of H. Since, by Corollary H=MoM* f: HM =% M+ - Fisa
linear isomorphism. This shows that dim(M~) =1 and hence H = M @ Fz,
where g € M+ \ {0} | Choose z = Azg € M+ such that f(xg) = (x¢2), i.e.
A = f(xo)/ ||xol” . Then for & = m + Azo with m € M and A € F,

f(x) = Af(0) = Mzolz) = (Azo|z) = (m + Axglz) = (z]2)
which shows that f = jz. ]
! Recall that j is conjugate linear if
J(z1+az) =jz1 +ajz

for all 21,20 € H and o € C.

2 Alternatively, choose zo € M+ \ {0} such that f(zo) = 1. For x € M~ we have
f(z — Azo) = 0 provided that \ := f(z). Therefore z — Azo € M N M+ = {0},
i.e. z = Axo. This again shows that M~ is spanned by xo.
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Proposition 8.16 (Adjoints). Let H and K be Hilbert spaces and A : H —
K be a bounded operator. Then there exists a unique bounded operator A* :

K — H such that
(Az|y)k = (x|A*y) g for allz € H and y € K. (8.6)

Moreover, for all A,B € L(H,K) and X\ € C,

1. (A+AB)" = A* + A\B*,

2. A = (A" = A

3. |A*[l = |All and

4o AT Al = (|A)7.

5.If K = H, then (AB)" = B*A*. In particular A € L (H) has a bounded
inverse iff A* has a bounded inverse and (A*) ™" = (A_l)*.

)

Proof. For each y € K, the map z — (Ax|y)x is in H* and therefore
there exists, by Theorem a unique vector z € H such that

(Az|y)k = (x|z) g for all z € H.

This shows there is a unique map A* : K — H such that (Az|ly)x =
(x|A*(y))g for all z € H and y € K.
To see A* is linear, let y1,y2 € K and )\ € C, then for any x € H,

(Azlyr + M)k = (Azly1) k + A(Az|y2)
= (z|A* (1)) K + Mz|A* (y2)) k
= (z[A"(y1) + AA"(y2)) K

and by the uniqueness of A*(y1 + A\y2) we find
A" (y1 + Ay2) = A% (y1) + AA"(y2).

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(A%ylz) g = (z|A*y)n = (Azly)k = (y|Az)k

it follows that A** = A. The assertion that (A + AB)" = A* + AB* is Exercise
Items 3. and 4. Making use of the Schwarz inequality (Theorem, we

have
[A*| = sup [[A7K|
kEK:|k|=1
— sup swp [{A"K[R)]
kEK:|k||=1 he H:||h||=1
= sup sup  |[(k|AR)| = sup [[AR[ = [[A]
heH:||h||=1 kEK:||k|=1 heH:||h||=1
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so that |A*|| = | A . Since
* 2
[A"Al < [[A"[[ | Al = [lA]
and

JA|> = sup [|AR[]® = sup |(Ah|AR)]

heH:|[h]|=1 heH:|[h|=1
= sup [(h|A"AR)| < sup  [|A*AR| = ||A*A] (8.7)
he H:|[h||=1 heH:|[h|=1

we also have || A*A|| < ||A||> < ||A* A|| which shows [|A||> = || A*A]|.
Alternatively, from Eq. (8.7),

1AI” < A% Al < [lA] A7) (8.8)
which then implies ||A|| < ||A*||. Replacing A by A* in this last inequality
shows ||A*|| < ||A]| and hence that ||A*|| = || A]| . Using this identity back in
Eq. 1D proves || A||> = || A*A]|.

Now suppose that K = H. Then

(ABhlk) = (Bh|A*k) = (h|B*A™k)
which shows (AB)* = B*A*. If A=1 exists then

(AN A" =(AAY) =1" =T and

AT (AT =(A7A) =" =1.
This shows that A* is invertible and (A*)™" = (Afl)*. Similarly if A* is
invertible then so is A = A**. ]
Exercise 8.2. Let H, K, M be Hilbert spaces, A, B € L(H,K), C € L(K, M)
and X € C. Show (A + AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 8.3. Let H = C™ and K = C™ equipped with the usual inner
products, i.e. (z|w)y = z-w for z,w € H. Let A be an m Xn matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 8.17. Suppose A : H — K is a bounded operator, then:
1. Nul(A*) = Ran(4)* .
2. Ran(A) = Nul(A4*)+.
3.4 K=H andV C H is an A — invariant subspace (i.e. A(V) C V), then

V=t is A* — invariant.

Proof. An element y € K is in Nul(4*) iff 0 = (A*ylx) = (y|Ax
for all z € H which happens iff y € Ran(A)l. Because, by Exercise
Ran(A) = Ran(A4)1+, and so by the first item, Ran(A4) = Nul(A*)*. Now
suppose A(V) C V and y € V+, then

(A*y|z) = (y|Ax) =0 for all z € V
which shows A*y € V. ]
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8.1 Hilbert Space Basis

Proposition 8.18 (Bessel’s Inequality). Let T be an orthonormal set, then
for any x € H,

Z (z|v)|* < ||z||* for all z € H. (8.9)
veT

In particular the set T, = {v €T : (z|v) # 0} is at most countable for all
x € H.

Proof. Let I' C T be any finite set. Then

0< Jlz— Y (zloyu]® = llz|* = 2Re Y {afv) (v]z) + D [{alo)]?

vel’ vel vel’

= llzl® = Y l{afv)l?

vel

showing that > |(x|v)|? < |lz|*. Taking the supremum of this inequality over
vel

I' CC T then proves Eq. . [

Proposition 8.19. Suppose T' C H is an orthogonal set. Then s = Y v
exists in H (see Deﬁnition iff Yper 0| < oo. (In particular T must

be at most a countable set.) Moreover, if ), . ||v[|* < oo, then

2 2
L |ls|I” = Xper [[0lI” and
2. (s|z) = > cr(vlz) for all x € H.

oo
Similarly if {v,}22, is an orthogonal set, then s = > v, exists in H
n=1

o0 o0
iff Y |lonll? < oo. In particular if Y v, exists, then it is independent of

n=1 n=1
rearrangements of {v, }22 ;.

Proof. Suppose s = ) v exists. Then there exists I" CC T' such that

Dol =D

veEA veEA

2
<1

for all A CcC T\ I', wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such A shows that 3, .7 [v]]* <1 and

therefore
Do <14 > |lv)?* < 0.
veT vell

Conversely, suppose that > . [|[v]|? < oo. Then for all € > 0 there exists
I'. cC T such that if A CcC T\ I,
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>

veEA

Hence by Lemma > ver ¥ €xists.
For item 1, let I, be as above and set s; := >

2

=Y ol <& (8.10)

vEA

ver. V- Then

sl = llselll < lls —sell < e
and by Eq. (8.10),
2
0< > ol =llsel* = D llol* <&
veT v I,

Letting € | 0 we deduce from the previous two equations that ||s.|| — ||s| and
sl = 3 ,er 0% as & | 0 and therefore ||s|* = 3, [[v]|*.
Item 2. is a special case of Lemma For the final assertion, let

N
SN := Y v, and suppose that limy_, sy = s exists in H and in partic-
n=1
ular {sy}x_; is Cauchy. So for N > M.
N
Z lvall? = |Isn — sml]* — 0 as M, N — oo
n=M+1

oo oo
which shows that > ||v,]|? is convergent, i.e. > [jv,]|? < oc.
n=1 n=1
Alternative proof of item 1. We could use the last result to prove

Item 1. Indeed, if 3 o7 [|[v]|* < oo, then T is countable and so we may write
T ={v,},—,. Then s = limy_.~ sy with sy as above. Since the norm, ||,
is continuous on H,

2 N
s 2
= I&EHOOZ [[vnl]
n=1

N
Is|> = lim [lsy|* = lim || v,
N—oo N—oo
n=1
o]
2
= llwal* = ll0l*
n=1 veT

Corollary 8.20. Suppose H is a Hilbert space, 3 C H is an orthonormal set
and M = span (3. Then

Pyx = Z<x|u>u, (8.11)

u€ep
> l@lw)? = | Puz)|? and (8.12)
uep
> () (uly) = (Parxly) (8.13)
uepf

for all x,y € H.
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Proof. By Bessel’s inequality, >, 5 [(z|u))* < ||z|* for all z € H and
hence by Proposition , Px = Zueﬁ<x|u)u exists in H and for all z,y € H,

(Paly) =Y {(zluw)uly) = Y (x|u){uly). (8.14)

uep u€p

Taking y € § in Eq. gives (Px|y) = (z|y), i.e. that (x — Px|y) = 0 for
all y € 8. So (x — Pz) L span 8 and by continuity we also have (z — Pz) L
M = span f3. Since Pz is also in M, it follows from the definition of Pj; that
Px = Py x proving Eq. . Equations and now follow from
(8.14), Proposition .19 and the fact that (Pyz|y) = (Pzly) = (Pyz|Puy)
for all z,y € H. [

Exercise 8.4. Let (H,(:|-)) be a Hilbert space and suppose that {P,}>
is a sequence of orthogonal projection operators on H such that P,(H) C
P,+1(H) for all n. Let M := U2, P,(H) (a subspace of H) and let P denote
orthonormal projection onto M. Show lim,,_,oo P,z = Pz for all z € H. Hint:
first prove the result for z € M*, then for x € M and then for z € M.

Definition 8.21 (Basis). Let H be a Hilbert space. A basis 8 of H is a
mazximal orthonormal subset 3 C H.

Proposition 8.22. Fvery Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If @ C F is linearly ordered then U® is an upper bound. By Zorn’s
Lemma (see Theorem there exists a maximal element g € F. ]

An orthonormal set 8 C H is said to be complete if 3+ = {0}. That is
to say if (z|u) = 0 for all u € 8 then = = 0.

Lemma 8.23. Let 3 be an orthonormal subset of H then the following are
equivalent:

1. B is a basis,
2. B is complete and
3. span 0= H.

Proof. (1. < 2.) If § is not complete, then there exists a unit vector
x € 3+\{0}. The set BU{z} is an orthonormal set properly containing 3, so
[ is not maximal. Conversely, if § is not maximal, there exists an orthonormal
set 1 C H such that 8 & 1. Then if z € 1 \ 3, we have (z|u) = 0 for all
u € 3 showing [ is not complete.

(2. <= 3.) If 3 is not complete and = € B+ \ {0}, then span g C 2+
which is a proper subspace of H. Conversely if span 3 is aper subspace

of H, f+ = span BL is a non-trivial subspace by Corollary [8.14] and [ is not
complete. [
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Theorem 8.24. Let 3 C H be an orthonormal set. Then the following are
equivalent:

1. B is complete, i.e. B is an orthonormal basis for H.

2.x= > (zluyu for all z € H.
u€eS

3. (xlyy = > (zlu) (u|y) for all z,y € H.

uep

4. ||lz||? = Zﬁ |{z|u)|* for all x € H.
ue

Proof. Let M = span § and P = Py;.

(1) = (2) By Corollary [8.20, > (x|u)u = Pyrx. Therefore
ueps

x—Z(w\u)uzm—PMxEMLzﬁL = {0}.
u€ef

(2) = (3) is a consequence of Proposition

(3) = (4) is obvious, just take y = x.

(4) = (1) If z € B+, then by 4), ||z|| = 0, i.e. 2 = 0. This shows that 3 is
complete. [

Suppose I" := {u,} -, is a collection of vectors in an inner product space
(H,{:|-)). The standard Gram-Schmidt process produces from I" an or-
thonormal subset, 8 = {v,}22,, such that every element w, € I' is a finite
linear combination of elements from . Recall the procedure is to define v,
inductively by setting

n
Upg1 i= Upy1 — Z(Un+1|vj>vj = Unt1 — PpUns1
j=1
where P, is orthogonal projection onto M, := span({vy};_;). If v,41 := 0, let
Op41 = 0, otherwise set vy, 41 := ||Un41 ||71 Upt1. Finally re-index the resulting
sequence so as to throw out those v,, with v,, = 0. The result is an orthonormal
subset, 8 C H, with the desired properties.

Definition 8.25. As subset, I, of a normed space X 1is said to be total if
span(I) is dense in X.

Remark 8.26. Suppose that {u,}3%; is a total subset of H. Let {v,}52 be
the vectors found by performing Gram-Schmidt on the set {u,}22 ;. Then
B = {v,}2 is an orthonormal basis for H. Indeed, if h € H is orthogonal
to (3 then h is orthogonal to {u,}, and hence also span{u,}, ., = H. In
particular h is orthogonal to itself and so h = 0.

Proposition 8.27. A Hilbert space H is separable (BRUCE: has separable
been defined yet?) iff H has a countable orthonormal basis 3 C H. Moreover,
if H is separable, all orthonormal bases of H are countable. (See Proposition
4.14 in Conway’s, “A Course in Functional Analysis,” for a more general
version of this proposition.)
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Proof. Let D C H be a countable dense set D = {u,}>2 ;. By Gram-
Schmidt process there exists § = {v,}2; an orthonormal set such that
span{v, : n=1,2...,N} D span{u, : n=1,2...,N}. So if (z|v,) = 0 for
all n then (x|u,) = 0 for all n. Since D C H is dense we may choose {wy} C D
such that = limg_, o wy and therefore (x|z) = limy_ o (x|wy) = 0. That is to
say * = 0 and ( is complete. Conversely if 3 C H is a countable orthonormal
basis, then the countable set

D= Zauu:aue(@+i@:#{u:au7&0}<oo

u€eS

is dense in H. Finally let 5 = {u,}52; be an orthonormal basis and $; C H
be another orthonormal basis. Then the sets

By ={v € B1 : (v]un) # 0}

oo}
are countable for each n € N and hence B := |J B, is a countable subset

n=1
of B1. Suppose there exists v € 81 \ B, then (v|u,) = 0 for all n and since
B8 = {un}>2, is an orthonormal basis, this implies v = 0 which is impossible
since ||v|| = 1. Therefore 3; \ B = () and hence 31 = B is countable. ]

Proposition 8.28. Suppose X and Y are sets and pp: X — (0,00) and v :
Y — (0,00) are give weight functions. For functions f : X — Candg:Y — C

let f@g: X xY — C be defined by f @ g (z,y) := f(x)g(y). If B C % (u)
and v C 02 (v) are orthonormal bases, then

poy:={f®g:fepandge}
is an orthonormal basis for (? (p @ v).

Proof. Let f, f' € (2 (u) and g,g' € ¢? (v), then by the Tonelli’s Theorem
for sums and Holder’s inequality,

Y lfeg-fegduev=> Iff1nY_lgdlv
Y

XxXY X

< ez uy 1 N2y 1912y 19 g2y = 1 < 00

So by Fubini’s Theorem for sums,
(foglf @ ews =Y [Fn-> ggv
X Y

= (fIf e 9lg)ew) = 05,5044

Therefore, 3 ® 7 is an orthonormal subset of £?(y ® v). So it only remains to
show 3®- is complete. We will give two proofs of this fact. Let F' € (?(u®@v).
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In the first proof we will verify item 4. of Theorem [8:24] while in the second
we will verify item 1 of Theorem [8.24]
First Proof. By Tonelli’s Theorem,

2
S u@) S v @) [F@ )P = 1F]2 oy < 0

reX yey

and since p > 0, it follows that

Z |F(z,y)]> v (y) < oo for all z € X,
yey

i.e. F(x,-) € £2(v) for all z € X. By the completeness of +,

Y AF@ ) v (y) = (F (2,) [F (2,)e0) = » [(F (@) [9)ew) k
Y

ge€Y

and therefore,

1P oy = S (@) S v (9) | Pz, )
= Z Z [(F (x,-) \9>tz2(u)|2u (). (8.15)

and in particular, 2 — (F (x,-) |g)s2(,) is in £2 (1) . So by the completeness of
B and the Fubini and Tonelli theorems, we find

Z| |g Zz(u)| :u Z Z<F (CL’,) ‘g>é2(u)f_(x)ﬂ(‘r)

fesl X

=> 1> (Zm,y)g(y)v(y)) F(2) pu(z)
X Y

2

2

=> | Flayfeg@ypev(zy)
fepIXxXY

= Z (FIf® 9>€2(/L®V)|2'
fep

Combining this result with Eq. (8.15)) shows

2
||FH42(M®U = Z [(FIf ® 9) e (uow)|
fEB, g€

as desired.
Second Proof. Suppose, for all f € § and g € v that (F|f ® g) =0, i.e.
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0= (FIf ® Qexuan) = »_ n(x) Y v(y) Flz,y)f(2)g(y)

zeX yey
=D nl N9 ew) f(@). (8.16)
rzeX
Since
S FE e n@ <3 u@) S F@y)Prvi) <o, (8.17)
reX reX yeyY

it follows from Eq. (8.16) and the completeness of 3 that (F(z,-)|g)s) = 0
for all x € X. By the completeness of v we conclude that F(z,y) = 0 for all
(z,y) e X x Y. |

Definition 8.29. A linear map U : H — K is an isometry if |Uz|, =
|| g for all z € H and U is unitary if U is also surjective.

Exercise 8.5. Let U : H — K be a linear map, show the following are
equivalent:

1. U : H — K is an isometry,
2. (Uz|Ux") g = (z|2') g for all x,2’ € H, (see Eq. (8.33)) below)
3.U"U =1idy.

Exercise 8.6. Let U : H — K be a linear map, show the following are
equivalent:

1. U : H — K is unitary
2. U*U =idy and UU* = idk.
3. U is invertible and U™t = U*.

Exercise 8.7. Let H be a Hilbert space. Use Theorem to show there
exists a set X and a unitary map U : H — ¢?(X). Moreover, if H is separable
and dim(H) = oo, then X can be taken to be N so that H is unitarily
equivalent to £2 = (2(N).

8.2 Some Spectral Theory

For this section let H and K be two Hilbert space over C.
Exercise 8.8. Suppose A : H — H is a bounded self-adjoint operator. Show:

1. If X is an eigenvalue of A, i.e. Az = Az for some x € H\ {0}, then A € R.
2. If A and p are two distinct eigenvalues of A with eigenvectors x and y
respectively, then = L y.
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Unlike in finite dimensions, it is possible that an operator on a complex
Hilbert space may have no eigenvalues, see Example [8.35] and Lemma [8.36]
below for a couple of examples. For this reason it is useful to generalize the
notion of an eigenvalue as follows.

Definition 8.30. Suppose X is a Banach space over F (F =R or C) and
A€ L(X). We say X € F is in the spectrum of A if A— A\l does not have a

bounde(ﬂ inverse. The spectrum will be denoted by o (A) C F. The resolvent
set for A is p(A) :=TF\o (4).

Remark 8.31. If A is an eigenvalue of A, then A — Al is not injective and hence
not invertible. Therefore any eigenvalue of A is in the spectrum of A. If H
is a Hilbert space ant A € L (H), it follows from item 5. of Proposition
that A € o (A) iff X € o (4*), i.e.

c(A)={X:xec(A)}.
Exercise 8.9. Suppose X is a complex Banach space and A € GL (X) . Show
c(A N =0 =N ea(A)).

If we further assume A is both invertible and isometric, i.e. ||Az| = ||z|| for
all x € X, then show

c(A)c Sti={z€C:|z|=1}.
Hint: working formally,

(A_l _ A_1)71 _ 1 _ 1 _ AN

from which you might expect that (4=! — )\_1)_1 = MA-NifXe
p(A).

Exercise 8.10. Suppose X is a Banach space and A € L (X). Use Corollary
7.22 to show o (A) is a closed subset of {)\ eF: |\ <A := HAHL(X)} .

Lemma 8.32. Suppose that A € L(H) is a normal operator, i.e. [A, A*] = 0.
Then A € o(A) iff
inf ||(A—AL)y| =0. (8.18)
llpll=1
In other words, A € o (A) iff there is an “approximate sequence of eigen-
vectors” for (A,\), i.e. there exists v, € H such that ||¢,] = 1 and
Ay, — MY, — 0 as n — oo.

3 It will follow by the open mapping Theorem [25.19| or the closed graph Theorem
25.22| that the word bounded may be omitted from this definition.
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Proof. By replacing A by A — AI we may assume that A =0.If 0 ¢ o(A),
then

| Al 1l B
f ||A = inf —— = inf = A .
jdnt WAVl = inf s = inf gy = VAT >0

Now suppose that inf|, =1 [[A%[ = & > 0 or equivalently we have

[AY]| = e [I¥]]

for all ¢ € H. Because A is normal,
149* = (A" Aply) = (AA™plw) = (A"l A™) = A",
Therefore we also have
A = [[Ap]| = [yl V¢ € H. (8.19)

This shows in particular that A and A* are injective, Ran(A) is closed and
hence by Lemma |8.17

Ran(A) = Ran(4) = Nul(4*)* = {0}* = H.

Therefore A is algebraically invertible and the inverse is bounded by Eq.
(18.19). ]

Lemma 8.33. Suppose that A € L(H) is self-adjoint (i.e. A= A*) then

o(4) C | =14l 141, | < R.

op’? |
Proof. Writting A = o + i with o, 5 € R, then

1A+ a+iB)¢]* = [(A+a)p|® + B |9]]° + 2Re((A + a) ¥, i6)
= (A + a)y|* + |81 1] (8.20)

wherein we have used

Re[if((A+a) ¢, )] = BIm((A+ o) ¥, ¥) =0
since
(A+ )9, ¢) = (¥, (A+ ) ¢P) = (A+a) ¥, ¢).
Eq. along with Lemma[8.32)shows that A ¢ o(A) if 3 # 0, i.e. 0(A) C R.

The fact that o (A) is now contained in [— 1 Allop » ||AHOP} is a consequence of
Exercise [

Remark 8.34. It is not true that o(A) C R implies A = A*. For example let

A= (g (1)> on H = C2, then o(A) = {0} yet A # A*.
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Ezample 8.35. Let S € L(H) be a (not necessarily) normal operator. The
proof of Lemmam gives A € o(9) if Eq. holds. However the converse
is not always valid unless S is normal. For example, let S : £2 — £2 be the shift,
S(wr,way...) = (0,wi,ws,...). Then for any A € D:={z€ C: |z| < 1},

1S =)@l = [15¢ = Xl = [[[S9ll = A1l = (1= [AD (1]

and so there does not exists an approximate sequence of eigenvectors for
(S, \). However, as we will now show, o (S) = D.

To prove this it suffices to show by Remark and Exercise that
D C o (S*). For if this is the cae then D C ¢ (S*) C D and hence o (S) = D

since D is invariant under complex conjugation.
A simple computation shows,

S*(wy,wa,...) = (w2, ws,...)
and w = (w1,ws,...) is an eigenvector for S* with eigenvalue A\ € C iff
0=(S" =) (w1,wa,...) = (w2 — dw1, w3 — Awa, ... ).
Solving these equation shows
W = Awi, wg = Aws = ANwy ,..., wp = A""lw.
Hence if A € D, we may let w; = 1 above to find
SHL,AA% ) = A1, 002, 000)

where (1,\,A2,...) € £2. Thus we have shown \ is an eigenvalue for S* for
all A € D and hence D C o(S*).

Lemma 8.36. Let H = (?(Z) and let A: H — H be defined by
Af(k)=i(f(k+1)—f(k—1)) forallk € Z.
Then:

1. A is a bounded self-adjoint operator.
2. A has no eigenvalues.

3. 0(A) =[-2,2].

Proof. For another (simpler) proof of this lemma, see Exercise below.
1. Since

ALl < 1F CH+Dllp + 1 C=Dlly = 21071,

| A]l,, < 2 < co. Moreover, for f,g € 2 (z),
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8.2 Some Spectral Theory 93
(Aflgy = i (f (k+1) — f (k=1)g (k)
k
=Y if(k)gk—=1)=> if(k)g(k+1)
k

k

=" f(k) Ag (k) = (f|Ag),
k

which shows A = A*.
2. From Lemma we know that o (4) C [-2,2]. If A € [-2,2] and
f € H satisfies Af = Af, then

flk+1)=—ixf(k)+ f(k—=1) for all k € Z. (8.21)

This is a second order difference equations which can be solved analogously
to second order ordinary differential equations. The idea is to start by looking
for a solution of the form f (k) = aF. Then Eq. beocmes, oft! =
—ida® + o#~1 or equivalently that

o +ida—1=0.
So we will have a solution if o € {a4 } where
—iAEV4— )2
—

For || # 2, there are two distinct roots and the general solution to Eq. (8.21)
is of the form

a4 =

f(k)=crak +c_a® (8.22)
for some constants cx € C and |A| = 2, the general solution has the form
f (k) = cak + dka (8.23)

Since in all cases, |ay| = i ()\2 +4 — )\2) =1, it follows that neither of these
functions, f, will be in 2 (Z) unless they are identically zero. This shows that
A has no eigenvalues.

3. The above argument suggest a method for constructing approximate
eigenfucntions. Namely, let A € [—2,2] and define f,, (k) := 1|k|§nak where
a = ay. Then a simple computation shows

A=A fall,

lim =0 (8.24)
n—oo || full
and therefore A € o (A4). ]
Exercise 8.11. Verify Eq. (8.24). Also show by explicit computations that
A=) fn
i IA=AD Bl
n—=oo |l fally

it ¢ [~2,2].
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94 8 Hilbert Space Basics

The next couple of results will be needed for the next section.

Theorem 8.37 (Rayleigh quotient). Suppose T € L(H) := L(H,H) is a
bounded self-adjoint operator, then

)
171 =sup =7

Moreover if there exists a non-zero element g € H such that

(T9lg) _
2 - || ”7
gl
then g is an eigenvector of T with Tg = Ag and A € {x||T||}.

Proof. Let

(1T
M = .
o TP
We wish to show M = ||T||. Since

[KATHT < IFNT LI < I,
we see M < ||T||. Conversely let f,g € H and compute

(F+9IT(f+9)) = (f = 9IT(f = 9))

= (fITg) + 9ITF) +{fITg) + (9T )

=2[(f[Tg) + (T'glf)] = 2[(f|Tg) + (f|Tg)]
= 4Re(f|Tg).

Therefore, if || f|| = ||g]| = 1, it follows that
M M
Re(fITa)| < 5 {If + 9l + 1If — gl1*} = - {211 + 20gl*} = 0.

By replacing f be e f where 6 is chosen so that e (f|Tg) is real, we find
[(f[Tg)| < M for all [ f|| = [lg]| = 1.

Hence

IT|= sup [(f|Tg)| <M.
I=llgll=1

If g€ H\ {0} and ||T|| = [(Tglg)|/||g]|* then, using the Cauchy Schwarz

inequality,
[(Tglg)]
1T = - < <7l (8.25)

gl Il
This implies [(T'glg)| = || Tgllllg|l and forces equality in the Cauchy Schwarz

inequality. So by Theorem Tg and g are linearly dependent, i.e. T'g = A\g
for some A € C. Substituting this into (8.25)) shows that |A| = ||T||. Since T
is self-adjoint,

Mlgl® = (Aglg) = (Tglg) = (9ITg) = (glrg) = Mglg),

which implies that A € R and therefore, A € {||T||}. |

1Tyl
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8.3 Compact Operators on a Hilbert Space 95
8.3 Compact Operators on a Hilbert Space

In this section let H and B be Hilbert spaces and U := {x € H : ||z|| < 1}
be the unit ball in H. Recall from Definition that a bounded operator,
K : H — B, is compact iff K(U) is compact in B. Equivalently, for all
bounded sequences {z,}52; C H, the sequence {Kx,}>2 ; has a convergent
subsequence in B. Because of Theorem [14.15] if dim(H) = co and K : H — B
is invertible, then K is not compact.

Definition 8.38. K : H — B is said to have finite rank if Ran(K) C B is
finite dimensional.

The following result is a simple consequence of Corollaries[I4.13and

Corollary 8.39. If K : H — B is a finite rank operator, then K is compact.
In particular if either dim(H) < oo or dim(B) < oo then any bounded operator
K : H — B is finite rank and hence compact.

Lemma 8.40. Let K := K(H, B) denote the compact operators from H to
B. Then K(H, B) is a norm closed subspace of L(H, B).

Proof. The fact that K is a vector subspace of L(H, B) will be left to the
reader. To finish the proof, we must show that K € L(H, B) is compact if
there exists K,, € C(H, B) such that lim,, . || K,, — K||op = 0.

First Proof. Given ¢ > 0, choose N = N(e) such that |[Ky — K| < e.
Using the fact that KyU is precompact, choose a finite subset A C U such
that mingea |ly — Knz|| < e for all y € Ky (U). Then for z = Kzg € K(U)
and x € A,

I — Kall = (K — Kn)ao + Kn(zo — ) + (Ky — K)a|
<2+ ”KNxO — KNJ?H
Therefore minge 4 || — Knz|| < 3¢, which shows K(U) is 3¢ bounded for all
e >0, K(U) is totally bounded and hence precompact.
Second Proof. Suppose {z,} -, is a bounded sequence in H. By com-

pactness, there is a subsequence {x}t}:ozl of {z,},—, such that {le;}zo:l
is convergent in B. Working inductively, we may construct subsequences

{wnyp D {an}_ D{al} D {aphl D
such that {K,,2m} 7 | is convergent in B for each m. By the usual Cantor’s
diagonalization procedure, let y, := 7, then {yn};":’:1 is a subsequence of
{z,}7, such that {K,,y,}, - is convergent for all m. Since
1Ky — Kyill < (K = Ko yull + [ K (yn = yo)ll + | (K — K) y)|
<2 ||K - KmH + ||Km(yn - yl)H )

lim sup ||Ky, — Ky <2||K — K,,|| — 0 as m — oo,

n,l—oo

which shows {Ky, }.-, is Cauchy and hence convergent. ]
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96 8 Hilbert Space Basics

Proposition 8.41. A bounded operator K : H — B is compact iff there exists
finite rank operators, K,, : H — B, such that |K — K,|| — 0 as n — oo.

Proof. Since K(U) is compact it contains a countable dense subset and
from this it follows that K (H) is a separable subspace of B. Let {¢,,} be an
orthonormal basis for K (H) C B and

N

Pxy = (ylén)én

n=1

be the orthogonal projection of y onto span{¢, })_;. Then limy_. || PNy —
y|| =0 for all y € K(H). Define K,, := P,K — a finite rank operator on H.
For sake of contradiction suppose that

limsup |K — K,|| =¢ > 0,

n—oo

in which case there exists z,, € U such that ||(K — K, )2n,| > ¢ for all ng.
Since K is compact, by passing to a subsequence if necessary, we may assume
{Kwnk}ff;zl is convergent in B. Letting y := limg_,o0 Ky, ,

(K = Ky ), | = [[(1 = Poy ) K, |

<N = Py ) (Kwny, — )|+ [[(1 = Poy)yll
S Kzn, =yl + 11 = Poy)yll — 0 as k — oc.

But this contradicts the assumption that ¢ is positive and hence we must

have lim,, o ||K — K,|| = 0, i.e. K is an operator norm limit of finite rank
operators. The converse direction follows from Corollary and Lemma
.40 ]

Corollary 8.42. If K is compact then so is K*.

Proof. First Proof. Let K,, = P, K be as in the proof of Proposition
8.§1|7 then K = K*P, is still finite rank. Furthermore, using Proposition

B.16]

|K* = K| = |[K — K| — 0 as n — o0

showing K™ is a limit of finite rank operators and hence compact.
Second Proof. Let {x,,} —, be a bounded sequence in B, then

K 2y — K* 2 ||> = (0 — @m, KK* (@ — 2m)) < 2C | KK* (2, — @) ||
(8.26)
where C'is a bound on the norms of the z,,. Since { K*z,, } -, is also a bounded
sequence, by the compactness of K there is a subsequence {z] } of the {z,}
such that K K*x/ is convergent and hence by Eq. 7 so is the sequence

n

(K*z!}. n

Page: 96  job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



8.3 Compact Operators on a Hilbert Space 97
8.3.1 The Spectral Theorem for Self Adjoint Compact Operators

For the rest of this section, K € K(H) := K(H,H) will be a self-adjoint
compact operator or S.A.C.O. for short. Because of Proposition [8.41] we
might expect compact operators to behave very much like finite dimensional
matrices. This is typically the case as we will see below.

Ezample 8.43 (Model S.A.C.0.). Let H = {5 and K be the diagonal matrix

MO O -
0 Xy O ---
K=00x-]>

where lim,, .o [A\n] = 0 and A, € R. Then K is a self-adjoint compact opera-
tor. This assertion was proved in Example [14.17] above.

The main theorem (Theorem [8.45)) of this subsection states that up to
unitary equivalence, Example [8.43] is essentially the most general example of
an S.A.C.O.

Proposition 8.44. Let K be a S.A.C.O., then either A = |[K|| or A = — || K]||
s an eigenvalue of K.

Proof. Without loss of generality we may assume that K is non-zero since
otherwise the result is trivial. By Theorem [8:37] there exists u,, € H such that
|lun] =1 and

= [{(un|Kun) — || K| as n — oo. (8.27)

By passing to a subsequence if necessary, we may assume that A\ :=
limy, o0 (un | Kuy,) exists and A € {£| K||}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that Ku,,
is convergent as well. We now compute:
0 < [ Kun — Mun || = || Kun|? — 20K ug) + A2
<N =2\ Kup|u,) + N2

A2 224+ A2 =0asn— .

Hence

Ku, — Au, — 0asn — oo (8.28)
and therefore )

w:= lim u, = X lim Ku,

exists. By the continuity of the inner product, ||u| =1 # 0. By passing to the
limit in Eq. (8.28) we find that Ku = Au. ]
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98 8 Hilbert Space Basics

Theorem 8.45 (Compact Operator Spectral Theorem). Suppose that
K :H — H is a non-zero S.A.C.0., then

1. there exists at least one eigenvalue X € {£|| K||}.

2. There are at most countable many non-zero eigenvalues, {\, })_,, where
N = oo is allowed. (Unless K is finite rank (i.e. dimRan (K) < c0), N
will be infinite.)

3. The A\, ’s (including multiplicities) may be arranged so that |A\,| > [Ap41]
for all n. If N = 0o then lim,_ |An| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {¢n}N_; can be chosen to be an O.N. set such that H =
span{¢, } & Nul(K).

5. Using the {¢n }N_; above,

N
Kf = Z /\n<f|¢n>¢n fOT all f € H. (829)
n=1

6. The spectrum of K is, o(K) ={0}U{\,:n < N +1}.

Proof. We will find A,,’s and ¢,,’s recursively. Let A\; € {£| K|} and
¢1 € H such that K¢; = A1¢1 as in Proposition

Take M; = span(¢1) so K(M;) C M;. By Lemma KMi- ¢ M.
Define K; : M- — Mj via K; = K|M1l. Then K is again a compact
operator. If Ky = 0, we are done. If K # 0, by Proposition [8.44] there exists
)\2 S {:|Z||K1H} and ¢2 S MlJ‘ such that HQSQH =1 and Klgf)g = K¢2 = )\2¢2.
Let My := span(é1, ¢2).

Again K (M) C Ms and hence K3 := K|y ¢ Ms- — Mj- is compact and
if K5 = 0 we are done. When K5 # 0, we apply Proposition [8.44] again to find
A3 € {:l:HKHQ} and ¢3 S ]\42L such that H(b3H =1 and K2¢3 = K¢z = )\3¢53.

Continuing this way indefinitely or until we reach a point where K, = 0,
we construct a sequence {\, }N_; of eigenvalues and orthonormal eigenvectors
{¢n}N_, such that |\, | > |A\n11| with the further property that

1K 4l

[Anl = .
" i(eraniny 9

(8.30)

When N < oo, the remaining results in the theorem are easily verified. So
from now on let us assume that N = cc.

If € := lim, o0 |An| > 0, then {A;l(bn}zo:l is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {ny : k € N} of
N such that {¢n, = A; K¢y, },-, is a convergent. However, since {¢n, }re;
is an orthonormal set, this is impossible and hence we must conclude that
e :=lim, o |An| = 0.

Let M := span{¢,}32,. Then K (M) C M and hence, by Lemma [8.17]
K(M*) c M*. Using Eq. (3.30),

Page: 98  job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



8.3 Compact Operators on a Hilbert Space 99

showing K|M+ = 0. Define Py to be orthogonal projection onto M~. Then
for f € H,

f=Pf+0=P)f=Pof+>_(flon)on

n=1

and - -
Kf=KPf+K> (flon)dn =Y Mlfldn)dn

n=1 n=1

which proves Eq. .

Since {A\,}22; C o(K) and o(K) is closed, it follows that 0 € o(K) and
hence {A\,}52, U {0} C o(K). Suppose that z ¢ {A,}52; U {0} and let d
be the distance between z and {A,}52; U {0}. Notice that d > 0 because
lim, 00 A, = 0.

A few simple computations show that:

N

(K —2D)f =Y {flén)(An — 2)bn — 2P,

n=1

(K — z)~! exists,

N
(K — ZI)ilf = Z<f|¢n>()‘n - 2)71¢7L - 271P0f7
n=1

and
II(K—ZI)*1f||2—§:\<f|¢ CL I ) N
= 2 e el
1 2 al 2 2 1 2
<(3) (Sitenr +1msr) = s
n=1

We have thus shown that (K — 2I)~! exists, |[[(K — 2I)7}|| < d~! < oo and
hence z ¢ o(K). ]

Theorem 8.46 (Structure of Compact Operators). Let K : H — B
be a compact operator. Then there exists N € NU{oo}, orthonormal subsets

{qi)n}nN:l C H and {4}, C B and a sequences {Oén},ljzl C Ry such that

n=1

M > > . imy o, =0 if N =00, ||[U,.]] <1 foralln and

N
Kf = on(fln)tbn for all f € H. (8.31)

n=1
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100 8 Hilbert Space Basics

Proof. Since K*K is a selfadjoint compact operator, Theorem 8:45]implies
there exists an orthonormal set {¢,,}Y_; C H and positive numbers {)\n}gzl
such that

N
K*Kp =Y An(¥|én)n for all 9 € H.

n=1

Let A be the positive square root of K*K defined by

N
A=Y " /A (Y]dn) by for all ¢ € H.

A simple computation shows, A2 = K*K, and therefore,

|AY|* = (Av|Ap) = (p]|A%)
= (Y|K*K¢) = (Ky|Ky) = | Ky

for all ¢» € H. Hence we may define a unitary operator, u : Ran(A) — Ran(K)
by the formula
uAyp = K1 for all v € H.

‘We then have v
Ky =ud =Y /A (¥lén)uén (8.32)

which proves the result with 9, 1= u¢, and o, = VA,
It is instructive to find v, explicitly and to verify Eq. (8.32) by bruit force.

Since ¢,, = )\,_Ll/QAqu
Vo = AN 2uAg, = NV 2uAG, = MY 2K ¢,
and

This verifies that {wn} _; is an orthonormal set. Moreover,

N N
> V@) tn =Y VA @lon) A 2K ¢y
n=1

n=1

N
= Zwm bn = K1p

since Zf:’:l<¢|¢n>gbn = Pt where P is orthogonal projection onto Nul(K)> .

Second Proof. Let K = u|K]| be the polar decomposition of K. Then
| K| is self-adjoint and compact, by Corollary ?7?, and hence by Theorem
there exists an orthonormal basis {¢,}_, for Nul(|K )+ = Nul(K)* such
that | K| ¢n = Aydn, A1 > A2 > ... and hmn_)oo Ap =0if N =oco. For f € H,
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8.4 Supplement 1: Converse of the Parallelogram Law 101

N N N
Kf =ulK]Y (flon)on = > (flon)u|K|én = An(flén)ucn
n=1 n=1 n=1
which is Eq. with ¥, := ugp,. [

8.4 Supplement 1: Converse of the Parallelogram Law

Proposition 8.47 (Parallelogram Law Converse). If (X, ||-||) is a normed
space such that Eq. holds for all x,y € X, then there exists a unique in-
ner product on (-|-) such that ||z|| := /{(z|x) for all x € X. In this case we
say that ||-|| is a Hilbertian norm.

Proof. If ||-|| is going to come from an inner product (-|-), it follows from

Eq. (81) that
2Re(xly) = ||z +ylI* — [l=]* — llyl®

and
—2Re(z|y) = ||z — ylI> — ||=[1> — |ly[*.

Subtracting these two equations gives the “polarization identity,”
4Re(zly) = [|lz +y|I* — [z — y]|*.

Replacing y by 4y in this equation then implies that
Am(zly) = [lo + iy||* — [|lz — iy|?

from which we find

1
(zly) = ZX:EHJH-é?yH2 (8.33)
eeG
where G = {&1,4i} — a cyclic subgroup of S* C C. Hence if (-|-) is going to
exists we must define it by Eq. (8.33)). Notice that

1 . . . .
(ala) = 3 3 ella - eal” = ol +ille + il — il — il
4
eeqG
. . . . 2
= 2l + i |1+ [ flel® = i [1 =i | |21 = [l

So to finish the proof of (4) we must show that (z|y) in Eq. (8.33) is an inner
product. Since

Myle) = elly +eall? =) elle (y+e) |

eeG eeG
= eley +e|?

e
= lly +al® + || =y + 2| + illiy — 2|* = i]| — iy — |?
= llz +ylI? + o =yl +illz — iy]|* — illz + iy|)*

= 4(z|y)
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it suffices to show & — (z|y) is linear for all y € H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (8.2]). To do this we make use of Eq. (8.2)) three times to find
lz+y+2l* = —llz +y — 21> + 2]z + y|* + 2||2]?

= llz —y —2l* = 2[le — 2> = 2llyl* + 2l|= + yII* + 2] 2]

= lly +2z =zl = 2llz = 2I* = 2lly|* + 2[lz + y[I* + 2|2

= —lly+ 2+ +2lly + 2[|* + 2l|=|*

= 2]z — 2|* = 2|lyll* + 2]z + y* + 2/|2.

Solving this equation for ||z +y + z||* gives

lz+y + 207 = lly + 207 + [l +yll* = lla = 207 + |2 + |21 = yl*. (8.34)

Using Eq. , for z,y,z € H,
4Re(z + zly) = [lz + 2 + y[I” = |z + 2 — y|?
=y + 21 + llz +yl* — llz — 2> + [|=]* + [[2]1* — [ly]®
— (Il =9l + llz = ylI* = [l — 21 + |z [* + [|2]|* — [ly[I*)
=z +yll> =z = yl* + ll +ylI* = |z — y|I”
= 4Re(zly) + 4Re(z]y). (8.35)

Now suppose that § € G, then since |0] = 1,

1 1 _
Aoaly) = 1 S ellbr +eyl? = 3 3 clla+ 6 ey

eeG eeG
1
=1 Z£5||x—|—65y||2 = 46{x|y) (8.36)
eeG

where in the third inequality, the substitution € — £J was made in the sum.
So Eq. (8.36) says (+iz|y) = +i{iz|y) and (—x|y) = —(z|y). Therefore

Im(z|y) = Re (—i(z|y)) = Re(—izly)
which combined with Eq. (8.35)) shows

Im(z + z|y) = Re(—iz —iz|y) = Re(—iz|y) + Re(—iz|y)
= Im(z|y) + Im(z[y)

and therefore (again in combination with Eq. (8.35)),
(x + zly) = (z|y) + (z|y) for all z,y € H.

Because of this equation and Eq. (8.36] to finish the proof that © — (x|y) is
linear, it suffices to show (Az|y) = A(z|y) for all A > 0. Now if A = m € N,
then

Page: 102 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



8.5 Supplement 2. Non-complete inner product spaces 103

(mzly) = (z + (m = Dzly) = (zly) + ((m - Dz|y)

so that by induction (mx|y) = m(x|y). Replacing & by a/m then shows that
(z|ly) = m{m~Lz|y) so that (m~1z|y) = m~(z|y) and so if m,n € N, we find
n 1 n
<Eﬂf\y> = n<aff\y> = E<$|y>
so that (Ax|y) = A(z|y) for all A > 0 and A € Q. By continuity, it now follows
that (Azly) = Az|y) for all A > 0. L]

8.5 Supplement 2. Non-complete inner product spaces

Part of Theorem [8:24] goes through when H is a not necessarily complete inner
product space. We have the following proposition.

Proposition 8.48. Let (H,(:|-)) be a not necessarily complete inner product
space and 8 C H be an orthonormal set. Then the following two conditions
are equivalent:

1.2 =Y {(x|u)u for all z € H.
u€eS
2. ||z]|2 = Y (z|u)|* for allx € H.
u€es

Moreover, either of these two conditions implies that 8 C H is a mazimal
orthonormal set. However 8 C H being a mazximal orthonormal set is not
sufficient to conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 1) implies 2). For 2) implies 1)
let A CC (8 and consider

ueA

= [e* =2 [l + Y [zl

ueA ueA

= Jlall* = Kalu)l*.

ueA

Since [|z]|? = Y [(x|u)|?, it follows that for every € > 0 there exists A. CC
uep
such that for all A CC  such that A, C A,

x— Z<x|u>u

ueA

2

= |l = > lalu)* <&

ueA

showing that = = Y (z|u)u. Suppose z = (z1,72,...,Tp,...) € fL. If 2)
u€eB
is valid then |z||*> = 0, i.e. # = 0. So 3 is maximal. Let us now construct
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a counter example to prove the last assertion. Take H = Span{e;}3°, C (2
and let 4, = e; — (n+ 1)e,y1 for n = 1,2.... Applying Gramn-Schmidt to
{@,},2, we construct an orthonormal set 8 = {u,}2; C H. I now claim
that 3 C H is maximal. Indeed if z = (21, 22,...,2n,...) € 3+ then z L u,
for all n, i.e.

0= (x|tn) =21 — (n+ D)xpy1.

Therefore 2,41 = (n+1)"" 2 for all n. Since z € Span{e;}22,, zy = 0 for
some N sufficiently large and therefore 7y = 0 which in turn implies that
xn, = 0 for all n. So x = 0 and hence 3 is maximal in H. On the other hand,
is not maximal in ¢2. In fact the above argument shows that 1 in ¢2 is given

by the span of v = (1, %, %, i, %, ...). Let P be the orthogonal projection of
% onto the Span(3) = v*. Then

S Geluntun = P = — 10,

i=1 o]

so that > (x|u,)u, = z iff € Span(B) = vt C ¢2. For example if z =
i=1

(1,0,0,...) € H (or more generally for x = e; for any i), x ¢ v and hence

&)

i=1

8.6 Exercises

Exercise 8.12. Prove Theorem Hint: Let Hy :=span{z, : n € N} —a
separable Hilbert subspace of H. Let {A,,} ~_; C Hy be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yi =
such that ¢, := limg_, o0 (Yr|A\m) exists for all m € N. Finish the proof by
appealing to Proposition [14.42

Exercise 8.13. Suppose that {z,},-, C H and z, — = € H as n — oo.
Show x, — z as n — 0o (l.e. limy, o0 || — 5| = 0) iff limy, oo ||z0]| = 2] -

Exercise 8.14 (Banach-Saks). Suppose that {z,,}°° | C H, z, > z € H as
n — 00, and ¢ := sup,, ||z, | < co[f Show there exists a subsequence, yi, = @y,

such that
1N
TN DT
k=1

ie & Zszl yr — x as N — oo. Hints: 1. show it suffices to assume z = 0
and then choose {yx},o; so that |(yx|y)| < ™! (or even smaller if you like)
for all k£ <.

lim
N—oo

:O,

4 The assumption that ¢ < co is superfluous because of the “uniform boundedness
principle,” see Theorem [25.27) below.
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Exercise 8.15 (The Mean Ergodic Theorem). Let U : H — H be a uni-
tary operator on a Hilbert space H, M = Nul(U — I), P = Py be orthogonal
projection onto M, and S, = S oU*. Show S, — Py strongly, i.c.
lim,, o Spx = Pyyx for all z € H.

Hints: 1. Show H is the orthogonal direct sum of M and Ran(U — I) by
first showing Nul(U* —I) = Nul(U —I) and then using Lemma[8.17] 2. Verify
the result for © € Nul(U — I) and = € Ran(U —I). 3. Use a limiting argument
to verify the result for € Ran(U — I).
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9

Holder Spaces as Banach Spaces

In this section, we will assume that readery has basic knowledge of the Rie-
mann integral and differentiability properties of functions. The results use

here may be found in Part below. (BRUCE: there are forward references
in this section.)

Notation 9.1 Let 2 be an open subset of RY, BC(£2) and BCO(f2) be the
bounded continuous functions on £2 and (2 respectively. By identifying f €
BC(2) with f|g € BC(£2), we will consider BC(§2) as a subset of BCO({2).
Forue BC(£2) and0 < 8 <1 let

) =)}

|y, := sup |u(zx)| and [u]g := sup {
[[t] | zenl (z)| [uls P

z,yeN
zFy
If [ulpg < oo, then u is Hélder continuous with holder exponenﬂ B. The
collection of B — Hélder continuous function on 2 will be denoted by
COP(2) := {u € BC(Q) : [u]s < oo}
and for u € COP(§2) let
[ullcos(@) == llullu + [uls. (9-1)

Remark 9.2.If u : 2 — C and [u]g < oo for some § > 1, then u is constant
on each connected component of £2. Indeed, if € £2 and h € R? then

u(z + th) — u(z)

- < [upt’/t = 0ast—0

which shows dpu(x) = 0 for all x € 2. If y € {2 is in the same connected
component as x, then by Exercise below there exists a smooth curve

LIf B =1, wis is said to be Lipschitz continuous.
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o :[0,1] — §2 such that 0(0) = z and o(1) = y. So by the fundamental
theorem of calculus and the chain rule,

u(y) —u(z) = /0 %u(o(t))dt = /0 0dt =0.

This is why we do not talk about Holder spaces with Holder exponents larger
than 1.

Lemma 9.3. Suppose u € C'(2) N BC(2) and d;u € BC(2) for i =
1,2,...,d, then u € C%L(0), i.e. [u]; < .

The proof of this lemma is left to the reader as Exercise [0.1]
Theorem 9.4. Let §2 be an open subset of R%. Then

1. Under the identification of u € BC (£2) with ulp € BC (£2), BC(£2) is a
closed subspace of BC(£2).

2. Every element u € CO"@(Q) has a unique extension to a continuous func-
tion (still denoted by u) on £2. Therefore we may identify C*P(£2) with
C%P(2) € BC(R). (In particular we may consider C%5(82) and C%P(12)
to be the same when (3 > 0.)

3. The function u € C®P(2) — |lullcos(q) € [0,00) is a norm on C%P(12)
which make C%P(§2) into a Banach space.

Proof. 1. The first item is trivial since for u € BC({2), the sup-norm of
u on {2 agrees with the sup-norm on {2 and BC(2) is complete in this norm.

2. Suppose that [u]g < oo and z¢ € bd(£2). Let {z,},—, C 2 be a
sequence such that x¢g = lim,_, . . Then

|w(zn) — u(zm)| < [ulg|zn — xm|ﬂ — 0asm,n —

showing {u(xn)},—; is Cauchy so that @(zg) := lim, . u(z,) exists. If
{yn}oo, C £ is another sequence converging to zg, then

[u(z,) —u(yn)] < [U]B |2 — yn\ﬁ — 0 asn — oo,

showing u(xo) is well defined. In this way we define @(z) for all z € bd(£2)
and let @(z) = u(z) for x € 2. Since a similar limiting argument shows

[a(x) — ay)| < [uls o —y|” for all 2,y € 2

it follows that @ is still continuous and [u]s = [u]s. In the sequel we will abuse

notation and simply denote u by wu.
3. For u,v € C%A(02),
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{ [v(y) + uly) — v(z) — u(z)| }

[v+ulg = sup

:r,my#eﬂ |l‘ - ylﬁ
[v(y) — v(@)| + |u(y) — u(z)|
< ;;epn { Y = y|ﬁy } < [vlg + [u]p

zFy

and for A € C it is easily seen that [Aulg = |A|[u]s. This shows []g is a
semi-norm (see Definition on C%P(£2) and therefore || - ||co.s(q) defined
in Eq. is a norm. To see that C*#(£2) is complete, let {u,}r—, be a
C%8(£2)-Cauchy sequence. Since BC({2) is complete, there exists u € BC((2)
such that ||u — u,| ., — 0 as n — co. For z,y € 2 with « # y,

Ju@) —u()] _ . (@) —ua(y)]
z -y’ e |z—yl?

< limsuplup|s < lim |[uy|[co.s (o) < 00,
n— o0 n—0oo
and so we see that u € C%(£2). Similarly,

ju(e) —a(2) — (u(y) ~ @D (e ) (2) — (1 — )0
|x—y|ﬁ m—00 |z —y|P

< limsup[um, — uy]g — 0 as n — oo,
m— 00

showing [u — u,]s — 0 as n — oo and therefore lim,, o [[u — un||co.s(2) = 0.
[

Notation 9.5 Since §2 and 2 are locally compact Hausdor(f spaces, we may
define Co(82) and Co(£2) as in Definition|15.24. We will also let

COP(2) := C™P(2) N Co(R2) and CTP(2) := COP(2) N Cy(2).

It has already been shown in Proposition [15.23|that Co(£2) and Co(£2) are
closed subspaces of BC({2) and BC({2) respectively. The next proposition

describes the relation between Cy(£2) and Cy({2).

Proposition 9.6. Fach u € Cy(§2) has a unique extension to a continuous
function on £2 given by i = u on §2 and 4 = 0 on bd(£2) and the estension u
is in Co(£2). Conversely if u € Co(2) and ulnan) = 0, then ulg € Co(£2). In
this way we may identify Co(§2) with those u € Cy(§2) such that ul,qm) = 0.

Proof. Any extension u € Cy(£2) to an element u € C(2) is necessarily
unique, since (2 is dense inside £2. So define % = u on 2 and @ = 0 on bd(£2).
We must show @ is continuous on 2 and @ € Co({2). For the continuity
assertion it is enough to show @ is continuous at all points in bd(f2). For any
e > 0, by assumption, the set K, := {x € 2 : |u(x)| > €} is a compact subset
of 2. Since bd(2) = 2\ 2, bd(2) N K. = () and therefore the distance,
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0 := d(K.,bd(£2)), between K. and bd({?2) is positive. So if z € bd(£2) and
y € 2 and |y — x| < 4, then |u(z) — u(y)| = |u(y)| < & which shows @ : 2 — C
is continuous. This also shows {|u| > ¢} = {|u| > ¢} = K. is compact in {2 and
hence also in §2. Since € > 0 was arbitrary, this shows 4 € Cy(2). Conversely if
u € Co(£2) such that ulpqoy = 0 and € > 0, then K. := {z € 2: |u(z)| > ¢}
is a compact subset of 2 which is contained in {2 since bd(2) N K. =
Therefore K, is a compact subset of {2 showing u|g € Co(£2). [

Definition 9.7. Let 2 be an open subset of R?, k € NU{0} and 8 € (0,1].
Let BC*(02) (BC*(£2)) denote the set of k — times continuously differentiable
functions u on §2 such that 0%u € BC(£2) (0%u € BC’(Q))H for all |a] < k.
Similarly, let BC*P(£2) denote those u € BC*(£2) such that [0%u]s < oo for
all || = k. For u € BC*(92) let

lullcry = Y 10%ull and

|| <k
lallern = S 0%l + 3 [0%uls.
lal<k lal=k

Theorem 9.8. The spaces BC*(£2) and BC*P(02) equipped with | - ek o)
and H'Hck‘ﬁ(ﬁ) respectively are Banach spaces and BC*(£2) is a closed subspace
of BC¥(£2) and BC*P(2) C BC*(2). Also

CEP(2) = CEP(2) = {ue BCHP(2): 9%u e Co(R) V¥ |a] <k}
is a closed subspace of BC*P(£2).

Proof. Suppose that {u,},~, C BCk(2) is a Cauchy sequence, then
{0%uy,}, is a Cauchy sequence in BC(82) for |a| < k. Since BC(2) is
complete, there exists g, € BC(£2) such that lim, . [[0%Un — gal|, = 0 for
all |a| < k. Letting u := go, we must show u € C*(§2) and 9%u = g,, for all
|a] < k. This will be done by induction on || . If || = 0 there is nothing to
prove. Suppose that we have verified u € C'(£2) and 9%u = g, for all |a| <1
for some [ < k. Then for z € £2,i € {1,2,...,d} and t € R sufficiently small,

t
Oy (z + te;) = 0%up(x) + / 0;0%uy (x + Te; )dT.
0
Letting n — oo in this equation gives
t
O%u(x + te;) = 0%u(x) + / Jote,; (T + TE;)dT
0

from which it follows that 0;0%u(z) exists for all x € 2 and 9;0%u = gate, -
This completes the induction argument and also the proof that BC(£2) is

% To say 0%u € BC({2) means that 9*u € BC(£2) and 0°u extends to a continuous
function on (2.
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complete. It is easy to check that BC¥(§2) is a closed subspace of BC¥(2)
and by using Exercise[9.1|and Theorem that that BC*#(£2) is a subspace
of BC¥(£2). The fact that C2” (£2) is a closed subspace of BC*#(£2) is a con-
sequence of Proposition To prove BCKP(£2) is complete, let {u,}-, C
BC*P(2)bea||- | ox.6(;) — Cauchy sequence. By the completeness of BC*(92)

just proved, there exists u € BC*(£2) such that limp o [|u — un||cr (o) = 0.

An application of Theorem [9.4] then shows lim,, . ||0%u, — 8“u||c0,5(m =0

for |a] = k and therefore lim,, o ||u — un||ckﬁ(5) =0. ™
The reader is asked to supply the proof of the following lemma.

Lemma 9.9. The following inclusions hold. For any § € [0,1]

BC*10(0) ¢ BC*1(0) ¢ BCHP(0)
BC*10(2) ¢ BC*Y(2) ¢ BC*P(02).

9.1 Exercises

Exercise 9.1. Prove Lemma[0.3]
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10

The Riemann Integral

BRUCE: we should construct the Riemann Stieljtes integral here, see Lemma
Probably should make this into an exercise.

In this Chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue
integral and the Bochner Lebesgue integral will subsume the content of this
chapter. In Definition below, we will give a general notion of a compact
subset of a “topological” space. However, by Corollary below, when we
are working with subsets of R? this definition is equivalent to the following
definition.

Definition 10.1. A subset A C R? is said to be compact if A is closed and
bounded.

Theorem 10.2. Suppose that K C R? is a compact set and f € C (K, X).
Then

1. Every sequence {u,},-; C K has a convergent subsequence.

2. The function f is uniformly continuous on K, namely for every € > 0
there exists a § > 0 only depending on € such that ||f (u) — f (V)| < €
whenever u,v € K and |u—v| < § where || is the standard Euclidean
norm on R

Proof.

1. (This is a special case of Theorem[14.7]and Corollary[14.9] below.) Since K
is bounded, K C [—R, R]d for some sufficiently large d. Let t,, be the first
component of u, so that ¢, € [-R, R] for all n. Let J; = [0, R] if t,, € J;
for infinitely many n otherwise let J; = [ R, 0]. Similarly split J; in half
and let Jo C Ji be one of the halves such that ¢,, € Js for infinitely many
n. Continue this way inductively to find a nested sequence of intervals
Ji D Jy D J3 D Jy D ... such that the length of Jj, is 2=*~DR and for
each k, t,, € Jy for infinitely many n. We may now choose a subsequence,
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{ni}re, of {n} 2, such that 7, := t,, € Ji for all k. The sequence

{7k }4—, is Cauchy and hence convergent. Thus by replacing {u,}, -, by a

subsequence if necessary we may assume the first component of {u, }, ; is

convergent. Repeating this argument for the second, then the third and all

the way through the d*® — components of {un},—, , we may, by passing to
further subsequences, assume all of the components of u,, are convergent.
But this implies lim u,, = u exists and since K is closed, u € K.

2. (This is a special case of Exercise below.) If f were not uniformly
continuous on K, there would exists an € > 0 and sequences {u,}, ., and

{vn},2, in K such that
IIf (un) — f (vn)|| > € while lim |u, —v,| =0.

By passing to subsequences if necessary we may assume that lim, .o up,
and lim,, o vy, exists. Since lim,,_, o |y, — v, | = 0, we must have

lim u, =u = lim v,
n—oo n—oo

for some u € K. Since f is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

e < lm ||f (un) — f (va)|| = || (w) = f(u)]| =0

n—oo
which is a contradiction.

|

For the remainder of the chapter, let [a, b] be a fixed compact interval and

X be a Banach space. The collection § = S([a,b], X) of step functions,
f:[a,b] — X, consists of those functions f which may be written in the form

n—1

f(t) = mol[a,tll(t) + Z xil(ti,ti+1](t)7 (101)
=1

where 7 := {a =ty < t; < --- <t, = b} is a partition of [a,b] and z; € X.

For f as in Eq. (10.1)), let
n—1

I(f) =) (tig1 —ti)a; € X. (10.2)

=0

Exercise 10.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition 7 of
[a, b] does not change the right side of Eq. (10.2)).) Also verify that I : § — X

is a linear operator.

Notation 10.3 Let S denote the closure of S inside the Banach space,
0>°([a,b], X) as defined in Remark[7.6,
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The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.

Theorem 10.4 (B. L. T. Theorem). Suppose that Z is a normed space,
X is a Banach space, and S C Z is a dense linear subspace of Z. If T :
S — X is a bounded linear transformation (i.e. there exists C' < 0o such that
ITz|| < Cz|| for all z € S), then T has a unique extension to an element
T € L(Z,X) and this extension still satisfies

|Tz|| < Cllz|| forallz€S.
Exercise 10.2. Prove Theorem [10.4]

Proposition 10.5 (Riemann Integral). The linear function I : & — X
extends uniquely to a continuous linear operator I from S to X and this
operator satisfies,

A< (b= a) [ flloc for all f € S. (10.3)

Furthermore, C([a,b], X) C 8§ C £>°([a,b], X) and for f €, I(f) may be com-
puted as

n—1
= lim 10.4
)=l S et 1) (109
where m == {a =ty < t1 < --- < t, = b} denotes a partition of [a,b],
|| = max {|tiv1 —t;| : i =0,...,n— 1} is the mesh size of m and cI may be

chosen arbitrarily inside [t;,t;11]. See Figure m

Fig. 10.1. The usual picture associated to the Riemann integral.

Proof. Taking the norm of Eq. (10.2]) and using the triangle inequality
shows,
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n—1 n—1
A<D (i = ta)llzill < D (tivr =)l flloo < (0= )| flloo-  (10.5)
=0 1=0

The existence of I satisfying Eq. (10.3) is a consequence of Theorem :10.4
Given f € C([a,b], X), m:={a =ty < t; < --- < t, = b} a partition of [a, ],
and ¢f € [t;,t;41] for i =0,1,2...,n — 1, let fr € S be defined by

n—1

Jr(t) == flco)olite,e)(t) + Z ) it (@)

Then by the uniform continuity of f on [a,b] (Theorem _ lim o [|f —
fxlloo = 0 and therefore f € S. Moreover,

n—1
L(f)= lim I(fr) = lh‘gloz FE)(tigr — i)
=0
which proves Eq. (10.4). ]
If f, € S and f € S such that lim,_, ||f falloe = 0, then for a < a <
B < b, then 14 g fn € S and lim, . Hl(a af — l(aﬁ]an = 0. This shows

Lia,pf €S whenever f € S.

Notation 10.6 For f € S and a < a < 8 < b we will write denote I(1(q,5f)

by fﬁ )dt or fa e f(t)dt. Also following the usual convention, if a < 8 <
a < b, we will let

/a " 0yt = —F(150) = / 0

The next Lemma, whose proof is left to the reader contains some of the
many familiar properties of the Riemann integral.

Lemma 10.7. For f € S([a,b], X) and a, 3,7 € [a,b], the Riemann integral

satisfies:
1 Hff dtH w)sup{uf(t)n ca<t<p).
2. [T f(tydt= [T f(tydt+ [] f(
3. The functwn G(t f f(r dT is continuous on [a, b].

4. IfY is another Banach space and T € L(X,Y), then Tf € S([a,b],Y)

and
T ( [ s dt) - [(rsw

5. The function t — ||f(t)|x is in S([a,b],R) and

b
< [ 1@l dt
(S L e
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10.1 The Fundamental Theorem of Calculus 119

6. If f,g € S([a,b],R) and f < g, then

/a " f0) di < / ) at

Exercise 10.3. Prove Lemma [10.7

10.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results of differential calcu-
lus, more details and the next few results below will be done in greater detail
in Chapter

Definition 10.8. Let (a,b) C R. A function f : (a,b) — X is differentiable
at t € (a,b) iff

i (h- SR ),
L= lim (b= [f(t+h) = F(B)]) = Jim <

exists in X. The limit L, if it exists, will be denoted by f(t) or %(t). We also
say that f € Cl((a,b) — X) if f is differentiable at all points t € (a,b) and
fe€C((a,b) — X).

As for the case of real valued functions, the derivative operator % is easily

seen to be linear. The next two results have proves very similar to their real
valued function analogues.

Lemma 10.9 (Product Rules). Suppose that t — U (t) € L(X), t —
V(t)e L(X) andt — x(t) € X are differentiable at t = tg, then

1. 41, [U @)z (t)] € X exists and

S0 ) 0] = [0 (00) 2 (t0) +U (1) & ()]

and

2. L1, [U®#)V (t)] € L(X) exists and
d . .
Sl U@V ©] = [Ut)V (to) + U (ko) V (t0)]
3. If U (to) is invertible, then t — U ()" is differentiable at t =ty and

%hOU ) = =U(to) U (t) U (to) " (10.6)
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Proof. The reader is asked to supply the proof of the first two items in Ex-
ercise Before proving item 3., let us assume that U (t) " is differentiable,
then using the product rule we would learn

d

0=—
dt

d _ d _ 1
o = 5 [0 0 0] = [ £V 07 0 0) 40 00) 0 1.
Solving this equation for %|tOU (t)*1 gives the formula in Eq. (10.6). The

problem with this argument is that we have not yet shown ¢t — U (t)f1 is
invertible at to. Here is the formal proof. Since U () is differentiable at ¢,
U(t) — U (tg) as t — tog and by Corollary U (to + h) is invertible for h
near 0 and

Uto+h)" = Ut " as h—0.

Therefore, using Lemma [7.11] we may let h — 0 in the identity,

U (to +h)_h— Ulto)™ _ 0 4 1) (U(tO) - g(to +h>> U(to) ",

to learn

-1 -1
lim Uto+h) " —Ul(to)
h—0 h

= U (to) ' U (to) U (to) "
N

Proposition 10.10 (Chain Rule). Suppose s — x (s) € X is differentiable
at s = sg and t — T (t) € R is differentiable at t =ty and T (to) = so, then
t — x (T (t)) is differentiable at ty and

d / /
%Lﬁol‘(T (1)) =" (T (to)) T' (to) -

The proof of the chain rule is essentially the same as the real valued func-
tion case, see Exercise [10.10]

Proposition 10.11. Suppose that f : [a,b] — X is a continuous function
such that f(t) exists and is equal to zero for t € (a,b). Then f is constant.

Proof. Let ¢ > 0 and « € (a,b) be given. (We will later let € | 0.) By the
definition of the derivative, for all T € (a,b) there exists d, > 0 such that

1F@ = 1 = |[£0) = £ = F)@ = )| < ele =l if e =7l < 6.
(10.7)
Let
A={telab]:|f{) - fl)] <et—a)} (10.8)
and ty be the least upper bound for A. We will now use a standard argument
which is referred to as continuous induction to show ¢y = b. Eq.
with 7 = « shows t5 > « and a simple continuity argument shows tg € A, i.e.
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10.1 The Fundamental Theorem of Calculus 121

1 £(to) = fa)l| < elto — ). (10.9)
For the sake of contradiction, suppose that ¢y < b. By Egs. (10.7) and (10.9),

1£(@) = fla)|l < [1f (@) = fQo)ll + [[f(to) = fa)]
<e(to—a)+e(t—to) =t —a)

for 0 <t —ty < d4, which violates the definition of ¢y being an upper bound.
Thus we have shown b € A and hence

1F(0) = F(@)] < e(b—a).

Since € > 0 was arbitrary we may let € | 0 in the last equation to conclude
f(b) = f («). Since « € (a,b) was arbitrary it follows that f(b) = f («) for all
a € (a,b] and then by continuity for all « € [a,b], i.e. f is constant. ]

Remark 10.12. The usual real variable proof of Proposition makes use
Rolle’s theorem which in turn uses the extreme value theorem. This latter
theorem is not available to vector valued functions. However with the aid of
the Hahn Banach Theorem[25.4]below and Lemmal[I0.7] it is possible to reduce
the proof of Proposition and the proof of the Fundamental Theorem of
Calculus to the real valued case, see Exercise [25.3

Theorem 10.13 (Fundamental Theorem of Calculus). Suppose that f €
C([a,b], X), Then

1.4 [P f(r)ydr = f(t) for all t € (a,b).
2. Now assume that F € C([a,b],X), F is continuously differentiable on

(a,b) (i.e. F(t) exists and is continuous for t € (a,b)) and F extends to
a continuous function on [a,b] which is still denoted by F. Then

/ "B () dt = F(b) — Fla).

Proof. Let h > 0 be a small number and consider

t+h
< / 1(f(7) = F@) | dr < he(h),

t+h t t+h
/ f(r)dr - / F(r)dr — f(b)h / (F(r) — () dr

where e(h) := max,¢p 1) [|(f(7) — f(2))[]. Combining this with a similar
computation when h < 0 shows, for all h € R sufficiently small, that

t+h t
/ f(r)dr — / f(r)dr — F(B)h] < |hle(h),
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122 10 The Riemann Integral

where now ¢(h) := maxTG[t,‘h‘,tHhH [(f(T) = f(¥))|l- By continuity of f at ¢,

e(h) — 0 and hence 4 @ f ¢ f ) dr exists and is equal to f(¢). For the second
item, set G(¢ f F(r F(t) Then G is continuous by Lem and
G(t) = 0 for all t € (a, b) by item 1. An application of Proposition shows
G is a constant and in particular G(b) = G(a), i.e. fab F(1)dr—F(b) = —F(a).
[

Corollary 10.14 (Mean Value Inequality). Suppose that f : [a,b] — X
is a continuous function such that f(t) exists for t € (a,b) and f extends to a
continuous function on [a,b]. Then

1£0) = sl < [ 0l < 6 a)- HfHOO- (10.10)

Proof. By the fundamental theorem of calculus, f(b) f f
and then by Lemma [10.7]
< [ v

\f'Hmdt= b= 7]

1£() ‘

Corollary 10.15 (Change of Variable Formula). Suppose that [ €
C(la,b],X) and T : [c,d] — (a,b) is a continuous function such that T (s)
is continuously differentiable for s € (c¢,d) and T’ (s) extends to a continuous
function on [c,d]. Then

/ (T )ds_/:;d)f(t)dt.

Proof. For s € (a,b) define F (t fT (o f (T)dr. Then F € C' ((a,b),X)
and by the fundamental theorem of calculus and the chain rule,

d

ST () = F(T ()T (s) = f(T () T (s).

Integrating this equation on s € [¢, d] and using the chain rule again gives

d
/ f(T(s))T"(s)ds = F(T(d)) - F (T (c)) :/ f(#)dt.
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10.2 Integral Operators as Examples of Bounded Operators 123

10.2 Integral Operators as Examples of Bounded
Operators

In the examples to follow all integrals are the standard Riemann integrals and
we will make use of the following notation.

Notation 10.16 Given an open set U C R%, let C. (U) denote the collection
of real valued continuous functions f on U such that

supp(f) :=={z € U: f () # 0}

is a compact subset of U.

Ezample 10.17. Suppose that K : [0,1] x [0,1] — C is a continuous function.
For f € C([0,1]), let

Tf(z) = / K(2,9)f (4)dy.

Since

1
T4@) =TS < | [Klo) = K] )] dy
0
< 1flloo max [ Kz, y) — K(z,y)| (10.11)
and the latter expression tends to 0 as * — z by uniform continuity of K.

Therefore T'f € C([0,1]) and by the linearity of the Riemann integral, T :
C([0,1]) — C(]0,1]) is a linear map. Moreover,

ITf(:v)IS/O IK(w,y)l\f(y)ldyS/O (K (z,y)ldy - [|flloe < Allfllo

where

1
A:= sup / |K(x,y)| dy < 0. (10.12)
z€[0,1] JO

This shows ||T]| < A < oo and therefore T is bounded. We may in fact
show || T|| = A. To do this let 2o € [0, 1] be such that
1 1
sup [ 1K@ g)ldy = [ K(zo,)] .
zel0,1] Jo 0

Such an z( can be found since, using a similar argument to that in Eq. (10.11J),
T — fol | K (x,y)|dy is continuous. Given & > 0, let

K('r07y)
e+ |K (z0,9)[°

f(y) ==
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124 10 The Riemann Integral

and notice that lim. o || fz||, = 1 and

1 2
K(xo,y
HTﬂwmz|rﬂww%=Tﬂ@®:i/ Sy
0 e+ |K(zo,y)|
Therefore,
1 K
7| > tim / f]
10 Melloe 0¢ZJE2747
1
= lim Bl g, 4
<10 \/s+|K—xo
since
K(xg, 2
OS‘K(fEan”* | ( Oy)| 9
e+ |K(xo0,y)|
K
| K (z0,y)] : [ 5+|K($0,y)|2— |K(wo7y)]
e+ |K(z0,y)|

e+ |K(l’0,y)|2 - |K<.’I}0,y)|

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0,1]). Let (for now) L* ([0,1])
denote C([0,1]) with the norm

1
nﬂh=4\ﬂ@ma

then 7' : L' ([0,1],dm) — C([0,1]) is bounded as well. Indeed, let M =
sup {|K(z,y)| : #,y € [0,1]} , then

|@ﬂwn§A\Kuwﬁ@ﬂ@3Aﬂmh

which shows ||T'f| ., < M ||f||; and hence,
T 1o < max{|K(x,y)|:z,y € [0,1]} < oc.

We can in fact show that ||T|| = M as follows. Let (zq,y0) € [0, 1]? satisfying
| K (x0,90)] = M. Then given € > 0, there exists a neighborhood U = I x J
of (zo,yo) such that |K(z,y) — K(zo,y0)| < € for all (z,y) € U. Let f €
C.(I,]0,00)) such that fol f(z)dx = 1. Choose o € C such that |a] = 1 and
aK(zg,y0) = M, then
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10.3 Linear Ordinary Differential Equations 125

(anol | [ K(xmy)af(y)dy’ _

/I K (20, y)f (4)dy
> Re /1 oK (z0,9) f(4)dy
> / (M — &) fy)dy = (M — <) laf|
I
and hence

ITaflle = (M =é)llaf]

showing that | T|| > M — e. Since € > 0 is arbitrary, we learn that ||T'|| > M
and hence ||T']| = M.

One may also view T' as a map from T : C([0,1]) — L'([0,1]) in which
case one may show

1
Tl < [ max Kyl de < .

10.3 Linear Ordinary Differential Equations

Let X be a Banach space, J = (a,b) C R be an open interval with 0 € J,
h e C(J — X)and A € C(J — L(X)). In this section we are going to
consider the ordinary differential equation,

y(t) = A(t)y(t) + h (t) where y(0) =2z € X, (10.13)

where y is an unknown function in C*(J — X). This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for y € C(J, X) such that

¢ ¢
() =2+ / h(r)dr + / A(r)y(r)dr. (10.14)

0 0
In what follows, we will abuse notation and use |-|| to denote the opera-
tor norm on L (X) associated to then norm, |-||, on X and let [|¢| =

maxye g ||0(t)]| for ¢ € BC(J, X) or BC(J, L (X)).
Notation 10.18 Fort € R andn € N, let

An(t) = {(r1, .. cym) ER":0< 7y <. <7, <t} ift >0
() ER LS, < <1 <0} ifE <0

and also write dT = dmy ...d7, and

t Tn T2
/ flr,...m)dr = (—1)”'1*<°/ dTn/ dTn_l.../ drif(m1,...Tn).
An(t) 0 0 0

Page: 125 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



126 10 The Riemann Integral

Lemma 10.19. Suppose that ¢ € C (R,R), then

(—1)™le<o /An(t) Y(11) ... Y(m,)dr = % (/Otzp(T)dT)n. (10.15)

Proof. Let ¥(t) := fot ¥ (7)dr. The proof will go by induction on n. The
case n = 1 is easily verified since

t
(ot [ pimyan = [ wmar =),
A (t) 0
Now assume the truth of Eq. (10.15) for n — 1 for some n > 2, then

(—1)™ e /A ) v

:/Othn /OT" drn_l.../: drip(r1) .. ()
_ /Ot an, L) /Ot ar L)

(n—1)! (n—1)!
B w(t) un—l B Wn(t)
= /0 D™=

wherein we made the change of variables, v = ¥(7,), in the second to last
equality. [

Remark 10.20. Eq. (10.15)) is equivalent to

1 n
/A PRGBS ( /A . z,z}de)

and another way to understand this equality is to view fA ® (1) .. (Ty)dT

as a multiple integral (see Chapter [20] below) rather than an iterated integral.
Indeed, taking t > 0 for simplicity and letting S,, be the permutation group
on {1,2,...,n} we have

[Ovt]n = UO‘ESH{(le"-;Tn) S R™: 0 S Tol S S Ton S t}

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ¥(71) ... (7,) is invariant under permutations,
we find
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10.3 Linear Ordinary Differential Equations 127

t n
</ 1/J(T)d7'> = (1) .. (Tp)dT
0 0,6
p— .« e n d
ags:n /{(7-1 ,,,,, T7l)€Rn:OSTalS"'STUTLSt}w(Tl) p(rm)dr

/ $(50-11) - Y(5g-1,)dS
{(s1 sp)ERM:0<s1 <+ <5, <t}

I
iiNg

—
@

B

2

m

=

=

IA

>

N

IA

w

3

IN

st

y(t) = 8(t) + / A(r)y(r)dr (10.16)

has a unique solution given by

y(t) = b(t) +Z(‘1)M<O/A ()A(Tn)...A(ﬁ)gﬁ(ﬁ)dr (10.17)
n=1 n(t

and this solution satisfies the bound
Iyl < N6l els 1Al

Proof. Define A : BC(J,X) — BC(J,X) by

(Ay) () = / A(r)y(r)dr.

Then y solves Eq. (10.14) iff y = ¢ + Ay or equivalently iff (I — A)y = ¢. An
induction argument shows

(Am)(t) = / A7y A7, ) (A1) (1)

_ / . / "t AT Al 1) (A" 20) (7 1)

:/Ot dr, /0 dTn_l.../OT2 dr A7) ... A(m)é(m)
= ()l /An(t) A7) .. A(m)d(r)dr.
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128 10 The Riemann Integral

Taking norms of this equation and using the triangle inequality along with

Lemma [T0.19] gives,
(A" )| < [|plloo / [A@@) - - [[A(T2) |7

n

<llélle - - ( i A(T)dr>
glqbllooé(/J ||A(T)||d7') .

4% < 2 ([ 146ey1ar) (10.18)

Therefore,

and -
D 1AM lop < el 14D < oo

n=0

where |[|-[|,,, denotes the operator norm on L (BC(J, X)). An application of

o0
Proposition {7.21| now shows (I — A)™t = >~ A" exists and
n=0

H(I _ A)—lHOp S €f'7 HA("')Hd"'.

It is now only a matter of working through the notation to see that these
assertions prove the theorem. [ |

Corollary 10.22. Suppose h € C(J — X) and x € X, then there exits a
unique solution, y € Ct (J, X), to the linear ordinary differential Eq. .

Proof. Let .
o (1) :er/ h(T)dr.
0

By applying Theorem with and J replaced by any open interval .Jy
such that 0 € Jy and Jy is a compact subintervaﬂ of .J, there exists a unique
solution y 7, to Eq. which is valid for ¢ € Jy. By uniqueness of solutions,
if J; is a subinterval of J such that Jy C J; and J; is a compact subinterval
of J, we have y;, =y, on Jy. Because of this observation, we may construct

a solution y to Eq. ((10.13|) which is defined on the full interval J by setting
y (t) =y, (t) for any Jy as above which also contains ¢ € J. |

Corollary 10.23. Suppose that A € L(X) is independent of time, then the
solution to
§(t) = Ay(t) with y(0) = @

! We do this so that ¢|, will be bounded.
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10.4 Classical Weierstrass Approximation Theorem 129

is given by y(t) = etz where

o0 tn
tA n
et =>3" A (10.19)
n=0
Moreover,
(A — etAesA for all 5.t € R. (10.20)

Proof. The first assertion is a simple consequence of Eq. and Lemma
10.19| with v = 1. The assertion in Eq. (10.20) may be proved by explicit

computation but the following proof is more instructive. Given = € X, let
y (t) := e(t+9)42. By the chain rule,

d d
ar’ () = %‘T:Hsemx = Ae™ x| —ips

= A4 = Ay (1) with y (0) = e*z.
The unique solution to this equation is given by
y(t) = ez (0) = ez,

This completes the proof since, by definition, y (t) = e(*+*)4z. [
We also have the following converse to this corollary whose proof is outlined
in Exercise [[0.20] below.

Theorem 10.24. Suppose that T; € L(X) for t > 0 satisfies

1. (Semi-group property.) To = Idx and TyTs = Ty for all s,t > 0.
2. (Norm Continuity) t — Ty is continuous at 0, i.e. | Ty — Il x) — 0 as
£10.

Then there exists A € L(X) such that Ty = ' where ' is defined in Eq.

.
10.4 Classical Weierstrass Approximation Theorem
Definition 10.25 (Support). Let f : X — Z be a function from a metric

space (X, p) to a vector space Z. The support of f is the closed subset, supp(f),
of X defined by

supp(f) :={z € X : f(z) # 0}.

Ezample 10.26. For example if f : R — Ris defined by f(z) = sin(z)1jo,4x] (%) €
R, then
{f #0} =(0,4n) \ {m, 2w, 37}

and therefore supp(f) = [0, 47].
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130 10 The Riemann Integral

For the remainder of this section, Z will be used to denote a Banach space.
Definition 10.27 (Convolution). For f, g € C (R) with either f or g having

compact support, we define the convolution of f and g by

fra@) = [ 1= vatiay = [ f)ate s
We will also use this definition when one of the functions, either f or g, takes
values in a Banach space Z.

Lemma 10.28 (Approximate § — sequences). Suppose that {q,}, -, is
a sequence non-negative continuous real valued functions on R with compact
support that satisfy

/qn(x) dz =1 and (10.21)
R

lim gn(z)dx =0 for all € > 0. (10.22)

n— o0
|z|>e

If f e BC(R, Z), then
qn * [ () := /an(y)f(w —y)dy

converges to f uniformly on compact subsets of RxW C RI+1

Proof. Let x € R, then because of Eq. ((10.21]),

lgn = () — f(2)]| = \ [t (=) - f(fv))dyH

< [ a =)~ @)y
Let M =sup{||f(z)|| : € R}. Then for any ¢ > 0, using Eq. (10.21)),

lgn * f(x) = f(2)]] S/ (W) |1f (@ —y) — f(z) dy

ly|<e

n xr — — f(x)|| d
+ /Wq W) £z —v) — F(2)]] dy
< ISI\lf [f(z +w) = flz)| +2M . qn(y)dy-

So if K is a compact subset of R (for example a large interval) we have

sup ||gn * f(z) — f(2)]|
(z)eK

< sup | f(z+w)— f(2)|+2M an(y)dy
lw|<e, z€K lyll>e
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10.4 Classical Weierstrass Approximation Theorem 131

and hence by Eq. (10.22)),

lim sup sup ||g, * f(z) — f(2)]

n—oo xe K

< sup f(@+w) = f@)]
|lw|<e, zeK

This finishes the proof since the right member of this equation tends to 0 as
€ | 0 by uniform continuity of f on compact subsets of R. ]
Let gy, : R —[0,00) be defined by

1 1
gn(2) := —(1 — 2%)"1|, <1 where ¢, 1= / (1 —2%)"dx. (10.23)

Cn —1

Figure [10-2] displays the key features of the functions g,.

Fig. 10.2. A plot of g1, gs0, and g100- The most peaked curve is gi00 and the least
is q1. The total area under each of these curves is one.

Lemma 10.29. The sequence {qn}flo:1 is an approxrimate § — sequence, i.e.

they satisfy Eqs. (10.21) and .
Proof. By construction, ¢, € C. (R, [0,c0)) for each n and Eq.[10.21}holds.

Since
1
2 [C(1—a*)"d
/ qn(.’L‘)d.’L': _ fs( -'17)1 T
|z|>e 2 [f(1—a?)nde+2 [ (1—a?)"dx
Jo E(L=a?)yde (12?2
Ty —a)nde (1 - a?)nrg
(1 _ E2)n—i—1

T 1 (1 —e2)ntt

— 0 asn — oo,
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132 10 The Riemann Integral

the proof is complete. [

Notation 10.30 Let Z; := N U {0} and for x € R? and a € Z% let

T = H?:l " and |a| = Z?Zl a;. A polynomial on R? with values in Z

is a function p : R® — Z of the form

p(z) = Z Dax® with po € Z and N € 7.
a:la|<N

If po # 0 for some « such that || = N, then we define deg(p) := N to be
the degree of p. If Z is a complex Banach space, the function p has a natural

extension to z € C4, namely p(z) = > aja|<N Pa?® where 2% = H?:l z.

Given a compact subset K C R? and f € C (K, (C we are going to
show, in the Weierstrass approximation Theorem below, that f may
be uniformly approximated by polynomial functions on K. The next theorem
addresses this question when K is a compact subinterval of R.

Theorem 10.31 (Weierstrass Approximation Theorem). Suppose —oco <
a<b<oo,J=]ab] and f € C(J,Z). Then there exists polynomials p, on
R such that p, — [ uniformly on J.

Proof. By replacing f by F where
F(t):=flat+t(b—a))—I[f(a)+t(f(b) = f(a))] forte[0,1],

it suffices to assume a =0, b =1 and f(0) = f (1) = 0. Furthermore we may
now extend f to a continuous function on all R by setting f =0 on R\ [0,1].

With ¢,, defined as in Eq. (10.23), let f,(z) = (gn * f)(z) and recall
from Lemma [10.28] that f,, (z) — f (x) as n — oo with the convergence being
uniform in € [0, 1]. This completes the proof since f,, is equal to a polynomial
function on [0, 1]. Indeed, there are polynomials, ag (y), such that

(1= (z—p)»)" = ar(y)a",
k=0

and therefore, for x € [0,1],

2 Note that f is automatically bounded because if not there would exist u, € K
such that limp—co |f (un)| = co. Using Theorem we may, by passing to a
subsequence if necessary, assume u, — u € K as n — oo . Now the continuity of
f would then imply

00 = lim | (un)| =1 (w)

which is absurd since f takes values in C.
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ful) = / 4n (e — ) f(y)dy

-1 W09 ]
- i f)(1 = (& — y)*)"dy
[0,1]
= 01] Zak kdy— ZAkm
where
Ay = I (y) ax (y) dy.

[0,1]
]

Lemma 10.32. Suppose J = [a,b] is a compact subinterval of R and K
is a compact subset of R4~1 then the linear mapping R : C(J x K, Z) —
C(J,C (K, Z)) defined by (Rf)(t) = f(t,-) € C(K,Z) fort € J is an iso-
metric isomorphism of Banach spaces.

Proof. By uniform continuity of f on J x K (see Theorem ,
ICRF) (&) = (BF) (o z) = maxf (ty) = f(s,)ll; — Oas s —
which shows that Rf is indeed in C' (J — C (K, Z)) . Moreover,
I1Rflc(r—cx.z) = max I(RS) Dl 2)

= I?Eaj”;g? 1f &yllz = ||f||C(J><K,Z) J

showing R is isometric and therefore injective.
To see that R is surjective, let F € C'(J — C' (K, Z)) and define f (¢,y) :=
F (t)(y) . Since
If & y) = f (902 < If Ey) = (sl + 1 (s,9) = f (.92
<F (@) = F 5oz + 1 (5) () = F () ()]l

it follows by the continuity of ¢ — F'(t) and y — F (s) (y) that
1 & y) = F (5,902 = 0as (ty) = (s,9) -

This shows f € C (J x K, Z) and thus completes the proof because Rf = F'
by construction. [

Corollary 10.33 (Weierstrass Approximation Theorem). Let d € N,
Ji = |a;, b;] be compact subintervals of R fori=1,2,...,d, J:=Jy X+ x Jyg
and f € C(J,Z). Then there exists polynomials p, on R such that p, — f
uniformly on J.
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Proof. The proof will be by induction on d with the case d = 1 being
the content of Theorem [10.31] Now suppose that d > 1 and the theorem
holds with d replaced by d — 1. Let K = Jo x -+ x Jyq, Zyg = C(K,Z),
R : C(J1 xK,Z) — C(J1,Z) be as in Lemma [10.32] and F := Rf. By
Theorem for any € > 0 there exists a polynomial function

p(t) = Z cth
k=0

with ¢x € Zo = C (K, Z) such that |[F —pllc(,, 7, < € By the induction
hypothesis, there exists polynomial functions g : K — Z such that

- c
n (la| + [B))"

It is now easily verified (you check) that the polynomial function,

ek = anllz, <

n
p(x):= Zmlqu (x2,...,2q) forz e J
k=0
satisfies || f — pll¢(; z) < 2¢ and this completes the induction argument and
hence the proof. [
The reader is referred to Chapter [20] for a two more alternative proofs of

this corollary.

Theorem 10.34 (Weierstrass Approximation Theorem). Suppose that
K C R? is a compact subset and f € C(K,C). Then there exists polynomials
pn on R such that p, — f uniformly on K.

Proof. Choose A > 0 and b € R such that
Koy:=MK—-b:={\—-b:x€ K} C By

where By := (0,1)*. The function F(y) := f (At (y+1b)) for y € K is in
C (Ko, C) and if p, (y) are polynomials on R? such that p, — F uniformly
on Ky then p, (z) := p, (A\x — b) are polynomials on R? such that p, — f
uniformly on K. Hence we may now assume that K is a compact subset of
By. Let g € C (K U Bj) be defined by

_JfifzeK
g(””)_{ 0 ifze B

and then use the Tietze extension Theorem ﬂ (applied to the real and imag-
inary parts of F') to find a continuous function F' € C(R? C) such that
F = ¢ KkuBs- 1f p, are polynomials on R? such that p, — F uniformly on
[0, 1] then p, also converges to f uniformly on K. Hence, by replacing f by
F, we may now assume that f € C(R%, C), K = By = [0,1], and f =0 on
B§. The result now follows by an application of Corollary [10.33| with Z = C.
]
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10.4 Classical Weierstrass Approximation Theorem 135

Remark 10.35. The mapping (z,y) € R x R? — 2 = z +iy € C? is an
isomorphism of vector spaces. Letting Z = x — iy as usual, we have z = %
and y = Zz_f . Therefore under this identification any polynomial p(z,y) on
R? x R? may be written as a polynomial ¢ in (2, Z), namely

z24+z z2—2Z2
2 72

).

q(z,2) = p(

Conversely a polynomial ¢ in (z,z) may be thought of as a polynomial p in
(z,y), namely p(z,y) = q(z + iy, z — iy).

Corollary 10.36 (Complex Weierstrass Approximation Theorem).
Suppose that K C C? is a compact set and f € C(K,C). Then there ex-

ists polynomials py(z, z) for z € C* such that sup,ck |pn(2,2) — f(2)| — 0 as
n — oo.

Proof. This is an immediate consequence of Theorem [10.34] and Remark
110,59l [ ]

Ezample 10.37. Let K = S' = {2 € C : |z| = 1} and A be the set of poly-
nomials in (z, z) restricted to S'. Then A is dense in C(Sl)ﬂ Since z = 271
on S', we have shown polynomials in 2z and 27! are dense in C(S'). This

o . d
example generalizes in an obvious way to K = (5')" c C%.

Exercise 10.4. Suppose —o0 < a < b < oo and f € C ([a,b],C) satisfies
b
/ f@®)t"dt=0forn=0,1,2....

Show f = 0.

Exercise 10.5. Suppose f € C(R,C) is a 2m — periodic function (i.e.
f(x+2m) = f(x) for all x € R) and

27

(z) e dx =0 for all n € Z,
0

show again that f = 0. Hint: Use Example to show that any 27 —
periodic continuous function g on R is the uniform limit of trigonometric
polynomials of the form

p(z) = pre™® with pj, € C for all k.

k=—n

3 Note that it is easy to extend f € C(S') to a function FF € C(C) by setting
F(z) = zf(li—‘) for z # 0 and F(0) = 0. So this special case does not require the
Tietze extension theorem.
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10.5 Iterated Integrals

Theorem 10.38 (Baby Fubini Theorem). Let a;,b; € R with a; #
b for i = 1,2...,n, f(t1,t2,...,tn) € Z be a continuous function of
(t1,ta,...,t,) where t; between a; and b; for each i and for any given per-
mutation, o, of {1,2...,n} let

bs bUn
L (f) ;:/ ldtc,l.../ dty, f(tr,ta, ... ). (10.24)

o1 on

Then I, (f) is well defined and independent of o, i.e. the order of iterated
integrals is trrelevant under these hypothesis.

Proof. Let J; := [min (a;, b;) , max (a;,b;)], J := Jy x -+ x J, and |J;| :=
max (a;, b;) — min (a;, b;) . Using the uniform continuity of f (Theorem [10.2)
and the continuity of the Riemann integral, it is easy to prove (compare with
the proof of Lemma that the map

be,,
(t1, oo b) € (1 X o X o X e X ) —>/ dto. (b1 to. . t)
Qo

is continuous, where the hat is used to denote a missing element from a list.
From this remark, it follows that each of the integrals in Eq. are well
defined and hence so is I, (f). Moreover by an induction argument using
Lemma [10.32] and the boundedness of the Riemann integral, we have the
estimate,

1o ()l z < (H |Jz|> ”f”c(J,Z) . (10.25)
i=1

Now suppose 7 is another permutation. Because of Eq. , I, and I
are bounded operators on C' (J, Z) and so to shows I, = I, is suffices to shows
there are equal on the dense set of polynomial functions (see Corollary
in C (J,Z). Moreover by linearity, it suffices to show I, (f) = I, (f) when f
has the form

Ftr,ta, .. ty) =8 ke

n

for some k; € Ng and z € Z. However for this function, explicit computations
show
kil _ kit
L (f)=1I1,(f) = i T% ),
(f) =1 (f) <[[1 P ) :

L]
Proposition 10.39 (Equality of Mixed Partial Derivatives). Let Q =
(a,b) x (¢,d) be an open rectangle in R? and f € C(Q,Z). Assume that
2 f(s,t), & f(s,t) and &2 f(s,t) exists and are continuous for (s,t) € Q,
then %% (s,t) exists for (s,t) € Q and
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9 0 9 0
A

Proof. Fix (sg,tg) € Q. By two applications of Theorem [10.13]

— f(s,t) for (s,1) € Q. (10.26)

F(5:8) = £(51001) + / 2 fo.1ydo
— F(s0,t) + / S f(o.to) da+/ da/ def flo,r)  (10.27)

and then by Fubini’s Theorem [10.38| we learn

f(s,t) = f(so,t / (o,t0 d0—|—/ dT/ daa 88 flo,7).

Differentiating this equation in ¢ and then in s (again using two more appli-

cations of Theorem [10.13|) shows Eq. (10.26] holds. [ |

10.6 Exercises

Throughout these problems, (X, ||-||) is a Banach space.

Exercise 10.6. Show f = (f1,..., fn) € S([a,b],R") iff f; € S([a,b],R) for
1=1,2,...,n and

/abf(t)dt = (/ab f1(t)dt,...,/ab fn(t)dt> _

Here R™ is to be equipped with the usual Euclidean norm. Hint: Use Lemma
to prove the forward implication.

Exercise 10.7. Give another proof of Proposition [I0.39] which does not use
Fubini’s Theorem [10.3§ as follows.

1. By a simple translation argument we may assume (0,0) € Q and we are

trying to prove Eq m holds at (s,t) = (0,0).
2. Let h(s,t) := 8t (% (s,t) and

G(s,t) == /OS do /Ot drh(o,T)

so that Eq. (10.27)) states
e
f(s,t) = f(0,%) —|—/ —f(o,to)do + G(s,t)
0 80’

and differentiating this equation at ¢ = 0 shows
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0 0 0
Now show using the definition of the derivative that
a S
—G(s,0) = doh(o,0). (10.29)
ot 0

Hint: Consider

Gls,t) —t/os doh(c,0) :/OS do/ot dr [h(o,7) — h(c,0)] .

3. Now differentiate Eq. (10.28)) in s using Theorem [10.13|to finish the proof.

Exercise 10.8. Give another proof of Eq. (10.24)) in Theorem [10.38| based on
Proposition [10.39} To do this let ¢y € (¢,d) and so € (a,b) and define

G(s,1) = /tt dT/S: dof(o,7)

Show G satisfies the hypothesis of Proposition [10.39which combined with two
applications of the fundamental theorem of calculus implies

0 0 0 0
a&G(sat) = %EG(&@ = f(s,1).

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if ¢ = tg or s = s¢ to conclude

s t 8 a s t (9
G(s,t)= | do | dr——=—G(o,7)= [ do | dr—f(o,7). (10.30)
so t, OT 0o so t, OT
Finally let s = b and t = d in Eq. (10.30) and then let s¢ | a and ¢y | ¢ to
prove Eq. (10.24)).

Exercise 10.9 (Product Rule). Prove items 1. and 2. of Lemma This
can be modeled on the standard proof for real valued functions.

Exercise 10.10 (Chain Rule). Prove the chain rule in Proposition [10.10
Again this may be modeled on the on the standard proof for real valued
functions.

Exercise 10.11. Toeach A € L (X), we may define Ly, R4 : L (X) — L (X)
by
LyB=AB and RyB=BAforall Be L(X).

Show Lu,R4 € L(L (X)) and that

HLAHL(L(X)) = ”A”L(X) = ||RAHL(L(X))'
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Exercise 10.12. Suppose that A : R — L(X) is a continuous function and
U,V :R — L(X) are the unique solution to the linear differential equations

V(t) = AtV (t) with V(0) =T (10.31)

and

U(t) = —U(t)A(t) with U(0) = I. (10.32)
Prove that V(t) is invertible and that V=1(t) = U(t)lﬂ where by abuse of
notation I am writing V=1 (¢) for [V (¢)]". Hints: 1) show LUHVE)]=0
(which is sufficient if dim(X) < oo) and 2) show compute y(t) := V(¢)U(¥)
solves a linear differential ordinary differential equation that has y = Id as
an obvious solution. (The results of Exercise may be useful here.) Then
use the uniqueness of solutions to linear ODEs.

Exercise 10.13. Suppose that (X, ||-||) is a Banach space, J = (a,b) with
—0<a<b< oand f, : R— X are continuously differentiable functions
such that there exists a summable sequence {a,},. | satisfying

FAGIEY

fn (t)H <a, forallte Jandn e N.

Show:

l.sup{‘MH:(t,h)eJxR 3 t+h€Jandh7é0}§an.
2. The function F' : R — X defined by

F(t):= ifn (t) forallt e J
n=1

is differentiable and for t € .J,
F(t)y=> fal(t).
n=1

Exercise 10.14. Suppose that A € L(X). Show directly that:
1. e*4 define in Eq. (10.19) is convergent in L(X) when equipped with the

operator norm.
2. et4 is differentiable in ¢ and that %em = Aet4,

Exercise 10.15. Suppose that A € L(X) and v € X is an eigenvector of A
with eigenvalue ), i.e. that Av = \v. Show e*4v = e**v. Also show that if
X =R" and A is a diagonalizable n x n matrix with

A= SDS™! with D = diag(\1, ..., \n)

then et = SetPS—1 where efP = diag(e*™, ..., ). Here diag(\1, ..., \n)
denotes the diagonal matrix A such that A; = \; for i =1,2,...,n.

4 The fact that U(t) must be defined as in Eq. (10.32) follows from Lemmam
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Exercise 10.16. Suppose that A,B € L(X) and [4,B] := AB — BA = 0.
Show that e(A1tB) = 4B,

Exercise 10.17. Suppose A € C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s,t € R. Show
y(t) — e(fot A(‘r)d‘r)x

is the unique solution to y(t) = A(t)y(t) with y(0) = x.

Exercise 10.18. Compute e** when

01
=)
and use the result to prove the formula

cos(s +t) = cosscost — sin ssint.

Hint: Sum the series and use et4es4 = e(t+s)4,

Exercise 10.19. Compute e!4 when

Oabd
A=|00c¢
000

with a,b,¢ € R. Use your result to compute e!*/+4) where A € R and I is
the 3 x 3 identity matrix. Hint: Sum the series.

Exercise 10.20. Prove Theorem using the following outline.

1. Using the right continuity at 0 and the semi-group property for T3, show
there are constants M and C such that [Ty, x) < MC" for all t > 0.

2. Show t € [0,00) — T; € L(X) is continuous.

3.For e > 0, let S. := L [[T,dr € L(X). Show S. — I as e | 0 and
conclude from this that S is invertible when € > 0 is sufficiently small.
For the remainder of the proof fix such a small £ > 0.

4. Show
1 t+e
TtSE = - TTdT
€ Jt

and conclude from this that

T, -1 1
lim(t )SE:(TE—IdX).
t10 t £

5. Using the fact that S. is invertible, conclude A = limy ot ~! (T; — I) exists

in L(X) and that

A:%(TE—I)S;P
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6. Now show, using the semigroup property and step 4., that %Tt = AT; for
all t > 0.

7. Using step 5, show £e *AT, = 0 for all ¢t > 0 and therefore e *4T} =
e_OATO =1.

Exercise 10.21 (Duhamel’ s Principle I). Suppose that A : R — L(X) is
a continuous function and V : R — L(X) is the unique solution to the linear
differential equation in Eq. (10.31). Let z € X and h € C(R, X) be given.
Show that the unique solution to the differential equation:

y(t) = A(t)y(t) + h(t) with y(0) == (10.33)

is given by

y(t) =V(t)x + V(t)/o V(r)" h(r)dr. (10.34)

Hint: compute 4 [V =1(¢)y(t)] (see Exercise [10.12)) when y solves Eq. (10.33).

Exercise 10.22 (Duhamel’ s Principle II). Suppose that A : R — L(X)
is a continuous function and V : R — L(X) is the unique solution to the linear
differential equation in Eq. (10.31)). Let Wy € L(X) and H € C(R, L(X)) be
given. Show that the unique solution to the differential equation:

W(t) = A()W(t) + H(t) with W (0) = Wy (10.35)

is given by

Wt) = V(O Wo + V(1) /O V) H () d (10.36)
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11

Ordinary Differential Equations in a Banach
Space

Let X be a Banach space, U C, X, J =(a,b)20and Z € C(J xU,X) - Z
is to be interpreted as a time dependent vector-field on U C X. In this section
we will consider the ordinary differential equation (ODE for short)

(t) = Z(t,y(t)) with y(0) =z € U. (11.1)

The reader should check that any solution y € C1(J,U) to Eq. (11.1) gives a
solution y € C(J,U) to the integral equation:

y(t) == +/O Z(r,y(7))dr (11.2)

and conversely if y € C(J,U) solves Eq. (11.2)) then y € C*(J,U) and y solves
Eq. (11.1).

Remark 11.1. For notational simplicity we have assumed that the initial con-
dition for the ODE in Eq. (11.1]) is taken at ¢ = 0. There is no loss in generality
in doing this since if § solves
dy
dt

iff y(t) := Gt + to) solves Eq. (11.1) with Z(t,x) = Z(t + to, ).

(t) = Z(t,§(t)) with §(tg) =z € U

11.1 Examples

Let X = R, Z(z) = 2™ with n € N and consider the ordinary differential
equation

() = Z(y(t)) = y™(t) with y(0) =z € R. (11.3)

If y solves Eq. (11.3]) with « # 0, then y(¢) is not zero for ¢ near 0. Therefore
up to the first time y possibly hits 0, we must have
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¢ y(t) 0] e Y SO
t:/ y(r) dT:/ udu = ol .
o y(m)m 0 In | £ if n=1

and solving these equations for y(t) implies

ifn>1

y(t) = y(t,x) = { n_{/l—(s—l)m"’l (11.4)

etz ifn=1.

The reader should verify by direct calculation that y(¢,z) defined above does
indeed solve Eq. . The above argument shows that these are the only
possible solutions to the Equations in (11.3).
Notice that when n = 1, the solution exists for all time while for n > 1,
we must require
1—(n—1ta" ' >0

or equivalently that

1
t<mifxn71>0and

1
> _7’”_1 if m/n/_l < O.
(1—n)|z]

Moreover for n > 1, y(t,x) blows up as ¢ approaches the value for which
1 — (n — 1)tz"~! = 0. The reader should also observe that, at least for s and
t close to 0,

y(t,y(s,x)) = y(t'i_svx) (115)
for each of the solutions above. Indeed, if n = 1 Eq. (11.5) is equivalent to the
well know identity, efe® = e!™* and for n > 1,

y(s, )
t,y(s,x)) =
y(t,y(s,2)) "1 —(n—1ty(s,z)" 1
. "7\1/1—(n—1)sm"_1
o n—1
1-— (n - 1)t |: 7L7{/17(n71)szn71
. "‘Vl—(n—l)sz"*l
n=l/1 — (n — ].)t%
B x
"1 —(n—1)sx" 1 —(n—1)txn~1
- (i +5.2)
= = 8, ).
(Dt et
Now suppose Z(z) = |z|* with 0 < a < 1 and we now consider the

ordinary differential equation
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9(t) = Z(y(t)) = ly(t)|* with y(0) =z € R. (11.6)

Working as above we find, if z # 0 that

I I ¥t
’5*/0 (o */0 ful = d !

o 11—«

where u! ¢

implies

:= |u|' " sgn(u). Since sgn(y(t)) = sgn(z) the previous equation

sgn(@)(1 - )t = sgn(x) [sealy(®)) ly()'™ — sen() || =]
()" = 2l

and therefore,

1
1—a

y(t,@) = sgn(@) (|2~ + sen(2)(1 - a)t) (11.7)

is uniquely determined by this formula until the first time ¢ where |:c|17a +
sgn(z)(1 — a)t = 0. As before y(¢) = 0 is a solution to Eq. (11.6)), however it
is far from being the unique solution. For example letting = | 0 in Eq. (L1.7)
gives a function
1
y(t,0+) = (1 —a)t) ==

which solves Eq. (11.6) for ¢ > 0. Moreover if we define

CJ(—a))TEift>0
y(t)'_{(( 0)) iftzo’

(for example if v = 1/2 then y(t) = t?1;>¢) then the reader may easily check

y also solve Eq. (11.6). Furthermore, y,(t) := y(t — a) also solves Eq.
for all a > 0, see Figure [[1.1] below.

With these examples in mind, let us now go to the general theory. The
case of linear ODE’s has already been studied in Section [10.3| above.

11.2 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 11.2. Gronwall’s Lemma. Suppose that f,e, and k are non-
negative functions of a real variable t such that

Ft) < e(t) + /0 k(r) f(r)dr|. (11.8)

Then
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757

257

t t t i
0 2 4 6 8

t

Fig. 11.1. Three different solutions to the ODE () = |y(t)|*/? with y(0) = 0.

F(t) <e(t)+ / k(r)e(r)el Kl | (11.9)

and in particular if € and k are constants we find that

f(t) < eetltl, (11.10)

Proof. I will only prove the case ¢ > 0. The case t < 0 can be derived

by applying the t > 0 to f(t) = f(—t), k(t) = k(—t) and e(t) = e(—t). Set
F(t) = [ k(r)f(r)dr. Then by ,

F=kf <ke+kF.

Hence,

%(e_fot k(s)dsF) — e_.fot k(s)ds(F o ]i}F) < k€€_f(; k:(s)ds.

Integrating this last inequality from 0 to ¢ and then solving for F' yields:

"t t T t rt
F(t) < elo ke)ds. / drk(r)e(r)e™ Jo k(e)ds = / drk(r)e(r)elr F(#)ds,
0 0

But by the definition of F' we have that

f<e+F,
and hence the last two displayed equations imply (11.9). Equation (11.10)
follows from (11.9)) by a simple integration. ]

Corollary 11.3 (Continuous Dependence on Initial Data). Let U C,
X, 0 € (a,b) and Z : (a,b) x U — X be a continuous function which is K-
Lipschitz function on U, i.e. || Z(t,x) — Z(t,2")|| < K||lx —2'| for all x and «’
in U. Suppose y1,y2 : (a,b) — U solve
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dy;t(t) = Z(t,y;(t)) with y;(0) = x; fori=1,2. (11.11)
Then
ly2(t) = 1 (D) < w2 — 21 [[e"V for t € (a,0) (11.12)

and in particular, there is at most one solution to Eq. under the above
Lipschitz assumption on Z.

Proof. Let f(t) := |ly2(t) — y1(t)||. Then by the fundamental theorem of
calculus,

f®=mm®—m@+AQMﬂ—mmwﬂ

Sf@H-AHﬂﬂmUD—ﬂﬂmUMWT

/Otf(T)dT

Therefore by Gronwall’s inequality we have,

= |lz2 — || + K

lly2(t) —y1 (D) = f(t) < ||z2 — x1||ek|t|_

11.3 Local Existence (Non-Linear ODE)

We now show that Eq. (11.1) under a Lipschitz condition on Z. See Exercise
[[4.20 below for another existence theorem.

Theorem 11.4 (Local Existence). Let T >0, J = (-T,T), o € X, r >0
and
Czo,r):={z e X : |z —xo| <r}

be the closed v — ball centered at xo € X. Assume
M =sup{||Z(t,x)| : (t,z) € J x C(xg,7)} < 0 (11.13)
and there exists K < oo such that
WZ(t,x)— Z(t, )| < K|z —y| forall z,y € C(xo,7) and t € J. (11.14)

Let Ty < min {r/M,T} and Jy := (—To,To), then for each x € B(xg,r—MTp)
there exists a unique solution y(t) = y(t,z) to Eq. in C (Jo,C(xo,1)) .
Moreover y(t,x) is jointly continuous in (t,x), y(t,z) is differentiable in t,
y(t,x) is jointly continuous for all (t,z) € Jo X B(zg,r — MTy) and satisfies

B {71
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Proof. The uniqueness assertion has already been proved in Corollary
11.3] To prove existence, let C,. := C(xg,7), Y := C (Jy, C(xo,7)) and

Sz (y)(t) := x-l—/o Z(1,y())dr. (11.15)

With this notation, Eq. (11.2) becomes y = S, (y), i.e. we are looking for a
fixed point of S,. If y € Y, then

< | — ol + M [t]

t
152(y)(t) = ol < [z — zol| + '/0 1Z(7,y(7))ll dr
<|lz—zo|| + MTy <r—MTy+ My =r,

showing S, (Y) C Y for all x € B(xg,r — MTp). Moreover if y,z € Y,

152 (0) (1) — Sa(2)(8)]| = H |zt - 2 s0)ar

<

/0 1Z(r.y()) — Z(r, 2(r)) | dr

<K . (11.16)

/ ly(r) — 2(r)l| dr
0

Let yo(t,z) = « and y,,(-,x) € Y defined inductively by

Yn(x) = Sp(Yn—1(-, 7)) == —l—/o Z(T,Yn—1(T,x))dT. (11.17)

Using the estimate in Eq. (11.16)) repeatedly we find
n(t) |l

t
[ ) = sl

t 11
[ [ ||yn_1<t2>yn_2<t2>||H
0 0

t 11
[ [ e
0 0

< K fnCon) =l [ dr
Ay (t)

[ ynsa(t) —

y
<K

< K?

tn—1
< K" [ bt —youn)\... H
0

K™|t" K™ |t"
= B ) — o) < 2B (1.1

wherein we have also made use of Lemma[10.19] Combining this estimate with
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t t
s (t,2) — volt,2)]| = H JRCEGE \ [ 1zaar| <,
0 0
where
To 0
Mo = Ty max / ||Z(T,x)||d7',/ 1Z(r,2)| dr b < MTy,
0 —1o
shows K| T
n tn ngm
[ynt1(t, @) = yu(t, )| < Mo < My——°

n!
and this implies

00
Z SUP{ ||yn+1('7x) - yn('vx)”oo,Jg ite JO}
n=0

o0
KTy
< § Moy O = MyefT <« o
‘ n!
e

where

1910 @) = (s 2) ey = 59D {lgns1 (£, 2) — yalt, )| £ € Jo}.

So y(t, z) := lim, 00 Yn(t, ) exists uniformly for ¢ € J and using Eq. (11.14)
we also have

sup{ [|Z(£,y(t)) — Z(t, yn—1 ()|l : t € Jo}
<K |y(,2) = yn-1(2)| 00,5, — 0 as n— oo.

Now passing to the limit in Eq. (11.17) shows y solves Eq. (11.2). From this
equation it follows that y(t,z) is differentiable in ¢ and y satisfies Eq. (11.1)).

The continuity of y(t, z) follows from Corollary and mean value inequality
(Corollary [10.14)):

||y(t,x) - y(tl7m/)|‘ S Hy(ta CU) - y(ta (El)” + ||y(t,:c') - y(tlvx/)”

/t/t Z(t,y(r,2"))dr

— ly(t, ) — y(t.2)]| + \

< lott.a) =t + | [ 12Gratralar

¢
< ||z — 2'||eXT + '/ | Z(r,y(r,2")| dr (11.19)
tl

<o -2/ |5+ M|t —1].

The continuity of y(¢, z) is now a consequence Eq. (11.1]) and the continuity
of y and Z. n
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150 11 Ordinary Differential Equations in a Banach Space
Corollary 11.5. Let J = (a,b) 2 0 and suppose Z € C(J x X, X) satisfies
Z(t,z) = Z(t,y)|| < K|z —y| foralz,ye X andt e J. (11.20)

Then for all x € X, there is a unique solution y(t,x) (fort € J) to Eq. .
Moreover y(t,x) and y(t,z) are jointly continuous in (t,z).

Proof. Let Jy = (ag,bp) o 0 be a precompact subinterval of J and Y :=
BC (Jo,X). By compactness, M := sup;c 7, ||Z(t,0)|| < oo which combined

with Eq. (11.20)) implies

sup || Z(t,z)|| < M + K ||z|| for all x € X.
tedo

Using this estimate and Lemma [10.7| one easily shows S,(Y) C Y for all
x € X. The proof of Theorem [11.4] now goes through without any further
change. [

11.4 Global Properties

Definition 11.6 (Local Lipschitz Functions). Let U C, X, J be an open
interval and Z € C(J x U, X). The function Z is said to be locally Lipschitz in
x if for all x € U and all compact intervals I C J there exists K = K(x,I) <
oo and € = e(x,I) > 0 such that B(x,e(x,I)) C U and

|Z (¢, z1) — Z(t,x0)|| < K(z,I)||z1 — 20| V z0, 21 € B(z,e(x,I)) &tel.
(11.21)

For the rest of this section, we will assume J is an open interval containing
0, U is an open subset of X and Z € C'(JxU, X) is a locally Lipschitz function.

Lemma 11.7. Let Z € C(J x U, X)) be a locally Lipschitz function in X and
FE be a compact subset of U and I be a compact subset of J. Then there exists
e > 0 such that Z(t,x) is bounded for (t,z) € I x E. and and Z(t,x) is K —
Lipschitz on E. for allt € I, where

E.:={zxeU:dist(z,F) <e}.

Proof. Let e(x,I) and K(x,I) be as in Definition above. Since
FE is compact, there exists a finite subset A C FE such that F C V =
UzeaB(z,e(x, 1)/2). If y € V, there exists z € A such that |y — z|| < e(z,I)/2
and therefore

12l < 12( @) + K, 1) ly — =f| < |2t 2)|| + K(z, De(x, I)/2

< sup {||Z(t, )|+ K(z,I)e(z,1)/2} =1 M < 0.
zeAte]
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11.4 Global Properties 151
This shows Z is bounded on I x V. Let

1
= ¢ <7 1
e:=d(E,V°) < 2m1£115(x,1')

xE

and notice that ¢ > 0 since F is compact, V¢ is closed and E NV = ().
If y,z € E. and ||y — z|| < ¢, then as before there exists € A such that
lly — z|| < e(z,I)/2. Therefore

Iz =l <llz =yl + lly —zll <e+e@,1)/2 < e(x, 1)
and since y, z € B(x,e(x, I)), it follows that
1Z(t,y) — Z(t, 2)|| < K(z, I)|ly — z[| < Kolly — z||
where Ky := max,ecq K(x,I) < oo. On the other hand if y,z € E. and
lly — z|| > €, then
2M
12(t,) — 202, )] < 20 < 22y .
Thus if we let K := max {2M /e, Ky}, we have shown
|Z(t,y) — Z(t,2)|| < Kl|ly — 2| for all y,z € E. and t € I.
|

Proposition 11.8 (Maximal Solutions). Let Z € C(J x U, X) be a locally
Lipschitz function in x and let x € U be fized. Then there is an interval J, =
(a(x),b(z)) with a € [—00,0) and b € (0,00] and a C'—function y : J — U
with the following properties:

1. y solves ODE in Eq. .
2.If g : J = (a,b) — U is another solution of Eq. (we assume that
0e J) then JCJ and § =1yl ;.

The function y : J — U is called the mazimal solution to Eq. .

Proof. Suppose that y; : J; = (a;,b;) — U, i = 1,2, are two solutions to
Eq. (11.1). We will start by showing the y; = yo on J; N Jo. To do thifl| let

! Here is an alternate proof of the uniqueness. Let
T = sup{t € [0, min{b1,b2}) : y1 = y2 on [0,]}.

(T is the first positive time after which y; and y» disagree.

Suppose, for sake of contradiction, that 7' < min{by, b2}. Notice that y, (1) =
y2(T) =: z’. Applying the local uniqueness theorem to y1(- — T') and y2(- — T
thought as function from (—4,5) — B(z',e(z’)) for some § sufficiently small, we
learn that y1 (-—T") = y2(-—T') on (—0, §). But this shows that y; = y2 on [0,T+6)
which contradicts the definition of 7. Hence we must have the T = min{b1, b2},
ie. y1 = y2on J1NJaN [0,00). A similar argument shows that y1 = y2 on
Ji N Jz N (—o0,0] as well.
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152 11 Ordinary Differential Equations in a Banach Space

Jo = (ao, bo) be chosen so that 0 € Jy C J; NJs, and let F := yl(JQ)UyQ(Jo) -
a compact subset of X. Choose ¢ > 0 as in Lemma[IT.7] so that Z is Lipschitz
on E.. Then yi1|j,, 2|5 : Jo — Ee both solve Eq. and therefore are
equal by Corollary Since Jy = (ag,bog) was chosen arbitrarily so that
[a,b] C J1 N Ja, we may conclude that y; = y2 on Jy N Ja. Let (Yo, Jo =
(@asba))aca denote the possible solutions to such that 0 € J,. Define
Jr = UJ, and set y = y, on J,. We have just checked that y is well defined
and the reader may easily check that this function y : J, — U satisfies all the
conclusions of the theorem. [

Notation 11.9 For each x € U, let J, = (a(x),b(x)) be the mazimal in-
terval on which Fq. may be solved, see Proposition . Set D(Z) :=
Uzev (Jz x {x}) C J x U and let ¢ : D(Z) — U be defined by ¢(t,x) = y(t)
where y is the mazimal solution to Eq. (11.1)). (So for each x € U, ¢(-, ) is
the mazimal solution to Eq. )

Proposition 11.10. Let Z € C(J x U, X) be a locally Lipschitz function in x
andy : J, = (a(z),b(z)) — U be the mazimal solution to Eq. (11.1]). If b(x) <
b, then either im sup,jp,) | Z (¢, y(t))|| = 00 ory(b(z)—) = limyyp(a) y(t) exists
and y(b(z)—) ¢ U. Similarly, if a > a(x), then either imsup, 4, [|y(t)]| = oo
or y(a(z)+) := limy 4 y(t) exists and y(a(z)+) ¢ U.

Proof. Suppose that b < b(z) and M := lmsupy,) [|1Z(2 y(?))]| < oco.
Then there is a by € (0,b(x)) such that || Z(¢, y(t))|| < 2M for all ¢t € (bg, b(x)).
Thus, by the usual fundamental theorem of calculus argument,

ly(t) =yl < /t 1Z(t,y(r)) dr| < 2M|t —¢']

for all t,t' € (bg,b(x)). From this it is easy to conclude that y(b(z)—) =
limyqp(z) y(t) exists. If y(b(z)—) € U, by the local existence Theorem
there exists § > 0 and w € C* ((b(z) — 6, b(x) + ), U) such that

() = Z(t, w(t) and w(b(z)) = y(b(z) ).
Now define § : (a,b(z) + ) — U by

: (t) ifteJ,
y(t) = {?U(t) if t € [b(x),b(z) +6)”

The reader may now easily show ¢ solves the integral Eq. and hence
also solves Eq. for ¢t € (a(x),b(z) + (5)E| But this violates the maximality
of y and hence we must have that y(b(z)—) ¢ U. The assertions for ¢ near
a(z) are proved similarly. |

2 See the argument in Proposition [11.13|for a slightly different method of extending
y which avoids the use of the integral equation (11.2)).
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11.4 Global Properties 153

Ezample 11.11. Let X = R?* J =R, U = {(z,y) e R*: 0 <r < 1} where
r? =22 +y? and

Z(r,) = +(5,9) + g ().
The the unique solution (z(t),y(t)) to
L ((t). (1) = Z(a(®),y(®) with (@(0),5(0)) = (2,0)

dt

is given by

w00 = (1+3) (o (7= ) 0 (725

for t € J(1/2,0) = (—00,1/2) . Notice that || Z(x(t),y(t))|| — oc ast T 1/2 and
dist((z(t),y(t)),U°) - 0ast T 1/2.

Ezample 11.12. (Not worked out completely.) Let X = U = ¢2, ¢ € C°(R?)
be a smooth function such that ¥ = 1 in a neighborhood of the line segment
joining (1,0) to (0,1) and being supported within the 1/10 — neighborhood of
this segment. Choose a,, T oo and b,, T oo and define

oo

Z(@) = anth(bn(@n, Tns1))(€nt1 — en). (11.22)

n=1

For any x € £2, only a finite number of terms are non-zero in the above some
in a neighborhood of x. Therefor Z : /2 — (2 is a smooth and hence locally
Lipshcitz vector field. Let (y(t),J = (a,b)) denote the maximal solution to

y(t) = Z(y(t)) with y(0) = e

Then if the a, and b, are chosen appropriately, then b < co and there will
exist ¢, T b such that y(t,) is approximately e, for all n. So again y(¢,) does
not have a limit yet sup,¢jo ) [|y(t)[| < oo. The idea is that Z is constructed
to blow the particle form e; to es to ez to e4 ete. etc. with the time it takes to
travel from e, to e,1 being on order 1/2™. The vector field in Eq. is
a first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition [11.10| which is more useful when
dim(X) < oo.

Proposition 11.13. Let Z € C(J x U, X) be a locally Lipschitz function in
x andy : Jp, = (a(x),b(x)) — U be the mazimal solution to Eq. .

1. If b(x) < b, then for every compact subset K C U there exists Tk < b(x)
such that y(t) ¢ K for all t € [Tk,b(x)).
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154 11 Ordinary Differential Equations in a Banach Space

2. When dim(X) < oo, we may write this condition as: if b(x) < b, then
either
limsup ||y(t)|| = oo or liminf dist(y(t), U¢) = 0.
t1b(z) tTb(x)

Proof. 1) Suppose that b(z) < b and, for sake of contradiction, there
exists a compact set K C U and t, 1 b(z) such that y(t,) € K for all n.
Since K is compact, by passing to a subsequence if necessary, we may assume
Yoo := limy, 00 y(tn) exists in K C U. By the local existence Theorem m
there exists Tp > 0 and § > 0 such that for each 2’ € B (y0,d) there exists a
unique solution w(-,z") € C*((=Ty,Tp),U) solving

w(t,a') = Z(t,w(t,2")) and w(0,2") = 2’

Now choose n sufficiently large so that t, € (b(z) — To/2,b(x)) and y(t,) €
B (Yc0,9) - Define § : (a(x),b(z) + To/2) — U by

i (t) if t € J,
y(t) = {Z;(t —tn,y(tn)) ift € (tn — To, b(z) + To/2).

wherein we have used (¢, — 1o, b(x)+Tp/2) C (tn—To,tn +T0). By uniqueness
of solutions to ODE’s ¢ is well defined, § € C'((a(x),b(z) + Tp/2),X) and §
solves the ODE in Eq. But this violates the maximality of y. 2) For each
n € N let

K, :={zeU:|z| <nand dist(z,U) > 1/n}.

Then K,, T U and each K, is a closed bounded set and hence compact if
dim(X) < oo. Therefore if b(z) < b, by item 1., there exists T,, € [0,b(z))
such that y(t) ¢ K, for all ¢ € [T,,b(z)) or equivalently ||y(¢)|| > n or
dist(y(t),U°) < 1/n for all t € [T}, b(x)). |

Remark 11.14. In general it is not true that the functions a and b are contin-
uous. For example, let U be the region in R? described in polar coordinates
by > 0and 0 < § < 37/4 and Z(x,y) = (0,—1) as in Figure below.
Then b(z,y) = y for all z,y > 0 while b(z,y) = oo for all z < 0 and y € R
which shows b is discontinuous. On the other hand notice that

{b>t}={z<0}U{(z,y): 2 >0,y >t}

is an open set for all ¢ > 0. An example of a vector field for which b(x) is
discontinuous is given in the top left hand corner of Figure The map
b would allow the reader to find an example on R? if so desired. Some cal-
culations shows that Z transferred to R? by the map v is given by the new
vector

Z(z,y) = —e " (sin (3; + gtan_l (y)> ,COS (?’g + Ztan_l (y))) .
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\Pgrejﬁ) - Qlag\r) fa_ﬂ,\(\%e“%o

Fig. 11.2. Manufacturing vector fields where b(x) is discontinuous.

Theorem 11.15 (Global Continuity). Let Z € C(J x U, X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J x U and the func-
tions ¢ : D(Z) — U and b D(Z) — U are continuous. More precisely, for
all xo € U and all open intervals Jo such that 0 € Jo CC Jy, there exists
0 = 0(zg, Jo, Z) > 0 and C = C(xo, Jo, Z) < 0o such that for all x € B(xo, 9),
Jo C J, and

60 2) = 6+ 20) | o) < C llz = o]l (11.23)

Proof. Let |.Jy| = by — ag, I = Jy and E := y(Jo) — a compact subset of U
and let € > 0 and K < oo be given as in Lemma i.e. K is the Lipschitz
constant for Z on E,. Also recall the notation: Aq(t) = [0,¢] if ¢ > 0 and
Aq(t) = [t,0] if t < 0. Suppose that x € E., then by Corollary

l6(t, @) = §(t, o)l < & — wolle™ 1 < ||z — aoje" 1! (11.24)

for all ¢ € Jy N J, such that such that ¢ (Ay(¢),z) C E.. Letting § :=
Ee_K”O‘/Q, and assuming = € B(zg,d), the previous equation implies

ot 2) — p(t,z0)|| <e/2<eVteJonds 3 ¢(A(t),z) C E..

This estimate further shows that ¢(¢,x) remains bounded and strictly away
from the boundary of U for all such ¢t. Therefore, it follows from Proposition

and “continuous inductionf’]’ that Jo C .J, and Eq. (11.24) is valid for all
3 See the argument in the proof of Proposition
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t € Jy. This proves Eq. with C' := X170l Suppose that (o, zg) € D(Z)
and let 0 € Jy CC Jy, such that ¢ty € Jy and § be as above. Then we have
just shown Jy x B(zg,d) C D(Z) which proves D(Z) is open. Furthermore,
since the evaluation map

(to,y) € Jo x BC(Jo,U) = y(ty) € X

is continuous (as the reader should check) it follows that ¢ = eo(z — ¢(-, x)) :
Jo x B(z9,d) — U is also continuous; being the composition of continuous
maps. The continuity of ¢(tg,x) is a consequences of the continuity of ¢ and

the differential equation Alternatively using Eq. ,
[¢(to, 2) — (¢, zo)|| < l6(to, ) — d(to, o) || + [[¢(to, zo) — (¢, o)l
< Clle—ml+| [ 12 otrzo)lar
< Cllz — ol + M |to — t|

where C is the constant in Eq. (11.23|) and M = sup,¢ 5, [|Z(7, ¢(7,70))| < o0.
This clearly shows ¢ is continuous. [

11.5 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field Z. It will be convenient to introduce the following
suggestive notation. For (t,z) € D(Z), set e?(x) = ¢(t,z). So the path
t — e'Z(xr) is the maximal solution to

d
%etz(x) = Z(e'?(x)) with ?(z) = .
This exponential notation will be justified shortly. It is convenient to have the

following conventions.

Notation 11.16 We write f : X — X to mean a function defined on some
open subset D(f) C X. The open set D(f) will be called the domain of f.
Given two functions f : X — X and g : X — X with domains D(f) and
D(g) respectively, we define the composite function fog: X — X to be the
Sfunction with domain

D(fog)={ze€X:xeD(g) andg(x) e D(f)} =g " (D(f))

given by the rule fog(x) = f(g(x)) for allxz € D(fog). We now write f =g
iff D(f) = D(g) and f(x) = g(z) for all x € D(f) = D(g). We will also write

f Cgiff D(f) C D(g) and g|py) = f-
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11.5 Semi-Group Properties of time independent flows 157

Theorem 11.17. For fired t € R we consider e'? as a function from X to X
with domain D(e'?) ={x € U : (t,x) € D(Z)}, where D(¢) = D(Z) C Rx U,
D(Z) and ¢ are defined in Notation[11.9 Conclusions:

1. Ift,se R andt-s >0, then et? o e5Z = ¢(t+9)Z,
2. Ift e R, then e'? o ™% = Idp(e-1z).
3. For arbitrary t,s € R, e'Z o e5Z C e(t+9)7Z,

Proof. Item 1. For simplicity assume that ¢, s > 0. The case t,s < 0 is left
to the reader. Suppose that x € D(e'? 0e*?). Then by assumption z € D(e*?)
and e*Z(x) € D(e'%). Define the path y(7) via:

() = e (z) ifo<7<s
i = T2 (z) ifs<T<t+s"

It is easy to check that y solves §(7) = Z(y(7)) with y(0) = z. But since,
e™?(z) is the maximal solution we must have that = € D(e®**+)%) and y(t +
s) = e(*9)Z(z). That is e(*+9)%(z) = ¢t% 0 e*#(z). Hence we have shown that
et? o esZ C 92 To finish the proof of item 1. it suffices to show that
D(et+5)2) C D(et? 0e®?). Take x € D(e(*+%)%) then clearly 2 € D(e*?). Set
y(1) = eT+9)Z () defined for 0 < 7 < t. Then y solves

§(r) = Z(y(r)) with y(0) = e*?(x).

But since 7 — €7 (e*#(z)) is the maximal solution to the above initial valued
problem we must have that y(7) = e"?(e*?(z)), and in particular at 7 =
t, 97 (3) = et?(e°?(x)). This shows that x € D(e'? o e*?) and in fact
t+8)Z = 2 o 57

Item 2. Let x € D(e~'?) — again assume for simplicity that ¢ > 0. Set
y(1) = e"YZ(z) defined for 0 < 7 < t. Notice that y(0) = e *(z) and
(1) = Z(y(7)). This shows that y(7) = ¢7?(e~*4(x)) and in particular that
x € D(e'? o e7t?) and €'Z o e7t4(x) = x. This proves item 2.

Ttem 3. I will only consider the case that s < 0 and t + s > 0, the other
cases are handled similarly. Write u for ¢t 4+ s, so that ¢t = —s 4+ u. We know
that e'? = e"Z o e by item 1. Therefore

etZ OesZ _ (euZ o e—sZ) o esZ.
Notice in general, one has (f o g) oh = f o (g o h) (you prove). Hence, the
above displayed equation and item 2. imply that

tZ sZ 6uZ o (6782 o esZ) _ 6(t+s)Z

e’ oe = t+s)Z

o ID(esZ) - 6(

The following result is trivial but conceptually illuminating partial con-
verse to Theorem [11.17]

Page: 157 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54
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Proposition 11.18 (Flows and Complete Vector Fields). Suppose U C,
X, 0 € CR xU,U) and ¢(x) = ¢(t,x). Suppose ¢ satisfies:

1. ¢0 = IUa
2. ¢rods = Qiys forallt,s € R, and
3. Z(x) := ¢(0,2) exists for allx € U and Z € C(U, X) is locally Lipschitz.

Then ¢, = e'?.

Proof. Let x € U and y(t) := ¢:(z). Then using Item 2.,

§0) = Sloy(t +5) = - o1y (2) = 5-lods © 6ule) = Z(y(1).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary [11.3) that ¢;(z) = y(t) = e'Z ().
[

11.6 Exercises

Exercise 11.1. Find a vector field Z such that e®5)Z is not contained in
etZ o e85,

Definition 11.19. A locally Lipschitz function Z : U C, X — X is said to
be a complete vector field if D(Z) = R x U. That is for any x € U, t — e'?(x)
is defined for all t € R.

Exercise 11.2. Suppose that Z : X — X is a locally Lipschitz function.
Assume there is a constant C' > 0 such that

1Z(2)|| < C(1+ ||z||) forall z € X.

Then Z is complete. Hint: use Gronwall’s Lemma and Proposition |[11.10]

1/2

Exercise 11.3. Suppose y is a solution to ¢(¢t) = |y(¢)|’" with y(0) = 0.

Show there exists a,b € [0, 00] such that

(=02 if t>b
y(t) = 0 if —a<t<b
—1(t+a)?if t<—a.

Exercise 11.4. Using the fact that the solutions to Eq. (11.3]) are never 0 if
x # 0, show that y(¢t) = 0 is the only solution to Eq. (L1.3)) with y(0) = 0.

Exercise 11.5 (Higher Order ODE). Let X be a Banach space, ,U C, X™
and f € C(J xU,X) be a Locally Lipschitz function in x = (z1,...,z,).
Show the n'" ordinary differential equation,
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y " () = f(ty(t),5(t), ...y (1) with y*)(0) =y for k<n  (11.25)

where (39, ... ,yg_l) is given in U, has a unique solution for small ¢t € J.

Hint: let y(t) = (y(),9(t),...y™ Y (t)) and rewrite Eq. (11.25) as a first
order ODE of the form

y(t) = Z(t,y(t)) with y(0) = (yg,---,55 ")
Exercise 11.6. Use the results of Exercises [10.19] and [[1.5] to solve
§(t) — 29(t) + y(t) = 0 with y(0) = a and §(0) = b.

Hint: The 2 x 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I + B where B? = 0.

Exercise 11.7 (Non-Homogeneous ODE). Suppose that U C, X is open
and Z : Rx U — X is a continuous function. Let J = (a, b) be an interval and
to € J. Suppose that y € C1(J,U) is a solution to the “non-homogeneous”
differential equation:

§(t) = Z(t,y(t)) with y(t,) = a € U. (11.26)

Define Y € C1(J —tg,Rx U) by Y (t) := (t+to,y(t+1t9)). Show that Y solves
the “homogeneous” differential equation

Y (t) = Z(Y (t)) with Y(0) = (o, y0), (11.27)

where Z(t,z) := (1, Z(z)). Conversely, suppose that Y € C1(J — to,R x U)
is a solution to Eq. (11.27). Show that Y (¢t) = (¢t + to,y(t + to)) for some y €
11.26)

CL(J,U) satisfying Eq. . (In this way the theory of non-homogeneous
ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 11.8 (Differential Equations with Parameters). Let W be
another Banach space, U x V C, X x W and Z € C(U x V, X) be a locally
Lipschitz function on U x V. For each (z,w) € U x V, let t € J; ,, — &(t, x, w)
denote the maximal solution to the ODE

y(t) = Z(y(t),w) with y(0) = =. (11.28)

Prove
D:={(t,x,w) ERXU XV :teJy,} (11.29)

isopenin R x U x V and ¢ and ¢ are continuous functions on D.
Hint: If y(t) solves the differential equation in (11.28), then v(t) :=
(y(t),w) solves the differential equation,

o(t) = Z(v(t)) with v(0) = (z,w), (11.30)
where Z(z,w) := (Z(z,w),0) € X x W and let ¢(t, (z,w)) := v(t). Now apply
the Theorem to the differential equation (11.30]).
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Exercise 11.9 (Abstract Wave Equation). For A € L(X) and t € R, let

(_1) t2nA2n and

K

cos(tA) =
= (2n)!
Sln<tA) o - (_1)n 2n+1 42n
T AT

n=0

Show that the unique solution y € C? (R, X) to
§i(t) + A%y(t) = 0 with y(0) = yo and §(0) = o € X (11.31)
is given by

sin(tA) .
( )yo.

y(t) = cos(tA)yo +

Remark 11.20. Exercise can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (11.31)) as a first order ODE using Exercise
In doing so you will be lead to compute e/® where B € L(X x X) is

given by
0 I
- (5d)

where we are writing elements of X x X as column vectors, (Zl > . You should
2
then show B
B _ cos(tA) %
—Asin(tA) cos(tA)
where

. — (D" oni1 o
Asin(tA) := E g2l g2(nt 1)
o (2n+1)!

Exercise 11.10 (Duhamel’s Principle for the Abstract Wave Equa-

tion). Continue the notation in Exercise but now consider the ODE,
§(t) + A%y(t) = f(t) with y(0) = yo and §(0) = go € X (11.32)

where f € C(R, X). Show the unique solution to Eq. (11.32)) is given by

sin(tA) Jo + /0 sin((t — 1) A)

y(t) = cos(tA)yo + " T

f(r)dr (11.33)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (11.33)) from Exercise [10.21] and the comments in
Remark [[1.20

Page: 160 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



12

Banach Space Calculus

In this section, X and Y will be Banach space and U will be an open subset
of X.

Notation 12.1 (g, O, and o notation) Let 0 € U C, X, and f : U — Y
be a function. We will write:

1. f(z) = e(x) if limg—o || f(x)]| = 0.

2. f(x) = O(z) if there are constants C < oo and r > 0 such that
If(@)]| < C|lz|| for all x € B(0,r). This is equivalent to the condition
that limsup, o ([|z]| 71 f(2)]]) < oo, where

lim sup Il @)l := lim sup{|| f(2)] : 0 < ||z|| < r}.
o ]

3. [f(z) = o(x) if f(z) = (x)O(x), i.e. imgo || f(@)]/z]| = O.
Ezample 12.2. Here are some examples of properties of these symbols.

1. A function f : U C, X — Y is continuous at xo € U if f(zg+ h) =
f(xo) +&(h).

2.1f f(z) = e(z) and g(x) = e(z) then f(z) + g(z) = e(x).
Now let g : Y — Z be another function where Z is another Banach space.

3.If f(z) = O(x) and ¢g(y) = o(y) then go f(z) = o(x).
4.1f f(z) = e(x) and g(y) = e(y) then g o f(z) = e(x).

12.1 The Differential

Definition 12.3. A function f: U C, X — Y is differentiable at o € U
if there exists a linear transformation A € L(X,Y") such that

F(zo +h) — f(z0) — Ah = o(h). (12.1)

We denote A by f'(xo) or Df(xo) if it exists. As with continuity, f is dif-
ferentiable on U if f is differentiable at all points in U.
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Remark 12.4. The linear transformation A in Definition [I2.3] is necessarily
unique. Indeed if A; is another linear transformation such that Eq. (12.1)
holds with A replaced by Ay, then

(A - Al)h = O(h)v

i.e.
: [[(A — A1)h||
limsup —————— =
h—0 17l

On the other hand, by definition of the operator norm,

s 14— 401
St I

0.

= [[A = Al

The last two equations show that A = A;.

Exercise 12.1. Show that a function f : (a,b) — X is a differentiable at
t € (a,b) in_the sense of Definition iff it is differentiable in the sense of
Definition Also show Df(t)v = vf(t) for all v € R.

Ezample 12.5. U T € L(X,Y) and z,h € X, then
T(x+h)—T(x)—Th=0
which shows T" (z) =T for all z € X.

Ezample 12.6. Assume that GL(X,Y") is non-empty. Then by Corollary
GL(X,Y) is an open subset of L(X,Y") and the inverse map f : GL(X,Y) —
GL(Y, X), defined by f(A) :== A71, is continuous. We will now show that f
is differentiable and

f'(A)B=—-A"'BA™! for all B L(X,Y).
This is a consequence of the identity,
fA+H) —f(A)=(A+H) ' A-(A+H)A ' = —(A+ H)'HA™!
which may be used to find the estimate,

|f(A+H)— f(A)+ A" HATY| = ||[[A™' = (A+ H)' | HA™Y||
A~ = (A+H) 7| =] [[A7

A P )
- =0 |(||H
T acpay =~ © (1)

IN

wherein we have used the bound in Eq. (7.10) of Corollary for the last
inequality.
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12.2 Product and Chain Rules 163

12.2 Product and Chain Rules

The following theorem summarizes some basic properties of the differential.
Theorem 12.7. The differential D has the following properties:

1. Linearity: D is linear, i.e. D(f + Ag) = Df + ADg.
2. Product Rule: If f : U Co, X =Y and A: U C, X — L(X,Z) are
differentiable at xq then so is x — (Af)(x) := A(x) f(z) and

D(Af)(zo)h = (DA(x0)h) f(x0) + A(xo) D f (x0)h.
3. Chain Rule: If f: U C, X -V C, Y is differentiable at x¢y € U, and

g:V C, Y — Z is differentiable at yo := f(x0), then go f is differentiable
at xg and (g o f)'(zo) = g'(y0) [’ (x0)-

4. Converse Chain Rule: Suppose that f : U C, X -V C, Y is contin-
uous at xo € U, g: V Co, Y — Z is differentiable yo := f(ho), g'(yo) is
invertible, and g o f is differentiable at xo, then f is dzﬁerentzable at xg
and

(o) = [g'(x0)] " (g 0 f)'(20)- (12.2)
Proof. Linearity. Let f,g : U C, X — Y be two functions which are
differentiable at g € U and A € R, then

(f +Ag)(zo +h)
= f(zo) + Df(zo)h + o(h) + Mg(wo) + Dg(xo)h + o(h)
= (f +Ag)(x0) + (D f(z0) + ADg(z0))h + o(h),

which implies that (f 4+ A\g) is differentiable at 2y and that
D(f + Ag)(zo) = Df(z0) + ADg(x0).
Product Rule. The computation,
A(zo + h)f(zo + h)
= (A(x0) + DA(xo)h + o(h))(f (o) + f'(x0)h + o(h))
= A(xo) f(z0) + A(xo) f'(w0)h + [DA(z0)h] f(20) + o(h),
verifies the product rule holds. This may also be considered as a special case

of Proposition Chain Rule. Using f(zo + h) — f(z0) = O(h) (see Eq.
(12.1)) and o(O(h)) = o(h),

(QOf)(a?o +h)
= 9(f(0)) + ¢'(f(x0))(f (zo + h) = f(w0)) + o(f (xo + 1) — f(0))
= 9(f(z0)) + g'(f(x0))(Df(z0)xo + 0(h)) + o(f (20 + h) = f(0)
= 9(f(w0)) + ¢'(f(x0)) D f(x0)h + o(h).
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Converse Chain Rule. Since ¢ is differentiable at yo = f(z¢) and ¢’ (yo) is
invertible,

(f(ﬂ?o+h))—g(f( 0))
(f(20))(f(wo +h) — f(x0)) + o(f(wo + h) — f(20))
(( 0)) [f(wo + k) — f(x0) + o(f(zo + h) — f(x0))].

And since g o f is differentiable at xg,

(g0 f)(xo+h) = g(f(w0)) = (g f) (xo)h + o(h).

Comparing these two equations shows that

f(xo +h) — f(xo) + o f(xo + h) — f(x0))
=g (f(x0)) " [(go f) (zo)h + o(h)]

which is equivalent to

f(@o +h) = f(x0) + o(f (20 + h) = f(w0))
= ¢'(f(0))™" [(g o f) (z0)h + o(h)]
= g'(f(20))"{(g 0 )'(z0)h + o(h) — o(f (w0 + ) — f(x0))}
= g'(f(w0)) (g0 f) (wo)h+ o(h) + o(f(xo + h) = f(a0)). (12.3)

Using the continuity of f, f(xo + h) — f(xo) is close to 0 if & is close to zero,
and hence

llo(f(xo + h) = f(z0))ll < %Hf(xo +h) = f(zo) (12.4)

for all h sufficiently close to 0. (We may replace 1 by any number a@ > 0
above.) Taking the norm of both sides of Eq. (12.3) and making use of Eq.
(12.4) shows, for h close to 0, that

[f(zo + h) = f (o)
< Ng'(f(x0) " (g o f) (o) lI2ll + o(l|All) + %Ilf(xo +h) = f(zo)l.-
Solving for ||f(zo + h) — f(wo)]| in this last equation shows that
F(@o +h) — f(z0) = O(h). (12.5)

(This is an improvement, since the continuity of f only guaranteed that f(xo+

h) — f(zg) = €(h).) Because of Eq. (12.5)), we now know that o( f(xo + h) —
f(zo)) = o(h), which combined with Eq. (12.3)) shows that

fxo +h) = f(xo) = ¢’ (f(20)) " (g o ) (zo)h + o(h),
i.e. f is differentiable at xg and f'(xo) = ¢'(f(x0)) (g o f) (xo). |
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Corollary 12.8 (Chain Rule). Suppose that o : (a,b) — U C, X is differ-
entiable at t € (a,b) and f : U C, X — 'Y is differentiable at o(t) € U. Then
f oo is differentiable at t and

d(foo)(t)/dt = f'(a(t))o(t).

Proposition 12.9 (Product Rule II). Suppose that X := X7 x -+ x X,
with each X; being a Banach space and T : X1 X ---x X,, — Y is a multilinear
map, i.e.

x; € Xl — T(xl,...,xi_l,xi,xi+1,...,xn) ey

is linear when x1,...,Ti—1,Tiy1,...,Ty are held fived. Then the following are
equivalent:

1. T is continuous.
2. T s continuous at 0 € X.
3. There exists a constant C < oo such that

IT @)y <] llwillx, (12.6)

i=1

forallz = (z1,...,2,) € X.
4. T is differentiable at all x € X1 X --- X X,.

Moreover if T the differential of T is given by
T/ (ZL') h = ZT(Z‘l, ey i1, hi7l’i+17 e ,J?n) (127)
i=1

where h = (hy,...,h,) € X.

Proof. Let us equip X with the norm

]l x = max {{a]

x )

If T is continuous then T is continuous at 0. If T' is continuous at 0, using
T (0) = 0, there exists a § > 0 such that ||T (z)||,, < 1 whenever |z| < 0.

Now if # € X is arbitrary, let 2’ := ¢ <Hm1H;(} 11,,||$n||;(i xn) Then

|z'|| ¢ < ¢ and hence

| <5"H IIIz'II}i) T (z1,...,2n)
i=1

from which Eq. (12.6) follows with C = §~".
Now suppose that Eq. (12.6) holds. For z,h € X and ¢ € {0,1}" let

el = £y & and

=T@) <1
Y
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166 12 Banach Space Calculus
i (h) = ((1 — 61) r1+erthy, ..., (1 - 5n) Ty + &‘nhn) e X.
By the multi-linearity of T,

T(x+h) =T (@ +hontha) = 3 T (b))
86{071}"

:T(I) +ZT(Ih...,IEi_l,hi,Ii_;'_l,...,SCn)
i=1

+ Y T (h). (12.8)

e€{0,1}™:|e|>2

From Eq. (12.6),

> T )| =o(InF).

e€{0,1}:|e|>2

and so it follows from Eq. (12.8]) that T’ (x) exists and is given by Eq. (12.7).
This completes the proof since it is trivial to check that T being differentiable
at z € X implies continuity of 7" at x € X. [

Exercise 12.2. Let det : L (R") — R be the determinant function on n x n
matrices and for A € L (R"™) we will let A; denote the i*® — column of A and

1. Show det’ (A) exists for all A € L(R") and
’ n
det (A) H = " det (Ay|...[A;i_1|H;|Aipa] ... |Ay) (12.9)
i=1

for all H € L(R™). Hint: recall that det (A) is a multilinear function of
its columns.

2. Use Eq. along with basic properties of the determinant to show
det’ (I) H = tr(H).

3. Suppose now that A € GL (R™), show

det (A) H = det (A) tr(A~'H).

Hint: Notice that det (A + H) = det (A)det (I + A7 H) .
4.1f A € L(R"), show det (e?) = (). Hint: use the previous item and
Corollary to show

% det (etA) = det (etA) tr(A).
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Definition 12.10. Let X and Y be Banach spaces and let LY(X,Y) =
L(X,Y) and for k > 2 let LF(X,Y) be defined inductively by LT (X,Y) =
L(X,LF(X,Y)). For evample L*(X,Y) = L(X,L(X,Y)) and L3(X,Y) =
L(X,L(X,L(X,Y))).

Suppose f: U C, X — Y is a function. If f is differentiable on U, then it
makes sense to ask if f'=Df:U — L(X,Y) = £L}(X,Y) is differentiable. If
Df is differentiable on U then f” = D?f := DDf : U — £?(X,Y). Similarly
we define f(" = D"f : U — £*(X,Y) inductively.

Definition 12.11. Given k € N, let C_k' (U,Y) denote those functions f :
U — Y such that f9) .= Dif : U — LI (X,Y) exists and is continuous for
i=1,2,... k.

Ezample 12.12. Let us continue on with Example [I2.6] but now let X =Y to
simplify the notation. So f : GL(X) — GL(X) is the map f(A) = A~! and

fl(A) = —LAflRA717 i.e. f/ = —LfRf.

where LyB = AB and RsB = AB for all A, B € L(X). As the reader may
easily check, the maps

A€ L(X)— La,Ra € L(L(X))

are linear and bounded. So by the chain and the product rule we find f”(A)
exists for all A € L(X) and

f,/(A)B = _Lf’(A)BRf — LfRf’(A)B
More explicitly
[f"(A)B]C = A'BAT'CA ' + A7'CA™'BA™L. (12.10)

Working inductively one shows f : GL(X) — GL(X) defined by f(A) := A~}
is C°°.

12.3 Partial Derivatives

Definition 12.13 (Partial or Directional Derivative). Let f : U C, X —
Y be a function, xog € U, and v € X. We say that f is differentiable at xy in
the direction v iff |o(f(zo + tv)) =: (9 f)(x0) exists. We call (0, f)(zo) the
directional or partial derivative of f at xg in the direction v.

Notice that if f is differentiable at xq, then 9, f(zo) exists and is equal to

I/ (xo)v, see Corollary
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Proposition 12.14. Let f : U C, X — Y be a continuous function and
D C X be a dense subspace of X. Assume 0, f(x) exists for all x € U and
v € D, and there exists a continuous function A : U — L(X,Y) such that
Oy f(x) = A(x)v for allv € D and x € UN D. Then f € CYU,Y) and
Df =A.

Proof. Let xg € U, € > 0 such that B(zp,2¢) C U and M := sup{||A(x)| :
x € B(zo,2¢)} < oolﬂ For x € B(zg,e) N D and v € D N B(0,¢), by the
fundamental theorem of calculus,

1 X v
flato) =)= [ LR g

= /1(3vf)(a:+tv)dt:/l Az + tv) v dt. (12.11)
0 0

For general x € B(xg,e) and v € B(0,¢), choose x, € B(xg,e) N D and
v, € DN B(0,¢) such that x,, — x and v,, — v. Then

flxn +v,) — flzg) = /0 A(zy, + tv,) v, dt (12.12)

holds for all n. The left side of this last equation tends to f(z + v) — f(z) by
the continuity of f. For the right side of Eq. (12.12) we have

1 1
H/ A(m—l—tv)vdt—/ Az + tuy) vy, dit||
0 0

1
S/ [A(z + tv) = A(zn + ton) [[[[0]| dE + Mljv = va].
0

It now follows by the continuity of A, the fact that [|A(z+tv)— A(x, +tv,) || <
M, and the dominated convergence theorem that right side of Eq. (12.12))

converges to f01 A(x + tv) vdt. Hence Eq. (12.11)) is valid for all x € B(zo,¢)
and v € B(0,¢). We also see that

flx+v) — f(z) — A(z)v = e(v)v, (12.13)
where (v fo (x +tv) — A(z)] dt. Now

! It should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not sufficient to choose e sufficiently small so that
B(zo,2¢) C U. Here is a counter example. Let X = H be a Hilbert space, {en }oz1
be an orthonormal set. Define f(z) =" | no(||z —en||), where ¢ is any contin-
uous function on R such that ¢(0) = 1 and ¢ is supported in (—1,1). Notice that
len —em||* = 2 for all m # n, so that ||e, —em|| = v/2. Using this fact it is rather
easy to check that for any zo € H, there is an € > 0 such that for all z € B(xo, €),
only one term in the sum defining f is non-zero. Hence, f is continuous. However,
flen) =n — 00 as n — oo.
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le(v)] < / |A( + to) — A(x)]| dt

< max ||A(zx +tv) — A(z)]] — 0asv — 0,
t€(0,1]

by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x) = A(x). ]

Corollary 12.15. Suppose now that X =R, f:U C, X — Y be a contin-
uous function such that 0; f(x) := 0., f (z) exists and is continuous on U for
1=1,2,...,d, where {ei}?zl is the standard basis for RY. Then f € C*(U,Y)
and Df (z) e; = 0 f (x) for all i.

Proof. For x € U, let A(x): R? — Y be the unique linear map such that
A(x)e; = 0;f (x) for i = 1,2,...,d. Then A: U — L(R%Y) is a continuous
map. Now let v € R? and v := (v1,va,...,9;,0,...,0) fori =1,2,...,d and
v(® := 0. Then for ¢t € R near 0, using the fundamental theorem of calculus
and the definition of 0; f (x),

f@+tv) = f(z) = zd: {f (a: —&—tv(i)) —f (x —&—tv(i_l))}

i=1

d 1
— i (i-1) e ) d
;/0 dsf (x + tv + stw@) s

d
= Zt%’/ oif (a: + o= 4 stviei) ds
i=1

1
0
d 1 .
= Z tvi/ A (J: + =D 4 stviei) e;ds.
i=1 0

Using the continuity of A, it now follows that

d 1
tv) — .
lim flzttv) - f(2) = E v; lim A (:E + 00— 4 stviei) e;ds
=1

t—0 t ‘ t—0 0

d 1
= Zvl/ A(z)eids=A(x)v
i=1 70
which shows 0, f (z) exists and 9, f (z) = A (x) v. The result now follows from

an application of Proposition [12.14 [

12.4 Higher Order Derivatives

It is somewhat inconvenient to work with the Banach spaces £F(X,Y) in Def-
inition [12.10] For this reason we will introduce an isomorphic Banach space,
M (X,Y).
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Definition 12.16. For k € {1,2,3,...}, let M(X,Y) denote the set of func-
tions f : X* —Y such that

1. Fori e {1,2,....k},v e X — f{v1,v2,...,0i—1,0,011,...,0) €Y is
linearﬂfar all {v;}_, C X.
2. The norm || f||n, (x,v) should be finite, where

Hf<’l)1,U2,...,U]€>||y k
11l (x vy = sup{ Hvitic) € X\ {0}}.
R [oa[[floz]] - - [low] !
Lemma 12.17. There are linear operators jip : LN(X)Y) — Mi(X,Y)
defined inductively as follows: j1 = Idpxy) (notice that My(X,Y) =
LYX,Y)=L(X,Y)) and

(Jr+14){(vo, v1, ..., vk) = (Je(Avo)){(v1,v2,...,v5) Vv, € X.

(Notice that Avy € LF(X,Y).) Moreover, the maps ji are isometric isomor-
phisms.

Proof. To get a feeling for what ji is let us write out jo and j3 explicitly.
If Ae L2(X,Y) = L(X,L(X,Y)), then (joA){v1,v2) = (Avy)vy and if A €
L3(X,Y) = L(X,L(X,L(X,Y))), (jsA)(v1,v2,v3) = ((Avy)ve)vs for all v; €
X. It is easily checked that jj is linear for all k. We will now show by induction
that j is an isometry and in particular that ji is injective. Clearly this is true
if k = 1 since j; is the identity map. For A € £F1(X)Y),

||jk+1A||Mk+1(X»Y)
(jk(AUO))<Ulvav"'7vk>||Y k
CWVigi= cX 0
ToolloalTeall - fow] - (ihi=0 © XA OH

: ||(jk(Av|oz))1HMk<X’Y> cvp € X\ {0}}

= supq I

= sup{ 2EEEY) e X\ {0))

= Al Lex,cex,vy) = Al k1 x, vy

wherein the second to last inequality we have used the induction hypothesis.
This shows that jii1 is an isometry provided ji is an isometry. To finish the
proof it suffices to show that ji is surjective for all k. Again this is true for
k = 1. Suppose that ji is invertible for some k > 1. Given f € M41(X,Y) we
must produce A € LEF1(X,Y) = L(X, £F(X,Y)) such that j.,1A = f. If such
an equation is to hold, then for vy € X, we would have ji(Avg) = f(vo,---).
That is Avg = j,, ' (f{vo,---)). It is easily checked that A so defined is linear,
bounded, and jp+14 = f. [
From now on we will identify £* with M, without further mention. In
particular, we will view DF f as function on U with values in M (X,Y).

2 T will routinely write f(v1, vz, ..., vx) rather than f(v1,v2,...,vs) when the func-
tion f depends on each of variables linearly, i.e. f is a multi-linear function.
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Theorem 12.18 (Differentiability). Suppose k € {1,2,...} and D is
a dense subspace of X, f : U Co, X — Y s a function such that
(Dvy Oy -+ + O, ) () eaists for allz € DNU, {v;}'_, € D, and 1 = 1,2,...k.
Further assume there exists continuous functions A; : U C, X — M(X,Y)
such that such that (Oy, Oy, -+ On, f)(x) = Ai(z){v1,ve,...,0;) for all x €
DNU {v}}_, € D, and 1 = 1,2,...k. Then D'f(z) ezists and is equal
to Ay(x) forallz €U and 1 =1,2,... k.

Proof. We will prove the theorem by induction on k. We have already
proved the theorem when k = 1, see Proposition Now suppose that
k > 1 and that the statement of the theorem holds when k is replaced by k—1.
Hence we know that D'f(z) = Aj(z) forallz € U and | = 1,2,...,k — 1. We
are also given that

(Oyy Oy + -+ Oy, [) () = Ap(){v1,v9,...,05) Yz e UND,{v;} CD. (12.14)

Now we may write (9, - - - Oy, f)(z) as (D*~1f)(x)(va, vs, . .., vx) so that Eq.

(12.14)) may be written as

Bu, (D" f) (@) (02,03, .., vk))
= Ap(z)(v1,v2,...,v5) YxeUND,{v} CD. (12.15)

So by the fundamental theorem of calculus, we have that
(DE ) (@ +01) = (DF ) (@) (w2, 03,y o)
1
:/ Ap(x 4+ tvr){vy,ve, ..., v5) dt (12.16)
0

for all z € UN D and {v;} C D with vy sufficiently small. By the same
argument given in the proof of Proposition [12.14] Eq. (12.16)) remains valid
for all z € U and {v;} C X with vy sufficiently small. We may write this last
equation alternatively as,

(D*=1f) (@ 4 v1) — (DFLf)(2) = /OlAk(x+tv1)<v1,~-~)dt. (12.17)
Hence
(DF1f) (@ +01) — (DF ) (@) — Ap() (o, ---)
_ /Ol[Ak(x 1) — Ap(@)](or, - ) dt
from which we get the estimate,
I(D*1f) (@ +v1) = (DM 1) () = Ag(@)(vr, )l S e(v) o]l (12.18)

where e(vy) = fol |Ak(z + tv1) — Ak ()] dt. Notice by the continuity of Ay
that e(vy) — 0 as v; — 0. Thus it follow from Eq. (12.18) that D*~1f is
differentiable and that (D* f)(z) = Ax(x). |
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Example 12.19. Let f : GL(X,Y) — GL(Y, X) be defined by f(A) := A~L.

We assume that GL(X,Y") is not empty. Then f is infinitely differentiable and
(Dkf)(A)<V17 ‘/27 ) Vk>

= ()" (B W,yB W,yB™" - B W,y BT}, (12.19)

where sum is over all permutations of o of {1,2,...,k}.

Let me check Eq. (12.19) in the case that & = 2. Notice that we have
already shown that (dv, f)(B) = Df(B)Vy, = —B~'V; B~!. Using the product
rule we find that

(Ov,0v, f)(B) = B"'VoB~'ViB™' + B'ViB 'V, B™! =: Ay(B)(V3, Va).

Notice that [[A2(B)(V1, V)| < 2/B7P[[Vi]| - [[Val, so that [|A2(B)| <
2||B7Y|? < 0o. Hence Ay : GL(X,Y) — My(L(X,Y), L(Y, X)). Also
1(A2(B) — A2(C)(Vi, Vo) | < 2B~V B~'ViB™! — O 107 iCTY|
<2|B~'VoB 'viB~' - B 'V,B'viCc Y|
+2|B~'VoB Vit — BTV, tvic Y|
+ 2B~ Va0 ViCT = CTTVRCTITVACTY|
<2|B7HPVellValll|B~! = O
+2|B7H[[lCH[IVellValll B~ = C Y
+2[CTHPVelVAllI BT = C 7.

This shows that
|42(B) — Ao (O)|| < 2[[B~" = C7H{IIBTHIP + IBTHIIICTH + [C 1}

Since B — B~! is differentiable and hence continuous, it follows that Ay (B)
is also continuous in B. Hence by Theorem [12.18) D? f(A) exists and is given

as in Eq. (12.19)

Ezample 12.20. Suppose that f : R — R is a C°°— function and F(z) :=
fol fz(t)dt for € X := C(|0,1],R) equipped with the norm |z| :=
maxyeo,1) |2(f)]. Then F': X — R is also infinitely differentiable and

(DFF)(x)(v1,vs, ..., v) = /0 FE ((t))vi (t) - - - v (t) dt, (12.20)

for all z € X and {v;} C X.

To verify this example, notice that
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(0, F)(z) := —|0F(x+sv —\0/ f(z(t) + sv(t)) dt

*/*Iof(()Jrsv )) dt = /f

Similar computations show that

(Op, Oy =+ Oy, f) (0 /f(k) 1) - vp(t) dt =: Ag(z)(vy,va, ..., Vk).
Now for z,y € X,
|Ak(x){v1,v2, ..., 05) — Ar(y){v1,va,...,v8)]

1
< / P @) = FE )] - lor(t) - or(t) |at

< H o H/ FB (a(t)) — £O () dt,

which shows that

[Ak(2) = Ar(y)| S/O |F® @ (t) = f® (y(0)lat.

This last expression is easily seen to go to zero as y — z in X. Hence Ay is
continuous. Thus we may apply Theorem |12.18| to conclude that Eq. (12.20))
is valid.

12.5 Inverse and Implicit Function Theorems

In this section, let X be a Banach space, R > 0, U = B = B(0,R) C X
and € : U — X be a continuous function such that € (0) = 0. Our immedi-
ate goal is to give a sufficient condition on € so that F(x) := x + ¢(z) is a
homeomorphism from U to F(U) with F (U) being an open subset of X. Let’s
start by looking at the one dimensional case first. So for the moment assume
that X = R, U = (—=1,1), and ¢ : U — R is C'. Then F will be injective
iff F' is either strictly increasing or decreasing. Since we are thinking that F
is a “small” perturbation of the identity function we will assume that F' is
strictly increasing, i.e. F/ = 1+¢’ > 0. This positivity condition is not so eas-
ily interpreted for operators on a Banach space. However the condition that
'] < a < 1 is easily interpreted in the Banach space setting and it implies
1+¢ >0.

Lemma 12.21. Suppose that U = B = B(0,R) (R > 0) is a ball in X and
e:B — X is a C! function such that | De|| < a < oo on U. Then

le(@) - e(y)]| < alle — yl| for all z,y € U. (12.21)
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Proof. By the fundamental theorem of calculus and the chain rule:
b d
ey) —e(z) = / 2 e+ t(y - o))t
o dt

= /0 [De(x + t(y — z))](y — x)dt.

Therefore, by the triangle inequality and the assumption that || De(z)|| < «
on B,

le(y) —e(@)]| < /0 [1De(x + t(y —@))l|dt - [[(y — )| < all(y —z)].
]

Remark 12.22. Tt is easily checked that if ¢ : U = B(0,R) — X is C' and
satisfies (12.21) then ||De|| < o on U.

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 12.23. Suppose o € (0,1), R > 0, U = B(0,R) C, X and
e:U — X is a continuous function such that € (0) =0 and

le(x) —e@ll < allz =yl Va,yel. (12.22)
Then F : U — X defined by F(z) := x + e(x) for x € U satisfies:

1. F is an injective map and G = F~1:V := F (U) — U is continuous.
2. If xg € U, z9 = F (x0) and r > 0 such the B(xo,r) C U, then

B(zo, (1 —a)r) C F(B(xo,7)) C B(z0, (1 + a)r). (12.23)
In particular, for allr < R,
B(0,(1—a)r) C F(B(0,r)) C B(0,(1+ «a)r), (12.24)

see Figure below.
3.V :=F(U) is open subset of X and F : U — V is a homeomorphism.

Proof.
1. Using the definition of F' and the estimate in Eq. (12.22)),
[z =yl = [I(F(z) = F(y)) — (e(z) — )]l

< 1F(2) = F)ll + lle(z) — ()
<IF(2) = F)ll + ol (z = y)ll

~— —

for all z,y € U. This implies
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N | Blzy(1-0)n)

B(zy(1+00)7)

Fig. 12.1. Nesting of F' (B(xo,7)) between B(zo, (1 — a)r) and B(zo, (1 + a)r).

lz =yl < (1= a)THIF () - F(y)l| (12.25)

which shows F' is injective on U and hence shows the inverse function
G=F1:V:=F(U) — U is well defined. Moreover, replacing z,y in
Eq. (12.25) by G (x) and G (y) respectively with x,y € V shows

IG@) -G | <Q-a)  ao—ylforalleye V. (12.26)

Hence G is Lipschitz on V and hence continuous.
2. Let zg € U, r > 0 and zg = F(xg) = zo + £(xo) be as in item 2. The
second inclusion in Eq. (|12.23]) follows from the simple computation:
I1F (zo + h) = z0ll = [|h + & (w0 + ) — & (o)l

< Al + lle (@0 + ) — & (2o
<(A+a)|h|<@+a)r

for all h € B(0,r). To prove the first inclusion in Eq. (12.23) we must

find, for every z € B(zp, (1—a)r), an h € B (0,r) such that z = F (zg + h)

or equivalently an h € B (0,r) solving

zZ— 20 = F({Eo + h) - F(LC()) =h + E(LCO + h) - 6(%(]).

Let k:=z — zp and for h € B(0,r), let 6 (h) := e(xg + h) — e(xg). With
this notation it suffices to show for each k € B(zp, (1 — a)r) there exists
h € B(0,r) such that k = h+ ¢ (h). Notice that 6 (0) = 0 and

16 (h1) = 6 (ha)|l = lle(wo + h1) — e(zo + h2)|| < a|lhy — ha||  (12.27)

for all hy,hy € B(0,r). We are now going to solve the equation k =
h+ 4 (h) for h by the method of successive approximations starting with
ho = 0 and then defining h,, inductively by

ot =k — 8 (hn). (12.28)

A simple induction argument using Eq. (12.27)) shows that
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hns1 — hnll < ™ |lk| for all n € Ny

and in particular that

N-1 N-1
lhnl = Z (hny1 = hn) || < Z [Ans1 — hall
n=0 n=0
N-1
n 1—a¥
< Do am [kl = Ikl (12.29)
n=0

Since ||k|| < (1 — «)r, this implies that ||hyx]| < r for all N showing the
approximation procedure is well defined. Let

oo

hi= lim by = (ha —ha) € X

n=0

which exists since the sum in the previous equation is absolutely con-
vergent. Passing to the limit in Egs. and shows that
IRl < @ =)tk < rand h = k —6(h), i.e. h € B(0,7) solves
k=h+4§(h) as desired.

3. Given xq € U, the first inclusion in Eq. shows that zg = F (xg) is
in the interior of F'(U). Since zy € F (U) was arbitrary, it follows that
V = F(U) is open. The continuity of the inverse function has already
been proved in item 1.

]
For the remainder of this section let X and Y be two Banach spaces,
UCoX,k>1,and f € C*(U,Y).

Lemma 12.24. Suppose o € U, R > 0 is such that BX(x¢,R) C U and
T : BX(z9,R) — Y is a C' — function such that T'(xq) is invertible. Let

a(R):= sup ||T'(z0) 'T"(z) - I||L(X) (12.30)
z€BX (z0,R)
and £ € C* (BX(0, R), X) be defined by
e(h) =T (zo) * [T(zo + h) — T(x0)] — h (12.31)
so that
T(zo +h) =T(z0) + T'(z0) (h+e(h)). (12.32)
Then e(h) = o(h) as h — 0 and
le(h') —e(h)|| < a(R)||W — h| for all h,h' € BX(0,R). (12.33)

If a (R) < 1 (which may be achieved by shrinking R if necessary), then T'(x)
is invertible for all x € BX (x¢, R) and

1

)_1HL(Y7X) = 1-a(R) HT/(xO)_lHL(y,X) : (12.34)

sup  ||T"(x
z€BX(zo,R)
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12.5 Inverse and Implicit Function Theorems 177
Proof. By definition of T” (zo) and using T” (z¢) " exists,
T(zo+h) — T(z0) = T'(x0)h + o(h)

from which it follows that e(h) = o(h). In fact by the fundamental theorem
of calculus,

a(h):/o (T (o) VT (o + th) — I) hdt

but we will not use this here. Let h, b’ € BX(0, R) and apply the fundamental
theorem of calculus to ¢t — T'(xo + t(h' — h)) to conclude

e(h') —e(h) = T’(xo)_l [T(zo+h')—T(xo+h)]— (K —h)
= [/0 (T (o)~ 'T" (x0 + t(h' — h)) — I) dt] (h' = h).

Taking norms of this equation gives

1
le(h') — (W)l < [ I G o o0 = )~ 1] dt} I —h
0
<a(R) [N = hl
It only remains to prove Eq. (12.34)), so suppose now that « (R) < 1. Then by
Proposition T'(20) T () = I — (I — T'(zo) ~*T"(x)) is invertible and
H [T’(xo)*lT’(x)]_lH < ﬁ(m for all z € BX (x0, R).

Since T"(z) = T"(z¢) [T"(z0) ~*T"(x)] this implies T"(z) is invertible and

7)) = [0 @) e | £ i |

for all z € BX (20, R). |

Theorem 12.25 (Inverse Function Theorem). Suppose U C, X, k > 1
and T € C*(U,Y) such that T'(x) is invertible for all x € U. Further assume
xo € U and R > 0 such that BX(xo, R) C U.

1. For all™ < R,

| 7" (o) "]

T(BX(z0,7)) C T (x0) +T' (x0) BX (0, (1 + a (r))r). (12.35)
2. If we further assume that
a(R):= sup ||T'(wo) 'T'(z) —1I|| <1,
xEBX(mo,R)

which may always be achieved by taking R sufficiently small, then
T (wo) + T’ (z0) BX (0, (1 — a(r))r) € T(B*(w0,7)) (12.36)
for all v < R, see Figure[12.3
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3.T:U —Y is an open mapping, in particular V :=T(U) C, Y.

4. Again if R is sufficiently small so that o (R) < 1, then T|gx (4, Ry :
BX(x9, R) — T(BX (20, R)) is invertible and T|;((m T (BX(zo, R)) —
BX(xg, R) is a C* — map.

5. If T is injective, then T~ :V — U is also a C* — map and

0,R) °

(T (y) = [T'(T ()] " forally V.

Pi+ $1] B¥royli-aryr)]

B rsere)

¥
§ (8ery) £lx1 + 27 (03[ %0 Grtirie)}

Bl -dirt) r)

Fig. 12.2. The nesting of T(B* (0, 7)) between T (x0)+T" (x0) BX (0, (1 — a (r))r)
andT (zo) + T’ (zo) B* (0, (1 + a(r))r).

Proof. Let ¢ € C! (BX(O7 R), X) be as defined in Eq. (12.31)).
1. Using Egs. (12.32) and (12.24)),

T (B*(z0,7)) = T (z0) + T (z0) (I + ) (B* (0,7)) (12.37)
C T (x0) + T (20) BX (0,(1 4+ a(r))7)

which proves Eq. (12.35]).
2. Now assume « (R) < 1, then by Egs. (12.37) and (12.24)),

T (z0) + T' (w0) BX (0,(1 — a(r)) )
C T (o) + T’ (x0) (I +¢) (B*(0,7)) =T (B (0,7))

which proves Eq. (12.36]).
3. Notice that h € X — T (x0) + 1" (zg) h € Y is a homeomorphism. The

fact that T is an open map follows easily from Eq. which shows
that T (z) is interior of T (W) for any W C, X with zy € W.

4. The fact that T|px (4, r) : B* (v0, R) — T(B~ (w0, R)) is invertible with
a continuous inverse follows from Eq. and Proposition It
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now follows from the converse to the chain rule, Theorem that g :=
T5% ao.i) * T (B (20, R)) — B¥ (20, R) is differentiable and

g (y)=[T"(g(y)] " forall y € T (BX (20, R)).

This equation shows g is C'. Now suppose that k > 2. Since T’ €
C*Y(B,L(X)) and i(A) := A~! is a smooth map by Example
g =ioT ogis Cl, ie. gis C? If k > 2, we may use the same argument
to now show ¢ is C®. Continuing this way inductively, we learn g is C*.

5. Since differentiability and smoothness is local, the assertion in item 5.
follows directly from what has already been proved.

Theorem 12.26 (Implicit Function Theorem). Suppose that X, Y, and
W are three Banach spaces, k > 1, A C X x Y is an open set, (xo,yo) is
a point in A, and f : A — W is a C* — map such f(xg,y0) = 0. Assume
that Dsf(xo,y0) := D(f(x0,-))(y0) : Y — W is a bounded invertible linear
transformation. Then there is an open neighborhood Uy of xy in X such that
for all connected open neighborhoods U of xg contained in Uy, there is a unique
continuous function u : U — Y such that uw(zo) = Yo, (z,u(z)) € A and
f(z,u(x)) =0 for all x € U. Moreover u is necessarily C* and

Du(x) = —Dof(z,u(z)) ' Dy f(x,u(z)) for all x € U. (12.38)

Proof. By replacing f by (z,y) — Daf(x0,v0) L f(z,y) if necessary, we
may assume with out loss of generality that W =Y and Dy f(xo,y0) = Iy.
Define F: A — X XY by F(z,y) := (z, f(z,y)) for all (z,y) € A. Notice that

_[I Dif(z,y)
DF(%y)—[o D;f(myz)}

which is invertible iff Dy f(z,y) is invertible and if Dy f(z,y) is invertible then

e P

Since Do f(xo,y0) = I is invertible, the inverse function theorem guarantees
that there exists a neighborhood Uy of 2y and Vj of yg such that Uy x Vy C A,
F(Uy x V) is open in X x Y, F|,xv,) has a C*—inverse which we call F~1.
Let mo(x,y) := y for all (x,5) € X x Y and define C* — function ug on Uy by
ug(w) := 12 0 F~1(z,0). Since F~1(z,0) = (&, up(x)) iff

(,0) = F(Z,uo(x)) = (T, f(Z,u0(x))),
it follows that « = Z and f(z,uo(z)) = 0. Thus

(z,up(z)) = FH(2,0) €Uy x Vp C A
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and f(z,up(x)) = 0 for all z € Uy. Moreover, ug is C* being the composition
of the C*~ functions,  — (z,0), F~1, and my. So if U C Uy is a connected set
containing xg, we may define u := wug|y to show the existence of the functions
u as described in the statement of the theorem. The only statement left to
prove is the uniqueness of such a function u. Suppose that uqy : U — Y is
another continuous function such that ui(zg) = yo, and (z,uy(z)) € A and
f(z,ui(z)) =0 for all x € U. Let

O :={z e Ulu(z) =wi(z)} = {z € Ulup(z) = u1(x)}.

Clearly O is a (relatively) closed subset of U which is not empty since z¢ € O.
Because U is connected, if we show that O is also an open set we will have
shown that O = U or equivalently that u; = ug on U. So suppose that x € O,
i.e. up(x) = uy(z). For & near x € U,

0=0-0=f(Z,uo(2)) — f(Z,ua(Z)) = R(Z)(u1(F) — uo(Z))  (12.39)
where )
R(z) := /0 Do f((Z,up(Z) + t(u1(Z) — uo(Z)))dt. (12.40)

From Eq. and the continuity of wy and wuq, limz_, R(Z) =
Dy f(x,up(x)) which is invertibleﬂ Thus R(Z) is invertible for all Z sufficiently
close to x which combined with Eq. implies that u; (%) = ug(Z) for all
Z sufficiently close to x. Since x € O was arbitrary, we have shown that O is
open. |

12.6 Smooth Dependence of ODE’s on Initial
Conditions*

In this subsection, let X be a Banach space, U C, X and .J be an open interval
with 0 € J.

Lemma 12.27. If Z € C(J x U, X) such that D, Z(t,x) exists for all (t,x) €
Jx U and D, Z(t,x) € C(J x U, X) then Z is locally Lipschitz in x, see

Definition [11.6

Proof. Suppose I CC J and =z € U. By the continuity of DZ, for every
t € I there an open neighborhood N; of ¢ € I and &; > 0 such that B(z,&;) C
U and
sup {||DZ(t',2")|| : (t',2") € Ny x B(x, &)} < 00.

By the compactness of I, there exists a finite subset A C I such that I C
UterNe. Let e(x, I) := min{e; : t € A} and

3 Notice that DF(x,uo(x)) is invertible for all 2 € Up since F|yyxv, has a C*
inverse. Therefore D f(z,uo(x)) is also invertible for all z € U.
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K(z,I):=sup{||DZ(t,2")||(t,2") € I x B(z,e(z,I))} < oc.

Then by the fundamental theorem of calculus and the triangle inequality,

1
12(t, 1) = Z(t, z0)|| < (/ D2 Z(t, mo + s(x1 — o) | dS) 1 = @ol|
0
< K(z, Djxy — ol
for all xg,z1 € B(z,e(x,I)) and t € I. |

Theorem 12.28 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let X be a Banach space, U C, X, Z € C(R x U, X) such that
D, Z e CRxU,X) and ¢ : D(Z) C Rx X — X denote the mazximal solution
operator to the ordinary differential equation

y(t) = Z(t,y(t)) with y(0) =z € U, (12.41)

see Notation and Theorem |11.15, Then ¢ € CY(D(Z),U), 8;D.é(t, x)
exists and is continuous for (t,x) € D(Z) and Dy¢(t, ) satisfies the linear
differential equation,

%Dm(t,x) = (Do 2) (t, $(t, 2))| Dad(t, x) with Dyd(0,2) = Iy (12.42)

forte J,.

Proof. Let 79 € U and J be an open interval such that 0 € J C J CC Jy,,
Yo :=y(-,z0)|s and

O :=={y € BC(J,U) : |y — yollc <e} Co BC(J, X).

By Lemma Z is locally Lipschitz and therefore Theorem [11.15is ap-

plicable. By Eq. of Theorem there exists € > 0 and § > 0 such
that G : B(xg,0) — O. defined by G(z) := ¢(-, x)|; is continuous. By Lemma
below, for ¢ > 0 sufficiently small the function F' : O. — BC(J, X)
defined by

F(y):=vy —/ Z(t,y(t))dt. (12.43)
0

is C* and )
DF(y)v=v— / Dy Z(t,y(t))v(t)dt. (12.44)

0
By the existence and uniqueness Theorem [I0.2]] for linear ordinary differen-
tial equations, DF'(y) is invertible for any y € BC(J,U). By the definition
of ¢, F(G(x)) = h(x) for all x € B(zo,0) where h : X — BC(J, X) is de-

fined by h(z)(t) = z for all t € J, i.e. h(x) is the constant path at z. Since
h is a bounded linear map, h is smooth and Dh(z) = h for all z € X.
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We may now apply the converse to the chain rule in Theorem to con-
clude G € C*! (B(z0,0),0) and DG(z) = [DF(G(z))]"*Dh(x) or equivalently,
DF(G(x))DG(z) = h which in turn is equivalent to

Dad(t,x) — /0 (DZ(6(r,2)| Dad(r, ) dr — L.

As usual this equation implies D,¢(t,x) is differentiable in ¢, D,¢(t, ) is
continuous in (¢, x) and D, ¢(t, z) satisfies Eq. (12.42). ]

Lemma 12.29. Continuing the notation used in the proof of Theorem [12.25
and further let

f(y) = / Z(r.y(r)) dr fory € O..

0
Then f € CY(O.,Y) and for all y € O,

Fy)h = /0 DL Z(r,y(7)h(r) dr = A,h.

Proof. Let h € Y be sufficiently small and 7 € J, then by fundamental
theorem of calculus,

Z(ry(r) + h(r)) = Z(r,y(r))
-/ DuZ(r,y(r) 4 rh(r) — D Z(r,y(r))dr
and therefore,
fly+h) = fy) — Ayh(t)

= /O [Z(7,y(7) + h(7)) = Z(7,y(7)) = Do Z(7,y(7))h(7) | dT

:/ dT/ dr(D.Z(1,y(1) + rh(1)) — D Z(1,y(7))]h(T).
0 0

Therefore,
1(f(y+h) = fy) = Ayh)|l o < lIhllecd(R) (12.45)

where

1
5(h) ::/sz ; dr || Do Z(7,y(7) + (7)) = Do Z(7,y(7))|| -

With the aide of Lemmas [12.27| and Lemma |11.
(r,7h) €10,1] X J XY — [[Dy Z(7,y(7) + rh(7))||

is bounded for small h provided € > 0 is sufficiently small. Thus it follows
from the dominated convergence theorem that 6(h) — 0 as h — 0 and hence

Eq. (12.45) implies f'(y) exists and is given by A,. Similarly,
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1 (+h) = F@W)llop
< /] D Z(r,y(T) + (7)) — Dy Z(7,y(7))||dT — 0 as h — 0

showing f’ is continuous. [ |

Remark 12.30.1f Z € C*(U,X), then an inductive argument shows that
¢ € CH(D(Z),X). For example if Z € C?(U,X) then (y(t),u(t)) :=
(p(t, z), Dyp(t, z)) solves the ODE,

%(y(t)W(t)) = Z ((y(t),u(t))) with (y(0),u(0)) = (z, Idx)

where Z is the C* — vector field defined by

Z (x,u) = (Z(x), Dy Z(x)u) .

Therefore Theorem [12.28 may be applied to this equation to deduce: D2g(t,x
and D2¢(t,x) exist and are continuous. We may now differentiate Eq. (12.42)

to find D2¢(t, z) satisfies the ODE,

D2 6(t,2) = [(Op,00.0) Da Z) (£, 8(t,2))|Du b (8, 2)

dt
+ (D Z) (t, 6(t, x))|D2¢(t, )

with D2¢(0,z) = 0.

12.7 Existence of Periodic Solutions

A detailed discussion of the inverse function theorem on Banach and Frechét
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper. In what follows we say f € C% (R, (c,d)) if f € C5 (R, (¢,d)) and f is
27 — periodic, i.e. f(x +2m) = f (z) for all z € R.

Theorem 12.31 (Taken from Hamilton, p. 110.). Let p : U := (a,b) —
V = (¢,d) be a smooth function with p" > 0 on (a,b). For every g €
C2 (R, (c,d)) there exists a unique function y € CS2(R, (a,b)) such that

y(t) +p(y(t)) = g(t)-

Proof. Let V := C9 (R, (¢,d)) C, C9 (R,R) and U C, C3_(R, (a,b)) be
given by

U={yeCy,(RR):a<y(t)<b&c<yt)+plyt) <dVt}.

The proof will be completed by showing P : U — V defined by
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P(y)(t) = 4(t) + p(y(t)) for y € U and t € R

is bijective. Note that if P (y) is smooth then so is y.

Step 1. The differential of P is given by P’(y)h = h+p'(y)h, see Exercise
We will now show that the linear mapping P’(y) is invertible. Indeed let
f=17p(y) > 0, then the general solution to the Eq. h+ fh =k is given by

"t t "t
h(t) =e~ o fmdrp, +/ e Ir f(s)dsk(T)dT
0

where hy is a constant. We wish to choose hg so that h(27) = hg, i.e. so that

27
ho (1— (1) :/ o= I IO () g
0

where
27

()= [ flryir = / " () > 0,

0
The unique solution h € C3_(R,R) to P'(y)h = k is given by

-1 . 2 . t .
h(t) = (1 - efc(f)) e Io f(T)dT/O e - f(s)dsk(T)dTJr/o e~ I IO k() dr

-1 . 2m " t "
= (1 - e_c(f)> e Io f(s)ds/ e Jr IOk (r)dr + / e~ S 15 () dr.
0 0

Therefore P’(y) is invertible for all y. Hence by the inverse function Theorem
P:U—Visan open mapping which is locally invertible.

Step 2. Let us now prove P : U — Vis injective. For this suppose
y1,y2 € U such that P(y1) =g = P(y2) and let z = yo — y;1. Since

2(t) + p(ya(t)) — p(yr(t)) = g(t) — g(t) =0,

if ¢,,, € R is point where z(t,,) takes on its maximum, then 2(¢,,) = 0 and
hence

P(y2(tm)) = p(yr(tm)) = 0.

Since p is increasing this implies y2(¢,,) = y1(ts,) and hence z(t,,) = 0. This
shows z(t) < 0 for all ¢ and a similar argument using a minimizer of z shows
z(t) > 0 for all t. So we conclude y; = ys.

Step 3. Let W := P(ﬁ), we wish to show W = V. By step 1., we know
W is an open subset of V and since V is connected, to finish the proof it
suffices to show W is relatively closed in V. So suppose Y; € U such that
g;j =Py;) = g€ V. We must now show g € W, i.e. g = P(y) for somey € W.
If t,, is a maximizer of y;, then ¢;(t,,) = 0 and hence g;(tn) = p(y;(tm)) < d
and therefore y,;(¢,,) < b because p is increasing. A similar argument works for
the minimizers then allows us to conclude Ran (poy;) C Ran(g;) CC (c,d)
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12.8 Contraction Mapping Principle 185

for all j. Since g; is converging uniformly to g, there exists ¢ < v < § < d
such that Ran(p o y;) C Ran(g;) C [, 9] for all j. Again since p’ > 0,

Ran(y;) C p~ ' ([7,9]) = [o, 8] CC (a,b) for all j.
In particular sup {|g;(¢)| : t € R and j} < oo since

y;(t) = g;(t) — p(y;(t)) C [v,0] = [, ] (12.46)

which is a compact subset of R. The Ascoli-Arzela Theorem (see Theoerem
14.29|below) now allows us to assume, by passing to a subsequence if necessary,
that y; is converging uniformly to y € C9, (R, [a, B]). It now follows that

95 (t) = g;(t) — p(y;(t)) — 9 —p(y)

uniformly in ¢. Hence we concluded that y € C3.(R,R)NCY (R, [, B]), 4, — vy
and P(y) = g. This has proved that g € W and hence that W is relatively
closed in V. ]

12.8 Contraction Mapping Principle

Some of the arguments uses in this chapter and in Chapter may be ab-
stracted to a general principle of finding fixed points on a complete metric
space. This is the content of this section.

Theorem 12.32 (Contraction Mapping Principle). Suppose that (X, p)
is a complete metric space and S : X — X is a contraction, i.e. there exists
a € (0,1) such that p(S(x),S(y)) < ap(x,y) for all z,y € X. Then S has
a unique fized point in X, i.e. there exists a unique point x € X such that
S(x) = x.

Proof. For uniqueness suppose that z and 2’ are two fixed points of S,
then

pla,a) = p(S(x), S(2')) < ap(z, ).
Therefore (1 — a)p(x, 2') < 0 which implies that p(x,2’) = 0 since 1 — a > 0.
Thus z = z’. For existence, let zp € X be any point in X and define z,, € X
inductively by z,+1 = S(x,) for n > 0. We will show that x := lim,, .
exists in X and because S is continuous this will imply,
z= lim 2,41 = lim S(z,)=95(lim z,) = S(x),
n—oo n—od n—oo
showing zx is a fixed point of S. So to finish the proof, because X is complete,

it suffices to show {x,}22, is a Cauchy sequence in X. An easy inductive
computation shows, for n > 0, that

P(Tny1,Tn) = p(S(70), S(Tn-1)) < ap(zn, Tp1) < -+ < a”p(x1,20).
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Another inductive argument using the triangle inequality shows, for m > n,

that,

m—
P, Tn) < p(Tm,; Tm—1) + p(Tm—1,Tn) < Z P(Tht1, Tk).

Combining the last two inequalities gives (using again that a € (0, 1)),

an

11—«

m—1 e}
n
(T, Tpn) < 5 ¥ p(x1,30) < p(1, 200 E ol = p(x1,20)
k=n 1=0

This last equation shows that p(z.;,,x,) — 0 as m,n — oo, i.e. {z,}52, is a
Cauchy sequence. [

Corollary 12.33 (Contraction Mapping Principle II). Suppose that
(X, p) is a complete metric space and S : X — X is a continuous map such
that S is a contraction for some n € N. Here

n times

——N—
S .—66S0...08

and we are assuming there exists a € (0,1) such that p(S™(z), 5™ (y)) <
ap(x,y) for all x,y € X. Then S has a unique fized point in X.

Proof. Let T := S then T : X — X is a contraction and hence T has
a unique fixed point z € X. Since any fixed point of S is also a fixed point of
T, we see if S has a fixed point then it must be z. Now

T(S(x)) = 8™(S(2)) = S(5™(2)) = S(T(2)) = S(x),

which shows that S(z) is also a fixed point of T. Since T has only one fixed
point, we must have that S(x) = z. So we have shown that z is a fixed point
of S and this fixed point is unique. ]

Lemma 12.34. Suppose that (X, p) is a complete metric space, n € N, Z is
a topological space, and « € (0,1). Suppose for each z € Z there is a map
S, : X — X with the following properties:

Contraction property p(5§”) (x),S,gn)(y)) < ap(z,y) for al xz,y € X and z €
Z.
Continuity in z For each x € X the map z € Z — S,(z) € X is continuous.

By Corollary above, for each z € Z there is a unique fized point
G(z) € X of S..
Conclusion: The map G : Z — X is continuous.
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Proof. Let T, := Sé"). If z,w € Z, then

p
P(T=(G(2)), Tw(G(2))) + p(Tw(G(2)), T (G (w)))
P(T=(G(2)), Tw(G(2))) + ap(G(z), G(w)).

Solving this inequality for p(G(z), G(w)) gives

p(G(2), G(w) <

p(T=(G(2)), Tw(G(2)))-

Since w — T,,(G(z)) is continuous it follows from the above equation that
G(w) — G(z) as w — z, i.e. G is continuous. ]

12.9 Exercises

Exercise 12.3. Suppose that A : R — L(X) is a continuous function and
V :R — L(X) is the unique solution to the linear differential equation

V(t) = A(t)V(t) with V(0) = 1. (12.47)

Assuming that V(¢) is invertible for all ¢+ € R, show that V=1(t) := [V (¢)] !
must solve the differential equation

%V*(t) = -V () A(t) with V=1(0) = 1. (12.48)

See Exercise [[0.12] as well.

Exercise 12.4 (Differential Equations with Parameters). Let W be
another Banach space, U x V C, X x W and Z € CY(U x V, X). For each
(x,w) e UxV, let t € Jy — &(t, x,w) denote the maximal solution to the
ODE

y(t) = Z(y(t), w) with y(0) = (12.49)

and
D:={(t,z,w) ERXU XV :t€ Jyyu}

as in Exercise [T.8

1. Prove that ¢ is C* and that D, ¢(t,z,w) solves the differential equation:

& Dt 2,w) = (Da2)(0(t,,w), w)Dud(t, 2, w)+ (D Z) ({1, 7, w), )

with Dy,¢(0,z,w) = 0 € L(W, X). Hint: See the hint for Exercise [11.§]
with the reference to Theorem [11.15| being replace by Theorem [12.28
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2. Also show with the aid of Duhamel’s principle (Exercise [10.22)) and The-
orem [12.28 that

Dyo(t,z,w) = Dag(t, 2, w) /t Dyg(r,2,w) " (D Z)(b(7, 2, w), w)dr
0

Exercise 12.5. (Differential of e4) Let f : L(X) — GL(X) be the expo-
nential function f(A) = e?. Prove that f is differentiable and that

1
Df(A)B:/ eU=DABe!A 1. (12.50)
0

Hint: Let B € L(X) and define w(t, s) = e!(4+5B) for all t, s € R. Notice that
dw(t,s)/dt = (A+ sB)w(t,s) with w(0,s) = I € L(X). (12.51)

Use Exercise to conclude that w is C* and that w’(¢,0) := dw(t, s)/ds|s=o
satisfies the differential equation,

%w’(t, 0) = Aw'(t,0) + Be' with w(0,0) = 0 € L(X). (12.52)

Solve this equation by Duhamel’s principle (Exercise [10.22)) and then apply
Proposition [12.14] to conclude that f is differentiable with differential given

by Eq. (12.50).

Exercise 12.6 (Local ODE Existence). Let S, be defined as in Eq.
from the proof of Theorem Verify that S, satisfies the hypothesis of
Corollary [12:33] In particular we could have used Corollary [I2.33] to prove
Theorem [I1.4

Exercise 12.7 (Local ODE Existence Again). Let J = (-1,1), Z €
CYX,X),Y :=BC(J,X) and for y € Y and s € J let y; € Y be defined by
ys(t) := y(st). Use the following outline to prove the ODE

y(t) = Z(y(t)) with y(0) =z (12.53)
has a unique solution for small ¢ and this solution is C* in x.
1. If y solves Eq. then y, solves
Us(t) = sZ(ys(t)) with ys(0) =«
or equivalently

ys(t) =z + S/o Z(ys(7))dr. (12.54)

Notice that when s = 0, the unique solution to this equation is yo(t) = z.
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2.Let F': J XY — J xY be defined by

F(s,y) == (s, u(t) - s / Z(y(r))dr).

Show the differential of F' is given by

F'(s,y)(a,v) = (a,t () — s/ot Z/(y(r))v(r)dr — a/o' Z(y(T))dT) .

3. Verify F'(0,y) : RxY — R x Y is invertible for all y € Y and notice that
F(0,y) = (0,y).

4. For x € X, let C,, € Y be the constant path at z, i.e. C,(t) = x for all
t € J. Use the inverse function Theorem to conclude there exists
e>0and a C! map ¢ : (—¢,¢) x B(zg,€) — Y such that

F(s,¢(s,x)) = (s,Cy) for all (s,z) € (—¢,¢) x B(zg,¢).

5. Show, for s < e that y,(t) := ¢(s, z)(t) satisfies Eq. (12.54). Now define
y(t,x) = ¢(e/2,x)(2t/e) and show y(t,x) solve Eq. (12.53) for [¢t| < €/2
and x € B(xg,&).

Exercise 12.8. Show P defined in Theorem [12.31] is continuously differen-
tiable and P’'(y)h = h + p'(y)h.

Exercise 12.9. Embedded sub-manifold problems.
Exercise 12.10. Lagrange Multiplier problems.

12.9.1 Alternate construction of g. To be made into an exercise.

Suppose U C, X and f: U — Y is a C? — function. Then we are looking for
a function g(y) such that f(g(y)) = y. Fix an 2o € U and yo = f(zg) € Y.
Suppose such a g exists and let z(t) = g(yo + th) for some h € Y. Then
differentiating f(z(t)) = yo + th implies

d , o
/@) = fx(®)2(t) = h
or equivalently that
z(t) = [f'(:c(t))T1 h = Z(h,z(t)) with 2(0) = zg (12.55)

where Z(h,z) = [f'(z(t))]"" h. Conversely if z solves Eq. (12.55) we have
4 f(x(t)) = h and hence that

f(z(1)) =yo + h.
Thus if we define
9yo + h) = 7" (o),
then f(g(yo+h)) = yo + h for all h sufficiently small. This shows f is an open
mapping.
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13

Topological Space Basics

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 13.1. A collection of subsets T of X is a topology if

1.0, X er
2. 7 is closed under arbitrary unions, i.e. if Vo € 7, fora € I then |J V, € 7.
acl
3. T is closed under finite intersections, i.e. if Vi,...,V, € 7 then V1N ---N
V, €.
A pair (X,7) where T is a topology on X will be called a topological
space.

Notation 13.2 Let (X, 7) be a topological space.

1. The elements, V € 7, are called open sets. We will often write V C, X
to indicate V s an open subset of X.

2. A subset F C X is closed if F° is open and we will write ' X if F' is
a closed subset of X.

3. An open meighborhood of a point x € X is an open set V. .C X such
that x € V. Let 7, = {V € 7 : & € V} denote the collection of open
neighborhoods of x.

4. A subset W C X is a neighborhood of x if there exists V € 1, such that
Vcw.

5. A collection n C 7, is called a neighborhood base at x € X if for all
V € 1, there exists W € n such that W C V.

The notation 7, should not be confused with
Ty =i () = (=} NV V e r) = {0, {a}).

Ezample 13.3. 1. Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 7; is a topology, see
Exercise The collection of sets n = {By(¢) : € € D} where D is any
dense subset of (0, 1] is a neighborhood base at x.
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2. Let X be any set, then 7 = 2% is the discrete topology on X. In this
topology all subsets of X are both open and closed. At the opposite ex-
treme we have the trivial topology, 7 = {(, X}. In this topology only
the empty set and X are open (closed).

3. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does
not come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and
the sets X, {1}, {2,3},0 are open and closed. The sets {1,2} and {1,3}
are neither open nor closed.

Fig. 13.1. A topology.

Definition 13.4. Let (X,7x) and (Y,7y) be topological spaces. A function
f: X =Y is continuous if

F ) ={f(V):Vern)crx.

We will also say that f is Tx /Ty —continuous or (Tx,Ty) — continuous. Let
C(X,Y) denote the set of continuous functions from X to'Y.

Exercise 13.1. Show f : X — Y is continuous iff f~1(C) is closed in X for
all closed subsets C of Y.

Definition 13.5. A map f : X — Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f~! :
Y — X s continuous. If there exists f : X — Y which is a homeomorphism,
we say that X and Y are homeomorphic. (As topological spaces X andY are
essentially the same.)

13.1 Constructing Topologies and Checking Continuity

Proposition 13.6. Let £ be any collection of subsets of X. Then there exists
a unique smallest topology T(E) which contains E.
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Proof. Since 2% is a topology and £ C 2%, £ is always a subset of a
topology. It is now easily seen that

T(€) == ﬂ{T : T is a topology and £ C 7}

is a topology which is clearly the smallest possible topology containing £. m
The following proposition gives an explicit descriptions of 7(£).

Proposition 13.7. Let X be a set and £ C 2%. For simplicity of notation,
assume that X,0 € E. (If this is not the case simply replace €& by EU{X,0}.)
Then

7 (&) := {arbitrary unions of finite intersections of elements from E}.
(13.1)

Proof. Let 7 be given as in the right side of Eq. . From the definition
of a topology any topology containing £ must contain 7 and hence £ C 7 C
7(&). The proof will be completed by showing 7 is a topology. The validation
of 7 being a topology is routine except for showing that 7 is closed under
taking finite intersections. Let V, W & 7 which by definition may be expressed
as
V =UgeaVy and W = UBEBWﬁa

where V,, and Wy are sets which are finite intersection of elements from £.
Then
Vnw = (UOéEAVa) N (UﬁGBWE) - U Va n Wg.
(a,8)EAXB

Since for each (o, §) € Ax B, Vo, NWp is still a finite intersection of elements
from &, VN W € 1 showing 7 is closed under taking finite intersections. m

Definition 13.8. Let (X, 7) be a topological space. We say that S C T is a
sub-base for the topology T iff T = 7(S) and X = US := UyesV. We say
V C 7 is a base for the topology T iff V is a sub-base with the property that
every element V € 7 may be written as

V=u{BeV:BcCV}
Exercise 13.2. Suppose that S is a sub-base for a topology 7 on a set X.

1. Show V := Sy (S is the collection of finite intersections of elements from
S) is a base for 7.
2. Show S is itself a base for 7 iff
inVo=u{SeS:5cVinl,}.

for every pair of sets V1, V5 € S.
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Fig. 13.2. Fitting balls in the intersection.

Remark 15.9. Let (X, d) be a metric space, then £ = {B,(J) : « € X and
0 > 0} is a base for 74 — the topology associated to the metric d. This is the
content of Exercise [6.3

Let us check directly that £ is a base for a topology. Suppose that z,y € X
and €,6 > 0. If z € B(z,6) N B(y, €), then

B(z,a) C B(z,0) N B(y,¢) (13.2)

where @ = min{d — d(x,2),e — d(y,z)}, see Figure This is a formal
consequence of the triangle inequality. For example let us show that B(z,a) C
B(x, ). By the definition of «, we have that o < § — d(z, 2) or that d(z,2) <
0 — a.. Hence if w € B(z, «), then

dz,w) <d(z,z) +d(z,w) <d—a+dzw)<d—at+a=1§

which shows that w € B(x,d). Similarly we show that w € B(y,¢) as well.
Owing to Exercise [[3.2] this shows & is a base for a topology. We do not
need to use Exercisehere since in fact Equation may be generalized
to finite intersection of balls. Namely if z; € X, §; > 0 and z € N}, B(x;, d;),
then
B(z,a) C Nie1B(x;, ;) (13.3)
where now « := min{d; — d(z;,2) : i =1,2,...,n}. By Eq. it follows
that any finite intersection of open balls may be written as a union of open
balls.

Exercise 13.3. Suppose f: X — Y is a function and 7x and 7y are topolo-
gies on X and Y respectively. Show

flry = {f_l (VycX:Ve Ty} and f,7x = {V cYy:ft (V)e TX}

(as in Notation [2.7)) are also topologies on X and Y respectively.
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Remark 13.10. Let f : X — Y be a function. Given a topology 1y C 2V, the
topology 7x := f~!(7y) is the smallest topology on X such that f is (7x,7y)
- continuous. Similarly, if 7x is a topology on X then 7v = f.7x is the largest
topology on Y such that f is (7x,7y) - continuous.

Definition 13.11. Let (X, 7) be a topological space and A subset of X. The
relative topology or induced topology on A is the collection of sets

Ta=i, (1) ={ANV :V e},
where ia : A — X be the inclusion map as in Definition [2.8

Lemma 13.12. The relative topology, Ta, is a topology on A. Moreover a
subset B C A is T4 — closed iff there is a T — closed subset, C, of X such that
B=CnA.

Proof. The first assertion is a consequence of Exercise[13.3] For the second,
B C Ais7a —closed iff A\ B= ANV for some V € 7 which is equivalent to
B=A\(ANV)=AnNnVe for some V € 7. ]

Exercise 13.4. Show if (X,d) is a metric space and 7 = 74 is the topology
coming from d, then (74) 4 is the topology induced by making A into a metric
space using the metric d|axa.

Lemma 13.13. Suppose that (X,7x), (Y,7v) and (Z,7z) are topological
spaces. If f : (X,7x) — (Y,7v) and g : (Y,7v) — (Z,77) are continuous
functions then go f : (X,7x) — (Z,7z) is continuous as well.

Proof. This is easy since by assumption g~!(77) C 7y and f~! (1y) C 7x
so that
(go /)t (rz)=f (g7 (12)) € f (1v) C 7x.
]
The following elementary lemma turns out to be extremely useful because
it may be used to greatly simplify the verification that a given function is
continuous.

Lemma 13.14. Suppose that f : X — Y is a function, € C 2¥ and A C Y,
then

(1) = fH(7(€)) and (13.4)
T(Ea) =(T(E))4- (13.5)

Moreover, if v = 7(€) and T7x is a topology on X, then f is (7x,7y) —
continuous iff f~1(€) C Tx.
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Proof. We will give two proof of Eq. . The first proof is more con-
structive than the second, but the second proof will work in the context of o
— algebras to be developed later.

First Proof. There is no harm (as the reader should verify) in replacing £
by EU{0, Y} if necessary so that we may assume that (), Y € £. By Proposition
the general element V of 7(£) is an arbitrary unions of finite intersections
of elements from &. Since f~! preserves all of the set operations, it follows
that f~17(&) consists of sets which are arbitrary unions of finite intersections
of elements from f~1'&, which is precisely 7 ( f ’1(5)) by another application
of Proposition

Second Proof. By Exercise FH(7(€)) is a topology and since & C
7(&), f~HE) C f~H7(E)). It now follows that 7(f~1(E)) C f~1(7(E)). For

the reverse inclusion notice that
fr(fFHE) ={BcY : fY(B)er(f ()}

is a topology which contains € and thus 7(£) C f.7 (f1(£)) . Hence if B €
7(€) we know that f~H(B) € 7 (f~1(&)), ie. f7H7(E)) C 7(f71(€)) and
Eq. has been proved. Applying Eq. (13.4) with X = A and f = ix
being the inclusion map implies

(T(€)) 4 =14 (1(€)) = 7(i3' (€)) = T(Ea).

Lastly if f~'€ C 7x, then f~'7(£) = 7(f7'€) C 7x which shows f is
(Tx,Ty) — continuous. .

Corollary 13.15. If (X, 7) is a topological space and f : X — R is a function
then the following are equivalent:

is (1,7r) - continuous,
((a, ))GTforallfoo<a<b<oo,
1

((a,00)) € T and f~1((—o00,b)) € T for all a,b € Q.

(We are using T to denote the standard topology on R induced by the
metric d(x,y) = | —y|.)

Proof. Apply Lemma [13.14] with appropriate choices of £. [

1. f
2. f
3 [

Definition 13.16. Let (X, 7x) and (Y, 7y) be topological spaces. A function
f: X =Y is continuous at a point x € X if for every open neighborhood
V of f(z) there is an open neighborhood U of x such that U C f=Y(V). See

Figure[13.3

Exercise 13.5. Show f : X — Y is continuous (Definition [13.16) iff f is
continuous at all points z € X.

Definition 13.17. Given topological spaces (X,7) and (Y,7') and a subset
A C X. We say a function f : A — Y is continuous iff [ is 7a/7" -
continuous.
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57 ()

Fig. 13.3. Checking that a function is continuous at = € X.

Definition 13.18. Let (X, 1) be a topological space and A C X. A collection
of subsets U C T is an open cover of A if A C JU := Uy U.
Proposition 13.19 (Localizing Continuity). Let (X,7) and (Y,7') be
topological spaces and f : X —'Y be a function.

1. If f is continuous and A C X then fla : A =Y is continuous.

2. Suppose there exist an open cover, U C 7, of X such that f|a is continuous
for all A € U, then f is continuous.

Proof. 1. If f : X — Y is a continuous, f~1(V) € 7 for all V € 7 and
therefore
RN (V) =AnfY(V)eraforall Ve

2. Let V € 7/, then
FHV) =Uaeu (f 1 (V)N A) = Uacu (V). (13.6)

Since each A € U is open, T4 C 7 and by assumption, f|;11(V) € Ta C T
Hence Eq. (13.6) shows f~! (V) is a union of 7 — open sets and hence is also
T — open. [

Exercise 13.6 (A Baby Extension Theorem). Suppose V € 7 and f :
V — C is a continuous function. Further assume there is a closed subset C
such that {x € V: f(z) #0} C C C V, then F : X — C defined by

_Jfx)ifzeV
F(:z:){ 0 ifagV

is continuous.

Exercise 13.7 (Building Continuous Functions). Prove the following
variant of item 2. of Proposition Namely, suppose there exists a fi-
nite collection F of closed subsets of X such that X = UacrA and f|a is
continuous for all A € F, then f is continuous. Given an example showing
that the assumption that F is finite can not be eliminated. Hint: consider
f~1(C) where C is a closed subset of Y.
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13.2 Product Spaces I

Definition 13.20. Let X be a set and suppose there is a collection of topo-
logical spaces {(Ya, 7o) : a € A} and functions fo : X — Yy for all a € A.
Let 7(fo : « € A) denote the smallest topology on X such that each fo is
continuous, i.e.

T(fa:a € A) = 7(Uafs " (Ta).

Proposition 13.21 (Topologies Generated by Functions). Assuming
the notation in Definition and additionally let (Z,77) be a topologi-
cal space and g : Z — X be a function. Then g is (77, 7(fa : @ € A)) —
continuous iff fo 0 g is (Tz,Ta)—continuous for all a € A.

Proof. (=) If g is (72, 7(fa : @ € A)) — continuous, then the composition
fa©gis (17,74) — continuous by Lemma[13.13] (<) Let

Tx =7(fa:a€A) =71 (UaeAfgl(Ta)) .
If fo 0gis (7z,7a) — continuous for all a, then
g VT 1) CTzVa € A
and therefore
g ! (UaeAfojl(Ta)) =Uaeag ' f3'(ta) C 12

Hence

g_l (TX) = g_l (T (UaeAfo?l(Ta))) = T(g_l (UaEAfojl(Ta)) C 71z

which shows that g is (77, 7x) — continuous. ]

Let {(Xa,Ta)}oea be a collection of topological spaces, X = X4 = [] Xq
acA
and 7, : X4 — X, be the canonical projection map as in Notation [2.2]

Definition 13.22. The product topology 7 = Qnc ATy is the smallest topol-
ogy on X4 such that each projection m, is continuous. Ezxplicitly, T is the
topology generated by the collection of sets,

E={r ' (V)):a€ AV, €Ta} = Upean ‘7. (13.7)

Applying Proposition [13.21] in this setting implies the following proposi-
tion.

Proposition 13.23. Suppose Y is a topological space and f : Y — X4 is a
map. Then [ is continuous iff Ty o f :' Y — X is continuous for all a € A.
In particular if A = {1,2,...,n} so that X4 = X1 x Xo X --- x X, and
f) = (i), f2(0), -, fa(y) € X1 x Xg X == x Xy, then [:Y — X4 is
continuous iff f; © Y — X; is continuous for all i.
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Proposition 13.24. Suppose that (X, T) is a topological space and {fn} C
XA (see Notation is a sequence. Then f, — f in the product topology of
XA 4ff fu(@) — fla) for all a € A.

Proof. Since 7, is continuous, if f,, — f then f,(a) = 7o (fn) — 7a(f) =
f(a) for all a € A. Conversely, f,(a) — f(a) for all a € A iff 7o (f) — 7o (f)
for all @ € A. Therefore if V = n,1(V,) € £ (with £ as in Eq. ) and
f €V, then n,(f) € V,, and 7o (fr) € Vg for a.a. n and hence f,, € V for a.a.
n. This shows that f,, — f as n — oc. ]

Proposition 13.25. Suppose that (Xo,Ta),ca 15 a collection of topological
spaces and RqeaTa is the product topology on X =[], c 4 Xa-

1. If &, C T4 generates T4 for each o € A, then

QacATa =T (UaeAﬂ-a_l(ga)) (138)

2. If B, C 7o is a base for 7o for each «, then the collection of sets, V, of
the form

V =Naeamy Vo= [[ Vax [] Xo = Vax Xa, (13.9)

acA agA
where A CC A and V,, € B, for all a € A is base for @acATe.-

Proof. 1. Since

Uoﬂrgl&l C Uaﬂ';l’l'a = UaW;I(T(Ea))
=U,T(m ) C T (Uaﬂ'_lga) ,

e}

it follows that
T (Uanglé’a) C RaTa CT (anglga) .

2. Now let U = [Uamy '74] f denote the collection of sets consisting of finite

intersections of elements from Uoﬂr;ITa. Notice that ¢ may be described as
those sets in Eq. where V,, € 7, for all a« € A. By Exercise Uis a
base for the product topology, ®,caTo. Hence for W € ®yca7, and x € W,
there exists a V' € U of the form in Eq. such that z € V' C W. Since B,
is a base for 7, there exists U, € B, such that z, € U, C V, for each o € A.
With this notation, the set Uy x Xqy\qp € Vand z € Uy x Xqp\ g CV CW.
This shows that every open set in X may be written as a union of elements
from V, i.e. V is a base for the product topology. [

Notation 13.26 Let & C 2% be a collection of subsets of a set X; for each
1=1,2,...,n. We will write, by abuse of notation, &, x E3 X --- x &, for the
collection of subsets of X1x---xX,, of the form Ay x Ay x---x A, with A; € &
for alli. That is we are identifying (A1, Aa, ..., Ay) with Ay X Ay X -+ X A,,.
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Corollary 13.27. Suppose A ={1,2,...,n} so X = X7 x X3 X -+ X X,,.
1IfE C 2% 7, =7(&) and X; € & for each i, then
MO @7, =7(E xE X -+ x &) (13.10)
and in particular
MO - @Ty =7(T1 X -+ X Ty). (13.11)

2. Furthermore if B; C 7; is a base for the topology T; for each i, then By X
-+ X By, is a base for the product topology, 1 @ To ® -+ ® Tp.

Proof. (The proof is a minor variation on the proof of Proposition [13.25])
L. Let [Uieam; '(&)] ; denotes the collection of sets which are finite intersec-

tions from UieAwi_l(&), then, using X; € &; for all ¢,

Uieam; (&) C & x E2 % -+ x &, C [Uieam; ' (E)] ;-

Therefore

TZT(UieAﬂ'i_l(gi)) CT(E&1xEx--x&E)CT ([UieATri_l(gi)}f) =T

2. Observe that 7 X - -+ X 7, is closed under finite intersections and generates
TN ® Ty ® -+ ® Ty, therefore 71 X --- X 7, is a base for the product topology.
The proof that By x --- x B,, is also a base for 71 ® 7o ® - - - ® 7, follows the
same method used to prove item 2. in Proposition [I3:25] [

Lemma 13.28. Let (X;,d;) fori=1,...,n be metric spaces, X := Xy X+ -+ X
X, and for x = (x1,x2,...,x,) and y = (y1,Y2,...,Yyn) in X let

dw,y) =D dilwis i) (13.12)

Then the topology, T4, associated to the metric d is the product topology on X,
i.e.
Td=Td Tdy @+ QTq,-

Proof. Let p(z,y) = max{d;(z;,y;) : ¢ = 1,2,...,n}. Then p is equivalent
to d and hence 7, = 74. Moreover if ¢ > 0 and = (z1,22,...,2,) € X, then
Bf(e) = Bg}(s) X oo X Bg;(e).

By Remark [13.9]
E:={Bf(e):z€ X and e > 0}

is a base for 7, and by Proposition|13.25|£ is also a base for 74, @74, ® - - ®7q,, .
Therefore,
Tay ®Tg, @ -+ R 1q, =7(E) =7, =14.
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13.3 Closure operations

Definition 13.29. Let (X, 1) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set A containing A, i.e.
A=n{F:ACFLCX}.

(Because of Exercise this is consistent with Definition for the
closure of a set in a metric space.)
2. The interior of A is the largest open set A° contained in A, i.e.

A°=u{Ver:VCA}.

(With this notation the definition of a neighborhood of x € X may be
stated as: A C X is a neighborhood of a point x € X if x € A°.)
3. The accumulation points of A is the set

acc(A) ={z e X: VNA\{z} #0 for allV € 7,.}.
4. The boundary of A is the set bd(A) := A\ A°.

Remark 13.30. The relationships between the interior and the closure of a set
are:

(A")C:ﬂ{VC:VGTandVCA}:ﬂ{C:Cis closed C' D A°} = A¢
and similarly, (A)¢ = (A€)°. Hence the boundary of A may be written as
bd(A) ;== A\ A° = AN (A°)° = AN Ae, (13.13)
which is to say bd(A) consists of the points in both the closure of A and A°.

Proposition 13.31. Let A C X and x € X.

1.IfFVCo X and ANV =0 then ANV = 0.

2.0 € AiffVNAHED forall V € 7.

3.z €bd(A) iff VNA#AD and VN A £ for allV € 7.
4. A= AUacc(A).

Proof. 1. Since ANV =0, A C V¢ and since V¢ is closed, A C V¢. That
is to say ANV = (). 2. By Remark[13.30] A = ((A°)°)°soz € Aiff z ¢ (A°)°
which happens iff V¢ A¢forall V e 7, le. if VN A#Q forall V e 7,. 3.
This assertion easily follows from the Item 2. and Eq. . 4. Ttem 4. is an
easy consequence of the definition of acc(A) and item 2. ]

! Here is another direct proof of item 2. which goes by showing z ¢ A iff there exists
V € mpsuch that VNA=0.1fx ¢ AthenV = (A)c €mpand VNACVNA= 0.
Conversely if there exists V' € 7, such that ANV = () then by Item 1. ANV = 0.
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Lemma 13.32. Let ACY C X, AY denote the closure of A in'Y with its
relative topology and A = AX be the closure of A in X, then AY = AXNY.

Proof. Using Lemma [13.12
AY =n{BCY:AcCB}=n{CnNnY:AcCCLC X}
=YNn(n{C:AcCC X})=YnA*.

Alternative proof. Let z € Y thenz € AY if VN A#(forall V €1y
such that € V. This happens iff for all U € 7, UNYNA=UNA # (¢ which
happens iff x € AX. That is to say AY = AX NY. n

The support of a function may now be defined as in Definition [I0.25 above.
Definition 13.33 (Support). Let f : X — Y be a function from a topo-

logical space (X,Tx) to a vector space Y. Then we define the support of f
by

supp(f) :={z € X : f(x) # 0},
a closed subset of X.

The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 13.34. Suppose that f : X — Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(A) C f(A) forall AC X
3. f~Y(B) C f~Y(B) for all B C X.

Proof. If f is continuous, then f~! (f(A)) is closed and since A C

f~H(fa) c (M) it follows that A ¢ f~! (m) . From this equa-
tion we learn that f(A) C f(A) so that (1) implies (2) Now assume (2), then

for BCY (taking A = f~1(B)) we have

FUHB)) C f(fH(B) C f(F71(B) c B

and therefore
f~YB) c fYB). (13.14)

This shows that (2) implies (3) Finally if Eq. (13.14]) holds for all B, then
when B is closed this shows that

f7UB) c f71(B) = f71(B) c f-U(B)

which shows that

[7(B)=11(B).
Therefore f~!(B) is closed whenever B is closed which implies that f is
continuous. ]
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13.4 Countability Axioms

Definition 13.35. Let (X, 1) be a topological space. A sequence {x,},-, C
X converges to a point x € X if for all V € 1, x, € V almost always
(abbreviated a.a.), i.e. # ({n:z, ¢ V}) < co. We will write x,, — z as n —
oo or limy, o0 T, = x when x, converges to x.

Example 13.36. Let X = {1,2,3} and 7 = {X, 0, {1,2},{2,3},{2}} and z,, =
2 for all n. Then x,, — z for every x € X. So limits need not be unique!

Definition 13.37 (First Countable). A topological space, (X, 1), is first
countable iff every point x € X has a countable neighborhood base as defined
in Notation[13.2

Ezample 13.38. All metric spaces, (X, d), are first countable. Indeed, if x € X
then {B (x, %) 'n € N} is a countable neigborhood base at =z € X.

Exercise 13.8. Suppose X is an uncountable set and let V' € 7 iff V¢ is finite
or countable of V' = ). Show 7 is a topology on X which is closed under
countable intersections and that (X, 7) is not first countable.

Exercise 13.9. Let {0,1} be equipped with the discrete topology and X =

{0, 1}]R be equipped with the product topology, 7. Show (X, 7) is not first
countable.

The spaces described in Exercises and [I3.9)are examples of topological
spaces which are not metrizable, i.e. the topology is not induced by any metric
on X. Like for metric spaces, when 7 is first countable, we may formulate many
topological notions in terms of sequences.

Proposition 13.39. If f : X — Y is continuous at x € X and lim,, o T, =
x € X, then lim,, o f(zn) = f(x) € Y. Moreover, if there exists a countable
neighborhood base n of x € X, then f is continuous at x iff lim f(z,) = f(z)

for all sequences {x,},-, C X such that x, — z as n — occ.

Proof. If f : X — Y is continuous and W € 7y is a neighborhood of
f(x) €Y, then there exists a neighborhood V of € X such that f(V) C W.
Since x, — z, ©, € V a.a. and therefore f(z,) € f(V) C W a.a., ie.
f(zn) — f(z) as n — oo. Conversely suppose that n = {W,}72, is a
countable neighborhood base at z and nh_)rr;O f(z,) = f(z) for all sequences

{z,},2, C X such that z,, — z. By replacing W,, by Wi N---N W, if neces-
sary, we may assume that {W,} 7 is a decreasing sequence of sets. If f were
not continuous at x then there exists V' € 7, such that = ¢ [f_l(V)]o.
Therefore, W, is not a subset of f~1(V) for all n. Hence for each n, we may
choose x,, € W, \ f~1(V). This sequence then has the property that x, —
as n — oo while f(z,) ¢ V for all n and hence lim,,_, f(z,) # f(z). ]
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Lemma 13.40. Suppose there exists {xn}ff:l C A such that x,, — x, then
x € A. Conversely if (X, ) is a first countable space (like a metric space)
then if x € A there exists {xn},-; C A such that x,, — .

Proof. Suppose {:cn}zozl C Aand z, — x € X. Since A° is an open
set, if x € A€ then x,, € A° C A° a.a. contradicting the assumption that
{z,};2, C A. Hence x € A. For the converse we now assume that (X,7) is
first countable and that {V,,} 7, is a countable neighborhood base at = such
that V1 D Vo D V3 D .... By Proposition x € Aiff VN A#( for all
V € 7,. Hence = € A implies there exists =, € V,, N A for all n. It is now
easily seen that x,, — x as n — oo. [

Definition 13.41. A topological space, (X, 1), is second countable if there
exists a countable base V for 7, i.e. V C T is a countable set such that for
every W € 1,

W=U{V:VeVsVcWwW}

Definition 13.42. A subset D of a topological space X is dense if D = X.
A topological space is said to be separable if it contains a countable dense
subset, D.

Example 13.43. The following are examples of countable dense sets.

1. The rational numbers, Q, are dense in R equipped with the usual topology.

2. More generally, Q% is a countable dense subset of R? for any d € N.

3. Even more generally, for any function g : N — (0, 00), ¢P(u) is separable
for all 1 < p < co. For example, let I" C F be a countable dense set, then

D:={zelP(u):z;, €l foraliand #{j:z; #0} < oo}

The set I can be taken to be Q if F=R or Q +iQ if F = C.
4. If (X, d) is a metric space which is separable then every subset Y C X is
also separable in the induced topology.

To prove 4. above, let A = {z,}52; C X be a countable dense subset of
X. Let dy(x) = inf{d(z,y) : y € Y} be the distance from x to ¥ and recall
that dy : X — [0,00) is continuous. Let &, = max {dy(xn), %} > 0 and for
each n let y, € By, (2¢5,). Then if y € Y and € > 0 we may choose n € N such
that d(y, z,) < e, < /3. Then d(yn, z,) < 2¢, < 2¢/3 and therefore

d(yayn) < d(y,xn) + d(ZET,, yn) <e.
This shows that B := {y, }>2 is a countable dense subset of Y.
Exercise 13.10. Show ¢*° (N) is not separable.

Exercise 13.11. Show every second countable topological space (X,7) is
separable. Show the converse is not true by showing X := R with 7 =
{0} U{V CR:0 €V} is a separable, first countable but not a second count-
able topological space.
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Exercise 13.12. Every separable metric space, (X, d) is second countable.

Exercise 13.13. Suppose £ C 2% is a countable collection of subsets of X,
then 7 = 7(€) is a second countable topology on X.

13.5 Connectedness

Definition 13.44. (X, 7) is disconnected if there exist non-empty open sets
U and V of X such that UNV =0 and X = UUV. We say {U,V} is a
disconnection of X. The topological space (X,T) is called connected if it
is not disconnected, i.e. if there is no disconnection of X. If A C X we say
A is connected iff (A,Ta) is connected where T4 is the relative topology on
A. Explicitly, A is disconnected in (X, 7) iff there exists U,V € 7 such that
UNA#0, UNA#D, ANUNV =0and ACUUYV.

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space (X, 7) is connected iff the only
sets A C X which are both open and closed are the sets X and @). This version
of the definition is often used in practice.

Remark 13.45. Let ACY C X. Then A is connected in X iff A is connected
inY.

Proof. Since
TA={VNA:VCX}={VNANY: VCX}={UNA:UC,Y},

the relative topology on A inherited from X is the same as the relative topol-
ogy on A inherited from Y. Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y. [

The following elementary but important lemma is left as an exercise to
the reader.

Lemma 13.46. Suppose that f : X — Y is a continuous map between topo-
logical spaces. Then f(X) CY is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 13.47. Suppose that f : X — Y is a continuous map between two
topological spaces, the space X is connected and the space Y is “Ty,” i.e. {y}
is a closed set for all y € Y as in Definition below. Further assume f is
locally constant, i.e. for all x € X there exists an open neighborhood V of x
in X such that f|y is constant. Then f is constant, i.e. f(X) = {yo} for some
yo € Y. To prove this, let yo € f(X) and let W := f~1({yo}). Since {yo} C Y
is a closed set and since f is continuous W C X is also closed. Since f is
locally constant, W is open as well and since X is connected it follows that
W =X, ie f(X)={yo}.

Page: 207 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



208 13 Topological Space Basics

As a concrete application of this result, suppose that X is a connected
open subset of R and f : X — R is a C' — function such that Vf = 0.
If x € X and € > 0 such that B (z,e) C X, we have, for any |v| < € and

€ [-1,1], that

%f(z+tv):Vf(z+tv)-U=0-

Therefore f (x 4+ v) = f (x) for all |v| < € and this shows f is locally constant.
Hence, by what we have just proved, f is constant on X.

Theorem 13.48 (Properties of Connected Sets). Let (X,7) be a topo-
logical space.

1. If B C X is a connected set and X is the disjoint union of two open sets
U and V, then either BC U or BC V.
2. If A C X is connected,

a) then A is connected.

b) More generally, if A is connected and B C acc(A), then AU B is
connected as well. (Recall that acc(A) — the set of accumulation points
of A was defined in Deﬁnition above. )

3. If {Ea}aea 15 a collection of connected sets such that )
Y :=Upea Ea is connected as well. B

4. Suppose A, B C X are non-empty connected subsets of X such that AN
B # 0, then AU B is connected in X.

5. Fvery point x € X is contained in a unique mazimal connected subset
C, of X and this subset is closed. The set C, is called the connected
component of x.

aca Ea # 0, then

Proof.

1. Since B is the disjoint union of the relatively open sets BNU and BNV,
we must have BNU = B or BNV = B for otherwise {BNU,BNV}
would be a disconnection of B.

2. a. Let Y = A be equipped with the relative topology from X. Suppose
that U,V C, Y form a disconnection of Y = A. Then by 1. either A C U
or A C V. Say that A C U. Since U is both open an closed in Y, it follows
that Y = A C U. Therefore V = () and we have a contradiction to the
assumption that {U,V} is a disconnection of ¥ = A. Hence we must
conclude that Y = A is connected as well.

b. Now let Y = AU B with B C acc(A), then
AY = ANY = (AUacc(A)NY = AUB.

Because A is connected in Y, by (2a) Y = AU B = AY is also connected.
3. Let Y := UaeA FE,. By Remark we know that FE, is connected
in Y for each a € A. If {U,V} were a disconnection of Y, by item (1),
either E, C U or E, C V for all . Let A = {a € A: E, C U} then
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13.5 Connectedness 209

U = UaeaBq and V = Usea\ a1 Eqo. (Notice that neither A or A\ A can be
empty since U and V are not empty.) Since

@:UQVZUaeA,BGAC (EaﬁEg) D ﬂ Ea#@.

a€cA

we have reached a contradiction and hence no such disconnection exists.

4. (A good example to keep in mind here is X = R, A = (0,1) and B =
[1,2).) For sake of contradiction suppose that {U, V'} were a disconnection
of Y = AU B. By item (1) either A C U or A C V, say A C U in which
case B C V. Since Y = AU B we must have A = U and B =V and so
we may conclude: A and B are disjoint subsets of Y which are both open
and closed. This implies

A=A =AnY =AN(AUB)=AU(ANB)
and therefore
P=ANB=[AU(ANB)|NB=ANB#

which gives us the desired contradiction.

5. Let C denote the collection of connected subsets C C X such that x € C.
Then by item 3., the set C, := UC is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C,, is also connected by item (2) and C, is maximal, C, = C,,
i.e. Cy is closed.

Theorem 13.49 (The Connected Subsets of R). The connected subsets
of R are intervals.

Proof. Suppose that A C R is a connected subset and that a,b € A with
a < b. If there exists ¢ € (a,b) such that ¢ ¢ A, then U := (—oo0,c) N A
and V := (¢,00) N A would form a disconnection of A. Hence (a,b) C A. Let
a := inf(A) and § := sup(A) and choose o, 5, € A such that o, < 3, and
an | aand 3, T 0 as n — oco. By what we have just shown, (a,,(,) C A
for all n and hence («,3) = US2,(an,Bn) C A. From this it follows that
A= (o, ), [o,08), (o, 8] or e, F], i.e. A is an interval.

Conversely suppose that A is an interval, and for sake of contradiction,
suppose that {U, V'} is a disconnection of A with a € U, b € V. After relabelling
U and V if necessary we may assume that a < b. Since A is an interval
[a,b] C A. Let p = sup ([a,b] N U), then because U and V are open, a < p < b.
Now p can not be in U for otherwise sup ([a,b] N U) > p and p can not be in
V for otherwise p < sup ([a,b] N U) . From this it follows that p ¢ U UV and
hence A # UUV contradicting the assumption that {U, V'} is a disconnection.
[
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Theorem 13.50 (Intermediate Value Theorem). Suppose that (X, T) is
a connected topological space and f : X — R is a continuous map. Then f

satisfies the intermediate value property. Namely, for every pair x,y € X such
that f (x) < f(y) and c € (f (x), f(y)), there exits z € X such that f(z) = c.

Proof. By Lemma[13.46] f (X) is connected subset of R. So by Theorem
13.49] f (X) is a subinterval of R and this completes the proof. ]

Definition 13.51. A topological space X is path connected if to every pair
of points {xo,z1} C X there exists a continuous path, o € C([0,1],X), such
that 0(0) = 29 and o(1) = x1. The space X is said to be locally path con-
nected if for each x € X, there is an open neighborhood V- C X of x which is
path connected.

Proposition 13.52. Let X be a topological space.

1. If X is path connected then X is connected.
2. If X is connected and locally path connected, then X is path connected.
3. If X is any connected open subset of R™, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises [13.20] -
[13.22] below. [

Proposition 13.53 (Stability of Connectedness Under Products). Let
(XasTa) be connected topological spaces. Then the product space Xa =
[loca Xa equipped with the product topology is connected.

Proof. Let us begin with the case of two factors, namely assume that
X and Y are connected topological spaces, then we will show that X x Y is
connected as well. Given x € X, let f, : Y — X xY be the map f,(y) = (z,9)
and notice that f, is continuous since mx o f,(y) = z and 7y o f,(y) =y are
continuous maps. From this we conclude that {z} x Y = f,(Y) is connected
by Lemma A similar argument shows X x {y} is connected for all y € Y.

Let p = (20,y0) € X x Y and C, denote the connected component of p.
Since {xo} x Y is connected and p € {zo} x Y it follows that {zo} x Y C C,
and hence C,, is also the connected component (z¢,y) for all y € Y. Similarly,
X x{y} C C(ay,y) = Cp is connected, and therefore X x {y} C C,. So we have
shown (z,y) € C), for all z € X and y € Y, see Figure By induction the
theorem holds whenever A is a finite set, i.e. for products of a finite number
of connected spaces.

For the general case, again choose a point p € X4 = X4 and again
let C' = C, be the connected component of p. Recall that C), is closed and
therefore if C), is a proper subset of X4, then X4 \ C, is a non-empty open
set. By the definition of the product topology, this would imply that X4 \ C,
contains an open set of the form

V.= ﬂae/ﬂT;l(Va) = VA X XA\/]
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Y zx'j

A EITRY

=

Exfg}

————-%”""_:X
%o

Fig. 13.4. This picture illustrates why the connected component of p in X X Y
must contain all points of X X Y.

where A CC A and V,, € 7, for all « € A. We will now show that no such V'
can exist and hence X4 = C,, i.e. X4 is connected.
Define ¢ : X4 — X4 by ¢(y) = x where

_Jyaifaed
Yo = o if a & A.

Ifae A ma00(y) = Yo = Ta(y) and if @ € A\ A then m,00(y) = po so that in
every case m,00¢ : X1 — X, is continuous and therefore ¢ is continuous. Since
X4 is a product of a finite number of connected spaces and so is connected
and thus so is the continuous image, ¢(Xa) = Xa X {pa}oeca\a C Xa. Now
p € ¢(Xa) and ¢(X4) is connected implies that ¢(X4) C C. On the other
hand one easily sees that

D#£VNo(Xy)CVNC

contradicting the assumption that V' C C°. [

13.6 Exercises

13.6.1 General Topological Space Problems

Exercise 13.14. Let V' be an open subset of R. Show V may be written as
a disjoint union of open intervals J,, = (an, b, ), where a,,b, € RU{+oo} for
n=1,2,--- < N with N = co possible.
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Exercise 13.15. Let (X, 7) and (Y,7’) be a topological spaces, f : X — Y
be a function, U be an open cover of X and {Fj }?:1 be a finite cover of X by
closed sets.

1.IfAC Xisanysetand f : X — Y is (7,7') — continuous then f|4 : A - Y
is (74,7') — continuous.

2.Show f : X — Y is (7,7') — continuous iff f|y : U — Y is (17py,7') —
continuous for all U € Y.

3. Show f : X — Y is (7,7') — continuous iff f|r, : F; — Y is (7p,,7") -
continuous for all j =1,2,...,n.

Exercise 13.16. Suppose that X is a set, {(Ya, 7o) : @ € A} is a family of
topological spaces and f,, : X — Y, is a given function for all « € A. Assuming
that S, C 7, is a sub-base for the topology 7, for each o € A, show S :=
Uaecafs1(Sa) is a sub-base for the topology 7 := 7(f, : @ € A).

13.6.2 Connectedness Problems
Exercise 13.17. Show any non-trivial interval in Q is disconnected.

Exercise 13.18. Suppose a < b and f : (a,b) — R is a non-decreasing func-
tion. Show if f satisfies the intermediate value property (see Theorem [13.50)),

then f is continuous.

Exercise 13.19. Suppose —o0o < a < b < oo and f : [a,b) — R is a strictly
increasing continuous function. By Lemma f ([a,b)) is an interval and
since f is strictly increasing it must of the form [c, d) for some ¢ € R and d € R
with ¢ < d. Show the inverse function f=1 : [¢,d) — [a,b) is continuous and
is strictly increasing. In particular if n € N, apply this result to f (x) = 2"
for € [0,000) to construct the positive n'! — root of a real number. Compare
with Exercise

Exercise 13.20. Prove item 1. of Proposition [13.52 Hint: show X is not
connected implies X is not path connected.

Exercise 13.21. Prove item 2. of Proposition Hint: fix g € X and let
W denote the set of z € X such that there exists o € C([0, 1], X) satisfying
0(0) = o and o(1) = x. Then show W is both open and closed.

Exercise 13.22. Prove item 3. of Proposition [I3.52}
Exercise 13.23. Let
X = {(z,y) e R* :y =sin(z™ ")} U{(0,0)}

equipped with the relative topology induced from the standard topology on
R2. Show X is connected but not path connected.
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13.6.3 Metric Spaces as Topological Spaces

Definition 13.54. Two metrics d and p on a set X are said to be equivalent
if there exists a constant ¢ € (0,00) such that c_lp <d<ecp.

Exercise 13.24. Suppose that d and p are two metrics on X.

1. Show 74 = 7, if d and p are equivalent.
2. Show by example that it is possible for 74 = 7, even thought d and p are
inequivalent.

Exercise 13.25. Let (X;,d;) for i = 1,...,n be a finite collection of metric
spaces and for 1 < p < oo and = = (x1,x2,...,2,) and y = (y1,...,y,) In
X = H?:l Xi7 let

po(@,y) = { (0 [dila, gl it p# o0

max; d;(x;, y;) if p=o0

1. Show (X, pp) is a metric space for p € [1, c0]. Hint: Minkowski’s inequal-
ity.

2. Show for any p,q € [1,00], the metrics p, and p, are equivalent. Hint:
This can be done with explicit estimates or you could use Theorem [14.12
below.

Notation 13.55 Let X be a set and p := {py},- be a family of semi-metrics
on X, i.e. p, : X X X — [0,00) are functions satisfying the assumptions
of metric except for the assertion that p,(z,y) = 0 implies * = y. Further
assume that pp(x,y) < pnyi1(z,y) for all n and if py(x,y) =0 for alln € N
then ¢ =y. Givenn € N and x € X let

By(x,e) :=={y € X : pu(z,y) <e}.

We will write 7(p) form the smallest topology on X such that p,(z,-): X —
[0,00) is continuous for allm € N and x € X, i.e. 7(p) := T(pp(z:) :n € N
and x € X).

Exercise 13.26. Using Notation [13.55] show that collection of balls,
B :={B,(z,e):n €N, z € X and ¢ > 0},

forms a base for the topology 7(p). Hint: Use Exercise [13.16[ to show B is a

sub-base for the topology 7(p) and then use Exercise [13.2to show B is in fact
a base for the topology 7(p).

Exercise 13.27 (A minor variant of Exercise [6.12]). Let p, be as in
Notation [[3.55 and

N Pn@y)
d(x’y)'_T;Q 1+ pn(z,y)’
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214 13 Topological Space Basics

Show d is a metric on X and 74 = 7(p). Conclude that a sequence {zy},o; C
X converges to xz € X iff

klim Pn(xg,x) =0 for all n € N.

Exercise 13.28. Let {(X,,d,)},—, be a sequence of metric spaces, X :=
1,2, Xy, and for z = (z(n)),—; and y = (y(n)),—, in X let

=oin do(z(n),y(n))
Aey) = 7;2 1L+ dp(2(n),y(n))’

(See Exercise ) Moreover, let 7, : X — X, be the projection maps, show
Ta = @92 174, = T({m, : n € N}).

That is show the d — metric topology is the same as the product topology on
X. Suggestions: 1) show 7, is 74 continuous for each n and 2) show for each
x € X that d(z,-) is ®22,74, — continuous. For the second assertion notice

that d (z,) = Y5, f,, where f, = 2" (%) o,
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Compactness

Definition 14.1. The subset A of a topological space (X 7) is said to be com-
pact if every open cover (Deﬁnition of A has finite a sub-cover, i.e. if
U is an open cover of A there exists Uy CC U such that Uy is a cover of A.
(We will write A CC X to denote that A C X and A is compact.) A subset
A C X is precompact if A is compact.

Proposition 14.2. Suppose that K C X is a compact set and F C K is a
closed subset. Then F is compact. If {K;}"_, is a finite collections of compact
subsets of X then K = U]_, K, is also a compact subset of X.

Proof. Let U C 7 be an open cover of F, then YU {F°} is an open cover
of K. The cover UU{F°} of K has a finite subcover which we denote by
UoU{F°} where Uy CC U. Since F'N F° =0, it follows that Uy is the desired
subcover of F. For the second assertion suppose U C 7 is an open cover of K.
Then U covers each compact set K; and therefore there exists a finite subset
U; CC U for each i such that K; C Ul;. Then Uy := U} U; is a finite cover
of K. [

Exercise 14.1 (Suggested by Michael Gurvich). Show by example that
the intersection of two compact sets need not be compact. (This pathology
disappears if one assumes the topology is Hausdorff, see Definition below.)

Exercise 14.2. Suppose f : X — Y is continuous and K C X is compact,
then f(K) is a compact subset of Y. Give an example of continuous map,
f:X — Y, and a compact subset K of Y such that f~!(K) is not compact.

Exercise 14.3 (Dini’s Theorem). Let X be a compact topological space
and f,, : X — [0,00) be a sequence of continuous functions such that f,,(z) | 0
as n — oo for each x € X. Show that in fact f, | O uniformly in z, i.e.
sup,ex fn(z) | 0 as n — oco. Hint: Given ¢ > 0, consider the open sets
Vi ={z e X: folr) <e}.
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Definition 14.3. A collection F of closed subsets of a topological space (X, T)
has the finite intersection property if N\Fy # 0 for all Fo CC F.

The notion of compactness may be expressed in terms of closed sets as
follows.

Proposition 14.4. A topological space X is compact iff every family of closed
sets F C 2% having the finite intersection property satisfies (| F # (.

Proof. (=) Suppose that X is compact and F C 2% is a collection of
closed sets such that (| F = 0. Let

U=F={C°:CeF}cCr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fo = U5 CC F,
then NFy = @ so that F does not have the finite intersection property. (<) If
X is not compact, there exists an open cover U of X with no finite subcover.
Let

F=Uc={U°:UeclU},
then F is a collection of closed sets with the finite intersection property while

NF =0. [

Exercise 14.4. Let (X, 7) be a topological space. Show that A C X is com-
pact iff (A,74) is a compact topological space.

14.1 Metric Space Compactness Criteria

Let (X, d) be a metric space and for x € X and € > 0 let

By (e) := Bx(e) \ {=}

be the ball centered at = of radius € > 0 with = deleted. Recall from Definition
that a point z € X is an accumulation point of a subset £ C X if
0 # ENV\{z} for all open neighborhoods, V, of . The proof of the following
elementary lemma is left to the reader.

Lemma 14.5. Let E C X be a subset of a metric space (X,d). Then the
following are equivalent:

1. x € X is an accumulation point of E.

2.Bl(e)NE #0 for alle > 0.

3. B.(e) N E is an infinite set for all € > 0.

4. There exists {xy,},., C E\ {z} with lim,_,o z, = .

Definition 14.6. A metric space (X, d) ise — bounded (¢ > 0) if there exists
a finite cover of X by balls of radius € and it is totally bounded if it is € —
bounded for all € > 0.
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14.1 Metric Space Compactness Criteria 217

Theorem 14.7. Let (X, d) be a metric space. The following are equivalent.

(a) X is compact.
very infinite subset o as an accumulation point.
(b) Every infinite subset of X h lati nt
¢) Every sequence {z,}._; C as a convergent subsequence.
E C,CXh t sub
(d) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b= c=d = a.

(a = b) We will show that not b = not a. Suppose there exists an infinite
subset £ C X which has no accumulation points. Then for all x € X there
exists §, > 0 such that V, := B,(d;) satisfies (V; \ {z}) N E = 0. Clearly
V = {Ve},ex is a cover of X, yet V has no finite sub cover. Indeed, for each
x€X,V,NE C {z} and hence if A CC X, U,caV, can only contain a finite
number of points from E (namely ANE). Thus for any A CC X, E € UyeaV,
and in particular X # Uzca V. (See Figure M)

¥
r
- \‘e} - - - e

Fig. 14.1. The construction of an open cover with no finite sub-cover.

(b = ¢) Let {z,},-, C X be a sequence and E := {z, :n € N}. If
#(F) < oo, then {z,},- , has a subsequence {zy, };-, which is constant and
hence convergent. On the other hand if #(F) = oo then by assumption E has
an accumulation point and hence by Lemma {z,},—, has a convergent
subsequence.

(c = d) Suppose {z,,},>, C X is a Cauchy sequence. By assumption there
exists a subsequence {z,, }2021 which is convergent to some point z € X. Since
{z,},, is Cauchy it follows that z,, — x as n — oo showing X is complete.
We now show that X is totally bounded. Let € > 0 be given and choose an
arbitrary point 21 € X. If possible choose x2 € X such that d(z2,21) > €, then
if possible choose w3 € X such that dy,, ,,}(23) > € and continue inductively
choosing points {xj}?zl C X such that dy,, . .. ,3(¥n) > €. (See Figure
) This process must terminate, for otherwise we would produce a sequence
{z,},2, C X which can have no convergent subsequences. Indeed, the x,
have been chosen so that d(x,,z;,) > ¢ > 0 for every m # n and hence no
subsequence of {z,,} ; can be Cauchy.

(d = a) For sake of contradiction, assume there exists an open cover
V = {Va}aea of X with no finite subcover. Since X is totally bounded for
each n € N there exists A,, CC X such that

X=|J B:(1/n)c | Ca(1/n).

€A, €A,

Page: 217 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



218 14 Compactness

Fig. 14.2. Constructing a set with out an accumulation point.

Choose x1 € A; such that no finite subset of V covers K; := C,, (1). Since
K1 = Uzea, K1NCy(1/2), there exists zo € Ag such that Ky := K1NC,,(1/2)
can not be covered by a finite subset of V, see Figure Continuing this
way inductively, we construct sets K, = K,,_1NC,, (1/n) with x,, € A,, such
that no K, can be covered by a finite subset of V. Now choose y, € K,
for each n. Since {K, },- , is a decreasing sequence of closed sets such that
diam(K,) < 2/n, it follows that {y,} is a Cauchy and hence convergent with
y= nhigc UYn € m?slem,-

Since V is a cover of X there exists V' € V such that y € V. Since K, | {y}
and diam(K,,) — 0, it now follows that K, C V for some n large. But this
violates the assertion that K, can not be covered by a finite subset of V.

~V

v

Fig. 14.3. Nested Sequence of cubes.
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Corollary 14.8. Any compact metric space (X,d) is second countable and

hence also separable by Exercise|13.11) (See Example below for an ex-

ample of a compact topological space which is not separable.)

Proof. To each integer n, there exists A, CC X such that X =
Uzea, B(x,1/n). The collection of open balls,

V := Upen Ugea, {B(z,1/n)}

forms a countable basis for the metric topology on X. To check this, suppose
that g € X and € > 0 are given and choose n € N such that 1/n < £/2
and x € A, such that d (zg,x) < 1/n. Then B(z,1/n) C B (xq,€) because for
y € B(z,1/n),

d(y,z0) < d(y,x) +d(z,z0) < 2/n <e.
[

Corollary 14.9. The compact subsets of R™ are the closed and bounded sets.

Proof. This is a consequence of Theorem and Theorem Here
is another proof. If K is closed and bounded then K is complete (being the
closed subset of a complete space) and K is contained in [—M, M]™ for some
positive integer M. For § > 0, let

As =02 N[-M,M]" := {6z :x € Z" and d|z;| < M for i =1,2,...,n}.
We will show, by choosing § > 0 sufficiently small, that
K C [-M,M]" C Ugzea, B(z,¢) (14.1)

which shows that K is totally bounded. Hence by Theorem[14.7 K is compact.
Suppose that y € [-M, M|™, then there exists € As such that |y; — ;| < §
fori=1,2,...,n. Hence

d*(z,y) = Z (yi — 2:)” < nd?
i=1
which shows that d(z,y) < \/nd. Hence if choose § < ¢/1/n we have shows
that d(z,y) < ¢, i.e. Eq. (14.1) holds. ]

Ezample 14.10. Let X = (P(N) with p € [1,00) and p € ¢P(N) such that
w(k) > 0 for all k € N. The set

K:={zeX:|zk) <u(k) for all k € N}

is compact. To prove this, let {xn}zo:l C K be a sequence. By com-

pactness of closed bounded sets in C, for each k& € N there is a subse-
quence of {z,(k)},—, C C which is convergent. By Cantor’s diagonaliza-

tion trick, we may choose a subsequence {y,},., of {z,} -, such that
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y(k) := lim,_ o yn (k) exists for all k € NE| Since |y, (k)| < u(k) for all n
it follows that |y(k)| < p(k), i.e. y € K. Finally

dim ly = yallp = lim Y ly(k) = ya(R)" =D lim [y(k) - g (k)] =0
k=1 k=1

wherein we have used the Dominated convergence theorem. (Note
[y (k) = yn (k)" < 2707 (k)

and p? is summable.) Therefore y, — y and we are done.

Alternatively, we can prove K is compact by showing that K is closed and
totally bounded. It is simple to show K is closed, for if {xn}zozl C Kisa
convergent sequence in X, x :=lim,, .~ Z,, then

|z(k)] < lim |z, (k)] < p(k) V ke N.

This shows that z € K and hence K is closed. To see that K is totally
bounded, let € > 0 and choose N such that (3" ., \,u(k)|p)1/p < e. Since
H}I:le Clu#)(0) € CN is closed and bounded, it is compact. Therefore there
exists a finite subset A C ngl Cu(x)(0) such that

N
11 Cu(0) € UzcaBY (e)
k=1

where BXY(e) is the open ball centered at z € CV relative to the
P({1,2,3,...,N}) — norm. For each z € A let Z € X be defined by
Z(k) = z(k) it k < N and Z(k) =0 for k > N + 1. I now claim that

K C Uy Bz (2e) (14.2)

which, when verified, shows K is totally bounded. To verify Eq. (14.2)), let
x € K and write * = u + v where u(k) = x(k) for k¥ < N and u(k) = 0 for
k < N. Then by construction u € B;(¢) for some Z € A and

o] 1/p
||v||ps< ) m(k)v’) <e.

k=N+1

' The argument is as follows. Let {n}}52; be a subsequence of N = {n}2_, such that

lim;j o0 2,1 (1) exists. Now choose a subsequence {n;};2; of {nj};2, such that
J
lim; oo 7,2 (2) exists and similarly {n3}52, of {n3}52, such that lim; .. z,3(3)
J J
exists. Continue on this way inductively to get
1 2 3
{n}ozi D {2 D {nj 52 D {nj}iZi O ..
such that lim; .. ,x (k) exists for all & € N. Let m; := n§ so that eventually
J

{m;}52, is a subsequence of {n¥}32, for all k. Therefore, we may take y; := Zpm,.
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So we have
o = Z2ll, = [lu+v— 2], <[lu—2[, + v, <2

Exercise 14.5 (Extreme value theorem). Let (X, 7) be a compact topo-
logical space and f : X — R be a continuous function. Show —oo < inf f <
sup f < oo and there exists a,b € X such that f(a) = inf f and f(b) = supfﬂ
Hint: use Exercise and Corollary

Exercise 14.6 (Uniform Continuity). Let (X,d) be a compact metric
space, (Y, p) be a metric space and f : X — Y be a continuous function.
Show that f is uniformly continuous, i.e. if € > 0 there exists 6 > 0 such that
p(fly), f(x)) < e if z,y € X with d(z,y) < . Hint: you could follow the
argument in the proof of Theorem [10.2

Definition 14.11. Let L be a vector space. We say that two norms, |-| and
Il on L are equivalent if there exists constants o, B € (0,00) such that

IfI < alf] and |f] < B f| forall f€ L.

Theorem 14.12. Let L be a finite dimensional vector space. Then any two
norms |-| and ||| on L are equivalent. (This is typically not true for norms
on infinite dimensional spaces, see for example Exercise )

Proof. Let {f;}!"_, be a basis for L and define a new norm on L by

n
> aifi
i=1

2

By the triangle inequality for the norm |-|, we find

n n n n n
Soaifil <Y il lfil < | DOIAP D el <MD aifs
=1 =1 =1 =1 =1

2
where M = \/S>" | | fil°. Thus we have

[f1 < M[f]l,

for all f € L and this inequality shows that |-| is continuous relative to
|-l . Since the normed space (L, |||,) is homeomorphic and isomorphic
to F™ with the standard euclidean norm, the closed bounded set, S :=

? Here is a proof if X is a metric space. Let {z,}°°, C X be a sequence such that
f(zn) T sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that x, — b € X as n — oo. By continuity of f, f(b) = sup f.
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222 14 Compactness

{feL:|f|ll,=1} C L, is a compact subset of L relative to [-||,. There-
fore by Exercise [I4.5] there exists fo € S such that

m=inf{|f|: f€S}t=]fo] >0.

Hence given 0 # f € L, then W € S so that

2

f 1
m < =/

‘||f||2 [1£1l2

or equivalently
1

17 < - 11
This shows that |-| and [|-||, are equivalent norms. Similarly one shows that
||-|| and ||-||, are equivalent and hence so are |-| and ||-|| . |

Corollary 14.13. If (L, ||]|) is a finite dimensional normed space, then A C
L is compact iff A is closed and bounded relative to the given norm, ||| .

Corollary 14.14. Every finite dimensional normed vector space (L, ||-||) is
complete. In particular any finite dimensional subspace of a normed vector
space is automatically closed.

Proof. If {f,} ~, C L is a Cauchy sequence, then {f,} —, is bounded
and hence has a convergent subsequence, g = fn,, by Corollary [14.13] It is
now routine to show lim, .o fn = f = limg_ .o gk. [ |

Theorem 14.15. Suppose that (X, ||-||) is a normed vector in which the unit
ball, V := By (1), is precompact. Then dim X < oco.

Proof. Since V is compact, we may choose A CC X such that

_ 1

V CUgea |z + §V (14.3)
where, for any § > 0,

0V i={dz:2€V}=DBy(0).
Let Y := span(A), then Eq. (14.3) implies,
_ 1
Vcvcy+ §V.

Multiplying this equation by % then shows

1 1 1 1
z Y4+ IV =Y+ =
2VC2 —|-4V +4V
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and hence 1

4
Continuing this way inductively then shows that

1 1
VCY—|—§VCY+Y+ V:Y—FZV.

1
VCY+27V for all n € N. (14.4)
Indeed, if Eq. (14.4]) holds, then
VCY+1VCY+1 Y+1V =Y+ ! V.
2 2 on ) ont+l "’

Hence if x € V, there exists y,, € Y and z,, € By (27") such that y, +z, — z.

Since lim,,_,o 2z, = 0, it follows that z = limy, oo yn € Y. Since dimY <

#(A) < oo, Corollary [14.14] implies Y = Y and so we have shown that
1

V C Y. Since for any = € X, WJL‘EVCY,WehavexEonrallxeX,i.e.

X =Y. [ ]

Exercise 14.7. Suppose (Y, [|-||y) is a normed space and (X, ||-|| i) is a finite
dimensional normed space. Show every linear transformation 7': X — Y is
necessarily bounded.

14.2 Compact Operators

Definition 14.16. Let A: X — Y be a bounded operator between two Banach
spaces. Then A is compact if A[Bx(0,1)] is precompact in'Y or equivalently
forany {z,}52, C X such that ||z,|| < 1 for alln the sequence y,, := Ax, €Y
has a convergent subsequence.

Example 14.17. Let X =2 =Y and A, € C such that lim,, . A, = 0, then
A: X — Y defined by (Az)(n) = A,x(n) is compact.

Proof. Suppose {z;}32, C ¢* such that ||lz;[* = 3 |ch(n)|2 <1 for all j.
By Cantor’s Diagonalization argument, there exists {ji} C {j} such that, for

each n, Zy(n) = xj, (n) converges to some Z(n) € C as k — oo. By Fatou’s
Lemma

> lE()? = lim inf |, (n)])? < lim inf |, (n)]* < 1,
n=1 n=1 - - n=1

which shows & € ¢2.
Let A}, = max |A,|. Then
n>M
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224 14 Compactness

1AZ, — AZ|? = 37 A [E(n) — E(n)

M
<D allEr(n) = Em)* + (X5 Z |Zx(n) — Z(n)[?
n=1

M+1

M
<Y PalPlER(n) = )] + N 12 — 2]
n=1

M
<Y Il lER(n) = 2(n)* + 405,
n=1

Passing to the limit in this inequality then implies

lim sup ||AZ), — AZ||* < 4|\ — 0 as M — o
k—o0
and this completes the proof the A is a compact operator. [ |

Lemma 14.18. If X 2. v B, Z are bounded operators such the either A
or B is compact then the composition BA : X — Z is also compact.

Proof. Let Bx(0,1) be the open unit ball in X. If A is compact and B
is bounded, then BA(Bx(0,1)) C B(ABx(0,1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we conclude
that BA(Bx(0,1)) is compact, being the closed subset of the compact set
B(ABx(0,1)). If A is continuous and B is compact, then A(Bx(0,1)) is a
bounded set and so by the compactness of B, BA(Bx(0,1)) is a precompact
subset of Z, i.e. BA is compact. ]

14.3 Local and o — Compactness

Notation 14.19 If X is a topological space and Y is a normed space, let

BO(X,Y) :={f e C(X,Y): jgng(r)lly < oo}

and
C.(X,Y):={f e C(X,Y) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

Remark 14.20. Let X be a topological space and Y be a Banach space.
By combining Exercise [14.2] and Theorem it follows that C.(X,Y) C
BC(X,Y).
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14.3 Local and o — Compactness 225

Definition 14.21 (Local and o — compactness). Let (X, 7) be a topolog-
ical space.

1. (X, 1) is locally compact if for all x € X there exists an open neigh-
borhood V. C X of x such that V is compact. (Alternatively, in light of
Definition (also see Definition , this is equivalent to requiring
that to each x € X there exists a compact neighborhood N, of x.)

2. (X,7) is 0 — compact if there exists compact sets K, C X such that
X = U2, K,,. (Notice that we may assume, by replacing K, by K1 UKsU

-+ U K, if necessary, that K, 1 X.)

Example 14.22. Any open subset of U C R”™ is a locally compact and o —
compact metric space. The proof of local compactness is easy and is left to
the reader. To see that U is ¢ — compact, for k € N, let

K :={x €U :|z| <kanddy(z) >1/k}.

Then K, is a closed and bounded subset of R™ and hence compact. Moreover
K,‘C’TUaSk—>oosinceE|

K. D>{xeU:|z|<kanddy(z)>1/k} TU as k — .

Exercise 14.8. If (X, 7) is locally compact and second countable, then there
is a countable basis By for the topology consisting of precompact open sets.
Use this to show (X, 1) is ¢ - compact.

Exercise 14.9. Every separable locally compact metric space is ¢ — compact.

Exercise 14.10. Every o — compact metric space is second countable (or
equivalently separable), see Corollary

Exercise 14.11. Suppose that (X, d) is a metric space and U C X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.

2.1f X is 0 — compact then (U,d) is 0 — compact. Hint: Mimic Example
14.22] replacing {z € R™ : |z| < k} by compact sets X, CC X such that
Xp 1 X.

Lemma 14.23. Let (X, 1) be locally and o — compact. Then there exists com-
pact sets K, T X such that K,, C K,y C Kypy1 for all n.

Proof. Suppose that C' C X is a compact set. For each z € C'let V, C, X
be an open neighborhood of « such that V is compact. Then C' C U,ecV, so
there exists A CC C such that

CcC U;cE/lva: C UxeAvx = K.

3 In fact this is an equality, but we will not need this here.
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226 14 Compactness

Then K is a compact set, being a finite union of compact subsets of X, and
C C UgeaV, C K°. Now let C,, C X be compact sets such that C), T X as
n — oo. Let K1 = C; and then choose a compact set K5 such that Co C K.
Similarly, choose a compact set K3 such that Ky U Cs3 C K$ and continue
inductively to find compact sets K, such that K, UCp1 C K, for all n.
Then {K,} -, is the desired sequence. |

Remark 14.24. Lemma [14.23| may also be stated as saying there exists pre-
compact open sets {G,,}.- such that G,, C Gpn CGpyiforallmand G, T X
as n — oo. Indeed if {G,} —, are as above, let K,, := G, and if {K,, },- | are
as in Lemma [14.23] let G, := K.

Proposition 14.25. Suppose X is a locally compact metric space and U C,
X and K CC U. Then there exists V Co, X such that K CV CV CUCX
and V' is compact.

Proof. (This is done more generally in Proposition [15.7| below.) By local
compactness of X, for each € K there exists ¢, > 0 such that B,(e,) is
compact and by shrinking e, if necessary we may assume,

B,(g;) C Cp(er) C Bp(2e,) CU

for each z € K. By compactness of K, there exists A CC K such that K C
UzeaBz(e2) =: V. Notice that V' C UpeaB.(e,) C U and V' is a closed subset
of the compact set Uze Bz (e,) and hence compact as well. [ |

Definition 14.26. Let U be an open subset of a topological space (X, 7). We
will write f < U to mean a function f € C.(X,[0,1]) such that supp(f) :=
{r#0ycU

Lemma 14.27 (Urysohn’s Lemma for Metric Spaces). Let X be a lo-
cally compact metric space and K CC U C, X. Then there exists f < U such
that f = 1 on K. In particular, if K is compact and C is closed in X such
that KNC = 0, there exists f € C.(X,[0,1]) such that f =1 on K and f =0
on C.

Proof. Let V be as in Proposition [[4:25] and then use Lemma[6.15] to find
a function f € C(X,0,1]) such that f = 1 on K and f = 0 on V. Then
supp(f) C V C U and hence f < U. [ ]

14.4 Function Space Compactness Criteria

In this section, let (X, 7) be a topological space.

Definition 14.28. Let F C C(X).
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14.4 Function Space Compactness Criteria 227

1. F is equicontinuous at = € X iff for all € > 0 there exists U € 7, such
that |f(y) — f(z)| <eforally € U and f € F.

2. F is equicontinuous if F is equicontinuous at all points z € X.

3. F is pointwise bounded if sup{|f(z)|: |f € F} < oo for all z € X.

Theorem 14.29 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topo-
logical space and F C C(X). Then F is precompact in C(X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (<) Since C(X) C £°°(X) is a complete metric space, we must
show F is totally bounded. Let ¢ > 0 be given. By equicontinuity, for all
x € X, there exists V, € 7, such that |f(y) — f(z)] < ¢/2 if y € V, and
f € F. Since X is compact we may choose A CC X such that X = UgcaV,.
We have now decomposed X into “blocks” {V.} ., such that each f € F is
constant to within € on V. Since sup {|f(z)|:z € Aand f € F} < o0, it is
now evident that

M =sup{|f(z)|:z € X and f € F}
<sup{|f(z)|]:x€Aand f € F} +¢ < oo.

Let D:={ke/2: k€ Z}N[-M,M]. If f € Fand ¢ € D (ie. p: A > Disa
function) is chosen so that |¢(x) — f(z)| < /2 for all € A, then

1f(y) —o@)| < [f(y) = f(@)| + [f(z) —¢(z)| <eVeeAdand y € V,.
From this it follows that F = [J{F4 : ¢ € D4} where, for ¢ € D4,
Fo={feF:|fly)—¢(x)| <eforyeV,and z € A}.

Let I' := {¢€DA:f¢7E@} and for each ¢ € I' choose fy € Fy NF. For
fe€Fs, v€Aand y €V, we have

1F () = fo(y)l < 1f(y) — ¢(@))| + |¢(x) — fo(y)] < 2e.

So ||f = fslleo < 2¢ for all f € Fy showing that Fy C By, (2¢). Therefore,
F = U¢ep.7:¢) C U¢EFBf¢(25)

and because € > (0 was arbitrary we have shown that F is totally bounded.
(=) (*The rest of this proof may safely be skipped.) Since |-||, : C(X) —
[0,00) is a continuous function on C'(X) it is bounded on any compact subset
F C C(X). This shows that sup {|| f||., : f € F} < co which clearly implies
that F is pointwise boundedﬁ Suppose F were not equicontinuous at some

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps e, : C(X) — R given by e, (f) = f(x) for all z € X.
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point x € X that is to say there exists € > 0 such that for all V' € 7,

sup sup |f(y) — f(z)| > {—:ﬂ Equivalently said, to each V' € 7,, we may choose
yev feF

fv eFandzy €V > |fv(£L’) — fv(l’v)| > €. (145)

Set Cyv = {fw :Wer, and W C V}H'Heo C F and notice for any V CC 7,
that

NvevCy 2 Chy # 0,

so that {Cv},, € 7, C F has the finite intersection propertyﬁ Since F is
compact, it follows that there exists some

fe ) cv#0.

Ver,

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < ¢/3 for
all y € V. Because f € Cy, there exists W C V such that ||f — fw] < /3.
We now arrive at a contradiction;

e <|fw(z) — fw(zw)]
<lfwlx) = f@) +[f (@) = flaw)| + | flzw) — fw (@w)]
<e/3+¢e/3+¢/3=¢.

Exercise 14.12. Give an alternative proof of the implication, (<), in Theo-
rem [14.29 by showing every subsequence {f,, : n € N} C F has a convergence
sub-sequence.

5 If X is first countable we could finish the proof with the following argument.
Let {Vn}az1 be a neighborhood base at x such that Vi D Vo D V3 D .... By
the assumption that F is not equicontinuous at x, there exist f, € F and x,, €
Vi such that |fn(z) — fu(zn)] > € V n. Since F is a compact metric space by
passing to a subsequence if necessary we may assume that f, converges uniformly
to some f € F. Because x, — x as n — oo we learn that

€ < 1fne) — Fulen)] < 1) = 1@+ 1£@) — Flwn)] + [F(@n) — falan)]
<2l fn = fll +|f(zx) — f(zn)| = 0asn — oo

which is a contradiction.

6 If we are willing to use Net’s described in Appendix below we could finish
the proof as follows. Since F is compact, the net {fv}ve-, C F has a cluster
point f € F C C(X). Choose a subnet {ga}aca of {fv}very, such that go — f
uniformly. Then, since xv — « implies zv,, — x, we may conclude from Eq.

that
€ < |ga(z) — ga(2v, )| — l9(x) — g(z)| =0

which is a contradiction.
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Exercise 14.13. Suppose k € C ([07 1]2 ,R) and for f € C([0,1],R), let

1
Kf(x) ::/O k(z,y) f (y) dy for all z € [0,1].

Show K is a compact operator on (C ([0,1],R),||||..) -
The following result is a corollary of Lemma [14.23| and Theorem [14.29

Corollary 14.30 (Locally Compact Ascoli-Arzela Theorem). Let (X, 7)
be a locally compact and o — compact topological space and {f,} C C(X)
be a pointwise bounded sequence of functions such that {fm|k} is equicon-
tinuous for any compact subset K C X. Then there exists a subsequence
{m,} C {m} such that {gn := fm, }roy C C(X) is a sequence which is uni-
formly convergent on compact subsets of X.

Proof. Let {K,},. , be the compact subsets of X constructed in Lemma
14.23] We may now apply Theorem [14.29| repeatedly to find a nested family

of subsequences
{fm} 2 {gm} 2 {gm} D {gn} D

such that the sequence {¢7}~_, C C(X) is uniformly convergent on K,.
Using Cantor’s trick, define the subsequence {h,} of {f;,} by hy := g". Then
{hn} is uniformly convergent on K; for each [ € N. Now if K C X is an
arbitrary compact set, there exists [ < oo such that K C K7 C K; and
therefore {h,} is uniformly convergent on K as well. ]

Proposition 14.31. Let 2 C, Rdjuch that DJS compact and 0 < a < 3 < 1.
Then the inclusion map i : CP(£2) — C%(2) is a compact operator. See
Chapter [9 and Lemma[9.9 for the notation being used here.

Let {u,}32, C CA() such that |Ju,|/cs < 1, ie. |Jun]oo <1 and
[t (2) — un(y)] < |z —y|? for all z,y € 2.

By the Arzela-Ascoli Theorem [14.29] there exists a subsequence of {i,}524
of {u,}22; and u € C°(£2) such that @, — u in C°. Since

u(z) —u(y)| = lim |@,(z) —an(y)| < |z —yl°,
n—oo
u € CF as well. Define g, := u — @, € C”, then

[9n] + llgnllco = llgnllcs <2

and g, — 0in C°. To finish the proof we must show that g,, — 0 in C®. Given
0 >0,
gn\T) — gn\Y
[gn]oe:sul)| (@) a( ) <A,+B,
z#y |z =yl
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Anzsup{W:x#yand |m—y§5}

_ |gn(x) — gn(?/)'
B S“p{ EETE
<3P [gn)p < 2677

-|x—y\ﬁ_a:x7§yand |x—y|§6}

and

B, = SUP{W de—y| > (5} <207 ||gnllco — 0 as n — oo.

Therefore,

lim sup [gn]e < lim sup A, + lim sup B, <26°~*4+0—0asd | 0.

n—oo n—o0 n—oo

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise below.

Theorem 14.32. Let {2 be a precompact open subsetl of Re «, € [0,1] and
k,j € No. If j+ 3 > k+a, then CIP (Q) is compactly contained in C* (Q) .

14.5 Tychonoft’s Theorem

The goal of this section is to show that arbitrary products of compact spaces
is still compact. Before going to the general case of an arbitrary number of
factors let us start with only two factors.

Proposition 14.33. Suppose that X and Y are non-empty compact topolog-
ical spaces, then X XY is compact in the product topology.

Proof. Let U be an open cover of X x Y. Then for each (z,y) € X XY
there exist U € U such that (z,y) € U. By definition of the product topology,
there also exist V,, € 7¥ and W, € T; such that V, x W, C U. Therefore
Vi={Vy x W, : (z,y) € X x Y} is also an open cover of X x Y. We will now
show that V has a finite sub-cover, say Vo CC V. Assuming this is proved for
the moment, this implies that I/ also has a finite subcover because each V' € V),
is contained in some Uy € U. So to complete the proof it suffices to show every
cover V of the form V = {V,, x W,, : a« € A} where V, C, X and W,, C, Y has
a finite subcover. Given x € X, let f, : Y — X XY be the map f,(y) = (z,9)
and notice that f, is continuous since mx o f,(y) = x and 7y o f,(y) = y are
continuous maps. From this we conclude that {z} x Y = f,(Y) is compact.
Similarly, it follows that X x {y} is compact for all y € Y. Since V is a cover

of {z} x Y, there exist I, CC A such that {z} xY C |J (Vo x W,) without
ol
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14.5 Tychonoff’s Theorem 231

loss of generality we may assume that I, is chosen so that = € V,, for all
a€Tl,. Let U, := () Va Co X, and notice that

a€ly
U (VaxWa) 2 | Ue x Wa) =Us x Y, (14.6)
acl, acly

see Figure below. Since {U,}, .y is now an open cover of X and X is

1 Y
[

I ¢
A X

7

1
1
&
U
Uy

Fig. 14.4. Constructing the open set U,.

compact, there exists A CC X such that X = UgcU,. The finite subcol-
lection, Vg := {Vy X Wy, : @ € Ugeall}, of V is the desired finite subcover.
Indeed using Eq. ((14.6)),

Wo = Ugea Uner, (Vo X Wy) D Ugea (Upy xY) =X x Y.

[

The results of Exercises and [13.28| prove Tychonoff’s Theorem for a

countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 14.34 (Tychonoff’s Theorem). Let {X,}aca be a collection of

non-empty compact spaces. Then X := X4 = [] Xa is compact in the prod-
acA
uct space topology. (Compare with Ezxercise which covers the special case

of a countable product of compact metric spaces.)

Proof. (The proof is taken from Loomis [I4] which followed Bourbaki. Re-
mark below should help the reader understand the strategy of the proof
to follow.) The proof requires a form of “induction” known as Zorn’s lemma
which is equivalent to the axiom of choice, see Theorem of Appendix
below.
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232 14 Compactness

For o € A let 7, denote the projection map from X to X,. Suppose that
F is a family of closed subsets of X which has the finite intersection property,
see Definition By Proposition the proof will be complete if we can
show NF # (.

The first step is to apply Zorn’s lemma to construct a maximal collection,
Fo, of (not necessarily closed) subsets of X with the finite intersection property
such that F C Fy. To do this, let I" := {G C 2% : F C G} equipped with the
partial order, G; < Gy if G; C Go. If @ is a linearly ordered subset of I', then
G:= U® is an upper bound for I" which still has the finite intersection property
as the reader should check. So by Zorn’s lemma, I' has a maximal element
Fo. The maximal Fy has the following properties.

1. Fo is closed under finite intersections. Indeed, if we let (Fp) 7 denote the
collection of all finite intersections of elements from Fy, then (Fp) f has
the finite intersection property and contains Fy. Since F( is maximal, this
implies (Fo) ; = Fo.

2.1f BC X and BNF # () for all FF € Fy then B € Fy. For if not
Fo U {B} would still satisfy the finite intersection property and would
properly contain Fy and this would violate the maximallity of Fy.

3. For each a € A,

7Ta(-7:0) = {Tra(F) CXa5F€FO}

has the finite intersection property. Indeed, if {F;};_, C Fo, then
m?:lﬂ-a(Fi) D Ta (ﬁzllez) 7& (Z)

Since X, is compact, property 3. above along with Proposition[I4.4]implies
Nrer,To(F) # 0. Since this true for each o € A, using the axiom of choice,
there exists p € X such that p, = 7 (p) € Nper,ma(F) for all « € A. The
proof will be completed by showing NF # () by showing p € NF.

Since C' :=N {F :Fe fo} C NF, it suffices to show p € C. Let U be an
open neighborhood of p in X. By the definition of the product topology (or
item 2. of Proposition , there exists A CC A and open sets U, C X,
for all o € A such that p € Npeam, (Uy) C U. Since p, € Nper,Ta(F) and
Do € Uy, for all a € A, it follows that U, N7y (F) # 0 for all F € Fy and all
a € A. This then implies 7,1 (Uy) N F # () for all F € Fy and all o € A. By
property 2[] above we concluded that 7! (U,) € Fy for all « € A and then
by property 1. that Npeam, ! (Us) € Fo. In particular

0 # F N (Naeary (Us)) CENU for all F € Fy

which shows p € F for each F € Fy, ie. pe C. [

X

Remark 14.35. Consider the following simple example where X = [—1,1]
[-1,1] and F = {Fy, F>} as in Figure Notice that m;(Fy) N m; (Fy) =

7 Here is where we use that Fp is maximal among the collection of all, not just
closed, sets having the finite intersection property and containing F.
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14.6 Banach — Alaoglu’s Theorem 233

[—1,1] for each i and so gives no help in trying to find the i*® — coordinate
of one of the two points in F} N Fy. This is why it is necessary to introduce
the collection Fy in the proof of Theorem In this case one might take
Fo to be the collection of all subsets F' C X such that p € F. We then have
Nrer,mi (F) = {p;}, so the i** — coordinate of p may now be determined by
observing the sets, {m; (F): F € Fy}.

Fy
T

Fg

Vo

Fig. 14.5. Here F = {F1, F>} where F; and F, are the two parabolic arcs and
F1 N F2 = {p, q}

14.6 Banach — Alaoglu’s Theorem

14.6.1 Weak and Strong Topologies

Definition 14.36. Let X and Y be be a normed vector spaces and L(X,Y)
the normed space of bounded linear transformations from X toY.

1. The weak topology on X is the topology generated by X*, i.e. the smallest
topology on X such that every element f € X* is continuous.

2. The weak-x topology on X* is the topology generated by X, i.e. the
smallest topology on X* such that the maps f € X* — f(x) € C are
continuous for all x € X.

3. The strong operator topology on L(X,Y) is the smallest topology such
that T € L(X,Y) — Tz € Y is continuous for all x € X.

4. The weak operator topology on L(X,Y) is the smallest topology such
thatT € L(X,Y) — f(Tz) € C is continuous for allx € X and f € Y*.

Let us be a little more precise about the topologies described in the above
definitions.
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234 14 Compactness

1. The weak topology has a neighborhood base at xyg € X consisting of
sets of the form

N =nL_{z € X :|fi(z) - fi(wo)| < e}

where f; € X* and ¢ > 0.
2. The weak-* topology on X* has a neighborhood base at f € X™* con-
sisting of sets of the form

Ni=0ilifg € X7 [f(w) —g(ai)] < e}

where z; € X and € > 0.
3. The strong operator topology on L(X,Y') has a neighborhood base at
T € X* consisting of sets of the form

N:=n{SeL(X,Y):|Sx; —Tx;| < e}

where x; € X and € > 0.
4. The weak operator topology on L(X,Y) has a neighborhood base at
T € X* consisting of sets of the form

N:=m_{S e L(X,Y):|fi (Sz; — Tz;)| <&}
where z; € X, f; € X* and ¢ > 0.

Theorem 14.37 (Alaoglu’s Theorem). If X is a normed space the unit
ball in X* is weak - x compact. (Also see Theorem |14.44) and Proposition

2513

Proof. For all = € X let D, = {2z € C: |z| < |z||}. Then D, C Cis a
compact set and so by Tychonoff’s Theorem (2 := [[ D, is compact in the

zeX
product topology. If f € C* = {f € X* : |[fl| < 1}, [f(@)| < ||l 2l] < [l
which implies that f(z) € D, for all z € X, i.e. C* C 2. The topology on
C* inherited from the weak—x topology on X* is the same as that relative
topology coming from the product topology on (2. So to finish the proof it
suffices to show C* is a closed subset of the compact space {2. To prove this
let 7. (f) = f(x) be the projection maps. Then

C*={fen:fislinear}
={fe:flz+cy)— flx) —cf(y)=0for all z,y € X and c € C}
= (1 (fe2: flotey) - fa) = cfly) =0}

z,yeX ceC
—1
= (] () Farey =7 —emy) " ({0})
z,yeX ceC
which is closed because (Ty4cy — T — cmy) @ £2 — C is continuous. [ |
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14.7 Weak Convergence in Hilbert Spaces 235

Theorem 14.38 (Alaoglu’s Theorem for separable spaces). Suppose
that X is a separable Banach space, C* = {f e X*:|f|| <1} is the
closed unit ball in X* and {x,},., is an countable dense subset of C' :=
{r e X :|z|| <1}. Then

p(f.9) = 3 5 1) — glan) (14.7

defines a metric on C* which is compatible with the weak topology on C*,
1o+ = (Tw)ox = {VNC:V ETy+}. Moreover (C*,p) is a compact metric
space.

Proof. The routine check that p is a metric is left to the reader. Let 7,
be the topology on C* induced by p. For any g € X and n € N, the map
feX* — (f(xn) —g(zyn)) €C is T, continuous and since the sum in Eq.
is uniformly convergent for f € C*, it follows that f — p(f,g) is 7o« —
continuous. This implies the open balls relative to p are contained in 7o+ and
therefore 7, C 7¢~. We now wish to prove 7¢+ C 7,. Since 7¢- is the topology
generated by {Z|c- : x € C}, it suffices to show & is 7, — continuous for all
z € C. But given = € C there exists a subsequence yj, := ,,, of {x,,} -, such
that such that z = limy_. o yx. Since

sup |2(f) — 9k(f)] = sup [f(z —yk)| < |z — yil — 0 as k — oo,
fec* feCc*

U — & uniformly on C* and using ¢ is 7, — continuous for all k (as is easily
checked) we learn & is also 7, continuous. Hence 7o+ = 7(Z|c» : € X) C 7,,.
The compactness assertion follows from Theorem The compactness
assertion may also be verified directly using: 1) sequential compactness is

equivalent to compactness for metric spaces and 2) a Cantor’s diagonalization
argument as in the proof of Theorem [14.44] (See Proposition [26.16| below.) m

14.7 Weak Convergence in Hilbert Spaces

Suppose H is an infinite dimensional Hilbert space and {z,},., is an or-
thonormal subset of H. Then, by Eq. , lzn, — @ ||* = 2 for all m # n and
in particular, {xn}zo:l has no convergent subsequences. From this we conclude
that C' := {z € H : ||z|| < 1}, the closed unit ball in H, is not compact. To
overcome this problems it is sometimes useful to introduce a weaker topology
on X having the property that C is compact.

Definition 14.39. Let (X, ||-||) be a Banach space and X* be its continu-
ous dual. The weak topology, T.,,, on X is the topology generated by X*. If
{z,},2, C X is a sequence we will write x,, 2 2z as n — oo to mean that
T, — x in the weak topology.
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236 14 Compactness

Because 7, = 7(X*) C 7). = 7({||lz — || : 2 € X}), it is harder for a
function f : X — F to be continuous in the 7,, — topology than in the norm
topology, 7. In particular if ¢ : X — F is a linear functional which is 7, —
continuous, then ¢ is 7. — continuous and hence ¢ € X™.

Exercise 14.14. Show the vector space operations of X are continuous in the
weak topology, i.e. show:

1L.(z,y) e X xX sx+y€ Xis (Ty ® Tw, Tw) — continuous and
2. (Nz) eFx X — A€ X is (77 ® T, Tow) — continuous.

Proposition 14.40. Let {x,}'~, C X be a sequence, then z,, — x € X as
n — oo iff ¢(x) = lim, . ¢(x,) for all p € X*.

Proof. By definition of 7, we have z, — z € X iff for all I' cC X*
and € > 0 there exists an N € N such that |¢(z) — ¢(x,)| < € for alln > N
and ¢ € I'. This later condition is easily seen to be equivalent to ¢(x) =
lim,, o ¢(xy,) for all ¢ € X*. [

The topological space (X, 7,) is still Hausdorff as follows from the Hahn
Banach Theorem, see Theorem below. For the moment we will concen-
trate on the special case where X = H is a Hilbert space in which case
H* ={¢, = (|z) : 2 € H}, see Theorem[8.15] If z,y € H and z := y—x # 0,
then

0<e:=|2]* = ¢=(2) = 6:(y) — p=(2).

Thus

Vei={weH:|p,(x) — ¢, (w)| <e/2}and
Vy = fwe H: [6:(y) — 6:(0)] < 2/2}

are disjoint sets from 7, which contain = and y respectively. This shows that
(H,7y) is a Hausdorff space. In particular, this shows that weak limits are
unique if they exist.

Remark 14.41. Suppose that H is an infinite dimensional Hilbert space
{z,},7, is an orthonormal subset of H. Then Bessel’s inequality (Propo-

implies #, — 0 € H as n — oo. This points out the fact
that if , — x € H as n — oo, it is no longer necessarily true that
lz]| = limp—oo ||n||- However we do always have |z|| < liminf, o ||zn]|
because,

sition

Jall? = lim (walar) < it (]| )] = [l Tion inf [

Proposition 14.42. Let H be a Hilbert space, 3 C H be an orthonormal
basis for H and {z,},~, C H be a bounded sequence, then the following are
equivalent:

w
1.z, >x € H asn — oo.
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14.7 Weak Convergence in Hilbert Spaces 237

2. (z|ly) = limy,— o0 (Tp|y) for ally € H.
3. {(zly) = limy, oo {xn|y) for ally € S.

Moreover, if ¢y := limp oo (Ts|y) exists for ally € B, then 3”5 ley|? < o0

and v, 52 =3 _sc,y € H asn — oo.

yeRB

Proof. 1. = 2. This is a consequence of Theorem [8.15] and Proposition
14.40l 2. = 3. is trivial. 3. = 1. Let M := sup,, ||z»| and Hy denote the
algebraic span of 8. Then for y € H and z € Hy,

(@ —anly)| < (& = zn|2)| + (& — 20y — 2)] < [(2 —20l2)[ +2M [ly — 2]

Passing to the limit in this equation implies limsup,, . [(x — z,|y)| <
2M ||y — z|| which shows limsup,, . |[(z — z,|y)| = 0 since Hy is dense in
H. To prove the last assertion, let I' CC B. Then by Bessel’s inequality

(Proposition ,

> leyl? = lim > [{zaly)|* < liminf |z, < M.
n—oo n—oo
yerl’ yel’

Since I' CC 8 was arbitrary, we conclude that > s \cy|2 < M < oo and

hence we may define x := Zyé 5 CyY- By construction we have

(z]y) = ¢y = lim (z,ly) for ally € 38

and hence z,, — x € H as n — oo by what we have just proved. [

Theorem 14.43. Suppose {xn}zo:l is a bounded sequence in a Hilbert space,
H. Then there ezists a subsequence yi := T, Of {xn}zozl and x € X such

that yi, — x as k — oo.

Proof. This is a consequence of Proposition [[4.42] and a Cantor’s diago-
nalization argument which is left to the reader, see Exercise [8.12 [

Theorem 14.44 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
H is a separable Hilbert space, C = {x € H : ||z|| < 1} is the closed unit ball
in H and {e,} —, is an orthonormal basis for H. Then

ple.y) = D 5 e = vlen) (14,8
n=1

defines a metric on C' which is compatible with the weak topology on C, T¢ =
(Tw)e ={V NC:V € 1y}. Moreover (C,p) is a compact metric space. (This
theorem will be extended to Banach spaces, see Theorems [14.37 and [17.3§
below.)
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Proof. The routine check that p is a metric is left to the reader. Let 7,
be the topology on C induced by p. For any y € H and n € N, the map
x € H— (v —ylen) = (x]en) — (ylen) is 7, continuous and since the sum in
Eq. is uniformly convergent for z,y € C, it follows that x — p(z,y) is
Tc — continuous. This implies the open balls relative to p are contained in 7¢
and therefore 7, C 7¢. For the converse inclusion, let z € H, z — ¢.(z) =

x|z) be an element of H*, and for N € N let zy := N (2 en)en. Then
n=1

Gy = ZnN:1 (z|en)pe, is p continuous, being a finite linear combination of

the ¢, which are easily seen to be p — continuous. Because zy — zas N — oo
it follows that

sup [¢= () — ¢y ()] = ||z — 2n]| — 0 as N — oo.
zeC

Therefore ¢,|c is p — continuous as well and hence 7¢ = 7(¢,|c : z € H) C
7,. The last assertion follows directly from Theorem and the fact that
sequential compactness is equivalent to compactness for metric spaces. [ |

14.8 Exercises

Exercise 14.15. Prove Lemma [[4.5]

Exercise 14.16. Let C be a closed proper subset of R and z € R™\ C. Show
there exists a y € C such that d(z,y) = dc(x).

Exercise 14.17. Let F = R in this problem and A C ¢?(N) be defined by
A={x e *(N):x(n)>1+1/n for some n € N}
= U {r € A(N): z(n) > 1+ 1/n}.

Show A is a closed subset of ¢?(N) with the property that d4(0) = 1 while
there is no y € A such that d(0,y) = 1. (Remember that in general an infinite
union of closed sets need not be closed.)

Exercise 14.18. Let p € [1,00] and X be an infinite set. Show directly, with-
out using Theorem [14.15] the closed unit ball in (X)) is not compact.

14.8.1 Ascoli-Arzela Theorem Problems

Exercise 14.19. Let T € (0,00) and F C C([0,T]) be a family of functions
such that:

1. f(t) exists for all t € (0,T) and f € F.
2. sup ez |f(0)] < oo and

3. M := Sup e 7 SUPse(0,7) 'f(t)‘ < 0.
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Show F is precompact in the Banach space C([0,T]) equipped with the
norm || f{| o, = supsejo, 7y [f(¢)]-

Exercise 14.20 (Peano’s Existence Theorem). Suppose Z : R x R? —
R? is a bounded continuous function. Then for each T < there exists a
solution to the differential equation

() = Z(t,z(t)) for —T <t < T with z(0) = xg. (14.9)
Do this by filling in the following outline for the proof.
1. Given € > 0, show there exists a unique function x. € C([—¢,00) — R%)
such that z.(t) := zo for —e < ¢t < 0 and
t
ze(t) = xo —|—/ Z(1,z.(T —¢))dr for all t > 0. (14.10)
0

Here

/Ot Z(1,x.(T—€))dT = (/Ot Zy (1,2 (T —€))dr, .. .,/Ot Za(r, we(T — 6))d7’>

where Z = (Zy,...,Z;) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For

t € [0,¢], it follows from Eq. (14.10) that
t
z:(t) = o +/ Z(1,x0)dT.
0

Now that z.(t) is known for ¢ € [—¢,¢] it can be found by integration for
t € [—¢,2¢]. The process can be repeated.

2. Then use Exercise to show there exists {ex}7-; C (0,00) such that
limg_,00 € = 0 and z., converges to some = € C([0,7]) with respect to
the sup-norm: ||z{|, = sup,e(o 1) [£(?)]). Also show for this sequence that

lim sup |z, (T —ex)—a(7)|=0.
k—oo g <r<T

3. Pass to the limit (with justification) in Eq. (14.10) with ¢ replaced by
e to show x satisfies

z(t) = zo + /Ot Z(r,x(7))dr ¥V t € [0,T).

4. Conclude from this that &(t) exists for ¢ € (0,7) and that z solves Eq.
(T4.9).

8 Using Corollary [14.30, we may in fact allow T = co.
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5. Apply what you have just proved to the ODE,
y(t) = —Z(—t,y(t)) for 0 <t < T with y(0) = zo.

Then extend z(t) above to (=7, T) by setting x(t) = y(—t) if t € (-T,0].
Show x so defined solves Eq. (14.9) for t € (=T, T).

Exercise 14.21. Prove Theorem [14.32| Hint: First prove C7° (Q) CC

CIe (Q) is compact if 0 < a < § < 1. Then use Lemma |14.18| repeatedly to
handle all of the other cases.

14.8.2 Tychonoff’s Theorem Problem

Exercise 14.22 (Tychonoff’s Theorem for Compact Metric Spaces).
Let us continue the Notation used in Exercise Further assume that
the spaces X, are compact for all n. Show, without using Theorem
(X,d) is compact. Hint: Either use Cantor’s method to show every sequence
{Zm}w_; C X has a convergent subsequence or alternatively show (X, d) is
complete and totally bounded. (Compare with Example )
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Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology 7. We
are now interested in restrictions on 7 in order to insure there are “plenty”
of continuous functions. One such restriction is to assume 7 = 74 — is the
topology induced from a metric on X. For example the results in Lemma
[6.15] and Theorem [7.4] above shows that metric spaces have lots of continuous
functions.

The main thrust of this section is to study locally compact (and o — com-
pact) “Hausdorff” spaces as defined in Definitions and We will see
again that this class of topological spaces have an ample supply of continuous
functions. We will start out with the notion of a Hausdorff topology. The fol-
lowing example shows a pathology which occurs when there are not enough
open sets in a topology.

Ezample 15.1. As in Example [13:30] let
X :=1{1,2,3} with 7 := {X,0,{1,2},{2,3},{2}}.

Example [[3.36] shows limits need not be unique in this space and moreover it
is easy to verify that the only continuous functions, f : Y — R, are necessarily
constant.

Definition 15.2 (Hausdorff Topology). A topological space, (X,T), is
Hausdorff if for each pair of distinct points, x,y € X, there exists dis-
joint open neighborhoods, U and V of x and y respectively. (Metric spaces are
typical examples of Hausdorff spaces.)

Remark 15.3. When 7 is Hausdorff the “pathologies” appearing in Example
do not occur. Indeed if z,, —» z € X and y € X \ {#} we may choose
V € 1, and W € 7, such that VN W = (). Then z,, € V a.a. implies z,, ¢ W
for all but a finite number of n and hence x,, - y, so limits are unique.

Proposition 15.4. Let (X,,7,) be Hausdorff topological spaces. Then the
product space X4 = [] Xo equipped with the product topology is Haus-

dorff.

a€cA
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Proof. Let x,y € X 4 be distinct points. Then there exists a € A such that
Ta(T) = o # Yo = Ta(y). Since X, is Hausdorff, there exists disjoint open
sets U,V C X, such 7, (z) € U and 7,(y) € V. Then n}(U) and 7 (V) are
disjoint open sets in X 4 containing x and y respectively. [

Proposition 15.5. Suppose that (X, 7) is a Hausdorff space, K CC X and
x € K¢. Then there exists U,V € 7 such that UNV =0, x € U and K C V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U,V € T such that K CV and F C U.

Proof. Because X is Hausdorff, for all y € K there exists V,, € 7, and
U, € 7, such that V,, NU, = (. The cover {Vy} e of K has a finite subcover,
{Vy}yGA for some A CC K. Let V = UyeaVy and U = Nyc AUy, then U,V € 7
satisfy z € U, K C V and U NV = (. This shows that K¢ is open and hence
that K is closed. Suppose that K and F are two disjoint compact subsets of
X. For each x € F' there exists disjoint open sets U, and V,, such that K C V,,
and = € U,. Since {U,},.p is an open cover of F) there exists a finite subset
A of F such that FF C U := UgeaU,. The proof is completed by defining
V i=0NgeaVs. |

Exercise 15.1. Show any finite set X admits exactly one Hausdorff topology
T.

Exercise 15.2. Let (X, 7) and (Y, 7y) be topological spaces.

1. Show 7 is Hausdorft iff A := {(x,z): 2 € X} is a closed set in X x X
equipped with the product topology 7™ ® 7.
2. Suppose 7 is Hausdorff and f,g : ¥ — X are continuous maps. If

{F =g} =Y then f = g. Hint: make use of the map fxg:Y — X x X
defined by (f x g) (y) = (f(9),9(y))-

Exercise 15.3. Give an example of a topological space which has a non-closed
compact subset.

Proposition 15.6. Suppose that X is a compact topological space, Y 1is a
Hausdorff topological space, and f : X — Y is a continuous bijection then f
is a homeomorphism, i.e. f~1:Y — X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdorff spaces
are closed, it follows that (f_l)_1 (C) = f(C) is closed in X for all closed
subsets C' of X. Thus f~! is continuous. ]

The next two results shows that locally compact Hausdorff spaces have
plenty of open sets and plenty of continuous functions.
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Proposition 15.7. Suppose X is a locally compact Hausdorff space and U C,
X a@d K CC U. Then there exists V C, X such that K CV CcV CcU C X
and V is compact. (Compare with Proposition above.)

Proof. By local compactness, for all z € K, there exists U, € 7, such
that U, is compact. Since K is compact, there exists A CC K such that
{Us} e is a cover of K. The set O = U N (UzeaUy) is an open set such that
K C O Cc U and O is precompact since O is a closed subset of the compact
set UpeaUs. (UzeaU,. is compact because it is a finite union of compact sets.)
So by replacing U by O if necessary, we may assume that U is compact. Since
U is compact and bd(U) = U NU¢ is a closed subset of U, bd(U) is compact.
Because bd(U) C U¢, it follows that bd(U) N K = 0, so by Proposition [15.5]
there exists disjoint open sets V and W such that K C V and bd(U) C W. By
replacing V' by VNU if necessary we may further assume that K C V' C U, see
Figure Because UNWE€ is a closed set containing V and bd(U)NW¢ = §),

Fig. 15.1. The construction of V.

VcUnWe=UubdU)NWe=UnNWecUCcCU.

Since U is compact it follows that V is compact and the proof is complete. m
The following Lemma is analogous to Lemma [14.27]

Lemma 15.8 (Urysohn’s Lemma for LCH Spaces). Let X be a locally
compact Hausdorff space and K CC U C, X. Then there exists f < U (see
Definition such that f =1 on K. In particular, if K is compact and
C is closed in X such that K NC =0, there exists f € C.(X,[0,1]) such that
f=1lon K and f =0 on C.

Proof. For notational ease later it is more convenient to construct g :=
1 — f rather than f. To motivate the proof, suppose g € C(X,[0,1]) such
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244 15 Locally Compact Hausdorff Spaces

that ¢ = 0 on K and g = 1 on U®. For r > 0, let U, = {g < r}. Then for
0<r<s<1,U.C{g<r}cCUsand since {g < r} is closed this implies

KcU.cU.c{g<r}cU,CU.

Therefore associated to the function g is the collection open sets {U,},, C 7
with the property that K C U, C U, CUs; C U forall 0 < r < s <1 and
U, = X if r > 1. Finally let us notice that we may recover the function g from
the sequence {U,} ., by the formula

r>0
g(z) =inf{r >0: 2 € U,}. (15.1)
The idea of the proof to follow is to turn these remarks around and define g
by Eq. (15.1)).
Step 1. (Construction of the U,.) Let
D:={k27":k=1,2,...,27"n=12,...}

be the dyadic rationals in (0, 1]. Use Proposition to find a precompact
open set U; such that K C Uy C Uy C U. Apply Proposition again to
construct an open set Uj 3 such that

K CUypClUypcl
and similarly use Propositionto find open sets Uy /2, U3z /4 C, X such that
K CUyyy CUyyg CUyja CUyyp C U3y C U3 C UL
Likewise there exists open set U, /g, Us/s, Us s, U7 /g such that

K C U1/8 C Ul/g C U1/4 C [71/4 - Ug/g C Ug/g C U1/2
- U1/2 C U5/8 C U5/8 C U3/4 - U3/4 - U7/8 - U7/8 c U;.

Continuing this way inductively, one shows there exists precompact open sets
{Ur},cp C 7 such that

KcU.-cU,cU cU cU cU

forall ,seDwithO<r<s<1.
Step 2. Let U, := X if r > 1 and define

glz) =inf{r e DU (1,2): x € U,},

see Figure Then g(z) € [0,1] for all z € X, g(x) = 0 for z € K since
x € K CU, forall r € D. If x € UY, then « ¢ U, for all » € D and hence
g(z) = 1. Therefore f := 1 — g is a function such that f = 1 on K and
{f#0}={g#1} c U, Cc Uy C U so that supp(f) = {f #0} c U, C U is
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15 Locally Compact Hausdorff Spaces 245

Fig. 15.2. Determining g from {U,}.

a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.

Since £ = {(a, 00), (—00, @) : @ € R} generates the standard topology on
R, to prove g is continuous it suffices to show {g < a} and {g > a} are open
sets for all @ € R. But g(z) < «a iff there exists r € DU (1,00) with r < «
such that x € U,.. Therefore

{g<a}:U{UT:r€DU(1,oo) >r<a}l

which is open in X. If « > 1, {g>a} =0 and if « < 0, {g > a} = X. If
a € (0,1), then g(z) > «a iff there exists r € D such that r > a and z ¢ U,.
Now if r > o and z ¢ U, then for s e DN («,r), ¢ Us C U,.. Thus we have

shown that -
{g>a}:U{(Us) :36D95>a}
which is again an open subset of X. ]

Theorem 15.9 (Locally Compact Tietz Extension Theorem). Let
(X, 7) be a locally compact Hausdorff space, K CC U C, X, f € C(K,R),
a = min f(K) and b = max f(K). Then there exists F € C(X,]a,b])
such that F|x = f. Moreover given ¢ € [a,b], F can be chosen so that
supp(F —¢) ={F #c} CU.

The proof of this theorem is similar to Theorem and will be left to the
reader, see Exercise [15.6
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246 15 Locally Compact Hausdorff Spaces

15.1 Locally compact form of Urysohn’s Metrization
Theorem

Notation 15.10 Let Q := [0, 1] denote the (infinite dimensional) unit cube
in RN, Fora,be Q let

oo

1
d(a,b) =Y o an = bnl. (15.2)
n=1

The metric introduced in Exercise [I4:22] would be defined, in this context,

asd(a,b) :== 300, 2%% Since 1 < 14|a, — by| < 2, it follows that d <
d < 2d. So the metrics d and d are equivalent and in particular the topologies
induced by d and d are the same. By Exercises |13.28] the d — topology on @
is the same as the product topology and by Tychonoff’s Theorem or by

Exercise [14.22] (Q,d) is a compact metric space.

Theorem 15.11. To every separable metric space (X, p), there exists a con-
tinuous injective map G : X — Q such that G : X — G(X) C Q is a homeo-
morphism. In short, any separable metrizable space X is homeomorphic to a

subset of (Q,d).

Remark 15.12. Notice that if we let p/(z,y) := d(G(x), G(y)), then p’ induces
the same topology on X as p and G : (X, p’) — (@, d) is isometric.

Proof. Let D = {z,} -, be a countable dense subset of X,

1 if ¢t<0
pt) =S 1-tif0<t <1
0 if t>1,

(see Figure 15.3) and for m,n € N let
frn(z) =1 = ¢ (mp(zy, 2)).

Then fr,, = 0if p(z,z,) < 1/m and fr,, = 1if p(z,z,) > 2/m. Let
{gr}rey be an enumeration of {f,, , : m,n € N} and define G : X — Q by

G(z) = (91(2), g2(2), . ..) € Q.

We will now show G : X — G(X) C Q is a homeomorphism. To show G
is injective suppose z,y € X and p(z,y) = 6 > 1/m. In this case we may
find z, € X such that p(z,z,) < ﬁ, oy, xn) > 6 — ﬁ > ﬁ and hence
famn(y) = 1 while fim n(y) = 0. From this it follows that G(z) # G(y) if
x # y and hence G is injective. The continuity of G is a consequence of the
continuity of each of the components g; of G. So it only remains to show
G7!: G(X) — X is continuous. Given a = G(z) € G(X) C Q and ¢ > 0,
choose m € N and z,, € X such that p(z,,x) < ﬁ < 5. Then f, n(x) =0
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-2 -1 0 1 2

t

Fig. 15.3. The graph of the function ¢.

and for y ¢ B(xy, ), fmn(y) = 1. So if k is chosen so that gy = fy,n, we
have shown that for

d(G(y),G(x)) > 27" for y ¢ B(xn,2/m)
or equivalently put, if
d(G(y),G(x)) < 27" then y € B(xn,2/m) C B(x,1/m) C B(z,e).

This shows that if G(y) is sufficiently close to G(z) then p(y,z) < &, i.e. G71
is continuous at a = G(x). ]

Theorem 15.13 (Urysohn Metrization Theorem for LCH’s). FEuvery
second countable locally compact Hausdorff space, (X,T), is metrizable, i.e.
there is a metric p on X such that T = 7,. Moreover, p may be chosen so that
X is isometric to a subset Qo C Q equipped with the metric d in Eq. .
In this metric X is totally bounded and hence the completion of X (which is

isometric to Qo C Q) is compact. (Also see Theorem|[15.45,)

Proof. Let B be a countable base for 7 and set
I'={({U,V)eBxB|UCcCV and U is compact}.

To each O € 7 and = € O there exist (U,V) € I' such that x € U C V C O.
Indeed, since B is a base for 7, there exists V € B such that x € V C O.
Now apply Proposition to find U’ C, X such that z € U’ Cc U' C V
with U’ being compact. Since B is a base for 7, there exists U € B such that
x €U C U’ and since U C U’, U is compact so (U, V) € I'. In particular this
shows that B’ := {U € B: (U,V) € I' for some V € B} is still a base for 7. If
I' is a finite, then B’ is finite and 7 only has a finite number of elements as well.
Since (X, 7) is Hausdorff, it follows that X is a finite set. Letting {xn}gzl be
an enumeration of X, define T': X — @Q by T(z,) = e, forn =1,2,...,N
where e, = (0,0,...,0,1,0,...), with the 1 occurring in the n'" spot. Then
plx,y) :=d(T(z),T(y)) for x,y € X is the desired metric.
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248 15 Locally Compact Hausdorff Spaces

So we may now assume that I" is an infinite set and let {(U,,V,,)} -, be an
enumeration of I'. By Urysohn’s Lemma there exists fyv € C(X,]0,1])
such that fyy =0on U and fyy =1 on VC Let F = {fyyv | (U, V) €T}
and set f,, := fu, v, — an enumeration of 7. We will now show that

o) = D o 1) — Fuly)
n=1

is the desired metric on X. The proof will involve a number of steps.

1. (pis ametric on X.) It is routine to show p satisfies the triangle inequality
and p is symmetric. If z,y € X are distinct points then there exists
(Ungs Vo) € I' such that z € U, and V,,, C O := {y}°. Since fpn,(z) =0
and fp,(y) =1, it follows that p(x,y) > 27" > 0.

2. (Let 70 = 7(fn :n €N), then 7 = 79 = 7,.) As usual we have 79 C 7.
Since, for each z € X, y — p(x,y) is 79 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that B, (e) :=
{ye X :p(z,y) <e} e pforall z € X and e > 0. Thus 7, C 79 C 7.
Suppose that O € 7 and x € O. Let (Uy,, Vp,) € I be such that z € Uy,
and V,, C O. Then f,,(x) =0 and f,, =1 on O°. Therefore if y € X and
frno(y) <1, then y € O so x € {f,, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 9. So 7 C 79 and
hence 7 = 79. Moreover, if y € B,(27"0) then 270 > p(z,y) > 27" f,, (v)
and therefore € B, (27") C {f,, < 1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7.

3. (X is isometric to some Qo C @.) Let T : X — @ be defined by T(z) =
(f1(x), fa(zx), ..., fu(x),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qo := T'(X). Since Q) is a subset
of the compact metric space (@, d), Qo is totally bounded and therefore
X is totally bounded.

BRUCE: Add Stone Chech Compactification results.

15.2 Partitions of Unity

Definition 15.14. Let (X, 7) be a topological space and Xy C X be a set. A
collection of sets {Ba},cq C 2% is locally finite on X if for all z € X,
there is an open neighborhood N, € 7 of x such that #{a € A : B, N N, #
0} < oco.

Definition 15.15. Suppose that U is an open cover of Xo C X. A collection
{Pataca C C(X,]0,1]) (N = oo is allowed here) is a partition of unity on
Xo subordinate to the cover U if:

1. for all « there is a U € U such that supp(¢a) C U,
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2. the collection of sets, {supp(¢a)taca, is locally finite on X, and
3. nea Pa =1 on Xo.

Notice by item 2. that, for each x € X, there is a neighborhood N, such
that
A= {a € A:supp(da) N N, # 0}

is a finite set. Therefore, Y c 4 GalN, = D ac Paln, which shows the sum
> aca Pa is well defined and defines a continuous function on N, and there-
fore on X since continuity is a local property. We will summarize these last
comments by saying the sum, Y 4 da, is locally finite.

Proposition 15.16 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K C X is a compact set and
U= {UJ};‘L:l is an open cover of K. Then there exists a partition of unity

{hj}?:l of K such that hy < U; for all j =1,2,...,n.

Proof. For all z € K choose a precompact open neighborhood, V,, of x
such that V', C U;. Since K is compact, there exists a finite subset, A, of K

such that K C |J Vj. Let
e

FjZU{Vz:meAandeCUj}.

Then Fj is compact, F; C Uj for all j, and K C U}_; F;. By Urysohn’s Lemma

[15.§] there exists f; < U; such that f; = 1 on Fj for j = 1,2,...,n and by

convention let f,11 = 1. We will now give two methods to finish the proof.
Method 1. Let hl = fl, h2 = f2(1 — hl) = f2(]. — fl),

hs = f3(1 —h1 —ha) = fs(1 = f1 = (1 = f1)f2) = f3(1 = f1)(1 = fa)

and continue on inductively to define

k—1
he=0=h——he)fi=fr- [[O-f)VE=23,....,n (153)
j=1
and to show
hng1=(L—hy—-—hy)-1=1-T[(A = f)). (15.4)
j=1

From these equations it clearly follows that h; € C.(X,[0,1]) and that
supp(h;) C supp(fj) C Uj, ie. hy < Uj. Since [T7_,(1 — f;) = 0 on K,
> i1 hj=1on K and {h; }?:1 is the desired partition of unity.

n
Method 2. Let g := > f; € C.(X). Then ¢ > 1 on K and hence
j=1

K C {g > 3}. Choose ¢ € C(X,[0,1]) such that ¢ =1 on K and supp(¢) C
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250 15 Locally Compact Hausdorff Spaces

{9 > 1} and define fo := 1 —¢. Then fo = 0 on K, fo = 1if g < 1 and
therefore,
Jotfit -+ fu=fo+g>0

on X. The desired partition of unity may be constructed as

fi(z)
fo(@) 4+ -+ fulz)

Indeed supp (h;) = supp (f;) C Uj, h; € Ce(X,[0,1]) and on K,

hj(z) =

L hitethe _fitetfa
B T Py A T

Proposition 15.17. Let (X, 7) be a locally compact and o — compact Haus-
dorff space. Suppose thatU C 7 is an open cover of X. Then we may construct
two locally finite open covers V = {Vi}N., and W = {W;}¥, of X (N = 0
is allowed here) such that:

1.W; cW; CV; CV; and V; is compact Jor all i.
2. For each i there exist U € U such that V; C U.

Proof. By Remark there exists an open cover of G = {G,}>,
of X such that G, C G, C Gny1. Then X = Ui‘;l(ék \ Gj_1), where by
convention G_; = Gy = ). For the moment fix k > 1. For each # € G} \ Gx_1,
let U, € U be chosen so that x € U, and by Proposition choose an open
neighborhood N, of = such that N, C U, N (Gys1 \ Gr_2), see Figure m
below. Since {N:},eq,\q,_, 18 an open cover of the compact set Gi \ Gr—_1,
there exist a finite subset Iy C {Nz},eq,\q,_, Which also covers G\ Gr_1.

By construction, for each W € I}, there is a U € U such that W C
U N (Gry1 \ Gk_2) and by another application of Proposition m there
exists an open set Vi such that W C Viy € Viy € U N (Grp1 \ Gi2). We
now choose and enumeration {W;}¥, of the countable open cover, U Ik,
of X and define V; = Viy,. Then the collection {W;} X, and {V;}¥, are easily
checked to satisfy all the conclusions of the proposition. In particular notice
that for each k; V; N G # ) for only a finite number of i’s. ]

Theorem 15.18 (Partitions of Unity for 0 — Compact LCH Spaces).
Let (X, 1) be locally compact, o — compact and Hausdorff and let U C T be an
open cover of X. Then there exists a partition of unity of {h;}N.; (N = oo is
allowed here) subordinate to the cover U such that supp(h;) is compact for all
i.

Proof. Let V = {V;}}¥, and W = {W;}¥, be open covers of X with the
properties described in Proposition By Urysohn’s Lemma [15.8] there
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G’\u—’L

Fig. 15.4. Constructing the {W,}f\;l .

exists f; < V; such that f; = 1 on W; for each . As in the proof of Proposition
15.16| there are two methods to finish the proof.
Method 1. Define hy = fi, hj by Eq. (15.3)) for all other j. Then as in

Eq. (15.4), for all n < N + 1,

oo

L= hy=lim [ f J[JA=£)| =0
j=1 j=1

since for x € X, f;(x) =1 for some j. As in the proof of Proposition it
is easily checked that {hi}f\il is the desired partition of unity.

Method 2. Let f := Zfil fi, a locally finite sum, so that f € C(X).
Since {W;};2, is a cover of X, f > 1 on X so that 1/f € C (X)) as well. The
functions h; := f;/f for i =1,2,..., N give the desired partition of unity. m

Lemma 15.19. Let (X, 7) be a locally compact Hausdorff space.

1. A subset E C X is closed iff EN K is closed for oll K CC X.

2. Let {Co}oca be a locally finite collection of closed subsets of X, then
C = UaeaCy is closed in X. (Recall that in general closed sets are only
closed under finite unions.)

Proof. 1. Since compact subsets of Hausdorff spaces are closed, £ N K is
closed if F is closed and K is compact. Now suppose that £ N K is closed
for all compact subsets K C X and let x € E°. Since X is locally compact,
there exists a precompact open neighborhood, V, of xEI By assumption ENV

LIf X were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of x which is disjoint from E, then there would exists
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252 15 Locally Compact Hausdorff Spaces

is closed so = € (E N V)C — an open subset of X. By Proposition there
exists an open set U such that x € U C U C (E N V)C, see Figure Let

S

O

¢

Fig. 15.5. Showing E° is open.

Fl

W :=U N V. Since
WNE=UNVNECUNVNE=0,

and W is an open neighborhood of x and x € E¢ was arbitrary, we have shown
FE*° is open hence FE is closed.

2. Let K be a compact subset of X and for each z € K let N, be an
open neighborhood of x such that #{a € A : Cy, N N, # ()} < co. Since K is
compact, there exists a finite subset A C K such that K C UzepN;. Letting
Ag:={a€eA:C,NK # 0}, then

#(A0) <Y #lacA:CanN, #0} <0

z€A

and hence K N (UaecaCq) = K N (Ugea,Co) - The set (Upea,Co) is a finite
union of closed sets and hence closed. Therefore, K N (UyecaCly) is closed and
by item 1. it follows that U,ec4Cy, is closed as well. ]

Corollary 15.20. Let (X, 7) be a locally compact and o — compact Hausdor(f
space and U = {Us},cq C T be an open cover of X. Then there exists a
partition of unity of {ha}aca subordinate to the cover U such that supp(hs) C
U, for all a € A. (Notice that we do not assert that h, has compact support.
However if Uy, is compact then supp(hy) will be compact.)

zn € E such that z, — . Since ENV is closed and z, € ENV for all large n,
it follows (see Exercise|6.4) that x € ENV and in particular that x € E. But we
chose z € E°.
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Proof. By the ¢ — compactness of X, we may choose a countable subset,
{a;}¥, (N = oo allowed here), of A such that {U; := an‘,}f\il is still an
open cover of X. Let {gj};?‘;l be a partition of unity]®| subordinate to the
cover {U;}Y, as in Theorem [15.18 Define I, := {j : supp(g;) C Uy} and
Iy, = I, \ (U?;llfk), where by convention Iy = (). Then

3

N o0
N=| |, = H Iy
k=1 k=1

If I, = 0 let hy := 0 otherwise let hy := 3", g;, a locally finite sum. Then

N 9]
th = Zgj =1.
k=1 j=1

By Item 2. of Lemma [15.19} U e, supp(g;) is closed and therefore,

supp(hx) = {hx # 0} = Ujer, {gj # 0} C Ujer,supp(g;) C Uk

and hence h; < Uy and the sum Zgil hy, is still locally finite. (Why?) The
desired partition of unity is now formed by letting h,, = hi for Kk < N +1
and h, =0 if o ¢ {a;} Y. [

Corollary 15.21. Let (X,7) be a locally compact and o — compact Haus-
dorff space and A,B be disjoint closed subsets of X. Then there exists
f € C(X,[0,1]) such that f =1 on A and f = 0 on B. In fact f can be
chosen so that supp(f) C BC.

Proof. Let U; = A° and Uy = B¢, then {Uy,Us} is an open cover of X.
By Corollary there exists hy, ho € C(X,[0,1]) such that supp(h;) C U;
for i = 1,2 and hy + ho = 1 on X. The function f = hy satisfies the desired
properties. [ |

15.3 Cp(X) and the Alexanderov Compactification

Definition 15.22. Let (X,7) be a topological space. A continuous function
f: X — C is said to vanish at infinity if {|f| > e} is compact in X for
all e > 0. The functions, f € C(X), vanishing at infinity will be denoted by
Co(X). (Notice that Cy (X) = C (X) whenever X is compact.)

Proposition 15.23. Let X be a topological space, BC(X) be the space of
bounded continuous functions on X with the supremum norm topology. Then

2 So as to simplify the indexing we assume there countable number of g;’s. This
can always be arranged by taking g, = 0 for large k if necessary.
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1. Co(X) is a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then
Co(X) = C.(X).

Proof.

1. If f € Co(X), K1 := {|f| > 1} is a compact subset of X and there-
fore f(K7) is a compact and hence bounded subset of C and so M :=
sup,¢c g, |f(x)| < oo. Therefore || f|| ., < M V1 < oo showing f € BC(X).
Now suppose f, € Co(X) and f,, — f in BC(X). Let € > 0 be given and
choose n sufficiently large so that ||f — fn ||, < e/2. Since

fI <Al + 1 = ful S Ufnl + 11 = fallo < 1fal +€/2,
{Ifl z e} c{lful +e/2 =} = {Ifnl = €/2}.

Because {|f| > ¢} is a closed subset of the compact set {|f,| >¢/2},
{|f] > €} is compact and we have shown f € Cy(X).

2. Since Cp(X) is a closed subspace of BC(X) and C.(X) C Cy(X), we
always have C.(X) C Cy(X). Now suppose that f € Cy(X) and let K, :=
{Ifl = i} cc X. By Lemmawe may choose ¢,, € C.(X,[0,1]) such
that ¢, =1 on K,,. Define f,, := ¢, f € Ce(X). Then

1

This shows that f € C.(X).

Proposition 15.24 (Alexanderov Compactification). Suppose that (X, T)
is a non-compact locally compact Hausdorff space. Let X* = X U{oc}, where
{0} is a new symbol not in X. The collection of sets,

™ =7U{X*"\K:KcCC X}c2¥,

is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover
f € C(X) extends continuously to X* iff f = g+ c with g € Co(X) and c € C
in which case the extension is given by f(co0) = c.

Proof. 1. (7* is a topology.) Let F := {F C X* : X*\ F € 7%}, ie.
F € F iff F is a compact subset of X or F' = FyU{oco} with Fy being a closed
subset of X. Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of X are closed and closed subsets of compact
subsets of X are compact, it is also easily checked that F is closed under
arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence 7 is a topology.
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15.3 Co(X) and the Alexanderov Compactification 255

2. ((X*,7*) is a Hausdorff space.) It suffices to show any point z € X
can be separated from oco. To do this use Proposition [I5.7] to find an open
precompact neighborhood, U, of x. Then U and V := X*\ U are disjoint open
subsets of X* such that z € U and co € V.

3. ((X*,7*) is compact.) Suppose that & C 7* is an open cover of X*.
Since U covers oo, there exists a compact set K C X such that X*\ K € U.
Clearly X is covered by Uy := {V \ {oo} : V € U} and by the definition of 7*
(or using (X*,7*) is Hausdorfl), Uy is an open cover of X. In particular U is
an open cover of K and since K is compact there exists A CC U such that
K c U{V \{oc}:V € A}. It is now easily checked that AU{X*\ K} Cc U
is a finite subcover of X*.

4. (Continuous functions on C'(X*) statements.) Let ¢ : X — X* be the
inclusion map. Then ¢ is continuous and open, i.e. i(V') is open in X* for all
Vopenin X. If f € C(X*), then g = f|x — f(c0) = foi— f(00) is continuous
on X. Moreover, for all € > 0 there exists an open neighborhood V' € 7* of oo
such that

lg(x)] = |f(x) — f(o0)] < e for all z € V.

Since V is an open neighborhood of oo, there exists a compact subset,
K C X, such that V = X* \ K. By the previous equation we see that
{r e X :|g(x)| > e} C K, so {|]g| > €} is compact and we have shown ¢ van-
ishes at oc.

Conversely if g € Cy(X), extend g to X* by setting g(co) = 0. Given
e > 0, the set K = {|g| > ¢} is compact, hence X* \ K is open in X*. Since
g(X*\ K) C (—¢,¢) we have shown that g is continuous at co. Since g is also
continuous at all points in X it follows that g is continuous on X*. Now it
f=g+cwith ¢c € C and g € Cy(X), it follows by what we just proved that
defining f(o0) = ¢ extends f to a continuous function on X*. [

Ezample 15.25. Let X be an uncountable set and 7 be the discrete topology
on X. Let (X* = X U{oo},7*) be the one point compactification of X. The
smallest dense subset of X* is the uncountable set X. Hence X* is a compact
but non-separable and hence non-metrizable space.

Exercise 15.4. Let X := {0, 1}]R and 7 be the product topology on X where
{0,1} is equipped with the discrete topology. Show (X, 7) is separable. (Com-
bining this with Exercise [13.9] and Tychonoff’s Theorem we see that
(X, 7) is compact and separable but not first countable.)

Solution to Exercise ((15.4)). We begin by observing that a basic open
neighborhood of g € X is of the form

Va={feX:f=gon A}

where A CC R. Therefore to see that X is separable, we must find a countable
set D C X such that for any g € X (¢: R —{0,1}) and any A CC R, there
exists f € D such that f = g on A.
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Kevin Costello’s construction. Let

Mok = ik /m, (k41) /m)

be the characteristic function of the interval [k/m, (k + 1)/m) and let D C

{0,1}® be the set of all finite sums of M, which still have range in {0, 1},
i.e. the set of sums over disjoint intervals.
Now suppose g € {0, I}R and A CC R. Let

S={reAd:g(x)=0} andT={xeAd:g(z)=1}.

Then A = S][T and we may take intervals J; := [k/m, (k + 1)/m) > t for
each t € T which are small enough to be disjoint and not contain any points
in S. Then f =3, .1 1;, € D and f =g on A showing f € Vj.

The next proposition gathers a number of results involving countability
assumptions which have appeared in the exercises.

Proposition 15.26 (Summary). Let (X, 7) be a topological space.

1. If (X, 1) is second countable, then (X, T) is separable; see Exercise .

2. If (X, 7) is separable and metrizable then (X, 7) is second countable; see
Ezercise[13.12.

3. If (X, 1) is locally compact and metrizable then (X, 7) is 0 — compact iff

(X, 7) is separable; see Ezxercises and|14.11)

4. If (X, 1) is locally compact and second countable, then (X, T) is o - com-

pact, see Ezercise[1].8
5. If (X, 1) is locally compact and metrizable, then (X, 7) is o — compact iff

(X, 1) is separable, see E:rercz'ses and|14.10,
6. There exists spaces, (X, T), which are both compact and separable but not
first countable and in particular not metrizable, see Ezxercise[15.4)

15.4 Stone-Weierstrass Theorem

We now wish to generalize Theorem to more general topological spaces.
We will first need some definitions.

Definition 15.27. Let X be a topological space and A C C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x,y € X there exists
f € A such that f(x) # f(y).

2. A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication. (Note well: we do not assume 1 € A.)

3. A C C(X,R) is called a lattice if fV g = max(f,g9) and f Ag =
min(f,g) € A for all f,g € A.
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15.4 Stone-Weierstrass Theorem 257

4. A C C(X,C) is closed under conjugation if f € A whenever f € A.

Remark 15.28. If X is a topological space such that C'(X,R) separates points
then X is Hausdorff. Indeed if z,y € X and f € C(X,R) such that
f(x) # f(y), then f=(J) and f~1(I) are disjoint open sets containing x
and y respectively when I and J are disjoint intervals containing f(z) and
f(y) respectively.

Lemma 15.29. If A is a closed sub-algebra of BC(X,R) then |f| € A for all
feAand A is a lattice.

Proof. Let f € A and let M = sup |f(z)|. Using Theorem [10.34| or
reX
Exercise [15.12] there are polynomials p,(t) such that

lim sup |[[t| = pn(t)] = 0.
nOS <M

By replacing p,, by pn — pn(0) if necessary we may assume that p,(0) = 0.
Since A is an algebra, it follows that f, = p,(f) € A and |f| € A, because
|f| is the uniform limit of the f,’s. Since

1
fvg=5 (f+g+If-gl)and
1
frng=5 (F+g=If =4,
we have shown A is a lattice. [

Lemma 15.30. Let A C C(X,R) be an algebra which separates points and
suppose x and y are distinct points of X. If there exits such that f,g € A such
that

f(z) #0 and g(y) # 0, (15.5)
then

Vi=A{(f(@), () : f € A}=R" (15.6)
Proof. It is clear that V is a non-zero subspace of R? If dim(V) = 1, then
V = span(a, b) for some (a,b) € R? which, necessarily by Eq. (15.5), satisfy
a # 0 # b. Since (a,b) = (f(z), f(y)) for some f € A and f? € A, it follows
that (a?,b%) = (f%(z), f%(y)) € V as well. Since dimV =1, (a,b) and (a?, b?)

are linearly dependent and therefore

0 = det (;2 bb2> = ab® — a*b = ab(b — a)

which implies that a = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A separates points. Therefore we conclude that
dim(V) =2, i.e. V = R2. ]
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Theorem 15.31 (Stone-Weierstrass Theorem). Suppose X is a locally
compact Hausdorff space and A C Co(X,R) is a closed subalgebra which
separates points. For x € X let

Ay ={f(x): fe A} and
I, ={f € Co(X,R): f(z) =0}.

Then either one of the following two cases hold.

1. A= Cy(X,R) or
2. there exists a unique point xo € X such that A =1,,.

Moreover, case 1. holds iff A, = R for all x € X and case 2. holds iff
there exists a point xg € X such that Az, = {0}.

Proof. If there exists zo such that A,, = {0} (zo is unique since A
separates points) then A C Z,,. If such an xq exists let C = Z,, and if 4, =R
for all z, set C = Cp(X,R). Let f € C be given. By Lemma for all
z,y € X such that « # y, there exists g5, € A such that f = g, on {my}ﬂ
When X is compact the basic idea of the proof is contained in the following
identity,

f(z) = inf sup g,y(2) for all z € X. (15.7)
ze€X yex
To prove this identity, let g, := sup,cx gz and notice that g, > f since
9zy(y) = f(y) for all y € X. Moreover, g,(z) = f(z) for all z € X since
guy(z) = f(z) for all z. Therefore,

inf sup g, = inf g, = f.
ZeXyEX Y rzeX r

The rest of the proof is devoted to replacing the inf and the sup above by

min and max over finite sets at the expense of Eq. (15.7)) becoming only an
approximate identity. We also have to modify Eq. (15.7)) slightly to take care

of the non-compact case.

Claim. Given € > 0 and = € X there exists g, € A such that g,(z) = f(z)
and f < g, + € on X.

To prove this, let V}, be an open neighborhood of y such that |f — gqy| < €
on Vy; in particular f < €+ gzy on Vy. Also let g, o be any fixed element in
A such that g, o (z) = f (z) and let

K={If12 S} u{lgeecl 2 5} (15.8)

Since K is compact, there exists A CC K such that K C |J V,. Define
yeA

31f Ay = {0} and = = x0 or y = o, then gu, exists merely by the fact that A
separates points.
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9z(%2) = max{gyy, 1y € AU {oo}}.

Since
f<e+gzy <e+gyonlV,

for any y € A, and
€
f<5<etgsoo < gsteon K,

f < e+ g, on X and by construction f(z) = g(z), see Figure ?7. This
completes the proof of the claim.

Fig. 15.6. Constructing the “dominating approximates,” g, for each z € X.

To complete the proof of the theorem, let g, be a fixed element of A such
that f < goo + ¢ on X; for example let goo = gz, € A for some fixed zy € X.
For each z € X, let U, be a neighborhood of z such that |f — g.| <€ on U,.
Choose

recF={Iflz 5} u{loxl > 5}

such that F' C |J U, (I" exists since F' is compact) and define
el

g =min{g, :x € I'U{o0}} € A

Then, for z € F, g, < f+¢e on U, and hence g < f+econ |J U, D F.
zel’
Likewise,
9<goo <€/2< f+4eon F°.

Therefore we have now shown,

f<gt+eand g < f+eon X,
i.e. |f —g| <eon X. Since ¢ > 0 is arbitrary it follows that f € A= A and
so A=C. |
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Corollary 15.32 (Complex Stone-Weierstrass Theorem). Let X be a
locally compact Hausdorff space. Suppose A C Co(X,C) is closed in the uni-

form topology, separates points, and is closed under complex conjugation. Then
either A= Cy(X,C) or

A=TI5 = {f € Co(X,C) : f(x0) =0}
for some xg € X.

Proof. Since

)

f+r
2

Re f and Im f are both in A. Therefore

R =
e f 57

and Im f =

Az = {Re f,Imf: f € A}

is a real sub-algebra of Cy(X,R) which separates points. Therefore either
Agr = Co(X,R) or Ag = Z,,, N Co(X, R) for some z and hence A = Cy(X,C)
or Igo respectively. [
As an easy application, Theorem and Corollary[15.32)imply Theorem
and Corollary respectively. Here are a few more applications.

Ezample 15.33. Let f € C([a,b]) be a positive function which is injective.
Then functions of the form Zgzl ax f* with a € C and N € N are dense in
C([a,b]). For example if a = 1 and b = 2, then one may take f(z) = z* for
any a # 0, or f(z) = e”, etc.

Exercise 15.5. Let (X, d) be a separable compact metric space. Show that
C(X) is also separable. Hint: Let F C X be a countable dense set and then

consider the algebra, A C C(X), generated by {d(z,-)},cp -

Ezample 15.34. Let X = [0,00), A > 0 be fixed, A be the real algebra
generated by t — e ™. So the general element f € A is of the form
f(t) = p(e=), where p(z) is a polynomial function in = with real coefficients.
Since A C Cy(X,R) separates points and e~ € A is pointwise positive,
A = C()(X, R)

As an application of Example [15.34] suppose that g € C. (X, R) satisfies,
/ g (t)e=dt =0 for all A > 0. (15.9)
0

(Note well that the integral in Eq. (15.9)) is really over a finite interval since g
is compactly supported.) Equation (15.9) along with linearity of the Riemann
integral implies

/oog(t)f(t)dt:OforalleA.
0
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We may now choose f, € A such that f, — ¢ uniformly and therefore,
using the continuity of the Riemann integral under uniform convergence (see

Proposition ,

o0 o0
0= lim g (t) fu (t) dt:/ g () dt.
From this last equation it is easily deduced, using the continuity of g, that
g = 0. See Theorem [22.12 below, where this is done in greater generality.

15.5 *More on Separation Axioms: Normal Spaces

(This section may safely be omitted on the first reading.)

Definition 15.35 (7o — 1> Separation Axioms). Let (X, 7) be a topological
space. The topology T is said to be:

1. Ty if for x # y in X there exists V € 7 such that x € V andy ¢V orV
such thaty € V but x ¢ V.
2. Ty if for every x,y € X with x # y there exists V € 7 such that x € V

and y ¢ V. Equivalently, T is Ty iff all one point subsets of X are closedﬁ
3. Ty if it is Hausdorff.

Note T3 implies 7} which implies Ty. The topology in Example is Tp
but not T}. If X is a finite set and 7 is a T} — topology on X then 7 = 2X. To
prove this let € X be fixed. Then for every y # « in X there exists V,, € 7
such that z € V,, while y ¢ V. Thus {z} = Nyx,V, € 7 showing 7 contains
all one point subsets of X and therefore all subsets of X. So we have to look
to infinite sets for an example of T} topology which is not T5.

Ezample 15.36. Let X be any infinite set and let 7 = {A C X : #(A4°) < oo} U
{0} — the so called cofinite topology. This topology is T} because if z # y in
X, then V = {z}¢ € 7 with ¢ V while y € V. This topology however is not
T5. Indeed if U,V € 7 are open sets such that x € U,y e Vand UNV =)
then U C V. But this implies #(U) < oo which is impossible unless U = ()
which is impossible since z € U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark need not occur for 77 — spaces. For example, let X = N
and 7 be the cofinite topology on X as in Example Then z, =nis a
sequence in X such that z,, — = as n — oo for all z € N. For the most part
we will avoid these pathologies in the future by only considering Hausdorff
topologies.

4 If one point subsets are closed and = # y in X then V := {2}° is an open set
containing y but not x. Conversely if 7 is 71 and z € X there exists V, € 7 such
that y € V,, and x ¢ Vj, for all y # x. Therefore, {z}° = Uyx,V, € 7.

Page: 261 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



262 15 Locally Compact Hausdorff Spaces

Definition 15.37 (Normal Spaces: T, — Separation Axiom). A topolog-
ical space (X, 7) is said to be normal or Ty if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A, B C X there exists disjoint open
sets VW C X such that ACV and B C W.

Ezample 15.38. By Lemma and Corollary it follows that metric
spaces and topological spaces which are locally compact, ¢ — compact and
Hausdorff (in particular compact Hausdorff spaces) are normal. Indeed, in
each case if A, B are disjoint closed subsets of X, there exists f € C(X, [0, 1])
such that f = lonAand f =0on B.Nowlet U = {f > 1} and V = {f < }}.

Remark 15.89. A topological space, (X, 1), is normal iff for any C C W C X
with C being closed and W being open there exists an open set U C, X such
that

CcUcUcCW.

To prove this first suppose X is normal. Since W€ is closed and C N W¢ = ),
there exists disjoint open sets U and V such that C C U and W° C V.
Therefore C C U C V¢ C W and since V¢ is closed, C CU CcU Cc Ve C W.
For the converse direction suppose A and B are disjoint closed subsets of
X. Then A C B¢ and B¢ is open, and so by assumption there exists U C, X
such that A C U C U C B¢ and by the same token there exists W C, X such
that U ¢ W C W C B¢. Taking complements of the last expression implies

BcWecwecU.
Let V=W Then ACUC, X, BCV Co XandUNV CcUNW® = .
Theorem 15.40 (Urysohn’s Lemma for Normal Spaces). Let X be a

normal space. Assume A, B are disjoint closed subsets of X. Then there exists
feC(X,[0,1]) such that f =0 on A and f =1 on B.

Proof. To make the notation match Lemmal[I5.8] let U = A¢ and K = B.
Then K C U and it suffices to produce a function f € C(X,[0,1]) such that
f=1on K and supp(f) C U. The proof is now identical to that for Lemma
15.8 except we now use Remark in place of Proposition [T5. [

Theorem 15.41 (Tietze Extension Theorem). Let (X,7) be a normal
space, D be a closed subset of X, —co < a < b < o0 and f € C(D,]a,b]).
Then there exists F € C(X,[a,b]) such that F|p = f.

Proof. The proof is identical to that of Theorem [7.4] except we now use
Theorem [I5.40] in place of Lemma |

Corollary 15.42. Suppose that X is a normal topological space, D C X is
closed, F € C(D,R). Then there exists F € C(X) such that F|p = f.
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Proof. Let g = arctan(f) € C(D,(=%5,%)

). Then by the Tietze ex-
]) such that G|p = g. Let

tension theorem, there exists G € C'(X 5.5

B := G '{-%,3}) C X, then BN D = (. By Urysohn’s lemma (Theo-
rem [15.40)) there exists h € C(X,[0,1]) such that h = 1 on D and h = 0
on B and in particular hG' € C(D, (-3, %)) and (hG) |p = g. The function
F :=tan(hG) € C(X) is an extension of f. ]

Theorem 15.43 (Urysohn Metrization Theorem for Normal Spaces).
Every second countable normal space, (X,7), is metrizable, i.e. there is a
metric p on X such that 7 = 7,. Moreover, p may be chosen so that X is
isometric to a subset Qo C @ (Q is as in Notation equipped with the
metric d in Eq. . In this metric X 1is totally bounded and hence the
completion of X (which is isometric to Qo C Q) is compact.

Proof. (The proof here will be very similar to the proof of Theorem|15.13])
Let B be a countable base for 7 and set

r={UV)eBxB|UcV}

To each O € 7 and z € O there exist (U,V) € I' such that x € U C V C O.
Indeed, since B is a base for 7, there exists V € B such that x € V C O.
Because {x}ﬂVc = (), there exists disjoint open sets U and W such that z € U,
Ve € W and UNW = {. Choose U € B such that = € U_C U. Since
UcUcWe, UcWecV and hence (U,V) € I'. See Flgure 7| below. In

Fig. 15.7. Constructing (U,V) € I.

particular this shows that
By :={U e€B:(UV) el forsomeV € B}

is still a base for 7.
If I' is a finite set, the previous comment shows that 7 only has a finite
number of elements as well. Since (X, 7) is Hausdorff, it follows that X is a
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finite set. Letting {JSn}nN:1 be an enumeration of X, define T : X — @ by
T(x,) = e, for n =1,2,...,N where e, = (0,0,...,0,1,0,...), with the 1
occurring in the n'® spot. Then p(z,y) := d(T(z),T(y)) for x,y € X is the
desired metric.

So we may now assume that I" is an infinite set and let {(U,,V,)},
be an enumeration of I". By Urysohn’s Lemma for normal spaces (Theorem
there exists fy v € C(X,[0,1]) such that fyy =0on U and fyy =1
on Ve Let F:={fuv | (UV) €I} and set f, := fy, v, — an enumeration
of F. The proof that

o) = D 5 1) = fuly)

is the desired metric on X now follows exactly as the corresponding argument
in the proof of Theorem [15.13 ]

15.6 Exercises

Exercise 15.6. Prove Theorem [[5.91 Hints:

1. By Proposition there exists a precompact open set V such that
K c V. cV c U Now suppose that f : K — [0,a] is continuous with
o € (0,1] and let A := f71([0,30]) and B := f~!([2a,1]). Appeal to
Lemma [15.§] to find a function g € C(X, [0, a/3]) such that g = /3 on B
and supp(g) C V' \ A.

2. Now follow the argument in the proof of Theorem [7.4] to construct F €
C(X, la,b]) such that F|x = f.

3. For ¢ € [a,b], choose ¢ < U such that ¢ = 1 on K and replace F by
F.:=¢F + (1 —¢)c.

Exercise 15.7 (Sterographic Projection). Let X = R", X* := X U {o0}
be the one point compactification of X, S™ := {y € R"*! : |y| = 1} be the
unit sphere in R"*! and N = (0,...,0,1) € R**!. Define f : S — X* by
f(N) =00, and for y € S™\ {N} let f(y) =b € R™ be the unique point such
that (b,0) is on the line containing N and y, see Figure below. Find a
formula for f and show f:S™ — X* is a homeomorphism. (So the one point
compactification of R™ is homeomorphic to the n sphere.)

Exercise 15.8. Let (X, 7) be a locally compact Hausdorff space. Show (X, 7)
is separable iff (X*,7*) is separable.

Exercise 15.9. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X* := X U{oco},7"),
is not metrizable. Hint: use exercise [5.8
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Fig. 15.8. Sterographic projection and the one point compactification of R™.

Exercise 15.10. Suppose (X, d) is a locally compact and o — compact metric
space. Show the one point compactification, (X* := X U {oco},7*), is metriz-
able.

Exercise 15.11. In this problem, suppose Theorem has only been
proved when X is compact. Show that it is possible to prove Theorem
by using Proposition to reduce the non-compact case to the compact
case.

Hints:

1.If A, =R for all € X let X* = X U {oo} be the one point compactifi-
cation of X.

2.If A, = {0} for some zp € X, let Y := X \ {zo} and Y* =Y U {oo} be
the one point compactification of Y.

3. For f € A define f(co) = 0. In this way A may be considered to be a
sub-algebra of C(X*,R) in case 1. or a sub-algebra of C(Y*,R) in case 2.

Exercise 15.12. Let M < oo, show there are polynomials p,,(¢) such that

lim sup ||t| — pn(t)] =0
n—00 |4 <M

using the following outline.

1. Let f(z) = /1 —a for |z| < 1 and use Taylor’s theorem with integral

remainder (see Eq.|37.15| of Appendix [37)), or analytic function theory if
you know it, to show there are constants’|c,, > 0 for n € N such that

Vi—z=1-) cua" forall |z| <1 (15.10)
n=1

(2n—3)11

5 In fact ¢p := S

, but this is not needed.
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2. Let gp(z) := 1= 3" cpa™. Use (15.10) to show > .>7 ¢, = 1 and

conclude from this that

lim sup [vV1— 2 — gn,(z)] =0. (15.11)

M el <1
3.Let 1 —a =t2/M? ie. x=1—1t>/M?, then

t
lim sup u—qm(l—tQ/Z\lQ) =0

so that p,,(t) := Mq,, (1 — t2/M?) are the desired polynomials.

Exercise 15.13. Given a continuous function f : R — C which is 27 -
periodic and ¢ > 0. Show there exists a trigonometric polynomial, p(6) =

> ane™® such that |f(0) — P(0)| < e for all § € R. Hint: show that
n=—N

there exists a unique function F' € C(S') such that f(0) = F(e¥) for all
0 R

Remark 15.44. Exercise generalizes to 2r — periodic functions on R¢,
i.e. functions such that f(6 + 2we;) = f(0) for all i =1,2,...,d where {ei}?zl
is the standard basis for R%. A trigonometric polynomial p(f) is a function of
6 € R? of the form
p(a) _ Z anem-e
nel’

where I is a finite subset of Z%. The assertion is again that these trigonometric
polynomials are dense in the 27 — periodic functions relative to the supremum
norm.
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Baire Category Theorem

Definition 16.1. Leti(X, T) be a topological space. A set E C X is said to be
nowhere dense if (E)O = () i.e. E has empty interior.

Notice that F is nowhere dense is equivalent to

X=((8)") = (B) = .

That is to say E is nowhere dense iff F° has dense interior.

16.1 Metric Space Baire Category Theorem

Theorem 16.2 (Baire Category Theorem). Let (X, p) be a complete met-
ric space.

o0
1 If{V,}.2 | is a sequence of dense open sets, then G := V, is dense in
=1

X. "
2.If {En},_, is a sequence of nowhere dense sets, then \J,_, E, C
U, B, & X and in particular X # UZOZI E,.

n=1

Proof. 1. We must shows that G = X which is equivalent to showing
that W N G # @ for all non-empty open sets W C X. Since V; is dense,
W NV; # 0 and hence there exists 1 € X and €1 > 0 such that

B(l‘l,El) cwnv.

Since V4 is dense, B(x1,e1)NVa # () and hence there exists 25 € X and g3 > 0
such that
B(.%‘Q,EQ) C B(xl,sl) N Vs.

Continuing this way inductively, we may choose {z,, € X and &,, > 0},-_; such
that
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B(xn,en) C B(xp_1,en—1) NV, Vn.

Furthermore we can clearly do this construction in such a way that ¢, | 0 as

n 1 co. Hence {z,}52 is Cauchy sequence and x = lim z, exists in X since
n—oo

X is complete. Since B(xy,¢e,) is closed, € B(xy,e,) C V,, so that x € V,,
for all n and hence z € G. Moreover, x € B(x1,e1) C W NV, implies x € W
and hence x € W N G showing W NG # (.

2. The second assertion is equivalently to showing

o+ (U - A er-A e
n=1 n=1 n=1

As we have observed, E,, is nowhere dense is equivalent to (ES)° being a dense
open set, hence by part 1), ()7, (ES)° is dense in X and hence not empty. m

Ezample 16.3. Suppose that X is a countable set and p is a metric on X for
which no single point set is open. Then (X, p) is not complete. Indeed we
may assume X = N and let F,, := {n} C N for all n € N. Then E,, is closed
and by assumption it has empty interior. Since X = UpenFy, it follows from
the Baire Category Theorem that (X, p) can not be complete.

16.2 Locally Compact Hausdorff Space Baire Category
Theorem

Here is another version of the Baire Category theorem when X is a locally
compact Hausdorff space.

Proposition 16.4. Let X be a locally compact Hausdorff space.

o0
1. If{V,}.2 | is a sequence of dense open sets, then G := (| V,, is dense in

n=1
X.
2. If{E,},2_ is a sequence of nowhere dense sets, then X #J,—, En.

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if suffices to show G N W # () for all open sets
W C X. Since V; is dense, there exists 1 € V1 N W and by Proposition [15.
there exists U; C, X such that z; € U; C U; € ViNW with U; being compact.
Similarly, there exists a non-empty open set U, such that Uy C Us C Up N Va.
Working inductively, we may find non-empty open sets {Ug},—, such that
U, C U, € U,_1NVj. Since ﬂ};:lUk = U, # 0 for all n, the finite intersection
characterization of U; being compact implies that

0#N2 U CGNW.

Page: 268 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



16.2 Locally Compact Hausdorff Space Baire Category Theorem 269

Definition 16.5. A subset E C X is meager or of the first category if
E = |J E, where each E, is nowhere dense. And a set R C X is called

n=1
residual if R¢ is meager.

Remarks 16.6 For those readers that already know some measure theory
may want to think of meager as being the topological analogue of sets of mea-
sure 0 and residual as being the topological analogue of sets of full measure.
(This analogy should not be taken too seriously, see Exercise )

1. R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {Ey}
such that

R =UX B, C U E,.

Taking complements of this equation shows that
m’?LozlETCl - Ra

i.e. R contains a set of the form N, V,, with each V,, (= ES) being an
open dense subset of X.
Conversely, if N5V, C R with each V,, being an open dense subset of X,
then R® C U2,V and hence R¢ = Uy E,, where each E,, = RNV}, is
a nowhere dense subset of X.

2. A countable union of meager sets is meager and any subset of a meager
set is meager.

3. A countable intersection of residual sets is residual.

Remarks 16.7 The Baire Category Theorems may now be stated as follows.
If X is a complete metric space or X is a locally compact Hausdorff space,
then

1. all residual sets are dense in X and
2. X 1is not meager.

It should also be remarked that incomplete metric spaces may be meager.
For example, let X C C([0,1]) be the subspace of polynomial functions on
[0, 1] equipped with the supremum norm. Then X = U2 | E,, where E,, C X
denotes the subspace of polynomials of degree less than or equal to n. You
are asked to show in Exercise below that F), is nowhere dense for all n.
Hence X is meager and the empty set is residual in X.

Here is an application of Theorem

Theorem 16.8. Let N' C C([0,1],R) be the set of nowhere differentiable

functions. (Here a function f is said to be differentiable at 0 if f'(0) :=
limy o M exists and at 1 if f'(1) := limo w exists.) Then N is
a residual set so the “generic” continuous functions is nowhere differentiable.
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270 16 Baire Category Theorem

Proof. If f ¢ N, then f'(z¢) exists for some zyp € [0,1] and by the
definition of the derivative and compactness of [0, 1], there exists n € N such
that | f(z) — f(zo)| < n|z — x| V x € [0,1]. Thus if we define

E,={fe€C([0,1]): 3z €[0,1] > |f(z)— f(x0)| < nlz —z0| ¥z €[0,1]},

then we have just shown N¢ C E := U2, E,,. So to finish the proof it suffices
to show (for each n) E, is a closed subset of C(]0,1],R) with empty interior.

1. To prove E, is closed, let {f,,} -_, C E, be a sequence of functions
such that there exists f € C([0,1],R) such that ||f — fn||,, — 0 as m — oo.

Since fi, € E,, there exists x,, € [0,1] such that
|[fm () = f(Tm)| < nlz — 2| V 2 € [0,1]. (16.1)

Since [0, 1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume o = liM,,—co Ty € [0,1] exists. Passing to the limit
in Eq. (16.1), making use of the uniform convergence of f, — f to show
limy,— 0o frn(zm) = f(20), implies

| (2) = f(o)| < nlw— x| V€ [0,1]

and therefore that f € E,,. This shows E, is a closed subset of C(][0,1],R).

2. To finish the proof, we will show E? = ) by showing for each f € E,, and
e > 0 given, there exists g € C([0,1],R)\ £, such that || f — g/, <. We now
construct g. Since [0,1] is compact and f is continuous there exists N € N
such that |f(z) — f(y)| < &/2 whenever |y —z| < 1/N. Let k denote the
piecewise linear function on [0, 1] such that k(%) = f(%) for m =0,1,..., N
and k"’ (z) =0 for x ¢ my :={m/N :m =0,1,...,N}. Then it is easily seen
that ||f — k|l. < /2 and for z € (%, L) that

m+1 m
)~ R IR

N

We now make k£ “rougher” by adding a small wiggly function h which we define
as follows. Let M € N be chosen so that 4eM > 2n and define h uniquely
by h(§;) = (=1)"e/2 for m = 0,1,..., M and h"(x) = 0 for x ¢ mp;. Then
|h||l,, <eand|h(z)| =4eM > 2n for x ¢ mpr. See Figurebelow. Finally
define g := k + h. Then

If = 9lle <Nf =Ko + 1Pl <e/2+e/2=¢
and
lg' ()] > W (z)] — |k (z)| >2n —n=nVz & mp Umy.

It now follows from this last equation and the mean value theorem that for
any zo € [0,1],
o) stew) .,

T — X0
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16.2 Locally Compact Hausdorff Space Baire Category Theorem 271

Fig. 16.1. Constgructing a rough approximation, g, to a continuous function f.

for all = € [0, 1] sufficiently close to . This shows g ¢ E,, and so the proof is
complete. [
Here is an application of the Baire Category Theorem in Proposition

Proposition 16.9. Suppose that f : R — R is a function such that f'(x)
exists for all x € R. Let

U::U zeR:sup |f'(z+y)|<oop.
e>0 lyl<e

Then U is a dense open set. (It is not true that U = R in general, see Example

below.)

Proof. It is easily seen from the definition of U that U is open. Let W C, R
be an open subset of R. For k& € N, let

By = {er:lf(y)f(w)l <kly—a| when |y — | < ;13}

= [ {2eW:|fla+2)—f) <k},

zi|z|<k—1

which is a closed subset of R since f is continuous. Moreover, if x € W and
M =|f'(z)|, then

f(y) = f(@)| = [f'(z) (y —2) +o(y — )|
< (M A+1) |y — =

for y close to x. (Here o(y — «) denotes a function such that lim,_., o(y —
x)/(y — ) = 0.) In particular, this shows that z € Ej, for all k sufficiently
large. Therefore W= U | E;, and since W is not meager by the Baire category
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272 16 Baire Category Theorem

Theorem in Proposition some FEj has non-empty interior. That is there
exists g € Ey, C W and € > 0 such that

J:=(xg—e,x0+¢) C B CW.

For z € J, we have |f(z + 2) — f(z)| < k|z| provided that |z| < k~! and
therefore that |f'(x)| < k for € J. Therefore g € U N W showing U is
dense. .

Remark 16.10. This proposition generalizes to functions f : R™ — R™ in an
obvious way.

For our next application of Theorem let X := BC* ((—1,1)) denote
the set of smooth functions f on (—1,1) such that f and all of its derivatives
are bounded. In the metric

pP\J,9) = - 1+ ||f(k) _ g(k)Hoo g ’

X becomes a complete metric space.

oo

Theorem 16.11. Given an increasing sequence of positive numbers {Mn}n:1 ,

the set

n

(n)
F = {fEX:limsup‘fM(O)‘ > 1}

1s dense in X. In particular, there is a dense set of f € X such that the power
series expansion of f at 0 has zero radius of convergence.

Proof. Step 1. Let n € N. Choose g € C°((—1,1)) such that ||g|| , < 27"
while ¢'(0) = 2M,, and define

x th_1 ta
fn(l‘) = / dtn_l / dtn_g N / dtlg(tl).
0 0 0

Then for k < n,

xT th—k—1 ta
f,(f)(x)z/ dtn,k,l/ dtn,k,g.../ dtig(ty),
0 0 0

f™(z) = ¢ (z), fy(Ln) (0) = 2M,, and fT(Lk) satisfies

2—7’L
fflk)H < m <27 " for k < n.

Consequently,
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16.2 Locally Compact Hausdorff Space Baire Category Theorem 273

S

p(fn,0) = 27kl

e

19
n—1

<> 2 ’“2—"+22—’“ 1<2(27"+27")=4-27"
k=0 k=n

Thus we have constructed f, € X such that lim, o p(fr,0) = 0 while
75 (0) = 2M,, for all n.
Step 2. The set

Gy = Unm>n {f €X: ‘f“”)(o)‘ > Mm}

is a dense open subset of X. The fact that G,, is open is clear. To see that
G,, is dense, let ¢ € X be given and define g, := g + &, f;n Where €, 1=
sgn (g™ (0)). Then

‘g<m> ‘ - ’g(m) ‘ n ‘f,S;WO)‘ > 2M,, > M,, for all m.
Therefore, g,, € G, for all m > n and since

p(gm»9) = p(fm,0) — 0 as m — oo

it follows that g € G,,.
Step 3. By the Baire Category theorem, NG,, is a dense subset of X. This
completes the proof of the first assertion since

f:{fEX:limsup‘f(;;(O)’>l}

F(0)
M

n

:ﬂffl{feX:’ ’21f0rsomen2m}30%°10n.
Step 4. Take M,, = (n )2 and recall that the power series expansion for f

near 0 is given by > f” £00) o
and any z # 0 because

. This series can not converge for any f € F

n(0 . n(0
lim sup In( )x” = lim sup ! <2)n‘x"
n 0 .
= lim sup Inl 2) - lim n! 2" = o0
where we have used lim,,_,o, n!|2"| = oo and limsup,,_, J(CZI()O?) > 1. ]
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274 16 Baire Category Theorem

Remark 16.12. Given a sequence of real number {a,} -, there always exists
f € X such that f(™(0) = a,. To construct such a function f, let ¢ €
C2°(—1,1) be a function such that ¢ = 1 in a neighborhood of 0 and ¢,, € (0, 1)
be chosen so that €, | 0 as n — oo and Y.~ |a,|er < oo. The desired
function f can then be defined by

oo

fla)=>" %”xw T/en) = Zgn (16.2)

n=0

The fact that f is well defined and continuous follows from the estimate:

I
9a2)] = 190 Ja e

T d(a/en)| <

and the assumption that Y~ |a,| e < co. The estimate

e >|—\ Gy 1¢<x/en> " g ()

(n 1) nle,
Nl
<
M
< (I9lloe + 114110 |an|5n
and the assumption that Y - lan|e? < oo shows f € C'(—1,1) and
f'(x) = Y07 g (2). Similar arguments show f € C¥(—1,1) and f k)( ) =
oo Og%k)( ) for all x and k € N. This completes the proof since, using

¢(x/e,) =1 for x in a neighborhood of 0, gék)(O) = 0 nax and hence

Zgw) —

len™ + = lan|en

16.3 Exercises

Exercise 16.1. Let (X, ||-||) be a normed space and E C X be a subspace.

1. If F is closed and proper subspace of X then E is nowhere dense.
2. If F is a proper finite dimensional subspace of X then E is nowhere dense.

Exercise 16.2. Now suppose that (X, ||-||) is an infinite dimensional Banach
space. Show that X can not have a countable algebraic basis. More explicitly,
there is no countable subset S C X such that every element x € X may be
written as a finite linear combination of elements from S. Hint: make use of
Exercise and the Baire category theorem.
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17

Introduction: What are measures and why
“measurable” sets

Definition 17.1 (Preliminary). A measure p “on” a set X is a function
p: 2% —[0,00] such that
1. (@) =0
2. If {Ai}f\le is a finite (N < 00) or countable (N = c0) collection of subsets
of X which are pair-wise disjoint (i.e. A; N A; =0 if i # j) then

z lA Z:u

Ezxample 17.2. Suppose that X is any set and = € X is a point. For A C X,

let
1if z€ A

MA){O if z ¢ A

Then p = 6§, is a measure on X called the Dirac delta measure at z.

Ezxample 17.3. Suppose that p is a measure on X and A > 0, then X\ - p
is also a measure on X. Moreover, if {4 }acs are all measures on X, then

B= S o i
= Z to(A) forall A C X
acJ

is a measure on X. (See Section [2| for the meaning of this sum.) To prove
this we must show that p is countably additive. Suppose that {4;};-, is a
collection of pair-wise disjoint subsets of X, then

(U A;) Z/i ZZMQ(A

i=1 acJ
= Z Z‘LLO‘(Ai) = Z Ma(UioilAi)
acJ i=1 aeclJ

= (U2, Ai)
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wherein the third equality we used Theorem [.22] and in the fourth we used
that fact that p, is a measure.

Ezample 17.4. Suppose that X is a set A : X — [0,00] is a function. Then

W= Z A(z)d,

zeX

is a measure, explicitly

p(A) = A)

TEA
for all A C X.

17.1 The problem with Lebesgue “measure”

So far all of the examples of measures given above are “counting” type mea-
sures, i.e. a weighted count of the number of points in a set. We certainly are
going to want other types of measures too. In particular, it will be of great
interest to have a measure on R (called Lebesgue measure) which measures
the “length” of a subset of R. Unfortunately as the next theorem shows, there
is no such reasonable measure of length if we insist on measuring all subsets
of R.

Theorem 17.5. There is no measure i : 28—[0, 00] such that

1. u([a, b)) = (b—a) for alla < b and
2. is translation invariant, i.e. u(A+ x) = u(A) for all z € R and A € 28,
where
A+z:={y+z:yec A} CR.

In fact the theorem is still true even if (1) is replaced by the weaker con-
dition that 0 < u((0,1]) < oo.

The counting measure p(A) = # (A) is translation invariant. However
1((0,1]) = oo in this case and so p does not satisfy condition 1.

Proof. First proof. Let us identify [0, 1) with the unit circle S* := {z €
C: |z| = 1} by the map

&(t) = €™ = (cos 2t + isin2wt) € S*

for ¢ € [0,1). Using this identification we may use u to define a function v on
25" by v(¢(A)) = u(A) for all A C [0,1). This new function is a measure on
S* with the property that 0 < v((0,1]) < co. For z € ST and N C S! let

zN :={zn € S':nec N}, (17.1)
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17.1 The problem with Lebesgue “measure” 279

that is to say e?’ N is N rotated counter clockwise by angle #. We now claim
that v is invariant under these rotations, i.e.

v(zN) =v(N) (17.2)

for all z € S and N C S*. To verify this, write N = ¢(A) and 2z = ¢(¢t) for
some t € [0,1) and A C [0,1). Then

H()6(A) = 6(t + Amod 1)
where for A C [0,1) and « € [0,1),

t+ Amodl:={a+tmodl € [0,1):a€ N}
=(a+Anfa<l—thHu(t-1)+An{a>1-1t}).

Thus

v(p(t)p(A)) = u(t + Amod 1)
(a+AN{a<1—tHu(t—1D+An{a>1-1t}))
(a+An{a<i—t}) +p((t-1+AN{a>1-1}))
Anfa<1-t})+p(An{a>1-1t})
(An{a<1-thU(An{a>1—1t}))

= p(
= p(
= p(
w(
W

Therefore it suffices to prove that no finite non-trivial measure v on S* such
that Eq. (17.2) holds. To do this we will “construct” a non-measurable set
N = ¢(A) for some A C [0,1). Let

Ri={z=¢2":tcQl={2=¢?"":tc[0,1)NQ}

— a countable subgroup of S'. As above R acts on S' by rotations and divides
S1 up into equivalence classes, where z,w € S are equivalent if z = rw for
some r € R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N C S! be the set of these
representative points. Then every point z € S! may be uniquely written as
z=mnr withn € N and r € R. That is to say

s'=TJ oN) (17.3)

reR

where ]_[ A, is used to denote the union of pair-wise disjoint sets {A,}. By

Eqgs. and ( -,
v(S") =) w(rN)=> u(N).

reR reR
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The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S') € (0,1). Thus we have reached
the desired contradiction. ]

Proof. Second proof of Theorem [I7.5] For N C [0,1) and « € [0,1),
let

N*=N+amodl1
={a+amodl €[0,1):a € N}
=(a+Nnf{a<l—aph)U((a=1)+Nn{a>1-a}).
Then
pNY)=pla+Nn{a<l—a})+p((a—1)+Nnf{e>1-a})
=pu(Nnfa<l—-a})+pu(Nn{a>1-a})
=u(Nn{a<l—a}U(Nn{a>1-a}))
= u(N). (17.4)

We will now construct a bad set N which coupled with Eq. (17.4) will lead to
a contradiction. Set

Qe ={z+reR:reQ} =2+Q.

Notice that Q, N Qy # 0 implies that Q, = Q. Let O = {Q, : * € R} — the
orbit space of the @ action. For all A € O choose f(A) € [0,1/3) N AE| and
define N = f(O). Then observe:

1. f(A) = f(B) implies that AN B # () which implies that A = B so that f
is injective.
2. 0O={Qn:n €N}

Let R be the countable set,

R:=QnJ0,1).
‘We now claim that
N'NN*=0if r # s and (17.5)
[Oa 1) = UTGRNT- (176)

Indeed, if z € N"NN® # () then x = r + nmod 1 and = s +n' mod 1, then
n—n' € Q,ie. Q, = Q, . Thatis to say, n = f(Qn) = f(Qn/) = n' and hence
that s = rmod 1, but s,7 € [0,1) implies that s = r. Furthermore, if = € [0, 1)
and n = f(Q,), then x —n =r € Q and x € N"™°41 Now that we have
constructed N, we are ready for the contradiction. By Equations (17.4H17.6|)
we find

' We have used the Axiom of choice here, i.e. [T o (AN [0,1/3]) #0
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= (0,1)) = 3 (V) = 3 (V)
reER reR
B {oo if u(N) >0
Sl 0ifu(N)=0"

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set. [

Because of Theorem [L7.5} it is necessary to modify Definition Theo-
rem points out that we will have to give up the idea of trying to measure
all subsets of R but only measure some sub-collections of “measurable” sets.
This leads us to the notion of ¢ — algebra discussed in the next chapter. Our
revised notion of a measure will appear in Definition [19.1]of Chapter [I9]below.
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Measurability

18.1 Algebras and o — Algebras

Definition 18.1. A collection of subsets A of a set X is an algebra if

1.0, Xec A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then AyU---UA,, €
A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 18.2. A collection of subsets M of X is a 0 — algebra (or some-
times called a o — field) if M is an algebra which also closed under countable
unions, i.e. if {A;};o; C M, then U2, A; € M. (Notice that since M is also
closed under taking complements, M is also closed under taking countable in-
tersections.) A pair (X, M), where X is a set and M is a o — algebra on X,
is called a measurable space.

The reader should compare these definitions with that of a topology in
Definition Recall that the elements of a topology are called open sets.
Analogously, elements of and algebra A or a o — algebra M will be called
measurable sets.

Example 18.3. Here are some examples of algebras.

1. M = 2% then M is a topology, an algebra and a o — algebra.

2. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which is not
an algebra.

3.7 =A={{1},{2,3},0, X} is a topology, an algebra, and a o — algebra
on X. The sets X, {1}, {2,3}, @ are open and closed. The sets {1,2} and
{1,3} are neither open nor closed and are not measurable.

The reader should compare this example with Example
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Proposition 18.4. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.

Proof. The proof is the same as the analogous Proposition[I3.6] for topolo-
gies, i.e.

A(E) = ﬂ{A : A is an algebra such that & C A}

and

o(€) = ﬂ{./\/l : M is a o — algebra such that £ C M}.
[

Example 18.5. Suppose X = {1,2,3} and € = {0, X, {1, 2}, {1, 3}}, see Figure
181

GRS

Fig. 18.1. A collection of subsets.

Then

T(g) = Q]aX»{l}a{laQ}a{lv?’}}
A(E) = o(E) = 2.

The next proposition is the analogue to Proposition for topologies
and enables us to give and explicit descriptions of A(£). On the other hand
it should be noted that o(€) typically does not admit a simple concrete de-
scription.

Proposition 18.6. Let X be a set and €& C 2%, Let £ := {A°: A € £} and
E=EU{X,0} UE® Then

A(E) := {finite unions of finite intersections of elements from E.}. (18.1)

Proof. Let A denote the right member of Eq. (18.1]). From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices

Page: 284 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



18.1 Algebras and o — Algebras 285

to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z=J A

i=1j=1

where A;; € £.. Therefore, writing B;; = Agj € &, we find that

N K K
z2=(UBi= | BunBy,N---NByj,) €A
1=1j=1 Ji,--IN=1

wherein we have used the fact that By, N Byj, N---N Byj, is a finite inter-
section of sets from &,. [ |

Remark 18.7. One might think that in general o(€) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
Z=J A4

i=1j=1
with Aij € &, then

2° = U <ﬂ AZH)
=1

J1=1,92=1,...58=1,...

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe o(£), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition below.

Exercise 18.1. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F NV where F' is closed and V is open.

The following notion will be useful in the sequel and plays an analogous
role for algebras as a base (Definition [13.8)) does for a topology.

Definition 18.8. A set £ C 2X is said to be an elementary family or
elementary class provided that

e fe&

o & is closed under finite intersections

o if E €&, then E€ is a finite disjoint union of sets from E. (In particular
X = 0° is a finite disjoint union of elements from £.)

Page: 285 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



286 18 Measurability
Ezample 18.9. Let X = R, then

E:={(a,b)NR:a,beR}
={(a,b] : a € [-00,0) and a < b < oo} U {0, R}

is an elementary family.

Exercise 18.2. Let A C 2% and B C 2¥ be elementary families. Show the
collection
E=AxB={AxB:AcAand B € B}

is also an elementary family.

Proposition 18.10. Suppose € C 2% is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E.

Proof. This could be proved making use of Proposition However it
is easier to give a direct proof. Let A denote the collection of sets which may
be written as finite disjoint unions of sets from £. Clearly £ C A C A(€) so it
suffices to show A is an algebra since A(E) is the smallest algebra containing
£. By the properties of £, we know that #, X € A. Now suppose that A; =
HFG/L F € A where, fori =1,2,...,n, A; is a finite collection of disjoint sets
from £. Then

ﬁAi:ﬁ<H F): U (FLNFN---NF,)
i=1 i=1 \FeA; (F1yyees Fp ) EAL XX Ay,

and this is a disjoint (you check) union of elements from €. Therefore A is
closed under finite intersections. Similarly, if A = [, F with A being a
finite collection of disjoint sets from &, then A° = (., F. Since by assump-
tion F¢ € A for F € A C £ and A is closed under finite intersections, it
follows that A° € A. |

Definition 18.11. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F.

Ezample 18.12. Let X be a set and €& = {A4,..., A, } where A1,..., A, is a
partition of X. In this case

AE) =0(&) =7(E) = {Uicadi : AC{L1,2,...,n}}
where U;e 1 A; :== 0 when A = (). Notice that

#(A(E) = (202 = 27,
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Proposition 18.13. Suppose that M C 2% is a 0 — algebra and M is at
most a countable set. Then there exists a unique finite partition F of X such
that F C M and every element B € M 1is of the form

B=U{AeF:ACB}. (18.2)
In particular M is actually a finite set and # (M) = 2™ for some n € N.
Proof. For each z € X let
Ay, =nN{AeM:ze€ A} e M,

wherein we have used M is a countable o — algebra to insure A, € M. Hence
A, is the smallest set in M which contains z. Let C' = A, NA,. If ¢ C then
A \C C A, is an element of M which contains z and since A, is the smallest
member of M containing z, we must have that C' = ). Similarly if y ¢ C then
C = 0. Therefore if C' # (), then z,y € A, N A, € M and A, N A, C A, and
AzNA, C Ay from which it follows that A, = A;NA, = A,. This shows that
F={A,: 2z € X} C Mis a (necessarily countable) partition of X for which
Eq. holds for all B € M. Enumerate the elements of F as F = {P,}_;
where N € N or N = oco. If N = o0, then the correspondence

ae{0, 1} >4, =U{P,:a, =1} eM

is bijective and therefore, by Lemma[2.6] M is uncountable. Thus any count-
able o — algebra is necessarily finite. This finishes the proof modulo the unique-
ness assertion which is left as an exercise to the reader. ]

Ezxample 18.14. Let X =R and
E={(a,0):acR}U{R,0} = {(a,00) NR: a € R} C 2%,

Notice that £ = &£ and that £ is closed under unions, which shows that
T(€) = &, i.e. € is already a topology. Since (a,00)¢ = (—00,a] we find that
& ={(a,0), (—00,a],—o00 < a < oo} U{R, P}. Noting that

(a7 OO) n (_007 b] = (a'v b]
it follows that A(E) = A(£) where
£ = {(a,b]NR:a,beR}.

Since € is an elementary family of subsets of R, Proposition implies
A(E) may be described as being those sets which are finite disjoint unions of
sets from £. The ¢ — algebra, o (&), generated by £ is very complicated.
Here are some sets in o(€) — most of which are not in A(E).

(a) (a,b) = [':jlw,b )
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288 18 Measurability

(b) All of the standard open subsets of R are in o(&).
() {z}=N(z—L,2] €c(&)

)
) n
(d) [a,b] = {a} U (a,b] € o(€)
(e) Any countable subset of R is in o(&).

Remark 18.15. In the above example, one may replace £ by £ = {(a,00) : a €
Q} U {R, 0}, in which case A(E) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a,0), (—00,al],(a,b] : a,b € Q} U {0, R}.

This shows that A(E) is a countable set — a useful fact which will be needed
later.

Notation 18.16 For a general topological space (X, T), the Borel o — alge-
bra is the o — algebra Bx = o(7) on X. In particular if X = R™, Bgrn will
be used to denote the Borel o — algebra on R™ when R™ is equipped with its
standard Euclidean topology.

Exercise 18.3. Verify the o — algebra, Bg, is generated by any of the following
collection of sets:

1. {(a,00):a € R}, 2. {(a,00) :a € Q} or 3. {[a,0):a€Q}.

Proposition 18.17. If 7 is a second countable topology on X and & is a
countable collection of subsets of X such that T = 7(£), then Bx := o(7) =
(&), i.e. a(T(€)) = o(€).

Proof. Let £; denote the collection of subsets of X which are finite inter-
section of elements from & along with X and (. Notice that & is still countable
(you prove). A set Z is in 7(€) iff Z is an arbitrary union of sets from &y.

Therefore Z = |J A for some subset F C &, which is necessarily count-
AeF
able. Since & C o(€) and o(€) is closed under countable unions it follows

that Z € 0(€) and hence that 7(£) C o(€). Lastly, since £ C 7(€) C o(€),
o(&) co(r(&)) Co(é). L]

18.2 Measurable Functions

¢

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose (X, M, 1) is a measure
space and f : X — R,. Roughly speaking, in the next Chapter we are going
to define [ fdu as a certain limit of sums of the form,

X

o

> aip(fH(as, aira))-

0<ai<az<asz<...
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For this to make sense we will need to require f~'((a,b]) € M for all a <
b. Because of Lemma [I8:22] below, this last condition is equivalent to the
condition f~!(Br) C M.

Definition 18.18. Let (X, M) and (Y,F) be measurable spaces. A function
f: X —Y is measurable if f~*(F) C M. We will also say that f is M/F
— measurable or (M, F) — measurable.

Ezample 18.19 (Characteristic Functions). Let (X, M) be a measurable space
and A C X. We define the characteristic function 14 : X — R by

lifxe A
1A("”){01fx¢A.

If A€ M, then 14 is (M,2®) — measurable because 15" (W) is either §, X,
A or A€ for any W C R. Conversely, if F is any o — algebra on R containing
aset W C Rsuch that 1 € W and 0 € W°, then A € M if 14 is (M, F) -
measurable. This is because A = 1,1 (W) € M.

Exercise 18.4. Suppose f : X — Y is a function, F C 2¥ and M C 2¥.
Show f~1F and f, M (see Notation are algebras (o — algebras) provided
F and M are algebras (o — algebras).

Remark 18.20. Let f : X — Y be a function. Given a ¢ — algebra F C 2V,
the o — algebra M := f~1(F) is the smallest o — algebra on X such that f is
(M, F) - measurable . Similarly, if M is a o - algebra on X then F = f. M
is the largest o — algebra on Y such that f is (M, F) - measurable .

Recall from Definition that for £ ¢ 2¥ and A C X that
Ea=i"()={ANE:Ec&}

where i4 : A — X is the inclusion map. Because of Exercise [13.3] when
€ = M is an algebra (o — algebra), M4 is an algebra (o — algebra) on A and
we call M 4 the relative or induced algebra (o — algebra) on A.

The next two Lemmas are direct analogues of their topological counter
parts in Lemmas [[3.13] and [[3.14] For completeness, the proofs will be given
even though they are same as those for Lemmas and

Lemma 18.21. Suppose that (X, M), (Y,F) and (Z,G) are measurable
spaces. If f : (X,M) — (Y,F) and g : (Y,F) — (Z,G) are measurable
functions then go f : (X, M) — (Z,G) is measurable as well.

Proof. By assumption ¢~(G) C F and f~!(F) C M so that

(go ) Q) =f"(97(9) C fH(F) c M.
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Lemma 18.22. Suppose that f : X — Y is a function and £ C 2¥ and ACY
then

o(f71) = ) and (18.3)

(@(€))a = (5,4) (18.4)
(Similar assertion hold with o (-) being replaced by A(-).) Moreover, if F
)

a(E) and M is a o — algebra on X, then f is (M, F) — measurable iff f (€
M.

Proof. By Exercise f~Yo(€)) is a o — algebra and since £ C F,
fHE) C f~1(a(E)). It now follows that o (f~1(E)) € f~ (o (£)). For the
reverse inclusion, notice that

fo (F7HE) ={BcY  fI(B)ea(f71(€)}

is a 0 — algebra which contains € and thus ¢(€) C f.o (f7'(£)). Hence if
B € o(&) we know that f~1(B) € o (f~*(€)), ie. f71(c(&)) C o (f71(E))
and Eq. has been proved. Applying Eq. with X =Aand f=1i,4
being the inclusion map implies

(@(E)a =14 (0(E)) = 0(i3'(€)) = 7(Ea)-

Lastly if f71€ € M, then f~lo(€) = J(f*IS) C M which shows f is
(M, F) — measurable. L]

C

Corollary 18.23. Suppose that (X, M) is a measurable space. Then the fol-
lowing conditions on a function f: X — R are equivalent:

is (M, Br) — measurable,
1(( 00)) € M for all a € R,
Y(a,)) € M for all a € Q,

f1((=o0,a]) € M for all a € R.

Proof. An exercise in using Lemma and is the content of Exercise
TR m

Here is yet another way to generate o — algebras. (Compare with the
analogous topological Definition )

Definition 18.24 (¢ — Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Yo, Fo) : € A}
and functions fo, : X — Y, for all @ € A. Let o(fs : a € A) denote the
smallest o — algebra on X such that each f, is measurable, i.e.

o(fo o€ A) = o(Uaf5 ' (Fa)).

Proposition 18.25. Assuming the notation in Definition and addition-
ally let (Z, M) be a measurable space and g : Z — X be a function. Then g
is (M,0(fo : @ € A)) — measurable iff fo o g is (M, Fy)-measurable for all
a € A

1.
2.
3.
4-
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Proof. This proof is essentially the same as the proof of the topological
analogue in Proposition [13.21} (=) If g is (M, 0(fs : @ € A)) — measurable,
then the composition f, o g is (M, F,) — measurable by Lemma [18.21} (<)
Let

G=0(fo:a€A) =0 (UaeAfojl(]:a)) .
If fo 0gis (M,F,) — measurable for all o, then

g TN F) C MYae€ A
and therefore

971 (UaeAfojl(}-a)) = UaeAgilfojl(}-a) cM.

Hence
9719 = g7 (0 (Vaeafs ' (Fa))) = 097" (Vaeafs ' (Fa)) M
which shows that g is (M, G) — measurable. |

Definition 18.26. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 18.27. Let X and Y be two topological spaces and f : X — Y
be a continuous function. Then f is Borel measurable.

Proof. Using Lemma and By = o(1y),
7 (By) = fHo(ry)) = o(f ' (1v)) Colrx) = Bx.
]

Definition 18.28. Given measurable spaces (X, M) and (Y, F) and a subset
A C X. We say a function f : A — Y is measurable iff [ is Ma/F -
measurable.

Proposition 18.29 (Localizing Measurability). Let (X, M) and (Y, F)
be measurable spaces and f: X —Y be a function.

1. If f is measurable and A C X then f|a: A —Y is measurable.
2. Suppose there exist A, € M such that X = U5, A, and f|A, is Ma,
measurable for all n, then f is M — measurable.

Proof. As the reader will notice, the proof given below is essentially iden-
tical to the proof of Proposition which is the topological analogue of
this proposition. 1. If f : X — Y is measurable, f~}(B) € M for all B € F
and therefore

f‘,?\l (B)=AnNfYB) e My forall B¢ F.
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2. If B € F, then

f7HB) =0, (fHB)NAy) = Uiy fla, (B).

Since each A,, € M, M 4, C M and so the previous displayed equation shows
f~4(B) e M. [

Proposition 18.30. If (X, M) is a measurable space, then

f:(flvaa"'afn):X*)Rn

is (M, Bgn) — measurable iff f; : X — R is (M, Bg) — measurable for each
i. In particular, a function f: X — C is (M, Bc) — measurable iff Re f and
Im f are (M, Bgr) — measurable.

Proof. This is formally a consequence of Corollary and Proposition
below. Nevertheless it is instructive to give a direct proof now. Let
7 = 71rn denote the usual topology on R™ and 7; : R™ — R be projection
onto the it" — factor. Since 7; is continuous, m; is Brn/Br — measurable and
therefore if f : X — R™ is measurable then so is f; = m; o f. Now suppose
fi : X — R is measurable for all i =1,2,...,n. Let

E:={(a,b) :a,be Q" 3a < b},
where, for a,b € R", we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (G, by) .

Since £ C 7 and every element V' € 7 may be written as a (necessarily)
countable union of elements from &£, we have o (£) C Brr =0 (1) C 0 (), i.e.
0 () = Bgn. (This part of the proof is essentially a direct proof of Corollary

below.) Because
£ (@) = 7 ((an,00)) 0 f57 (a2,52)) N+ 0 7 (s b)) € M
for all a,b € Q with a < b, it follows that f '€ C M and therefore
f_lan = f_10' (g) =0 (f_18> C M
]

Corollary 18.31. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,Bc) -
measurable.

Proof. Define F: X - CxC, AL :CxC—-Cand M :CxC — C by
F(z) = (f(x),9(x)), Ax(w,2) = w =+ z and M(w, z) = wz. Then Ay and M
are continuous and hence (Bgz, Be) — measurable. Also F' is (M, Bc ® Be) =
(M, Bcz) — measurable since m o F = f and mp 0o F = g are (M, Bc) —
measurable. Therefore AL oF = f+gand MoF = f-g, being the composition
of measurable functions, are also measurable. [

Page: 292 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



18.2 Measurable Functions 293

Lemma 18.32. Let a € C, (X, M) be a measurable space and f : X — C be
a (M, Bc) — measurable function. Then

i f@) £ 0

Fle) ::{ o if f@)=0

is measurable.

Proof. Define i : C — C by

, Lif 240
Z(Z){Oif z=0.

For any open set V C C we have
H(V) = (VA {ohuit (Vn{o})

Because i is continuous except at z = 0, i ~}(V'\ {0}) is an open set and hence
in Bc. Moreover, i~1(V N {0}) € Bg since i~ 1(V N {0}) is either the empty
set or the one point set {0} . Therefore i~!(7¢) C B¢ and hence i~*(Bg) =
i1 (o(7c)) = o(i71(7c)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

We will often deal with functions f : X — R = RU{#o00}. When talking

about measurability in this context we will refer to the ¢ — algebra on R
defined by
Bg =0 ({[a,0] : a € R}). (18.5)

Proposition 18.33 (The Structure of Bg). Let Br and B be as above,
then -
B ={ACR:ANR eBg}. (18.6)

In particular {oo} ,{—oc} € Bg and Bgr C Bg.
Proof. Let us first observe that

{—oo} = MLy [~00, —n) = ML, [=n, 00]® € B,
{00} =N [, 0] € Bg and R = R\ {+0} € Bg.

Letting i : R — R be the inclusion map,

i (Bg) =0 (i7" ({[a,00] :a €R})) =0 ({i7! ([a,]) : a € R})
=0 ({[a,00]NR:a€R}) =0 ({[a,0):acR}) = Bg.

Thus we have shown
Br =it (Bg) ={ANR: A€ Bg}.

This implies:
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1. Ae Bg = ANR &Bg and

2. if A C R is such that ANR €Bg there exists B € B such that ANR =
BN R. Because AAB C {£o0} and {o0},{—00} € Bz we may conclude
that A € Bz as well.

This proves Eq. (18.6). ]

The proofs of the next two corollaries are left to the reader, see Exercises
18.5] and [18.0

Corollary 18.34. Let (X, M) be a measurable space and f : X — R be a
function. Then the following are equivalent

(@) =1 (f (2)) = {féx) Z‘cf <{c)($e) {Eﬁo}

1s measurable.

Corollary 18.35. Let (X, M) be a measurable space, f,g: X — R be func-
tions and define f-g: X — R and (f +g) : X — R using the conventions,
0-c0o=0and (f+g)(z)=04f f(z) =00 and g(x) = —o0 or f(x) = —o0
and g (x) = oco. Then f-g and f + g are measurable functions on X if both f
and g are measurable.

Exercise 18.5. Prove Corollary [I8:34] noting that the equivalence of items 1.
— 3. is a direct analogue of Corollary [18.23] Use Proposition [18.33] to handle
item 4.

Exercise 18.6. Prove Corollary [I8:35

Proposition 18.36 (Closure under sups, infs and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence
of M/Bg — measurable functions. Then

sup; f;, inf;f;, liﬁgp fj and hj;golf fi

are all M /Bg — measurable functions. (Note that this result is in generally
false when (X, M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g (z) := sup ; fj(z), then

{z:94(2) <aj ={z: f;(x) <aVj}
=nN{z: fi(z) <a} e M
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so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then
{o:9-(2) > a} = N{e: f(2) > a} € M.

Since
limsup f; =infsup{f;:j > n} and
Jj—00 n
liminf f; =supinf {f;:j >n}
J— n
we are done by what we have already proved. [

Definition 18.37. Given a function f : X — R let fi(z) := max {f(z),0}
and f_ (z) := max (—f(x),0) = —min (f(x),0). Notice that f = f1 — f_.
Corollary 18.38. Suppose (X, M) is a measurable space and f : X — R is
a function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [18.36| implies f4 are measur-
able. Conversely if fi are measurable then sois f = fy — f_. ]

18.2.1 More general pointwise limits

Lemma 18.39. Suppose that (X, M) is a measurable space, (Y, d) is a metric
space and f; : X — Y is (M, By) — measurable for all j. Also assume that for
each v € X, f(x) = limy, oo fn(z) exists. Then f: X — Y is also (M, By) -
measurable.

Proof. Let V € g and Wy, :={y € Y : dye(y) > 1/m} for m =1,2,....
Then W,, € 74,

Wm - Wm C {y eyY: dVC(y) > 1/7’71} cVv

for all m and W,,, T V as m — oo. The proof will be completed by verifying
the identity,

FTHV) = U UR—t Mo fr (W) € M.

Ifx € f~1(V) then f(x) € V and hence f(z) € W,, for some m. Since f,,(z) —
f (@), fu(z) € Wy, for almost all n. That is € USS_; US_; NMusn fr t(Win).
Conversely when @ € USS_; US_; Ny>n fr H(W,,) there exists an m such that
fn(x) € W,, C W, for almost all n. Since f,(z) — f(z) € W, C V, it follows
that z € f~1(V). |

Remark 18.40. In the previous Lemma it is possible to let (Y, 7) be any
topological space which has the “regularity” property that if V' € 7 there
exists W,,, € 7 such that W,,, C W,,, CV and V = Use_ Wi, Moreover, some
extra condition is necessary on the topology 7 in order for Lemma [I8:39] to
be correct. For example if Y = {1,2,3} and 7 = {Y,0,{1,2},{2,3},{2}} as
in Example and X = {a,b} with the trivial ¢ — algebra. Let f;(a) =
[j(b) = 2 for all j, then f; is constant and hence measurable. Let f(a) = 1
and f(b) = 2, then f; — f as j — oo with f being non-measurable. Notice
that the Borel o — algebra on Y is 2V
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296 18 Measurability

18.3 o — Function Algebras

In this subsection, we are going to relate o — algebras of subsets of a set X to
certain algebras of functions on X. We will begin this endeavor after proving
the simple but very useful approximation Theorem below.

Definition 18.41. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — By
measurable and ¢(X) contains only finitely many elements.

Any such simple functions can be written as

¢ = Mla, with A; € M and ); € F. (18.7)
i=1
Indeed, take A1, A2, ..., A, to be an enumeration of the range of ¢ and A; =

“L({\;}). Note that this argument shows that any simple function may be
written intrinsically as

(b = Zyld’_l({y})' (188)

yEF

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 18.42 (Approximation Theorem). Let f : X — [0, 00] be mea-
surable and define, see Figure[18.3,

d)n(l‘) = Z 271]0_1((% k+’1])(36) + inf—l((Qn’oo])(x)

then ¢, < f for all n, ¢, (x) T f(x) for all x € X and ¢, 1 [ uniformly on
the sets Xpr = {x € X : f(x) < M} with M < oco. Moreover, if f : X —
C is a measurable function, then there exists simple functions ¢, such that
limy, o ¢n(x) = f() for all x and |¢n| T |f] as n — oo.

Proof. Since

k k+1, 2k 2k+1 2k+1 2k+2
(27’ on ]7 (2n+1’ on+1 ] ( on+l > 9n+l }’
if € f7'((52%,24H]) then ¢n( ) = ¢ns1(z) = 525 and if x €
I~ ( %nHl, Qk ) then ¢, (x) = 2n+1 < %]fill ¢n+1(x). Similarly

(2™, 00] = (2", 2" U (2", oo,
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18.3 o — Function Algebras 297

Fig. 18.2. Constructing simple functions approximating a function, f : X — [0, co].

and so for x € f71((2"M, q]), ¢p(x) = 2" < 2" = ¢, 1(x) and for z €
@, 2" ), édna1(x) > 2" = ¢, (x). Therefore ¢, < ¢pqq for all n. It is
clear by construction that ¢, (z) < f(z) for all x and that 0 < f(z) — ¢, (x) <
27" if x € Xon. Hence we have shown that ¢, (z) T f(z) for all z € X and
¢ T f uniformly on bounded sets. For the second assertion, first assume that
f: X — R is a measurable function and choose ¢ to be simple functions
such that ¢ 1 fi as n — oo and define ¢, = ¢ — ¢,,. Then

(Gl = & + 6, < &1+ by = |dngal

and clearly [¢,] = ¢F + 65 1 fr+f- = |f] and ¢, = 6F — by — fo—f— =/
as n — 00. Now suppose that f: X — C is measurable. We may now choose
simple function w, and v, such that |u,| 1 |[Re f|, [vn| T [Im f|, u,, — Re f
and v, — Im f as n — oco. Let ¢, = u,, + iv,, then

|@nl® = up + 07 T [Re fI” + [Tm fI* = | f]”

and ¢, = u, +iv, » Ref+ilmf = f asn — oo. ™
For the rest of this section let X be a given set.

Definition 18.43 (Bounded Convergence). We say that a sequence of
functions f, from X to R or C converges boundedly to a function f if
lim, oo fu(x) = f(z) for allx € X and

sup{|fn(2)|:z € X andn=1,2,...} < oco.

Definition 18.44. A function algebra H on X is a linear subspace of
£ (X,R) which contains 1 and is closed under pointwise multiplication, i.e.
H is a subalgebra of £>° (X, R) which contains 1. If H is further closed under
bounded convergence then H is said to be a o — function algebra.
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298 18 Measurability
Ezample 18.45. Suppose M is a o — algebra on X, then
12 (M,R) :={f € £ (X,R) : fis M/Br — measurable} (18.9)

is a o — function algebra. The next theorem will show that these are the only
example of o — function algebras. (See Exercise below for examples of
function algebras on X.)

Notation 18.46 If H C (> (X,R) be a function algebra, let
MMH)={ACX:14 € H}. (18.10)
Theorem 18.47. Let H be a 0 — function algebra on a set X. Then

1. M(H) is a o — algebra on X.
2.H=1(°(M(H),R).
3. The map

M € {o - algebras on X} — £° (M,R) € {0 - function algebras on X}
(18.11)
is bijective with inverse given by H — M (H).

Proof. Let M := M (H).

1. Since 0,1 € H, §, X € M. If A € M then, since H is a linear subspace
of £ (X,R), 14c =1 —14 € H which shows A° € M. If {4,} 7, C M,
then since H is an algebra,

N
10715:114” = H 1A'n. = fN eH
n=1

for all N € N. Because H is closed under bounded convergence it follows
that
lhe 4, = A}gnoo fneEH

and this implies NS A,, € M. Hence we have shown M is a ¢ — algebra.
2. Since H is an algebra, p (f) € H for any f € H and any polynomial p on
R. The Weierstrass approximation Theorem [10.34] asserts that polynomi-
als on R are uniformly dense in the space of continuos functions on any
compact subinterval of R. Hence if f € H and ¢ € C (R), there exists poly-
nomials p,, on R such that p, o f (z) converges to ¢ o f (z) uniformly (and
hence boundedly) in x € X as n — co. Therefore ¢ o f € H for all f € H
and ¢ € C(R) and in particular |f| € H and fy := If\% eHif feH.
Fix an a € R and for n € N let ¢, (¢) := (tfa)i_/", where (t —a), =
max {t — o, 0}. Then ¢, € C(R) and ¢, (t) — 1> as n — oo and the
convergence is bounded when ¢ is restricted to any compact subset of R.
Hence if f € H it follows that 15, = lim, o ¢p (f) € H for all a € R,
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18.3 o — Function Algebras 299

ie. {f > a} € M for all @ € R. Therefore if f € H then f € £ (M,R)
and we have shown H C ¢*° (M,R). Conversely if f € £ (M,R), then
for any @« < B, {a< f<pf} € M = M(H) and so by assumption
l{a<f<py € H. Combining this remark with the approximation Theo-
rem [I8.42] and the fact that H is closed under bounded convergence shows
that f € H. Hence we have shown £ (M,R) C H which combined with
H C £°° (M, R) already proved shows H = £ (M (H),R).

3. Items 1. and 2. shows the map in Eq. is surjective. To see the
map is injective suppose M and F are two o — algebras on X such that
02° (M,R) = (>~ (F,R), then

M={ACX:1, €l (M,R)}
={ACX:14€l>(FR)}=F.

Notation 18.48 Suppose M is a subset of £ (X,R).

1. Let H (M) denote the smallest subspace of £>° (X, R) which contains M
and the constant functions and is closed under bounded convergence.
2. Let H, (M) denote the smallest o — function algebra containing M.

Theorem 18.49. Suppose M is a subset of ¢ (X,R), then H, (M) =
£ (o (M) ,R) or in other words the following diagram commutes:

M — o (M)
M {Multiplicative Subsets} — {o — algebras} M
l ! 1 1

Hy (M) {o- function algebras} = {o- function algebras} £>° (M, R).

Proof. Since ¢> (o (M),R) is ¢ — function algebra which contains M it
follows that
Hy (M) C (o (M),R).

For the opposite inclusion, let
M=MH,( M))={ACX:1a€H, (M)}.

By Theorem [18.47, M C H, (M) = ¢ (M,R) which implies that every
f € M is M — measurable. This then implies o (M) C M and therefore

0% (0 (M), R) C £= (M,R) = H, (M).
| |

Definition 18.50 (Multiplicative System). A collection of bounded real or
complex valued functions, M, on a set X is called a multiplicative system
if f-g€ M whenever f and g are in M.
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300 18 Measurability

Theorem 18.51 (Dynkin’s Multiplicative System Theorem). Suppose
M C > (X,R) is a multiplicative system, then

H (M) =Hy (M) = (= (5 (M),R). (18.12)

In words, the smallest subspace of bounded real valued functions on X which
contains M that is closed under bounded convergence is the same as the space
of bounded real valued o (M) — measurable functions on X.

Proof. We begin by proving H := H (M) is a ¢ — function algebra. To do
this, for any f € H let

Hry={geH:fgeH} CH

and notice that My is a linear subspace of ¢>° (X,R) which is closed under
bounded convergence. Moreover if f € M, M C Hy since M is multiplicative.
Therefore Hy = H and we have shown that fg € H whenever f € M and
g € H. Given this it now follows that M C Hj for any f € H and by
the same reasoning just used, H;y = H. Since f € H is arbitrary, we have
shown fg € H for all f,g € H, i.e. H is an algebra. Since it is harder to
be an algebra of functions containing M (see Exercise than it is to
be a subspace of functions containing M it follows that H (M) C H, (M).
But as we have just seen H (M) is a ¢ — function algebra which contains
M so we must have H, (M) C H (M) because H, (M) is by definition the
smallest such ¢ — function algebra. Hence H, (M) = H (M) . The assertion
that H, (M) = £ (0 (M) ,R) has already been proved in Theorem [

Theorem 18.52 (Complex Multiplicative System Theorem). Suppose
H is a complez linear subspace of £°°(X,C) such that: 1 € H, H is closed under
complex conjugation, and H is closed under bounded convergence. If M C 'H
is multiplicative system which is closed under conjugation, then H contains all
bounded complex valued o(M)-measurable functions, i.e. £ (o (M),C) C H.

Proof. Let My = spang(M U {1}) be the complex span of M. As the
reader should verify, M is an algebra, My C ‘H, My is closed under complex
conjugation and that o (My) = o (M) . Let H® := H N ¢>°(X,R) and M =
M (X, R). Then (you verify) ME is a multiplicative system, ME C H® and
HR® is a linear space containing 1 which is closed under bounded convergence.
Therefore by Theorem 0> (o (M) ,R) ¢ H®. Since H and M, are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = % (f—|—f) and Im f = % (f — f) are in H (Mpy)
or My respectively. Therefore H = H* + iH®, My = Mg + iMg, o (M§) =
o (My) =0 (M) and

(> (0 (M),C) == (o (M) ,R) +it> (o (M) ,R)
CHY +iH" =M.
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Exercise 18.7 (Algebra analogue of Theorem . Call a function
algebra H C £*° (X, R) a simple function algebra if the range of each func-
tion f € H is a finite subset of R. Prove there is a one to one correspondence
between algebras A on a set X and simple function algebras H on X.

Definition 18.53. A collection of subsets, C, of X is a multiplicative
class(or a m — class) if C is closed under finite intersections.

Corollary 18.54. Suppose H is a subspace of £>°(X,R) which is closed under
bounded convergence and 1 € H. If C C 2% is a multiplicative class such
that 14 € H for all A € C, then H contains all bounded o(C) — measurable
functions.

Proof. Let M = {1} U{l4: A€ C}. Then M C H is a multiplicative
system and the proof is completed with an application of Theorem [18.51] =

Corollary 18.55. Suppose that (X,d) is a metric space and Bx = o(1q)
is the Borel o — algebra on X and H is a subspace of {>°(X,R) such that
BC(X,R) C H and H is closed under bounded convergenceﬂ. Then 'H contains
all bounded Bx — measurable real valued functions on X. (This may be stated
as follows: the smallest vector space of bounded functions which is closed under
bounded convergence and contains BC(X,R) is the space of bounded Bx —
measurable real valued functions on X.)

Proof. Let V € 74 be an open subset of X and for n € N let
fn(z) ;== min(n - dy.(x),1) for all z € X.

Notice that f,, = ¢, o dye where ¢, () = min(nt, 1) (see Figure which
is continuous and hence f,, € BC(X,R) for all n. Furthermore, f,, converges
boundedly to 14,.50 = 1y as n — oo and therefore 1y, € H for all V € 7.
Since 7 is a m — class, the result now follows by an application of Corollary
1854
]
Here are some more variants of Corollary

Proposition 18.56. Let (X, d) be a metric space, Bx = o(74) be the Borel
o — algebra and assume there exists compact sets K, C X such that K T X.
Suppose that H is a subspace of £>°(X,R) such that C.(X,R) C H (C.(X,R)
is the space of continuous functions with compact support) and H is closed
under bounded convergence. Then H contains all bounded Bx — measurable
real valued functions on X.

Proof. Let k and n be positive integers and set ¢, x(x) = min(1,n -
d(KZ)C(x))' Then ¢, 5 € Co(X,R) and {¢,x # 0} C K7. Let H,,  denote
those bounded Bx — measurable functions, f: X — R, such that ¢, 1 f € H.

! Recall that BC(X,R) are the bounded continuous functions on X.
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0.5

[ 05 1 15 2

X

Fig. 18.3. Plots of ¢1, ¢2 and ¢s3.

It is easily seen that H, j is closed under bounded convergence and that
Hp, e contains BC(X,R) and therefore by Corollary Yk f € H for all
bounded measurable functions f : X — R. Since ¢y, f — lkg [ boundedly
as n — 00, 1xo f € H for all k and similarly 1xo f — f boundedly as k — oo
and therefore f € H. [ ]

Lemma 18.57. Suppose that (X,7) is a locally compact second countable
Hausdorff spaceﬂ Then:

1. every open subset U C X is o — compact. In fact U is still a locally compact
second countable Hausdorff space.

2.If F C X is a closed set, there exist open sets V,, C X such that V,, | F
as n — oo.

3. To each open set U C X there exists fp, < U (i.e. fn € C.(U,[0,1])) such
that lim,, ..o frn = 1u.

4. Bx = 0(C.(X,R)), i.e. the o — algebra generated by C.(X) is the Borel o
— algebra on X.

Proof.
1. Let U be an open subset of X, V be a countable base for 7 and

V. ={WeV:W CU and W is compact}.

For each x € U, by Proposition there exists an open neighborhood
V of x such that V C U and V is compact. Since V is a base for the
topology 7, there exists W € V such that € W C V. Because W C V, it
follows that W is compact and hence W € VY. As x € U was arbitrary,
U = UVY. This shows VY is a countable basis for the topology on U and
that U is still locally compact.

2 For example any separable locally compact metric space and in particular any
open subset of R".
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Let {W,} >, be an enumeration of VY and set K,, := U}_; Wj. Then
K, TU asn — oo and K, is compact for each n. This shows U is ¢ —
compact. (See Exercise [14.7])

2. Let {K,} -, be compact subsets of F such that K, T F¢ as n — oo and
set V,, := K¢ = X\ K,,. Then V,, | F and by Proposition V,, is open
for each n.

3. Let U C X be an open set and {K,},., be compact subsets of U such
that K, T U. By Urysohn’s Lemma there exist f, < U such that
fn =1 on K,. These functions satisfy, 1y = lim,, s fn-

4. By item 3., 1y is o(C.(X,R)) — measurable for all U € 7 and hence
7 C 0(Ce(X,R)). Therefore Bx = o(1) C o(C.(X,R)). The converse
inclusion holds because continuous functions are always Borel measurable.

]
Here is a variant of Corollary [18.55

Corollary 18.58. Suppose that (X, T) is a second countable locally compact
Hausdorff space and Bx = o(r) is the Borel o — algebra on X. If H is a
subspace of £°(X,R) which is closed under bounded convergence and contains
C.(X,R), then H contains all bounded Bx — measurable real valued functions
on X.

Proof. By Item 3. of Lemma for every U € 7 the characteristic
function, 1y, may be written as a bounded pointwise limit of functions from
C. (X,R). Therefore 1y € H for all U € 7. Since 7 is a 7 — class, the proof is
finished with an application of Corollary ]

18.4 Product o — Algebras

Let {(Xa, Ma)},ca be a collection of measurable spaces X = X4 = [] X,
acA
and 7, : X4 — X, be the canonical projection map as in Notation 2.2}

Definition 18.59 (Product o — Algebra). The product ¢ — algebra,
RacaMa, is the smallest o — algebra on X such that each 7w, for a € A is
measurable, i.e.

RueaMy i=0(rg :a€A) =0 (Uoﬂrgl(/\/la)) .

Applying Proposition [18.25] in this setting implies the following proposi-
tion.

Proposition 18.60. Suppose Y is a measurable space and f:Y — X = X4
18 a map. Then f is measurable iff o o f 1 Y — X, is measurable for all
a € A. In particular if A=1{1,2,...,n} so that X = X1 x Xg X ---x X, and

f@) = (L), f2(y)s.- - faly)) € X1 X Xg X -+ X Xy, then f:Y — X4 is
measurable iff f; © Y — X; is measurable for all i.
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Proposition 18.61. Suppose that (X, Ma),e 4 15 a collection of measurable
spaces and E, C M, generates M, for each o € A, then

Qaca Mo =0 (Uacamy ' (Ea)) (18.13)

Moreover, suppose that A is either finite or countably infinite, X, € &, for
each o € A, and My = o(&,) for each a € A. Then the product o — algebra
satisfies

®aeAMa=U<{HEa : B, € &, for allaeA}) . (18.14)

a€cA
In particular if A={1,2,...,n}, then X = X; x Xo X --- x X, and
Mi@Ma®@ - @My =0(Mp X Mg x -+ x My,),
where My x My X -+ x M,, is as defined in Notation [13.26,
Proof. Since Uo7, (Es) C Uamy 1 (My), it follows that
F =0 (Uamy ' (Ea)) C o (Uamy ' (Ma)) = @acaMa.
Conversely,
Foo(ng!(Ea)) =5 (0(Ea)) = 15 (Ma)
holds for all o implies that
UaTs H(My) C F

and hence that ®,caMy C F. We now prove Eq. ([18.14). Since we are
assuming that X, € &, for each a € A, we see that

angl(ea) C {H E,:E,cé&, forall o e A}

acA

and therefore by Eq. (18.13))
RacaMy =0 (angl(ga)) Co ({ H E,:E,e€&, forall ac A}) .

acA

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,

H Ea = ﬁaeAﬂ-gl(Eo) € ®a€AMa
acA

and hence

o ({ H E, :E, €&, forall a € A}) C QueaMaq.

acA
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Remark 18.62. One can not relax the assumption that X, € &, in the second
part of Proposition [18.61] For example, if X; = Xy = {1,2} and & = & =
{{1}}, then o(& x &) = {0, X7 x Xo,{(1,1)}} while o(c(&1) x o(&2)) =

2X1 X Xo

Theorem 18.63. Let {X,},c4 be a sequence of sets where A is at most
countable. Suppose for each o € A we are given a countable set £, C 2. Let
Ta = T(Ea) be the topology on X, generated by £, and X be the product space
[loca Xo with equipped with the product topology T := ®acaT(Ex). Then the
Borel o — algebra Bx = o(7) is the same as the product o — algebra:

Bx = ®acaBx.,,
where Bx, = 0(7(Ey)) = 0(Ey) for all a € A.

In particular if A = {1,2,...,n} and each (X;,7;) is a second countable
topological space, then

Bx =0(m®mn® - ®@m,)=0Bx, x---xBx,)=Bx, ® - ®Bx,.

Proof. By Proposition [I3:25] the topology 7 may be described as the
smallest topology containing € = Uae a7, }(£4). Now & is the countable union
of countable sets so is still countable. Therefore by Proposition and

Proposition
Bx =o(7) = o(7(£)) = 0(£) = ®acao(&a)
= ®aca0(Ta) = acaBx, -
|
Corollary 18.64. If (X;,d;) are separable metric spaces fori =1,...,n, then
Bx, @@ Bx, = B(x,x.-.xx,)

where Bx, is the Borel o — algebra on X; and Bix, x..xx,) is the Borel
o — algebra on X7 x -+ x X, equipped with the metric topology associ-
ated to the metric d(z,y) = Y i, di(zi,y;) where x = (z1,z2,...,2,) and
Yy= (ylquv s 7yn)

Proof. This is a combination of the results in Lemma Exercise[13.12]
and Theorem [18.63] -

Because all norms on finite dimensional spaces are equivalent, the usual
Euclidean norm on R™ x R"™ is equivalent to the “product” norm defined by

||(5U»y)||Rmen = ||xHRm + Hy”]R" .

Hence by Lemma [13.28] the Euclidean topology on R™*™ is the same as the
product topology on R™T" = R™ x R"™, Here we are identifying R™ x R™ with
R™*" by the map

(7,y) ER™ X R™ — (T1, ..., T, Y1s-- -, Yn) € R™T™.
These comments along with Corollary proves the following result.
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Corollary 18.65. After identifying R™ x R™ with R™T" as above and letting
Bgrr denote the Borel ¢ —algebra on R™, we have

n—times

——N—
BRm,«FH = BR" ® BR"” and B]Rn = B]R R B]R

18.4.1 Factoring of Measurable Maps

Lemma 18.66. Suppose that (Y, F) is a measurable space and F X =Y s
a map. Then to every (o(F), Bg) — measurable function, H : X — R, there is
a (F,Bg) — measurable function h:Y — R such that H = ho F.

Proof. First suppose that H = 1, where A € o(F) = F~Y(F). Let
B € F such that A = F~!(B) then 14 = 1p-1(5) = 1p o F and hence the
Lemma is valid in this case with h = 1p. More generally if H = Y a;14,
is a simple function, then there exists B; € F such that 14, = 1p, o F' and
hence H = h o F with h := 3 a;1p, — a simple function on R. For general
(o0(F),F) — measurable function, H, from X — R, choose simple functions
H,, converging to H. Let h,, be simple functions on R such that H,, = h,, o F.
Then it follows that

H = lim H, =limsup H, =limsuph, o F =hoF

n—oo n— oo n—oo

where h := limsup,,_,_ h, — a measurable function from Y to R. ]
The following is an immediate corollary of Proposition [18.25| and Lemma
115.66l

Corollary 18.67. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Y4 Let Y := ] ca Ya,
F = QacaFa be the product o — algebra on'Y and M = o(f, : a € A)
be the smallest o — algebra on X such that each f, is measurable. Then the
function F: X =Y defined by [F(z)], := fa(z) for each o € A is (M, F)
— measurable and a function H : X — R is (M,Bg) — measurable iff there

exists a (F,Bg) — measurable function h from'Y to R such that H = ho F.

18.5 Exercises

Exercise 18.8. Prove Corollary [18.23] Hint: See Exercise [18.3

Exercise 18.9. If M is the o — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Exercise 18.10. Let (X, M) be a measure space and f, : X — F be a se-
quence of measurable functions on X. Show that {z : lim,,_. f(z) exists in F} €

M.
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Exercise 18.11. Show that every monotone function f : R — R is (Bg, Br)
— measurable.

Exercise 18.12. Show by example that the supremum of an uncountable
family of measurable functions need not be measurable. (Folland problem 2.6
on p. 48.)

Exercise 18.13. Let X =

(1,2,3,4}, A = {1,2}, B = {2,3) and M :=
{14,1p}. Show H, (M) # H(

M) in this case.
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Measures and Integration

Definition 19.1. A measure p on a measurable space (X, M) is a function
p: M — [0, 00] such that

1. (0) =0 and
2. (Finite Additivity) If {A;};_, C M are pairwise disjoint, i.e. A;NA; =0
when 1 # j, then

n

a4 = D ulay).

i=1
3. (Continuity) If A,, € M and A, T A, then u(Ay) T p(A).

We call a triple (X, M, u), where (X, M) is a measurable space and p :
M — [0,00] is a measure, a measure space.

Remark 19.2. Properties 2) and 3) in Definition are equivalent to the
following condition. If {A4;};2, C M are pairwise disjoint then

plJ 40 = Y- a4, (19.1)

To prove this assume that Properties 2) and 3) in Definition hold and

{A;}:2, C M are pairwise disjoint. Letting B, := |J A; 1 B := |J 4, we
i=1 i=1
have
w(J 40 = w(B) L tim (B 2 tm S () = 3 Ay,
i—1 ¢ n—oo " n—oo £ 1 * i—1 ¢
1= 1= 1=

Conversely, if Eq. holds we may take A; = () for all j > n to see that
Property 2) of Deﬁnitionholds. Alsoif A, T A, let B, := A, \ A,,_1 with
Ag := 0. Then {B,,} -, are pairwise disjoint, A, = U7 Bj and A = U2, B;.
So if Eq. holds we have
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oo

p(A) = p(U52,B;) = > u(B))

j=1
n

= D (By) = lim (S By) = lin (o)
j=1

Proposition 19.3 (Basic properties of measures). Suppose that (X, M, u)
is a measure space and E,F € M and {Ej}]oil C M, then :

(E) < u(F) f EC F.

(UEj) < 37 p(E;)).

w(Ey) < oo and E; | E, i.e. By D E3 D E3 D ... and E = N;E;, then
Ey) Lu(E) as j — 0.

T E

1.
2.
3.

/—\q

1
Proof.

1. Since F = EU (F \ E),

W(F) = u(E) + u(F \ E) > ju(B).

2. Let Ej = E;\ (EyU---UE;_;) so that the E; ’s are pair-wise disjoint
and E = UE};. Since Ej C E; it follows from Remark and part (1),
that

WE) = wE;) <> u(E)).
3. Define D; := Fy \ E; then D; T E; \ E which implies that

w(Er) — p(E) = lim p(D;) = p(Ey) — lim p(E;)

which shows that lim; . pu(E;) = u(E).

Definition 19.4. A set E C X is a null set if E € M and u(E) =0. If P is
some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for x}

18 a null set. For example if f and g are two measurable functions on
(X, M,p), f =g a.e. means that u(f # g) = 0.

Definition 19.5. A measure space (X, M, 1) is complete if every subset of
a null set is in M, i.e. for all F C X such that F C E € M with (E) =0
implies that F' € M.
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19 Measures and Integration 311

Proposition 19.6 (Completion of a Measure). Let (X, M, u) be a mea-
sure space. Set

N=Nt={NCX:FFeM>NCF and u(F) =0},
M=M':={AUN:AcMand N e N} and
A(AUN) := pu(A) for Ae M and N e N,
see Fig. . Then M is a o — algebra, ji is a well defined measure on M, i is
the unique measure on M which extends p on M, and (X, M, i) is complete

measure space. The o-algebra, M, is called the completion of M relative to
i and fi, is called the completion of u.

Proof. Clearly X,() € M. Let A € M and N € N and choose F € M

Fig. 19.1. Completing a o — algebra.

such that N C F and pu(F') = 0. Since N¢ = (F\ N)U F°,

(AUN)® = AN N° = A°n (F\ N UF°)
= [A°N(F\ N)]U[A°N F]

where [A°N (F\ N)] € N and [A°N F¢] € M. Thus M is closed under
complements. If A; € M and N; C F; € M such that u(F;) = 0 then
U(A;UN;) = (UA;)U(UN;) € M since UA; € M and UN; C UF; and u(UF;) <
> u(F;) = 0. Therefore, M is a o — algebra. Suppose A U N; = B U N, with
A, B e Mand Ni,Ny,&€ N. Then A C AUN; C AUN; UF, = BUF, which
shows that

1(A) < p(B) + u(Fz) = p(B).

Similarly, we show that u(B) < p(A) so that u(A) = p(B) and hence (AU
N) := p(A) is well defined. It is left as an exercise to show [ is a measure,
i.e. that it is countable additive. ]

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a ¢ — finite measure defined next.

Page: 311 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



312 19 Measures and Integration

Definition 19.7. Suppose X is a set, € C M C 2% and p: M — [0,00] is a
function. The function p is 0 — finite on &€ if there exists E, € £ such that
w(Ey) < oo and X = U Ey. If M is a 0 — algebra and p is a measure on
M which is 0 — finite on M we will say (X, M,p) is a o — finite measure
space.

The reader should check that if y is a finitely additive measure on an
algebra, M, then p is o — finite on M iff there exists X,, € M such that
X, 1T X and u(X,) < oo.

19.1 Example of Measures

Most o — algebras and ¢ -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F C 2% is a countable or finite partition of X and M c 2¥ is
the o — algebra which consists of the collection of sets A C X such that

A=U{a e F:aC A}. (19.2)

It is easily seen that M is a o — algebra.
Any measure p : M — [0, 00] is determined uniquely by its values on F.
Conversely, if we are given any function A : F — [0, 00] we may define, for

Ae M,
pA) = 3 AMe) = AMe)laca

a€Fd3aCA aEF

where 14c4 is one if @ C A and zero otherwise. We may check that p is a
measure on M. Indeed, if A =[], A; and o € F, then o C A iff &« C A; for
one and hence exactly one A;. Therefore 1,4 = Zfil laca, and hence

1(A) = Z Ma)laca = Z Aa) Z laca;

acF agr
=3 Ma)laca, = > u(A)
i=1 aeF i=1

as desired. Thus we have shown that there is a one to one correspondence
between measures p on M and functions A : F — [0, c0].

The construction of measures will be covered in Chapters [30] —[31] below.
However, let us record here the existence of an interesting class of measures.

Theorem 19.8. To every right continuous non-decreasing function F
R — R there exists a unique measure pur on By such that

pr((a,b) =F(b)—Fa)V —co<a<b< oo (19.3)
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19.1 Example of Measures 313

Moreover, if A € Bg then

pur(A) = inf {Z(F(bl) — F(a;)) : A C U2, (ai, bi]} (19.4)

i=1
= inf {Z(F(bi) —F(a;)):AC H(ai, bi]} . (19.5)

In fact the map F — up is a one to one correspondence between right con-
tinuous functions F with F(0) = 0 on one hand and measures p on Bg such
that u(J) < oo on any bounded set J € Bg on the other.

Proof. See Section 28.3] below or Theorem 28.38] below. ]

Ezxample 19.9. The most important special case of Theorem [19.8] is when
F(z) = z, in which case we write m for up. The measure m is called Lebesgue
measure.

Theorem 19.10. Lebesgue measure m is invariant under translations, i.e.
for B € Bgr and x € R,
m(z + B) = m(B). (19.6)

Moreover, m is the unique measure on Bgr such that m((0,1]) = 1 and Eq.
holds for B € Bg and x € R. Moreover, m has the scaling property

m(AB) = |A| m(B) (19.7)
where A € R, B € Br and AB := {\z : x € B}.

Proof. Let m,(B) := m(z + B), then one easily shows that m, is a
measure on B such that m,((a,b]) = b — a for all a < b. Therefore, m, =m
by the uniqueness assertion in Theorem [19.8] For the converse, suppose that
m is translation invariant and m((0,1]) = 1. Given n € N, we have

k=1 k. (k-1 1
(0,1] = Uk:l(Ta E] = U= <n + (0, n]) .

Therefore,

That is to say
1
0,—])=1/n.
m((0, ) = 1/n
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314 19 Measures and Integration

Similarly, m((0, %]) = [/n for all I,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,, b, € Q such that b, | b and
ap 1 a, then (ay,b,] | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—a,
i.e. m is Lebesgue measure. To prove Eq. (19.7) we may assume that A # 0
since this case is trivial to prove. Now let my(B) := [A|”" m(AB). It is casily
checked that m) is again a measure on Br which satisfies

ma((a,b]) = X m ((Aa, \b])) = A" (Ab— Xa) =b—a
if A > 0 and
ma((a,b]) = A7 m (A6, Aa)) = — A" (Ab—Xa) =b—a

if A < 0. Hence my = m. ]

We are now going to develop integration theory relative to a measure. The
integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

19.1.1 ADD: Examples of Measures

BRUCE: ADD details.

Product measure for the flipping of a coin.

Haar Measure

Measure on embedded submanifolds, i.e. Hausdorff measure.
Wiener measure.

Gibbs states.

Measure associated to self-adjoint operators and classifying them.

S T W=

19.2 Integrals of Simple functions

Let (X, M, i) be a fixed measure space in this section.

Definition 19.11. Let F=C or [0,00) and suppose that ¢ : X — T is
a simple function as in Definition [18.41] If F = C assume further that
wo 1 ({y})) < oo for all y # 0 in C. For such functions ¢, define I,(¢) by

= (6 ({y})-

yeF
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19.2 Integrals of Simple functions 315

Proposition 19.12. Let A € F and ¢ and ¢ be two simple functions, then I,
satisfies:

1.
1,(A0) = ALL(6). (19.8)

Iu(¢ + ) = 1. () + 1u(9).
3. If ¢ and 1 are non-negative simple functions such that ¢ < then
Lu(¢) < 1u(¥).

Proof. Let us write {¢ = y} for the set ¢~ ({y}) C X and u(¢ = y) for
n({o =y}) = u(¢~" ({y})) so that

L(¢) =Y yu(¢ = y).

yeF

We will also write {¢ = a, = b} for ¢~ ({a}) N~1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that A € F then

I,(@) =Dy p(Ao=y) =Yy u(¢ =y/N)

y€eF y€eF
=> Az pld = 2) = Mu(9)
z€F

provided that A # 0. The case A = 0 is clear, so we have proved 1. Suppose
that ¢ and v are two simple functions, then

I(¢+¥) =D 2z +1¢ =2)

z€F

=Y zp(Uuer {¢=w, ¥ =z —w})

z€F

= 2> ue=w, ¥ =z—w)
zeF weF

= Y G+wuld=w, ¥=2)
z,welF

=Y 2uW=2)+ Y wp(d=w)
z€F weF

= IM(¢) +IM(¢)'

which proves 2. For 3. if ¢ and ¢ are non-negative simple functions such that

¢<Y
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316 19 Measures and Integration

L(#) =Y ap(é=a)= 3 ap(é = a4 = b)

a>0 a,b>0
<Y b =a, 9 =b) = bu(v =b) = L(¥),
a,b>0 b>0
wherein the third inequality we have used {¢ = a,v =b} =0 if a > b. [ ]

19.3 Integrals of positive functions

Definition 19.13. Let LT = LT (M) = {f : X — [0,00] : f is measurable}.
Define

/X f(@)du(x) = /X fdp :==sup{I,(¢) : ¢ is simple and ¢ < f}.
We say the f € LT is integrable if [, fdu < oco. If Ae M, let

/Af(m)du(x):/Afdu::/XlAfdu.

Remark 19.14. Because of item 3. of Proposition [19.12] if ¢ is a non-negative
simple function, [ ¢du = I,(¢) so that [, is an extension of I,,. This exten-
sion still has the monotonicity property if I, : namely if 0 < f < g then

/ fdp =sup {I,(¢) : ¢ is simple and ¢ < f}
b's

<sup{l,(¢): ¢ is simple and ¢ < g} < / gdp.
X

/chdu:c/xfd,u.

Also notice that if f is integrable, then p ({f = co}) = 0.

Similarly if ¢ > 0,

Lemma 19.15 (Sums as Integrals). Let X be a set and p: X — [0,00] be
a function, let p =3 oy p(x)0, on M =2% ie.

p(A) =" pl).

z€A

If f : X —[0,00] is a function (which is necessarily measurable), then

/X fan =3 1o
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19.3 Integrals of positive functions 317

Proof. Suppose that ¢ : X — [0,00) is a simple function, then ¢ =
ZzE[O,oo) Zl{¢:Z} and

Sop=> pla) Y Flgen@) = Y 2> pa)lg_sy(@)

reX 2€[0,00) z€[0,00) TEX
— Y au{o=zp = / b
z€[0,00) X

So if ¢ : X — [0,00) is a simple function such that ¢ < f, then

/ pdu=3ep <3 fp.
X X X

Taking the sup over ¢ in this last equation then shows that

/X i <3 1o

For the reverse inequality, let A CC X be a finite set and N € (0,00).
Set fN(z) = min{N, f(x)} and let ¢n 4 be the simple function given by

N a(x) == 1a(x) fN(2). Because ¢y a(x) < f(z),
N, —
ZA:f p_;QSN,AP—/Xd)N,Ad,US/deu.

Since fV 1 f as N — oo, we may let N — oo in this last equation to concluded

ZA:fp < /deu-

Since A is arbitrary, this implies

;fp < /X f.

Theorem 19.16 (Monotone Convergence Theorem). Suppose f, € LT
is a sequence of functions such that fn T f (f is necessarily in L") then

[t [asn—oc.

Proof. Since f, < fi,, < f, for all n < m < oo,

JEEY R
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318 19 Measures and Integration

from which if follows f fn is increasing in n and

lim [ f, < / f. (19.9)

n—00

For the opposite inequality, let ¢ : X — [0,00) be a simple function such
that 0 < ¢ < f, @ € (0,1) and X,, := {f, > a¢}. Notice that X,, T X and
fn > alx, ¢ and so by definition of [ f,,

/fn > /ozlanb:a/lxm. (19.10)

Then using the continuity property of p,

lim [ 1x,¢=lim [1x, Y ylisy

n—oo
y>0

= nlirrgo Z yu( X, N{p=y}) = Z ynlggo WX N{o=y})

y>0 y>0

=Yy lim u(o=v)) = [

y>0

This identity allows us to let n — oo in Eq. (19.10)) to conclude

O n—00

/¢<7hm fu.

Since this is true for all non-negative simple functions ¢ with ¢ < f;

o n—00

/fsup{/){c;ﬁ:qﬁissimpleandgbgf}g1lim fn-

Because « € (0,1) was arbitrary, it follows that [ f < lim [ f, which com-

bined with Eq. (19.9)) proves the theorem. [
The following simple lemma will be use often in the sequel.

Lemma 19.17 (Chebyshev’s Inequality). Suppose that f > 0 is a mea-
surable function, then for any e > 0,

w(f >e) / fdu. (19.11)

In particular if [y fdp < oo then u(f = 00) =0 (i.e. f < 0o a.e.) and the
set {f >0} is o — finite.

Proof. Since 145>,y < 1{f25}%f < %f,
1 1
pfze)= | Ypadn< | lyza-fdp<— [ fdp.
X X 3 € X
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19.3 Integrals of positive functions 319

If M := [, fdu < oo, then

—0asn— o

M
plf=co) Sp(f2m) <~
and {f > 1/n} 1 {f > 0} with u(f > 1/n) < nM < co for all n. |
Corollary 19.18. If f,, € LT is a sequence of functions then

n=1 n=1

In particular, if Y oo | [ fn < oo then Y " | fn < 00 a.e.

Proof. First off we show that

/(f1+f2):/f1+/f2

by choosing non-negative simple function ¢,, and 1, such that ¢, T fi and

Un T fo. Then (¢, +1,,) is simple as well and (¢, +¥p) T (f1 + f2) so by the
monotone convergence theorem,

Jim [ (fn +¢Pn) = lim (/¢n+/¢n>
Jm [ tim fon= [5is [ 5

Now to the general case. Let gy : Z fnand g = Z fn, then gy T g and so

[tr+ s

again by monotone convergence theorem and the add1t1v1ty just proved,
') N N
S [hwim gim 3 [ = tim 371,
n=1 n=1 n=1

=J\}iinoo/gw=/g=:/§fn-

Remark 19.19. It is in the proof of this corollary (i.e. the linearity of the
integral) that we really make use of the assumption that all of our functions are
measurable. In fact the definition [ fdu makes sense for all functions f : X —
[0,00] not just measurable functions. Moreover the monotone convergence
theorem holds in this generality with no change in the proof. However, in
the proof of Corollary we use the approximation Theorem which
relies heavily on the measurability of the functions to be approximated.
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320 19 Measures and Integration

The following Lemma and the next Corollary are simple applications of

Corollary [19.18

Lemma 19.20 (The First Borell — Carntelli Lemma). Let (X, M, u) be
a measure space, A, € M, and set

{4, i.0.} ={x € X : x € A, for infinitely many n’s} = ﬂ U Ay
N=1n>N

IfF > u(Ay,) < oo then p({A, i.0.}) =0.
Proof. (First Proof.) Let us first observe that

{4, 0.} = {x €X: ilAn(z) = oo}.

Hence if Y7 | u(A;) < oo then
0> pu(A,) = Z/ La, dp =/ > a, dp
n=1 n=1"% X pn=1

implies that Y 14, (x) < oo for u - a.e. . That is to say u({A, i.0.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

w(Ay, i0.)= lim p U A,

N—o0

and the last limit is zero since > oo | pu(A,) < oo. |

Corollary 19.21. Suppose that (X, M, p) is a measure space and {A,}" | C
M is a collection of sets such that p(A; N A;) =0 for all i # j, then

P An) = pu(An).
n=1
Proof. Since

1 ( 20211471):/ 1y 4, dp and
X

> nldn) = [ 3" 1ad
n=1 Xn:l
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19.3 Integrals of positive functions 321

it suffices to show -
> 14, =1lue a, p - ae (19.12)
n=1

Now Y02 114, > luse 4, and Yoo i 1a,(x) # luse a,(z) iff 2 € A;NA; for
some i # j, that is

{LE : Z ].An (LU) 7é 1U2°:1An (1’)} = Ui<in N Aj
n=1

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (19.12) and hence the corollary. ]

Notation 19.22 If m is Lebesque measure on By, f is a non-negative Borel
measurable function and a < b with a,b € R, we will often write fab f(z)dx

or f; fdm for f(a,b]mR fdm.

Ezample 19.23. Suppose —o0 < a < b < oo, f € C([a,b],[0,00)) and m be
Lebesgue measure on R. Also let m, = {a = af < a}f <--- < af =0} be a
sequence of refining partitions (i.e. mp C 741 for all k) such that

mesh(my) := max{’a? - a?fll cj=1,...,nt} — 0as k — occ.

For each k, let

ng—1

fe(z) = f(a)l{a} + Z min {f(:c) : af <z< aﬁ_l} l(a;c (z)
1=0

k
>al+1]

then fi T f as k — oo and so by the monotone convergence theorem,

b b
/ fdm :z/ fdm = lim / fr dm
a la,b] k—co Jq

’I’kal

kli—>nolo ZZ: min {f(x) caf <z < aﬁl} m ((af,af+1])

) =0
/a f(z)dz.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Ezample 19.24. For all A > 0,
e 1
/0 e dm(z) = A7 and /Rmdm(x) =T.
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322 19 Measures and Integration

The proof of these identities are similar. By the monotone convergence the-
orem, Example [19.23] and the fundamental theorem of calculus for Riemann

integrals (or see Theorem |10.13|above or Theorem [19.40| below),

oo N N
/ e Mdm(z) = lim e Mdm(x) = lim e Mdg
0 N—o0 0 N—oo 0

N _
== Jim_<em gt =27

and
1 | |
/ ——dm(z) = lim ——dm(z) = lim —
R1—|—.132 N—o0 _N1—|—aj‘2 N—o0 _N1—|—$2

— ]\}gnw [tan_l(N) — tan_l(—N)] =T.

dz

Let us also consider the functions =77,

1 ! 1
— dm(xz) = lim 11 () —dm(x
[ 3 dm@ = i [ 1@ )
1 —p+1 |1
= lim —dzr = lim x
n—o00 % xP n—oo —p 1/n

B ﬁifp<1
T oo ifp>1

If p =1 we find

1 1 1
o dml@) =i Zdr = lim In(z)|!,, = cc.
/(0,1] xP m(z) e B el n(z)l /,, = 00

n

Ezample 19.25. Let {r,}52; be an enumeration of the points in QN [0, 1] and
define

with the convention that

Since, By Theorem [19.40)

[ S
—dx = —dx —dx
0 |g;_7=n| rn VI — Ty 0 Th — T

=2/ _T”|71“n —2y/ry — x|t =2 (\/1 — T, — \/rn)

<4,
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we find

o0 1 o0
f(x)dm(z) = 27"/ ———dx < 27" =4 < 0.
2::1 CRRVAE R ,;

In particular, m(f = oo0) = 0, i.e. that f < oo for almost every x € [0, 1] and
this implies that

[0,1]

- 1
22*"7 < oo for a.e. x € [0,1].
n=1

Ve —mrnl

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

Proposition 19.26. Suppose that f > 0 is a measurable function. Then
fX fdu=014ff f =0 a.e. Also if f,g > 0 are measurable functions such that

[ <gae then [ fdu < [ gdp. In particular if f = g a.e. then [ fdu = [ gdp.

Proof. If f = 0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e.
This implies that (¢! ({y})) = 0 for all y > 0 and hence [, ¢dp = 0 and

therefore [, fdu = 0. Conversely, if [ fdu = 0, then by (Lemma [19.17)),

w(f >1/n) Sn/fdu:Ofor all n.

Therefore, p(f > 0) < 307 u(f > 1/n) =0, i.e. f =0 a.e. For the second
assertion let E be the exceptional set where f > g,i.e. E:={z € X : f(z) >
g(x)}. By assumption E is a null set and 1gcf < 1gcg everywhere. Because
g=1gcg+ 1gg and 1gg =0 a.e.,

/gduz/lEcgdu+/1E9du= /1Ecgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,

Corollary 19.27. Suppose that { f,} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

[t [£asn—c

Proof. Let E C X be a null set such that f,1gc T flge as n — co. Then
by the monotone convergence theorem and Proposition [19.26]

/fn:/fnlECT/flEcz/faSn—M)o.
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324 19 Measures and Integration

Lemma 19.28 (Fatou’s Lemma). If f, : X — [0,00] is a sequence of
measurable functions then

/lim inf f, < lim inf/fn

Proof. Define g; := H;f]; fn so that gx T liminf, . f, as & — oo. Since

gr < fn for all k < n,
/gkg/fnforallnzk

/gk <lim inf /fn for all k.
n—oo

We may now use the monotone convergence theorem to let £ — oo to find

/lim inf f, = /klim Gk Mer klirn /gk. <lim inf /f”.

and therefore

19.4 Integrals of Complex Valued Functions

Definition 19.29. A measurable function f : X — R is integrable if f, =
flissoy and f— = —f 1{p<oy are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

[ tin= [ redu [ £

Convention: If f g : X — R are two measurable functions, let f + ¢
denote the collection of measurable functions h : X — R such that h(z) =
f(x)+g(z) whenever f(x)+g(x) is well defined, i.e. is not of the form co—oo or
—00+00. We use a similar convention for f — g. Notice that if f, g € L (u; R)
and hi, he € f + g, then hy = hg a.e. because |f| < oo and |g| < o0 a.e.

Notation 19.30 (Abuse of notation) We will sometimes denote the in-
tegral [y fdp by p(f). With this notation we have p(A) = p(1a) for all
AeM.

Remark 19.31. Since
fi§|f|§f++f*7

a measurable function f is integrable iff [ |f| dp < co. Hence
L' (1;R) := {f : X — R: fis measurable and / If] du < oo}.
X

Page: 324 job: anal macro: svmono.cls date/time: 26-Apr-2004/13:54



19.4 Integrals of Complex Valued Functions 325

If f,g € L' (u;R) and f = g a.e. then fi = g4 a.e. and so it follows from
Proposition [19.26|that [ fdu = [ gdp. In particular if f,g € L' (u;R) we may

define
/X(f+g)du=/thu

where h is any element of f + g.

Proposition 19.32. The map
feltur) — [ fipcr
b'e

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
LY (u;R) such that f < g a.e.

Proof. Let f,g € L' (;R) and a,b € R. By modifying f and g on a null
set, we may assume that f,g are real valued functions. We have af 4 bg €
L' (1; R) because

laf +bgl < lal |f] + [bl]g] € L' (11 R).

If a < 0, then
(af)+ = —af- and (af)- = —afy

Jor=-afrsaft=afsi-[rr=a]r

A similar calculation works for a > 0 and the case a = 0 is trivial so we have

shown that
Jar=afs

Now set h = f + g. Since h = hy — h_,

so that

hy —ho=fr—f-+9+—9g-

or
hy+f-+9-=h_+ f+ + 94
Therefore,
Jres [roe o= [ [ron [ o
and hence

foe fro-fuom froe forn [ foom [ fo

Finally if f — f- = f <g=g¢94+ —g- then f, +g_ < g4+ + f- which implies
that
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326 19 Measures and Integration

/f++/g—§/9++/f—
or equivalently that
/f=/f+—/f7§/g+—/gf=/g.

The monotonicity property is also a consequence of the linearity of the inte-
gral, the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [19.26
]

Definition 19.33. A measurable function f : X — C is integrable if
Jx |f] dp < oo Analogously to the real case, let

Ll(u;C):{f:XH(C: f is measurable and/ |f] du<oo}.
b's

denote the complex valued integrable functions. Because, max (|Re f], [Im f]) <

[fl < VZmax (|Re f|, [Im f]), [1f] du < oo iff
/\Ref|d,u+/|1mf|d,u<oo.
For f € L' (u;C) define

/fd,u:/Refdqui/Imfdu.

It is routine to show the integral is still linear on L' (115 C) (prove!). In the
remainder of this section, let L' (11) be either L (11;C) or L' (u;R) . If A € M
and f € L' (u;C) or f: X — [0,00] is a measurable function, let

/A fdp = /X 1afdp.

Proposition 19.34. Suppose that f € L' (u;C), then

\ /. fdu]s J 151 (19.13)

Proof. Start by writing fX f dp = Re? with R > 0. We may assume that
R= UX fdu| > 0 since otherwise there is nothing to prove. Since

R:e*“’/xfdﬂ:/x(fwf du:/XRe(e’wf)d;H—i/ Im (e~ f) dp,

X

it must be that fX Im [e_wf] dp = 0. Using the monotonicity in Proposition
‘/ fdu' :/ Re (e*wf) dup §/ |Re (e*wf)|d,u < / |f|dp.
b'e X b's X
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19.4 Integrals of Complex Valued Functions 327
Proposition 19.35. Let f,g € L (u), then
1. The set {f # 0} is o — finite, in fact {|f| > 2} 1T {f # 0} and p(|f| >

L) < oo for all n.
2. The following are equivalent

a) [ f = [pg forall E€ M
b))[lffglzO

c) f=g ae
Proof. 1. By Chebyshev’s inequality, Lemma [19.17]

1
p51 = D < [ 1l <o

for all n. 2. (a) = (c) Notice that

/Ef:/Eg@/EU—g):o

for all E € M. Taking E = {Re(f — g) > 0} and using 1g Re(f — g) > 0, we
learn that

O:Re/E(f—g)du:/lERe(f—g)zlERe(f—g)zoa.e.

This implies that 1 = 0 a.e. which happens iff

1 ({Re(f — g) > 0}) = u(B) = 0.

Similar u(Re(f—g) < 0) = 0 so that Re(f—g) = 0 a.e. Similarly, Im(f—g) =0
a.e and hence f — g =0 a.e., i.e. f =g a.e. (¢) = (b) is clear and so is (b)

= (a) since
L1 [o< [1-a=0

Definition 19.36. Let (X, M, ;1) be a measure space and L' (1) = L*(X, M, )
denote the set of L' () functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

1 = gl =/\f—g|du

and into a metric space using p1(f,g) = ||f — g1 -

Warning: in the future we will often not make much of a distinction
between L!(u) and L! () . On occasion this can be dangerous and this danger
will be pointed out when necessary.
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328 19 Measures and Integration

Remark 19.87. More generally we may define LP(u) = LP(X, M, pu) for p €
[1,00) as the set of measurable functions f such that

[ 117 du < o
X

modulo the equivalence relation; f ~ g iff f =g a.e.

We will see in Chapter 21] that

1/p
1l = ( / Iflpdu) for f € LP(u)

is a norm and (L”(u), ||-||;») is a Banach space in this norm.

Theorem 19.38 (Dominated Convergence Theorem). Suppose fy, gn,g €
L! (,U/>> o — [ ae., ‘fnl < gn € L! (/J), gn — g a.c. and fX Gndp — fX gdp.

Then f € L (1) and
[ tau= i [ fod
X h—o0 X

(In most typical applications of this theorem g, = g € L () for all n.)

Proof. Notice that |f| = limy— oo |fn] < limp—oo [gn] < ¢ a.e. so that
f € LY (u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

/ (9 £ fdu= / lim inf (g, & f) dp < liminf/ (gn £ fn) dp
X X n—oo Jx

= lim gndp + liminf (:I:/ fndu)
/ gdp + lim inf (i/ fndu)

X neo X
Since liminf,,_,(—a,) = —limsup,,_, ., an, we have shown,

liminf, o [y fndp
dp £+ du < du + . X
/Xg s /Xf ui/Xg s {_hmsuPn—wonf"du

and therefore

n—00 n— oo

limsup/ fndu §/ fdp <liminf [ f,dp.
X X X
This shows that lim [, fndu exists and is equal to [ fdp. [

Exercise 19.1. Give another proof of Proposition [I9.34] by first proving Eq.
with f being a cylinder function in which case the triangle inequality
for complex numbers will do the trick. Then use the approximation Theorem
along with the dominated convergence Theorem to handle the
general case.
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19.4 Integrals of Complex Valued Functions 329

n=1

Corollary 19.39. Let {f,},—, C L' (1) be a sequence such thaty .., [ fllLrg <
o0, then Y7, fn is convergent a.e. and

/. (i fn> = 2 |

Proof. The condition Y -, [ frlli (. < oo is equivalent to S | fnl €
L' (u). Hence Y07, fn is almost everywhere convergent and if Sy :=
25:1 fn, then

o0

N
ISNI <D 1l €D 1fal €LY ().
n=1

n=1

So by the dominated convergence theorem,

(&)

. m, S = i [ S

N s}
Jm > /X s =3 /X fudp.

Theorem 19.40 (The Fundamental Theorem of Calculus). Suppose
—00 <a<b<oo, feC((a,b),R)INL ((a,b),m) and F(z) := [T f(y)dm(y).
Then
1. F € C([a,b],R) N C((a,b),R).
2. F'(z) = f(x) for all x € (a,b).
3. If G € C([a,b],R) N CY((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f= GI|(a)b)) then

b
/ F@)dm(z) = Gb) — Gla).

Proof. Since F(‘T) = f]R 1(a,x) (y)f(y)dm(y)a limg_,, 1(a,x) (y) = ]-(a,z)(y)
for m — a.e. y and |1(a,w)(y)f(y)| < Lawy (@) [ f(y)] is an L' — function, it
follows from the dominated convergence Theorem [19.38|that F' is continuous
on [a,b]. Simple manipulations show,

JT @) = @) dm(y)| if h> 0
JElf) = f@)] dm(y)| i£h <0
z+h .

- L) — f@)]dm(y) i h > 0
- Join [F(y) = f(z)]dm(y) if h <0
<sup{[f(y) — f(@)|: y € [x — |n],z + |h]]}

F(z+h)— F(x) b
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330 19 Measures and Integration

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F' = f on (a,b). For the converse direction, we have by assumption
that G'(z) = F'(z) for x € (a,b). Therefore by the mean value theorem,
F — G = C for some constant C. Hence

b
/ f(x)dm(z) = F(b) = F(b) — F(a)
— (G(b) + C) — (G(a) + C) = G(b) — G(a).

Ezxample 19.41. The following limit holds,

lim [ (1-2)"dm(z) =1.
n—oo Jg n
Let fn(z) = (1 — £)"1j0,,)(7) and notice that lim, . fn(z) = ™. We will
now show
0 < fu(z) <e™® for all z > 0.
It suffices to consider = € [0,n]. Let g(x) = e® f,,(z), then for z € (0,n),

1 1
oW’

which shows that Ing(z) and hence g(x) is decreasing on [0,n]. Therefore
g(x) < g(0) =1, ie.

d
—1 =1+
T ng(x) n

0< fn(z) <e™™.
From Example we know

/ e Tdm(z) =1 < oo,
0

so that e~” is an integrable function on [0, c0). Hence by the dominated con-
vergence theorem,

lim n(l - E)"alm(at) = lim h fn(x)dm(z)
n—oo [, n n—oo Jq
= /OO lim f,(x)dm(z) = /00 e Tdm(z) = 1.
0o " 0

Ezample 19.42 (Integration of Power Series). Suppose R > 0 and {an},_, is
a sequence of complex numbers such that > |a,|r™ < oo for all € (0, R).
Then

O/L+1

s — n — p nd - Bn—i_l_
/a (ganx )dm(w)—rg)an/oK x m(ﬂc)—nz:;)anni+1
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19.4 Integrals of Complex Valued Functions 331

for all -R < a < 8 < R. Indeed this follows from Corollary since

> B
S [ lanl ol dmia) < 3
n=0"¢%

o [8] [ex|
(/ (] 2] di() + / a2 dm<x>>

n=0
n+1 n+1 o]
<Z| n\u<2r2|an|r”<oo
n=0

where r = max(|3], |a]).

Corollary 19.43 (Differentiation Under the Integral). Suppose that
J C R is an open interval and f:J x X — C is a function such that

1.2 — f(t,x) is measurable for each t € J.

2. f(to,-) € L*(u) for some to € J.

3. %(t,x) exists for all (t,x).

4. There is a function g € L (u) such that ’ ’ < g€ LY (u) for each
teJ
Then f(t,-) € L*(u) for all t € J (ie. [ |f(t,2)]du(z) < o), t —
fX f(t,z)dp(x) is a differentiable function on J and

& [ feadute) = [ St opiuo),

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of f separately, we may assume that f is real. Also

notice that 9
(b, = Jm n(f(t+n ) 2) — £(1,2)

and therefore, for x — %(t, x) is a sequential limit of measurable functions

and hence is measurable for all t € J. By the mean value theorem,
[f(t,z) — f(to,z)| < g(z) |t —to| forallt e J (19.14)

and hence

[f (&) < |f(tx) = fto, 2)| + | f (o, 2)| < g(@) [t —to| + [ £ (to, z)] -

This shows f(t,-) € L' (1) for all t € J. Let G(t) := [ f(t,z)du(x), then
6) = Gl) _ [ i)~ {(tm o)
—to —to

By assumption,

lim ft,2) = flto, 2) = 8—f(t,x) forall z € X
t—to t—to ot
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332 19 Measures and Integration

and by Eq. (19.14),

f(t,.’l?) B f(to,.’l))
t—to

< g(z) forall t € J and z € X.

Therefore, we may apply the dominated convergence theorem to conclude

G tn — G(t . tna - t )
e B e
x n—00 t, — to

— | Gt a)auta)

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =

G()—G(to)
t—to

limg_y, exists and

am=4%%mmw

Ezample 19.44. Recall from Example [19.24] that
A= / e~ dm(x) for all A > 0.
[0,00)
Let € > 0. For A > 2e > 0 and n € N there exists C,(¢) < oo such that
0< _i ne—ka: _ mne—)\x < C(E)e—sx
- dX - '

Using this fact, Corollary and induction gives

d\" d\"
1D it S R -1 _ _ -z
nl\ ( d)\> A /[0,00) ( d)\> e dm(x)

= / e M dm(x).
[0,00)

That is n! = A" f[o 00) x"e " dm(x). Recall that
() .= / z' e ®dx for t > 0.
[0,00)

(The reader should check that I'(t) < oo for all ¢ > 0.) We have just shown
that I'(n+ 1) = n! for all n € N.
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19.5 Measurability on Complete Measure Spaces 333

Remark 19.45. Corollary [19.43|may be generalized by allowing the hypothesis
to hold for z € X \ E where E € M is a fixed null set, i.e. E must be
independent of t. Consider what happens if we formally apply Corollary [19.43]
to g(t fo ly<idm(z),

) d [
g(t)f@/o ly<idm(z / 5 ly<idm(z).

The last integral is zero since %hgt = 0 unless ¢ = x in which case it is
not defined. On the other hand g(¢) = ¢ so that §(t) = 1. (The reader should
decide which hypothesis of Corollary [19.43|has been violated in this example.)

19.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 19.46. Suppose that (X, M, un) is a complete measure spaceﬂ
and f: X — R is measurable.

1.If g: X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If fr, + X — R are measurable and f : X — R is a function such that
lim, oo frn = f, 1 - a.e., then f is measurable as well.

Proof. 1. Let E = {z : f(z) # g(x)} which is assumed to be in M and
w(E) =0. Then g = 1gef + 1pg since f = g on E°. Now 1gef is measurable
so g will be measurable if we show 1gg is measurable. For this consider,

_ Ecu(1 LA\ {o})ifoe A
1 _ EY)”
(1eg)” (A) = { (1gg)~ 1(A) if0¢ A (19.15)
Since (1gg)~Y(B) C E if 0 ¢ B and p(E) = 0, it follow by completeness of
M that (1gg) 1 (B) € M if 0 ¢ B. Therefore Eq. (19.15) shows that 1gg is
measurable. 2. Let E = {z : lim f,(z) # f(x)} by assumption E € M and
w(E) = 0. Since g := 1gf = lim, o0 lge fn, ¢ is measurable. Because f = g
on E¢ and pu(FE) =0, f = g a.e. so by part 1. f is also measurable. ]
The above results are in general false if (X, M, u) is not complete. For
example, let X = {0,1,2}, M = {{0}, {1,2}, X, ¢} and u = dg. Take ¢g(0) =
0, g(1) =1, g(2) =2, then g = 0 a.e. yet g is not measurable.

! Recall this means that if N C X is a set such that N C A € M and u(4) = 0,
then N € M as well.
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334 19 Measures and Integration

Lemma 19.47. Suppose that (X, M, ) is a measure space and M is the
completion of M relative to p and [i is the extension of u to M. Then a
function f : X — R is (M, B = Br) — measurable iff there exists a function
g: X — R that is (M, B) — measurable such E = {x : f(z) # g(z)} € M and
g (E)=0, e f(x)=g(x) for i — a.e. xz. Moreover for such a pair f and g,
feLYp) iff g€ L*(u) and in which case

/deﬂ=/xgdu-

Proof. Suppose first that such a function g exists so that g(E) = 0. Since
g is also (M, B) — measurable, we see from Propositionthat fis (M, B)
— measurable. Conversely if f is (M, B) — measurable, by considering fi we
may assume that f > 0. Choose (M, B) — measurable simple function ¢, > 0
such that ¢, T f as n — co. Writing

Pn = Z aklAk

with A;, € M, we may choose Bj, € M such that By C Ay, and ji( A\ By) = 0.

Letting
OES Z arlp,

we have produced a (M, B) — measurable simple function ¢, > 0 such that
E, := {¢n # ¢n} has zero i — measure. Since i (U, E,) < > [ (E,), there
exists F' € M such that U, E,, C F and u(F) = 0. It now follows that

1F(5n:1F¢n 1g:=1pf as n — oo.

This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has
[ — measure zero. Since f = g, i — a.e., fX fdp = fX gdp so to prove Eq.

(119.16|) it suffices to prove

/gdﬂ:/ gdp. (19.16)
X X

Because i = p on M, Eq. is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by
considering (Reg), and (Img), . |

19.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let —0o < a < b < oo and f : [a,b] — R be a

bounded function. A partition of [a, b] is a finite subset @ C [a, b] containing
{a,b}. To each partition
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19.6 Comparison of the Lebesgue and the Riemann Integral 335

r={a=ty<t1 <---<t, =0} (19.17)
of [a,b] let
mesh(m) := max{[t; —t;—1|: j=1,...,n},

M; =sup{f(z):t; <@ <tjoa}, my=inf{f(z):t; <z <t; 4}

n n

Gﬂ':f( 1{a}+ZM‘1 ti—1,t5]> gﬂ—:f(a)l{a}—Fijl(tj,l,tj] and
1

Syf = ZM tj—1) and s, f = ij ti—1).
Notice that

b b
S,rf:/ G.dm and s,rf:/ godm.

The upper and lower Riemann integrals are defined respectively by
b a
/ f(z)dx = inf S, f and / f(z)dx = sup s, f.
a 4 J p a

Definition 19.48. The function f is Riemann integrable iff f;f = fbf €
“La

R and which case the Riemann integral f; f is defined to be the common value:

/ab fl@)dx = /abf(x)dx = /‘Lbf(x)dx

The proof of the following Lemma is left to the reader as Exercise [19.20
Lemma 19.49. If ©’ and m are two partitions of [a,b] and m C 7’ then

GﬂzGﬂ'/ZfZgﬂ'/ Zgw and
SanSw/fZSW'fZSTrf-

There exists an increasing sequence of partitions {my}ro, such that mesh(my) |
0 and

Sﬂkfl/abf cmds,rka/bf as k — oc.

If we let
G := klim G, and g := klim G, (19.18)
then by the dominated convergence theorem,

b
/ gdm = lim G, = lim sg, f :/ f(z)dx (19.19)

[a,b] k=00 Jla b koo Ja_

and

)
Gdm = lim Gr, = hm Sﬂf:/ f(z)dz. (19.20)

[a,b] k=00 Jiq