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Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.
a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c) Integration relative to different weights or densities including singular
weights.
d) Characterization of dual spaces.
e) Completeness.
. Infinite dimensional Linear algebra.
. ODE and PDE.
. Harmonic and Fourier Analysis.
. Probability Theory

U W N

*** Beginning of WORK material. ***

1.1 Topology beginnings
Recall the notion of a topology by extrapolating from the open sets on R2.

Also recall what it means to be continuous, namely f : X — R is continuous
at x if for all € > 0 there exists V € 7, such that

fFV)cf@)+(=¢e).

1.2 A Better Integral and an Introduction to Measure
Theory

Let a,b € R with a < b and let
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b
I°(f) := / f(t)dt for all f € C([a,b])

denote the Riemann integral. Also let H denote the smallest linear subspace
of bounded functions on [a, b] which is closed under bounded convergence and
contains C ([a, b]) . Such a space exists since we can take the intersection over
all such spaces of functions.

Theorem 1.1. There is an extension I of I° to H such that I is still linear
and lim, oo I (fn) = 1 (f) for all f, € H with f, — f boundedly. Moreover
this extension is unique and is positive in the sense that I (f) >0 if f € H
and f > 0.

Proof. We will only prove the uniqueness here. Suppose that J and I are
two such extensions and let

K:={fer:J(f)=1()}

Then K is a linear subspace closed under bounded convergence which contains
C ([a,b]) and hence K = H. The existence of I is the hard part. The positivity
of I can be seen from the existence construction. [ ]

Ezample 1.2. Here are some examples of functions in H and their integrals:

1. Suppose [, 5] C [a,b], then 1, 5 € H and [ (1[%@]) = 3 — a.(Draw a
picture.)

2.1 (1(a}) = 0.

3. The space H is an algebra, i.e. if f,g € H then fg € H. To prove this,
first assume that f € C'([a,b]) and let

Hy={g9geH: fgeH}.

Then H;y is closed under bounded convergence and contains C ([a, b]) and
hence H; = 'H, i.e. the product of a continuous function and an element
in H is back in H.
Now suppose that f € H and again let H¢ be as above. By the same
reasoning we may show again that H; = H and this proves the assertion.
4.If f € H and ¢ € C(R), then ¢ o f € H. This a consequence of the
Weierstrass approximation Theorem [8.34. In particular |f| € H and fi :=
UES e 3 if f e .
5.1f f, € H, fn > 0and f => 77, fu is a bounded function, then f € H
and

I(f) =" 1(fn)- (1.1)
n=1
To prove Eq. (I.1) we have

D (fa) = Jim 1 (Zn) =1(/).

n=1
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6. As an example of item 4., 1gnq,p) = Yoo l{a,y € Hand I (1(@0[@7&]) =0.
Here {av,},—, is an enumeration of the rational numbers in the interval
[a, b].

7.Let M:={ACla,bl: 14 € H} and for A € M let m(A) :=1(14). Then
M and m have the following properties:

a) 0,[a,b] € M and m (#) = 0 and m ([a, b]) = b—a. Moreover m (A4) > 0
for all A € M.

b) If A € M then A° € M and m (A°) = b—a — m(A). This follows
from the fact that 14c =1 —14.

c)If A,B € M, then ANB € M since if 14np = 14 -1p and H is an
algebra.
Definition: a collection of sets M satisfying a) — ¢) is called an
algebra of subsets of [a,b] .

d) More generally if A, € M then N4, € M since 1lnga,
limpn_ o0 14, -+ 14, and the convergence is bounded.
Definition: a collection of sets M satisfying a) — d) is called an o —
algebra.

e) If A,, € M, then UA,, € M. Indeed we know UA,, € M iff (UA,)" €
M. But

(UA,) =NAS e M

by item d. above.
f) If A,, € M are pairwise disjoint, then

m(UAn) =Y m(Ay).

n=1

oo

To prove this it suffices to observe that 1,4, = >, 1a4,.

g) M is not 2[* ie. M is not all subset of [a,b]. This is not obvious
and it is not possible to really write down an “explicit” subset [a, b]
which is not in M. We will prove the existence of such sets later.

8. Fact: M is the smallest o0 — algebra on [a,b] which contains all sub-
intervals of [a, b].
9. Fact: A bounded function f : [a,b] — R is in H iff {f > a} € M for all
aeR.
10. Fact: The integral I may be recovered from the measure m by the formula

I(f)= lim Z a;m({z €[a,b]: oy < f(z) <au}).
mesh—0 O<a<az<az<...

We will prove items 8. — 10. later in the course. The proof if Items 9. and
10. is not so hard and the energetic reader may wish to give them a try.

Notation 1.3 The collection of sets M is called the Borel o — algebra on
[a,b] and the function m : M — R is called Lebesgue measure. We will usually
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write I (f) as f[a . fdm and I (f) will be called the Lebesgue integral of f. This

integral may be extended to all positive functions f such that f1)5 <y € H for
all M by

I(f)= Jim I(flipi<m)-

Again, we will come back to all of this again later.
*** End of WORK material. ***
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Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative inte-
gers and Z = Ny U (—N) — the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter 3| below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let Y~ denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in 'Y and often write f, for f(n) and express f as {fn} —; -
If X = {1,2,...,N}, we will write YN in place of Y112N}t and denote
FeYN by f=(f1,fa...,fn) where f, = f(n).

Notation 2.2 More generally if {X, : « € A} is a collection of non-empty

sets, let X4 = [] Xa and m : Xa — X be the canonical projection map
acA
defined by wo(x) = xo. If If X, = X for some fized space X, then we will

write [] Xo as XA rather than X 4.
a€cA

Recall that an element x € X4 is a “choice function,” i.e. an assignment
To = z(a) € X, for each a € A. The axiom of choice (See Appendix Bl)
states that X 4 # () provided that X, # ) for each a € A.

Notation 2.3 Given a set X, let 2% denote the power set of X — the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={reX alz)=1} C X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.
For A € 2% let
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A =X\A={zeX :x ¢ A}
and more generally if A, B C X let
B\A:={zxeB:x¢ A} = An B°.
We also define the symmetric difference of A and B by
AAB:=(B\ A)U(A\ B).

As usual if {An},c; is an indexed collection of subsets of X we define the
union and the intersection of this collection by

Uactdo:={z€eX:Fael >z A,} and
NactAa ={zeX:z € A Vael}.

Notation 2.4 We will also write ]_[ael A, for UgerAn in the case that
{Aa}er are pairwise disjoint, i.e. Aq N Ag =0 if o # 3.

Notice that U is closely related to 3 and N is closely related to V. For
example let {4, } 7 | be a sequence of subsets from X and define

{410} ={reX :#{n:z € A,} =} and
{4, aa.}:={x e X :z e A, for all n sufficiently large}.

(One should read {4,, i.0.} as A, infinitely often and {4,, a.a.} as A,, almost
always.) Then = € {4,, i.0.} iff

YVNeNdn>N>zxe A,
and this may be expressed as

{4, 1.0.} =NF=; Un>n As.
Similarly, x € {4, a.a.} iff

dNeN>VYn>N, z€ A,
which may be written as

{4, a.a.} =UF_; Nu>n Ap.

Definition 2.5. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).

1. If A C X is a subset of a countable set X then A is countable.
2. Any infinite subset A C N is in one to one correspondence with N.
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3. A non-empty set X is countable iff there exists a surjective map, g : N —
X.

4. If X andY are countable then X XY is countable.

5. Suppose for each m € N that A,, is a countable subset of a set X, then
A =U_1 Ay, is countable. In short, the countable union of countable sets
1s still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X
is uncountable. In particular 2% is uncountable for any infinite set X.

Proof. 1. If f : X — N is an injective map then so is the restriction, f|a,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1)=min A\ {f(1),...,f(n)}.

Since A is infinite the process continues indefinitely. The function f: N — A
defined this way is a bijection. 3. If g : N — X is a surjective map, let

f(z) =ming™" ({z}) =min{n € N: f(n) = z}.

Then f: X — N is injective which combined with item 2. (taking A = f(X))
shows X is countable. Conversely if f : X — N is injective let zp € X be
a fixed point and define g : N — X by g(n) = f~(n) for n € f(X) and
g(n) = xg otherwise. 4. Let us first construct a bijection, h, from N to N x N.
To do this put the elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3.3) ...

and then “count” these elements by counting the sets {(¢,7) : ¢ +j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3), etc. etc. If f: N—X and g : N =Y are
surjective functions, then the function (f x g) oh : N =X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € N x N.5.If A = () then A
is countable by definition so we may assume A # (). With out loss of generality
we may assume A; # () and by replacing A,, by A; if necessary we may also
assume A,, # @ for all m. For each m € N let a,, : N —A,, be a surjective
function and then define f : N x N — U_, A, by f(m,n) := an(n). The
function f is surjective and hence so is the composition, foh : N — X x Y,
where h : N — N x N is the bijection defined above. 6. Let us begin by showin

2% — {0,1}" is uncountable. For sake of contradiction suppose f : N — {0,1}

is a surjection and write f (n) as (f1 (n), fa(n), fs(n),...). Now define a €
{0,13" by a, := 1 — f,(n). By construction f, (n) # a, for all n and so
a ¢ f (N). This contradicts the assumption that f is surjective and shows 2N
is uncountable. For the general case, since Y5 C Y for any subset Yy C Y,
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if Y5¥ is uncountable then so is YX. In this way we may assume Yj is a two
point set which may as well be Yy = {0,1}. Moreover, since X is an infinite
set we may find an injective map  : N — X and use this to set up an
injection, 4 : 2% — 2% by setting i (a) (z,,) = ay,, for alln € N and i (a) (z) = 0
if ¢ {x,:ne€N}. If 2% were countable we could find a surjective map
f:2% — Nin which case foi:2Y — N would be surjective as well. However
this is impossible since we have already seed that 2~ is uncountable. [ ]

We end this section with some notation which will be used frequently in
the sequel.

Notation 2.7 If f : X — Y is a function and £ C 2 let
JE = FNE) = (BB € €.

If G C 2%, let
f.G:={Ae2"[f"(A) eg}.

Definition 2.8. Let £ C 2% be a collection of sets, A C X, is: A — X be
the inclusion map (ia(x) = x for all x € A) and

Ea=i"(&)={ANE:Ec¢&}.

2.1 Exercises

Let f: X — Y be a function and {A;};c; be an indexed family of subsets of
Y, verify the following assertions.

Exercise 2.1. (N;er4;)¢ = U;er AS.

Exercise 2.2. Suppose that B C Y, show that B\ (U;erA4;) = Nicr (B \ 4;).
Exercise 2.3. 1 (UjerA;) = Uier f1(A).

Exercise 2.4. f~1(NierA;) = NierfH(A;).

Exercise 2.5. Find a counter example which shows that f(C N D)= f(C)N
f(D) need not hold.
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A Brief Review of Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R, nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q:{ﬁ:m,nEZ:n;&O}.
n
As usual, for ¢ € QQ, we define

gl =4 9 if >0
4= —qifg<o.

Notice that if ¢ € Q and |g| < % for all n, then ¢ = 0. Indeed ¢ # 0 then
lg| = 2+ for some m,n € N and hence |q| > % A similar argument shows
q>0iff g > f% for all n € N. These trivial remarks will be used in the future

without further reference.

Definition 3.1. A sequence {q,},.., C Q converges toq € Q if|g — q,| — 0
asn — oo, i.e. if for all N € N, |qg — ¢qn| < % for a.a. n. As usual if {gn},,
converges to q we will write ¢, — q as n — 00 or ¢ = lim,_ o0 ¢n-

o0

Definition 3.2. A sequence {q,},_, C Q is Cauchy if |¢, — qgm| — 0 as
m,n — oo. More precisely we require for each N € N that |qm — gn| < % for
a.a. pairs (m,n).

Exercise 3.1. Show that all convergent sequences {g,} -, C Q are Cauchy
and that all Cauchy sequences {g,},, are bounded — i.e. there exists M € N
such that

lgn| < M for all n € N.

Exercise 3.2. Suppose {q,,},-, and {r,} -, are Cauchy sequences in Q.
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1. Show {gn + rn},oy and {g - 7 },-, are Cauchy.
Now assume that {g,} —, and {r,} -, are convergent sequences in Q.
2. Show {qn +7n}rey {qn - Tn},—, are convergent in Q and
lim (¢, +7,) = lim ¢, + lim 7, and
n—o0 n—oo n—oo
lim (g¢,rn) = lim g, - lim r,.
n—o00 n—oo n—oo
3. If we further assume g,, <, for all n, show lim,, o ¢, < limy, 00 7. (It
suffices to consider the case where g,, = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
3.14] below, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{gn},~; C Q which is not convergent in Q.

1. Recall that there is no element ¢ € Q such that ¢> = 2¥ To each n € N
let m,, € N be chosen so that

m2 (my, + 1)2

and let g, := ==.

2. Verify that g2 — 2 as n — oo and that {qn},—, is a Cauchy sequence in
Q.

3. Show {g,},-, does not have a limit in Q.

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences a = {a,} -, C Q and say
a,b € C are equivalent (write a ~ b) iff lim,, . |an, — by| = 0. (The reader
should check that “ ~ ” is an equivalence relation.)

Definition 3.3. A real number is an equivalence class, a:={b€C:b~ a}
associated to some element a € C. The collection of real numbers will be
denoted by R. For g € Q, let i (q) = a where a is the constant sequence a,, = q
for all n € N. We will simply write 0 for i (0) and 1 fori(1).

Exercise 3.4. Given a,b € R show that the definitions

—a=(—a), at+b:=(a+b)anda-b:=a-b

! This fact also shows that the intermediate value theorem, (See Theorem [10.50
below.) fails when working with continuous functions defined over Q.
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are well defined. Here —a, a + b and a - b denote the sequences {fan}zozl,

{a, +b,}.—, and {ay, - b, }, -, respectively. Further verify that with these op-
erations, R becomes a field and the map i : Q — R is injective homomorphism
of fields. Hint: if a # 0 show that @ may be represented by a sequence a € C
with |a,| > & for all n and some N € N. For this representative show the
sequence a1 = {a; 1}20:1 € C. The multiplicative inverse to @ may now be

1 1. onm
constructed as: = =a~ " = {an }nzl-

Definition 3.4. Let a,b € R. Then

l

1. a > 0 if there exists an N € N such that a,, > % for a.a. n.
2.a > 0 iff either a > 0 or a = 0. Equivalently (as the reader should verify),
a >0 iff for all N € N, a,, > —% for a.a. n.

3. Writea>borb<aifa—b>0
4. Writea>borb<aifa—b>0.

Exercise 3.5. Show “ > 7 make R into a linearly ordered field and the map
i : Q — R preserves order. Namely if a,b € R then

1. exactly one of the following relations hold: a < bora>bora=b.
2.Ifa>0andb>0thena+b>0and a-b>0.
3. Ifg,r € @ then ¢ <riffi(q) <i(r).

The absolute value of a real number a is defined analogously to that of
a rational number by

lal

[ aifa>0
Tl —aifa<0’

Observe this definition is consistent with our previous definition of the abso-
lute value on Q, namely i (|q|) = |i(¢)|. Also notice that a = 0 (i.e. a ~ 0
where 0 denotes the constant sequence of all zeros) iff for all N € N, |a,| < &
for a.a. n. This is equivalent to saying |a| < i () for all N € Niff a = 0.

Exercise 3.6. Given a@,b € R show
|ab| = |a| |b| and |a+b| < |a|+ [b].
The latter inequality being referred to as the triangle inequality.
By exercise 3.6,
la| = |a—b+b| <|a—0b| + |p|

and hence B ~
la| — [b] < |a — b

and by reversing the roles of @ and b we also have

~(al ~[o]) = [o] ~1al < [p—a] =|a 5]
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Therefore ||a| — |b|| < |@ — b| and in particular if {a, },-; C R converges to
a € R then
[lan| —la|| < |Gn —al — 0 as n — oo.

Definition 3.5. A4 sequence {a,},., C R converges to a € R if |a — a,| —
0 as n — oo, i.e. if for al N € N, |a —a,| < i (%) for a.a. n. As before if
{a,},2, converges to a we will write a,, — a as n — 0o or & = lim,_. G,

Remark 3.6. The field i (Q) is dense in R in the sense that if @ € R there
exists {gn},—; C Q such that i(g,) — @ as n — oo. Indeed, simply let
qn = an Where a represents a. Since a is a Cauchy sequence, to any N € N
there exits M € N such that

1 1
—Ngam—angﬁforallm,nzM

and therefore

[
P
=[ -
S~

IN

1
i(am)d§i<N> for all m > M.
This shows

, _ ‘ (1
li (gm) —a| = |i(am) —a| < (N) for all m > M

and since N is arbitrary that i (g,) — a as m — oo.

oo

Definition 3.7. A sequence {a,},_, C R is Cauchy if |a, — an| — 0 as
m,n — oo. More precisely we require for each N € N that |G, — an| < i (%)
for a.a. pairs (m,n).

Exercise 3.7. The analogues of the results in Exercises 3.1 and 3.2/ hold with
Q replaced by R. (We now say a subset A C R is bounded if there exists
M € N such that |A] <i(M) for all A € A.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Proof. Suppose that {a(m)} -_, is a Cauchy sequence in R. By Remark
3.6, we may choose ¢, € Q such that

|la(m) —i(gm)| <i(m™") for all m € N.

Given N € N, choose M € N such that |a(m)—a(n)| < i (N7') for all
m,n > M. Then
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i (am) =i (gn)| < [i (gm) —a(m)| +la(m) —a(n)| +|a(n) —i(g)|
<i(m™ ) +i(n ) +i(NTT

and therefore
lgm — qn] <m~ 40"t + N7t for all m,n > M.

It now follows that ¢ = {gm },._, € C and therefore ¢ represents a point g € R.
Using Remark 3.6 and the triangle inequality,

la(m) —ql <la(m)—i(gm)|+i(gm)—q

<i(m™) +i(gm) —q — 0asm — oo
and therefore lim,, ., @ (m) = q. |
Definition 3.9. A number M € R is an upper bound for a set A C R if
A< M for all A € A and a number m € R is an lower bound for a set

ACRifXN>m for all X € A. Upper and lower bounds need not exist. If A
has upper (lower) bound, A is said to be bounded from above (below).

Theorem 3.10. To each non-empty set A C R which is bounded from above
(below) there is a unique least upper bound denoted by sup A € R (respec-
tively greatest lower bound denoted by inf A € R).

Proof. Suppose A is bounded from above and for each n € N, let m,, € Z
be the smallest integer such that ¢ (%) is an upper bound for A. The sequence

qn := 5= is Cauchy because ¢y, € [¢, —27",¢,] N Q for all m > n, i.e.

|G — agn| < 2~ min(mn) 0 as m,n — oo.

Passing to the limit, n — oo, in the inequality i (¢,) > A, which is valid for
all A € A implies
g= lim i(g,) > Aforall A € A.

Thus ¢ is an upper bound for A. If there were another upper bound M € R for
A such that M < g, it would follow that M < i(g,) < g for some n. But this
is a contradiction because {g,},., is a decreasing sequence, i (gn) > i (gm)
for all m > n and therefore i (¢,,) > ¢ for all n. Therefore g is the unique least
upper bound for A. The existence of lower bounds is proved analogously. =

Proposition 3.11. If {a,},~, C R is an increasing (decreasing) sequence
which is bounded from above (below), then {a,},—, is convergent and

lim a, =sup{a, :n €N} (lim a, =inf{a, : n € N}).

If A C R is a set bounded from above then there exists {\,} C A such that
A T M :=supd, asn — 00, i.e. {\,} is increasing and lim, oo A, = M.
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Proof. Let M :=sup{a, : n € N}, then for each N € N there must exist
m € N such that M — i (Nfl) < apy < M. Since a,, is increasing, it follows
that
M—Z’(N_l) < a, < M for all n > m.

From this we conclude that lim a,, exists and lima, = M. If M = sup A, for
each n € N we may choose \,, € A such that

M—i(n™") <Xy <M. (3.2)
By replacing A, by max {\,..., A\, }? if necessary we may assume that \,, is

increasing in n. It now follows easily from Eq. (3.2) that lim,, oo A, = M. &

3.1.1 The Decimal Representation of a Real Number

Let a e Rora e Q, m,n€Zand S := Zzn:nak. If « =1 then Z?:nak:
m — n + 1 while for « # 1,

aS—8=amt —qa"
and solving for S gives the important geometric summation formula,
m m-+1 n
@ -«
Sk = (33)
a—1
k=n

Taking o = 107! in Eq. (3.3) implies

i 10—k — 10~ — 0= 1 1-—10"(m"")
— - 107t-1 107t 9

and in particular, for all M > n,

m 1 M
. —k _ —k
) 107 =gy = 2 10

Let D denote those sequences « € {0,1,2,... ,9}Z with the following prop-
erties:

1. there exists N € N such that a_,, =0 for all n > N and
2. ay # 0 for some n € Z.

2 The notation, max A, denotes sup A along with the assertion that supA € A.
Similarly, min A = inf A along with the assertion that inf A € A.
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Associated to each a € D is the sequence a = a («) defined by

i Oéklo_k.

k=—oc0
Since for m > n,
i 1 1
— Qp, 10 = TAn0
| a ‘ Z K Z 9 10n 1071
k=n-+1 k=n
it follows that
1
|am — an| < ———— — 0 as m,n — oo.
1Qmin(m,n)

Therefore a = a (o) € C and we may define a map D : {+1} x D — R defined
by D (g,a) = ea(a). As is customary we will denote D (e, ) = ea () as

€ Q.. .00 ... ... (3.4)

where m is the largest integer in Z such that ap =0 for all k <m. If m >0
the expression in Eq. (3.4) should be interpreted as

€-0.0...0amamy1 - ---

An element a € D has a tail of all 9’s starting at N € N if a,, = 9 and for
allm > N and ay_1 # 9. If a has a tail of 9’s starting at N € N, then for
n >N,

k=—oc0
_ 9 1—10-(=N)
Z 10 10NV -1 9
k=—oc0
N-1
— Z akl()*k +10"N=1D as n — oo.
k=—o00

If o is the digits in the decimal expansion of Ziv:foo apl0=F 4+ 10~ (V=1
then
o' €D :={a €D: «a does not have a tail of all 9’s}.

and we have just shown that D (e,a) = D (e,¢’) . In particular this implies

D({£1} x ') = D ({+1} x D). (3.5)
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Theorem 3.12 (Decimal Representation). The map
D :{#£1} x D'— R\ {0}
s a bijection.

Proof. Suppose D (g,a) = D (6, 3) for some (g, ) and (4, 5) in {£1} x D.
Since D (e,a) > 0ife =1 and D (g,) < 0if € = —1 it follows that € = 4. Let
a = a(a) and b = a(8) be the sequences associated to « and § respectively.
Suppose that @ # ( and let j € Z be the position where o and g first
disagree, i.e. @, = 3, for all n < j while a; # ;. For sake of definiteness
suppose 3; > a;. Then for n > j we have

by —an = (B85 — ;) 1077 + > (B — ) 107"
k=j+1
1

910

>107 -9 Y 107F>107 -9
k=j+1

Therefore b, —a,, > 0 for all n and lim (b, — a,,) =0iff §; = a;+1 and B =9
and ay =0 for all k > j. In summary, D (¢,«) = D (4, 5) with o # 8 implies
either « or B has an infinite tail of nines which shows that D is injective when
restricted to {1} x D’. To see that D is surjective it suffices to show any
beR with 0 <b< 1isin the range of D. For each n € N, let a,, = .a1 ...y
with a; € {0,1,2,...,9} such that

i(an) <b<i(ay)+1i(107"). (3.6)

Since anq1 = an + 110~ for some o, 1 € {0,1,2,...,9}, we see that
Gpt1 = Q7 ...0Qp0n41, 1.e. the first n digits in the decimal expansion of a1
are the same as in the decimal expansion of a,,. Hence this defines v, uniquely
for all n > 1. By setting a,, = 0 when n < 0, we have constructed from b an
element a € D. Because of Eq. (3.6), D (1,a) = b. [ ]

Notation 3.13 From now on we will identify Q with i (Q) C R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form m10~" for some m € Z and n € N) has a unique decimal expansion.

Corollary 3.14. The set (0,1) := {a € R:0 < a < 1} is uncountable while
QnN(0,1) is countable.

Proof. By Theorem[3.12| the set {0,1,2..., S}N can be mapped injectively
into (0, 1) and therefore it follows from Lemma 2.6 that (0, 1) is uncountable.
For each m € N, let A,, := {2 :neNwithn<m}. Since QN (0,1) =
U_, Ay, and # (A,,) < oo for all m, another application of Lemma 2.6/ shows
QnN(0,1) is countable. |
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3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R? equipped with multipli-
cation rule
(a,b)(c,d) := (ac — bd, be + ad) (3.7)

and the usual rule for vector addition. As is standard we will write 0 = (0,0),
1 =1(1,0) and i = (0,1) so that every element z of C may be written as
z = zl1 + yi which in the future will be written simply as z = x + iy. If
z=x+1y, let Rez =z and Im z = y.

Writing z = a + ib and w = ¢ + id, the multiplication rule in Eq. (3.7)
becomes

(a+1b)(c +id) := (ac — bd) + i(bc + ad) (3.8)
and in particular 12 =1 and % = —1.

Proposition 3.16. The complex numbers C with the above multiplication

rule satisfies the usual definitions of a field. For example wz = zw and

z (w1 +wy) = zwy + zws, etc. Moreover if z # 0, z has a multiplicative

inverse given by

. a . b
T2 arger

Proof. The proof is a straightforward verification. Only the last assertion
will be verified here. Suppose z = a + ib # 0, we wish to find w = ¢ + id such
that zw = 1 and this happens by Eq. (3.8) iff

z (3.9)

ac —bd =1 and (3.10)
bc+ ad = 0. (3.11)
Solving these equations for ¢ and d gives ¢ = 3% and d = —ﬁ—ibz as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a + ib with a,b € R
let Z=a—1ib and

2| := v2Z = Va2 + b2 = \/|Re z|* + [Im 2|>.

See Exercise|3.8 for the existence of the square root as a positive real number.

Notice that

Rez:%(z—l—i) and Imz:%(z—i)- (3.12)
1

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1.

Y]]

:Z’
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2.70=Zw and Z+ 0 = z + w.

3. |z] = |7

4. |zw| = |z| |w| and in particular |2"| = |z|" for all n € N.

5. Rez| < |z| and [Imz| < |z|

6. |2+l < 2] + fu.

7.2 =0 iff |z| = 0. .

8. If 2 # 0 then 271 == e (also written as 1) is the inverse of z.
9. |z_1’ = |2|”" and more generally |2"| = |z|" for all n € Z.

Proof. All of these properties are direct computations except for possibly
the triangle inequality in item 6 which is verified by the following computation;

2+ w = (2 + w) GFw) = |2 + [w’ + wz + D2
= |2)* + |w® + wz + wz
= 2> + |[wf® + 2Re (wz) < |2|* + |w]* + 22| |uw]
= (|2 + |w])®.
|

Definition 3.19. A sequence {z,},.; C C is Cauchy if |z, — 2| — 0 as
m,n — 0o and is convergent to z € C if |z — z,| — 0 as n — co. As usual
if {zn}zozl converges to z we will write z, — z asn — 00 or z = lim,, .o Zp.

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if z,, = a, + b, € C, then

1. {z,},—, C Cis Cauchy iff {a,},., C R and {b,} -, C R are Cauchy
and
2. z, > z=a+1ibasn — xiff a, — a and b, — b as n — oo.

3.3 Exercises

Exercise 3.8. Show to every a € R with a > 0 there exists a unique number
b € R such that b > 0 and b? = a. Of course we will call b = Va. Also show
that @ — /a is an increasing function on [0, c0). Hint: To construct b = \/a
for a > 0, to each n € N let m,, € Ny be chosen so that

2 2 2 2
ﬂ%<a§(”%+1>i_e_i(ﬂgz)<a§i<(”%+1>>
n

n? n? n2

and let g, := 2. Then show b = {g,,},; € R satisfies b > 0 and b? = a.
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Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R := RU {400}, i.e. it
18 R with two new points called co and —oo. We use the following conventions,
F+00-0=0, £oo+a = oo for any a € R, 0o+ 00 = 00 and —0o — 00 = —00
while 0o — oo is not defined. A sequence a, € R is said to converge to oo
(—o0) if for all M € R there exists m € N such that ap, > M (a, < M) for
all n > m.

Lemma 4.2. Suppose {a,}rr, and {b,},—, are convergent sequences in R,
then:

1. If a, < b, for a.a. n then lim,_. o a, < lim,_. o by,.
2. If c e R, lim,, o (cay,) = climy, o0 G-
3. If {an + by }o | is convergent and
lim (a, +b,) = lim a, + lim b, (4.1)

n—oo n—oo n—oo

provided the right side is not of the form oo — oco.
4. {anbn},~, is convergent and

lim (apb,) = lim a, - lim b, (4.2)

n—oo n—oo n—oo
provided the right hand side is not of the for oo - 0.

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l
lim (a,, + b,) = 0 ifa=1
—ocoifa>1

while
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lim a, + lim b,“ ="0c0 — 00.

n—oo n—oo

This shows that the requirement that the right side of Eq. (4.1) is not of form
00 — 00 is necessary in Lemma 4.2. Similarly by considering the examples
a, =n and b, = n~* with a > 0 shows the necessity for assuming right hand
side of Eq. (4.2) is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.

Proof of Eq. (4.1). Let a := lim, o a,, and b = lim,,_, b,. Case 1.,
suppose b = oo in which case we must assume a > —oo. In this case, for every
M > 0, there exists N such that b, > M and a,, > a — 1 for all n > N and
this implies

ap+bp,>M+a—1foralln>N.

Since M is arbitrary it follows that a, 4+ b, — co as n — b = co. The cases
where b = —oc0 or a = o0 are handled similarly. Case 2. If a,b € R, then for
every € > 0 there exists N € N such that

la —an| <eand |b—10b,| <eforalln>N.
Therefore,
la+b—(an+by)|=la—an+b—0, <la—a,|+|b—0,| <2

for all n > N. Since n is arbitrary, it follows that lim, . (a, + b,) = a + b.

Proof of Eq. (4.2). It will be left to the reader to prove the case
where lima, and limb, exist in R. I will only consider the case where
a = lim, ,a, # 0 and lim, .., b, = oo here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let o := min (,1) . Given
any M < oo, there exists N € N such that a,, > a« and b, > M for alln > N
and for this choice of N, a,b, > Ma for all n > N. Since o > 0 is fixed and
M is arbitrary it follows that lim, . (apb,) = 0o as desired. ]

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup 4 = oo
if oo € A or A is not bounded from above and inf A = —occ if —co € A or A is
not bounded from below. We will also use the conventions that sup () = —oo
and inf ) = +oo.

o0

Notation 4.3 Suppose that {x,},_, C R is a sequence of numbers. Then

lim inf x, = lim inf{xy : k> n} and (4.3)
lim sup x, = lim sup{zj : k > n}. (4.4)

We will also write lim for liminf and lim for limsup .

Remark 4.4. Notice that if ay := inf{xy : &k > n} and by := sup{ay : k >
n}, then {a;} is an increasing sequence while {;.} is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R and



4.1 Limsups, Liminfs and Extended Limits 23
lim inf z, =supinf{zy : k > n} and
n—oo n

lim sup x, = inf sup{zy : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 4.5. Let {a,}52; and {b,}32, be two sequences of real numbers.
Then

1. liminf, . a, <limsup,,_,, @, and lim, . a, exists in R iff

lim inf a, = lim sup a, € R.

n—oo n—oo

2. There is a subsequence {an, }7°, of {an}re, such that limy_ oo @y, =
limsup,,_, Gn-
3.
lim sup (a, + b,) < lim sup a, + lim sup b, (4.5)

n—oo n—oo n—o0

whenever the right side of this equation is not of the form oo — co.

4. If a,, > 0 and b, > 0 for all n € N, then

lim sup (apb,) < lim sup a, -lim sup by, (4.6)

n—oo n—oo n—oo
provided the right hand side of (4.6) is not of the form 0 - oo or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an
exercise to the reader. Since

inf{ag : k > n} <sup{ax : k > n} Vn,

lim inf a, <lim sup a,.
n—oo n—o00

Now suppose that liminf, .. a, = limsup,_, . a, = a € R. Then for all
€ > 0, there is an integer N such that

a—e<inf{ap:k> N} <sup{ar : k> N} <a+e,

i.e.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limy_,o ax = a. If liminf,, . a, = oo,
then we know for all M € (0, 00) there is an integer N such that

M <inf{ay : k> N}

and hence lim,,_,~ a, = 0o. The case where limsup,,_, ., a, = —o0 is handled
similarly.
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Conversely, suppose that lim, . a, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |A —a,| < ¢ for all n > N(e),
ie.

A—e<a, <A+ceforalln>N().

From this we learn that

A—e<lim inf a, <lim sup a, < A +e¢.

n—00 n— o0
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A,

n—oo n—o00

i.e. that A = liminf, . a, = limsup,,_,, an. If A = o0, then for all M > 0
there exists N(M) such that a, > M for all n > N(M). This show that
liminf, . a, > M and since M is arbitrary it follows that

oo < lim inf a, < lim sup a,.

n—oo n—oo

The proof for the case A = —oo is analogous to the A = oo case. [

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
a CC X to denote that « is a finite subset of X and write 255 for those
a CC X.

Definition 4.6. Suppose that a : X — [0,00] is a function and F C X is a
subset, then

ZazZa(z) ::sup{Za(x):aCCF}.
F

zEF TEQ

Remark 4.7. Suppose that X =N ={1,2,3,...} and a : X — [0, 00], then

Za = Z a(n) = A}Enoo Z a(n).
N n=1

n=1

Indeed for all N, 25:1 a(n) < Y ya, and thus passing to the limit we learn
that

oo

Za(n) < Za.

n=1 N
Conversely, if « CC N, then for all N large enough so that « C {1,2,..., N},
we have ) a < 25:1 a(n) which upon passing to the limit implies that
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Za<Z

n=1

Taking the supremum over « in the previous equation shows

Zag Za(n)

Remark 4.8. Suppose a : X — [0,00]and ) a < oo, then {z € X : a(x) > 0}
is at most countable. To see this first notice that for any € > 0, the set
{z : a(z) > €} must be finite for otherwise )y a = co. Thus

{reX:a(z)>0}= Uiozl{a: ca(x) > 1/k}

which shows that {z € X : a(x) > 0} is a countable union of finite sets and
thus countable by Lemma [2.6.

Lemma 4.9. Suppose that a,b: X — [0,00] are two functions, then

Z Za—i—Zb and
Z)\a—)\Za

for all X > 0.

I will only prove the first assertion, the second being easy. Let a« CC X be
a finite set, then

SURTED S SUED WS B
which after taking sups over a shows that

Dlatb) <y aty b

X X X
Similarly, if o, 3 CC X, then

Za+2b<2a+Zb—Z (a+0b) < XX:aer.

alUp aupg aupg

Taking sups over a and 8 then shows that

dat+> <> (a+b).
X X X
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Lemma 4.10. Let X and Y be sets, R C X x Y and suppose that a : R — R
is a function. Let ;R :={y €Y : (z,y) € R} and Ry, :={z € X : (z,y) € R}.
Then

sup a(z,y) = sup sup a(z,y) = sup sup a(zx,y) and

(a;,y)eR zeX yeEL R yeY zeRy
inf a(z,y) = inf inf a(z,y) = inf inf a(zx,y).
(z,y)ER ( y) z€X yEx R ( y) yeY zeR, ( y)
(Recall the conventions: sup ) = —oo and inf ) = 4+00.)

Proof. Let M = sup, ,yeg a(®,y), Nz := sup,e, g a(z,y). Then a(z,y) <
M for all (z,y) € R implies N, = sup,¢ g a(z,y) < M and therefore that

sup sup a(z,y) = sup N, < M. (4.7)
rzeX yex R reX

Similarly for any (z,y) € R,

a(z,y) < Ny < sup N, = sup sup a(,y)

zeX rzeX yeEx R
and therefore
M = sup a(z,y) < sup sup a(z,y) (4.8)
(z,y)ER reX Yy R

Equations (4.7) and (4.8) show that

sup a(z,y) = sup sup a(z,y).
(z,y)ER re€X yEa R

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function —a. [

Y

Fig. 4.1. The x and y — slices of a set R C X x Y.
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Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that f,, : X — [0,00] is an increasing sequence of functions and

flz) = T fn(z) = sup fn(@).

n—oo

Then

lm Y fo=)f
X X

Proof. We will give two proves.
First proof. Let

2?::{ACX:ACCX}.

Then
lim an = supin = sup sup an = sup supin
n—oo ag2¥ n
= sup Jim D fn = sup D fim Jn
(03
= sup Zf 21
ac2f

[e3

Second Proof. Let S, =3 fp, and S =3 f. Since f,, < f,,, < f for all
n < m, it follows that

Sp <SS
which shows that lim,,_, . 5,, exists and is less that S, i.e.
A= lim > fn <> f (4.9)
X X

Noting that > fr <>y fn = Sp < A for all @« CC X and in particular,

an < A forallnand o CC X.

Letting n tend to infinity in this equation shows that

Y f<Aforallacc X

and then taking the sup over all « CC X gives
Y f<A=lim Y fn (4.10)
X T

which combined with Eq. (4.9) proves the theorem. |
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Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that f, : X — [0, 0]
s a sequence of functions, then

> lim inf f, <lim inf > f,.
X n—oo n—oo X

Proof. Define g := H;fk fn so that g T liminf, .. fn, as k — oo. Since

gr < fn for all kK <n,
ngSanforalank
X X

and therefore
§gk < lim nlilgo zX: fn for all k.

We may now use the monotone convergence theorem to let £ — oo to find

o . MCT . o
Zx:hmnlilgo fn = zX:len;ogk = kll)ngozx:gk < hmnli»lgozx:fn.

Remark 4.13.1f A = 3" a < oo, then for all ¢ > 0 there exists a. CC X
such that
A=Y a>A-¢

for all @ CC X containing a. or equivalently,
A— Z a
(03

for all « CC X containing a.. Indeed, choose o, so that Z% a>A—-c«.

<e (4.11)

4.3 Sums of complex functions

Definition 4.14. Suppose that a : X — C is a function, we say that
So= Y
X zeX

exists and is equal to A € C, if for all € > 0 there is a finite subset a. C X
such that for all « CC X containing . we have

A—Za

<e.
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The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a,b : X — C are two functions such that ) a
and Y b exist, then Y (a + Ab) exists for all A € C and

D (a+Ab)=> a+Ar) b
X X X
Definition 4.16 (Summable). We call a function a : X — C summable
if

> lal < 0.

X

Proposition 4.17. Let a : X — C be a function, then )y a exists iff
Yox lal < oo, i.e. iff a is summable. Moreover if a is summable, then

> al <> al.

Proof. If )", |a] < oo, then (Rea)® < oo and dox (Ima)* < oo
and hence by Remark [4.13 these sums exists in the sense of Definition [4.14.
Therefore by Lemma 4.15, > a exists and

Za = 2:(Rea)Jr — Z(Rea)f +1 (Z (Ima)" — Z(Ima)) .
X

X X X X

Conversely, if > |a| = oo then, because |a| < |Rea| + [Ima|, we must

have
Z [Rea| = oo or Z Ima| = oo.
X X

Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where

at(z) = max(a(zr),0) and a~ (r) = max(—a(z),0). (4.12)

Then |a| = a™ +a~ and
oo=Z|a|:Za++Za_
X X X

which shows that either Yy a™ = oo or )y a~ = co. Suppose, with out loss
of generality, that ) a® = co. Let X’ := {z € X : a(z) > 0}, then we know
that )"y, a = oo which means there are finite subsets o, C X’ C X such
that >, a > n for all n. Thus if @« CC X is any finite set, it follows that
limy 00 D 2q, ua @ = 00, and therefore )y a can not exist as a number in R.
Finally if a is summable, write >y a = pe®® with p > 0 and 6 € R, then
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Za =p= e*wZa = Zeﬂ'ea
X X X
= ZRe [e_wa] < Z (Re [e_wa])Jr
X X
< Z |Re [e_ma} ’ < Z ’e_iea‘ < Z |al .
X X

X

Alternatively, this may be proved by approximating 3 - a by a finite sum and
then using the triangle inequality of |-|. ]

Remark 4.18. Suppose that X = N and a : N — C is a sequence, then it is
not necessarily true that

a(n) = Z a(n). (4.13)
n=1 neN
This is because v
Z a(n) = A}im Z a(n)
n=1 oon:l

depends on the ordering of the sequence a where as ), a(n) does not. For
example, take a(n) = (—1)"/n then ) _yla(n)| = oo ie. Y ya(n) does
not exist while > >°  a(n) does exist. On the other hand, if

Y la(m) =" la(n)| < oo

neN n=1
then Eq. (4.13) is valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that f, : X — C is a sequence of functions on X such that f(zx) =
lim,, o fu(x) € C exists for all © € X. Further assume there is a dominat-
ing function g: X — [0,00) such that

|fr(2)] < g(z) for allz € X andn € N (4.14)

and that g is summable. Then

dim Y fa(z) =) f(2). (4.15)

zeX zeX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By con-
sidering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,
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Y (g£f) =) lim inf (9= f,) <lim inf > (9% fn)
X X

X
= ngLlimniEgo (ian> .
X X
Since liminf,,_,(—a,) = —limsup,,_, ., @, we have shown,
lim inf,, o n
MO WEPUIL L et Y
and therefore

lim sup an < Zf < hmniilﬁozf”'
X X

n— o0
X

This shows that lim )" frexists and is equal to ) f. [ ]

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that | f| <
¢ and in particular that f is summable. Given € > 0, let &« CC X such that

Zgée.

Then for § CC X such that o C £,

DF=Y Tt =D~ )
B B

B

SO N = fal =DM = fal + D 1F = ful
B a B\

< U= fal+2> g
a B\

<D Nf = fal + 22

and hence that
Zf_z.fn S Z|f_fn| + 2e.
B B o
Since this last equation is true for all such 3 CC X, we learn that
DD
X X

which then implies that

gz‘f_fn‘—*—&{
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SF=> fn

lim sup

n—oo

< lim sup Z|f—fn|+25
= 2¢.

Because € > 0 is arbitrary we conclude that
D=2k
X X

which is the same as Eq. (4.15)). ]

lim sup =0.

n—oo

Remark 4.20. Theorem 4.19 may easily be generalized as follows. Suppose
fns gn, g are summable functions on X such that f,, — f and g, — g pointwise,
|[frl < gnand >y gn — >y g asn — oo. Then f is summable and Eq. (4.15)
still holds. For the proof we use Fatou’s Lemma to again conclude

d(9= )= lim inf (g £ fo) <lim inf D" (ga £ fr)
X X

X
= E g+ lim inf (:I: E fn>
X e X

and then proceed exactly as in the first proof of Theorem [4.19.

4.4 Tterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that a : X — C is function and F C X is a subset
such that a(x) = 0 for all v ¢ F. Then Y, a exists iff > y a exists and when

the sums exists,
E a= E a.
X F

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose thata: X xY —
[0, 0], then
S =Y Y=Y Y
XxY X v Y X
Proof. It suffices to show, by symmetry, that
D a=2.2 0
XxY X Y

Let A CC X x Y. The for any o CC X and f CC Y such that A C a x 3, we
have
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dasd a= >asy dasd > a
A ax3 a a Y X Y
ie. > ya <> >y a. Taking the sup over A in this last equation shows
Sy Y
XxY X v
For the reverse inequality, for each x € X choose 5% CC X such that 5% T as

n T and
> a(e) = Jim 3 ale,o)

yey yeBE

If « CC X is a given finite subset of X, then

Z a(z,y) = lim Z a(z,y) for all z € «

yey YELBn

where (), ' = Uzeaf8r CC X. Hence

S Y=Y i Y ate) = tim 3 Y aey)

reayeyY rEeQ YELBn TEQ YES,
= lim E a(z,y) < g a.
n—oo
(z,y)Eax By XxY

Since « is arbitrary, it follows that

SN a@y) = sup > > alwy)< Y a

TEX yeY aCCX rcayey XxY
which completes the proof. [

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that a : X x
Y — C is a summable function, i.e. by Theorem|4.22 any one of the following
equivalent conditions hold:

1.3 xyy lal < oo,
2.3 v >y lal < oo or
3.3y > ox lal < .
Then
> a=) D a=3 > e
XxY X Y Y X
Proof. If a : X — R is real valued the theorem follows by applying
Theorem 4.22to a* — the positive and negative parts of a. The general result
holds for complex valued functions a by applying the real version just proved
to the real and imaginary parts of a. [
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4.5 Exercises

Exercise 4.1. Now suppose for each n € N:={1,2,...} that f, : X — R is
a function. Let
D:={zeX: lim f,(xr)=+oo}

show that
D =N UNoq Mpsn{z € X @ fi(z) > M}, (4.16)

Exercise 4.2. Let f,, : X — R be as in the last problem. Let

C:={reX: lim f,(z) exists in R}.
n—oo

Find an expression for C' similar to the expression for D in (4.16). (Hint: use
the Cauchy criteria for convergence.)

4.5.1 Limit Problems
Exercise 4.3. Show liminf,, . (—a,) = —limsup,,_, . ap.

Exercise 4.4. Suppose that limsup,, .. a, = M € R, show that there is a
subsequence {an, }72, of {a,}72, such that limy_,o an, = M.

Exercise 4.5. Show that

lim sup(a,, + b,) < limsup a,, + limsup b, (4.17)

n—oo n—00 n— o0

provided that the right side of Eq. (4.17) is well defined, i.e. no oo — oo or
—00 4 00 type expressions. (It is OK to have oo+ 00 = 00 or —00 — 00 = —00,
etc.)

Exercise 4.6. Suppose that a,, > 0 and b,, > 0 for all n € N. Show

lim sup(a,by,) < limsup a,, - lim sup by, (4.18)

n—oo n—oo n—oo
provided the right hand side of (4.18) is not of the form 0 - co or oo - 0.
Exercise 4.7. Prove Lemma 4.15.
Exercise 4.8. Prove Lemma 4.21l

Let {a,}22; and {b,}22; be two sequences of real numbers.
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4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 Forug € R" and§ > 0, let By, () := {z € R" : |x — ug| < 6}
be the ball in R™ centered at ug with radius 0.

Exercise 4.9. Suppose U C R™ is a set and ug € U is a point such that
U N (By(0)\{ug}) # 0 for all § > 0. Let G : U \ {ug} — C be a function
on U \ {ug}. Show that lim,_,, G(u) exists and is equal to A\ € C,V iff for all

sequences {u,} -, C U\ {up} which converge to ug (i.e. lim, oo uy, = up)

we have lim,, o G(uy) = .

Exercise 4.10. Suppose that YV isaset, U CR"isaset,and f:UxY — C
is a function satisfying:

1. For each y € Y, the function u € U — f(u,y) is continuous on U.?
2. There is a summable function g : Y — [0, 00) such that

|f(u,y)| < g(y) forally € Y and u € U.

Show that

Flu) = 3" f(u,y) (4.19)

yey

is a continuous function for v € U.

Exercise 4.11. Suppose that Y is a set, J = (a,b) C R is an interval, and
f:JxY — Cis a function satisfying:

1. For each y €Y, the function u — f(u,y) is differentiable on J,
2. There is a summable function g : Y — [0, 00) such that

‘aauf(u,y)‘ <g(y) forally €Y and u € J.

3. There is a ug € J such that 3° s | f(uo,y)| < 0.
Show:
a) for all u € J that Zyey |f(u,y)| < oo.

L More explicitly, limy—y, G(u) = X means for every every € > 0 there exists a
¢ > 0 such that

|G(u) — M| < € whenerver u € U N (By,(0) \ {uo}) .

2 Tosay g := f(-,y) is continuous on U means that g : U — C is continuous relative
to the metric on R™ restricted to U.
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b) Let F(u):=3_ cy f(u,y), show F is differentiable on J and that
. 0
F) = Y o f(u.y).
u
yey
(Hint: Use the mean value theorem.)

Exercise 4.12 (Differentiation of Power Series). Suppose R > 0 and
{an},—, is a sequence of complex numbers such that > > |a,|r"™ < oo for
all 7 € (0, R). Show, using Exercise 4.11, f(z) := > " a,z™ is continuously
differentiable for x € (—R, R) and

oo oo
f(z) = Z na,z"" "t = Z na,z"" '
n=0 n=1

Exercise 4.13. Show the functions

T S z"
e’ = 0 (4.20)
n=0
) s " 1.2n+1
Sy = Z (71) m and (421)
n=0
e n x2n
cosx = Z (-1) )l (4.22)
n=0 ’

are infinitely differentiable and they satisfy

—e® =¢e” with e =1

dx
e sinx = cosx with sin (0) =0
o COST = —sinz with cos (0) = 1.

Exercise 4.14. Continue the notation of Exercise 4.13.

1. Use the product and the chain rule to show,

e [e*we(:”*y)} =0

and conclude from this, that e~ %e(*+¥%) = ¢¥ for all z, y € R. In particular
taking y = 0 this implies that e™* = 1/e® and hence that elTty) = ey,
Use this result to show e¢* [ oo as ¢ T co and €* | 0 as x | —o0.
Remark: since e* > Zg:o %L when z > 0, it follows that lim,_, o i—: =0
for any n € N, i.e. e grows at a rate faster than any polynomial in x as
T — 00.
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2. Use the product rule to show
d 2 -2
e (cos x + sin CE) =0

and use this to conclude that cos?z + sin?z = 1 for all x € R.

Exercise 4.15. Let {a,},.___ be a summable sequence of complex numbers,
Le. Y07 lan| < oo. For t >0 and x € R, define

o0
F(t,z) = Z anef”‘Qei"z,

n=—oo

where as usual €' = cos(z) + i sin(z), this is motivated by replacing z in Eq.
(4.20) by iz and comparing the result to Egs. (4.21) and (4.22)).

1. F(t, ) is continuous for (¢, z) € [0,00)xR. Hint: Let Y = Z and u = (¢, z)
and use Exercise [4.10.

2. OF (t,z)/0t, OF (t,z)/0z and 9*F(t,x)/0x? exist for t > 0 and = € R.
Hint: Let Y = Z and u = t for computing 0F (¢,z)/0t and u = x for
computing OF(t,z)/0x and 9?F(t,r)/0x?. See Exercise [4.11.

3. F satisfies the heat equation, namely

OF(t,z)/0t = 0*F(t,z)/0x* for t > 0 and x € R.






5

P — spaces, Minkowski and Holder Inequalities

In this chapter, let u: X — (0,00) be a given function. Let F denote either
Ror C. For p € (0,00) and f: X — T, let

£l = (Y 1F @) pla)) P

zeX

and for p = oo let

[flloe = sup {|f(x)

rxe X},
Also, for p > 0, let
() ={f: X = F:[|f]l, < oo}
In the case where pu(z) = 1 for all x € X we will simply write ¢7(X) for £° ().

Definition 5.1. A norm on a vector space Z is a function ||-|| : Z — [0, 00)
such that

1. (Homogeneity) || f]| = ||| f]| for all A\ € F and f € Z.
2. (Triangle inequality) || f + gll < [|fIl + llgl| for all f,g € Z.
3. (Positive definite) ||f|| = 0 implies f = 0.

A pair (Z,||-||) where Z is a vector space and ||-|| is a norm on Z is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 5.2. For p € [1,00], (€P(w), || - llp) s a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is
the content of Minkowski’s Inequality proved in Theorem 5.8 below. [ ]
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Proposition 5.3. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) =0 (for simplicity) and lim f(s) = oo. Let g = f~1
and for s,t > 0 let

s t
F(s) :/ f(s)ds" and G(t) :/ g(thdt'.
0 0
Then for all s,t > 0,
st < F(s)+ G(t)
and equality holds iff t = f(s).
Proof. Let

As :={(o,7): 0<7 < f(o) for 0 <o < s} and

B :={(0,7):0< 0 <g(r)for 0 <7 <t}
then as one sees from Figure 5.1} [0, s] X [0,t] C A5 U B;. (In the figure: s = 3,
t =1, A3 is the region under ¢ = f(s) for 0 < s < 3 and B; is the region to

the left of the curve s = g(t) for 0 <t < 1.) Hence if m denotes the area of a
region in the plane, then

st =m([0,s] x [0,t]) < m(As) +m(B:) = F(s) + G(¢).

As it stands, this proof is a bit on the intuitive side. However, it will become
rigorous if one takes m to be Lebesgue measure on the plane which will be
introduced later. We can also give a calculus proof of this theorem under the
additional assumption that f is C'. (This restricted version of the theorem is
all we need in this section.) To do this fix ¢ > 0 and let

h(s) = st — F(s) = /Os(t — f(0))do.

If 0 > g(t) = f~1(t), then t — f(0) < 0 and hence if s > g(t), we have

s g(t) s
h(s) = / (t— f(0))do = / (t— f(0))do + / (= oo

g(t)
< / (t = f(0))do = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s € (0,¢] and hence at a point where 0 = h/(s) = t — f(s). The only
solution to this equation is s = g(t) and we have thus shown

g(t)
st— F(s) = h(s) < / (t - f(o))do = h(g(t))
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with equality when s = g(¢). To finish the proof we must show fog(t) (t —

f(o))do = G(¢). This is verified by making the change of variables o = g(r
and then integrating by parts as follows:

g(t) t t
/0 (t - f(0))do = / (t = f(g(r))g ()dr = / (t — 7)g'(r)dr

Fig. 5.1. A picture proof of Proposition 5.3.

Definition 5.4. The conjugate exponent q € [1,00] to p € [1,00] is q := p%

with the conventions that ¢ = 0o if p=1 and ¢ = 1 if p = co. Notice that q is
characterized by any of the following identities:
1 1

f—&—f:l,1+g:q,p—B:1andq(p—1):p. (5.1)
P q p q

Lemma 5.5. Letp € (1,00) and q := ;;%1 € (1,00) be the conjugate exponent.
Then

st
st< —+ — forall s,t >0
p q
with equality if and only if t1 = sP.

Proof. Let F(s) = % for p > 1. Then f(s) = sP~! =t and g(t) = 5T =
t4=1 wherein we have used ¢ — 1 = p/(p—1) — 1 = 1/(p — 1) . Therefore
G(t) = t?/q and hence by Proposition 5.3}
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sP 9
st < —+ —
p q

with equality iff t = sP~1, i.e. t¢ = s9P=1) = s For those who do not want
to use Proposition 5.3, here is a direct calculus proof. Fix ¢ > 0 and let
p
h(s) :=st— =
p
Then h (0) = 0, lims_. h(s) = —oco and A/ (s) =t — sP~! which equals zero
iff s = t71. Since
t% t% 1 t4
) o e ()
p p

it follows from the first derivative test that
1 t? t?
max h = max{h(O) Jh (tﬁ)} = maX{O, } =—.
q

So we have shown

sP 7 S 1
st — — < — with equality iff t = sP7".
p q

Theorem 5.6 (Holder’s inequality). Let p,q € [1,00] be conjugate expo-
nents. For all f,g: X — T,

£l < 1f1lp - lgllq- (5.2)
Ifp € (1,00) and f and g are not identically zero, then equality holds in Eq.

(5.2) iff o o
<||f||p> :(ngg|q) ' (5.3)

Proof. The proof of Eq. (5.2) for p € {1,000} is easy and will be left to
the reader. The cases where || f||; = 0 or oo or ||g|l, = 0 or co are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and
0 < |[fllg: llglly < oo. Letting s = |f ()| /[ f]l, and t = [g|/llglq in Lemmal5.5

implies
@@ 1@,

1 lg (@)

1
Ifllollglle =2 Wflle a gl

with equality iff
S @ _ e 9@

=5 = .
£l gl
Multiplying this equation by p (z) and then summing on z gives

1 1
Ifgln 11

I£llollglle = p " g
with equality iff Eq. (5.4) holds for all x € X, i.e. iff Eq. (5.3) holds. ]

(5.4)
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Definition 5.7. For a complex number \ € C, let

A
w0 = {1 1270

For A\, € C we will write sgn(\) = sgn(u) if either Ay = 0 or Ap # 0 and
sgn(A) = sgn(u).

Theorem 5.8 (Minkowski’s Inequality). If 1 < p < oo and f,g € (P(u)
then

1+ gllp < I1fllp + llgllp- (5.5)

Moreover, assuming f and g are not identically zero, equality holds in Eq.

(5.5) iff
sgn(f) = sgn(g) when p=1 and
f =cg for some ¢ > 0 when p € (1,00).

Proof. For p=1,
IF+alli =D 1F+aln <Y (fln+lglw) =D 1Flu+> lglw
X X X X
with equality iff
[fl+1gl=1f +9| <= sen(f) = sgn(g).
For p = o0,
£+ 9gllc =sup|f + gl <sup(|f]+g])
X X

<sup |f| +suplg| = ||/l + ll9lloo-
X X

Now assume that p € (1, 00). Since

[f + 9" < 2max (|f],]g]))" = 2" max (", ") < 2 (|/]" + |9I)

it follows that
I+ gl < 2P (II£I5 + llglE) < oo

Eq. (5.5)) is easily verified if ||f + g||, = 0, so we may assume | f + g||, > 0.
Multiplying the inequality,

lf+gl” =1f+gllf +glP " < (If1 + gD f + 9P (5.6)

by u, then summing on = and applying Holder’s inequality two times gives
S NF+gPu <D I +alP n+ ) lgl f + g7
X X X

< (I£1lp + Mglp) 1F + 91" g (5.7)
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Since q(p — 1) = p, as in Eq. (5.1,

IF+alP M G =D (f +glP ) =D If +gPu=If +gll5.  (58)
X

X

Combining Eqs. (5.7) and (5.8) shows

1 + gl < (1fllp + llgllp) 1S + gl (5.9)

and solving this equation for ||f + g||, (making use of Eq. (5.1)) implies Eq.
(5.5). Now suppose that f and g are not identically zero and p € (1,00).
Equality holds in Eq. (5.5)) iff equality holds in Eq. (5.9) iff equality holds in
Eq. (5.7) and Eq. (5.6). The latter happens iff

sgn(f) = sgn(g) and

£l )p: f +glP :< 9] )p
(i7s) = =Gty (5.10)

wherein we have used

( |f +gP~? )q_ If +glP

I1f+glP=tlle ) If +allp”
Finally Eq. (5.10) is equivalent |f| = c|g| with ¢ = (|| f||,/llgllp) > 0 and this
equality along with sgn(f) = sgn(g) implies f = cg. ]

5.1 Exercises

Exercise 5.1. Generalize Proposition 5.3 as follows. Let a € [—o00,0] and

f:RnNJa,c0) — [0,00) be a continuous strictly increasing function such that

lim f(s) =00, f(a) =0ifa > —oo or lim,_,_o f(s) =0if a = —oco. Also let
>

g=f"1b=f(0)>0,

Fis) = [ (s’ and G0 = [ g(tar.
(s) /Of<8)sa (t /Ogmt
Then for all s,t > 0,

st < F(s)+GEVD) < F(s)+ G(t)

and equality holds iff t = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e+ (V1) In(tVv1)—(tV1) <e*+tlnt—t.

Hint: Refer to Figures 5.2 and [5.3..



Fig. 5.2. Comparing areas when ¢ > b goes the same way as in the text.

Fig. 5.3. When t < b, notice that g(¢) < 0 but G(t) > 0. Also notice that G(¢) is
no longer needed to estimate st.
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6

Metric Spaces

Definition 6.1. A function d: X x X — [0,00) is called a metric if

1. (Symmetry) d(z,y) = d(y, z) for all z,y € X
2. (Non-degenerate) d(xz,y) =0 if and only if x =y € X
3. (Triangle inequality) d(x, z) < d(z,y) + d(y, z) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) (see Definition 5.1) is a
metric space with d(x,y) := |jz — y||. Thus the space ¢(y) (as in Theorem
5.2) is a metric space for all p € [1,00]. Also any subset of a metric space
is a metric space. For example a surface ¥ in R? is a metric space with the
distance between two points on X being the usual distance in R3.

Definition 6.2. Let (X, d) be a metric space. The open ball B(z,§) C X
centered at x € X with radius § > 0 is the set

B(z,0) :={y € X :d(z,y) < d}.

We will often also write B(x,6) as B.(d). We also define the closed ball
centered at x € X with radius § > 0 as the set C,(0) :={y € X : d(z,y) < d}.

Definition 6.3. A sequence {x,},., in a metric space (X,d) is said to be
convergent if there exists a point x € X such that lim,, o d(z,z,) = 0. In
this case we write lim,, .o T, = of T, > T as n — 0.

Exercise 6.1. Show that x in Definition 6.3 is necessarily unique.

Definition 6.4. A set E C X is bounded if E C B(x,R) for some v € X
and R < co. A set F C X is closed iff every convergent sequence {xn}ff:l
which is contained in F' has its limit back in F. A set V C X is open iff V¢
is closed. We will write F T X to indicate the F is a closed subset of X and
V C, X to indicate the V is an open subset of X. We also let T4 denote the
collection of open subsets of X relative to the metric d.
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Definition 6.5. A subset A C X is a neighborhood of x if there exists an
open set V. C, X such that x € V C A. We will say that A C X is an open
neighborhood of x if A is open and x € A.

Exercise 6.2. Let F be a collection of closed subsets of X, show NF :=
NrerF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fi}i_, are closed sets then U}_, F}, is closed. (By taking complements, this
shows that the collection of open sets, 74, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 6.6. For any non empty subset A C X, let da(x) := inf{d(z,a)|a €
A}, then
da(z) —da(y)| < d(z,y) Vo,y € X (6.1)

and in particular if x, — x in X then da (z,) — da () as n — o0o. Moreover
the set F. .= {x € X|da(x) > e} is closed in X.

Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) + d(y,a).
Take the inf over a in the above equation shows that
da(z) <d(z,y) +daly) Vo,y e X.

Therefore, da(x) —da(y) < d(z,y) and by interchanging  and y we also have
that da(y ) da(z) < d(z,y) which implies Eq. (6.1). If z,, — = € X, then by
Eq. (6.1)),

|da(z) —

da(z
so that lim, . da (z,) = da(z). Now suppose that {z,} -, C F. and
r, — x in X, then

n)| <d(z,z,) — 0asn— oo

da(xz)= lim dy (z,) > ¢

n—oo

since d 4 (z,) > € for all n. This shows that « € F. and hence Fy is closed. m

Corollary 6.7. The function d satisfies,

|d(l‘,y) - d(xlvyl>| < d(ya y/) + d(l‘,l‘/).

In particular d : X x X — [0,00) is “continuous” in the sense that d(z,y)
is close to d(x',y') if x is close to &' and y is close to y'. (The notion of
continuity will be developed shortly.)
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Proof. By Lemma 6.6 for single point sets and the triangle inequality for
the absolute value of real numbers,

|d(z,y) — d(«', y")| < |d(z,y) - d(z,y") + |d(z,y") — d(2’, )]
< d(y,y/) + d(.%‘,l‘/).

Example 6.8. Let z € X and 6 > 0, then C,, (§) and B, (§)° are closed subsets
of X. For example if {y,, } —; C Cy; (§) and y, — y € X, then d (y,,z) < ¢ for
all n and using Corollary 6.7/ it follows d (y,z) < 6, i.e. y € Cy (9) . A similar
proof shows B, (§)° is open, see Exercise 6.3.

Exercise 6.3. Show that V' C X is open iff for every x € V thereisa § > 0
such that B,(§) C V. In particular show B, (d) is open for all x € X and
6 > 0. Hint: by definition V is not open iff V¢ is not closed.

Lemma 6.9 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and F. := {x € X|da(z) > e} C X
be as in Lemmal6.6. Then F. 7T A€ ase | 0.

Proof. It is clear that d4(z) = 0 for x € A so that F. C A€ for each € > 0
and hence Ug.~oF. C A°. Now suppose that x € A° C, X. By Exercise 6.3
there exists an € > 0 such that B,(¢) C A° ie. d(z,y) > ¢ for all y € A.
Hence x € F. and we have shown that A° C U.soF.. Finally it is clear that
F. C F., whenever ¢’ <e¢. [ ]

Definition 6.10. Given a set A contained a metric space X, let A C X be
the closure of A defined by

A={reX:3I{z,} CA > z= lim x,}.

That 1s to say A contains all limit points of A. We say A is dense in X if
A =X, i.e. every element x € X is a limit of a sequence of elements from A.

Exercise 6.4. Given A C X, show A is a closed set and in fact
A=n{F:ACF C X with F closed}. (6.2)

That is to say A is the smallest closed set containing A.

6.1 Continuity

Suppose that (X, p) and (Y,d) are two metric spaces and f : X — Y is a
function.
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Definition 6.11. A function f : X — Y s continuous at x € X if for all
e > 0 there is a 6 > 0 such that

d(f(z), f(z")) < & provided that p(x,z") < 6. (6.3)
The function f is said to be continuous if f is continuous at all points x € X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 6.12 (Local Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f: X — Y is a function defined in a neighborhood
of a point x € X. Then the following are equivalent:

1. f is continuous at © € X.

2. For all neighborhoods A C'Y of f(x), f~1(A) is a neighborhood of x € X.

3. For all sequences {x,},, C X such that © = limy, oo Tn, {f(zn)} is
convergent in'Y and

hrn flxn)=f ( lim xn) .

Proof. 1 = 2.If A CY is a neighborhood of f (), there exists € > 0
such that By(,) () C A and because f is continuous there exists a § > 0 such
that Eq. (6.3) holds. Therefore

B, (8) C f7 (Bfwy (€)) € f71(4)

showing f~! (A) is a neighborhood of z. 2 = 3. Suppose that {z,} —, C X
and x = 1in1nnOO zp. Then for any € > 0, By, (¢) is a neighborhood of f (x)
and so f~' (By(y) (€)) is a neighborhood of # which must containing B, (9)
for some & > 0. Because z,, — , it follows that z,, € B, (§) C f~* (B (¢))
for a.a. n and this implies f (x,) € By(y) (¢) for a.a. n, ie. d(f(x), f (z,)) <€
for a.a. n. Since € > 0 is arbitrary it follows that lim, . f (z,) = f ().
3. = 1. We will show not 1. = not 3. If f is not continuous at x, there
exists an € > 0 such that for all n € N there exists a point x,, € X with
p(xn, ) < T yet d(f(xn),f(x)) > e. Hence ,, — x as n — oo yet f(zy)
does not converge to f (). ]
Here is a global version of the previous lemma.

Lemma 6.13 (Global Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f : X — Y is a function defined on all of X. Then
the following are equivalent:

1. f is continuous.
2. f"Y V) €1, for allV € 14, i.e. f71(V) is open in X if V is open in'Y.
3. f71(C) is closed in X if C is closed in Y.



6.2 Completeness in Metric Spaces 53

4. For all convergent sequences {z,} C X, {f(xn)} is convergent in Y and

Jm 1) = £ (Jim o0

Proof. Since f~1(A°) = [f~1(A)]", it is easily seen that 2. and 3. are
equivalent. So because of Lemma [6.12 it only remains to show 1. and 2. are
equivalent. If f is continuous and V' C Y is open, then for every z € f=1(V),
V is a neighborhood of f(z) and so f~! (V) is a neighborhood of x. Hence
f~1(V) is a neighborhood of all of its points and from this and Exercise
6.3 it follows that f~1 (V) is open. Conversely if z € X and A C Y is a
neighborhood of f (z), then there exists V' C, X such that f(z) € V C A.
Hence x € f~1 (V) C f~1(A) and by assumption f~! (V) is open showing
f~1(A) is a neighborhood of z. Therefore f is continuous at z and since x € X
was arbitrary, f is continuous. [ |

Ezample 6.14. The function d4 defined in Lemma (6.6 is continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y, x) is continuous
for each x € X.

Exercise 6.5. Use Example [6.14 and Lemma [6.13 to recover the results of
Example [6.8.

The next result shows that there are lots of continuous functions on a
metric space (X, d) .

Lemma 6.15 (Urysohn’s Lemma for Metric Spaces). Let (X,d) be a

metric space and suppose that A and B are two disjoint closed subsets of X.
Then d ()
B\X

r)=—-—"—

0= @) + ds@

defines a continuous function, f : X — [0,1], such that f(z) =1 forx € A
and f(z) =0 ifz € B.

forze X (6.4)

Proof. By Lemma 6.6, d4 and dp are continuous functions on X. Since
A and B are closed, da(z) > 0 if ¢ ¢ A and dg(x) > 0 if x ¢ B. Since
ANB =0, ds(z)+dg(z) > 0 for all z and (da + dp) " is continuous as well.
The remaining assertions about f are all easy to verify. [ ]

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F CV C X with F being closed and V' being open, then there exists f €
C(X,]0,1])) such that f =1 on F while f =0 on V¢. This of course follows
from Lemma 6.15 by taking A = F and B = V°.

6.2 Completeness in Metric Spaces

Definition 6.16 (Cauchy sequences). A sequence {z,},-, in a metric
space (X,d) is Cauchy provided that
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lim d(z,,zn)=0.

m,n— 00

Exercise 6.6. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of ratio-
nal numbers and d(z,y) = |z — y|. Choose a sequence {z,} —; C Q which
converges to v/2 € R, then {z,}o2, is (Q,d) — Cauchy but not (Q,d) — con-
vergent. The sequence does converge in R however.

Definition 6.17. A metric space (X, d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 6.7. Let (X, d) be a complete metric space. Let A C X be a subset
of X viewed as a metric space using d|4x 4. Show that (A, d|sx ) is complete
iff A is a closed subset of X.

Ezxample 6.18. Examples 2. — 4. of complete metric spaces will be verified in
Chapter [7| below.

1. X =R and d(z,y) = |x — y|, see Theorem 3.8 above.

2. X = R" and d(z,y) = v — yll, = Y1y (2 — 93)°.

3. X =(P(pu) for p € [1,00] and any weight function p: X — (0, 00).

4. X = C([0,1],R) — the space of continuous functions from [0, 1] to R and

d(f,g) == Jnax, |f(t) — g(t)].

This is a special case of Lemma [7.3| below.
5. Let X = C([0,1],R) and

1
d(f.9) ::/0 |f(t) — g(t)] dt.

You are asked in Exercise7.10 to verify that (X, d) is a metric space which
is not complete.

Exercise 6.8 (Completions of Metric Spaces). Suppose that (X,d) is
a (not necessarily complete) metric space. Using the following outline show
there exists a complete metric space ()_( , CZ) and an isometric map i : X — X
such that ¢ (X) is dense in X, see Definition [6.10.

1. Let C denote the collection of Cauchy sequences a = {a,},., C X. Given
two element a,b € C show

dc (a,b) := lim d(an,by,) exists,

n— oo

dc (a,b) > 0 for all a,b € C and d satisfies the triangle inequality,
de (a,c¢) < dc (a,b) + de (b,c) for all a,b,c € C.

Thus (C,dc) would be a metric space if it were true that de¢(a,b) = 0 iff
a = b. This however is false, for example if a,, = b,, for all n > 100, then
dc(a,b) = 0 while a need not equal b.
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2. Define two elements a,b € C to be equivalent (write a ~ b) whenever
dc(a,b) = 0. Show “ ~ ” is an equivalence relation on C and that
de (a', b)) =de (a,b) if a ~a’ and b ~ V. (Hint: see Corollary [6.7.)

3.Given a € C let a:={b € C : b~ a} denote the equivalence class contain-
ing a and let X := {@:a € C} denote the collection of such equivalence
classes. Show that d ((‘1, 5) := dc (a,b) is well defined on X x X and verify
(X, c?) is a metric space.

4. For x € X let i (x) = a where a is the constant sequence, a, = x for all n.
Verify that i : X — X is an isometric map and that i (X) is dense in X.

5. Verify (X, d) is complete. Hint: if {a(m)},,_, is a Cauchy sequence in X
choose by, € X such that d (i (by,),a(m)) < 1/m. Then show a(m) — b
where b= {by,} o, .

6.3 Supplementary Remarks

6.3.1 Word of Caution

Ezample 6.19. Let (X,d) be a metric space. It is always true that B,(e) C
C.(g) since C,(¢) is a closed set containing B, (¢). However, it is not always
true that B,(e) = Cy(e). For example let X = {1,2} and d(1,2) = 1, then
By(1) = {1}, B1(1) = {1} while C1(1) = X. For another counter example,
take

X={(z,y) eR*>:z=00rz=1}

with the usually Euclidean metric coming from the plane. Then

B(O,O)(l) = {(Ovy) € R2 : |y| < 1}7
B,0)(1) = {(0,y) € R*: |y| <1}, while

C0,0)(1) = B(o,0)(1) U {(0,1)}.

In spite of the above examples, Lemmas [6.20 and [6.21] below shows that
for certain metric spaces of interest it is true that B,(e) = Cy(¢).

Lemma 6.20. Suppose that (X,|-]) is a normed vector space and d is the
metric on X defined by d(z,y) = |z —y|. Then

B, (e) = Cy(e) and
bd(B.(e)) ={y € X : d(z,y) = ¢}.
where the boundary operation, bd(+) is defined in Definition [10.29 below.

Proof. We must show that C := C,(¢) C B.(¢) =: B. For y € C, let
v =1y — x, then
ol = [y — 2| = d(z,y) <e.
Let a, = 1 —1/n so that , T 1 as n — oo. Let y, = = + a,v, then
d(x,yn) = and(z,y) < €, so that y, € B,(e) and d(y,yn) =1 — an — 0 as
n — oo. This shows that 1,, — y as n — oo and hence that y € B. [ ]
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o

Fig. 6.1. An almost length minimizing curve joining = to y.

6.3.2 Riemannian Metrics
This subsection is not completely self contained and may safely be skipped.

Lemma 6.21. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(z,y) = inf {£(c) : 0(0) = = and o(1) = y}

where £(c) is the length of the curve o. We define ¢(c) = oo if o is not
piecewise smooth.
Then

B,(g) = C.(e) and
bd(B:(¢)) = {y € X : d(z,y) = ¢}

where the boundary operation, bd(-) is defined in Definition 10.29 below.

Proof. Let C' := C,(e) C Bi(e) =: B. We will show that C C B by
showing B¢ C C°. Suppose that y € B¢ and choose d > 0 such that B, (d) N
B = (). In particular this implies that

B,(6) N By(c) = 0.

We will finish the proof by showing that d(z,y) > ¢ 4+ ¢ > e and hence
that y € C°. This will be accomplished by showing: if d(z,y) < € + 0 then
By (6) N By(e) # 0. If d(x,y) < max(e,d) then either x € By(0) or y € B,(e).
In either case By(d) N B,(g) # (0. Hence we may assume that max(e,d) <
d(z,y) < e+ 6. Let @ > 0 be a number such that

max(e,d) <d(z,y) <a<e+d

and choose a curve o from z to y such that £(o) < «. Also choose 0 < §' < ¢
such that 0 < a—0’ < & which can be done since a—§ < €. Let k(t) = d(y, o(t))
a continuous function on [0,1] and therefore k([0,1]) C R is a connected
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set which contains 0 and d(x,y). Therefore there exists ¢y € [0,1] such that
d(y,o(to)) = k(to) = ¢'. Let z = o(ty) € By(d) then

d(z,2) < U(oljo,]) = £(0) = U0itg1)) < @ —d(z,y) =a— 0 <e
and therefore z € B, () N By(8) # 0. ]

Remark 6.22. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(z,y) =1inf {{(0) : 0(0) = z and o(1) = y} .

Let o be a curve from z to y and let € = £(0) — d(x,y). Then for all 0 < u <
v <1,
d(a(u),0(v)) < (o) + &

So if o is within € of a length minimizing curve from z to y that o|f,,,) is
within e of a length minimizing curve from o(u) to o(v). In particular if
d(x,y) = (o) then d(o(u),o(v)) = £(0]j,y) for all 0 <u < v <1, ie. if o
is a length minimizing curve from x to y that o}, . is a length minimizing
curve from o(u) to o(v).

To prove these assertions notice that

d(x,y) +e= 5(0) = 6(0|[0,u]) + g(o—hu,v]) + g(o—hv,l])
> d([E, O'(U)) + E(O’hu,v]) + d(O’(U), y)

and therefore

d(z,y) + & — d(z,0(u) — d(o(v),y)
d(o(u),o(v)) +&.

g(o—‘[u,v]) <
<

6.4 Exercises

Exercise 6.9. Let (X,d) be a metric space. Suppose that {z,}>2; C X is a
sequence and set €, := d(Tp, Tnt1). Show that for m > n that

xnyzm E €k< E Ek-

Conclude from this that if

00 oo
E Ek = E ZL’n, $n+1 < 0
k=1

then {z,}52, is Cauchy. Moreover, show that if {z,}32; is a convergent
sequence and x = lim,, ., x, then

:L'l’n E Ek-
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Exercise 6.10. Show that (X, d) is a complete metric space iff every sequence
{2,352, C X such that Y07 d(z,,T,41) < 00 is a convergent sequence in
X. You may find it useful to prove the following statements in the course of
the proof.

L. If {x,,} is Cauchy sequence, then there is a subsequence y; := x,,, such
that 377, d(y;+1,;) < 0.

2. If {x,};2, is Cauchy and there exists a subsequence y; := x,, of {z,}
such that z = lim;_, y; exists, then lim,_, =, also exists and is equal
to x.

Exercise 6.11. Suppose that f : [0,00) — [0,00) is a C? — function such
that f(0) =0, f/ > 0 and f” < 0 and (X, p) is a metric space. Show that
d(z,y) = f(p(z,y)) is a metric on X. In particular show that

p(z,y)
dlx,y) =
()= 13 p(z,y)
is a metric on X. (Hint: use calculus to verify that f(a +b) < f(a) + f(b) for
all a,b € [0,00).)

Exercise 6.12. Let {(X,,d,)},—, be a sequence of metric spaces, X :=

102, Xy, and for = (z(n));, and y = (y(n)),—, in X let

d(z,y) = ;2 1+ dy(z(n),y(n))

Show:

1. (X, d) is a metric space,

2. a sequence {xj},-, C X converges to z € X iff xx(n) — z(n) € X,, as
k — oo for each n € N and

3. X is complete if X,, is complete for all n.

Exercise 6.13. Suppose (X, p) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if FF: X — Y and G : X — Y are two continuous functions
such that FF = G on A then F' = G on X. Hint: consider the set C :=
{reX:F(x)=G(z)}.

2. Suppose f : A — Y is a function which is uniformly continuous, i.e. for
every € > () there exists a § > 0 such that

d(f(a),f (b)) <eforall a,be A with p(a,b) <.

Show there is a unique continuous function F' : X — Y such that F = f on
A. Hint: each point « € X is a limit of a sequence consisting of elements
from A.

3.Let X =R =Y and A = Q C X, find a function f : Q — R which is
continuous on Q but does not extend to a continuous function on R.
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Banach Spaces

Let (X, ||]|) be a normed vector space and d (z,y) := || — y|| be the asso-
ciated metric on X. We say {z,} -, C X converges to z € X (and write
limy, 00 &y, = x o1 T, — ) if

0= lim d(z,z,) = lim ||z — x,].

n—oo
Similarly {z,} >, C X is said to be a Cauchy sequence if

0= lim d(zm,zn) =

Im ||z — zn]| -
m,n— oo m,n— oo

Definition 7.1 (Banach space). A normed vector space (X,|||) is a Ba-
nach space if the associated metric space (X,d) is complete, i.e. all Cauchy
sequences are convergent.

Remark 7.2. Since ||z|| = d(z,0), it follows from Lemma 6.6 that ||| is a
continuous function on X and that

izl = llylll < [l =yl for all z,y € X.

It is also easily seen that the vector addition and scalar multiplication are
continuos on any normed space as the reader is asked to verify in Exercise
7.4. These facts will often be used in the sequel without further mention.

7.1 Examples

Lemma 7.3. Suppose that X is a set then the bounded functions, £°(X), on
X is a Banach space with the norm

11l = [Ifllec = sup [f(z)].
zeX

Moreover if X is a metric space (more generally a topological space, see Chap-
ter [10) the set BC(X) C £°(X) = B(X) is closed subspace of £*°(X) and
hence is also a Banach space.
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Proof. Let {f,} -, C £>°(X) be a Cauchy sequence. Since for any z € X,
we have

(@) = fn(2)] < ([ fn = il (7.1)

which shows that {f,(x)},—, C F is a Cauchy sequence of numbers. Because F
(F =R or C) is complete, f(z) := lim, o fn(x) exists for all x € X. Passing
to the limit n — oo in Eq. (7.1) implies

F(@) = )] <V it [fo — fnll

and taking the supremum over x € X of this inequality implies
1 = fulloe <1 inf [[fy — finllg — 0 s m — oo

showing f,, — f in £>°(X). For the second assertion, suppose that {f,},-, C
BC(X) C (X)) and f, — f € £°(X). We must show that f € BC(X), i.e.
that f is continuous. To this end let z,y € X, then

[f(@) = fW)l < [ (@) = fu(@)| + [fu2) = fu()] + [fu(y) = F(y)]

Thus if ¢ > 0, we may choose n large so that 2| f — fu|l., < €/2 and

then for this n there exists an open neighborhood V, of z € X such that

|fn(x) — fuly)| < e/2 for y € V. Thus |f(z) — f(y)| < e for y € V,, showing

the limiting function f is continuous. ]
Here is an application of this theorem.

Theorem 7.4 (Metric Space Tietze Extension Theorem). Let (X,d)
be a metric space, D be a closed subset of X, —0o < a < b < o0 and f €
C(D,a,b)). (Here we are viewing D as a metric space with metric dp :=
dpxp.) Then there exists F € C(X,[a,b]) such that F|p = f.

Proof.

1. By scaling and translation (i.e. by replacing f by (b— a)_l (f—a)), it
suffices to prove Theorem 7.4/ with a = 0 and b = 1.

2. Suppose « € (0,1] and f : D — [0,a] is continuous function. Let A :=
710, 3a)) and B := f~*([2cv, o). By Lemmal6.15 there exists a function
g € C(X,[0,a/3]) such that g =0 on A and g = 1 on B. Letting g := §,
we have g € C(X,[0,a/3]) such that ¢ = 0 on A and ¢ = «/3 on B.
Further notice that

2
0< fz) —g(z) < 3% for all x € D.
3. Now suppose f : D — [0,1] is a continuous function as in step 1. Let

g1 € C(X,[0,1/3]) be as in step 2, see Figure [7.1. with a = 1 and let
fi=f—-agilp € C(D,[0,2/3]). Apply step 2. with o« =2/3 and f = f; to
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find g, € C(X,[0,42]) such that f5:= f — (g1 + g2) [p € C(D, [0, (2)*]).

Continue this way inductively to find g, € C(X, [0, (%)n_l]) such that

N 2 N
F= Y mlo =y cco.0.(3) 1. (7:2)
n=1
4. Define F := >"°7 | g,. Since
> 21 /2\"" 11
n < P =5 = ]-7
Shales35(5) =370

the series defining F' is uniformly convergent so F' € C(X, [0, 1]). Passing
to the limit in Eq. (7.2) shows f = F|p.

Fig. 7.1. Reducing f by subtracting off a globally defined function g1 €
C(X,[0,4]) .

Theorem 7.5 (Completeness of (7 (11)). Let X be a set and p: X — (0, 00)
be a given function. Then for any p € [1,00], (¢P(u), ||-|l,,) is a Banach space.

Proof. We have already proved this for p = co in Lemma [7.3 so we now
assume that p € [1,00). Let {f,} -, C ¢"(n) be a Cauchy sequence. Since for
any ¢ € X,

1
|fn(x> - fm(x)l < m ||fn - mep — 0 as m,n — oo

it follows that {f,(z)} -, is a Cauchy sequence of numbers and f(z) :=
lim,, o fn(x) exists for all x € X. By Fatou’s Lemma,
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Ifn = fIE =" p- lim inf|fy = frl? < lim inf - |fo = fral?
X X
= lim inf | f, — fml[h — 0 as n — oo.
This then shows that f = (f — fn) + fn € P(u) (being the sum of two ¢ —
functions) and that f, “, I ]

Remark 7.6. Let X be a set, Y be a Banach space and ¢*°(X,Y") denote the
bounded functions f : X — Y equipped with the norm

L= 1Al = sup [1F (@)ly -
zeX

If X is a metric space (or a general topological space, see Chapter [10)), let
BC(X,Y) denote those f € £>°(X,Y’) which are continuous. The same proof
used in Lemma/[7.3/shows that £>°(X,Y") is a Banach space and that BC(X,Y")
is a closed subspace of £*°(X,Y"). Similarly, if 1 < p < oo we may define

1/p
*(X,Y) = f:X—>Y:||f|p=<Z||f(x)||§> < oo

zeX

The same proof as in Theorem (7.5l would then show that (Ep (X,Y), ||Hp) is

a Banach space.

7.2 Bounded Linear Operators Basics

Definition 7.7. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(x)]| < C|lz||x for all x € X. We denote the best constant by ||T||, i.e.

|7 ()|
7] = sup = sup {[|T'(2)]| : [lz]| = 1}.
z#£0 ||| z#£0

The number ||T|| is called the operator norm of T.

Proposition 7.8. Suppose that X and Y are normed spaces and T : X — Y
s a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(c)T is bounded.

Proof. (a) = (b) trivial. (b) = (c) If T continuous at 0 then there exist § >
0 such that ||T(x)| < 1if ||z|] < d. Therefore for any « € X, ||T (0z/||z|]) || <1
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which implies that |T(z)|| < %z and hence |T|| < § < oo. (¢c) = (a) Let
xz € X and € > 0 be given. Then

[Ty =Tl = T(y —2)| < Tl ly -] <e

provided ||y — x| < &/||T|| := ¢. [
For the next three exercises, let X = R"and Y =R™ and T : X — Y

be a linear transformation so that 7" is given by matrix multiplication by an

m X n matrix. Let us identify the linear transformation 7" with this matrix.

Exercise 7.1. Assume the norms on X and Y are the ¢! — norms, i.e. for
x € R™, ||lz|| = >7_, |2;] . Then the operator norm of 7' is given by

1Tl = max Z|Tw|

Exercise 7.2. Suppose that norms on X and Y are the £*° — norms, i.e. for
z € R", ||z|| = maxi<j<pn |z;|. Then the operator norm of T is given by

n
17 = max XQITU

Exercise 7.3. Assume the norms on X and Y are the ¢2 — norms, i.e. for
ze R z|? = 27 L 5. Show |T||? is the largest eigenvalue of the matrix
TT : R® — R™. Hint: Ube the spectral theorem for orthogonal matrices.

Notation 7.9 Let L(X,Y) denote the bounded linear operators from X toY
and L(X) = L(X,X). If Y = F we write X* for L(X,F) and call X* the
(continuous) dual space to X.

Lemma 7.10. Let X, Y be normed spaces, then the operator norm ||-| on
L(X,Y) is a norm. Moreover if Z is another normed space and T : X — Y
and S :Y — Z are linear maps, then ||ST|| < ||S|||T||, where ST := SoT.

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A,B € L(X,Y) then the triangle inequality is verified as follows:

|z + Bal| _ A + Bz

|A+B| = <
ST el ST
Ax Bz
< sup A2l o 1By By
i P R TP

For the second assertion, we have for x € X, that

STl < ST < IS ]-
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From this inequality and the definition of [|ST||, it follows that || ST <
ISIIT. .

The reader is asked to prove the following continuity lemma in Exercise
7.8,

Lemma 7.11. Let X, Y and Z be normed spaces. Then the maps
(S,z) e L(X,)Y)x X — Sz €Y

and
(S,7)e L(X,Y)x L(Y,Z) — ST € L(X, Z)

are continuous relative to the norms
109 2) L vyxx = ISl x vy + 12l and
1S, T ixvyxeev.z) == 1SN nixyy 1T piv,z
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.

Proposition 7.12. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y),|| - |lop) ¢ @ Banach space. In particular the dual
space X* 1is always a Banach space.

Proof. Let {T},} 2, be a Cauchy sequence in L(X,Y). Then for each
e X,
I Thx — Tzl < || Th — Tl ||2]] — 0 as m,n — oo

showing {T,,x} -, is Cauchy in Y. Using the completeness of Y, there exists
an element Tz € Y such that

lim ||T,x — Tz| = 0.
The map T : X — Y is linear map, since for z,z’ € X and A € F we have
T(z+A\')= lim T, (z+ A\z') = lim [T+ \T,2'] = Ta + T2/,

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

[Tx = Tox|| < | Tz — Ton|| + | Tz — Tzl < T2 — Tonal| + | T — Tl ||z
and therefore

T2~ Tux) <l inf (T~ T + | T — T 2]

= |lz] - Yim_inf [T, — T,].

Hence
T —T,| <lim inf ||T), —T,| — 0asn— occ.
Thus we have shown that T,, — T in L(X,Y") as desired. ]

The following characterization of a Banach space will sometimes be useful
in the sequel.



7.2 Bounded Linear Operators Basics 65

Theorem 7.13. A normed space (X, || - ||) is a Banach space iff for every
00 N

sequence {z,},o | such that Y |lz,|| < co implies imy_.oo > @p = § exists
n=1 n=1

in X (that is to say every absolutely convergent series is a convergent series

in X.) As usual we will denote s by > xy,.

n=1
Proof. This is very similar to Exercise 6.10. (=)If X is complete and

00 N
> ||zn|l < oo then sequence sy := > x, for N € N is Cauchy because (for

n=1 n=1
N> M)
N
lsv —smll < D llzall — 0 as M, N — oo.
n=M+1

00 N

Therefore s = Y x, = limy_o Y. Tn exists in X. (<) Suppose that
n=1 n=1

{z,},2, is a Cauchy sequence and let {y; = ,,}7>; be a subsequence of

o0
{z,},2, such that Y ||ynt1 — ynl| < oo. By assumption

n=1
N 00
YN+1 — Y1 = Z(ynJrl —Yn) — 8= Z(ynJrl —yn) € X as N — oo.
n=1 n=1

This shows that limn_o yn exists and is equal to = := y; +s. Since {z,, } -,
is Cauchy,

|z —anl < llz—ykll + llyx — znll — 0 as k,n — oo
showing that lim,, . z, exists and is equal to z. [ |

Example 7.14. Here is another proof of Theorem [7.12 which makes use of
Proposition [7.12. Suppose that T;, € L(X,Y’) is a sequence of operators such

that > ||T,] < co. Then
n=1

0o 00
S Tzl < STl ] < o
n=1 n=1

o0
and therefore by the completeness of Y, Sz := > T,z = limy_,oc Sy exists
n=1

N

in Y, where Sy := Y T),. The reader should check that S : X — Y so defined
n=1

is linear. Since,

N 0
2 = Jim [ISxall < Jim STl < 30T ]

n=1 n=1
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S is bounded and -
IS < > 1Tl (7.3)
n=1
Similarly,

|Sz — Spyz|| = lim ||Syz — Sy
N—o0

N )
< Jim STl = Y Tl el
— 00
n=M+1 n=M+1

and therefore,

IS = Sull < > Tl = 0as M — .

n=M

7.3 General Sums in Banach Spaces

Definition 7.15. Suppose X is a normed space.

1. Suppose that {x,,} —_, is a sequence in X, then we say > -, &, converges
in X and Y 0 &y =S i

2. Suppose that {z, : a« € A} is a given collection of vectors in X. We say
the sum )y . 4 To converges in X and write s =), o € X if for all
€ > 0 there exists a finite set I'. C A such that Hs D D xaH < € for
any A CC A such that I, C A.

Warning: As usual if ) ., [|zo| < oo then ) ., 24 exists in X, see
Exercise [7.12. However, unlike the case of real valued sums the existence of
Y aca Ta does not imply - - 1 [[za| < 0o. See Proposition 14.19 below, from
which one may manufacture counter-examples to this false premise.

Lemma 7.16. Suppose that {z, € X : « € A} is a given collection of vectors
in a normed space, X.

LIfs =73 cata € X exists and T : X — Y is a bounded linear map
between normed spaces, then ) . 4 Txq evists in Y and

Ts:Tz:va:ZTxa.

a€cA acA
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Mf s =3 caTa evists in X then for every e > 0 there erists [. CC A
such that || cx%al| <& forall ACcC A\T..

f s =) qca®a emvists in X, the set I' := {a € A:x, # 0} is at most
countable. Moreover if I is infinite and {ay,},—, is an enumeration of I,
then

e N
5= Zl Tq,, = ]\}gnoo Zl T, - (7.4)

. If we further assume that X is a Banach space and suppose for all € > 0
there exists I, CC A such that HZaeA To|| < € whenever A CC A\ I,
then Y ca Ta evists in X.

Proof.
. Let I. be as in Definition [7.15 and A CC A such that I, C A. Then

TszTxa szxa

acA acA

< |7 <|ITle

which shows that }°  _, Tz, exists and is equal to T's.
. Suppose that s = > 4z, exists and € > 0. Let I'. CC A be as in
Definition [7.15l Then for A CC A\ I,

Se=| T v Y

aceA acel-UA a€el.
< E To — S|| + E To — S|| < 2e.
acl UA a€cl,

I s =37 caa exists in X, for each n € N there exists a finite subset
I, C A such that HZaGA xaH < % for all A cC A\ I,. Without loss of
generality we may assume z, # 0 for all a € I},. Let I, := U2 1}, — a
countable subset of A. Then for any 3 ¢ I'», we have {3} NI, =0 and

therefore
el = D za| <
ac{s}

— 0 asn — oo.

S

Let {av, },-, be an enumeration of I" and define vy := {a, : 1 <n < N}.
Since for any M € N, vy will eventually contain Iy; for N sufficiently
large, we have

N

5 — E T,

n=1

lim sup

1
Sup SMﬁOasMﬁoo.

Therefore Eq. (7.4) holds.
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4. For n € N, let I, CC A such that ||Zoz6/1x0‘“ < % for all A CcC A\ I},.

Define v, := Up_;I, C A and s, := Zae% Zo. Then for m > n,

|S$m — Snll = Z ZTo|| <1/n— 0asm,n — co.

A€Ym \Tn

Therefore {s,},; is Cauchy and hence convergent in X, because X is a
Banach space. Let s := lim,, . . Then for A CC A such that ~, C A,
we have

1
<lls=sall +|| D @a <lls = sall +—.
a€A\vn

S—Eaﬁa

acA

Since the right side of this equation goes to zero as n — oo, it follows that
Y acA Ta exists and is equal to s.

7.4 Inverting Elements in L(X)

Definition 7.17. A linear map T : X — Y is an isometry if |[Tz|y = ||z||x
for allx € X. T is said to be invertible if T is a bijection and T~ is bounded.

Notation 7.18 We will write GL(X,Y") for those T € L(X,Y) which are
invertible. If X =Y we simply write L(X) and GL(X) for L(X,X) and
GL(X, X) respectively.

Proposition 7.19. Suppose X is a Banach space and A € L(X) := L(X, X)
satisfies Y, ||A™|| < co. Then I — A is invertible and

n=0

1 o0 (o)
(I= M)t = o7 =3 A" and |[(I =N~ < 3 )47
n=0 n=0

In particular if ||A]] < 1 then the above formula holds and

— -1 1
=270 7=y

Proof. Since L(X) is a Banach space and Y ||A"| < oo, it follows from
n=0
Theorem [7.13| that

N—oo

N
S:= lim Sy := A}Enoonz:%/l
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exists in L(X). Moreover, by Lemma [7.11]

(I-A)S=(I-4) hm SN—]\;HII (I —A)Sn

N—oo

I T _ no_ ; _ AN+1 _
= Jlim (1 A)ZA lim (I — ANt =1

N—oo
n=0

and similarly S (I — A) = I. This shows that (I — A)~! exists and is equal to
S. Moreover, (I — A)~! is bounded because

1= )7 =181 < > 1A
n=0

If we further assume ||A]| < 1, then |[|A"| < ||A]|" and

Z 1A < Z A" = HAII

n=0
]
Corollary 7.20. Let X and Y be Banach spaces. Then GL(X,Y) is an open

(possibly empty) subset of L(X,Y). More specifically, if A € GL(X,Y) and
B e L(X,Y) satisfies

|B— Al < A7~ (7.5)
then B € GL(X,Y)
Bl = Z [IX - A_lB]nA_l € L(Y>X>7 (7'6>
n=0
Rl — (7.7)
1—[[A-1[]A - B
and A~ 7 14— B|
B l_Al< . (7.8)
157 = A7 < T A= g
In particular the map
AeGL(X,Y) — A € GL(Y, X) (7.9)

18 CONtINUOUS.
Proof. Let A and B be as above, then
B=A—-(A-B)=A[Ix - A" (A-B))] = A(Ix — A)

where A : X — X is given by
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A=A A-B)=1Ix - A'B.
Now
1Al = [[A7H (A = B)|| < [ATH[ 1A = B]| < AT AT = 1.

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

Bl=(Ix—A)y'A = [Ix—A(A-B))] A"

Taking norms of the previous equation gives

1
Iy — )7 HATY < [|[A7 Y ——
=7 1A < 1A =g

IN

1B~

A~
— 1= [lATH][A - Bl

which is the bound in Eq. (7.7). The bound in Eq. (7.8)) holds because

|B= =AY =B (A= B) A~ | < BT A7 A - B|
|A-P 14— Bl
1 [A-T[JA- B]

]
For an application of these results to linear ordinary differential equations,
see Section 8.3l

7.5 Exercises

Exercise 7.4. Let (X, ||-||) be a normed space over F (R or C). Show the map
Nzy) eFXxXxX oo+ AyeX

is continuous relative to the norm on F x X x X defined by
I 2 )l x e x == AL Nzl + gl

(See Exercise 10.25/for more on the metric associated to this norm.) Also show
that ||-|] : X — [0, 00) is continuous.

Exercise 7.5. Let X = N and for p,q € [1,00) let [|-[|, denote the ¢P(N) —
norm. Show |-, and ||-||, are inequivalent norms for p # ¢ by showing

wp /11,
20 1 fllg

=o0if p<yq.
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Exercise 7.6. Suppose that (X, ||-]|) is a normed space and S C X is a linear
subspace.

1. Show the closure S of S is also a linear subspace.
2. Now suppose that X is a Banach space. Show that S with the inherited
norm from X is a Banach space iff S is closed.

Exercise 7.7. Folland Problem 5.9. Showing C*(]0,1]) is a Banach space.

Exercise 7.8. Suppose that X,Y and Z are Banach spacesand @ : X xY —
Z is a bilinear form, i.e. we are assuming z € X — Q (x,y) € Z is linear for
eachy €Y andy € Y — Q(x,y) € Z is linear for each z € X. Show Q is
continuous relative to the product norm, [|(z,v)| .y = lzllx + llylly , on
X x Y iff there is a constant M < oo such that

1Q (z,9)llz < M |[z]lx - llylly forall (z,y) € X xY. (7.10)

Then apply this result to prove Lemma [7.11.

Exercise 7.9. Let d : C(R) x C(R) — [0,00) be defined by

g I =gl
Ao =22 T gl

n=1
where [| f]ln := sup{|f(z)[ : [¢] < n} = max{|f(z)]: |«| < n}.

1. Show that d is a metric on C(R).

2. Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — oo
iff f,, converges to f uniformly on bounded subsets of R.

3. Show that (C(R),d) is a complete metric space.

Exercise 7.10. Let X = C([0,1],R) and for f € X let

111y :=/O |£(t)| dt.

Show that (X, ||-||;) is normed space and show by example that this space is
not complete. Hint: For the last assertion find a sequence of { fn}ff:l cX
which is “trying” to converge to the function f = 1[%,1] ¢ X.

Exercise 7.11. Let (X, ||-||;) be the normed space in Exercise 7.10. Compute
the closure of A when

LA={feX:f(1/2)=0}.
2.A:{f€X:supt€[O’1]f(t)35}.
3.A:{feX:f0”2f(t)dt:o}.
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Exercise 7.12. Suppose {z, € X : a € A} is a given collection of vectors in
a Banach space X. Show ) ., x4 exists in X and

S zaf <3 faal

acA a€A

if > ocallzall < co. That is to say “absolute convergence” implies con-
vergence in a Banach space.

Exercise 7.13. Suppose X is a Banach space and {f, : n € N} is a sequence
in X such that lim, .o f, = f € X. Show sy = %25:1 fn for N € N is
still a convergent sequence and

Exercise 7.14 (Dominated Convergence Theorem Again). Let X be a
Banach space, A be a set and suppose f, : A — X is a sequence of functions
such that f («a) := lim, . fn (@) exists for all &« € A. Further assume there
exists a summable function g : A — [0,00) such that ||f,, (o] < g («) for all
a € A. Show ) 4 f () exists in X and

Tim 3 fu(a) = 3 (o).

acA a€cA
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The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter.
In Definition [11.1/ below, we will give a general notion of a compact subset of a
“topological” space. However, by Corollary [11.9/ below, when we are working
with subsets of R? this definition is equivalent to the following definition.

Definition 8.1. A subset A C R? is said to be compact if A is closed and
bounded.

Theorem 8.2. Suppose that K C R? is a compact set and f € C (K, X).
Then

1. Every sequence {uy,}.., C K has a convergent subsequence.
2. The function f is uniformly continuous on K, namely for every e > 0

there exists a & > 0 only depending on e such that || f (u) — f (v)|| < €
whenever u,v € K and |u—v| < § where || is the standard Euclidean
norm on R

Proof.

. (This is a special case of Theorem [11.7/and Corollary [11.9 below.) Since K

is bounded, K C [—R, R]" for some sufficiently large d. Let t,, be the first
component of u, so that t, € [-R, R] for all n. Let J; = [0, R] if ¢, € J;
for infinitely many n otherwise let J; = [— R, 0]. Similarly split J; in half
and let J; C Ji be one of the halves such that ¢,, € Js for infinitely many
n. Continue this way inductively to find a nested sequence of intervals
Ji D Jy D J3 D Jy D ... such that the length of Jj, is 2=*~D R and for
each k, t,, € Ji for infinitely many n. We may now choose a subsequence,
{ni}rey of {n},—, such that 7, := t,, € Jj for all k. The sequence
{7k }1—, is Cauchy and hence convergent. Thus by replacing {u,} -, by a
subsequence if necessary we may assume the first component of {u, }, -, is
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convergent. Repeating this argument for the second, then the third and all
the way through the d*® — components of {un},~, , we may, by passing to
further subsequences, assume all of the components of u,, are convergent.
But this implies lim u,, = u exists and since K is closed, u € K.

2. (This is a special case of Exercise [11.6] below.) If f were not uniformly
continuous on K, there would exists an € > 0 and sequences {u, }, ; and
{vn}o, in K such that

If (un) — f (vn)|| > & while lim |u, —v,| = 0.

By passing to subsequences if necessary we may assume that lim,, .o U,
and lim,, o v, exists. Since lim,, o |ty — v, | = 0, we must have

lim u, =u= lim v,
n—oo n— 00

for some u € K. Since f is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

e < lim |[f (un) = f (va)|| = [If (w) = F (w)][ =0

which is a contradiction.

|

For the remainder of the chapter, let [a, b] be a fixed compact interval and

X be a Banach space. The collection § = S([a,b], X) of step functions,
f:[a,b] — X, consists of those functions f which may be written in the form

n—1
f(t) = xol[a,tl](t) + Z xil(ti,ti+1](t)7 (81)
=1

where 7 := {a =ty < t; < --- < t, = b} is a partition of [a,b] and z; € X.
For f as in Eq. (8.1)), let

n—1

I(f) = Z(ti"'l — ti)IZ‘ e X. (82)

=0

Exercise 8.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition 7 of
[a, b] does not change the right side of Eq. (8.2).) Also verify that I : S — X
is a linear operator.

Notation 8.3 Let S denote the closure of S inside the Banach space,
£ ([a,b], X) as defined in Remark[7.6.

The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.
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Theorem 8.4 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S C Z is a dense linear subspace of Z. If T : S — X
is a bounded linear transformation (i.e. there exists C' < oo such that | Tz| <
C ||z|| for all z € S), then T has a unique extension to an element T € L(Z, X)
and this extension still satisfies

|Tz|| < C|lz|| forallz€S.
Exercise 8.2. Prove Theorem 8.4l

Proposition 8.5 (Riemann Integral). The linear function I : § — X
extends uniquely to a continuous linear operator I from S to X and this
operator satisfies,

1IN < (0= a) [|flloc for all f € S. (8.3)
Furthermore, C([a,b], X) C S C £>°([a,b], X) and for f €, I(f) may be com-
puted as

lim Z f(ef) (i —ti) (8.4)

where m := {a =ty < t1 < -+ < t, = b} denotes a partition of [a,b],
|| = max {|tiy1 —t;|: i =0,...,n— 1} is the mesh size of m and cI may be
chosen arbitrarily inside [t;,t;11]. See Figure 8.1.

I3
A 4:“ Wb:tf

Fig. 8.1. The usual picture associated to the Riemann integral.

Proof. Taking the norm of Eq. (8.2) and using the triangle inequality
shows,

1(f Z (tipa = L)l < Z (tixr = ti)[[ flloo < (0= a)l[flloc- (85)

i=0 i=0
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The existence of I satisfying Eq. (8.3) is a consequence of Theorem [8.4. Given
feC(a,b,X), m:={a=1t <t1 <--- <ty =b} a partition of [a,b], and
cF € [ty tig] fori =0,1,2...,n—1, let fr € S be defined by

n—1

Fo(t) = f(€0)oLito,ea) (1) + D S Lty t000)(0)-

i=1

Then by the uniform continuity of f on [a,b] (Theorem [8.2), lim o[l f —
frlloo = 0 and therefore f € S. Moreover,

I(f) = lim I(fz) = lim Zf (i1 — ti)

|7|—0 |w|—0 <

which proves Eq. (8.4). [ ]
If f,, € S and f € S such that lim, ||f falloe = 0, then for a < a <
B < b, then 1, g fn € S and lim, Hl(a af — 1(a75]fn|| = 0. This shows

Liagf €S whenever f € S.

Notation 8.6 For f € S and a < a < 3 < b we will write denote f(l(a 81 f)

by fﬁ )dt or fa B ft)dt. Also following the usual convention, if a < 8 <
a < b, we will let

/jf(t)dt— (L.f) = /f

The next Lemma, whose proof is left to the reader contains some of the
many familiar properties of the Riemann integral.

Lemma 8.7. For f € S([a,b],X) and o, 3,7 € [a,b], the Riemann integral
satisfies:

dtH ) sup{Hf(t)II La<t<p).
2. 7 f( fﬁ tydt+ [ £(
3. The functzon G(t f f(r dT is continuous on [a, b].

4. IfY is another Banach space and T € L(X,Y), then Tf € S([a,b],Y)

" , ( [ swa) - [ i

5. The function t — || f(t)| x is in S([a,b],R) and

b
< [ 5@l de
(S L e

t) dt




8.1 The Fundamental Theorem of Calculus 77

6. If f,g € S([a,b],R) and f < g, then

tlbf“)dtgtébg@)dt

Exercise 8.3. Prove Lemma 8.7.

8.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results of differential calcu-
lus, more details and the next few results below will be done in greater detail
in Chapter [16.

Definition 8.8. Let (a,b) C R. A function f : (a,b) — X is differentiable at
t € (a,b) iff

i (B SR - (@),
L= lim (A1 [f(t+h) = F(B)]) = Jim <

exists in X. The limit L, if it exists, will be denoted by f(t) or %(t). We also
say that f € C*((a,b) — X) if f is differentiable at all points t € (a,b) and
fe€C((a,b) — X).

As for the case of real valued functions, the derivative operator % is easily
seen to be linear. The next two results have proves very similar to their real
valued function analogues.

Lemma 8.9 (Product Rules). Suppose thatt — U (t) € L(X),t — V (t) €
L(X) andt — x(t) € X are differentiable at t = to, then

1. 41, [U @)z ()] € X exists and

L1010 (@) (1) = [U(t0) 2 (10) + U (10) & (1)]

and
2. L1, [U () V (t)] € L(X) exists and

L1 [0V (0] = [0 (t0) V (t0) + U (10) V (10)]

3. If U (to) is invertible, then t — U (t)™" is differentiable at t = to and

d

U @07 = U (t) " U (t0) U (to) " (8.6)



78 8 The Riemann Integral

Proof. The reader is asked to supply the proof of the first two items in Ex-
ercise8.10. Before proving item 3., let us assume that U (t)f1 is differentiable,
then using the product rule we would learn

d

0=—
dt

ol = 5 [0 0 0] = [ £V 07 0 0) 40 00) 0 1.
Solving this equation for %|,50U(t)71 gives the formula in Eq. (8.6). The
problem with this argument is that we have not yet shown ¢t — U (t)*1 is
invertible at ¢y. Here is the formal proof. Since U (t) is differentiable at tp,
U(t) = U (tg) as t — tog and by Corollary [7.20, U (to + h) is invertible for h
near 0 and

Uto+h)"" —U(ty) ™" as h— 0.

Therefore, using Lemma [7.11, we may let A — 0 in the identity,

Ulto+h) ™ —U(to) ™"
h

_ U(toJrh)_l (U(to) hU(t0+h)> U(to)_l,

to learn

. Ulto+h)" =U(to)™" 1 _
hm (O ) (O) :—U(to) lU(t())U(t(]) 1.
h—0 h

|

Proposition 8.10 (Chain Rule). Suppose s — x(s) € X is differentiable
at s = sp and t — T (t) € R is differentiable at t =ty and T (ty) = so, then
t — x (T (t)) is differentiable at ty and

Lo (T (1) = 2! (T (1)) T (1)

The proof of the chain rule is essentially the same as the real valued func-
tion case, see Exercise 8.11.

Proposition 8.11. Suppose that f : [a,b] — X is a continuous function such
that f(t) exists and is equal to zero for t € (a,b). Then f is constant.

Proof. Let ¢ > 0 and « € (a,b) be given. (We will later let € | 0.) By the
definition of the derivative, for all 7 € (a,b) there exists d, > 0 such that

1£@) = £ = || £6) = 1) = F) e = )| < e le =7l if 1t = 7| < 6.
(8.7)
Let
A={telob]: [If{t) = fla)l <&t —a)} (8.8)
and tg be the least upper bound for A. We will now use a standard argument
which is referred to as continuous induction to show ¢y = b. Eq. (8.7) with
T = a shows ty > a and a simple continuity argument shows ty € A, i.e.
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1f(t0) = f()|| < e(to — a). (8.9)

For the sake of contradiction, suppose that to < b. By Eqgs. (8.7) and (8.9),

(&) = f(@)ll < [1fF(2) = f(to)ll + [1f (to) = f(e)]
<e(to—a)+e(t—ty) =c(t—a)

for 0 <t —ty < d¢, which violates the definition of ¢y being an upper bound.
Thus we have shown b € A and hence

1£(6) = (o)l < e(b— ).

Since € > 0 was arbitrary we may let € | 0 in the last equation to conclude
f(b) = f («). Since « € (a,b) was arbitrary it follows that f(b) = f («) for all
a € (a,b] and then by continuity for all « € [a,b], i.e. f is constant. [ ]

Remark 8.12. The usual real variable proof of Proposition 8.11 makes use
Rolle’s theorem which in turn uses the extreme value theorem. This latter
theorem is not available to vector valued functions. However with the aid of
the Hahn Banach Theorem ?? below and Lemma 8.7, it is possible to reduce
the proof of Proposition [8.11/ and the proof of the Fundamental Theorem of
Calculus 8.13] to the real valued case, see Exercise 77.

Theorem 8.13 (Fundamental Theorem of Calculus). Suppose that f €
C(la,b], X), Then

1.4 (" f(r)dr = f(t) for all t € (a,b).
2. Now assume that F' € C([a,b],X), F' is continuously differentiable on

(a,b) (i.e. F'(t) exists and is continuous for t € (a,b)) and F extends to
a continuous function on [a,b] which is still denoted by F. Then

/ " Pty dt = F(b) — Fla)

Proof. Let h > 0 be a small number and consider

t+h
sl‘ 1(£(7) = F@) ] dr < he(h),

/at+hf(r)d7 = /at f(r)dr — F(t)h /tHh(f(T) _ f)dr

where e(h) := max ¢y 1) [|(f(7) — f(2))[]. Combining this with a similar
computation when h < 0 shows, for all h € R sufficiently small, that

t+h t
n/ fmm—/f@M—ﬂmﬂgwwm
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where now ¢(h) := maxre[t—\h\,t-s-\h\] I(f(r) = f(t)]l- By continuity of f at ¢,

e(h) — 0 and hence it ft f(7)dr exists and is equal to f(t). For the second
item, set G(t f F(7)dr — F(t). Then G is continuous by Lemma 8.7 and
G(t) =0 for all t € (a, b) by item 1. An application of Proposition [8.11 shows
G is a constant and in particular G(b) = G(a), i.e. f; F(1)dr—F(b) = —F(a).
|

Corollary 8.14 (Mean Value Inequality). Suppose that f : [a,b] — X is
a continuous function such that f(t) exists for t € (a,b) and f extends to a
continuous function on [a,b]. Then

f@)f@Mleﬂwwg@@Mﬂm. (8.10)

Proof. By the fundamental theorem of calculus, f(b) f f

and then by Lemma 8.7,
/f parl < [ "1

L=

1£(6) = fla)ll =

Corollary 8.15 (Change of Variable Formula). Suppose that f €
C(la,b],X) and T : [c,d] — (a,b) is a continuous function such that T (s)
is continuously differentiable for s € (c,d) and T’ (s) extends to a continuous
function on [c,d]. Then

T(d)
/ (@ )ds—/ f(t)dt.
T(c)
Proof. For s € (a,b) define F (t fT(C) 7)dr. Then F € C! ((a,b), X)
and by the fundamental theorem of calculus and the chain rule,

d

SF(T(9) = F' (T ()T () = £ (T ()T (5).

Integrating this equation on s € [¢,d] and using the chain rule again gives
T(d)

d
/ f(T(s))T" (s)ds = F(T(d)) — F (T (c)) =/ f(#)dt.

T(c)
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8.2 Integral Operators as Examples of Bounded
Operators

In the examples to follow all integrals are the standard Riemann integrals and
we will make use of the following notation.

Notation 8.16 Given an open set U C R%, let C. (U) denote the collection
of real valued continuous functions f on U such that

supp(f) = {z € U [ (@) 70}

s a compact subset of U.

Ezample 8.17. Suppose that K : [0,1] x [0,1] — C is a continuous function.
For f € C([0,1]), let

Tf(x) = / K(z,9)f(y)dy.

Since

1
T4(@) = THG) < | [Kloy) = K] )] dy
0
< 1]l max [ ) = K (z,) (8.11)
and the latter expression tends to 0 as * — z by uniform continuity of K.

Therefore Tf € C([0,1]) and by the linearity of the Riemann integral, T :
C(]0,1]) — C(]0,1]) is a linear map. Moreover,

ITf(z)] < / K (2, 9)] | ()] dy < / K ()l dy - [ flo < Alfll

where

1
A:= sup / | K (x,y)| dy < 0. (8.12)
z€[0,1] Jo

This shows ||T|| < A < oo and therefore T is bounded. We may in fact
show ||T|| = A. To do this let 2o € [0, 1] be such that

1 1
sup / K (2,y)| dy = / K (20,9)] dy.
z€[0,1] Jo 0

Such an z( can be found since, using a similar argument to that in Eq. (8.11),
x — fol |K (z,y)| dy is continuous. Given £ > 0, let

K(x()ay)
€+ ‘K(l’o,y)|2

fs(y) =
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and notice that lim. o || f-||, = 1 and

L 2
K(zo,y
||Tf5||ooZ|Tfa(330)|=Tfa($0):/ R >
O e+ |K(zo,y)|
Therefore,
1 K(
2 g o [ G0
e10 || fell o Jo \/f-:HK—xo,y
1
= lim |K(I07 dy = A
1o Jo \/€+|K—JCO
since
K(xo, i
0 < |K(zo,y)| — K. y) 2
e+ |K(zo,y)|
K
_ | K (z0,y)] : [ e+ |K(zo, )| — |K($07y)]
e+ |K(zo0,y)|

e+ |K(z0, )" = |K (z0,y)]

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0,1]). Let (for now) L ([0,1])
denote C([0,1]) with the norm

1
nﬂh=4\ﬂmm@

then T : L' ([0,1],dm) — C(]0,1]) is bounded as well. Indeed, let M =
sup {|K(z,y)| : x,y € [0,1]}, then

|@ﬂun§A\Kuwv@MWSAMﬂh

which shows ||Tf]|., < M ||f||; and hence,
||THL1~>C S maX{|K('/E7y)| Y € [07 1]} < Q.

We can in fact show that ||T|| = M as follows. Let (zq,yo) € [0, 1]? satisfying
| K (20,90)] = M. Then given ¢ > 0, there exists a neighborhood U = I x J
of (zo,y0) such that |K(ac y) K(zo,y0)| < € for all (z,y) € U. Let f €
C.(I,]0,00)) such that fo x)dx = 1. Choose « € C such that |a| = 1 and
aK (xo,y0) = M, then



8.3 Linear Ordinary Differential Equations 83

(ool =| [ 1 K(anp)af)ds] = | [ K(an s
> Re [ aK(a.0) ()
> [ =2 )y = 01 =) ol
and hence

ITaflle = (M —é)llaf]

showing that ||T'|| > M — e. Since € > 0 is arbitrary, we learn that ||T'|| > M
and hence ||T|| = M.

One may also view T" as a map from T : C([0,1]) — L'([0,1]) in which
case one may show

1
Tl o < [ max | K(ay)]de < o,

8.3 Linear Ordinary Differential Equations

Let X be a Banach space, J = (a,b) C R be an open interval with 0 € J,
h e CJ — X)and A € C(J — L(X)). In this section we are going to
consider the ordinary differential equation,

y(t) = A(t)y(t) + h (t) where y(0) =z € X, (8.13)

where y is an unknown function in C*(J — X). This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for y € C(J, X) such that

¢ ¢
y(t) ==z +/ h(r)dr +/ A(T)y(r)dr. (8.14)

0 0
In what follows, we will abuse notation and use |-|| to denote the opera-
tor norm on L (X) associated to then norm, |-, on X and let [|¢| =

maxe ||¢(t)] for ¢ € BC(J, X) or BC(J, L (X)).

Notation 8.18 Fort € R andn € N, let

A, ) €ERM:0< Ty
An(t)_{{(Tl,...,Tn)ERnZtSTn

<y <t}ift >0

<
<< <0} ift<0

and also write dr = dry ...dr, and

t Tn T2
/ flr,...mp)dr : = (71)”'1t<°/ dTn/ dTn_1 / drif(r1,...Tn).
An(t) 0 0 0
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Lemma 8.19. Suppose that 1 € C (R,R), then

(1) Leeo /An(t)wﬁ) ()T = % (At¢(7)dr>n. (8.15)

Proof. Let ¥(¢) := fot ¥(7)dr. The proof will go by induction on n. The
case n = 1 is easily verified since

¢
(ot [ piman = [ e =),
Aq(2) 0
Now assume the truth of Eq. (8.15)) for n — 1 for some n > 2, then

(_1)"‘1t<0/ W) . b(r)dr

An(t)
t Tn T2
:/ dTn/ dTn_l.../ dri(rr) .. ()
0 0 0

- t ) W”_l(Tn) _ - t ) Wn—1(7n> . -
_AdWQQYMM—AdWQQme

w(t) n—1 n
:/ u du = v (t)7
0 (n—1)! n!

wherein we made the change of variables, u = ¥(7,), in the second to last
equality. [ ]

Remark 8.20. Eq. (8.15) is equivalent to

1 n
/An(t)¢(71)-~-1/1(7n)d7 = (/Al(t)wmch)

and another way to understand this equality is to view fAn(t) W(r) .. Y(Tp)dT
as a multiple integral (see Chapter 20/ below) rather than an iterated integral.
Indeed, taking t > 0 for simplicity and letting S,, be the permutation group
on {1,2,...,n} we have

[Oat]n :UUES”{(Tl,“';Tn) GRn:OSle S STO'TL St}

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ¥ (71) ...¢(7,) is invariant under permutations,
we find
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(/Otw(T)dT>n = o (m) .. Y(mp)dr

-y / b(r1) . b(m)dr

oesy, T Tn) ERMOSToy <o <t}

_ D(S9-11) « .. D(59-1y)ds

oES, ‘/{(51:“~73n)€Rn:0<51<"'<5n<t}

-y / W(s1) ... (sn)ds

€S, {(s1,...,8n)ER™:0<51 <+ <5, <t}
=n! / W(11) .. (7,)dr.
An(t)
Theorem 8.21. Let ¢ € BC(J, X), then the integral equation

t +/O A(m)y(r)dr (8.16)

has a unique solution given by

t)+Z(—1)"'1‘<°/A “ A1) ... A(T)d(m1)dr (8.17)

and this solution satisfies the bound

1]l oo < N6l el s A ldr

Proof. Define A : BC(J,X) — BC(J,X) by

(Ay)(t) = / A(r)y(r)dr.

Then y solves Eq. (8.14) iff y = ¢ + Ay or equivalently iff (I — A)y = ¢. An
induction argument shows

(Am6)(t) = / A7y A7) (A1) (7,)

_ / dr, / A1 A7) A(Tn—1)(A"26) (7n1)

/dTn/ drn 1. OzdnA(Tn)...A(ﬁ)qs(ﬁ)
= )”1f<°/A(t)A(Tn) CA(T)é(m)dr.
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Taking norms of this equation and using the triangle inequality along with
Lemma [8.19 gives,

IO < Mol [ IAEI--- 1A s

Slelloo - — IA(T) dT)

(L
<ol 2 ([ 14tlar)
il

Therefore,
A"

||0P — TL'

|A(r |dT> (8.18)

and -
147 < el AN < oo
n=0

where ||-|[,, denotes the operator norm on L (BC(J, X)). An application of
Proposition [7.19 now shows (I — A)™t = >~ A" exists and
n=0

(= )7, < els 1A,

It is now only a matter of working through the notation to see that these
assertions prove the theorem. [

Corollary 8.22. Suppose h € C(J — X) and x € X, then there exits a
unique solution, y € Ct (J, X), to the linear ordinary differential Eq. (8.13).

Proof. Let .
o (t) :m—l—/ h(r)dr.
0

By applying Theorem 8.21 with and J replaced by any open interval Jy such
that 0 € Jy and Jy is a compact subintervall of J, there exists a unique
solution yz, to Eq. (8.13) which is valid for ¢ € Jy. By uniqueness of solutions,
if J; is a subinterval of J such that Jy C J; and J; is a compact subinterval
of J, we have yj, =y, on Jy. Because of this observation, we may construct
a solution y to Eq. (8.13) which is defined on the full interval J by setting
y (t) =y, (t) for any Jyp as above which also contains ¢ € J. ]

Corollary 8.23. Suppose that A € L(X) is independent of time, then the
solution to

§(t) = Ay(t) with y(0) =
! We do this so that ¢|, will be bounded.
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is given by y(t) = etz where
A 0 n
_ o n
otA — n!A ) (8.19)
n=0
Moreover,
eltHs)A _ JtA sA for all s,t € R. (8.20)

Proof. The first assertion is a simple consequence of Eq.[8.17/ and Lemma
8.19 with v = 1. The assertion in Eq. (8.20) may be proved by explicit
computation but the following proof is more instructive. Given =z € X, let
y (t) := e(t+9)42. By the chain rule,

d d
p7E (t) = %\r:tﬂeﬁ‘x = Ae™ 2|11

= Aelt9) 4 — Ay (t) with y (0) = e*Aa.
The unique solution to this equation is given by
y(t) = e?a (0) = etes .

This completes the proof since, by definition, y (t) = e(*+*)4z. [
We also have the following converse to this corollary whose proof is outlined
in Exercise [8.21] below.

Theorem 8.24. Suppose that Ty € L(X) fort > 0 satisfies

1. (Semi-group property.) Ty = Idx and T:Ts = Tyys for all s,t > 0.
2. (Norm Continuity) t — Ty is continuous at 0, i.e. | Ty — Il x) — 0 as
t10.

Then there exists A € L(X) such that T, = e*4 where ' is defined in Eq.
(8.19).

8.4 Classical Weierstrass Approximation Theorem

Definition 8.25 (Support). Let f : X — Z be a function from a metric
space (X, p) to a vector space Z. The support of [ is the closed subset, supp(f),
of X defined by

supp(f) :={z € X : f(z) # 0}.

Ezample 8.26. For example if f : R — R is defined by f(z) = sin(z)1{g 4+ (2) €
R, then
{f #0} =(0,4m) \ {m, 27, 37}

and therefore supp(f) = [0, 4].
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For the remainder of this section, Z will be used to denote a Banach space.

Definition 8.27 (Convolution). For f,g € C (R) with either f or g having
compact support, we define the convolution of f and g by

fog(e) = / £ — y)g(y)dy = / fWa(z - y)dy.

We will also use this definition when one of the functions, either f or g, takes
values in a Banach space Z.

Lemma 8.28 (Approximate § — sequences). Suppose that {q,},., is a
sequence non-negative continuous real valued functions on R with compact
support that satisfy

/qn(ac) dr =1 and (8.21)

R

lim / gn(z)dx =0 for all e > 0. (8.22)
|w|>e

If f € BC(R,Z), then
n * = n —y)d
n * f (2) /q (W) f(x —y)dy

converges to f uniformly on compact subsets of RxW C RI*1,

Proof. Let z € R, then because of Eq. (8.21),
lga * F(@) — F(2)] = H [ nt0) (=) - f(x))dyH
< / 0 () £z — ) — F(@)]] dy.

Let M =sup{||f(z)| : « € R}. Then for any ¢ > 0, using Eq. (8.21),

v @) = F < [ aa) 1 = 0) ~ F@)] dy

lyl<e

4 /| (@) | f (& — ) — F(@)] dy

< sup |f(z+w) — f@)] +2M /| iy
y|>e

lw|<e
So if K is a compact subset of R (for example a large interval) we have

sup [lgn * f(z) = f(x)]|

(x)eK

< sup f(z+w) = f2)] +2M an(y)dy
lw|<e, zeK llyll>e
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and hence by Eq. (8.22),
lim sup sup [|gn * f(2) — f(2)||

n—oo xeK

<  sup ||f(z+w)— f(a)].
|lw|<e, zeK

This finishes the proof since the right member of this equation tends to 0 as

¢ | 0 by uniform continuity of f on compact subsets of R. [
Let ¢, : R —[0,00) be defined by
1 1
gn(z) = C—(l — 2%)™1 ;)< Where ¢, 1= / (1 —2%)"dz. (8.23)
n -1

Figure 8.2 displays the key features of the functions ¢,.

Fig. 8.2. A plot of ¢1, gs0, and gi00. The most peaked curve is qipo and the least is
q1- The total area under each of these curves is one.

Lemma 8.29. The sequence {gn},., is an approzimate § — sequence, i.e.
they satisfy Eqs. (8.21) and (8.22).

Proof. By construction, ¢, € C. (R, [0,00)) for each n and Eq. 8.21 holds.

Since
1
2[0(1—=*)"d
/ qn(x)dx: _ fa( T )1 T
|z|>e 2 [y (1 —a?)nde+2 [ (1—a?)"dx
1 xT n n
- e — x?)"dx _ (1 —z?)nti|!
R T L (R T
_ (1 _ 62)n+1
- 1— (1 _ 52)n+1

— 0asn — oo,
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the proof is complete. [

Notation 8.30 Let Z; = N U {0} and for x € R? and o € Z% let

x® = H?zl " and |a| = Zle a;. A polynomial on R? with values in Z

is a function p : R4 — Z of the form

p(x) = Z Do with po € Z and N € Z .
a:la|<N

If po # 0 for some « such that || = N, then we define deg(p) := N to be
the degree of p. If Z is a complex Banach space, the function p has a natural
extension to z € C%, namely p(z) = Ea:|a\§Npaza where 2% = H;lzl Z.

Given a compact subset K C R? and f € C(K,C)?, we are going to
show, in the Weierstrass approximation Theorem [8.34] below, that f may be
uniformly approximated by polynomial functions on K. The next theorem
addresses this question when K is a compact subinterval of R.

Theorem 8.31 (Weierstrass Approximation Theorem). Suppose —o0 <
a<b<oo,J=]ab] and f € C(J, Z). Then there exists polynomials p, on
R such that p, — [ uniformly on J.

Proof. By replacing f by F' where
F(t):=flat+t(b—a))=[f(a)+t(f(b) = f(a))] forte[0,1],

it suffices to assume a =0, b =1 and f (0) = f (1) = 0. Furthermore we may
now extend f to a continuous function on all R by setting f =0 on R\ [0, 1].

With g, defined as in Eq. (8.23), let f,(x) := (g, * f)(z) and recall from
Lemma 8.28 that f, (x) — f(x) as n — oo with the convergence being
uniform in & € [0, 1]. This completes the proof since f;, is equal to a polynomial
function on [0, 1]. Indeed, there are polynomials, aj (y), such that

2n
(1= (@=y))" = ar(y) "
k=0

and therefore, for z € [0,1],

2 Note that f is automatically bounded because if not there would exist u, € K
such that limp—oo | f (un)] = oo. Using Theorem 8.2 we may, by passing to a
subsequence if necessary, assume u, — u € K as n — oo . Now the continuity of
f would then imply

0o = Tim |f (un)] = | ()]

which is absurd since f takes values in C.
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fulz) = / 4l — ) f(9)dy

= ci F) [(1= (2 = 9)*)"amyj<1] dy
n J[0,1]

=~ [ w0 @y
n J[0,1]
1 2n 2n

== | @)Y e w)atdy =Y At
n J[0,1] k=0 k=0

where
Ay = I () ax (y) dy.

(0,1]

Lemma 8.32. Suppose J = [a,b] is a compact subinterval of R and K

91

S

a compact subset of R¥™1, then the linear mapping R : C(J x K,Z) —
C(J,C(K,Z)) defined by (Rf)(t) = f(t,") € C(K,Z) fort € J is an iso-

metric isomorphism of Banach spaces.

Proof. By uniform continuity of f on J x K (see Theorem [8.2)),
1CR) (1) = (BRI () ez = mas I (t9) = F (5,9)], — 0 as 5 —
which shows that Rf is indeed in C (J — C (K, Z)) . Moreover,
1Rflcer—cx,z)) = max I(Rf) Ol ek 2

= maxmax ||f (t.9)lz = | flerxx.z) -

showing R is isometric and therefore injective.

To see that R is surjective, let F € C (J — C (K, Z)) and define f (t,y) :=

F (t)(y). Since

Hf(t7y) - f(s7yl)HZ < Hf(t7y) - f(s7y)||Z + ||f(3,y) - f(87y/)||Z
<NIE ) = F9)llow,z) + I1F () (W) = F () @)l 2 »

it follows by the continuity of ¢ — F (t) and y — F (s) (y) that
||f (tay) - f (Svy/)”Z — 0 as (t7y) - (Say/) .

This shows f € C(J x K, Z) and thus completes the proof because Rf =
by construction.

F
]

Corollary 8.33 (Weierstrass Approximation Theorem). Let d € N,
Ji = [as, b;] be compact subintervals of R fori=1,2,...,d, J:=Jy X+ x Jy

and f € C(J,Z). Then there exists polynomials p, on R? such that p, —
uniformly on J.

f
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Proof. The proof will be by induction on d with the case d = 1 being the
content of Theorem 8.31. Now suppose that d > 1 and the theorem holds with
dreplaced by d—1. Let K := Jax---xJyg, Zo =C(K,Z),R:C(J1 x K, Z) —
C (J1, Zp) be as in Lemma8.32land F' := Rf. By Theorem .31}, for any ¢ > 0
there exists a polynomial function

p(t) = Z cpth
k=0

with ¢x € Zg = C (K, Z) such that |[F —pllc(;, 7, < € By the induction
hypothesis, there exists polynomial functions g : K — Z such that

3

llex = arllz, < —————-
° n(lal + 1))

It is now easily verified (you check) that the polynomial function,
p(x):= Zm’qu (x2,...,2q) forz e J
k=0

satisfies || f — pll¢(;z) < 2¢ and this completes the induction argument and
hence the proof. [

The reader is referred to Chapter 20 for a two more alternative proofs of
this corollary.

Theorem 8.34 (Weierstrass Approximation Theorem). Suppose that
K c R is a compact subset and f € C(K,C). Then there exists polynomials
pn on R such that p, — f uniformly on K.

Proof. Choose A > 0 and b € R such that
Koy:=MK—-b:={\—-b:ze€ K} C By

where By := (0,1)?. The function F (y) := f (At (y+1b)) for y € Ko is in
C (Ky,C) and if p, (y) are polynomials on R? such that p, — F uniformly
on K then p, (z) := p, (A — b) are polynomials on R? such that p, — f
uniformly on K. Hence we may now assume that K is a compact subset of
By. Let g € C (K U BY) be defined by

Jf@ifzrzeK
g(x){ 0 ifze Bj

and then use the Tietze extension Theorem [7.4! (applied to the real and imag-
inary parts of F) to find a continuous function F € C(R%,C) such that
F = ¢ KUBS- If p, are polynomials on R¢ such that p, — F uniformly on
[0, l]d then p,, also converges to f uniformly on K. Hence, by replacing f by
F, we may now assume that f € C(R,C), K = By = [0, 1}d, and f =0 on
Bg. The result now follows by an application of Corollary [8.33 with Z = C. m



8.4 Classical Weierstrass Approximation Theorem 93

Remark 8.35. The mapping (x,y) € R x R — 2z = x4+ iy € C? is an
isomorphism of vector spaces. Letting Z = = — iy as usual, we have z = %
and y = 2%, Therefore under this identification any polynomial p(z,y) on

R? x R? may be written as a polynomial ¢ in (2, Z), namely

z24+z z2—2Z
2 2

q(z,2) = p( )-

Conversely a polynomial ¢ in (z,z) may be thought of as a polynomial p in
($7 y)a namely p(xv y) = q(x + Zyv T — 1y)
Corollary 8.36 (Complex Weierstrass Approximation Theorem). Sup-

pose that K C C? is a compact set and f € C(K,C). Then there exists poly-
nomials py (2, 2) for z € C¢ such that sup,c g |pn(2,2) — f(2)] = 0 asn — .

Proof. This is an immediate consequence of Theorem 18.34 and Remark
8.35. [ ]

Example 8.37. Let K = S = {2 € C: |z| = 1} and A be the set of polynomi-
als in (z, 2) restricted to S*. Then A is dense in C(S').* Since z = 27! on 1,
we have shown polynomials in 2z and 27! are dense in C'(S'). This example

generalizes in an obvious way to K = (S 1)d c C4,

Exercise 8.4. Suppose —o0o < a < b < oo and f € C ([a, b], C) satisfies
b
/ f@®t"dt=0forn=0,1,2....

Show f = 0.

Exercise 8.5. Suppose f € C(R,C) is a 27 — periodic function (i.e.
f(x+2m) = f(x) for all z € R) and

27

(z) e dx =0 for all n € Z,
0

show again that f = 0. Hint: Use Example8.37 to show that any 27 — periodic
continuous function g on R is the uniform limit of trigonometric polynomials
of the form

n
p(x)=Y" pre’™® with py, € C for all k.
k=—n
m it is easy to extend f € C(Sl) to a function F' € C(C) by setting

F(z) = 2f({Z) for z # 0 and F(0) = 0. So this special case does not require the
Tietze extension theorem.
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8.5 Iterated Integrals

Theorem 8.38 (Baby Fubini Theorem). Let a;,b; € R with a; #
b for i = 1,2...,n, f(t1,ta,...,tn) € Z be a continuous function of
(t1,t2,...,t,) where t; between a; and b; for each i and for any given per-
mutation, o, of {1,2...,n} let

boy bor,
I, (f) ::/ dt,, / dto, f(t1,ta, ... tn). (8.24)
Then I, (f) is well defined and independent of o, i.e. the order of iterated
integrals is trrelevant under these hypothesis.

Proof. Let J; := [min (a;, b;) , max (a;, b;)], J := Jy x -+ x J,, and |J;| :=
max (a;, b;) — min (a;, b;) . Using the uniform continuity of f (Theorem [8.2)
and the continuity of the Riemann integral, it is easy to prove (compare with
the proof of Lemma [8.32) that the map

bdn
(t1,... tm,...,tn)e(Jl><--~><Jm><~-~><Jn)—>/ dto. (b1 o t)

is continuous, where the hat is used to denote a missing element from a list.
From this remark, it follows that each of the integrals in Eq. (8.24) are well de-
fined and hence so is I, (f) . Moreover by an induction argument using Lemma
8.32/ and the boundedness of the Riemann integral, we have the estimate,

z S <H|J I) ez - (8.25)

Now suppose 7 is another permutation. Because of Eq. (8.25), I, and I,
are bounded operators on C' (J, Z) and so to shows I, = I is suffices to shows
there are equal on the dense set of polynomial functions (see Corollary [8.33))
in C (J,Z). Moreover by linearity, it suffices to show I, (f) = I (f) when f
has the form

1o ()]

ftr,ta, ..o ty) =5 thny

for some k; € Ny and z € Z. However for this function, explicit computations

show
n bki+1 _ al_ﬂ+1
I, (f) =1 (f) = (;1:[1]9”'1> "z

]
Proposition 8.39 (Equality of Mixed Partial Derivatives). Let Q =
(a,b) x (e, d) be an open rectangle in R and f € C(Q,Z). Assume that
2 f(s,t), & f(s,t) and &2 f(s,t) exists and are continuous for (s,t) € Q,
then aa gt (s,t) exists for (s,t) € Q and

%%f(s’t) aataa f(5,t) for (s,1) € Q. (8.26)
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Proof. Fix (sg,t9) € Q. By two applications of Theorem [8.13,
0

f(S,t) = f(Stoyt) +/ 370_]0(0-, t)do’

S

s S t
:f(so,t)+/ gf(a,to)da—l—/ da/ ir 22 b5 (3.27)
so 00 so t, OT 0o

and then by Fubini’s Theorem 8.38 we learn
s 8 t s a a
f(Sat) = f(SOat) + 7.]0(0" fo)dO’ + dr do'iif((L T)'
so 00 to so 0T 0o

Differentiating this equation in ¢ and then in s (again using two more appli-
cations of Theorem 8.13) shows Eq. (8.26)) holds. |

8.6 Exercises

Throughout these problems, (X, ||-||) is a Banach space.

Exercise 8.6. Show f = (f1,...,fn) € S([a,b],R") iff f; € S([a,b],R) for
1=1,2,...,n and

/ab f(t)dt = (/abfl(t)dt,...,/abfn(t)dt> .

Here R™ is to be equipped with the usual Euclidean norm. Hint: Use Lemma
8.7 to prove the forward implication.

Exercise 8.7. Prove Theorem 8.38 using the following strategy.

1. Use the results from the proof in the text of Theorem 8.38 that

d b
s —>/ f(s,t)dt and ¢ —>/ f(s,t)ds

are continuous maps.

2. For the moment take X = R and prove Eq. (8.24) holds by first proving it
holds when f (s,t) = s™t™ with m,n € Ny. Then use this result along with
Theorem 8.34] to show Eq. (8.24) holds for all f € C ([a,b] x [¢,d],R) .

3. For the general case, use the special case proved in item 2. along with
Hahn - Banach theorem.

Exercise 8.8. Give another proof of Proposition [8.39 which does not use
Fubini’s Theorem 8.38 as follows.

1. By a simple translation argument we may assume (0,0) € Q and we are
trying to prove Eq. (8.26) holds at (s,t) = (0,0).



96 8 The Riemann Integral

2. Let h(s,t) := %%f(s,t) and

G(s,t) == /0 do /Ot drh(o,7)

so that Eq. (8.27) states

fs.0= 10,0+ [ 5L fo.to)do + Gl

and differentiating this equation at ¢t = 0 shows

0

T —f(0,0) +

atG(s 0). (8.28)

0
af(s?o) o

Now show using the definition of the derivative that

—G (s,0) / doh(o,0). (8.29)
Hint: Consider

Gls,1) —t/os doh(c,0) :/OS da/ot dr [h(o,7) — h(o,0)].

3. Now differentiate Eq. (8.28) in s using Theorem [8.13 to finish the proof.

Exercise 8.9. Give another proof of Eq. (8.24) in Theorem [8.38 based on
Proposition [8.39. To do this let ¢y € (¢,d) and sg € (a,b) and define

G(s,t) == /t: dT/S: dof(o,T)

Show G satisfies the hypothesis of Proposition 8.39/ which combined with two
applications of the fundamental theorem of calculus implies

0 0 0 0

a&G( t) = a*aG( t) = f(s,1).

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if t =ty or s = sp to conclude

a( t)—/sd /td 99 o )—/Sd /td 9 b, (8.30)
s, —Soato T % mT—soato 7o flo.7). )

Finally let s = b and ¢t = d in Eq. (8.30) and then let sy | a and ¢y | ¢ to
prove Eq. (8.24).

Exercise 8.10 (Product Rule). Prove items 1. and 2. of Lemma [8.9. This
can be modeled on the standard proof for real valued functions.
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Exercise 8.11 (Chain Rule). Prove the chain rule in Proposition [8.10.
Again this may be modeled on the on the standard proof for real valued
functions.

Exercise 8.12. To each A € L (X), we may define L4, R4 : L (X) — L(X)
by
LyB=AB and R4B=BAforall Be L(X).

Show L4, R4 € L(L (X)) and that

ILallLnixy = 1ALy = IRallpipx)) -

Exercise 8.13. Suppose that A : R — L(X) is a continuous function and
U,V :R — L(X) are the unique solution to the linear differential equations

V(t) = A(t)V(t) with V(0) =T (8.31)

and
U(t) = —U(t)A(t) with U(0) = I. (8.32)

Prove that V(t) is invertible and that V=1(¢t) = U(¢)*, where by abuse of
notation I am writing V=1 (¢) for [V (¢)]”". Hints: 1) show % [U@)V(E)]=0
(which is sufficient if dim(X) < oo) and 2) show compute y(t) := V(¢)U(¢)
solves a linear differential ordinary differential equation that has y = Id as an
obvious solution. (The results of Exercise [8.12/ may be useful here.) Then use

the uniqueness of solutions to linear ODEs.

Exercise 8.14. Suppose that (X, |-|) is a Banach space, J = (a,b) with
—0<a<b< ooand f, : R— X are continuously differentiable functions
such that there exists a summable sequence {a,}.. | satisfying

I (t)||+‘fn(t)H <a, forallt € J and n € N.
Show:
Losup { [ RO (1 p) e JxR 5 t+heand h£0) < an.
2. The function F' : R — X defined by
F(t):=> fo(t) forallte.J
n=1

is differentiable and for ¢ € J,

F(t) = an (t) :
n=1

4 The fact that U(t) must be defined as in Eq. (8.32) follows from Lemma 8.9,
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Exercise 8.15. Suppose that A € L(X). Show directly that:

1. et define in Eq. (8.19) is convergent in L(X) when equipped with the
operator norm.
2. e is differentiable in ¢ and that 4e'4 = Aet4.

Exercise 8.16. Suppose that A € L(X) and v € X is an eigenvector of A
with eigenvalue )\, i.e. that Av = Av. Show e4v = e!*v. Also show that if
X =R" and A is a diagonalizable n x n matrix with

A= SDS™! with D = diag(A1,...,\n)

then e*4 = SetP S~ where etP = diag(et™, ..., et). Here diag(A1,...,\,)
denotes the diagonal matrix A such that A;; = \; fori =1,2,...,n.

Exercise 8.17. Suppose that A,B € L(X) and [A,B] := AB — BA = 0.
Show that e(A+5) = eAeB,

Exercise 8.18. Suppose A € C(R,L(X)) satisfies [A(t), A(s)] = 0 for all
s,t € R. Show
y(t) — e(fot A(T)d‘f‘)x

is the unique solution to y(t) = A(¢)y(t) with y(0) = x.

Exercise 8.19. Compute ‘4 when

01
a=(4)
and use the result to prove the formula

cos(s +t) = cosscost — sin ssin .

Hint: Sum the series and use et4es4 = (t+9)A4,

Exercise 8.20. Compute e*4 when

Oabd
A=|00c¢
000

with a,b,c¢ € R. Use your result to compute e!+4) where A € R and T is
the 3 x 3 identity matrix. Hint: Sum the series.

Exercise 8.21. Prove Theorem 18.24 using the following outline.

1. Using the right continuity at 0 and the semi-group property for T3, show
there are constants M and C such that [Ty, x) < MC" for all t > 0.
2. Show t € [0,00) — T} € L(X) is continuous.
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3.For e > 0, let S. := L [[T,dr € L(X). Show S. — I as e | 0 and
conclude from this that S is invertible when € > 0 is sufficiently small.
For the remainder of the proof fix such a small € > 0.

4. Show
1 t+e
TtSE = - TTdT
€ Jt

and conclude from this that

. T, —1 1
ltllrgl( ; )SE—E(TE—IdX).

5. Using the fact that S. is invertible, conclude A = limy ¢! (T} — I) exists
in L(X) and that

A=l (T. — 1) St
9

6. Now show, using the semigroup property and step 4., that %Tt = AT, for
all ¢t > 0.

7. Using step 5, show 4e~*AT, = 0 for all t > 0 and therefore e '47, =
eioATO =1.

Exercise 8.22 (Duhamel’ s Principle I). Suppose that A: R — L(X) is
a continuous function and V' : R — L(X) is the unique solution to the linear
differential equation in Eq. (8.31). Let € X and h € C(R, X)) be given. Show
that the unique solution to the differential equation:

§(t) = A(L)y(t) + h(t) with y(0) = = (8.33)

is given by

y(t) =V () + V(t)/o V(r)"th(r)dr. (8.34)

Hint: compute %[V ~1(t)y(t)] (see Exercise B.13) when y solves Eq. (8.33).

Exercise 8.23 (Duhamel’ s Principle II). Suppose that A : R — L(X) is
a continuous function and V' : R — L(X) is the unique solution to the linear
differential equation in Eq. (8.31). Let Wy € L(X) and H € C(R, L(X)) be
given. Show that the unique solution to the differential equation:

W(t) = A(t)W (t) + H(t) with W(0) = W, (8.35)

is given by

W(t) = V(t)Wo + V(1) /Ot V(r)"'H(7)dr. (8.36)
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Holder Spaces as Banach Spaces

Notation 9.1 Let 2 be an open subset of R, BC(82) and BC(f2) be the
bounded continuous functions on £2 and {2 respectively. By identifying f €
BC(2) with f|lo € BO(R2), we will consider BC(§2) as a subset of BC(S2).
Forue BC(£2) and 0 < 5 <1 let

u (= sup |ulx and u = Sup { .
” ||u x€12| ( )| [ ]6 z,'g,;e/lz |l‘ - y|ﬁ

If [ulg < oo, then u is Holder continuous with holder exponent™ 3. The
collection of B — Holder continuous function on {2 will be denoted by
COP(02) == {u € BOR) : [u]s < oo}
and for u € COB(£2) let
lullcos oy = llullu + [uls. (9.1)

Remark 9.2.If v : 2 — C and [u]g < oo for some § > 1, then u is constant
on each connected component of £2. Indeed, if z € 2 and h € R? then
u(z + th) — u(z)

t

< [ulgt’/t = 0ast—0

which shows dpu(z) = 0 for all x € 2. If y € 2 is in the same connected
component as x, then by Exercise 22.8 below there exists a smooth curve
o :[0,1] — £2 such that 0(0) = z and o(1) = y. So by the fundamental
theorem of calculus and the chain rule,

u(y)—u(m)z/o jtu(a(t))dt:/o 0 dt =0,

This is why we do not talk about Holder spaces with Holder exponents larger
than 1.

LIf 3 =1, u is is said to be Lipschitz continuous.



102 9 Holder Spaces as Banach Spaces

Lemma 9.3. Suppose u € C'(2) N BC(2) and d;u € BC(2) for i =
1,2,...,d, then u € C%1(02), i.e. [u]; < oco.

The proof of this lemma is left to the reader as Exercise 9.1l
Theorem 9.4. Let §2 be an open subset of R%. Then

1. Under the identification of u € BC (£2) with u|o, € BC (£2), BC(£2) is a
closed subspace of BC(£2).

2. Every element u € 00’5((2) has a unique extension to a continuous func-
tion (still denoted by u) on 2. Therefore we may identify C*P(£2) with
CYB(02) c BC (). (In particular we may consider C%P(£2) and C%P(£2)
to be the same when (3 > 0.)

3. The function u € C®P(2) — |lullcos(q) € [0,00) is a norm on C*P(12)
which make C%P(£2) into a Banach space.

Proof. 1. The first item is trivial since for u € BC({2), the sup-norm of
u on {2 agrees with the sup-norm on 2 and BC(2) is complete in this norm.
2. Suppose that [u]g < co and z¢ € bd(£2). Let {z,},—; C 2 be a sequence
such that zg = lim,, .o x,. Then

|w(zn) — w(zm)| < [u]g|zn — Jim|5 — 0asm,n — o0

showing {u(z,)},—, is Cauchy so that @(zo) = lim, o u(x,) exists. If
{yn}ro, C £ is another sequence converging to zg, then

u(zn) — ulyn)] < [ulg|2n —yal” — 0 as n — oo,

showing u(xg) is well defined. In this way we define @(z) for all x € bd(f2)
and let @(x) = u(z) for x € 2. Since a similar limiting argument shows

a(z) — a(y)| < [u]g |z —y|° for all z,y € 2

it follows that u is still continuous and [@]s = [u]. In the sequel we will abuse
notation and simply denote @ by u. 3. For u,v € C%8(2),

{ [v(y) + uly) — v(z) — u(z)] }

[v+ulg = sup

m,ly#e(l |£L‘ - ylﬁ
[o(y) — v(2)] + |uly) — u(z)]
< s { P } < [v]p + [uls

zFy

and for A € C it is easily seen that [Au]g = |A| [u]s. This shows [-]g is a semi-
norm on C%?(£2) and therefore || - [|co.s(o) defined in Eq. (9.1) is a norm.
To see that C%P(£2) is complete, let {u, } "o, be a C%F(£2)-Cauchy sequence.
Since BC(2) is complete, there exists u € BC(§2) such that [ju — u,| — 0
as n — oo. For z,y € 2 with x # y,
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ju@) — ()] _ . (@) = uny)

o —yl” e

< limsup[u,|s < lim HunHCOﬁ(Q) < 09,
n—oo

n—oo

and so we see that u € C%(£2). Similarly,

ju(e) — (@) — () ~ @D (e ) (2) — (1 — ) 0)
|x—y|5 m—00 |z —y|P

< limsup[um, — un]g — 0 as n — oo,
m— 00
showing [u — u,]g — 0 as n — oo and therefore lim,, .o ||t — un|lco.s (o) = 0.
|

Notation 9.5 Since §2 and 2 are locally compact Hausdorff spaces, we may
define Co(£2) and Cy(£2) as in Definition [12.22. We will also let

COP(2) := C™P(2) N Co(R2) and CTP(2) := COP(2) N Cy(2).

It has already been shown in Proposition 12.23 that Co(£2) and Co(£2) are
closed subspaces of BC(§2) and BC({2) respectively. The next proposition
describes the relation between Cy(§2) and Cy(2).

Proposition 9.6. Fach u € Cy(12) has a unique extension to a continuous
function on 2 given by i = u on 2 and 4 = 0 on bd(£2) and the extension u
is in Co(£2). Conversely if u € Co(£2) and ulpaoy = 0, then u|g € Co(£2). In
this way we may identify Co(S2) with those u € Co(82) such that ulpq(o) = 0.

Proof. Any extension u € Cy(£2) to an element u € C(2) is necessarily
unique, since (2 is dense inside £2. So define % = u on 2 and @ = 0 on bd({2).
We must show @ is continuous on £ and @ € Co({2). For the continuity
assertion it is enough to show @ is continuous at all points in bd(f2). For any
e > 0, by assumption, the set K, := {x € 2 : |u(x)| > €} is a compact subset
of 2. Since bd(2) = 2\ 2, bd(2) N K. = () and therefore the distance,
0 := d(K.,bd(£2)), between K. and bd({?2) is positive. So if z € bd(£2) and
y € 2 and |y — x| < 4, then |u(z) — a(y)| = |u(y)| < & which shows @ : 2 — C
is continuous. This also shows {|u| > ¢} = {|u| > ¢} = K. is compact in {2 and
hence also in £2. Since € > 0 was arbitrary, this shows 4 € Co(£2). Conversely if
u € Co(£2) such that ulpqco) =0 and € > 0, then K. := {z € 2: |u(x)| > e}
is a compact subset of (2 which is contained in {2 since bd(£2) N K. = 0.
Therefore K. is a compact subset of {2 showing u|g € Co(§2). ]

Definition 9.7. Let 2 be an open subset of R?, k € NU{0} and 3 € (0,1].
Let BCF(82) (BC*(R2)) denote the set of k — times continuously differentiable
functions u on §2 such that *u € BC(2) (0“u € BC(2))? for all |a| < k.

2 To say 0“u G_BC’(Q) means that 9%u € BC(£2) and 9“u extends to a continuous
function on f2.
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Similarly, let BC*P(£2) denote those u € BC*(£2) such that [0%u]s < oo for
all || = k. For u € BC*($2) let

lullcry = Y 10%ull and

o <k
lallern = S 0%l + 3 [0%uls.
lal<k lal=k

Theorem 9.8. The spaces BC*(£2) and BC*P(02) equipped with || - || cx ()
and [|-|| o (g respectively are Banach spaces and BC*(£2) is a closed subspace
of BC¥(£2) and BC*A(2) c BC*(2). Also

CEA(Q) = CEP(Q) = {u e BC*A(02): 0% € Co(2) ¥ |a| < k}
is a closed subspace of BC*P(£2).

Proof. Suppose that {u,} -, C BC*(£2) is a Cauchy sequence, then
{0%u,},>, is a Cauchy sequence in BC(£2) for |a| < k. Since BC(£2) is
complete, there exists g, € BC(S2) such that lim, . ||0%uyn — ga||,, = 0 for
all |a| < k. Letting u := go, we must show u € C¥(£2) and 0%u = g, for all
|a] < k. This will be done by induction on || . If || = 0 there is nothing to
prove. Suppose that we have verified u € C!(£2) and 9%u = g, for all |a| <
for some I < k. Then for z € 2,4 € {1,2,...,d} and ¢ € R sufficiently small,

t

0%y (x + te;) = 0%y () + 0;0%up (x + Te;)dr.
0

Letting n — oo in this equation gives
t
0%u(x + te;) = 0%u(x) + / Gate, (T + Te;)dT
0

from which it follows that 0;0%u(z) exists for all x € £2 and 9;0%u = gate, -
This completes the induction argument and also the proof that BC*(£2) is
complete. It is easy to check that BC*(£2) is a closed subspace of BC(£2)
and by using Exercise 9.1l and Theorem 9.4/ that that BC*8(£2) is a subspace
of BC¥(£2). The fact that Ci” (£2) is a closed subspace of BC*#(£2) is a con-
sequence of Proposition12.23. To prove BC*#(£2) is complete, let {u,}, -, C
BCFA () bea |- | o672y — Cauchy sequence. By the completeness of BC*(02)
just proved, there exists u € BC*(£2) such that lim,, . ||u — Un||cr(2) = 0.
An application of Theorem 9.4 then shows limy, oo [[0%un — 0%ullco.s(m) =0
for || = k and therefore limy oo ||t = tn| .5 (m) = 0. |
The reader is asked to supply the proof of the following lemma.

Lemma 9.9. The following inclusions hold. For any 8 € [0,1]
BCH19(2) c BC™(R) c BC*P ()
BC*10(2) ¢ BC*Y(2) ¢ BO*P(02).
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9.1 Exercises

Exercise 9.1. Prove Lemma 9.3.
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Topological Spaces
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Topological Space Basics

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 10.1. A collection of subsets T of X is a topology if

1.0, X er
2. T is closed under arbitrary unions, i.e. if Vo € 7, fora € I then |J V, € T.
acl
3. T is closed under finite intersections, i.e. if Vi,...,V, € 7 then V1N ---N
V, er.
A pair (X,7) where T is a topology on X will be called a topological
space.

Notation 10.2 Let (X, 7) be a topological space.

1. The elements, V € 7, are called open sets. We will often write V C, X
to indicate V is an open subset of X.

2. A subset F C X is closed if F° is open and we will write F — X if F' is
a closed subset of X.

3. An open mneighborhood of a point x € X is an open set V. C X such
that x € V. Let 7, = {V € 7 : € V} denote the collection of open
neighborhoods of x.

4. A subset W C X is a neighborhood of x if there exists V € 1, such that
Vcw

5. A collection n C 7, is called a neighborhood base at x € X if for all
V € 1, there exists W € n such that W C V.

The notation 7, should not be confused with
T{a} = i{_xl}(r) ={{z}nV:Ver}={0,{z}}.

Ezample 10.3. 1. Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 74 is a topology, see
Exercise 6.2 The collection of sets n = {B,(¢) : ¢ € D} where D is any
dense subset of (0, 1] is a neighborhood base at x.
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2. Let X be any set, then 7 = 2% is a topology. In this topology all subsets of
X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {(, X'} . In this topology only the empty set and X are open
(closed).

3. Let X = {1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does
not come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and
the sets X, {1}, {2,3},0 are open and closed. The sets {1,2} and {1,3}
are neither open nor closed.

Fig. 10.1. A topology.

Definition 10.4. Let (X,7x) and (Y,7y) be topological spaces. A function
f: X =Y is continuous if

fHry) = {f_1 (V):Very}Crx.

We will also say that f is Tx /Ty —continuous or (Tx,Ty) — continuous. Let
C(X,Y) denote the set of continuous functions from X to'Y.

Exercise 10.1. Show f: X — Y is continuous iff f~1(C) is closed in X for
all closed subsets C' of Y.

Definition 10.5. A map f : X — Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f~! :
Y — X s continuous. If there exists f : X — Y which is a homeomorphism,
we say that X and Y are homeomorphic. (As topological spaces X andY are
essentially the same.)

10.1 Constructing Topologies and Checking Continuity

Proposition 10.6. Let £ be any collection of subsets of X. Then there exists
a unique smallest topology T(E) which contains E.
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Proof. Since 2% is a topology and £& C 2%, £ is always a subset of a
topology. It is now easily seen that

T(E) = ﬂ{T : T is a topology and € C 7}

is a topology which is clearly the smallest possible topology containing £. =
The following proposition gives an explicit descriptions of 7(&).

Proposition 10.7. Let X be a set and £ C 2X. For simplicity of notation,
assume that X,0 € £. (If this is not the case simply replace € by EU{X,0}.)
Then

7 (€) := {arbitrary unions of finite intersections of elements from E}.
(10.1)

Proof. Let 7 be given as in the right side of Eq. (10.1)). From the definition
of a topology any topology containing & must contain 7 and hence £ C 7 C
7(&). The proof will be completed by showing 7 is a topology. The validation
of 7 being a topology is routine except for showing that 7 is closed under
taking finite intersections. Let V, W & 7 which by definition may be expressed
as
V =UqeaVo and W = UgepWa,

where V,, and Wjs are sets which are finite intersection of elements from £.
Then
Vnw = (UOzGAVa) N (UﬁGBWﬁ) = U Va N WIB'
(a,B)EAXB
Since for each (o, 8) € A x B, Vo, NWj is still a finite intersection of elements
from &, VN W € 7 showing 7 is closed under taking finite intersections. m

Definition 10.8. Let (X, 7) be a topological space. We say that S C T is a
sub-base for the topology T iff T = 7(S) and X = US := UyesV. We say
V C 7 is a base for the topology T iff V is a sub-base with the property that
every element V € 7 may be written as

V=U{BeV:BCV}
Exercise 10.2. Suppose that S is a sub-base for a topology 7 on a set X.

1. Show V := Sy (Sy is the collection of finite intersections of elements from
S) is a base for 7.
2. Show S is itself a base for 7 iff

Vlm‘/Q:U{SGSZSC‘/lﬂ‘/Q}.

for every pair of sets V1, V5 € S.
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Qe s)

oo

Fig. 10.2. Fitting balls in the intersection.

Remark 10.9. Let (X, d) be a metric space, then £ = {B,(J) : « € X and
0 > 0} is a base for 74 — the topology associated to the metric d. This is the
content of Exercise 6.3l

Let us check directly that £ is a base for a topology. Suppose that x,y € X
and £,0 > 0. If 2 € B(x,0) N B(y,¢), then

B(z,a) C B(z,0) N B(y,¢) (10.2)

where @ = min{é — d(z,z),e — d(y, 2)}, see Figure 10.2l This is a formal
consequence of the triangle inequality. For example let us show that B(z,«) C
B(x, ). By the definition of a, we have that a < § — d(x, 2z) or that d(z, z2) <
0 — a.. Hence if w € B(z, «), then

d(z,w) <d(z,z) +d(z,w) <d—a+d(z,w) <d—a+a=17

which shows that w € B(z,d). Similarly we show that w € B(y, ¢) as well.
Owing to Exercise 10.2), this shows &£ is a base for a topology. We do not
need to use Exercise[10.2 here since in fact Equation (10.2) may be generalized
to finite intersection of balls. Namely if z; € X, §; > 0 and z € NI B(x;,9;),
then
B(z,a) C NIy B(x;,6;) (10.3)

where now « := min{d; — d(x;,2) :i=1,2,...,n}. By Eq. (10.3) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Exercise 10.3. Suppose f : X — Y is a function and 7x and 7y are topolo-
gies on X and Y respectively. Show

floy ={f"(V)CX:Very} and firx ={VCY: f ' (V)erx}

(as in Notation 2.7) are also topologies on X and Y respectively.
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Remark 10.10. Let f : X — Y be a function. Given a topology 1y C 2V, the
topology Tx := f~!(7y) is the smallest topology on X such that f is (7x,7y)
- continuous. Similarly, if 7x is a topology on X then 7y = f,7x is the largest
topology on Y such that f is (rx,7y) - continuous.

Definition 10.11. Let (X, 7) be a topological space and A subset of X. The
relative topology or induced topology on A is the collection of sets

Ta=i, (1) ={ANV V e},
where i : A — X be the inclusion map as in Definition [2.8.

Lemma 10.12. The relative topology, T4, is a topology on A. Moreover a
subset B C A is T4 — closed iff there is a T — closed subset, C, of X such that
B=CnA.

Proof. The first assertion is a consequence of Exercise(10.3. For the second,
B C AisTa —closed iff A\ B= ANV for some V € 7 which is equivalent to
B=A\(ANV)=ANVec for some V € 7. |

Exercise 10.4. Show if (X, d) is a metric space and 7 = 74 is the topology
coming from d, then (74) 4 is the topology induced by making A into a metric
space using the metric d|sx 4.

Lemma 10.13. Suppose that (X,7x), (Y,7v) and (Z,7z) are topological
spaces. If f: (X,7x) — (Y,7y) and g : (Y,7v) — (Z,7z) are continuous
functions then go f : (X,7x) — (Z,77) is continuous as well.

Proof. This is easy since by assumption g~!(77) C 7y and f~! (1y) C 7x
so that
(o) (r2)=F" (97" (7)) C F ' (7v) C 7x.

]

The following elementary lemma turns out to be extremely useful because

it may be used to greatly simplify the verification that a given function is
continuous.

Lemma 10.14. Suppose that f : X — Y is a function, € C 2¥ and A C Y,
then

T (f_l(é')) = f17(€)) and (10.4)
T(Ea) =(T(E))4- (10.5)

Moreover, if Ty = 7(€) and Tx is a topology on X, then f is (7x,7y) —
continuous iff f~1(€) C 7x.
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Proof. We will give two proof of Eq. (10.4). The first proof is more con-
structive than the second, but the second proof will work in the context of
o — algebras to be developed later. First Proof. There is no harm (as the
reader should verify) in replacing € by £ U {0, Y} if necessary so that we
may assume that ,Y € £. By Proposition [10.7, the general element V of
7(€) is an arbitrary unions of finite intersections of elements from €. Since
1 preserves all of the set operations, it follows that f~!7(£) consists of
sets which are arbitrary unions of finite intersections of elements from f~1&,
which is precisely T ( L& )) by another application of Proposition [10.7. Sec-
ond Proof. By Exercise 10.3, f~1(7(£)) is a topology and since £ C 7 (&),
F7HE) c YT (€)). It now follows that 7(f~1(&€)) C f~H(7(E)). For the
reverse inclusion notice that

L (fFHE)) ={BcY : fY(B)er ()}

is a topology which contains £ and thus 7(€) C f.7 (f_l(f))) . Hence if B €
7(€) we know that f~1(B) € 7 (f71(£)), ie. f7H(7(&)) C 7(f71(€)) and
Eq. (10.4) has been proved. Applying Eq. (10.4) with X = A and f = iya
being the inclusion map implies

(T(E) 4 =ia (7)) = 7(ix" (€)) = T(En).

Lastly if f~'€ C 7x, then f~'7(£) = 7(f7'€) C 7x which shows f is
(Tx,Ty) — continuous. -

Corollary 10.15. If (X, 7) is a topological space and f : X — R is a function
then the following are equivalent:

1. f is (1,7r) - continuous,
2. f~Y((a,b)) € T for all —co < a < b < o0,
3. fY(a,0)) € 7 and f~((—o0,b)) € T for all a,b € Q.

(We are using 7g to denote the standard topology on R induced by the
metric d(x,y) = | — y|.)

Proof. Apply Lemma [10.14]/ with appropriate choices of £. [ ]

Definition 10.16. Let (X, 7x) and (Y, 7y) be topological spaces. A function
f: X =Y is continuous at a point x € X if for every open neighborhood
V of f(z) there is an open neighborhood U of x such that U C f=Y(V). See
Figure 10.5.

Exercise 10.5. Show f : X — Y is continuous (Definition [10.16) iff f is
continuous at all points x € X.

Definition 10.17. Given topological spaces (X,7) and (Y,7') and a subset
A C X. We say a function f : A — Y is continuous iff [ is 7a/7 -
continuous.
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57V)

Fig. 10.3. Checking that a function is continuous at z € X.

Definition 10.18. Let (X, 7) be a topological space and A C X. A collection
of subsets U C T is an open cover of A if A C U := Uy U.

Proposition 10.19 (Localizing Continuity). Let (X,7) and (Y,7') be
topological spaces and f: X —Y be a function.

1. If f is continuous and A C X then f|la : A —Y is continuous.
2. Suppose there exist an open cover, U C T, of X such that f|a is continuous
for all A € U, then f is continuous.

Proof. 1. If f : X — Y is a continuous, f~*(V) € 7 for all V € 7/ and
therefore
AP (V)=AnfYV)eraforall Ver.
2. Let V € 7/, then

fﬁl(V) = Uaecuy (fil(V) N A) = UAez,{ful(V). (10.6)

Since each A € U is open, T4 C 7 and by assumption, f|;11(V) € T4 C T
Hence Eq. (10.6) shows f~! (V) is a union of 7 — open sets and hence is also
T — open. [

Exercise 10.6 (A Baby Extension Theorem). Suppose V € 7 and f :
V — C is a continuous function. Further assume there is a closed subset C
such that {x € V' : f(z) #0} C C C V, then F': X — C defined by

Jf@)ifzeV
F(‘U)—{ 0 ifxgV

is continuous.

Exercise 10.7 (Building Continuous Functions). Prove the following
variant of item 2. of Proposition [10.19. Namely, suppose there exists a fi-
nite collection F of closed subsets of X such that X = UacrA and f|a is
continuous for all A € F, then f is continuous. Given an example showing
that the assumption that F is finite can not be eliminated. Hint: consider
f71(C) where C is a closed subset of Y.
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10.2 Product Spaces I

Definition 10.20. Let X be a set and suppose there is a collection of topo-
logical spaces {(Yo, 7o) : v € A} and functions fo : X — Yy for all o € A.
Let 7(fo : « € A) denote the smallest topology on X such that each f, is
continuous, t.e.

T(fara € A) = 1(Uafs (7a).

Proposition 10.21 (Topologies Generated by Functions). Assuming
the notation in Definition [10.20 and additionally let (Z,7z) be a topologi-
cal space and g : Z — X be a function. Then g is (72,7(fo : @ € A)) —
continuous iff fo 0 g is (7z,Ta)—continuous for all a € A.

Proof. (=) If g is (77, 7(fa : @ € A)) — continuous, then the composition
fa©gis (177,74) — continuous by Lemma 10.13. (<) Let

Tx =7(fa:a€A)=1 (UaeAfl;l(Ta)) .
If fo0gis (T7,74) — continuous for all «, then
g ra) CTzVa € A
and therefore

g_l (UOzEAf(;l(Ta)) = UaeAg_lfojl(Ta) CT1z

Hence

g (7x) =97 (T (Uaeafa ' (1a)) = (97" (Uacafy ' (1a)) C 72

which shows that g is (17, 7x) — continuous. ]

Let {(Xa,Ta)}oca be a collection of topological spaces, X = X4 = [] Xa
acA
and 7, : X4 — X, be the canonical projection map as in Notation 2.2l

Definition 10.22. The product topology 7 = Qnc ATy is the smallest topol-
ogy on X4 such that each projection w, is continuous. Explicitly, T is the
topology generated by the collection of sets,

E={n (V) :a€ AV, €7a} = Upean '7,. (10.7)

Applying Proposition [10.21] in this setting implies the following proposi-
tion.

Proposition 10.23. Suppose Y is a topological space and f : Y — X4 is a
map. Then f is continuous iff mo o f : Y — X, is continuous for all o € A.
In particular if A = {1,2,...,n} so that X4 = X1 x Xa x -+ x X, and
fy) = (i), f2(y)s - fuly)) € Xu X Xo X - X X, then [ 1Y — Xy is

continuous iff f; : Y — X; is continuous for all i.
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Proposition 10.24. Suppose that (X, T) is a topological space and {f,} C
XA (see Notation2.2) is a sequence. Then f, — f in the product topology of
XA 4ff fu(a) — fla) for all a € A.

Proof. Since 7, is continuous, if f,, — f then f,(a) = 7o (fn) — 7a(f) =
f(a) for all a € A. Conversely, f,(a) — f(«a) for all a € A iff 7o (fn) — 7o (f)
for all @ € A. Therefore if V = n,1(V,) € € (with € as in Eq. (10.7)) and
f €V, then n,(f) € V,, and 7o (fn) € Vo, for a.a. n and hence f,, € V for a.a.
n. This shows that f, — f as n — oo. [

Proposition 10.25. Suppose that (Xo,Ta),ca 15 a collection of topological
spaces and RqeATa is the product topology on X =[], c 4 Xa-

1. If &, C 14 generates T4 for each o € A, then
RacATa =T (UaeAﬂ-(;l(ga)) (108)

2. If By, C 74 is a base for 1, for each a, then the collection of sets, V, of
the form

V =Naeamy Vo = [] Va x [ Xo =t Va x Xa\4. (10.9)
agA agA

where A CC A and V,, € B, for all a € A is base for QucaTa-

Proof. 1. Since

anglga C anglm = angl(r(é‘a))
=UaT(m, ) C 7 (Uamy ' Ea),

it follows that
T (Uamy ") C ®aTa C 7 (Uamy 'Ea) -

2. Now let U = [Uam, '7a], denote the collection of sets consisting of finite

intersections of elements from U,7, !7,. Notice that & may be described as
those sets in Eq. (10.9) where V, € 7, for all a € A. By Exercise [10.2, U is a
base for the product topology, ®,ca7.. Hence for W € ®yca7, and x € W,
there exists a V' € U of the form in Eq. (10.9) such that x € V' C W. Since B,
is a base for 7, there exists U, € B, such that z, € U, C V, for each a € A.
With this notation, the set Uy X Xq\qp € Vand z € Ux x Xq\ g CV C W.
This shows that every open set in X may be written as a union of elements
from V, i.e. V is a base for the product topology. [

Notation 10.26 Let & C 2% be a collection of subsets of a set X; for each
1=1,2,...,n. We will write, by abuse of notation, &4 X E3 X - -+ X &, for the
collection of subsets of X1 x---x X, of the form A1 x Ay x---x A, with A; € &
for all i. That is we are identifying (A1, Aa, ..., Ap) with Ay X Ay X -+ X A,
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Corollary 10.27. Suppose A ={1,2,...,n} so X = X7 x Xo x --- X X,.
1. If& c 2%, 7y = 7(&) and X; € & for each i, then
MM @T, =T(E1 X E2 X - X &) (10.10)
and in particular
MA@ @Tp =T7(T1 X -+ X Ty). (10.11)

2. Furthermore if B; C 7; is a base for the topology T; for each i, then By X
-+« X By, is a base for the product topology, T1 @ To Q «++ ® Ty,

Proof. (The proof is a minor variation on the proof of Proposition [10.25.)
1. Let [Uie AT, 1(&-)} f denotes the collection of sets which are finite intersec-

tions from UiGAwfl(&), then, using X; € &; for all ¢,
Uieam; 1(E) CEL x Ea x - x &, C [UieAwi_l(&)]f.
Therefore
T=1T (UieAWi_l(&')) CT(Ey xEx--x&E)CT ([UieAﬂi_l(Si)]f) =T

2. Observe that 7 X - -+ X 7, is closed under finite intersections and generates
TN ® T ® -+ ® Ty, therefore 71 X --- X 7, is a base for the product topology.
The proof that By x --- x B, is also a base for 71 ® 7o ® - - - ® 7, follows the
same method used to prove item 2. in Proposition [10.25. [ ]

Lemma 10.28. Let (X;,d;) fori=1,...,n be metric spaces, X := X1 X+ X
X, and for x = (z1,x2,...,2,) and y = (y1,Y2,...,Yn) in X let
n
d(z,y) = di(xi, y:). (10.12)
i=1
Then the topology, T4, associated to the metric d is the product topology on X,
i.€.
Td:le ®Td2®"'®7-d

Proof. Let p(z,y) = max{d;(x;,y;) : i = 1,2,...,n}. Then p is equivalent
to d and hence 7, = 74. Moreover if ¢ > 0 and « = (21, 22,...,2,) € X, then
Bf(e) = B;/,l} () x -+ x ng(g).

By Remark 10.9,
E:={Bf(e):z € X and e > 0}

is a base for 7, and by Proposition/10.25/£ is also a base for 74, @74, ® - -®7q,, -
Therefore,
Tay @ Tdy @+ ® T, =71(€) =T, =14
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10.3 Closure operations

Definition 10.29. Let (X, 7) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set A containing A, i.e.
A=n{F:ACFLCX}.

(Because of Exercise [6.4 this is consistent with Definition [6.10 for the
closure of a set in a metric space.)
2. The interior of A is the largest open set A° contained in A, i.e.

A°=U{Ver:VCA}.

(With this notation the definition of a neighborhood of x € X may be
stated as: A C X is a neighborhood of a point x € X if v € A°.)
3. The accumulation points of A is the set

acc(A) ={z e X: VNA\{a} #0 for allV € 7,.}.
4. The boundary of A is the set bd(A) := A\ A°.

Remark 10.30. The relationships between the interior and the closure of a set
are:

(Ao)c:m{Vc:VGTandVCA}:n{C:CiS closed C D A°} = Ac
and similarly, (A)¢ = (A¢)°. Hence the boundary of A may be written as
bd(A) :== A\ A° = AN (A°)° = AN Ae, (10.13)
which is to say bd(A) consists of the points in both the closure of A and A°.

Proposition 10.31. Let A C X and x € X.

1.IfVCo X and ANV =0 then ANV = 0.
2.2 € AiffVNAAD for all V € 7.
3.2€bd(A) iff VNA#£D and VN A £ for allV € 7.

4. A= AUacc(A).

Proof. 1. Since ANV =0, A C V¢ and since V¢ is closed, A C V¢. That
is to say ANV = (). 2. By Remark 10.30%, A = ((A°)°)“soz € Aiff x ¢ (A°)°
which happens iff V€ A¢for all V € 7, ie. iff VNA#( forall V € 7,. 3.
This assertion easily follows from the Item 2. and Eq. (10.13). 4. Item 4. is an
easy consequence of the definition of acc(A) and item 2. ]

! Here is another direct proof of item 2. which goes by showing = ¢ A iff there exists

V e, such that VNA=0.Ifx ¢ AthenV = (A)° €y and VNACVNA=0.
Conversely if there exists V € 7, such that ANV = () then by Item 1. ANV = 0.
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Lemma 10.32. Let A C Y C X, AY denote the closure of A in Y with its
relative topology and A = AX be the closure of A in X, then AY = AXNY.

Proof. Using Lemma [10.12]

AY =n{BCY:AcB}=n{CnY:AcCcCrC X}
=YNn(n{C:AcCrC X})=YnA~.

Alternative proof. Let z € Y then z € AY if VNA#(forall V ey
such that z € V. This happens iff for all U € 7,,, UNY NA = UNA # () which
happens iff x € AX. That is to say AY = AX NY. [ ]

The support of a function may now be defined as in Definition [8.25 above.

Definition 10.33 (Support). Let f : X — Y be a function from a topo-
logical space (X,Tx) to a wvector space Y. Then we define the support of f

by

supp(f) :={z € X : f(x) # 0},
a closed subset of X.

The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 10.34. Suppose that f : X — Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(A) C f(A) forall AC X
3. f~YB) c f~YB) for all B C X.

Proof. If f is continuous, then f~! (f(A)) is closed and since A C

fH(fA) c ft (m> it follows that A C f~! (m) . From this equa-

tion we learn that f(A) C f(A) so that (1) implies (2) Now assume (2), then
for B CY (taking A = f~1(B)) we have

FUHB)) C f(fH(B) C f(F71(B) c B

and therefore B

f~1(B) c f(B). (10.14)
This shows that (2) implies (3) Finally if Eq. (10.14) holds for all B, then
when B is closed this shows that

fUB) c fH(B) = f7Y(B) ¢ f~1(B)

which shows that

f7H(B) = f~(B).
Therefore f~!(B) is closed whenever B is closed which implies that f is
continuous. ]
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10.4 Countability Axioms

Definition 10.35. Let (X, 7) be a topological space. A sequence {x,} ., C
X converges to a point x € X if for all V € 1, x, € V almost always
(abbreviated a.a.), i.e. # ({n:x, ¢ V}) < co. We will write x,, — = as n —
oo or limy, o0 T, = x when x, converges to x.

Ezample 10.36. Let X = {1,2,3} and 7 = {X, 0, {1, 2},{2,3},{2}} and z,, =
2 for all n. Then x,, — z for every x € X. So limits need not be unique!

Definition 10.37 (First Countable). A topological space, (X, 1), is first
countable iff every point x € X has a countable neighborhood base as defined
in Notation 10.2

Ezample 10.38. All metric spaces, (X, d), are first countable. Indeed, if z € X
then {B (x, %) 'n & N} is a countable neigborhood base at =z € X.

Exercise 10.8. Suppose X is an uncountable set and let V' € 7 iff V¢ is finite
or countable of V' = (). Show 7 is a topology on X which is closed under
countable intersections and that (X, 7) is not first countable.

Exercise 10.9. Let {0,1} be equipped with the discrete topology and X =

{0,1}R be equipped with the product topology, 7. Show (X, 7) is not first
countable.

The spaces described in Exercises!10.8 and [10.9/are examples of topological
spaces which are not metrizable, i.e. the topology is not induced by any metric
on X. Like for metric spaces, when 7 is first countable, we may formulate many
topological notions in terms of sequences.

Proposition 10.39. If f : X — Y is continuous at x € X and lim,,_, o T, =

x € X, then lim, o f(z,) = f(x) € Y. Moreover, if there exists a countable

neighborhood base ) of x € X, then f is continuous at x iff lim f(xz,) = f(z)
n—oo

for all sequences {x,},>, C X such that x, — x as n — cc.

Proof. If f : X — Y is continuous and W € 71y is a neighborhood of
f(z) €Y, then there exists a neighborhood V' of x € X such that f(V) C W.
Since ©, — =z, x, € V a.a. and therefore f(z,) € f(V) C W a.a., ie.
f(zn) — f(z) as n — oo. Conversely suppose that n = {W,}°2, is a
countable neighborhood base at = and nlLH;o f(zn) = f(z) for all sequences

{z,},2, C X such that z,, — z. By replacing W,, by Wi N---N W, if neces-
sary, we may assume that {T/Vn}flo=1 is a decreasing sequence of sets. If f were
not continuous at x then there exists V' € 74, such that = ¢ [ffl(V)]o.
Therefore, W, is not a subset of f~1(V) for all n. Hence for each n, we may
choose z,, € W,, \ f~1(V). This sequence then has the property that x, — x
as n — oo while f(z,) ¢ V for all n and hence lim,, . f(zn) # f(2). ]
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Lemma 10.40. Suppose there exists {zn}fbozl C A such that x,, — x, then
x € A. Conversely if (X, ) is a first countable space (like a metric space)
then if x € A there exists {x,},. | C A such that x, — x.

Proof. Suppose {z,} -, C A and z, — = € X. Since A° is an open
set, if z € A¢ then z,, € A° C A° a.a. contradicting the assumption that
{z,}>2, C A. Hence z € A. For the converse we now assume that (X,7) is
first countable and that {V,,} ~, is a countable neighborhood base at = such
that V4, D Vo D V3 D .... By Proposition 10.31, z € A iff VN A # ( for all
V € 7,. Hence z € A implies there exists z, € V,, N A for all n. It is now
easily seen that x,, — x as n — oo. [ ]

Definition 10.41. A topological space, (X, T), is second countable if there
exists a countable base V for T, i.e. V C T is a countable set such that for
every W e 1,

W=U{V:VeVsVcCcW}

Definition 10.42. A subset D of a topological space X is dense if D = X.
A topological space is said to be separable if it contains a countable dense
subset, D.

Ezxample 10.43. The following are examples of countable dense sets.

1. The rational number QQ are dense in R equipped with the usual topology.

2. More generally, Q? is a countable dense subset of R? for any d € N.

3. Even more generally, for any function p : N — (0, 00), ¢P(u) is separable
for all 1 < p < oo. For example, let I" C F be a countable dense set, then

D:={zelP(u):z;, €l foralliand #{j:z; #0} < oo}

The set I" can be taken to be Q if F =R or Q +:Q if F = C.
4. If (X, d) is a metric space which is separable then every subset Y C X is
also separable in the induced topology.

To prove 4. above, let A = {z,}52, C X be a countable dense subset of
X. Let dy(x) = inf{d(z,y) : y € Y} be the distance from x to ¥ and recall
that dy : X — [0,00) is continuous. Let &, = max {dy (2,),1} > 0 and for
each n let y, € By, (2¢,,). Then if y € Y and € > 0 we may choose n € N such
that d(y, zn) < e, < &/3. Then d(yn, zy,) < 2e, < 2¢/3 and therefore

d(y, yn) < d(y,zn) + d(@n, yn) <e.
This shows that B := {y,}22, is a countable dense subset of Y.
Exercise 10.10. Show ¢>° (N) is not separable.

Exercise 10.11. Show every second countable topological space (X,7) is
separable. Show the converse is not true by showing X := R with 7 =
{P}U{V CR:0 € V}is a separable, first countable but not a second count-
able topological space.
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Exercise 10.12. Every separable metric space, (X, d) is second countable.

Exercise 10.13. Suppose £ C 2% is a countable collection of subsets of X,
then 7 = 7(€) is a second countable topology on X.

10.5 Connectedness

Definition 10.44. (X, 1) is disconnected if there exists non-empty open sets
U and V of X such that UNV =0 and X = U UV. We say {U,V} is a
disconnection of X. The topological space (X,T) is called connected if it
18 not disconnected, i.e. if there is no disconnection of X. If A C X we say
A is connected iff (A,7a) is connected where T4 is the relative topology on
A. Explicitly, A is disconnected in (X, 7) iff there exists U,V € 7 such that
UNA#0, UNA#D, ANUNV =0and ACUUV.

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space (X, 7) is connected iff the only
sets A C X which are both open and closed are the sets X and @). This version
of the definition is often used in practice.

Remark 10.45. Let ACY C X. Then A is connected in X iff A is connected
inY.

Proof. Since
TA={VNA:VCX}={VNANY: VCX}={UNA:UC,Y},

the relative topology on A inherited from X is the same as the relative topol-
ogy on A inherited from Y. Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y. [

The following elementary but important lemma is left as an exercise to
the reader.

Lemma 10.46. Suppose that f : X — Y is a continuous map between topo-
logical spaces. Then f(X) CY is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Ezxample 10.47. Suppose that f : X — Y is a continuous map between two
topological spaces, the space X is connected and the space Y is “Ty,” i.e. {y}
is a closed set for all y € Y as in Definition [12.35/ below. Further assume f is
locally constant, i.e. for all x € X there exists an open neighborhood V of x
in X such that f|y is constant. Then f is constant, i.e. f(X) = {yo} for some
Yo € Y. To prove this, let yo € f(X) and let W := f~1({yo}). Since {yo} C Y
is a closed set and since f is continuous W C X is also closed. Since f is
locally constant, W is open as well and since X is connected it follows that
W =X, ie f(X)={yo}.
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As a concrete application of this result, suppose that X is a connected
open subset of R? and f : X — R is a C' — function such that Vf = 0.
If + € X and € > 0 such that B (z,e) C X, we have, for any |v| < € and
t € [~1,1], that

%f(x+tv):Vf(x+tv)~v:0~

Therefore f (x +v) = f (z) for all |v| < € and this shows f is locally constant.
Hence, by what we have just proved, f is constant on X.

Theorem 10.48 (Properties of Connected Sets). Let (X,7) be a topo-
logical space.

1. If B C X 1is a connected set and X is the disjoint union of two open sets
U and V, then either BC U or BC V.
2. If A C X is connected,
a) then A is connected.
b) More generally, if A is connected and B C acc(A), then AU B is

connected as well. (Recall that acc(A) — the set of accumulation points
of A was defined in Definition 10.29 above.)

8. If {Ea} e a 15 a collection of connected sets such that (,c 4 Ea # 0, then
Y :=Uqen Ea is connected as well. B
4. Suppose A, B C X are non-empty connected subsets of X such that AN
B # 0, then AU B is connected in X.

5. Fvery point x € X is contained in a unique mazimal connected subset
C, of X and this subset is closed. The set C, is called the connected
component of x.

Proof.

1. Since B is the disjoint union of the relatively open sets BNU and BNV,
we must have BNU = B or BNV = B for otherwise {BNU, BNV}
would be a disconnection of B.

2. a. Let Y = A be equipped with the relative topology from X. Suppose
that U,V C, Y form a disconnection of Y = A. Then by 1. either A C U
or A C V. Say that A C U. Since U is both open an closed in Y, it follows
that Y = A C U. Therefore V = () and we have a contradiction to the
assumption that {U,V} is a disconnection of ¥ = A. Hence we must
conclude that Y = A is connected as well.

b. Now let Y = AU B with B C acc(A), then
AY = ANY = (AUacc(A)NY = AUB.

Because A is connected in Y, by (2a) Y = AU B = AY is also connected.
3. Let Y := UaeA E,. By Remark [10.45, we know that FE, is connected
in Y for each a € A. If {U,V} were a disconnection of Y, by item (1),
either E, C U or E, C V for all a. Let A = {a € A: E, C U} then
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U =UseaEy and V = Ugea\ 1 Ea- (Notice that neither A or A\ A can be
empty since U and V are not empty.) Since

0=UNV =|Jacapea (EaNEp) D [ Ea # 0.
a€cA

we have reached a contradiction and hence no such disconnection exists.

4. (A good example to keep in mind here is X = R, A = (0,1) and B =
[1,2).) For sake of contradiction suppose that {U, V'} were a disconnection
of Y = AU B. By item (1) either A C U or A C V, say A C U in which
case B C V. Since Y = AU B we must have A = U and B = V and so
we may conclude: A and B are disjoint subsets of Y which are both open
and closed. This implies

A=A"=AnY=A4An(AUB)=AU(ANB)
and therefore
0P=ANB=[AU(ANB)|NB=ANB#0

which gives us the desired contradiction.

5. Let C denote the collection of connected subsets C' C X such that x € C.
Then by item 3., the set C, := UC is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C,, is also connected by item (2) and C, is maximal, C, = C,,
i.e. Cy is closed.

Theorem 10.49 (The Connected Subsets of R). The connected subsets
of R are intervals.

Proof. Suppose that A C R is a connected subset and that a,b € A with
a < b. If there exists ¢ € (a,b) such that ¢ ¢ A, then U := (—o00,¢) N A
and V := (¢,00) N A would form a disconnection of A. Hence (a,b) C A. Let
o :=inf(A) and § := sup(A) and choose o, 5, € A such that o, < G, and
an | aand 8, 1 8 as n — oco. By what we have just shown, (a,,8,) C A
for all n and hence (o, ) = U2 (apn,Bn) C A. From this it follows that
A= (a,0), [o,08), (o, 8] or o, B], i.e. A is an interval.

Conversely suppose that A is an interval, and for sake of contradiction,
suppose that {U, V'} is a disconnection of A with a € U, b € V. After relabelling
U and V if necessary we may assume that a < b. Since A is an interval
[a,b] C A.Let p =sup ([a,b] NU), then because U and V are open, a < p < b.
Now p can not be in U for otherwise sup ([a,b] N U) > p and p can not be in
V for otherwise p < sup ([a,b] N U). From this it follows that p ¢ U UV and
hence A # UUV contradicting the assumption that {U, V'} is a disconnection.
|
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Theorem 10.50 (Intermediate Value Theorem). Suppose that (X, T) is
a connected topological space and f : X — R is a continuous map. Then f

satisfies the intermediate value property. Namely, for every pair x,y € X such
that f (z) < f(y) and c € (f (x), f(y)), there exits z € X such that f(z) = c.

Proof. By Lemma [10.46, f (X) is connected subset of R. So by Theorem
10.49, f (X) is a subinterval of R and this completes the proof. [ ]

Definition 10.51. A topological space X is path connected if to every pair
of points {xo,x1} C X there exists a continuous path, o € C([0,1], X), such
that o(0) = xo and o(1) = x1. The space X is said to be locally path con-
nected if for each x € X, there is an open neighborhood V- C X of x which is
path connected.

Proposition 10.52. Let X be a topological space.

1. If X is path connected then X is connected.
2. If X is connected and locally path connected, then X is path connected.
3. If X is any connected open subset of R™, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises [10.20 —
10.22 below. n

Proposition 10.53 (Stability of Connectedness Under Products). Let
(XasTa) be connected topological spaces. Then the product space Xa =
HQGA X equipped with the product topology is connected.

Proof. Let us begin with the case of two factors, namely assume that
X and Y are connected topological spaces, then we will show that X x Y is
connected as well. Given z € X, let f, : Y — X XY be the map f.(y) = (z,y)
and notice that f, is continuous since mx o f,(y) = x and 7y o f,(y) = y are
continuous maps. From this we conclude that {z} x Y = f,(Y) is connected
by Lemma [10.46. A similar argument shows X x {y} is connected for all y € Y.

Let p = (x0,y0) € X x Y and C, denote the connected component of p.
Since {xo} x Y is connected and p € {zo} x Y it follows that {zo} x Y C C,
and hence C,, is also the connected component (zo,y) for all y € Y. Similarly,
X x{y} C C(a,y) = Cp is connected, and therefore X x {y} C C,. So we have
shown (z,y) € C), for all z € X and y € Y, see Figure [10.4. By induction the
theorem holds whenever A is a finite set, i.e. for products of a finite number
of connected spaces.

For the general case, again choose a point p € X4 = X4 and again
let C' = C), be the connected component of p. Recall that C}, is closed and
therefore if C), is a proper subset of X4, then X4 \ C} is a non-empty open
set. By the definition of the product topology, this would imply that X4 \ C,
contains an open set of the form

V= Naeamy (Vo) = Va x Xaa
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Fig. 10.4. This picture illustrates why the connected component of p in X x Y
must contain all points of X X Y.

where A CC A and V, € 7, for all @« € A. We will now show that no such V

can exist and hence X4 = (), i.e. X4 is connected.
Define ¢ : X4 — X4 by ¢(y) = « where

_Jyaifaed
Yo = o if v & A.

Ifae A ma00(y) = Yo = ma(y) and if @ € A\ A then w,00(y) = p, so that in
every case o000 : X4 — X, is continuous and therefore ¢ is continuous. Since
X4 is a product of a finite number of connected spaces and so is connected
and thus so is the continuous image, ¢(X4) = X4 x {pa}aeA\A C X 4. Now
p € ¢(X4) and ¢(X4) is connected implies that ¢(X4) C C. On the other
hand one easily sees that

DAVNnep(Xy)CcVNC

contradicting the assumption that V C C°. [

10.6 Exercises

10.6.1 General Topological Space Problems

Exercise 10.14. Let V be an open subset of R. Show V may be written as
a disjoint union of open intervals J,, = (an, b,), where a,,b, € RU{+oo} for
n=1,2--- <N with N = oo possible.
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Exercise 10.15. Let (X, 7) and (Y,7’) be a topological spaces, [ : X — Y
be a function, U be an open cover of X and {Fj }?:1 be a finite cover of X by
closed sets.

1.IfAC Xisanysetand f : X — Y is (7,7') — continuous then f|4 : A = Y
is (1a,7’) — continuous.

2. Show f : X — Y is (7,7") — continuous iff fly : U — Y is (7y,7') —
continuous for all U € U.

3.Show f : X — Y is (,7') — continuous iff f|r, : F; — Y is (7p,,7') -
continuous for all j =1,2,...,n. ' '

Exercise 10.16. Suppose that X is a set, {(Ya,7a) : @ € A} is a family of
topological spaces and f, : X — Y, is a given function for all « € A. Assuming
that S, C 7, is a sub-base for the topology 7, for each a € A, show S :=
Uaecafs1(Sa) is a sub-base for the topology 7 := 7(f, : @ € A).

10.6.2 Connectedness Problems
Exercise 10.17. Show any non-trivial interval in Q is disconnected.

Exercise 10.18. Suppose a < b and f : (a,b) — R is a non-decreasing func-
tion. Show if f satisfies the intermediate value property (see Theorem 10.50),
then f is continuous.

Exercise 10.19. Suppose —c0 < a < b < oo and f : [a,b) — R is a strictly
increasing continuous function. By Lemma [10.46, f ([a,b)) is an interval and
since f is strictly increasing it must of the form [c, d) for some ¢ € R and d € R
with ¢ < d. Show the inverse function f=! : [c,d) — [a,b) is continuous and
is strictly increasing. In particular if n € N, apply this result to f(x) = ™
for x € [0, 00) to construct the positive n'® — root of a real number. Compare
with Exercise 3.8

Exercise 10.20. Prove item 1. of Proposition [10.52. Hint: show X is not
connected implies X is not path connected.

Exercise 10.21. Prove item 2. of Proposition [10.52. Hint: fix zo € X and let
W denote the set of © € X such that there exists o € C([0, 1], X) satisfying
0(0) = xo and o(1) = x. Then show W is both open and closed.

Exercise 10.22. Prove item 3. of Proposition [10.52.
Exercise 10.23. Let
X :={(z,y) e R* :y =sin(z"")} U{(0,0)}

equipped with the relative topology induced from the standard topology on
R2. Show X is connected but not path connected.
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10.6.3 Metric Spaces as Topological Spaces

Definition 10.54. Two metrics d and p on a set X are said to be equivalent
if there ezists a constant ¢ € (0,00) such that ¢~ 1p < d < cp.

Exercise 10.24. Suppose that d and p are two metrics on X.

1. Show 74 = 7, if d and p are equivalent.
2. Show by example that it is possible for 74 = 7, even thought d and p are
inequivalent.

Exercise 10.25. Let (X;,d;) for i = 1,...,n be a finite collection of metric
spaces and for 1 < p < oo and z = (x1,29,...,2,) and y = (y1,...,Yn) Iin
X =TI, Xi, let

" »\1/p .
pp(T,y) = { (X iz [diwi, y:)]") " if p# o0

max; d;(x;, y;) if p=o0

1. Show (X, pp) is a metric space for p € [1, co]. Hint: Minkowski’s inequal-
ity.

2. Show for any p,q € [1,00], the metrics p, and p, are equivalent. Hint:
This can be done with explicit estimates or you could use Theorem [11.12
below.

Notation 10.55 Let X be a set andp := {pn}zozo be a family of semi-metrics
on X, i.e. pp : X Xx X — [0,00) are functions satisfying the assumptions
of metric except for the assertion that p,(x,y) = 0 implies v = y. Further
assume that pp(z,y) < ppi1(x,y) for all n and if pp(z,y) =0 for alln € N
then x = y. Givenn € N and x € X let

B(z,e) :={y € X : pp(r,y) <e}.

We will write 7(p) form the smallest topology on X such that p,(z,-): X —
[0,00) is continuous for allm € N and x € X, i.e. 7(p) := T(pp(z:) :n €N
and z € X).

Exercise 10.26. Using Notation [10.55, show that collection of balls,
B:={By(z,e):neN, z€ X and ¢ > 0},

forms a base for the topology 7(p). Hint: Use Exercise [10.16/ to show B is a
sub-base for the topology 7(p) and then use Exercise [10.2 to show B is in fact
a base for the topology 7(p).

Exercise 10.27 (A minor variant of Exercise 6.12). Let p, be as in
Notation [10.55 and

o

N\ g-n_ Pa(Ty)
d(m,y).—z2 eE—

n=0
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Show d is a metric on X and 74 = 7(p). Conclude that a sequence {zy},o; C
X converges to x € X iff

klim Pn(xp,x) =0 for all n € N.

Exercise 10.28. Let {(X,,,d,)},., be a sequence of metric spaces, X :=
[1,—, X,, and for x = (z(n)),—, and y = (y(n)),—, in X let

d(w’yF;Q 1+ dy(x(n),y(n))’

(See Exercise [6.12.) Moreover, let 7, : X — X, be the projection maps, show
Ta = Q52 17q, = 7({m, :n € N}).

That is show the d — metric topology is the same as the product topology on
X. Suggestions: 1) show 7, is 74 continuous for each n and 2) show for each
x € X that d(z,-) is ®22 74, — continuous. For the second assertion notice

that d (z,-) = Yo~ fn where f, =27" (%) 0 Ty
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Compactness

Definition 11.1. The subset A of a topological space (X T) is said to be com-
pact if every open cover (Definition[10.18) of A has finite a sub-cover, i.e. if
U is an open cover of A there exists Uy CC U such that Uy is a cover of A.
(We will write A CC X to denote that A C X and A is compact.) A subset
A C X is precompact if A is compact.

Proposition 11.2. Suppose that K C X is a compact set and F C K is a
closed subset. Then F' is compact. If {Ki}?zl s a finite collections of compact
subsets of X then K = U} K; is also a compact subset of X.

Proof. Let & C 7 be an open cover of F, then YU {F°} is an open cover
of K. The cover UU{F*°} of K has a finite subcover which we denote by
UpU {F*¢} where Uy CC U. Since F'N F¢ = (), it follows that Uy is the desired
subcover of F. For the second assertion suppose U C 7 is an open cover of K.
Then U covers each compact set K; and therefore there exists a finite subset
U; CC U for each i such that K; C UU;. Then Uy := U U; is a finite cover
of K. [

Exercise 11.1 (Suggested by Michael Gurvich). Show by example that
the intersection of two compact sets need not be compact. (This pathology
disappears if one assumes the topology is Hausdorff, see Definition12.2 below.)

Exercise 11.2. Suppose f : X — Y is continuous and K C X is compact,
then f(K) is a compact subset of Y. Give an example of continuous map,
f:X —Y, and a compact subset K of Y such that f~1(K) is not compact.

Exercise 11.3 (Dini’s Theorem). Let X be a compact topological space
and f,, : X — [0, 00) be a sequence of continuous functions such that f,,(z) | 0
as n — oo for each z € X. Show that in fact f, | O uniformly in z, i.e.
supyex fn(z) | 0 as n — oo. Hint: Given ¢ > 0, consider the open sets
Vi ={zxeX: folr) <e}.
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Definition 11.3. A collection F of closed subsets of a topological space (X, T)
has the finite intersection property if NFy # 0 for all Fo CC F.

The notion of compactness may be expressed in terms of closed sets as
follows.

Proposition 11.4. A topological space X is compact iff every family of closed
sets F C 2% having the finite intersection property satisfies (| F # (.

Proof. (=) Suppose that X is compact and F C 2% is a collection of
closed sets such that (| F = (. Let

U=F={C°:CeF}Cr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fo = U5 CC F,
then NFy = 0 so that F does not have the finite intersection property. (<) If
X is not compact, there exists an open cover U of X with no finite subcover.
Let

F=U:={U°:Uecl},

then F is a collection of closed sets with the finite intersection property while

NF=0. [

Exercise 11.4. Let (X, 7) be a topological space. Show that A C X is com-
pact iff (A,74) is a compact topological space.

11.1 Metric Space Compactness Criteria

Let (X, d) be a metric space and for z € X and & > 0let B (e) = B,(e)\{z} -
the deleted ball centered at x of radius € > 0. Recall from Definition [10.29/that
a point z € X is an accumulation point of a subset £ C X if ) £ ENV \ {z}
for all open neighborhoods, V, of . The proof of the following elementary
lemma is left to the reader.

Lemma 11.5. Let E C X be a subset of a metric space (X,d). Then the
following are equivalent:

1. x € X is an accumulation point of E.

2. BL(e)NE #0 for alle > 0.

3. By (e) N E is an infinite set for all € > 0.

4. There exists {x,},—, C E\ {z} with lim, . z,, = .

Definition 11.6. A metric space (X, d) ise — bounded (¢ > 0) if there exists
a finite cover of X by balls of radius € and it is totally bounded if it is € —
bounded for all € > 0.

Theorem 11.7. Let (X, d) be a metric space. The following are equivalent.



11.1 Metric Space Compactness Criteria 133

(a) X is compact.

b) Every infinite subset of X has an accumulation point.

( Y p

¢) BEvery sequence {x,}°~, C X has a convergent subsequence.
n=1

(d) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b= c=d = a.

(a = b) We will show that not b = not a. Suppose there exists an infinite
subset £ C X which has no accumulation points. Then for all x € X there
exists §, > 0 such that V, := B,(0,) satisfies (V, \ {z}) N E = . Clearly
V = {Va},ecx is a cover of X, yet V has no finite sub cover. Indeed, for each
x € X,V,NE C{z} and hence if A CC X, U,caV, can only contain a finite
number of points from E (namely ANE). Thus for any A CC X, E % Uzea Ve
and in particular X # Ugea V. (See Figure 11.11)

Fig. 11.1. The construction of an open cover with no finite sub-cover.

(b = ¢) Let {z,},—; C X be a sequence and F := {z,:ne€N}. If
#(F) < oo, then {z,},- | has a subsequence {z,, },-, which is constant and
hence convergent. On the other hand if #(E) = oo then by assumption E has
an accumulation point and hence by Lemma [11.5] {:cn}noo=1 has a convergent
subsequence.

(¢ = d) Suppose {x,,},—, C X is a Cauchy sequence. By assumption there
exists a subsequence {z,, } -, which is convergent to some point 2 € X. Since
{z,},2, is Cauchy it follows that z,, — x as n — oo showing X is complete.
We now show that X is totally bounded. Let € > 0 be given and choose an
arbitrary point x; € X. If possible choose 25 € X such that d(z2,21) > €, then
if possible choose x3 € X such that dy,, ,,}(23) > € and continue inductively
choosing points {xj};lzl C X such that dy,, . .. ,3(2n) > €. (See Figure
11.2.) This process must terminate, for otherwise we would produce a sequence
{z,},>, € X which can have no convergent subsequences. Indeed, the z,,
have been chosen so that d (z,,z,,) > ¢ > 0 for every m # n and hence no
subsequence of {x,,} , can be Cauchy.

(d = a) For sake of contradiction, assume there exists an open cover
V = {Va}aeca of X with no finite subcover. Since X is totally bounded for
each n € N there exists A,, CC X such that

X = |J Bu.(1/n)c |J Ca(1/n).

€A, €A,
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Fig. 11.2. Constructing a set with out an accumulation point.

Choose x; € A; such that no finite subset of V covers K; := C,, (1). Since
K1 = Ugzen, K1NC,(1/2), there exists xo € Ag such that Ky := K1NC,,(1/2)
can not be covered by a finite subset of V, see Figure [11.3. Continuing this
way inductively, we construct sets K,, = K,_1 NCy, (1/n) with x,, € A,, such
that no K, can be covered by a finite subset of V. Now choose y, € K,
for each n. Since {K,},_, is a decreasing sequence of closed sets such that
diam(K,,) < 2/n, it follows that {y,} is a Cauchy and hence convergent with

y= lim y, € Noo_1 K.
n—oo

Since V is a cover of X, there exists V' € V such that y € V. Since K,, | {y}
and diam(K,,) — 0, it now follows that K,, C V for some n large. But this
violates the assertion that K, can not be covered by a finite subset of V.

v

>

A

A4

Fig. 11.3. Nested Sequence of cubes.
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Corollary 11.8. Any compact metric space (X,d) is second countable and
hence also separable by Exercise [10.11l. (See Example [12.25 below for an ex-
ample of a compact topological space which is not separable.)

Proof. To each integer n, there exists A, CC X such that X =
Uzea, B(x,1/n). The collection of open balls,

V := Upen Ugea, {B(z,1/n)}

forms a countable basis for the metric topology on X. To check this, suppose
that o € X and € > 0 are given and choose n € N such that 1/n < ¢/2
and z € A, such that d (zg,2) < 1/n. Then B(z,1/n) C B (xg,¢) because for
y € B(z,1/n),

d(y,z0) <d(y,x) +d(z,20) <2/n<e.
|
Corollary 11.9. The compact subsets of R™ are the closed and bounded sets.

Proof. This is a consequence of Theorem 8.2/ and Theorem [11.7. Here
is another proof. If K is closed and bounded then K is complete (being the
closed subset of a complete space) and K is contained in [—M, M]™ for some
positive integer M. For § > 0, let

As =02" N [—M,M|" := {6z :x € Z" and d|z;| < M for i =1,2,...,n}.
We will show, by choosing § > 0 sufficiently small, that
K C [-M,M]" C Ugea,B(z,¢) (11.1)

which shows that K is totally bounded. Hence by Theorem[11.7, K is compact.
Suppose that y € [-M, M|™, then there exists x € As such that |y; — ;| <4
fori=1,2,...,n. Hence

P(r,y) = (4 — x:)° < né”

i=1

which shows that d(x,y) < y/nd. Hence if choose § < e/1/n we have shows
that d(z,y) < ¢, i.e. Eq. (11.1) holds. |

Ezample 11.10. Let X = ¢P(N) with p € [1,00) and p € ¢P(N) such that
w(k) >0 for all kK € N. The set

K:={ze X :|zk)| < u(k) for all k € N}

is compact. To prove this, let {z,},-, C K be a sequence. By com-
pactness of closed bounded sets in C, for each k& € N there is a subse-
quence of {z,(k)},—, C C which is convergent. By Cantor’s diagonaliza-

tion trick, we may choose a subsequence {y,},., of {z,} -, such that
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y(k) := lim, o yn(k) exists for all k € N* Since |y, (k)| < p(k) for all n
it follows that |y(k)| < p(k), i.e. y € K. Finally

dim ly =yl = lim Y ly(k) —yu(B) =D lim [y(k) = ya (k)] =0
k=1 k=1
wherein we have used the Dominated convergence theorem. (Note |y(k) — v, (k)7 <
2P P (k) and pP is summable.) Therefore y,, — y and we are done.
Alternatively, we can prove K is compact by showing that K is closed and
totally bounded. It is simple to show K is closed, for if {z,} ~; C K is a
convergent sequence in X, x := lim,_ . Z,, then

T < lim |z, <pu e N.
k nl_)OO k k)VEkeN

This shows that z € K and hence K is closed. To see that K is totally
bounded, let € > 0 and choose N such that (3,2 .4 \,u(k)|p)1/p < . Since
H,ivzl Cu(0) C C" is closed and bounded, it is compact. Therefore there
exists a finite subset A C Hivzl C.(k)(0) such that

N
11 Cu(0) € UzcaBY (e)
k=1

where BXY(e) is the open ball centered at z € CV relative to the
P({1,2,3,...,N}) — norm. For each z € A let Z € X be defined by
Z(k) = z(k) it k < N and Z(k) =0 for k > N + 1. I now claim that

K C U Bz (2) (11.2)

which, when verified, shows K is totally bounded. To verify Eq. (11.2), let
z € K and write = u + v where u(k) = z(k) for k¥ < N and u(k) = 0 for
k < N. Then by construction u € Bz(e) for some Z € A and

[ee] 1/10
||v||p<< > Iu(k)l”> <e.

k=N-+1
So we have
le = 2[l,, = llu+v =2, < [lu—Z2[|, + [v]l, < 2e.
! The argument is as follows. Let {n}}52, be a subsequence of N = {n}>_, such that
lim;j oo 7,1 (1) exists. Now choose a subsequence {n}}52, of {n}};2, such that
! :
lim; oo ,,2(2) exists and similarly {n3}52, of {n7}32, such that lim;_.oc z,3(3)
J
exists. Continue on this way inductively to get
oo 1 o0 2y 00 3 00
{n}ozy D {n; = D {nj = D {nji= o
such that lim;_o z,x (k) exists for all k € N. Let m; := n? so that eventually
J

{m;}52, is a subsequence of {n}}52, for all k. Therefore, we may take y; := T -
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Exercise 11.5 (Extreme value theorem). Let (X, 7) be a compact topo-
logical space and f : X — R be a continuous function. Show —oo < inf f <
sup f < oo and there exists a,b € X such that f(a) = inf f and f(b) = sup f.
Hint: use Exercise [11.2| and Corollary [11.9.

Exercise 11.6 (Uniform Continuity). Let (X,d) be a compact metric
space, (Y, p) be a metric space and f : X — Y be a continuous function.
Show that f is uniformly continuous, i.e. if € > 0 there exists § > 0 such that
p(fly), f(x)) < e if z,y € X with d(z,y) < 6. Hint: you could follow the
argument in the proof of Theorem 8.2.

Definition 11.11. Let L be a vector space. We say that two norms, |-| and
IIll s on L are equivalent if there exists constants o, 8 € (0,00) such that

IfIl < e|f] and [fI < B|fl forall f€ L.

Theorem 11.12. Let L be a finite dimensional vector space. Then any two
norms || and ||-|| on L are equivalent. (This is typically not true for norms
on infinite dimensional spaces, see for example Exercise[7.5.)

Proof. Let {f;}!"_, be a basis for L and define a new norm on L by

n

Z |G;i‘2 for a; € F.

i=1

n
> aifi
i=1

2

By the triangle inequality for the norm ||, we find

n
> aifi
i=1

n n n
<Slal Al < | SOUAE S lal® < M
=1 =1 i=1

n
> aifi
i=1

2
where M = /S, | fil°. Thus we have

[f1 < M[f]l

for all f € L and this inequality shows that |-| is continuous relative to
|-l . Since the normed space (L, |||,) is homeomorphic and isomorphic
to F™ with the standard euclidean norm, the closed bounded set, S :=
{feL:|fll,=1} C L, is a compact subset of L relative to |||, . There-
fore by Exercise [11.5] there exists fy € S such that

m =i {|f]: f € S} = |fol > 0.

2 Here is a proof if X is a metric space. Let {zn},~, C X be a sequence such that
f(xn) 7 sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that x, — b € X as n — oo. By continuity of f, f(b) = sup f.
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Hence given 0 # f € L, then W € S so that

2

f 1
m < = |/l

’||f||2 /1l

or equivalently
1

171, < 151
This shows that |-| and ||-||, are equivalent norms. Similarly one shows that
||-|| and ||-||, are equivalent and hence so are |-| and ||-|| . ]

Corollary 11.13. If (L, ||-||) is a finite dimensional normed space, then A C
L is compact iff A is closed and bounded relative to the given norm, |- .

Corollary 11.14. Every finite dimensional normed vector space (L, ||-||) is
complete. In particular any finite dimensional subspace of a normed vector
space is automatically closed.

Proof. If {f,} -, C L is a Cauchy sequence, then {f,} -, is bounded

n=1
and hence has a convergent subsequence, gy = fn,, by Corollary 11.13 It is
now routine to show lim,, .o f, = f :=limg_ gi- [

Theorem 11.15. Suppose that (X, ||-||) is a normed vector in which the unit
ball, V := By (1), is precompact. Then dim X < oo.

Proof. Since V is compact, we may choose A CC X such that
_ 1
where, for any § > 0,
OV ={0x:ze€V}=DB().
Let Y :=span(A), then Eq. (11.3) implies,
_ 1
Vcvcy+ §V.
Multiplying this equation by % then shows
1 1 1 1
§VC §Y+ZV_Y+ZV

and hence 1 ) 1
VCY+§VCY+Y+ZV=Y+ZV.

Continuing this way inductively then shows that
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1
VCY+27V for all n € N. (11.4)

Indeed, if Eq. (11.4) holds, then

2n+1 V.

1 1 1
VCY+VCY+<Y+V> =Y +

2 2 2n
Hence if x € V, there exists y, € Y and z,, € By (27") such that y, +z, — .
Since lim, .~ z, = 0, it follows that x = lim, oy, € Y. Since dimY <

# (A) < oo, Corollary 11.14] implies ¥ = Y and so we have shown that

V C Y. Since for any = € X, meVCY,WehavexEonrallxeX,i.e.

X =Y. [ ]

Exercise 11.7. Suppose (Y, [|-||y) is a normed space and (X, ||-|| ) is a finite
dimensional normed space. Show every linear transformation 7': X — Y is
necessarily bounded.

11.2 Compact Operators

Definition 11.16. Let A: X — Y be a bounded operator between two Banach
spaces. Then A is compact if A[Bx(0,1)] is precompact in' Y or equivalently
for any {x,}72 1 C X such that ||z, || < 1 for alln the sequence y,, := Ax, €Y
has a convergent subsequence.

Example 11.17. Let X =£?> =Y and A\, € C such that lim,, . A, = 0, then
A: X —Y defined by (Az)(n) = A,x(n) is compact.

Proof. Suppose {z;}32, C ¢* such that [|lz;[* = 3 |lz;(n)|* < 1 for all j.
By Cantor’s Diagonalization argument, there exists {j;} C {j} such that, for
each n, Zx(n) = z;,(n) converges to some Z(n) € C as k — oo. By Fatou’s
Lemma [4.12]

o0 o0 o0
~ 2 . . ~ 2 . . ~ 2
nz::l |Z(n)|* = T;hm klilgo |Zr(n)|” < lim kgﬁo; |Zr(n)|]” <1,

which shows & € ¢2.
Let A}, = max |An|. Then
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1Az, — A2 = 3 Aol [Z4(n) — E(n)?
n=1

M 0o
<Y IalPlER(n) = Em)P + Ay P Y 1@k (n) — E(n)?
n=1 M+1

Anl? [k (n) — F(n)[2 + (N5 13 — 22

M-

1

3
Il

<D alPlan(n) = 2(n)]* + 43y, .

M=

Il
—

n

Passing to the limit in this inequality then implies

lim sup ||AZ), — AZ||* < 4| 5> = 0as M — oo
k—o0

and this completes the proof the A is a compact operator. [

Lemma 11.18. If X Ay 25 Z are bounded operators such the either A
or B is compact then the composition BA : X — Z is also compact.

Proof. Let Bx(0,1) be the open unit ball in X. If A is compact and B
is bounded, then BA(Bx(0,1)) C B(ABx(0,1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we conclude
that BA(Bx(0,1)) is compact, being the closed subset of the compact set
B(ABx(0,1)). If A is continuous and B is compact, then A(Bx(0,1)) is a
bounded set and so by the compactness of B, BA(Bx(0,1)) is a precompact
subset of Z, i.e. BA is compact. ]

11.3 Local and o — Compactness

Notation 11.19 If X is a topological spaces and Y is a normed space, let

BCO(X,Y) :={f € C(X,Y): sup [ (@)]ly < oo}

and
C(X,Y):={f € C(X,Y) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

Remark 11.20. Let X be a topological space and Y be a Banach space.
By combining Exercise [11.2] and Theorem [11.7 it follows that C.(X,Y) C
BC(X,Y).
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Definition 11.21 (Local and o — compactness). Let (X, 7) be a topolog-
ical space.

1. (X, 1) is locally compact if for all x € X there exists an open neigh-
borhood V. C X of x such that V is compact. (Alternatively, in light of
Definition [10.29 (also see Definition [6.5), this is equivalent to requiring
that to each x € X there exists a compact neighborhood N, of x.)

2. (X, 1) is 0 — compact if there exists compact sets K, C X such that
X =2 K,,. (Notice that we may assume, by replacing K,, by K1 UKyU

-+ U K, if necessary, that K, 17 X.)

Ezxample 11.22. Any open subset of U C R™ is a locally compact and o —
compact metric space. The proof of local compactness is easy and is left to
the reader. To see that U is ¢ — compact, for k € N, let

Ky :={x €U :|z| <kanddye(z) >1/k}.

Then K}, is a closed and bounded subset of R™ and hence compact. Moreover
K¢ 171U as k — oo since?

K D{zxeU:|z| <kanddye(x)>1/k} T1U as k — cc.

Exercise 11.8. If (X, 7) is locally compact and second countable, then there
is a countable basis By for the topology consisting of precompact open sets.
Use this to show (X, 1) is o - compact.

Exercise 11.9. Every separable locally compact metric space is ¢ — compact.

Exercise 11.10. Every o — compact metric space is second countable (or
equivalently separable), see Corollary [11.8.

Exercise 11.11. Suppose that (X, d) is a metric space and U C X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.

2. If X is 0 — compact then (U,d) is o — compact. Hint: Mimic Example
11.22, replacing {z € R™ : |x| < k} by compact sets X, CC X such that
X 1 X.

Lemma 11.23. Let (X, 7) be locally and o — compact. Then there exists com-
pact sets K, T X such that K, C KJ 1 C Kpy1 for all n.

Proof. Suppose that C' C X is a compact set. For each z € C'let V, C, X
be an open neighborhood of x such that V,, is compact. Then C C U,ecV, so
there exists A CC C such that

C C Uze/]vm C UIEAVI = K

3 In fact this is an equality, but we will not need this here.
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Then K is a compact set, being a finite union of compact subsets of X, and
C C UgeaVy € K°. Now let C,, C X be compact sets such that C,, T X as
n — oo. Let K1 = C} and then choose a compact set Ky such that Co C K§.
Similarly, choose a compact set K3 such that Ky U C5 C K§ and continue
inductively to find compact sets K, such that K, UCp41 C K7, for all n.
Then {K,} -, is the desired sequence. [

Remark 11.24. Lemma [11.23| may also be stated as saying there exists pre-
compact open sets {Gn}ff:1 such that G,, C G,, C Gy yq for allmand G, T X
as n — oo. Indeed if {G,,} —, are as above, let K,, := G, and if {K,, },- | are
as in Lemma [11.23] let G,, := K?.

Proposition 11.25. Suppose X is a locally compact metric space and U C,
X an_d K CC U. Then there exists V C, X such that K cV cV cU C X
and V' 1is compact.

Proof. (This is done more generally in Proposition [12.7 below.) By local
compactness or X, for each € K there exists e, > 0 such that B,(e,) is
compact and by shrinking ¢, if necessary we may assume,

B.(e;) C Cy(ey) C By(2e,) CU

for each z € K. By compactness of K, there exists A CC K such that K C
UzeaBz(e2) =: V. Notice that V' C UpeaB.(e,) C U and V' is a closed subset
of the compact set Upe By (e,) and hence compact as well. [ |

Definition 11.26. Let U be an open subset of a topological space (X, 7). We
will write f < U to mean a function f € C.(X,[0,1]) such that supp(f) :=

{r#0}cU.

Lemma 11.27 (Urysohn’s Lemma for Metric Spaces). Let X be a lo-
cally compact metric space and K CC U C, X. Then there exists f < U such
that f =1 on K. In particular, if K is compact and C is closed in X such
that K NC = 0, there exists f € C.(X,[0,1]) such that f =1 on K and f =0
on C.

Proof. Let V be as in Proposition [11.25 and then use Lemma[6.15! to find
a function f € C(X,[0,1]) such that f = 1 on K and f = 0 on V°. Then
supp(f) C V C U and hence f < U. [ ]

11.4 Function Space Compactness Criteria

In this section, let (X, 7) be a topological space.

Definition 11.28. Let F C C(X).
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1. F is equicontinuous at x € X iff for all £ > 0 there exists U € 7, such
that |f(y) — f(z)| <eforally € U and f € F.

2. F is equicontinuous if F is equicontinuous at all points z € X.

3. F is pointwise bounded if sup{|f(x)|:|f € F} < oo for all z € X.

Theorem 11.29 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topo-
logical space and F C C(X). Then F is precompact in C(X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (<) Since C(X) C ¢£*(X) is a complete metric space, we must
show F is totally bounded. Let € > 0 be given. By equicontinuity, for all
x € X, there exists V, € 7, such that |f(y) — f(z)| < ¢/2 if y € V, and
f € F. Since X is compact we may choose A CC X such that X = Uz V.
We have now decomposed X into “blocks” {V,} ., such that each f € F is
constant to within € on V. Since sup {|f(z)|:z € Aand f € F} < o0, it is
now evident that

M =sup{|f(z)]:x € X and f € F}
<sup{|f(z)|:z€Adand f € F} +¢& < .

Let D:={ke/2: k€ Z}N[-M,M]. If f € Fand ¢ € D (ie. p: A - Dis a
function) is chosen so that |¢p(x) — f(x)| < e/2 for all x € A, then

[f(y) = ¢(@)| < [f(y) = f(@)[ +[f(2) —d(z)| <eVaeeAdand y € V,.
From this it follows that F = {.7-"¢ g€ ]D)A} where, for ¢ € D4,
Fo:={feF:|fly) —o(x)| <eforyeV, and x € A}.

Let I' := {¢EDA:f¢7é(Z)} and for each ¢ € I' choose fy € Fp NF. For
feFs, v e Aandy eV, we have

1f () = foI < 1 () — o)) + |¢(x) = foly)] < 2e.
So ||f = felleo < 2¢ for all f € Fy showing that Fy C By, (2¢). Therefore,

F =UgerFy C U¢epr¢(2€)

and because € > 0 was arbitrary we have shown that F is totally bounded.
(=) (*The rest of this proof may safely be skipped.) Since |-|| , : C(X) —
[0,00) is a continuous function on C'(X) it is bounded on any compact subset
F C C(X). This shows that sup {||f||., : f € F} < oo which clearly implies
that F is pointwise bounded.* Suppose F were not equicontinuous at some

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps e; : C(X) — R given by e.(f) = f(z) for all z € X.
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point x € X that is to say there exists € > 0 such that for all V' € 7,

sup sup |f(y) — f(z)| > .” Equivalently said, to each V € 7, we may choose
yeVv feF

fveFanday €V 3 |fv(x)— fv(zv) > e (11.5)

Set Cy = {fw: W em and W C V}‘HIOc C F and notice for any V CC 7,
that

NyevCy 2 Chy # 0,

so that {Cy},, € 7, C F has the finite intersection property.® Since F is
compact, it follows that there exists some

fe ﬂ Cv%@.

Vet

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < ¢/3 for
all y € V. Because f € Cy, there exists W C V such that ||f — fw] < /3.
We now arrive at a contradiction;

e <l|fw(z) — fw(zw)|
<|fw(z) = f(@)| + [f(x) = flaw)| + |flzw) — fw(zw)]
<e/3+¢e/3+¢e/3=c¢.

Exercise 11.12. Give an alternative proof of the implication, (<), in Theo-
rem [11.29 by showing every subsequence {f, : n € N} C F has a convergence
sub-sequence.

5If X is first countable we could finish the proof with the following argument.
Let {V,}a21 be a neighborhood base at x such that Vi D Vo D V3 D .... By
the assumption that F is not equicontinuous at x, there exist f, € F and x,, €
Vi such that |fn(z) — fa(zn)| > € V n. Since F is a compact metric space by
passing to a subsequence if necessary we may assume that f,, converges uniformly
to some f € F. Because x, — = as n — oo we learn that

€ < |[fn(@) = fulzn)l < [fnl2) = F@)] + (@) = flza)] + |f(2n) = folzn)]
<2 fn = fll+1f(2) = f(zn)| = 0as n — o0

which is a contradiction.

If we are willing to use Net’s described in Appendix [Cl below we could finish
the proof as follows. Since F is compact, the net {fv}ver, C F has a cluster
point f € F C C(X). Choose a subnet {ga}aca of {fv}very such that go — f
uniformly. Then, since xyv — z implies zy, — z, we may conclude from Eq.
(I1.5) that

€ < |ga(@) = galzv, )| — lg(x) — g(x)] =0

which is a contradiction.
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Exercise 11.13. Suppose k € C ([O7 1]2 ,]R) and for f € C([0,1],R), let

Kf (z) ::/0 k(z,y) f (y)dy for all z € [0,1].

Show K is a compact operator on (C ([0,1],R),||-||..) -
The following result is a corollary of Lemma [11.23/ and Theorem [11.29.

Corollary 11.30 (Locally Compact Ascoli-Arzela Theorem). Let (X, T)
be a locally compact and o — compact topological space and {fn,} C C(X)
be a pointwise bounded sequence of functions such that {fm|x} is equicon-
tinuous for any compact subset K C X. Then there exists a subsequence
{m,} C {m} such that {g, := fm,},—y C C(X) is a sequence which is uni-
formly convergent on compact subsets of X.

Proof. Let {K,},~, be the compact subsets of X constructed in Lemma
11.23l We may now apply Theorem [11.29 repeatedly to find a nested family
of subsequences

{fm} 2 {gm}t 2 {ghy > {gn} > ...

such that the sequence {¢2} ~_, C C(X) is uniformly convergent on K,.
Using Cantor’s trick, define the subsequence {h,} of {f;,} by hy, := g*. Then
{hn} is uniformly convergent on K; for each I € N. Now if K C X is an
arbitrary compact set, there exists [ < oo such that K C K7 C K; and
therefore {h,} is uniformly convergent on K as well. |

Proposition 11.31. Let 2 C, Rdjuch that le compact and0 < a < < 1.
Then the inclusion map i : CP(2) — C%(2) is a compact operator. See
Chapter|9 and Lemma 9.9 for the notation being used here.

Let {u,}32, C CA() such that |lu,|/cs < 1, ie. |un]oo <1 and
n() — un ()] < Iz — y? for all 2,y € 2.

By the Arzela-Ascoli Theorem [11.29, there exists a subsequence of {i,};24
of {u,}2%, and u € C°(§2) such that @, — u in C°. Since

u@) —u(y)| = i (2) — ()] < |~ yI°,
u € CP as well. Define g,, := u — 1, € C?, then

[9n]5 + llgnllco = llgnllce <2

and g, — 0 in C°. To finish the proof we must show that g, — 0 in C®. Given
6 >0,
In\T) — gn\Y
[9n]o = sup 19n(2) = 5n(y)|

T#y |z —y|® < Ant Ba
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where

Ansup{w:x#yand |zy|§5}
T -y~

n\T) — gn —a
:sup{|g (x)_ ygﬁ(y)l Jr—yl" iz £yand |z -yl S5}
<677 [galp < 2677

and

B, SHP{W de —y| > 5} <207 |lgnllco — 0 as n — oo.

Therefore,

lim sup [gn]e < lim sup A, + lim sup B, < 20" 4+0—0asd|0.
n—oo n—oo n—oo
This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 11.20] below.

Theorem 11.32. Let {2 be a precompact open subset of R, o, 3 € [0,1] and
k,j € Nog. If j+ 3 > k+a, then C7P (_Q) is compactly contained in C** (Q) .

11.5 Tychonoff’s Theorem

The goal of this section is to show that arbitrary products of compact spaces
is still compact. Before going to the general case of an arbitrary number of
factors let us start with only two factors.

Proposition 11.33. Suppose that X and Y are non-empty compact topolog-
ical spaces, then X XY is compact in the product topology.

Proof. Let U be an open cover of X x Y. Then for each (z,y) € X xY
there exist U € U such that (z,y) € U. By definition of the product topology,
there also exist V, € 7;¥ and W, € 7} such that V, x W, C U. Therefore
Vi={Vy x W, : (z,y) € X x Y} is also an open cover of X x Y. We will now
show that V has a finite sub-cover, say Vy CC V. Assuming this is proved for
the moment, this implies that I/ also has a finite subcover because each V' € V,
is contained in some Uy € U. So to complete the proof it suffices to show every
cover V of the form V = {V,, x W, : a € A} where V,, C, X and W,, C,, Y has
a finite subcover. Given z € X, let f, : Y — X XY be the map f.(y) = (z,y)
and notice that f, is continuous since mx o f,(y) = x and 7y o f,(y) = y are
continuous maps. From this we conclude that {z} x Y = f,(Y) is compact.
Similarly, it follows that X x {y} is compact for all y € Y. Since V is a cover

of {z} x Y, there exist I, CC A such that {z} xY C |J (Vo x W,) without
acl,
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loss of generality we may assume that I, is chosen so that x € V, for all
a€l,. Let U, := ()| Va Co X, and notice that

acly
U VaxWa) > | Ue x W) =Us x Y, (11.6)
a€el’, a€el,

see Figure [11.4/ below. Since {U,},.y is now an open cover of X and X is

DS

Fig. 11.4. Constructing the open set U,.

compact, there exists A CC X such that X = U,cU,. The finite subcol-
lection, Vg := {Vo X Wy : @ € Ugeall}, of V is the desired finite subcover.
Indeed using Eq. (11.6),

UVO = Ug;gA UQGFI (Va X Wa) ) Umg/l (Um X Y) =X xY.

]

The results of Exercises [11.21] and [10.28| prove Tychonoff’s Theorem for a

countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 11.34 (Tychonoff’s Theorem). Let {X,}aca be a collection of

non-empty compact spaces. Then X := X4 = [] Xa is compact in the prod-
acA
uct space topology. (Compare with Ezxercise[11.21l which covers the special case

of a countable product of compact metric spaces.)

Proof. (The proof is taken from Loomis [1] which followed Bourbaki. Re-
mark [11.35/ below should help the reader understand the strategy of the proof
to follow.) The proof requires a form of “induction” known as Zorn’s lemma
which is equivalent to the axiom of choice, see Theorem B.7 of Appendix B
below.
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For o € A let 7, denote the projection map from X to X,. Suppose that
F is a family of closed subsets of X which has the finite intersection property,
see Definition [11.3. By Proposition [11.4] the proof will be complete if we can
show NF # (.

The first step is to apply Zorn’s lemma to construct a maximal collection,
Fo, of (not necessarily closed) subsets of X with the finite intersection property
such that F C Fy. To do this, let I" := {g c2X:Fc Q} equipped with the
partial order, Gy < Go if G; C Gy. If & is a linearly ordered subset of I', then
G:= U® is an upper bound for I" which still has the finite intersection property
as the reader should check. So by Zorn’s lemma, I' has a maximal element
Fo. The maximal Fy has the following properties.

1. Fo is closed under finite intersections. Indeed, if we let (F) 7 denote the
collection of all finite intersections of elements from Fo, then (Fo), has
the finite intersection property and contains Fy. Since F( is maximal, this
implies (Fo); = Fo.

2.If BC X and BNF #  for all F € Fy then B € Fy. For if not
Fo U {B} would still satisfy the finite intersection property and would
properly contain Fy and this would violate the maximallity of Fy.

3. For each a € A,

7o(Fo) = {ma(F) C Xo : F € Fo}

has the finite intersection property. Indeed, if {F;};_, C Fo, then
N1 Ta(F5) D ma (NP2 1) # 0.

Since X, is compact, property 3. above along with Proposition[11.4/implies
Nrer,To(F) # 0. Since this true for each a € A, using the axiom of choice,
there exists p € X such that p, = 7o (p) € Nper,mo(F) for all a € A. The
proof will be completed by showing NF # () by showing p € NF.

Since C' :=nN {F‘ :Fe .7:0} C NF, it suffices to show p € C. Let U be an
open neighborhood of p in X. By the definition of the product topology (or
item 2. of Proposition [10.25), there exists A CC A and open sets U, C X,
for all a € A such that p € Naean, *(Uy) C U. Since po € Nper,ma(F) and
P € Uy for all a € A, it follows that U, N7, (F) # 0 for all F € Fy and all
a € A. This then implies 7,1 (U,) N F # () for all F € Fy and all a € A. By
property 2.7 above we concluded that ! (U,) € Fy for all @ € A and then
by property 1. that Naeam, ! (Uy) € Fo. In particular

0 # F N (Naeary (Us)) CFNU forall F € Fy

which shows p € F for each F € Fy, i.e. pe C.

Remark 11.35. Consider the following simple example where X = [—1,1]
[—1,1] and F = {Fy, F5} as in Figure [11.5l Notice that m;(Fy) N m; (F2)

I x

7 Here is where we use that Fy is maximal among the collection of all, not just
closed, sets having the finite intersection property and containing F.
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[~1,1] for each i and so gives no help in trying to find the i** — coordinate
of one of the two points in Fy N Fy. This is why it is necessary to introduce
the collection Fy in the proof of Theorem [11.34. In this case one might take
Fo to be the collection of all subsets F' C X such that p € F. We then have
Nrer,mi (F) = {pi}, so the i** — coordinate of p may now be determined by
observing the sets, {m; (F): F € Fo}.

by

S

'

Fig. 11.5. Here F = {Fl,Fg} where F1 and F> are the two parabolic arcs and
F1 N F2 = {p, q}.

11.6 Exercises

Exercise 11.14. Prove Lemma [11.5.

Exercise 11.15. Let C be a closed proper subset of R and z € R™\ C. Show
there exists a y € C such that d(z,y) = dc(x).

Exercise 11.16. Let F = R in this problem and A C ¢?(N) be defined by
A={x € ?(N):z(n) >1+1/n for some n € N}
=U {xr € A(N):z(n) > 1+1/n}.

Show A is a closed subset of ¢?(N) with the property that d4(0) = 1 while
there is no y € A such that d(0,y) = 1. (Remember that in general an infinite
union of closed sets need not be closed.)

Exercise 11.17. Let p € [1,00] and X be an infinite set. Show directly, with-
out using Theorem [11.15) the closed unit ball in ¢P(X) is not compact.
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11.6.1 Ascoli-Arzela Theorem Problems

Exercise 11.18. Let T € (0,00) and F C C([0,T]) be a family of functions
such that:

1. f(t) exists for all t € (0,T) and f € F.
2. supse | f(0)] < oo and

3. M := Sup e r SUP;c(0,1) ’f(t)) < 00.

Show F is precompact in the Banach space C([0,7]) equipped with the
norm || f{| o = supsejo,ry [f(¢)]-

Exercise 11.19 (Peano’s Existence Theorem). Suppose Z : R x R? —
R? is a bounded continuous function. Then for each T' < oc® there exists a
solution to the differential equation

(t) = Z(t,z(t)) for — T <t < T with z(0) = zo. (11.7)
Do this by filling in the following outline for the proof.
1. Given ¢ > 0, show there exists a unique function . € C([—¢,00) — R?)
such that z.(t) := zg for —e < ¢ <0 and
¢
ze(t) = xo —|—/ Z(7,2.(T —¢e))dr for all t > 0. (11.8)
0

Here

/Ot Z(1,zc(T—¢))dr = (/Ot Zy(1,x. (T —¢€))dr, .. .,/Ot Zalr, xe(r — 6))d7)

where Z = (Zy,...,Z;) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t € [0,¢], it follows from Eq. (11.8)) that

t
x:(t) = xo +/ Z(T,x0)dT.
0

Now that z.(¢) is known for ¢t € [—¢,¢] it can be found by integration for
t € [—¢,2¢]. The process can be repeated.

2. Then use Exercise 11.18| to show there exists {e;}7—, C (0,00) such that
limy o0 & = 0 and z., converges to some x € C([0,T]) with respect to
the sup-norm: ||z{|, = sup,e(o 1y [£(?)]). Also show for this sequence that

lim sup |z, (7 —er)—x (1) =0.
k—ooe, <7<

8 Using Corollary 11.30, we may in fact allow T' = co.
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3. Pass to the limit (with justification) in Eq. (11.8) with € replaced by
e to show x satisfies

z(t) = o +/O Z(t,x(7))dr ¥V t €[0,T].

4. Conclude from this that @(t) exists for ¢ € (0,7) and that z solves Eq.
(11.7).
5. Apply what you have just proved to the ODE,

y(t) = =Z(—t,y(t)) for 0 <t < T with y(0) = zo.

Then extend x(¢t) above to (—T,T) by setting z(t) = y(—t) if t € (—T,0].
Show z so defined solves Eq. (11.7) for t € (=T,T).
Exercise 11.20. Prove Theorem [11.32. Hint: First prove C77 (Q) CC

Ccie (Q) is compact if 0 < a < # < 1. Then use Lemma [11.18| repeatedly to
handle all of the other cases.

11.6.2 Tychonoff’s Theorem Problem

Exercise 11.21 (Tychonoff’s Theorem for Compact Metric Spaces).
Let us continue the Notation used in Exercise 6.12. Further assume that
the spaces X, are compact for all n. Show, without using Theorem [11.34,
(X,d) is compact. Hint: Either use Cantor’s method to show every sequence
{zm}w_; C X has a convergent subsequence or alternatively show (X, d) is
complete and totally bounded. (Compare with Example [11.101)

*** Beginning of WORK material. ***

Exercise 11.22. Let X := {0, 1}]R and 7 be the product topology on X where
{0,1} is equipped with the discrete topology. By Tychonoff’s Theorem [11.34,

(X, 7) is a compact space. Show (X, 7) is not separable and hence not metriz-
able.

Solution to Exercise (11.22)). I don’t know how to do this but here is a
start. Suppose D := {f,} -, C X were a dense set and g € X. We begin by
observing that a basic open neighborhood of g is of the form

Va={feX:f=gon A}

where A CC R. Therefore to see that X is not separable, we must find a
finite set A C R and a function g : R — {0, 1} such that f,, # g on A for any
n € N. Tt is clear, to be able to do this we must assume that # (A) > 1 for if
#(A)=1,and fy =0and fo =1, then g = f; or g = fo on A.

So the idea now is to show, there must exist some s < ¢ in R such that

(0,1) € {(fu(s), fn () :n € N}.

If this can be done, then we may choose g : R —{0,1} such that g(s) = 0
and g (t) = 1 and we will have shown that g ¢ D.

*k* End of WORK material. ***
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Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology 7. We
are now interested in restrictions on 7 in order to insure there are “plenty”
of continuous functions. One such restriction is to assume 7 = 74 — is the
topology induced from a metric on X. For example the results in Lemma
6.15 and Theorem (7.4 above shows that metric spaces have lots of continuous
functions.

The main thrust of this section is to study locally compact (and o — com-
pact) “Hausdorfl” spaces as defined in Definitions [12.2/ and [11.21. We will see
again that this class of topological spaces have an ample supply of continuous
functions. We will start out with the notion of a Hausdorff topology. The fol-
lowing example shows a pathology which occurs when there are not enough
open sets in a topology.

Example 12.1. As in Example 10.36] let
X :=1{1,2,3} with 7 := {X,0,{1,2},{2,3}, {2} }.

Example [10.36 shows limits need not be unique in this space and moreover it
is easy to verify that the only continuous functions, f : Y — R, are necessarily
constant.

Definition 12.2 (Hausdorff Topology). A topological space, (X,T), is
Hausdorff if for each pair of distinct points, x,y € X, there exists dis-
joint open neighborhoods, U and V of x and y respectively. (Metric spaces are
typical examples of Hausdorff spaces.)

Remark 12.3. When 7 is Hausdorff the “pathologies” appearing in Example
12.11 do not occur. Indeed if 2, — € X and y € X \ {z} we may choose
V €1, and W € 7, such that VN W = . Then z,, € V a.a. implies x,, ¢ W
for all but a finite number of n and hence z,, - y, so limits are unique.

Proposition 12.4. Let (X, 7.) be Hausdorff topological spaces. Then the
product space X4 = [] X, equipped with the product topology is Haus-

dorff.

a€cA
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Proof. Let x,y € X 4 be distinct points. Then there exists a € A such that
Ta(T) = o # Yo = Ta(y). Since X, is Hausdorff, there exists disjoint open
sets U,V C X, such 7, (z) € U and 7, (y) € V. Then n}(U) and 7 (V) are
disjoint open sets in X 4 containing x and y respectively. [ ]

Proposition 12.5. Suppose that (X, 7) is a Hausdorff space, K CC X and
x € K¢. Then there exists U,V € 7 such that UNV =0, x €U and K C V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U,V &€ T such that K CV and F C U.

Proof. Because X is Hausdorff, for all y € K there exists V,, € 7, and
U, € 7, such that V,, NU, = (). The cover {Vy} e of K has a finite subcover,
{Vy}ye/l for some A CC K. Let V = UyeaVy and U = Ny aUy, then U,V € 7
satisfy z € U, K C V and U NV = (). This shows that K¢ is open and hence
that K is closed. Suppose that K and F' are two disjoint compact subsets of
X. For each x € F there exists disjoint open sets U, and V,, such that K C V,
and = € U,. Since {U,},.p is an open cover of F) there exists a finite subset
A of F such that FF C U := UgeaU,. The proof is completed by defining
V i=0NgeaVs. | |

Exercise 12.1. Show any finite set X admits exactly one Hausdorff topology
.

Exercise 12.2. Let (X, 7) and (Y, 7y) be topological spaces.

1. Show 7 is Hausdorff iff A := {(z,2) : € X} is aclosed in X x X equipped
with the product topology 7 ® 7.
2. Suppose 7 is Hausdorff and f,g : ¥ — X are continuous maps. If

{f:g}Y =Y then f = g. Hint: make use of themap fxg:Y — X xX
defined by (f x g) (y) = (f(y), 9(y))-

Exercise 12.3. Given an example of a topological space which has a non-
closed compact subset.

Proposition 12.6. Suppose that X is a compact topological space, Y is a
Hausdorff topological space, and f : X — Y is a continuous bijection then f
is a homeomorphism, i.e. f1:Y — X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdorff spaces
are closed, it follows that (f_l)_1 (C) = f(C) is closed in X for all closed
subsets C' of X. Thus f~! is continuous. [

The next two results shows that locally compact Hausdorff spaces have
plenty of open sets and plenty of continuous functions.
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Proposition 12.7. Suppose X is a locally compact Hausdorff space and U C,
X and K CC U. Then there exists V Co X such that K CV CV CUCX
and V is compact. (Compare with Proposition [11.25 above.)

Proof. By local compactness, for all z € K, there exists U, € 7, such
that U, is compact. Since K is compact, there exists A cC K such that
{Us} e is a cover of K. The set O = U N (UzeaU,) is an open set such that
K C O C U and O is precompact since O is a closed subset of the compact
set Uzea U,. (UIGAUm. is compact because it is a finite union of compact sets.)
So by replacing U by O if necessary, we may assume that U is compact. Since
U is compact and bd(U) = UNU*® is a closed subset of U, bd(U) is compact.
Because bd(U) C U*¢, it follows that bd(U) N K = (), so by Proposition [12.5,
there exists disjoint open sets V' and W such that K C V and bd(U) C W. By
replacing V' by VNU if necessary we may further assume that K C V C U, see
Figure12.1. Because UNW¢ is a closed set containing V and bd(U)NW¢ = ),

Fig. 12.1. The construction of V.

VcUnWe=UubdU)NWe=UnNWecUCcCU.

Since U is compact it follows that V is compact and the proof is complete. m
The following Lemma is analogous to Lemma [11.27.

Lemma 12.8 (Urysohn’s Lemma for LCH Spaces). Let X be a locally
compact Hausdorff space and K CC U C, X. Then there exists f < U (see
Definition [11.26) such that f = 1 on K. In particular, if K is compact and
C is closed in X such that K NC =0, there exists f € C.(X,[0,1]) such that
f=1on K and f =0 on C.

Proof. For notational ease later it is more convenient to construct g :=
1 — f rather than f. To motivate the proof, suppose ¢ € C(X,][0,1]) such
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that g = 0 on K and g = 1 on U°. For r > 0, let U, = {g < r}. Then for
0<r<s<1,U, C{g<r} CU,and since {g <r} is closed this implies

KcU.cU.c{g<r}cU,cU.

Therefore associated to the function g is the collection open sets {Ur},s0CT
with the property that K C U, C U, CUs; C U forall 0 <7 < s <1 and
U, = X if r > 1. Finally let us notice that we may recover the function g from
the sequence {U,}, .., by the formula

r>0
g(z) =inf{r >0: 2z € U,}. (12.1)
The idea of the proof to follow is to turn these remarks around and define g
by Eq. (12.1)).
Step 1. (Construction of the U,.) Let
D:={k2":k=1,2,...,27" n=1,2,...}

be the dyadic rationals in (0, 1]. Use Proposition 12.7 to find a precompact
open set U; such that K C Uy C Uy C U. Apply Proposition [12.7/ again to
construct an open set Uy /3 such that

K CUyppCUyppCcly
and similarly use Proposition 12.7 to find open sets Uy /3, Us/4 C, X such that
K CUyjy CUyyy CUyyp C Uy C U3y CUspq C UL
Likewise there exists open set U, /s, Us/s, Us /s, U7 /g such that

K C Ul/g C Ul/g C U1/4 C Ul/4 - Ug/g - U3/8 - U1/2
C U1/2 C Us/g C U5/8 C U3/4 C U3/4 C U7/8 C U7/8 c U;.

Continuing this way inductively, one shows there exists precompact open sets
{Ur},cp C 7 such that

KcU.cU,cU cU cU, cU

forallr,seDwith0<r <s<l1.
Step 2. Let U, := X if r > 1 and define

g(z) =inf{r e DU (1,2): 2z € U, },

see Figure 12.2l Then g(z) € [0,1] for all z € X, g(x) = 0 for z € K since
z e K CU, forall r € D. If z € Uy, then « ¢ U, for all r € D and hence
g(z) = 1. Therefore f := 1 — g is a function such that f = 1 on K and
{f#0}={g#1} c U, Cc Uy C U so that supp(f) = {f #0} c U, C U is
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Fig. 12.2. Determining g from {U.,} .

a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.

Since £ = {(a, 20), (—00, ) : @ € R} generates the standard topology on
R, to prove g is continuous it suffices to show {¢g < a} and {g > «} are open
sets for all & € R. But g(x) < « iff there exists r € DU (1,00) with r < «
such that x € U,.. Therefore

{g<a}:U{UT:7“€ID)U(1,oo) >r<al

which is open in X. If « > 1, {g>a} =0 andif a < 0, {g>a} = X. If
€ (0,1), then g(x) > o iff there exists r € I such that r > « and z ¢ U,..
Now if r > o and z ¢ U, then for s e DN («,r), x ¢ Us C U,.. Thus we have

shown that B
{g>a}:U{(Us)c:s€]D) 3 s>a}
which is again an open subset of X. [

Theorem 12.9 (Locally Compact Tietz Extension Theorem). Let
(X, 7) be a locally compact Hausdorff space, K CC U C, X, f € C(K,R),
a = min f(K) and b = max f(K). Then there exists F € C(X,][a,b])
such that F|x = f. Moreover given ¢ € [a,b], F can be chosen so that
supp(F'—¢) ={F # ¢} CU.

The proof of this theorem is similar to Theorem 7.4/ and will be left to the
reader, see Exercise [12.5.
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12.1 Locally compact form of Urysohn’s Metrization
Theorem

Notation 12.10 Let Q := [0, 1] denote the (infinite dimensional) unit cube
in RY. Fora,be Q let

EZ%* (12.2)

The metric introduced in Exercise [11.21] would be defined, in this context,

as d(a,b) := S s m%b' Since 1 < 1+|ay, — by| < 2, it follows that d <

d < 2d. So the metrics d and d are equivalent and in particular the topologies
induced by d and d are the same. By Exercises [10.28| the d — topology on @
is the same as the product topology and by Tychonoff’s Theorem [11.34] or by
Exercise [11.21, (@, d) is a compact metric space.

Theorem 12.11. To every separable metric space (X, p), there exists a con-
tinuous injective map G : X — @ such that G : X — G(X) C Q is a homeo-
morphism. In short, any separable metrizable space X is homeomorphic to a
subset of (Q,d).

Remark 12.12. Notice that if we let p'(x,y) := d(G(x), G(y)), then p’ induces
the same topology on X as p and G : (X, p) — (Q,d) is isometric.

Proof. Let D = {z,},-, be a countable dense subset of X,

1 if <0
Ppt) =8 1—tif0<t<1
0 if t>1,

(see Figure 12.3) and for m,n € N let

fm,n(x) =1—¢(mp(z,,x)).

Then fun, = 01if p(z,z,) < 1/m and fo,, = 1if p(z,z,) > 2/m. Let
{g1}req be an enumeration of {f,, , : m,n € N} and define G : X — Q by

G(:C) = (gl(x)qu(x),' ) €Q.

We will now show G : X — G(X) C @ is a homeomorphism. To show G
is injective suppose z,y € X and p(z,y) = § > 1/m. In this cabe we may
find ,, € X such that p(z,z,) < 5, p(y,2n) > § — 5= > 5= and hence
famn(y) = 1 while fim n(y) = 0. From this it follows that G(z) # G(y) it

x # y and hence G is injective. The continuity of G is a consequence of the
continuity of each of the components g; of G. So it only remains to show
G7!:G(X) — X is continuous. Given a = G(z) € G(X) C Q and € > 0,
choose m € N and z,, € X such that p(:cn, z) < 50 < 5. Then fyn(x) =0
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Fig. 12.3. The graph of the function ¢.

and for y ¢ B(zy, %), fmn(y) = 1. So if k is chosen so that gy = fi,n, We
have shown that for

d(G(y), G(z)) > 27 for y & B(xn,2/m)
or equivalently put, if
d(G(y),G(x)) < 27" then y € B(xn,2/m) C B(x,1/m) C B(z,e).

This shows that if G(y) is sufficiently close to G(z) then p(y,z) < ¢, i.e. G71
is continuous at a = G(x). |

Theorem 12.13 (Urysohn Metrization Theorem for LCH’s). Every
second countable locally compact Hausdorff space, (X,T), is metrizable, i.e.
there is a metric p on X such that T = 7,. Moreover, p may be chosen so that
X is isometric to a subset Qo C Q equipped with the metric d in Eq. (12.2).
In this metric X is totally bounded and hence the completion of X (which is
isometric to Qo C Q) is compact. (Also see Theorem [12.43.)

Proof. Let B be a countable base for 7 and set
I'={(U,V)eBxB|UCV and U is compact}.

To each O € 7 and = € O there exist (U,V) € I' such that x € U C V C O.
Indeed, since B is a base for 7, there exists V € B such that x € V C O.
Now apply Proposition 12.7 to find U’ C, X such that x € U' Cc U’ Cc V
with U’ being compact. Since B is a base for 7, there exists U € B such that
x € U C U and since U C U’, U is compact so (U, V) € I'. In particular this
shows that B’ := {U € B: (U,V) € I' for some V € B} is still a base for 7. If
I is a finite, then B’ is finite and 7 only has a finite number of elements as well.
Since (X, 7) is Hausdorff, it follows that X is a finite set. Letting {xn}f:;l be
an enumeration of X, define T : X — Q by T'(z,) = e, forn =1,2,...,N
where e, = (0,0,...,0,1,0,...), with the 1 occurring in the n'" spot. Then
plx,y) :=d(T(z),T(y)) for x,y € X is the desired metric.
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So we may now assume that I" is an infinite set and let {(U,, V;,)} -, be an
enumeration of I'. By Urysohn’s Lemma [12.8 there exists fy,yv € C(X,[0,1])
such that fyv =0on U and fyyv =1 on Ve Let F = {fyv | (U, V)€ '}
and set f,, := fu, v, — an enumeration of . We will now show that

o) = 3 5 Unle) = fulo)]

is the desired metric on X. The proof will involve a number of steps.

1. (pis ametric on X.) It is routine to show p satisfies the triangle inequality
and p is symmetric. If z,y € X are distinct points then there exists
(Unys Viy) € I' such that z € Uy, and V,,, C O := {y}°. Since f,,(z) =0
and fp,(y) = 1, it follows that p(x,y) > 27" > 0.

2. (Let 1o = 7(fn :n€N), then 7 = 79 = 7,.) As usual we have 79 C .
Since, for each z € X, y — p(z,y) is 79 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that By (e) :=
{ye X :p(z,y) <e} € o for all z € X and ¢ > 0. Thus 7, C 79 C 7.
Suppose that O € 7 and x € O. Let (Uy,, Vp,) € I be such that z € U,
and V,,, C O. Then f,,,(z) = 0 and f,, = 1 on O°. Therefore if y € X and
frno(y) <1, then y € O so x € {f,, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 75. So 7 C 79 and
hence 7 = 79. Moreover, if y € B, (27") then 27 > p(x,y) > 27" f,,, ()
and therefore z € B, (27") C {f,, < 1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7).

3. (X is isometric to some Qo C Q.) Let T': X — @ be defined by T'(z) =
(f1(x), fa(z),..., fu(z),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qg := T'(X). Since Q) is a subset
of the compact metric space (Q,d), Qo is totally bounded and therefore
X is totally bounded.

BRUCE: Add Stone Chech Compactification results.

12.2 Partitions of Unity

Definition 12.14. Let (X, 7) be a topological space and Xo C X be a set. A
collection of sets {Ba},cq C 2% s locally finite on X, if for all x € X,
there is an open neighborhood N, € T of x such that #{a € A: B, N N, #
0} < occ.

Definition 12.15. Suppose that U is an open cover of Xog C X. A collection
{ba}aca C C(X,[0,1]) (N = oo is allowed here) is a partition of unity on
Xo subordinate to the cover U if:

1. for all « there is a U € U such that supp(¢.) C U,
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2. the collection of sets, {supp(@a)taca, is locally finite on X, and
8. aea Pa =1 on Xo.

Notice by item 2. that, for each x € X, there is a neighborhood N, such
that
A= {a € A:supp(ga) NN, # 0}

is a finite set. Therefore, Y c 4 alN, = D qcp Paln, which shows the sum
Y aca Pa is well defined and defines a continuous function on N, and there-
fore on X since continuity is a local property. We will summarize these last
comments by saying the sum, Y 4 da, is locally finite.

Proposition 12.16 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K C X is a compact set and
U= {Uj}?zl is an open cover of K. Then there exists a partition of unity

{h;};_y of K such that h; < U; for all j =1,2,...,n.

Proof. For all z € K choose a precompact open neighborhood, V;, of x
such that V', C U;. Since K is compact, there exists a finite subset, A, of K

such that K C |J V. Let
zeA

szu{Vz:xeAandVICUj}.

Then Fj is compact, F; C Uj for all j, and K C U}_; F;. By Urysohn’s Lemma

12.8/ there exists f; < U; such that f; =1 on Fj for j = 1,2,...,n and by

convention let f,,+1 = 1. We will now give two methods to finish the proof.
Method 1. Let hl = fl; h2 = fg(l — hl) = f2(1 — f1)7

hs = f3(1 —h1 —ha) = f3(1 = f1 = (1 = f1)f2) = fs(1 = f1)(1 — f2)

and continue on inductively to define

k—1
he=(1—hy——h)fu=fi [JO-F)VE=273,....n (123)
j=1
and to show
hnﬂ:(1—h1—~--—hn).1=1-H(1—fj). (12.4)
j=1

From these equations it clearly follows that h; € C.(X,[0,1]) and that
supp(h;) C supp(f;) C Uj, ie. hy < Uj. Since [[}_,(1 - f;) = 0 on K,
> i1 hj=1on K and {h;};_, is the desired partition of unity.

Method 2. Let g := > f; € C.(X). Then ¢ > 1 on K and hence
j=1

K C {g > 1}. Choose ¢ € C.(X,[0,1]) such that ¢ = 1 on K and supp(¢) C
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{g > %} and define fop :=1—¢. Then fo = 0on K, fy = 1if g < % and
therefore,
fotfit -+ fa=fotg>0

on X. The desired partition of unity may be constructed as

() — fi(z)
IS o

Indeed supp (h;) = supp (f;) C Uj, h; € C.(X,[0,1]) and on K,

_ f1_|_..._|_fn _f1_|_..._|_fn_
N N A TR Ml vy S

Proposition 12.17. Let (X, 7) be a locally compact and o — compact Haus-
dorff space. Suppose that U C T is an open cover of X. Then we may construct
two locally finite open covers V = {Vi}N| and W = {W;}¥| of X (N = o0
is allowed here) such that:

1. W; c W; CV; C Vi and V; is compact for all 3.
2. For each i there exist U € U such that V; C U.

Proof. By Remark [11.24, there exists an open cover of G = {G,}>2,
of X such that G,, C G,, C Gpi1. Then X = U,;";l((;k \ G)_1), where by
convention G_; = Gy = (). For the moment fix k > 1. For each x € Gk\Gk,l,
let U, € U be chosen so that x € U, and by Proposition [12.7/ choose an open
neighborhood N, of = such that N, C U, N (Ggy1 \ Gi_2), see Figure 12.4
below. Since {N;},ecq,\G,_, 18 an open cover of the compact set Gr \ Gr_1,
there exist a finite subset Iy C {Nz},eq,\q,_, Which also covers Gr \ Gr_1.

By construction, for each W & I, there is a U € U such that W C
U N (Ggs1 \ Gr—2) and by another application of Proposition 12.7, there
exists an open set Vi such that W C Viy € Vi € U N (Gryr \ Gr_2). We
now choose and enumeration {W;}¥; of the countable open cover, U Ik,
of X and define V; = Viy,. Then the collection {W;}X¥ | and {V;}¥ | are easily
checked to satisfy all the conclusions of the proposition. In particular notice
that for each k; V; N G}, # 0 for only a finite number of i’s. [

Theorem 12.18 (Partitions of Unity for ¢ — Compact LCH Spaces).
Let (X, 1) be locally compact, o — compact and Hausdorff and letU C T be an
open cover of X. Then there exists a partition of unity of {h;}Y, (N = oo is
allowed here) subordinate to the cover U such that supp(h;) is compact for all
i.

Proof. Let V = {V;}¥, and W = {W;}, be open covers of X with the
properties described in Proposition 12.17. By Urysohn’s Lemma [12.8) there
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G’\v\ G\‘_ G\zu G’\u—i

Fig. 12.4. Constructing the {W;} .

exists f; < V; such that f; = 1 on W; for each i. As in the proof of Proposition
12.16! there are two methods to finish the proof.

Method 1. Define hy = f1, h; by Eq. (12.3)) for all other j. Then as in
Eq. (12.4), for all n < N + 1,

oo

1= hi=lim | L]0 =15) | =0
j=1 j=1

since for z € X, f;(x) = 1 for some j. As in the proof of Proposition 12.10, it
is easily checked that {hi}ij\il is the desired partition of unity.

Method 2. Let f := Zf;l fi, a locally finite sum, so that f € C(X).
Since {W;}:2, is a cover of X, f > 1 on X so that 1/f € C' (X)) as well. The
functions h; := f;/f for i =1,2,..., N give the desired partition of unity. =

Lemma 12.19. Let (X, 7) be a locally compact Hausdorff space.

1. A subset E C X is closed iff EN K is closed for oll K CC X.

2. Let {Cq},ca be a locally finite collection of closed subsets of X, then
C = UqeaCy, is closed in X. (Recall that in general closed sets are only
closed under finite unions.)

Proof. 1. Since compact subsets of Hausdorff spaces are closed, £ N K is
closed if E is closed and K is compact. Now suppose that £ N K is closed
for all compact subsets K C X and let € E°. Since X is locally compact,
there exists a precompact open neighborhood, V, of X' By assumption ENV

L If X were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of x which is disjoint from FE, then there would exists
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is closed so x € (E N V)C — an open subset of X. By Proposition [12.7 there
exists an open set U such that x € U C U C (ENV)°, see Figure 12,5, Let

Fig. 12.5. Showing E° is open.

W :=UnNV. Since
WNE=UNVNECUNVNE =0,

and W is an open neighborhood of « and € E¢ was arbitrary, we have shown
FE° is open hence FE is closed.

2. Let K be a compact subset of X and for each x € K let N, be an
open neighborhood of z such that #{a € A: C, N N, # 0} < oco. Since K is
compact, there exists a finite subset A C K such that K C U, N,. Letting
Ao :={a€A:CyNK # 0}, then

#(A0) <Y #la€ A:CanN N, # 0} < 00

zeA

and hence K N (UaeaCq) = K N (Uaea,Co) - The set (Upea,Co) is a finite
union of closed sets and hence closed. Therefore, K N (UneaCl) is closed and
by item 1. it follows that U,e4C\, is closed as well. [

Corollary 12.20. Let (X, 7) be a locally compact and o — compact Hausdorff
space and U = {Uy},ca C T be an open cover of X. Then there exists a
partition of unity of {ha taca subordinate to the coverU such that supp(he) C
U, for all o € A. (Notice that we do not assert that h, has compact support.
However if U, is compact then supp(ha) will be compact.)

Zn € E such that z, — z. Since ENV isiclosed and z,, € ENV for all large n,
it follows (see Exercise 6.4) that x € ENV and in particular that € E. But we
chose = € E°.
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Proof. By the 0 — compactness of X, we may choose a countable subset,
{a;}¥, (N = oo allowed here), of A such that {U; := Uai}fil is still an
open cover of X. Let {g; 521 be a partition of unity? subordinate to the
cover {U;}N | as in Theorem [12.18. Define I}, := {j : supp(g;) C Ui} and

I =1\ (U?;llfk), where by convention Iy = (). Then

8

N = fk:]_[rk.
k=1 k=1

If I, = 0 let hy, := 0 otherwise let hy := Zjen, g, a locally finite sum. Then

N [eS)
th = Zgj =1.
k=1 j=1

By Item 2. of Lemma [12.19, U cr, supp(g;) is closed and therefore,

supp(hx) = {hx # 0} = Ujer, {g; # 0} C Ujer,supp(g;) C Uk

and hence hy < Uy and the sum 25:1 hy is still locally finite. (Why?) The
desired partition of unity is now formed by letting h,, = hg for kK < N +1
and hy, =0 if o ¢ {o;} Y. |

Corollary 12.21. Let (X,7) be a locally compact and o — compact Haus-
dorff space and A,B be disjoint closed subsets of X. Then there exists
f € C(X,[0,1]) such that f =1 on A and f = 0 on B. In fact f can be
chosen so that supp(f) C B°.

Proof. Let U; = A° and Uy = B¢, then {U;,Us} is an open cover of X.
By Corollary 12.20] there exists hq, he € C(X, [0, 1]) such that supp(h;) C U;
for i = 1,2 and h; + ho = 1 on X. The function f = hy satisfies the desired
properties. [ |

12.3 Cp(X) and the Alexanderov Compactification

Definition 12.22. Let (X, 7) be a topological space. A continuous function
f X — C is said to vanish at infinity if {|f| > e} is compact in X for
all e > 0. The functions, f € C(X), vanishing at infinity will be denoted by
Co(X). (Notice that Cy (X) = C (X) whenever X is compact.)

Proposition 12.23. Let X be a topological space, BC(X) be the space of
bounded continuous functions on X with the supremum norm topology. Then

2 S0 as to simplify the indexing we assume there countable number of g;’s. This
can always be arranged by taking g, = 0 for large k if necessary.
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1. Co(X) is a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then
Co(X) = C.(X).

Proof.

1. If f € Co(X), K1 := {|f] > 1} is a compact subset of X and there-
fore f(K7) is a compact and hence bounded subset of C and so M :=
Sup,cx, |f(2)] < oo. Therefore || f||,, < M V1 < oo showing f € BO(X).
Now suppose [, € Co(X) and f, — f in BC(X). Let € > 0 be given and
choose n sufficiently large so that ||f — fn| ., < €/2. Since

‘f| S |fn| + |f - fn| S |fn| + Hf— fn“oo S |fn| +5/27
{Ifl = e} c{lfnl +e/2 = e} = {Iful = €/2}.

Because {|f| >} is a closed subset of the compact set {|f.| >e/2},
{|f| > ¢} is compact and we have shown f € Cy(X).

2. Since Cy(X) is a closed subspace of BC(X) and C.(X) C Cy(X), we
always have C.(X) C Cy(X). Now suppose that f € Cy(X) and let K, :=
{|f| = 1} cC X. By Lemma [12.8 we may choose ¢, € C¢(X, [0,1]) such
that ¢, =1 on K,,. Define f,, := ¢, f € C.(X). Then

1
Hf*anu = ||(1 *an)f”oo < E — 0 asn — oo.

This shows that f € C.(X).

Proposition 12.24 (Alexanderov Compactification). Suppose that (X, T)
is a non-compact locally compact Hausdorff space. Let X* = X U{oo}, where
{o0} is a new symbol not in X. The collection of sets,

™ =7U{X*"\K:KcCcC X}c2¥,

is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover
f € C(X) extends continuously to X* iff f = g+c with g € Co(X) and c € C
in which case the extension is given by f(oco0) = c.

Proof. 1. (7* is a topology.) Let F := {F C X* : X*\ F € 7%}, ie.
F € Fiff F is a compact subset of X or F = FyU{oo} with Fj being a closed
subset of X. Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of X are closed and closed subsets of compact
subsets of X are compact, it is also easily checked that F is closed under
arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence 7* is a topology.



12.3 Cp(X) and the Alexanderov Compactification 167

2. ((X*,7*) is a Hausdorff space.) It suffices to show any point z € X
can be separated from oco. To do this use Proposition [12.7/ to find an open
precompact neighborhood, U, of 2. Then U and V := X*\ U are disjoint open
subsets of X* such that x € U and co € V.

3. ((X™*,7*) is compact.) Suppose that U C 7* is an open cover of X*.
Since U covers oo, there exists a compact set K C X such that X*\ K € .
Clearly X is covered by Uy := {V '\ {o0} : V € U} and by the definition of 7*
(or using (X*,7*) is Hausdorft), Uy is an open cover of X. In particular U is
an open cover of K and since K is compact there exists A CC U such that
K c U{V\{oo}:V € A}. It is now easily checked that AU {X*\ K} Cc U
is a finite subcover of X*.

4. (Continuous functions on C(X*) statements.) Let ¢ : X — X* be the
inclusion map. Then ¢ is continuous and open, i.e. i(V') is open in X* for all
Vopenin X. If f € C(X*), then g = f|x — f(00) = foi— f(00) is continuous
on X. Moreover, for all € > 0 there exists an open neighborhood V' € 7* of oo
such that

lg(x)] = |f(x) — f(o0)| < e forall z € V.

Since V is an open neighborhood of oo, there exists a compact subset,
K C X, such that V. = X*\ K. By the previous equation we see that
{r e X :|g(x)| > e} C K, so {|g| > €} is compact and we have shown ¢ van-
ishes at oc.

Conversely if g € Cy(X), extend g to X* by setting g(oco) = 0. Given
e > 0, the set K = {|g| > ¢} is compact, hence X* \ K is open in X*. Since
g(X*\ K) C (—¢,¢) we have shown that g is continuous at oo. Since g is also
continuous at all points in X it follows that ¢ is continuous on X*. Now it
f =g+ cwith c € C and g € Cy(X), it follows by what we just proved that
defining f(o0) = ¢ extends f to a continuous function on X*. [

Ezample 12.25. Let X be an uncountable set and 7 be the discrete topology
on X. Let (X* = X U{oo},7*) be the one point compactification of X. The
smallest dense subset of X* is the uncountable set X. Hence X* is a compact
but non-separable and hence non-metrizable space.

The next proposition gathers a number of results involving countability
assumptions which have appeared in the exercises.

Proposition 12.26 (Summary). Let (X, 7) be a topological space.

1. If (X, 1) is second countable, then (X, T) is separable; see Exercise 10.11.

2. If (X, 7) is separable and metrizable then (X, 7) is second countable; see
Ezercise10.12.

3. If (X, 7) is locally compact and metrizable then (X, 7) is 0 — compact iff
(X, 7) is separable; see Fxercises|11.10 and[11.11.

4. If (X, 1) is locally compact and second countable, then (X,7) is o - com-
pact, see Exercise|11.8.

5. If (X, 1) is locally compact and metrizable, then (X, 7) is o — compact iff
(X, 7) is separable, see Exercises|11.9 and[11.10.
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12.4 Stone-Weierstrass Theorem

We now wish to generalize Theorem 18.34/ to more general topological spaces.
We will first need some definitions.

Definition 12.27. Let X be a topological space and A C C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x,y € X there exists

f € A such that f(x) # f(y).
2. A is an algebra if A is a vector subspace of C(X) which is closed under

pointwise multiplication. (Note well: we do not assume 1 € A.)

3. A C C(X,R) is called a lattice if fV g = max(f,g9) and f Ag =
min(f,g) € A for all f,g € A.

4. AC C(X,C) is closed under conjugation if f € A whenever f € A.

Remark 12.28. If X is a topological space such that C'(X,R) separates points
then X is Hausdorff. Indeed if z,y € X and f € C(X,R) such that
f(x) # f(y), then f~1(J) and f~1(I) are disjoint open sets containing
and y respectively when I and J are disjoint intervals containing f(x) and
f(y) respectively.

Lemma 12.29. If A is a closed sub-algebra of BC(X,R) then |f| € A for all
f €A and A is a lattice.

Proof. Let f € Aand let M = sup |f(x)|. Using Theorem 8.34 or Exercise
reX

12.12| there are polynomials p,,(¢) such that

lim sup [[t| —pn(t)] = 0.

By replacing p,, by p, — pn(0) if necessary we may assume that p,(0) = 0.
Since A is an algebra, it follows that f, = p,(f) € A and |f| € A, because
|f| is the uniform limit of the f,’s. Since

ng:%(ernglffgl) and
frg=5 (F+a-17 g,

we have shown A is a lattice. [

Lemma 12.30. Let A C C(X,R) be an algebra which separates points and
suppose x and y are distinct points of X. If there exits such that f,g € A such
that

f(x) #0 and g(y) # 0, (12.5)
then
Vi={(f(z),f(y): f € A}=R> (12.6)
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Proof. It is clear that V is a non-zero subspace of R? If dim(V') = 1, then
V = span(a, b) for some (a,b) € R? which, necessarily by Eq. (12.5)), satisfy
a # 0 # b. Since (a,b) = (f(z), f(y)) for some f € A and f? € A, it follows
that (a2,0%) = (f2(x), f2(y)) € V as well. Since dimV = 1, (a,b) and (a?,b?)
are linearly dependent and therefore

0 = det (;2 bb2> = ab® — a*b = ab(b — a)

which implies that a = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A separates points. Therefore we conclude that
dim(V) =2, i.e. V =R2 |

Theorem 12.31 (Stone-Weierstrass Theorem). Suppose X is a locally
compact Hausdorff space and A C Co(X,R) is a closed subalgebra which
separates points. For x € X let

Ay ={f(x): f e A} and
I, = {f € CO(XvR) : f(a:) = O}

Then either one of the following two cases hold.

1. A= Cy(X,R) or
2. there exists a unique point vo € X such that A =1,,.

Moreover, case 1. holds iff A, = R for all x € X and case 2. holds iff
there exists a point xg € X such that Az, = {0}.

Proof. If there exists zp such that A,, = {0} (z¢ is unique since A
separates points) then A C Z,, . If such an x¢ exists let C = Z,, and if 4, = R
for all z, set C = Co(X,R). Let f € C be given. By Lemma [12.30, for all
z,y € X such that x # y, there exists g,, € A such that f = g, on {z,y}?
When X is compact the basic idea of the proof is contained in the following
identity,

f(2) = inf sup gay(2) for all z € X. (12.7)
reX yeX
To prove this identity, let g, := sup,cx gzy and notice that g, > f since
9zy(y) = f(y) for all y € X. Moreover, g,(x) = f(x) for all z € X since
gay(x) = f(z) for all z. Therefore,

inf = inf g, = f.
nf sup gy = Inf 92 = f
The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (12.7) becoming only an
approximate identity. We also have to modify Eq. (12.7)) slightly to take care
of the non-compact case.

31f Ay, = {0} and = = x0 or y = o, then g, exists merely by the fact that A
separates points.
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Claim. Given € > 0 and x € X there exists g, € A such that g,(z) = f(x)
and f < g, +¢on X.

To prove this, let V}, be an open neighborhood of y such that |f — guy| < €
on Vy; in particular f < e+ gzy on V. Also let g, o be any fixed element in
A such that g, o () = f (z) and let

K={if12 2} u{lgneol 2 5} (1258)

Since K is compact, there exists A CC K such that K C |J V,. Define
yeA

92(2) = max{gay : y € AU {o0}}.
Since
f<e+gzy <e+gyonV,
for any y € A, and
€

<3

<e+groo < gr +€o0n K

f < e+ g, on X and by construction f(x) = g.(z), see Figure ??. This
completes the proof of the claim.

Fig. 12.6. Constructing the “dominating approximates,” g, for each = € X.

To complete the proof of the theorem, let g, be a fixed element of A such
that f < goo + € on X; for example let goo = gz, € A for some fixed zp € X.
For each z € X, let U, be a neighborhood of z such that |f — g.| < € on U,.
Choose . .

recF= {1z 2} uflgel = 5}
2 2
such that ' C |J U, (I exists since F' is compact) and define
zel’

g=min{g, :x € 'U{oo}} € A.
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Then, for x € F, g, < f+ ¢ on U, and hence g < f+econ |J U, D F.
zel’
Likewise,

J< goo <€/2< f+4eon F°.

Therefore we have now shown,
f<gt+eand g < f+eon X,

i.e. |f —g| <eon X. Since ¢ > 0 is arbitrary it follows that f € A = A and
so A=C. ]

Corollary 12.32 (Complex Stone-Weierstrass Theorem). Let X be a
locally compact Hausdorff space. Suppose A C Co(X,C) is closed in the uni-

form topology, separates points, and is closed under complex conjugation. Then
either A = Co(X,C) or

A=T5 = {f € Co(X,C) : f(xo) = 0}
for some xg € X.
Proof. Since _ _
f;f and Im f = f2_if’
Re f and Im f are both in A. Therefore

Re f =

Agr ={Re f,Im f: f € A}

is a real sub-algebra of Cy(X,R) which separates points. Therefore either
Ar = Co(X,R) or Ag = 7, N Cy(X, R) for some zy and hence A = Cy(X,C)
or I respectively. ]

As an easy application, Theorem [12.3T/and Corollary 12.32 imply Theorem
8.34 and Corollary 8.36 respectively. Here are a few more applications.

Ezample 12.33. Let f € C([a,b]) be a positive function which is injective.
Then functions of the form Efgvzl arf* with a;, € C and N € N are dense in
C([a,b]). For example if a = 1 and b = 2, then one may take f(x) = z* for
any o # 0, or f(x) = €*, etc.

Exercise 12.4. Let (X,d) be a separable compact metric space. Show that
C(X) is also separable. Hint: Let E C X be a countable dense set and then

consider the algebra, A C C(X), generated by {d(z,)},cp -

Ezample 12.34. Let X = [0,00), A > 0 be fixed, A be the real algebra
generated by t — e ™. So the general element f € A is of the form
f(t) = p(e~™), where p(z) is a polynomial function in z with real coefficients.
Since A C Cy(X,R) separates points and e~ € A is pointwise positive,
A= Cy(X,R).
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As an application of Example [12.34, suppose that g € C. (X, R) satisfies,
/ g (t)e=dt =0 for all A > 0. (12.9)
0

(Note well that the integral in Eq. (12.9)) is really over a finite interval since g
is compactly supported.) Equation (12.9) along with linearity of the Riemann
integral implies

/oog(t)f(t)dt:OforalleA.
0

We may now choose f, € A such that f, — ¢ uniformly and therefore,
using the continuity of the Riemann integral under uniform convergence (see
Proposition 8.5),

0= lim oog(t)fn(t)dt:/ooog?(t)dt.

n—oo 0

From this last equation it is easily deduced, using the continuity of g, that
g = 0. See Theorem [22.12 below, where this is done in greater generality.

12.5 *More on Separation Axioms: Normal Spaces

(This section may safely be omitted on the first reading.)

Definition 12.35 (7, — 1> Separation Axioms). Let (X, T) be a topological
space. The topology T is said to be:

1. Ty if for x #y in X there exists V € T such that x € V andy ¢V orV
such thaty € V but x ¢ V.

2. Ty if for every x,y € X with x # y there exists V € 7 such that x € V
and y ¢ V. Equivalently, T is Ty iff all one point subsets of X are closed.*

3. Ty if it is Hausdorff.

Note 15 implies T7 which implies Ty. The topology in Example 12.1lis Tj
but not T;. If X is a finite set and 7 is a T} — topology on X then 7 = 2%. To
prove this let x € X be fixed. Then for every y # = in X there exists V,, € 7
such that x € V,, while y ¢ V,,. Thus {z} = Ny, V,, € 7 showing 7 contains
all one point subsets of X and therefore all subsets of X. So we have to look
to infinite sets for an example of T} topology which is not 7.

4 If one point subsets are closed and x # y in X then V := {z}° is an open set
containing y but not x. Conversely if 7 is 71 and z € X there exists V,, € 7 such
that y € V,, and x ¢ Vj, for all y # x. Therefore, {z}° = Uyx,V, € T.
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Ezample 12.36. Let X be any infinite set and let 7 = {A C X : #(A°) < oo} U
{0} — the so called cofinite topology. This topology is T} because if z # y in
X, then V = {z}¢ € 7 with ¢ V while y € V. This topology however is not
T5. Indeed if U,V € 7 are open sets such that x € U,y € Vand UNV =
then U C V°. But this implies #(U) < co which is impossible unless U = ()
which is impossible since x € U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark [12.3)) need not occur for T7 — spaces. For example, let X = N
and 7 be the cofinite topology on X as in Example 12.36. Then z,, = n is a
sequence in X such that z,, — = as n — oo for all x € N. For the most part
we will avoid these pathologies in the future by only considering Hausdorff
topologies.

Definition 12.37 (Normal Spaces: T, — Separation Axiom). A topolog-
ical space (X, T) is said to be normal or Ty if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A, B C X there exists disjoint open
sets V,W C X such that ACV and B C W.

Example 12.38. By Lemma [6.15 and Corollary [12.21] it follows that metric
spaces and topological spaces which are locally compact, o — compact and
Hausdorff (in particular compact Hausdorff spaces) are normal. Indeed, in
each case if A, B are disjoint closed subsets of X, there exists f € C(X, [0, 1])
such that f =lonAand f =0on B.Nowlet U = {f > 3} and V = {f < }.

Remark 12.59. A topological space, (X, ), is normal iff for any C C W C X
with C being closed and W being open there exists an open set U C, X such
that

CcUcCUCcCW.

To prove this first suppose X is normal. Since W€ is closed and C N W€ = ),
there exists disjoint open sets U and V such that C C U and W¢ C V.
Therefore C € U € V¢ C W and since V¢is closed, C CU cU Cc Ve C W.
For the converse direction suppose A and B are disjoint closed subsets of
X. Then A C B¢ and B¢ is open, and so by assumption there exists U C, X
such that A C U C U C B¢ and by the same token there exists W C, X such
that U ¢ W ¢ W C B¢. Taking complements of the last expression implies

BcCcWe¢cWecU-.
Let V=W Then ACUC, X, BCV Co XandUNV CcUNW® = {.

Theorem 12.40 (Urysohn’s Lemma for Normal Spaces). Let X be a
normal space. Assume A, B are disjoint closed subsets of X. Then there exists
feC(X,[0,1]) such that f =0 on A and f =1 on B.
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Proof. To make the notation match Lemma12.8, let U = A¢ and K = B.
Then K C U and it suffices to produce a function f € C(X,|0,1]) such that
f=1on K and supp(f) C U. The proof is now identical to that for Lemma
12.8] except we now use Remark 12.39 in place of Proposition [12.7. [ |

Theorem 12.41 (Tietze Extension Theorem). Let (X,7) be a normal
space, D be a closed subset of X, —0co < a < b < o0 and f € C(D,|a,b]).
Then there exists F € C(X,[a,b]) such that F|p = f

Proof. The proof is identical to that of Theorem (7.4 except we now use
Theorem [12.40] in place of Lemma [6.15. [ ]

Corollary 12.42. Suppose that X is a normal topological space, D C X is
closed, F € C(D,R). Then there exists F € C(X) such that F|p = f

Proof. Let g = arctan(f) € C(D,(—%,%)). Then by the Tietze ex-

tension theorem, there exists G € C’(X [—%,%]) such that G|p = g. Let
B := G'({-%,5}) C X, then BN D = (. By Urysohn’s lemma (Theo-
rem [12.40) there exists h € C(X,[0,1]) such that h = 1 on D and h = 0
on B and in particular hG' € C(D, (-3, %)) and (hG) |p = g. The function

F :=tan(hG) € C(X) is an extension of f. ]

Theorem 12.43 (Urysohn Metrization Theorem for Normal Spaces).
Every second countable normal space, (X,T), is metrizable, i.e. there is a
metric p on X such that 7 = 7,. Moreover, p may be chosen so that X is
isometric to a subset Qo C Q (Q is as in Notation [12.10) equipped with the
metric d in Eq. (12.2). In this metric X is totally bounded and hence the
completion of X (which is isometric to Qo C Q) is compact.

Proof. (The proof here will be very similar to the proof of Theorem 12.13!)
Let B be a countable base for 7 and set

r={UV)eBxB|UcV}.

To each O € 7 and z € O there exist (U,V) € I' such that x € U C V C O.
Indeed, since B is a base for 7, there exists V € B such that x € V C O.
Because {z}NV¢ = (), there exists disjoint open sets U and W such that z € U,
Ve C W and UNW = (. Choose U € B such that z € U C U. Since
UcUcWe UcWecCV and hence (U,V) € I. See Figure [12.7 below. In
particular this shows that

By :={U € B: (U,V) € I for some V € B}

is still a base for 7.

If I' is a finite set, the previous comment shows that 7 only has a finite
number of elements as well. Since (X, 7) is Hausdorff, it follows that X is a
finite set. Letting {xn}nN:1 be an enumeration of X, define T': X — @ by
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Fig. 12.7. Constructing (U, V) € I.

T(x,) = e, for n =1,2,..., N where e, = (0,0,...,0,1,0,...), with the 1
occurring in the n*" spot. Then p(z,y) := d(T(z),T(y)) for z,y € X is the
desired metric.

So we may now assume that I" is an infinite set and let {(U,,V,)}
be an enumeration of I. By Urysohn’s Lemma for normal spaces (Theorem
12.40) there exists fyv € C(X,[0,1]) such that fyv =0on U and fyy =1
on Ve Let F:={fuyv | (U V) €I} and set f, := fu, v, — an enumeration
of F. The proof that

o) = 3 5 Uale) = fulo)]

is the desired metric on X now follows exactly as the corresponding argument
in the proof of Theorem [12.13l [

12.6 Exercises

Exercise 12.5. Prove Theorem [12.9. Hints:

1. By Proposition [12.7, there exists a precompact open set V such that
K Cc V. CV C U Now suppose that f : K — [0,a] is continuous with
o € (0,1] and let A := f71([0,%a]) and B := f~([2a,1]). Appeal to
Lemma [12.8/to find a function g € C(X, [0, «/3]) such that g = a/3 on B
and supp(g) C V' \ A.

2. Now follow the argument in the proof of Theorem [7.4] to construct F €
C(X, [a,b]) such that F|x = f.

3. For ¢ € [a,b], choose ¢ < U such that ¢ = 1 on K and replace F by
F. = ¢F + (1 - ¢)c.

Exercise 12.6 (Sterographic Projection). Let X = R", X* := X U {o0}
be the one point compactification of X, S := {y € R"™! : |y| = 1} be the
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unit sphere in R**! and N = (0,...,0,1) € R*"!. Define f : S — X* by
f(N) =00, and for y € S™\ {N} let f(y) =b € R™ be the unique point such
that (b,0) is on the line containing N and y, see Figure [12.8 below. Find a
formula for f and show f:S™ — X* is a homeomorphism. (So the one point
compactification of R™ is homeomorphic to the n sphere.)

Fig. 12.8. Sterographic projection and the one point compactification of R".

Exercise 12.7. Let (X, 7) be a locally compact Hausdorff space. Show (X, 7)
is separable iff (X*,7*) is separable.

Exercise 12.8. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X* := X U{oco},7*),
is not metrizable. Hint: use exercise [12.7.

Exercise 12.9. Suppose (X, d) is a locally compact and o — compact metric
space. Show the one point compactification, (X* := X U {oo}, 7*), is metriz-
able.

Exercise 12.10. In this problem, suppose Theorem [12.31] has only been
proved when X is compact. Show that it is possible to prove Theorem [12.31
by using Proposition [12.24' to reduce the non-compact case to the compact
case.

Hints.

Exercise 12.11. 1.If A, =R for all z € X let X* = X U {oo} be the one
point compactification of X.
2.1f A, = {0} for some zg € X, let Y := X \ {20} and Y* =Y U {oo} be
the one point compactification of Y.
For f € A define f (c0) = 0. In this way A may be considered to be a
sub-algebra of C(X*,R) in case 1. or a sub-algebra of C(Y*,R) in case 2.
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Exercise 12.12. Let M < oo, show there are polynomials p,,(¢) such that

lim sup ||t| —pn(t)] =0
n—00 |41 < M

using the following outline.

1. Let f(z) = V1 —x for x| < 1 and use Taylor’s theorem with integral
remainder (see Eq. [A.15 of Appendix [Al), or analytic function theory if
you know it, to show there are constants® ¢,, > 0 for n € N such that

Vi-z=1- chx" for all |z| < 1. (12.10)

n=1

2. Let gm(z) :== 1= > ¢,z Use (12.10) to show Y 2 ¢, = 1 and
conclude from this that

lim sup [V1—2—gn(z)] =0. (12.11)

M0 x| <1
3.Let 1 —a =t2/M? ie. x =1—t>/M?, then

t
lim sup u—qm(l—tQ/MQ) =0
m=oe jy<m | M

so that p,,(t) := Mg, (1 — t2/M?) are the desired polynomials.

Exercise 12.13. Given a continuous function f : R — C which is 27 -

periodic and ¢ > 0. Show there exists a trigonometric polynomial, p(6) =
S ane™? such that |f(0) — P(0)| < e for all & € R. Hint: show that

n=—N

there exists a unique function F € C(S') such that f(0) = F(e') for all

0 eR.

Remark 12.44. Exercise [12.13 generalizes to 2r — periodic functions on RY,
i.e. functions such that f(6+2me;) = f(0) for alli =1,2,...,d where {ei}?zl
is the standard basis for R%. A trigonometric polynomial p() is a function of

f € R? of the form _
pO) = Y e
nel’

where I is a finite subset of Z?. The assertion is again that these trigonometric
polynomials are dense in the 27 — periodic functions relative to the supremum
norm.

5 In fact ¢, == (2;;?!)”, but this is not needed.
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Baire Category Theorem

Definition 13.1. Let_(X, T) be a topological space. A set E C X is said to be
nowhere dense if (E)O =0 i.e. E has empty interior.

Notice that F is nowhere dense is equivalent to
X =((B))" = (B)" = ()",

That is to say E is nowhere dense iff £° has dense interior.

13.1 Metric Space Baire Category Theorem

Theorem 13.2 (Baire Category Theorem). Let (X, p) be a complete met-
ric space.

[e ]
1 If{V,}.2 | is a sequence of dense open sets, then G := V., is dense in
=1

X.

2.If {En},_, is a sequence of nowhere dense sets, then \J,_y En, C
Uo_y En & X and in particular X # U, En.

n=1

n

Proof. 1) We must shows that G = X which is equivalent to showing
that W N G # ) for all non-empty open sets W C X. Since V; is dense,
W NV; # 0 and hence there exists 1 € X and 1 > 0 such that

B(xl,&?l) cwnv.

Since Vs is dense, B(x1,e1)NVa # () and hence there exists zo € X and €3 > 0
such that
B(xg,e2) C B(z1,e1) N Va.

Continuing this way inductively, we may choose {z,, € X and &, > 0}, such
that
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B(xp,en) C B(xp_1,6n-1) NV, Vn.

Furthermore we can clearly do this construction in such a way that ¢, | 0

as n 1 oco. Hence {x,}52, is Cauchy sequence and x = lim z, exists in X
n—oo

since X is complete. Since B(xy,¢&,) is closed, * € B(x,,&,) C V,, so that

x €V, for all n and hence x € G. Moreover, x € B(x1,e1) C W NV} implies

x € W and hence © € W N G showing W NG # . 2) The second assertion is
equivalently to showing

@# (U En) = ﬂ (En)p: m (E;jz)o'
n=1 n=1 n=1

As we have observed, E,, is nowhere dense is equivalent to (E¢)° being a dense
open set, hence by part 1), (),—, (E%)° is dense in X and hence not empty. m

13.2 Locally Compact Hausdorff Space Baire Category
Theorem

Here is another version of the Baire Category theorem when X is a locally
compact Hausdorff space.

Proposition 13.3. Let X be a locally compact Hausdorff space.

[ee]
1. If{V,}.2 | is a sequence of dense open sets, then G := V, is dense in
=1

X. !
2. If {En}o2 | is a sequence of nowhere dense sets, then X # o, Ep.

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if suffices to show G N W =# () for all open sets
W C X. Since V; is dense, there exists 1 € V1 N W and by Proposition [12.7
there exists U; C, X such that ¢, € Uy C Uy € VinW with U; being compact.
Similarly, there exists a non-empty open set Us such that Uy C Uy C U; N Va.
Working inductively, we may find non-empty open sets {Uy},—, such that
U, C Uy C U,_1NVj. Since ﬂ}z:lUk = U, # 0 for all n, the finite intersection
characterization of U; being compact implies that

0#n2, U CGNW.
|

Definition 13.4. A subset E C X is meager or of the first category if
E = U E, where each E, is nowhere dense. And a set R C X is called

n=1
restdual if R° is meager.



13.2 Locally Compact Hausdorff Space Baire Category Theorem 181

Remarks 13.5 For those readers that already know some measure theory
may want to think of meager as being the topological analogue of sets of mea-
sure 0 and residual as being the topological analogue of sets of full measure.
(This analogy should not be taken too seriously, see Exercise(19.19.)

1. R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {Ey,}
such that

R®=U>,E, C U, E,.

Taking complements of this equation shows that
meo=1ETCL - Ra

i.e. R contains a set of the form N2, V,, with each V,, (= E¢) being an
open dense subset of X.
Conversely, if N7V, C R with each V,, being an open dense subset of X,
then R® C U2, V¢ and hence R® = Uy E,, where each E,, = RNV, is
a nowhere dense subset of X.

2. A countable union of meager sets is meager and any subset of a meager
set s meager.

3. A countable intersection of residual sets is residual.

Remarks 13.6 The Baire Category Theorems may now be stated as follows.
If X is a complete metric space or X is a locally compact Hausdorff space,
then

1. all residual sets are dense in X and
2. X is not meager.

It should also be remarked that incomplete metric spaces may be meager.
For example, let X C C([0,1]) be the subspace of polynomial functions on
[0, 1] equipped with the supremum norm. Then X = U | E,, where E,, C X
denotes the subspace of polynomials of degree less than or equal to n. You
are asked to show in Exercise [13.1 below that F,, is nowhere dense for all n.
Hence X is meager and the empty set is residual in X.

Here is an application of Theorem [13.2.

Theorem 13.7. Let N' C C([0,1],R) be the set of nowhere differentiable

functions. (Here a function f is said to be differentiable at 0 if f'(0) :=
limy o M exists and at 1 if f'(1) := limgyo w exists.) Then N is
a residual set so the “generic” continuous functions is nowhere differentiable.

Proof. If f ¢ N, then f'(z) exists for some zp € [0,1] and by the
definition of the derivative and compactness of [0, 1], there exists n € N such
that |f(z) — f(zo)| < n|z —x0| V 2 € [0,1]. Thus if we define

E,:={feC(0,1]) : 3z €1[0,1] > |f(z)— f(xo)| < n|z —xzo| ¥V z € [0,1]},
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then we have just shown N¢ C E := U2, E,,. So to finish the proof it suffices
to show (for each n) E, is a closed subset of C([0,1],R) with empty interior.
1) To prove E, is closed, let {f,,} ~_, C E, be a sequence of functions such
that there exists f € C([0,1],R) such that || f — fi|l, — 0 as m — oo. Since
fm € E,, there exists x,, € [0,1] such that

[fn (@) = fr(@m)| < nlz — 2| ¥V 2 €[0,1]. (13.1)

Since [0,1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume o = lim,, .o Ty € [0,1] exists. Passing to the limit
in Eq. (13.1), making use of the uniform convergence of f,, — f to show
lmy, oo fm(Tm) = f(20), implies

|[f(2) = f(o)| < nlw— 0| V& €[0,1]

and therefore that f € F,,. This shows E,, is a closed subset of C([0,1],R).
2) To finish the proof, we will show EY = () by showing for each f € E,, and
e > 0 given, there exists g € C([0,1],R)\ E,, such that || f — g[|, <. We now
construct g. Since [0,1] is compact and f is continuous there exists N € N
such that |f(z) — f(y)| < /2 whenever |y —z| < 1/N. Let k denote the
piecewise linear function on [0, 1] such that k(%) = f(%) form =0,1,..., N
and k" (x) =0 for z ¢ my :={m/N :m =0,1,...,N}. Then it is easily seen
that ||f — k|l. < &/2 and for z € (&, L) that

K (z)] = 'f(mm; T Nepa.

N

We now make k£ “rougher” by adding a small wiggly function h which we define
as follows. Let M € N be chosen so that 4eM > 2n and define h uniquely
by h(§;) = (=1)"e/2 for m = 0,1,..., M and h"'(x) = 0 for x ¢ mp;. Then
|h]|, <eand |h(x)| =4eM > 2n for x ¢ 7. See Figure[13.1/ below. Finally
define g := k + h. Then

If = 9lloe SIf =Flloo + Ikl <e/24+€/2=¢
and
lg'(z)] > |A (z)] — |k (z)| >2n —n=nVz ¢ mpy Uny.

It now follows from this last equation and the mean value theorem that for
any ro € [07 1];
o) stew)

T — X

for all z € [0, 1] sufficiently close to . This shows g ¢ F,, and so the proof is
complete. [
Here is an application of the Baire Category Theorem in Proposition [13.3.
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|

Fig. 13.1. Constgructing a rough approximation, g, to a continuous function f.

Proposition 13.8. Suppose that f : R — R is a function such that f'(x)
exists for all x € R. Let

U:—U5>0{I€R: sup |f’(x+y)<oo}.

lyl<e

Then U is a dense open set. (It is not true that U = R in general, see Example
?7? below.)

Proof. It is easily seen from the definition of U that U is open. Let W C, R
be an open subset of R. For k& € N, let

By = {er:If(y)—f(w)I <kly— x| when |y — ] < ;1}

= () {zeW:lf@+2) - f@) <k},

zi|z|<k—1

which is a closed subset of R since f is continuous. Moreover, if x € W and
M = |f'(z)|, then

[f(y) = f@)] = f'(z) (y — ) + oy — o)
< (M+1) [y —xf

for y close to . (Here o(y — x) denotes a function such that lim,_., o(y —
x)/(y — x) = 0.) In particular, this shows that € FEj for all k sufficiently
large. Therefore W= U2, E), and since W is not meager by the Baire category
Theorem in Proposition [13.3, some Ej has non-empty interior. That is there
exists xg € Ey, C W and ¢ > 0 such that

J:=(zg—e,x0+¢) C Ex CW.
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For z € J, we have |f(z + 2) — f(z)| < k|z| provided that |2| < k! and
therefore that |f/(z)] < k for @ € J. Therefore zo € U N W showing U is
dense. ]

Remark 185.9. This proposition generalizes to functions f : R™ — R™ in an
obvious way.

For our next application of Theorem [13.2, let X := BC*° ((—1,1)) denote
the set of smooth functions f on (—1,1) such that f and all of its derivatives
are bounded. In the metric

ok =9
p(f.9) = kZ:oQ 1+ f® 79(1@)”00 for f,g € X,

X becomes a complete metric space.
Theorem 13.10. Given an increasing sequence of positive numbers { M}, ,

the set ()()
. f'IL 0

= X:1 T —Zl>1

{fE lisolip‘ |2

n

1s dense in X. In particular, there is a dense set of f € X such that the power
series expansion of f at 0 has zero radius of convergence.

Proof. Step 1. Let n € N. Choose g € C°((—1, 1)) such that ||g||, < 27"
while ¢’(0) = 2M,, and define

x tn—1 ta
= / dtn_l/ dtn_g .o / dtlg(tl).
0 0 0
Then for k < n,

T tn—k—1 to
fy(Lk) (:L’) = / dtn—k—l / dtn_k_g .. / dtlg(tl),
0 0 0

f™(z) = g'(z), £ (0) = 2M,, and F) satisfies

—n

< 27" for k < n.

Consequently,
S N
f’ﬂ) ZQ_k
k=0 1+ fn H

n—1
<> 2k ”+Z2 Fol<2(2 42 =427
k=0 k=n
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Thus we have constructed f, € X such that lim, . p(f,,0) = 0 while
T(L")(O) = 2M,, for all n. Step 2. The set

G = Umsn {f €X: ‘f<m>(0)‘ > Mm}

is a dense open subset of X. The fact that G,, is open is clear. To see that
G,, is dense, let ¢ € X be given and define g, := g + &,,, frn Where ¢, 1=
sgn(g(™(0)). Then

‘g(m) ‘ = ’g(m) ‘ + ‘f,(nm)(O)‘ > 2M,, > M,, for all m.
Therefore, g,, € G, for all m > n and since

P(gms g) = p(fm,0) — 0 as m — oo

it follows that g € G,,. Step 3. By the Baire Category theorem, NG,, is a dense
subset of X. This completes the proof of the first assertion since

F = {fEX:limsup f(;\‘;(O)’ > 1}

n—oo

=Ny, 9 feX: VA > 1 for some n >m DN Gy

n

Step 4. Take M,, = (n ) and recall that the power series expansion for f near

0 is given by Y7, ! "L,O):c” This series can not converge for any f € F and
any x # 0 because
0
lim sup In( ) = lim sup Inl Q)nx"
0
= lim sup In 2) - lim n!|2"] = o0
where we have used lim,,_,o, n!|2"| = oo and limsup,,_, J(CZI()OQ > 1. [ ]

Remark 13.11. Given a sequence of real number {a,} -, there always exists
f € X such that f(™(0) = a,. To construct such a function f, let ¢ €
C2°(—1,1) be a function such that ¢ = 1 in a neighborhood of 0 and &,, € (0, 1)
be chosen so that €, | 0 as n — oo and Y., |a,|e? < oo. The desired
function f can then be defined by

oo

fl@) =" %w"qﬁ (x/en) = Zgn (13.2)

n=0

The fact that f is well defined and continuous follows from the estimate:
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¢l
ga2)] = 120 e

T d(a/en)| <

and the assumption that Y~ |a,| e < co. The estimate

‘m_l)lxn1¢(x/5n) + (!z;z%’(x/sn)

Nl a

(=1 "
< (16l + 16'50) |&n|5n

and the assumption that Y~ lan|e? < oo shows f € C'(—1,1) and

fi(x) = 30° , g (x). Similar arguments show f € C¥(—1,1) and ¥ (z) =

Yoo g%k)( ) for all  and k € N. This completes the proof since, using

¢(x/e,) =1 for x in a neighborhood of 0, gy(Lk)(O) = 0k na) and hence

F9(0 Zgae) — ap.

g ()] =

13.3 Exercises

Exercise 13.1. Let (X, ||-]|) be an infinite dimensional normed space and E C
X be a finite dimensional subspace. Show that £ C X is nowhere dense.

Exercise 13.2. Now suppose that (X, ||-||) is an infinite dimensional Banach
space. Show that X can not have a countable algebraic basis. More explicitly,
there is no countable subset S C X such that every element x € X may be
written as a finite linear combination of elements from S. Hint: make use of
Exercise [13.1 and the Baire category theorem.



14

Hilbert Space Basics

(BRUCE: Perhaps this should be move to between Chapters 7 & 87)

Definition 14.1. Let H be a complex vector space. An inner product on H is
a function, {-|-) : H x H — C, such that

1. {ax 4 by|z) = alz|z) + b{y|z) i.e. © — (x|z) is linear.

2. (zly) = (ylx).
3. ||z||? := (z|z) > 0 with equality ||z|* = 0 iff z = 0.

Notice that combining properties (1) and (2) that x — (z|z) is anti-linear
for fixed z € H, i.e.

(laz + by) = alzl) + b(zly).

The following identity will be used frequently in the sequel without further
mention,

lz +yl* = (@ +ylz +y) = llz]* + lylI* + (aly) + (ylz)
= [l + llyl* + 2Re(z[y). (14.1)

Theorem 14.2 (Schwarz Inequality). Let (H,(:|-)) be an inner product
space, then for all x,y € H

[{zly)] < Nzl

and equality holds iff © and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and
observe; if z = ay for some a € C, then (z|y) = a||y||* and hence

2
[zl = lalllyll™ = ll=lllyl-

Now suppose that @ € H is arbitrary, let z := z — ||y||=?(x|y)y. (So z is the
“orthogonal projection” of x onto y, see Figure 14.1.) Then
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:M‘Z': X~ (7‘)7)5
5 gy

Fig. 14.1. The picture behind the proof of the Schwarz inequality.

(ely) H s 1l (ely)
0< |22 = ||z — yl| = |lz||* + y||* — 2Re(x y
I Pk 1™+ Py Iwl™ = 2Retel )
L el
= o) - L2l
llyl|

from which it follows that 0 < ||y||?||z||* — [{(z|y)|* with equality iff 2 = 0 or
equivalently iff 2 = ||y||=2(z|y)y. |

Corollary 14.3. Let (H, (-|-)) be an inner product space and ||z|| := /{x|z).
Then the Hilbertian norm, ||-|, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H,||-||).

Proof. If z,y € H, then, using the Schwarz’s inequality,

lz +yl1* = ll2]” + lly]* + 2Re(|y)
< [l + iyl + 2ll= iyl = (ol + lyI)*.

Taking the square root of this inequality shows ||-|| satisfies the triangle in-
equality.
Checking that ||-|| satisfies the remaining axioms of a norm is now routine

and will be left to the reader. If z, 2"y, 4’ € H, then

[(zly) — (2'[y")] = [{x — 2|y) + (@'|y — ¢)]
<llylllz — ="l + =" lly — ¥l
<llylllz ="l + (=l + = = ")) ly = ¥'ll
= llyllllz = 2"l + llzllly = o'l + lz — 2" |[[ly = /|

from which it follows that (-|-) is continuous. |

Definition 14.4. Let (H,(:|-)) be an inner product space, we say x,y € H
are orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a
set, x € H is orthogonal to A (write x L A) iff (x|y) =0 for ally € A. Let
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A+ ={x € H:z L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if x 1 y for all distinct elements x,y € S. If S further
satisfies, ||xz|| =1 for all x € S, then S is said to be orthonormal set.

Proposition 14.5. Let (H, (:|-)) be an inner product space then
1. (Parallelogram Law)
=+l + o — yl* = 2]z + 2l|y]|* (14.2)

for all x,y € H.
2. (Pythagorean Theorem) If S C H is a finite orthogonal set, then

>

zeS

2

=3 Jlall® (14.3)

zeS

3. If A C H is a set, then A is a closed linear subspace of H.

Remark 14.6. See Proposition [14.54] for the “converse” of the parallelogram
law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

lz +yl* + llz =yl
= ll2ll* + lyll* + 2Re(zly) + [l2]|* + |ylI* — 2Re(z]y)
= 2|z + 2[ly|I*,

and

2

Sall =0 2D w = (zly)

zeS zeS yeSs z,yes
= (alz) = |l=)*.
z€eS zeS

Item 3. is a consequence of the continuity of (-|-) and the fact that
A* = Ngea Nul((:|z))
where Nul({-|)) = {y € H : (y|z) = 0} — a closed subspace of H. ]

Definition 14.7. A Hilbert space is an inner product space (H,{(:|-)) such
that the induced Hilbertian norm is complete.
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Example 14.8. Suppose X is a set and p: X — (0,00), then H := £ () is a
Hilbert space when equipped with the inner product,

(flg) =D f(2)g (@) p(x).
zeX
In Exercise [14.7 you will show every Hilbert space H is “equivalent” to a
Hilbert space of this form with g = 1.

More example of Hilbert spaces will be given later after we develop the
Lebesgue integral, see Example 23.1 below.

Definition 14.9. A subset C of a vector space X is said to be convex if for
all z,y € C the line segment [z,y] := {tz + (1 —t)y : 0 < ¢ < 1} joining x to
y is contained in C' as well. (Notice that any vector subspace of X is convex.)

Theorem 14.10 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed convex subset of H. Then for any x € H
there exists a unique y € M such that

—y|| =d(z, M) = inf ||z — z|.
lz =yl = d(z, M) = inf |lz ]|
Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x —y) L M.

Proof. Uniqueness. By replacing M by M —xz:={m —xz:m € M} we
may assume z = 0. Let § := d(0, M) = inf,, e ||m|| and y, z € M, see Figure
14.2.

Fig. 14.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

2[lyl1* + 2ll2l* = ly + 21 + lly — 21
2

+z
Y +lly — 2] > 46% + [ly — 2] (14.4)

2

4|




14 Hilbert Space Basics 191

Hence if ||y|| = ||z|| = 8, then 262 + 262 > 462 + ||y — z||2, so that ||y — z||2 = 0.
Therefore, if a minimizer for d(0, -)|as exists, it is unique.

Existence. Let y, € M be chosen such that |y,| = 6, — ¢ = d(0, M).
Taking y = Y, and z = y,, in Eq. (14.4) shows

262, + 262 > 46° + ||y — ym >
Passing to the limit m,n — oo in this equation implies,

20% 4 20% > 46% 4+ limsup ||y — ym||?,

m,n— 00

i.e. imsup,, ,, oo [[Yn — Yml[* = 0. Therefore, by completeness of H, {yn},~,
is convergent. Because M is closed, y := lim y, € M and because the norm
is continuous, e
lyll = lim [y, || =6 = d(0, M).
n—00

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and «x € H. Let y € M be the
closest point in M to x. Then for w € M, the function

9(t) = llz — (y + tw)|* = [l — y|* - 2tRe(z — ylw) + *[w]?

has a minimum at ¢ = 0 and therefore 0 = ¢’(0) = —2Re(z — y|w). Since
w € M is arbitrary, this implies that (x —y) L M.

Finally suppose y € M is any point such that (z —y) L M. Then for
z € M, by Pythagorean’s theorem,

lz =2l = llz =y +y—2l* = |z =yl + ly = 2> > ]2 -y

which shows d(z, M)? > ||x — y||?. That is to say y is the point in M closest
to x. n

Definition 14.11. Suppose that A : H — H is a bounded operator. The
adjoint of A, denote A*, is the unique operator A* : H — H such that
(Az|y) = (x|A*y). (The proof that A* exists and is unique will be given in
Proposition [14.16 below.) A bounded operator A : H — H 1is self - adjoint
or Hermitian if A = A*.

Definition 14.12. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py; : H — H such that
for x € H, Py (x) is the unique element in M such that (x — Py(x)) L M.

Theorem 14.13 (Projection Theorem). Let H be a Hilbert space and
M C H be a closed subspace. The orthogonal projection Py; satisfies:

1. Py is linear and hence we will write Pyrx rather than Pyy(x).
2. P}, = Py (Pyr is a projection).
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3. Py, = Py, (Pag is self-adjoint).
4. Ran(Py) = M and Nul(Py) = M+,
Proof.
1. Let 1,29 € H and « € F, then Py x1 + aPyze € M and

Pyzy 4+ aPyxzg — (21 + axg) = [Pyxy — o1 + a(Pyae — 22)] € Mt

showing Pyra1 + aPyaza = Py(x1 4+ axs), i.e. Py is linear.

2. Obviously Ran(Py;) = M and Py = z for all ¥ € M. Therefore PZ, =
Py

3. Let z,y € H, then since (z — Pyx) and (y — Pyy) are in M+,

(Pyly) = (Pyux|Puy +y — Puy) = (Pux|Pyy)
= (Pyx + (z — Pyx)|Pyy) = (2| Pay).

4. We have already seen, Ran(Py) = M and Pyx =0iffz =2 —-0€ M*,
i.e. Nul(Py) = M+.
[

Corollary 14.14. If M C H is a proper closed subspace of a Hilbert space H,
then H= M & M~*.

Proof. Given € H, let y = Pyx so that x —y € M*. Then = =
y+ (@ —y) e M+ML+. Ifz € MAM>E, then z Lz, ie. ||z|° = (z]a) = 0. So
MM+ ={0}. ]

Exercise 14.1. Suppose M is a subset of H, then M++ = span(M).

Theorem 14.15 (Riesz Theorem). Let H* be the dual space of H (Nota-
tion|7.9). The map

ceH -1 (|2) € HY (14.5)

ul

s a conjugate linear™ isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

[{(x|2)| < ||z||||z|| for all z € H

with equality when = = z. This implies that ||jz| 5. = [|(-|2)l g = 2]
Therefore j is isometric and this implies j is injective. To finish the proof we

! Recall that j is conjugate linear if
J(z1 +aze) = jz1 + @jze

for all 21,20 € H and o € C.
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must show that j is surjective. So let f € H* which we assume, with out
loss of generality, is non-zero. Then M =Nul(f) — a closed proper subspace
of H. Since, by Corollary 14.14, H = M & M+, f : H/M 2 M+ - Fis a
linear isomorphism. This shows that dim(M~) =1 and hence H = M @ Fz,
where zog € M+ \ {0} 2 Choose z = Axg € M+ such that f(zg) = (x0l2), i.e.
A = f(xo)/ ||xol|” . Then for & = m + Azo with m € M and A € F,

f(@) = Af(zo) = Maolz) = (Azolz) = (m + Azo|2) = (z]2)
which shows that f = jz. [

Proposition 14.16 (Adjoints). Let H and K be Hilbert spaces and A :
H — K be a bounded operator. Then there exists a unique bounded operator
A*: K — H such that

(Az|y) g = (x| A*y)m for allz € H and y € K. (14.6)

Moreover, for all A;B € L(H,K) and A € C,

1. (A+AB)" = A* + \B*,

2. A 1= (A*)* = A,

3. [[A*|| = [|A]l and

£ 4% A] = |42,

5.If K = H, then (AB)" = B*A*. In particular A € L (H) has a bounded
inverse iff A* has a bounded inverse and (A*) "' = (A_l)*.

Proof. For each y € K, the map © — (Ax|y)x is in H* and therefore
there exists, by Theorem [14.15, a unique vector z € H such that

(Az|y)k = (x|z) g for all z € H.

This shows there is a unique map A* : K — H such that (Az|y)x =
(x|A*(y)) g for all z € H and y € K.
To see A* is linear, let y;,y2 € K and X\ € C, then for any x € H,

(Azlyr + M2k = (Azlyr) k + MAz[y2) i
= (2] A" (1)) ik + M| A*(y2))
= (z|A"(y1) + A" (y2)) x

and by the uniqueness of A*(y; + \y2) we find
A*(y1 + Ayz) = A" (y1) + AA (12).
This shows A* is linear and so we will now write A*y instead of A*(y).

2 Alternatively, choose zo € M+ \ {0} such that f(zo) = 1. For x € M~ we have
f(z — Azo) = 0 provided that \ := f(z). Therefore z — Azo € M N M+ = {0},
i.e. x = Axo. This again shows that M~ is spanned by xo.



194 14 Hilbert Space Basics

Since

(A*yloyn = (x|A*y) g = (Azly)k = (y|Az)K
it follows that A** = A. The assertion that (A + AB)" = A* + AB* is Exercise
14.2.

Items 3. and 4. Making use of the Schwarz inequality (Theorem [14.2)),
we have

[A* = sup [JA"K|
keK:||kl|=1
= sup sup  [(A*k|h)]|
keK:|[k||=1 he H:||h]|=1
= sup sup  [(k[AR)[ = sup  [[AR[| = | A]
heH:|[h||=1 ke K:|[k|=1 heH:||h|=1

so that ||A*|| = ||A]| . Since
1A% Al < AT 1A] = (1A
and

1A = sup [|AR|* = sup  |(Ah|AR)|

heH:||hl|=1 heH:||h||=1
= sup [(h|A"AR)| < sup  [[ATAR[ = [A"A] (14.7)
heH:|[h|=1 heH:|[h]|=1

we also have || A*A|| < ||A||> < ||A* A|| which shows [|A||> = || A*A]|.
Alternatively, from Eq. (14.7),

IA)? < |A*Al| < ||A] | A" (14.8)

which then implies ||A| < ||A*||. Replacing A by A* in this last inequality
shows ||A*|| < ||A|| and hence that ||A*|| = ||A]|. Using this identity back in
Eq. (14.8) proves ||A|* = |A*A] .

Now suppose that K = H. Then

(ABhlk) = (Bh|A*k) = (h|B*A™k)
which shows (AB)" = B*A*. If A~! exists then
(A1) A" = (A4 =I" =T and

A (AT = (A7'A) =1 =1
This shows that A* is invertible and (A*)™' = (Afl)*. Similarly if A* is
invertible then so is A = A**. |

Exercise 14.2. Let H,K,M be Hilbert spaces, A,B € L(H,K),

L(K,M) and A\ € C. Show (A+ AB)" = A* + AB* and (CA)" =
L(M, H).

C €
c* e
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Exercise 14.3. Let H = C" and K = C™ equipped with the usual inner
products, i.e. (z|w)y = z-w for z,w € H. Let A be an m xn matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 14.17. Suppose A : H — K is a bounded operator, then:

1. Nul(A*) = Ran(A)* .

2. Ran(A) = Nul(A4*)+.

3. if K=H andV C H is an A — invariant subspace (i.e. A(V) C V), then
V4t is A* — invariant.

Proof. An element y € K is in Nul(4*) iff 0 = (A*ylz) = (y|Ax)
for all 2 € H which happens iff y € Ran(A)*. Because, by Exercise [14.1]
Ran(A) = Ran(A4)1+, and so by the first item, Ran(A4) = Nul(A*)1. Now
suppose A(V) C V and y € V4, then

(Aylz) = (y|Az) =0 forall z € V

which shows A*y € V. ]

14.1 Hilbert Space Basis

Proposition 14.18 (Bessel’s Inequality). Let T be an orthonormal set,
then for any x € H,

> Nzl < ||z|® for all x € H. (14.9)

veT

In particular the set T, = {v €T : (z|v) # 0} is at most countable for all
x € H.

Proof. Let I' C T be any finite set. Then

0< Jlz— Y (zloyu]® = llz|* = 2Re Y {afv) (v]z) + D [{alo)]?

vel’ vel vel’

= llzl® = Y l{afv)[?

vel

showing that > |(x|v)|? < |lz|?. Taking the supremum of this inequality over
vel
I' CC T then proves Eq. (14.9). |

Proposition 14.19. Suppose T C H is an orthogonal set. Then s = v
exists in H (see Definition [7.15) iff 3 cp ||v]|* < co. (In particular T must
be at most a countable set.) Moreover, if Y- . |[v[|* < oo, then
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L |sl* = Cyer lloll* and
2. (s|lx) = > cplvlx) for all x € H.

o0
Similarly if {vn}22, is an orthogonal set, then s = > vy, exists in H
n=1

o] o0

iff Y |lvnll? < oo. In particular if Y. v, ezists, then it is independent of
n=1 n=1

rearrangements of {vn 22 ;.

Proof. Suppose s = ) v exists. Then there exists I" CC T' such that

2
Zv <1

veA

> lol* =

veA

for all A CcC T\ I', wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such A shows that 3, c 7 r [v]|* < 1 and

therefore
Soll* <14 > |lv)* < 0.
veT vel

Conversely, suppose that >, _ [|[v]|? < oo. Then for all € > 0 there exists
I'. CC T such that if A cC T\ I%,

>

veA

2

=Y ol <& (14.10)

veA

Hence by Lemma [7.16}, » ., v exists.
For item 1, let I be as above and set s. := »_ . v. Then

sl = llselll < lls = sl < e

and by Eq. (14.10),

2
0< Y Il llsell® =D llol® < €.

veT véI.

Letting € | 0 we deduce from the previous two equations that ||sc|| — ||s|| and
s> = S ,er 0] as e | 0 and therefore ||| = 3, o [[0]1%.

Item 2. is a special case of Lemma [7.16. For the final assertion, let
N

sy = Y, v, and suppose that limy_ . sy = s exists in H and in partic-
n=1

ular {sy}x_; is Cauchy. So for N > M.

N
Z |vnll® = |lsny — sp|* — 0 as M, N — oo
n=M+1
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o0 o0
which shows that Y |lv,||? is convergent, i.e. > [jv,[|? < .

Alternative Sroof of item 1. We coulg use the last result to prove
Item 1. Indeed, if }°, .4 [|v]|* < oo, then T is countable and so we may write
T ={vn},—;. Then s = limy_.o sy with sy as above. Since the norm, |-,
is continuous on H,

N 2 N
Is|> = lim [lsy[* = lim |[3 vn|| = lim Y [joa?

N—o0 N—o0 N—oo
n=1 n=1

o0

2
= loall* =D IIvl*.
n=1 veT

Corollary 14.20. Suppose H is a Hilbert space, 3 C H is an orthonormal
set and M = span (3. Then

Pyx = Z<x|u>u, (14.11)
ueps
> lwlw))? = || Pyz)|? and (14.12)
uef
> (@lu)(uly) = (Paly) (14.13)
u€eS

for all x,y € H.

Proof. By Bessel’s inequality, >, 5 [(z]u))® < ||z|* for all z € H and
hence by Proposition 14.18, Px := 3" s(z|u)u exists in H and for all z,y €
H7

(Prly) = ((luyuly) = Y (wlu)(uly). (14.14)

u€f uep

Taking y € 8 in Eq. (14.14) gives (Px|y) = (z|y), i.e. that (z — Pz|y) = 0 for
all y € 8. So (x — Px) L span 8 and by continuity we also have (z — Px) L
M = span f. Since Pz is also in M, it follows from the definition of Pj; that
Px = Pyz proving Eq. (14.11). Equations (14.12) and (14.13) now follow
from (14.14), Proposition 14.19 and the fact that (Pyzly) = (Pizly) =
(Pprz|Pary) for all z,y € H. ]

Exercise 14.4. Let (H, (-|-)) be a Hilbert space and suppose that {P,}> ;
is a sequence of orthogonal projection operators on H such that P,(H) C
P,+1(H) for all n. Let M := U2, P,(H) (a subspace of H) and let P denote
orthonormal projection onto M. Show lim,,_,oc Pyx = Pz for all z € H. Hint:
first prove the result for 2 € M=, then for € M and then for z € M.
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Definition 14.21 (Basis). Let H be a Hilbert space. A basis 3 of H is a
mazximal orthonormal subset 3 C H.

Proposition 14.22. Every Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If @ C F is linearly ordered then U® is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element 5 € F. ]

An orthonormal set 3 C H is said to be complete if 3+ = {0}. That is
to say if (z|u) = 0 for all v € 3 then x = 0.

Lemma 14.23. Let 8 be an orthonormal subset of H then the following are
equivalent:

1. 3 is a basis,
2. B is complete and
3. span 0 = H.

Proof. (1. < 2.) If [ is not complete, then there exists a unit vector
x € -\ {0}. The set U {z} is an orthonormal set properly containing 3, so
[ is not maximal. Conversely, if § is not maximal, there exists an orthonormal
set B C H such that 8 & f1. Then if x € 1 \ §, we have (z|u) = 0 for all
u € 3 showing [ is not complete.

(2. <= 3.) If § is not complete and = € B+ \ {0}, then span g C z*
which is a proper subspace of H. Conversely if span ( is a proper subspace of

— 1
H, 3+ = span 3~ is a non-trivial subspace by Corollary 14.14l and 3 is not
complete. n

Theorem 14.24. Let § C H be an orthonormal set. Then the following are
equivalent:

1. B is complete, i.e. (B is an orthonormal basis for H.

2.x= > (zlu)yu for all z € H.
u€eS

3. (xlyy = > (xlu) (ul]y) for all z,y € H.

uep

4. ||z||? = ZB |(z|u)|? for all x € H.
ue

Proof. Let M = span § and P = Py,.

(1) = (2) By Corollary [14.20, > (x|u)u = Ppsz. Therefore
u€ef

xfz<x\u>u:foMxGMJ‘:BJ‘:{O}.
u€es

(2) = (3) is a consequence of Proposition [14.19.
(3) = (4) is obvious, just take y = x.
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(4) = (1) If z € B+, then by 4), ||z|| = 0, i.e. z = 0. This shows that 3 is
complete. [ ]

Suppose I" := {u,} -, is a collection of vectors in an inner product space
(H,{:|-)). The standard Gram-Schmidt process produces from I" an or-
thonormal subset, 8 = {v,}22,, such that every element u,, € I' is a finite
linear combination of elements from 3. Recall the procedure is to define v,
inductively by setting

n

Up41 = Ung1l — Z(Un+1|11j>’0j = Upy1 — Ppvng1
i=1

where P, is orthogonal projection onto M, := span({vy},_;). If v,41 := 0, let
i1 = 0, otherwise set vp41 := ||On41]|”" Ons1. Finally re-index the resulting
sequence so as to throw out those v,, with v,, = 0. The result is an orthonormal
subset, 8 C H, with the desired properties.

Definition 14.25. As subset, I, of a normed space X is said to be total if
span(l) is a dense in X.

Remark 14.26. Suppose that {u,}5, is a total subset of H. Let {v,,}22; be
the vectors found by performing Gram-Schmidt on the set {u,}5> ;. Then
B = {v,}52, is an orthonormal basis for H. Indeed, if h € H is orthogonal
to 3 then h is orthogonal to {u,}52, and hence also span{u,},., = H. In
particular h is orthogonal to itself and so h = 0.

Proposition 14.27. A Hilbert space H is separable iff H has a countable
orthonormal basis 3 C H. Moreover, if H is separable, all orthonormal bases of
H are countable. (See Proposition 4.14 in Conway’s, “A Course in Functional
Analysis,” for a more general version of this proposition.)

Proof. Let D C H be a countable dense set D = {u,}>2 ;. By Gram-
Schmidt process there exists § = {v,}2; an orthonormal set such that
span{v, : m =1,2...,N} D span{u, : n=1,2...,N}. So if (z|v,) = 0 for
all n then (x|u,) = 0 for all n. Since D C H is dense we may choose {wy} C D
such that = limy_. . wy and therefore (z|x) = limg_, oo (x|wy) = 0. That is to
say x = 0 and ( is complete. Conversely if 8 C H is a countable orthonormal
basis, then the countable set

D= Zauu:aue(@+i@:#{u:au7&0}<oo

ues

is dense in H. Finally let 5 = {u,}52; be an orthonormal basis and $; C H
be another orthonormal basis. Then the sets

By ={v € p1: (vluy) # 0}
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oo
are countable for each n € N and hence B := |J B, is a countable subset

of $1. Suppose there exists v € 81 \ B, then (v|u,) = 0 for all n and since
B8 = {un}22, is an orthonormal basis, this implies v = 0 which is impossible
since ||v|| = 1. Therefore 8; \ B = () and hence 31 = B is countable. ]

Proposition 14.28. Suppose X and Y are sets and pn : X — (0,00) and
v:Y — (0,00) are give weight functions. For functions f : X — C and
g:Y >Clet f®g: X XY — C be defined by f @ g (z,y) := f(x)g(y). If
B C % (u) and v C €% (v) are orthonormal bases, then

Boy={f®g:feB andg e}
is an orthonormal basis for (2 (u® v).

Proof. Let f, f' € (2 (u) and g,g' € ¢? (v), then by the Tonelli’s Theorem
4.22| for sums and Holder’s inequality,

Y Ifeg-f ®g|u®V—Z|ff|u Z|gg|v

XxY
< ”fHé?(u) I ||z2(u) 191le2 ) ||g/||e2(y) =1 <oo.

So by Fubini’s Theorem /4.23 for sums,
(foglf @9 ewen =Y ffn-Y gdv
X Y

= (flf) e (9lg ) ey = 05.1:04.4'-

Therefore, 3 ® 7 is an orthonormal subset of £?(y ® v). So it only remains to
show 3®- is complete. We will give two proofs of this fact. Let F' € £?(u®@v).
In the first proof we will verify item 4. of Theorem [14.24] while in the second
we will verify item 1 of Theorem [14.24.

First Proof. By Tonelli’s Theorem,

dou@) Y v @) = 1Fll e < o

reX yey

and since p > 0, it follows that

Z |F(z,y)° v (y) < oo for all z € X,
yey

i.e. F(x,-) € £?(v) for all z € X. By the completeness of v,

S OIF@, ) v (y) = (F (2,) [F (2,)ew) = > |(F N9 e |
Y

g€y

and therefore,
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||F||€2(M®u) Z ,LL Z )|F('T y)|

reX yeYy

=S S HF @) 9ew| n@ (14.15)

x€eX gEY

and in particular, 2 — (F (x,-) |g)s2(,) is in £2 (1) . So by the completeness of
[ and the Fubini and Tonelli theorems, we find

Z’ V19 e ’ p(x) =S |D (F (@) 9)ewf (@) (@)

fepl X

=3 (ZF(x,y)g(y)V(y)) [ (@) p ()
X Y

2

2

2

=> | FayfegEypav(zy)

feplxxy

=> [(Flfe Neen |-
res

Combining this result with Eq. (14.15) shows

2 2
||FH152(H®V) = E |<F|f ®9>z2(u®y)|
feB, gev

as desired.
Second Proof. Suppose, for all f € § and g € v that (F|f ® g) =0, i.e.

0= (FIf ® Qeuan) = »_ n(x) > _ v (y) Flz,y)f(2)g(y)

zeX yey
=> u Ngder(w) f (). (14.16)
reX
Since
S HF@ g ew| 1@ <Y u@) > 1Pyl viy) <oo, (14.17)
reX reX yey

it follows from Eq. (14.16) and the completeness of 3 that (F'(z,-)|g)e ) = 0
for all x € X. By the completeness of v we conclude that F(z,y) = 0 for all
(z,y) e X xY. ]

Definition 14.29. A linear map U : H — K is an isometry if |Uz| , =
\z||;; for allz € H and U is unitary if U is also surjective.

Exercise 14.5. Let U : H — K be a linear map, show the following are
equivalent:
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1. U : H — K is an isometry,
2. (Uz|Ux") g = (z|2') g for all x,2’ € H, (see Eq. (14.33) below)
3.U"U =1idy.

Exercise 14.6. Let U : H — K be a linear map, show the following are
equivalent:

1. U : H — K is unitary
2. U*U =idy and UU™* = idk.
3. U is invertible and U™t = U*.

Exercise 14.7. Let H be a Hilbert space. Use Theorem [14.24! to show there
exists a set X and a unitary map U : H — ¢?(X). Moreover, if H is separable
and dim(H) = oo, then X can be taken to be N so that H is unitarily
equivalent to £2 = (2(N).

14.2 Some Spectral Theory

For this section let H and K be two Hilbert space over C.

Exercise 14.8. Suppose A : H — H is a bounded self-adjoint operator.
Show:

1. If X is an eigenvalue of A, i.e. Az = Az for some z € H\ {0}, then A € R.
2. If X\ and p are two distinct eigenvalues of A with eigenvectors = and y
respectively, then x L y.

Unlike in finite dimensions, it is possible that an operator on a complex
Hilbert space may have no eigenvalues, see Example [14.35 and Lemma [14.36
below for a couple of examples. For this reason it is useful to generalize the
notion of an eigenvalue as follows.

Definition 14.30. Suppose X is a Banach space over F (F =R or C) and
AeL(X). Wesay X\ € F is in the spectrum of A if A— A does not have a

bounded® inverse. The spectrum will be denoted by o (A) C F. The resolvent
set for A is p(A) :=TF\o (A).

Remark 14.31. If X is an eigenvalue of A, then A — AI is not injective and
hence not invertible. Therefore any eigenvalue of A is in the spectrum of A.
If H is a Hilbert space ant A € L (H), it follows from item 5. of Proposition
14.16 that A € o (A) iff A € 0 (A¥), i.e.

c(A)={A:Aec(A)}.

3 Tt will follow by the open mapping Theorem ?? or the closed graph Theorem ??
that the word bounded may be omitted from this definition.
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Exercise 14.9. Suppose X is a complex Banach space and A € GL(X).
Show

c(A ) =0 (A)7 "= {(ANiXxeo(A)}.
If we further assume A is both invertible and isometric, i.e. ||Az| = ||z|| for
all z € X, then show

o(A)c St :={zcC:|z] =1}.
Hint: working formally,

_ 1 1 AN
(At =) = -
I3 /\AAA A—A4

from which you might expect that (A=" — )\_1)_1 = NM(A-N"ifre
p(A).

Exercise 14.10. Suppose X is a Banach space and A € L (X) . Use Corollary
7.20 to show o (A) is a closed subset of {)\ eF: |\ <A := HAHL(X)} .

Lemma 14.32. Suppose that A € L(H) is a normal operator, i.e. [A, A*] = 0.
Then X € o(A) iff

|\1/iJIHl£1 [[(A—= AL = 0. (14.18)
In other words, A € o (A) iff there is an “approzimate sequence of eigen-
vectors” for (A,\), i.e. there exists ¥, € H such that || = 1 and

Ay, — A, — 0 as n — oo.
Proof. By replacing A by A — AI we may assume that A =0.If 0 ¢ o(A),

e vl _ ]
inf ||Avy|| = inf =" = inf =1/]|A7Y| > o.
iy 1400 = i = inf gy = VA7
Now suppose that inf|j, =1 [|A%| =& > 0 or equivalently we have
[ A > e [l

for all ¥ € H. Because A is normal,
[A[|* = (A A |y)) = (AA™Y|p) = (A"p|A"p) = | A*|*.
Therefore we also have
[A™p| = [[AY]| = e [|[¥]| V ¢ € H. (14.19)

This shows in particular that A and A* are injective, Ran(A) is closed and
hence by Lemma 14.17

Ran(A) = Ran(A) = Nul(A")* = {0}* = H.

Therefore A is algebraically invertible and the inverse is bounded by Eq.
(14.19). .
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Lemma 14.33. Suppose that A € L(H) is self-adjoint (i.e. A = A*) then

o(4) C | =14l 141, | < R.

op’?

Proof. Writting A = o + i3 with o, 5 € R, then

I(A+a+iB)¢]* = [(A+a)p|® + B [|9]]° + 2Re((A + a) ¥, i6y)
= (A + a)y|* + |8 1] (14.20)

wherein we have used

Relif((A+a)y,¢)] = FIm((A+ )9, ¢) =0
since __
(A+a)v,¥) = (@, (A+a)y) = (A+ ), ).
Eq. (14.20) along with Lemma [14.32 shows that A ¢ o(A) if 8 # 0, i.e.
o(A) C R. The fact that o (A4) is now contained in {— IAll,,

consequence of Exercise [14.9. [ |

||A||Op is a

Remark 14.34. It is not true that o(A) C R implies A = A*. For example let

A= (8 (1)> on H = C2, then o(A) = {0} yet A # A*.
Ezample 14.35. Let S € L(H) be a (not necessarily) normal operator. The
proof of Lemma [14.32] gives X € o(S) if Eq. (14.18) holds. However the con-
verse is not always valid unless S is normal. For example, let S : (2 — (2
be the shift, S(wi,ws,...) = (0,wi,ws,...). Then for any \ € D :=
{zeC:|z| <1},

1S =) Pl = 1159 = Xl = [[[S9ll = A1l = (1= [AD (1]

and so there does not exists an approximate sequence of eigenvectors for
(S, \) . However, as we will now show, o (S) = D.

To prove this it suffices to show by Remark [14.31/ and Exercise 14.9 that
D C o (S*). For if this is the cae then D C ¢ (S*) C D and hence o (S) = D

since D is invariant under complex conjugation.
A simple computation shows,

S*(wy,wa, ... ) = (wo,ws,...)
and w = (w1,ws,...) is an eigenvector for S* with eigenvalue A € C iff
0=(5"—=A)(wi,ws,...) = (w2 — A1, w3 — Awa,...).
Solving these equation shows

W = Awi, wg = Aws = ANwi ..., wp = A" lw.
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Hence if A € D, we may let w; = 1 above to find
SHL,AA% ) = A1, 002, 00)

where (1,\,A2,...) € £2. Thus we have shown A is an eigenvalue for S* for
all A € D and hence D C o(S*).

Lemma 14.36. Let H = (% (Z) and let A: H — H be defined by
Af (R)=i(f(k+1)—f(k—=1)) forallk € Z.
Then:

1. A is a bounded self-adjoint operator.
2. A has no eigenvalues.
3.0(A)=1[-2,2].

Proof. For another (simpler) proof of this lemma, see Exercise 23.8 below.
1. Since

[ASlly < IF G+ Dz + 1 C=Dlly = 201712

| All,, <2 < co. Moreover, for f,g € 2 (z),
(Aflg) =D i(f(k+1)—f(k—=1))g(k)
k
=Y if(k)glk—=1)=> if (k)g(k+1)
k

k

= 31 (0 Ag () = {f14g),
k

which shows A = A*.
2. From Lemma [14.33, we know that o (A) C [-2,2]. If A € [-2,2] and
f € H satisfies Af = Af, then

flk+1)=—ixf (k) + f (k—1) for all k € Z. (14.21)

This is a second order difference equations which can be solved analogously
to second order ordinary differential equations. The idea is to start by looking
for a solution of the form f (k) = aF. Then Eq. (14.21) beocmes, aftl =
—ida® + o#~1 or equivalently that

o +ida—1=0.
So we will have a solution if o € {a4} where

—iAEV4— A2

a4 = 9
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For |\| # 2, there are two distinct roots and the general solution to Eq. (14.21))
is of the form
f (k) =crak +c_a” (14.22)

for some constants cx € C and |A\| = 2, the general solution has the form
f (k) = cak + dkak (14.23)

Since in all cases, |ax| =1 (A2 +4 — A?) = 1, it follows that neither of these
functions, f, will be in 2 (Z) unless they are identically zero. This shows that
A has no eigenvalues.

3. The above argument suggest a method for constructing approximate
eigenfucntions. Namely, let A € [2,2] and define f, (k) := 1j5<,a" where
« = ay. Then a simple computation shows

fon A =D £l

n=oe | fally

=0 (14.24)

and therefore A € o (A). |
Exercise 14.11. Verify Eq. (14.24). Also show by explicit computations that

lICA = AD) full,

lim Il £0

n—oo  [[full
if A¢[-2,2].
The next couple of results will be needed for the next section.

Theorem 14.37 (Rayleigh quotient). Suppose T € L(H) := L(H,H) is a
bounded self-adjoint operator, then

)
I =sup =7

Moreover if there exists a non-zero element g € H such that

I(Tglg)]
gl

then g is an eigenvector of T with Tg = Ag and X € {£||T||}.

=171,

Proof. Let T
M e WD
20 | fll

We wish to show M = ||T||. Since

[KATHI< IFNT A< I,
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we see M < ||T||. Conversely let f,g € H and compute

(f+aT(f+9)— (f—glT(f —9))
= (f|Tg) +{g|Tf) + (fIT9) + (9|Tf)
=2[(f[Tg) + (T'q|f)] = 2[{f|Tg) + (fITg)]
= 4Re(f|Tg).

Therefore, if ||f|| = ||g]] = 1, it follows that

M M
[Re(fIT9)| < {If+al>+11f—9l*} = T {21717 +2[lgl1*} = M.
By replacing f be e f where 6 is chosen so that e (f|Tg) is real, we find
[(fITg)| < M for all || f|| = [lg]| = 1.

Hence
ITl=sup [(f|Tg)| <M.
IflI=llgll=1

If g€ H\ {0} and || T|| = [{Tglg)|/lg]|* then, using the Cauchy Schwarz

inequality,
T
i) = KLolol W90y (14.25)

gl Il

This implies [(T'glg)| = || Tg|lllg|| and forces equality in the Cauchy Schwarz
inequality. So by Theorem [14.2] T'g and g are linearly dependent, i.e. T'g = A\g
for some A € C. Substituting this into (14.25) shows that |A| = ||T'||. Since T
is self-adjoint,

Mgll? = (Aglg) = (Tglg) = (9ITg) = (91Ag) = Mglg),

which implies that A € R and therefore, A € {£||T||}. |

1Tl

Lemma 14.38 (Invariant subspaces). Let T : H — H be a self-adjoint
operator and M be a T — invariant subspace of H, i.e. T(M) C M. Then M~
is also a T — invariant subspace, i.e. T(M*) C M*.

Proof. Let € M and y € M+, then Te € M and hence
0= (Tx|y) = (x|Ty) for all z € M.

Thus Ty € M*+. [ ]
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14.3 Compact Operators on a Hilbert Space

In this section let H and B be Hilbert spaces and U := {x € H : ||z|| < 1}
be the unit ball in H. Recall from Definition 11.16 that a bounded operator,
K : H — B, is compact iff K(U) is compact in B. Equivalently, for all
bounded sequences {z,}52, C H, the sequence {Kx,}>2; has a convergent
subsequence in B. Because of Theorem [11.15], if dim(H) = occ and K : H — B
is invertible, then K is not compact.

Definition 14.39. K : H — B is said to have finite rank if Ran(K) C B
is finite dimensional.

The following result is a simple consequence of Corollaries/11.13 and [11.14.

Corollary 14.40. If K : H — B is a finite rank operator, then K is compact.
In particular if either dim(H) < oo or dim(B) < oo then any bounded operator
K : H — B is finite rank and hence compact.

Lemma 14.41. Let K := K(H, B) denote the compact operators from H to
B. Then K(H, B) is a norm closed subspace of L(H, B).

Proof. The fact that K is a vector subspace of L(H, B) will be left to the
reader. To finish the proof, we must show that K € L(H, B) is compact if
there exists K,, € K(H, B) such that lim,_,o || K, — K||op = 0.

First Proof. Given ¢ > 0, choose N = N(¢) such that |[Ky — K| < e.
Using the fact that KU is precompact, choose a finite subset A C U such
that mingec |ly — Knz|| < e for all y € Ky (U). Then for z = Kzg € K(U)
and x € A,

e — Kol = | (K — Kn)zo+ Ky (wo — 2) + (K — K)a
<2+ | Knyzo — Knz|.
Therefore mingey ||z — Knz|| < 3e, which shows K (U) is 3¢ bounded for all
e > 0, K(U) is totally bounded and hence precompact.
Second Proof. Suppose {z,},., is a bounded sequence in H. By com-

pactness, there is a subsequence {x;}zozl of {xy,},~, such that {lerll}f;l
is convergent in B. Working inductively, we may construct subsequences

oo oo
{xpn}o D {x;}nzl D {xi}nzl D {al D
such that {K,,2"} | is convergent in B for each m. By the usual Cantor’s
diagonalization procedure, let y, := 2, then {y,} -, is a subsequence of
{z,}, such that {K,,y,}, - is convergent for all m. Since
1Ky — Kyill < (K = Ko yull + [[ K (yn = yo)ll + | (K — K) g1
<2 ||K - KmH + ”Km(yn - yl)H )

lim sup ||Ky, — Ky <2||K — Ku|| — 0 as m — oo,

n,l— oo

which shows {Ky,}.- , is Cauchy and hence convergent. ]
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Proposition 14.42. A bounded operator K : H — B is compact iff there
exists finite rank operators, K, : H — B, such that |[K — K,| — 0 as
n — 0o.

Proof. Since K(U) is compact it contains a countable dense subset and
from this it follows that K (H) is a separable subspace of B. Let {¢,} be an
orthonormal basis for K (H) C B and

N

Pxy = (yl6n)bn

n=1

be the orthogonal projection of y onto span{¢,})_,. Then limy_. o ||Pny —
yl| =0 for all y € K(H). Define K,, := P, K — a finite rank operator on H.
For sake of contradiction suppose that

limsup |[K — K,|| =¢ >0,

n—o0

in which case there exists z,, € U such that ||(K — Ky, )2y, | > ¢ for all ng.
Since K is compact, by passing to a subsequence if necessary, we may assume
{Kacnk}ff;zl is convergent in B. Letting y := limg_,o0 Ky, ,

[(K — K)o, | = [[(1 = Poy) Ky, ||
<L = Py ) (K, — )|l + (1 = Pa, )yl
< |[[K@n, —yll + [(1 = Py, )yl — 0 as k — oo.

But this contradicts the assumption that e is positive and hence we must

have lim,, o ||K — K,|| = 0, i.e. K is an operator norm limit of finite rank
operators. The converse direction follows from Corollary [14.40 and Lemma
14.41. ]

Corollary 14.43. If K is compact then so is K*.

Proof. First Proof. Let K,, = P,K be as in the proof of Proposition
14.42| then K} = K*P, is still finite rank. Furthermore, using Proposition
14.16,

|K* = Kzl = [ K = Kul = 0 as n— o

showing K* is a limit of finite rank operators and hence compact.
Second Proof. Let {x,} ~, be a bounded sequence in B, then

K 2y — K* 2 ||> = (2 — 2, KK* (€, — 2m)) < 2C | KK* (2, — 2|
(14.26)
where C is a bound on the norms of the z,,. Since { K*z,, },_, is also a bounded
sequence, by the compactness of K there is a subsequence {x } of the {z,}
such that K K*z! is convergent and hence by Eq. (14.26]), so is the sequence

n

(K*z! ). n



210 14 Hilbert Space Basics
14.3.1 The Spectral Theorem for Self Adjoint Compact Operators

For the rest of this section, K € K(H) := K(H, H) will be a self-adjoint
compact operator or S.A.C.O. for short. Because of Proposition [14.42, we
might expect compact operators to behave very much like finite dimensional
matrices. This is typically the case as we will see below.

Ezample 14.44 (Model S.A.C.0.). Let H = {5 and K be the diagonal matrix

MO0 0 -
0 X O ---
K=100x--|>

where lim,, o [A\n| = 0 and A, € R. Then K is a self-adjoint compact opera-
tor. This assertion was proved in Example [11.17 above.

The main theorem (Theorem [14.46) of this subsection states that up to
unitary equivalence, Example [14.44! is essentially the most general example of

an S.A.C.O.

Theorem 14.45. Let K be a S.A.C.O., then either A = |[K|| or A = — || K]||
is an eigenvalue of K.

Proof. Without loss of generality we may assume that K is non-zero since
otherwise the result is trivial. By Theorem [14.37, there exists f,, € H such
that || fn|| = 1 and

[(fnl K fn)
[1/nl?

By passing to a subsequence if necessary, we may assume that A :=
limy, oo (fn| K fr) exists and A € {£|K||}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that K f,
is convergent as well. We now compute:

= [{(fal K fo)] — K] as n — oo. (14.27)

0< ||Kfn - /\fn||2 = ||Kfn||2 - 2)‘<Kfn‘fn> + A?
SN = 2X(K fulfn) + A2
= A2 —2)224 X2 =0asn— oo.
Hence
Kf,—Afn > 0asn— o0 (14.28)
and therefore )
f:= lim fn:X lim Kf,

exists. By the continuity of the inner product, ||f|| = 1 # 0. By passing to the
limit in Eq. (14.28) we find that K f = Af. |
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Theorem 14.46 (Compact Operator Spectral Theorem). Suppose that
K :H — H is a non-zero S.A.C.0., then

1. there exists at least one eigenvalue A € {£| K] }.

2. There are at most countable many non-zero eigenvalues, {\, }\_,, where
N = o is allowed. (Unless K is finite rank (i.e. dimRan (K) < o0), N
will be infinite.)

3. The A\, ’s (including multiplicities) may be arranged so that |A,| > [Ap41]
for alln. If N = oo then lim,_, |An| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {¢,}N_; can be chosen to be an O.N. set such that H =
span{¢, } ® Nul(K).

5. Using the {¢n}N_; above,

N

K¢ =3 Aa(¥ln)dn for all ¢ € H.

n=1
6. The spectrum of K is, o(K) ={0}U{\, :n < N +1}.

Proof. We will find A,’s and ¢,’s recursively. Let A; € {£|| K|} and
¢1 € H such that K¢; = A1¢1 as in Theorem [14.45. Take M; = span(¢;)
so K(M;) C M. By Lemma [14.38, KM~ C Mj. Define K; : M{- — Mj-
via K1 = K|j+. Then K is again a compact operator. If K1 = 0, we are
done. If K; # 0, by Theorem 14.45| there exists Ay € {£||K||;} and ¢5 € Mi*
such that ||¢2|| = 1 and K1¢2 = K¢2 = )\2¢)2. Let MQ = span(q[)l,qbg).
Again K (M) C M, and hence K := K|y Mj- — Mj is compact. Again
if Ko = 0 we are done. If K5 # 0. Then by Theorem [14.45| there exists
A3 € {£[|K]l2} and ¢3 € My such that [|¢s]| = 1 and Kads = K¢3 = A3¢s.
Continuing this way indefinitely or until we reach a point where K,, = 0, we
construct a sequence {\,}\_, of eigenvalues and orthonormal eigenvectors
{¢n}N_, such that |\;| > |\;11| with the further property that

1Kol

|\i| =
61{61.62,.. 01} 9l

(14.29)

If N = oo then lim;_, |\;] = 0 for if not there would exist € > 0 such that
|\i| > & > 0 for all i. In this case {¢;/);};-, is sequence in H bounded by e~*.
By compactness of K, there exists a subsequence iy, such that ¢;, = Ko, /A,
is convergent. But this is impossible since {¢;, } is an orthonormal set. Hence
we must have that e = 0. Let M := span{¢;}Y, with N = oo possible. Then
K(M) C M and hence K(M*) Cc M+. Using Eq. (14.29),

K e[| < K e | = [An] — O as n — o0

showing K|M+ = 0. Define P, to be orthogonal projection onto M*. Then
for v € H,
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N
=P+ (1= Po)yp = Pop + >_(¥|¢i) s

i=1

and
N

N
K= KPR+ K> (0ldi)di = > Ni(thle) -

i=1 =1

Since {\,} C o(K) and o(K) is closed, it follows that 0 € o(K) and hence
{AWn}52, U {0} C o(K). Suppose that z ¢ {\,}52, U {0} and let d be the
distance between z and {\,, }52,U{0}. Notice that d > 0 because lim,,_,cc Ay, =
0. A few simple computations show that:

N
(K — 21 =) (1o (Ni — )¢5 — zPov,
i=1
(K — 2)7! exists,

N

(K —2D)7' = (0|} (N — 2) "¢ — 27 Pt

i=1

and

N 1 1
—1 2 N2 - 2
(K — 2)~1p||? = ;:1 (Y] )| Y- - |ZPIIPWII

< 1\ (& N2 Pawlz] = 1 2
(3) (S twioor + 12wl ) = il

=

We have thus shown that (K — 2I)~! exists, ||(K — 2I)7!|| < d~! < oo and
hence z ¢ o(K). ]

Theorem 14.47 (Structure of Compact Operators). Let K : H — B
be a compact operator. Then there exists N € NU{oo}, orthonormal subsets
{qﬁn}g:l C H and {U’n}g:l C B and a sequences {Ozn}iz]:l C Ry such that
A > > L limy oo =0 4f N =00, ||t <1 for all n and

N
Kf =) an(flén)bn for all f € H. (14.30)

n=1

Proof. Since K*K is a selfadjoint compact operator, Theorem [14.46/ im-
plies there exists an orthonormal set {¢,})_; C H and positive numbers
{)\n}ﬁ[:l such that

N
K K¢ =Y A(t)|¢n)én for all i € H.
n=1
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Let A be the positive square root of K*K defined by

N
A=Y " /A (Y]n) b for all ¢ € H.

A simple computation shows, A2 = K*K, and therefore,

| Av||* = (A Ap) = (p|A%)
= (Y|K*Ky) = (Ky|Ky) = || K|

for all ¢ € H. Hence we may define a unitary operator, u : Ran(A) — Ran(K)
by the formula
uAyp = K for all v € H.

We then have v
K =udp =Y /A (ldn)usy, (14.31)

n=1

which proves the result with v, := u¢,, and o, = Vv Ap.
It is instructive to find ), explicitly and to verify Eq. (14.31) by bruit

force. Since ¢, = )\EI/ZA(bm
U = A Puddn = N Pudd, = 0K ¢,

and
<K¢H|K¢m> = <¢n|K*K¢m> = ApO0mn-

This verifies that {wn}i:rzl is an orthonormal set. Moreover,

Z VA (@) tn = Z VA (@lbn) A 2 K
N
Z ¢‘¢n n — Ki/’

since Zfzv:l<¢|¢n>¢n = P where P is orthogonal projection onto Nul(K)*.

Second Proof. Let K = u|K]| be the polar decomposition of K. Then
| K| is self-adjoint and compact, by Corollary 77, and hence by Theorem [14.46
there exists an orthonormal basis {gbn} , for Nul(|K])* = Nul(K)* such

that |K| ¢n = Andn, A1 > A > ... and hmnHOO n=0if N =o00. For f € H,
N N N
Kf =ulK]Y (flon)on =D (flon)u|K|én = An(flén)ucn
n=1 n=1 n=1

which is Eq. (14.30) with v, := u¢,. ]
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14.4 Weak Convergence

Suppose H is an infinite dimensional Hilbert space and {z,},.; is an or-
thonormal subset of H. Then, by Eq. (14.1), ||z, — 2|/ = 2 for all m # n
and in particular, {z,} -, has no convergent subsequences. From this we
conclude that C := {x € H : ||z|| < 1}, the closed unit ball in H, is not com-
pact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C' is compact.

Definition 14.48. Let (X, ||-||) be a Banach space and X* be its continu-
ous dual. The weak topology, T.,, on X is the topology generated by X*. If
{zn}o2, C X is a sequence we will write x, %z asn — oo to mean that
Tp — T in the weak topology.

Because 7, = 7(X*) C 7 = 7({l/|]z — || s x € X}, it is harder for a
function f : X — F to be continuous in the 7,, — topology than in the norm
topology, 7). In particular if ¢ : X — F is a linear functional which is 7, —
continuous, then ¢ is 7. — continuous and hence ¢ € X*.

Exercise 14.12. Show the vector space operations of X are continuous in the
weak topology, i.e. show:

L(z,y) e X xX sx+y€ Xis (Ty ® T, Tw) — continuous and
2. (Nz)eFx X — A re X is (77 ® Ty, Tw) — continuous.

Proposition 14.49. Let {z,} -, C X be a sequence, then x, ZxeX as
n — o0 iff ¢(x) = limy, 0o ¢(x,) for all p € X*.

Proof. By definition of 7, we have z, — z € X iff for all I' cCc X*
and € > 0 there exists an N € N such that |¢(z) — ¢(z,)| < e foralln > N
and ¢ € I'. This later condition is easily seen to be equivalent to ¢(x) =
lim,, o ¢(zy,) for all ¢ € X*. [ ]

The topological space (X, 7,) is still Hausdorff as follows from the Hahn
Banach Theorem, see Theorem ?7?. For the moment we will concentrate on
the special case where X = H is a Hilbert space in which case H* =
{¢, :=(:|z) : z € H}, see Theorem [14.15. If x,y € H and z := y —x # 0,
then

0<ei=|z]*=:(2) = 6:(y) — ¢=(x).

Thus

Ve:={we H :|p,(x) — ¢, (w)| <e/2} and
Vy = {w €eH: |¢z(y) - (bz(w)‘ < 6/2}
are disjoint sets from 7,, which contain x and y respectively. This shows that

(H,Ty,) is a Hausdorff space. In particular, this shows that weak limits are
unique if they exist.
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Remark 14.50. Suppose that H is an infinite dimensional Hilbert space
{z,},2, is an orthonormal subset of H. Then Bessel’s inequality (Propo-

sition [14.18) implies x,, Y% 0 € H as n — oco. This points out the fact
that if z, — = € H as n — oo, it is no longer necessarily true that

lz]| = limp—eo ||n||- However we do always have |z|| < liminf, o ||zn]|
because,
lz]* = lim (zn)e) < liminf |z, 2] = 2] im inf |2,
n—oo n—oo n—oo

Proposition 14.51. Let H be a Hilbert space, 3 C H be an orthonormal
basis for H and {xy,} -, C H be a bounded sequence, then the following are
equivalent:

1., S xeH asn— .
2. (x|y) = lim, oo {xnly) for ally € H.
3. (zly) = limy, oo {xn|y) for ally € S.

Moreover, if ¢, := limp oo (Ts|y) exists for ally € B, then 3”5 |cy|2 < 00

w
and x, > =Y. scy € H asn — oo.

yeR

Proof. 1. = 2. This is a consequence of Theorem [14.15 and Proposition
14.49. 2. = 3. is trivial. 3. = 1. Let M := sup,, ||z»| and Hy denote the
algebraic span of 8. Then for y € H and z € Hy,

(@ —anly)| < (& = zn|2)| + (& — 2uly — 2)] < [{2 —20l2)[ +2M [ly — 2]

Passing to the limit in this equation implies limsup, . [(z — z,|y)| <
2M ||y — z|| which shows limsup,,_,., [{x — z,|y)| = 0 since Hy is dense in
H. To prove the last assertion, let I' CC (3. Then by Bessel’s inequality
(Proposition [14.18)),

E \cy|2 = lim g |<:cn|y>|2 < lim inf Hanz < M2,
n—oo n—oo
yel’ yel’

Since I' CC 8 was arbitrary, we conclude that 3 4 \cy|2 < M < oo and

hence we may define x := Zye 5 CyY- By construction we have

(xly) = ¢y = lim (x,|y) for all y € 8

and hence z,, — = € H as n — oo by what we have just proved. [ ]

Theorem 14.52. Suppose {x,},- , is a bounded sequence in a Hilbert space,
H. Then there exists a subsequence yy := @y, of {xn} -, and x € X such
that yi, — x as k — oo.

Proof. This is a consequence of Proposition 14.51] and a Cantor’s diago-
nalization argument which is left to the reader, see Exercise [14.13. [ ]
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Theorem 14.53 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
H is a separable Hilbert space, C = {x € H : ||z|| < 1} is the closed unit ball
in H and {e,} —, is an orthonormal basis for H. Then

plesy) = 3 o o= ylew) (14.32)
n=1

defines a metric on C' which is compatible with the weak topology on C, 7¢ =
(Tw)e ={V NC:V € 1y}. Moreover (C,p) is a compact metric space. (This
theorem will be extended to Banach spaces, see Theorems 7?7 and 7?7 below.)

Proof. The routine check that p is a metric is left to the reader. Let 7,
be the topology on C induced by p. For any y € H and n € N, the map
x € H— (v —ylen) = (x]en) — (ylen) is 7, continuous and since the sum in
Eq. (14.32) is uniformly convergent for z,y € C, it follows that z — p(z,y)
is 7o — continuous. This implies the open balls relative to p are contained in
7¢ and therefore 7, C 7¢. For the converse inclusion, let z € H, x — ¢.(z) =
(z|z) be an element of H*, and for N € N let zy := Zf:1<z|en>en. Then
Gy = ZnN:1 (z|en)pe, is p continuous, being a finite linear combination of
the ¢, which are easily seen to be p — continuous. Because zy — z as N — oo
it follows that

sup ‘¢z($) - ¢zN($)| = HZ —2n|| — 0as N — oo.
zecC

Therefore ¢, |c is p — continuous as well and hence 7¢ = 7(¢.|c : 2 € H) C
7,. The last assertion follows directly from Theorem [14.52 and the fact that
sequential compactness is equivalent to compactness for metric spaces. [ |

14.5 Supplement 1: Converse of the Parallelogram Law

Proposition 14.54 (Parallelogram Law Converse). If (X,|-||) is a
normed space such that Eq. (14.2) holds for all x,y € X, then there exists
a unique inner product on {-|-) such that ||z|| := \/{(x|z) for all x € X. In this
case we say that ||-|| is a Hilbertian norm.

Proof. If ||-|| is going to come from an inner product (-|-), it follows from
Eq. (14.1) that
2Re(ly) = |z +ylI* — l|=[* - Iyl

and
—2Re(zly) = |z =yl — [l=)* — lyll*.

Subtracting these two equations gives the “polarization identity,”

ARe(zly) = [lo +yl* — |z - y*.
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Replacing y by 4y in this equation then implies that
Am(zly) = |z + iy||* - [|lz — ay]*

from which we find

1
(zly) = 3 D ellz + ey (14.33)
ecG

where G = {£1,4i} — a cyclic subgroup of S* C C. Hence if (-|-) is going to
exists we must define it by Eq. (14.33). Notice that

1
(wle) = 2> ellz +eall® = [l* +illz + ix|* - i|w - iz|?
4E€G

. . . . 2
= [l +a [L+i*[ lel® =i |1 = | l2])* = [|l=] "

So to finish the proof of (4) we must show that (x|y) in Eq. (14.33) is an inner
product. Since

Uylr) =Y elly +eal® =D elle (y+ea) |

eeG eeG

= Z elley + e%z|?
eeG

=lly+l* + | -y + 2l* +illiy — =]* — il — iy — |

= llz+yl* + llz — ylI* + illz — iyl* —ille + iy)?

= 4(zly)
it suffices to show & — (x|y) is linear for all y € H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (14.2). To do this we make use of Eq. (14.2) three times to find

lz+y + 217 = |l +y = 2* + 2]z + y* + 2]|2]
= llz =y — 2> = 2|z — 21> = 2|lyll* + 2ll= + yl|* + 2[|2]|?
= lly+2—al* = 2[le — 2* = 2llyl* + 2]z + ylI* + 2]])*
=—lly+2z+al* +2lly + 2 + 2]
= 2]z — 2l* = 2llyll* + 2]z + yI* + 2/|2*.
Solving this equation for ||z +y + z||* gives
a4y 202 = g+ 202 + oyl — e — 212 + ] + 1 = Iyl (14.34)
Using Eq. (14.34), for x,y,z € H,
ARe(z +zly) = ||z + 2 +y[* — o+ 2 -y
= lly +2l* + |z + yl* = llo = 2I* + 2l + [|2]* — Ily*
= (lz=ol* + llz = yll* = llz = 21" + l2l* + [2l1* = lly]1*)
= llz +yll* = llz =y + o+ yl* = o — yI?
= 4 Re(z|y) + 4Re(z]y). (14.35)
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Now suppose that § € G, then since |0] =1,

1 1 _
Aoaly) = 3 S ellbr +eyl? = 3 3 ella+ 6 ey

eeG eeG
1
=1 Zeé||x+65y||2 = 46{x|y) (14.36)
eeG

where in the third inequality, the substitution € — £§ was made in the sum.
So Eq. (14.36)) says (+iz|y) = +i(iz|y) and (—z|y) = —(z|y). Therefore

Im(z[y) = Re (—i(z[y)) = Re(—ix[y)
which combined with Eq. (14.35) shows
Im(z + z|y) = Re(—iz — iz|y) = Re(—ix|y) + Re(—iz|y)
= Im(z[y) + Im(z[y)
and therefore (again in combination with Eq. (14.35)),
(x4 zly) = (zly) + (z]y) for all z,y € H.

Because of this equation and Eq. (14.36)) to finish the proof that x — (z|y) is
linear, it suffices to show (Az|y) = A(z|y) for all A > 0. Now if A = m € N,
then

(mzly) = (z + (m = Dzly) = (zly) + ((m - Dz|y)

so that by induction (mx|y) = m(z|y). Replacing « by x/m then shows that
(z|y) = m{m~tz|y) so that (m~'z|y) = m~1(z|y) and so if m,n € N, we find

(Zaly) = n-ly) = aly)

so that (Ax|y) = A(z|y) for all A > 0 and A € Q. By continuity, it now follows
that (Azly) = Az|y) for all A > 0. |

14.6 Supplement 2. Non-complete inner product spaces

Part of Theorem [14.24] goes through when H is a not necessarily complete
inner product space. We have the following proposition.

Proposition 14.55. Let (H, {-|-)) be a not necessarily complete inner product
space and B C H be an orthonormal set. Then the following two conditions
are equivalent:

1.z =Y (x|u)u for all x € H.
u€epf
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2. ||z||? = Zﬁ |(z|u)|? for all x € H.
ue

Moreover, either of these two conditions implies that 3 C H is a maximal
orthonormal set. However 3 C H being a mazximal orthonormal set is not
sufficient to conditions for 1) and 2) hold!

Proof. As in the proof of Theorem [14.24, 1) implies 2). For 2) implies 1)
let A CC (8 and consider

u€eA

= llzl* =2 [alw)l® + D el

ueA ueA

= llzl* = > lalu)l®.

ueA

Since ||z||? = Y [{z|u)|?, it follows that for every ¢ > 0 there exists A. CC 3
u€eB
such that for all A CC ( such that A. C A,

2
z=Y (aluyu| =llz|* = [@lu)|* <e
ueA

ueA

showing that = = Y (z|u)u. Suppose z = (z1,22,...,Tpn,...) € fL. If 2)
uep
is valid then ||z||* = 0, i.e. # = 0. So 3 is maximal. Let us now construct
a counter example to prove the last assertion. Take H = Span{e;}32; C £2
and let 4, = e; — (n+ 1)eyy1 for n = 1,2.... Applying Gramn-Schmidt to
{@n},—; we construct an orthonormal set 8 = {u,}>2; C H. I now claim
that 3 C H is maximal. Indeed if x = (21, 22,...,2,,...) € B+ then = L u,
for all n, i.e.
0= (x|tn) =21 — (n+ D)xpyr.

Therefore z,41 = (n+1)"" 2 for all n. Since z € Span{e;}22,, zy = 0 for
some N sufficiently large and therefore 7y = 0 which in turn implies that
xn, = 0 for all n. So x = 0 and hence 3 is maximal in H. On the other hand,
is not maximal in ¢2. In fact the above argument shows that 3 in ¢? is given

by the span of v = (1, %, %, i, %, ...). Let P be the orthogonal projection of
¢% onto the Span(8) = v*. Then

Z<x|un>un =Pr=x— <x|02>v,
i=1 [[v]l

so that > (x|u,)u, = z iff z € Span(B) = v+ C (2. For example if x =
i=1
(1,0,0,...) € H (or more generally for z = e; for any i), x ¢ v and hence

> (@lun)un # . u

=1
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14.7 Exercises

Exercise 14.13. Prove Theorem [14.52. Hint: Let Hy := span{x, : n € N}
— a separable Hilbert subspace of H. Let {\,,} ~_, C Hp be an orthonormal
basis and use Cantor’s diagonalization argument to find a subsequence y :=
T, such that ¢, = limg_,o0 (Yr|Am) exists for all m € N. Finish the proof by
appealing to Proposition [14.51.

Exercise 14.14. Suppose that {z,} -, C H and z, Y x € Hasn — oo
Show x, — z as n — 0o (l.e. limy, o0 || — p || = 0) iff limy, oo [|z0]| = ||z -

Exercise 14.15 (Banach-Saks). Suppose that {z,}°, C H, z, Sz € H
as n — oo, and ¢ := sup,, ||[z,]| < o0.* Show there exists a subsequence,
Yk = Tn, such that

lim
N—o0

k=1

ie & Zszl yr — x as N — oo. Hints: 1. show it suffices to assume z = 0
and then choose {yx},-; so that |(yx|y)| < ™' (or even smaller if you like)
for all k£ <.

Exercise 14.16 (The Mean Ergodic Theorem). Let U : H — H be a
unitary operator on a Hilbert space H, M = Nul(U —1I), P = Py be orthogo-
nal projection onto M, and S, = %22;3 Uk. Show S, — P,; strongly,
ie. lim, .o Spx = Pyx for all x € H. Hints: 1. verify the result for
x € Nul(U —I) and € Ran(U — I), 2. show Nul(U* — I) = Nul(U — I), 3.
finish the result with a limiting argument making use of items 1. and 2. and
Lemma 14.17.

4 The assumption that ¢ < co is superfluous because of the “uniform boundedness
principle,” see Theorem 77 below.
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15

Ordinary Differential Equations in a Banach
Space

Let X be a Banach space, U C, X, J = (a,b)30and Z € C(J x U, X) - Z
is to be interpreted as a time dependent vector-field on U C X. In this section
we will consider the ordinary differential equation (ODE for short)

§(t) = Z(t,y(t)) with y(0) =z € U. (15.1)

The reader should check that any solution y € C*(J,U) to Eq. (15.1) gives a
solution y € C(J,U) to the integral equation:

y(t) == +/() Z(7,y(7))dr (15.2)

and conversely if y € C(J,U) solves Eq. (15.2) then y € C*(J,U) and y solves
Eq. (15.1).

Remark 15.1. For notational simplicity we have assumed that the initial con-
dition for the ODE in Eq. (15.1)) is taken at ¢ = 0. There is no loss in generality
in doing this since if ¢ solves

dy

= (1) = Z(t,§(1)) with §(to) =z € U

iff y(t) := g(t + to) solves Eq. (15.1) with Z(t,x) = Z(t + to, ).

15.1 Examples

Let X = R, Z(z) = 2™ with n € N and consider the ordinary differential
equation

y(t) = Z(y(t)) = y"(t) with y(0) =z € R. (15.3)
If y solves Eq. (15.3) with x # 0, then y(t) is not zero for ¢ near 0. Therefore
up to the first time y possibly hits 0, we must have
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b y(®) U10) i ST A |
:/ 9(7) dT:/ u "du = 1—@) ,
o y(m)n 0 In yT‘ if n=1

and solving these equations for y(t) implies

— — if n>1
y(t) = y(t, ) = 1-(n—1jte (15.4)

e'x ifn=1.

The reader should verify by direct calculation that y(¢,z) defined above does
indeed solve Eq. (15.3). The above argument shows that these are the only
possible solutions to the Equations in (15.3).
Notice that when n = 1, the solution exists for all time while for n > 1,
we must require
1—(n—1tz" ' >0

or equivalently that

1
t<mifﬂfnil>oand
1

———ifz" ' <0,
(L—n)z""

t> —
Moreover for n > 1, y(¢,x) blows up as t approaches the value for which
1 — (n — 1)tz"~! = 0. The reader should also observe that, at least for s and
t close to 0,
y(t,y(s,z)) =yt +s,2) (15.5)
for each of the solutions above. Indeed, if n = 1 Eq. (15.5) is equivalent to the
well know identity, efe® = e!** and for n > 1,

y(s,z)
t,y(s,x)) =
y( y( )) n—1/1 _ (n — 1)ty(8, QT)n_l
x
B n—\l/l_(n—l)SJCn71
= n—1
n—1 z
1-— (n - 1)t |: n—\l/l_(n—l)sac"_l
B 7L—{/1,(n71)sz7‘"1
~ xnfl
n-1/1 — (n — 1)tW
B x
n—1/1 _ (TL — 1)an—1 _ (n — 1)t.137l—1
x (t+s,)
_ = S, ).
T T e
Now suppose Z(z) = |z|” with 0 < a < 1 and we now consider the

ordinary differential equation
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9(t) = Z(y(t)) = ()| with y(0) =z € R. (15.6)

Working as above we find, if z # 0 that

T I B 0 e
= |y<t>“d“/o ful ™ du = !

11—«

where u! = := |u|"~* sgn(u). Since sgn(y(t)) = sgn(z) the previous equation
implies

sen(2)(1 — )t = san(x) [sen(y(t) [y~ — sen(a) fo] ']
= ly(O)]' ™ — o]

and therefore,

1
11—

y(t,@) = sgn(@) (|2l +sen(@)(1 - a)t) (15.7)

is uniquely determined by this formula until the first time ¢ where |x|17a +
sgn(z)(1 — a)t = 0. As before y(¢) = 0 is a solution to Eq. (15.6), however it
is far from being the unique solution. For example letting x | 0 in Eq. (15.7)
gives a function
1
y(t,0+) = (1 —a)t) ==

which solves Eq. (15.6) for ¢ > 0. Moreover if we define

(A =—a))TFift >0
y(t)'{(( 0)) iftzo’

(for example if v = 1/2 then y(t) = 3¢*1;>0) then the reader may easily check
y also solve Eq. (15.6). Furthermore, y,(t) := y(t — a) also solves Eq. (15.6])
for all a > 0, see Figure [15.1/ below.

With these examples in mind, let us now go to the general theory. The
case of linear ODE’s has already been studied in Section 8.3 above.

15.2 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 15.2. Gronwall’s Lemma. Suppose that f,e, and k are non-
negative functions of a real variable t such that

/O k() ()

F(t) < e(t) + . (15.8)

Then
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Fig. 15.1. Three different solutions to the ODE g(t) = |y(¢)|*/? with y(0) = 0.

F(t) < et) + /0 t k(r)e(r)ells Heds| gr | (15.9)

and in particular if € and k are constants we find that
f(t) < eefltl, (15.10)

Proof. T will only prove the case ¢ > 0. The case t < 0 can be derived
by applying the ¢t > 0 to f(t) = f(—t), k(t) = k(—t) and e(t) = e(—t). Set
F(t) = [J k() f(r)dr. Then by (15.8),

F=kf <ke+kF.
Hence,
i(e_fot k(s)dsF) — e I k(s)ds(F . kF) < kee™ I k(s)ds
. <
Integrating this last inequality from 0 to ¢ and then solving for F' yields:

t t
F(t) < elo k(s / drk(r)e(r)e Jo K(o)ds = / drk(r)e(r)el He)ds,
0 0

But by the definition of F' we have that
f<e+F,

and hence the last two displayed equations imply (15.9). Equation (15.10)
follows from (15.9)) by a simple integration. [ ]

Corollary 15.3 (Continuous Dependence on Initial Data). Let U C,
X, 0 € (a,b) and Z : (a,b) x U — X be a continuous function which is K-
Lipschitz function on U, i.e. || Z(t,x) — Z(t,2")|| < K||lx — 2’| for all x and «’
in U. Suppose y1,ys : (a,b) — U solve
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dy;it) = Z(t,y;(t)) with y;(0) = x; fori=1,2. (15.11)
Then
ly2(t) — (O] < llw2 — 21]|eXV for t € (a,b) (15.12)

and in particular, there is at most one solution to Eq. (15.1) under the above
Lipschitz assumption on Z.

Proof. Let f(t) := |ly2(t) — y1(t)||. Then by the fundamental theorem of
calculus,

£(t) = [192(0) — 1 (0) + / (4a(7) — () dr]

< 1(0)+ / 1Z(r,10(r)) = Z(7,31(7)) | dr

t
=||x2—x1||+f<\/0 f(r)dr

Therefore by Gronwall’s inequality we have,

ly2(t) = 1 (B)]| = f(t) < ||lwa — @[] X1.

15.3 Local Existence (Non-Linear ODE)

We now show that Eq. (15.1) under a Lipschitz condition on Z. Another
existence theorem was given in Exercise [11.19.

Theorem 15.4 (Local Existence). Let T >0, J = (-T,T), 2o € X, r > 0
and
Czo,r) ={z e X : |z —xo| <r}

be the closed r — ball centered at xo € X. Assume
M =sup{||Z(t,x)| : (t,z) € J x C(xo,7)} < 0 (15.13)
and there exists K < oo such that
WZ(t,x)— Z(t )| < K|z —y| forallxz,y € C(xo,7) andt € J. (15.14)

Let Ty < min{r/M,T} and Joy := (=To,To), then for each x € B(xo,r—MTp)
there exists a unique solution y(t) = y(t,z) to Eq. (15.2) in C (Jo, C(zo,7)).
Moreover y(t,xz) is jointly continuous in (t,x), y(t,x) is differentiable in t,
y(t,x) is jointly continuous for all (t,x) € Jy x B(xg,r — MTy) and satisfies
Eq. (15.1).
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Proof. The uniqueness assertion has already been proved in Corollary
15.3l To prove existence, let C, := C(zg,r), Y := C (Jo, C(z0,7)) and

S, (y)(1) ::x—l—/o Z(r,y(r)dr. (15.15)

With this notation, Eq. (15.2) becomes y = S, (y), i.e. we are looking for a
fixed point of S,. If y € Y, then

152(y)(8) = xoll < llz — ol + ’/0 1Z(ry(r)| dr| < [l — ol + M 1]

S||JJ—J}QH+MTO§’I“—MTO+MTO=T,

showing S, (Y) C Y for all x € B(xg,r — MTp). Moreover if y,z € Y,

152 (y)(t) = Sa(2)(0)]| = ’ /O [Z(r,y(7)) = Z(7, 2(7))] dr

<

/0 1Z(r.y(r)) — Z(r, 2(7)) || dr

<K /0 ly(r) — z(7)|| dr| . (15.16)

Let yo(t,2) = x and y,(-,z) € Y defined inductively by

t
Yn(2) = Se(Yn—1(, 7)) = +/ Z(7,yn—1(7,2))dr. (15.17)
0
Using the estimate in Eq. (15.16]) repeatedly we find
Il Ynt1(t) — yn(t)

||
<x|f () — goa ()
/ " [ * dts g (t2) — st

t t1 th—1
0 0 0

< K fnCon) =l [ dr
Ay (t)

< K?

< K"

K" Jt" K™ [t
= ) = ol )l < 2e

- = (15.18)

wherein we have also made use of Lemma 8.19. Combining this estimate with
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t t
lntt2) ~ it = [ 2rarir| < | [ 126000 07| < o,
0 0
where
To 0
Mo = Ty max / ||Z(T,x)||d7',/ 1Z(r,2)| dr b < MTy,
0 —1o
shows % o
n t" ngm
[Ynt1(t,2) = yu(t, 2)|| < Mo n', | = Mo— .

and this implies

> sup{ [[ynt1 (5 2) = yn (@) g gy 1 £ € Jo}
n=0

oo
KT
< § My 9 = MyefT < o
n!
n=0

where

[Yyn+1(-2) — yn('vm)”oo,JO = sup {[|yn+1(t,z) —yn(t,2)|| : t € Jo}.

So y(t, z) 1= lim,— 00 Yn (¢, x) exists uniformly for ¢t € J and using Eq. (15.14)
we also have

sup{ [|Z(t,y(t)) — Z(t, yn—1 ()| : t € Jo}
< Kl|y(-,z) — g,/,ﬂb_l(gx)”m”]0 — 0 as n — oo.

Now passing to the limit in Eq. (15.17) shows y solves Eq. (15.2). From this
equation it follows that y(¢,z) is differentiable in ¢ and y satisfies Eq. (15.1)).
The continuity of y(¢, x) follows from Corollary [15.3/and mean value inequality
(Corollary [8.14):

ly(t x) =y, )| < lly(t,2) — y(t, 2 + lly(t,2") — y(t', 27|

/; Z(r,y(r,2'))dr

— lyts) — it )] + \

< ytt.a) ~ ) +| [ 1260 ar

¢
< |lz — 2'||eXT + '/ | Z(r,y(r,2")| dr (15.19)
t/

<|low—a'|efT + M|t -1].

The continuity of y(¢,x) is now a consequence Eq. (15.1) and the continuity
of y and Z. [ ]



230 15 Ordinary Differential Equations in a Banach Space
Corollary 15.5. Let J = (a,b) 2 0 and suppose Z € C(J x X, X) satisfies
1Z(t,x) — Z(t,y)|| < K|z —y| foralz,ye X andt € J. (15.20)

Then for all x € X, there is a unique solution y(t,x) (fort € J) to Eq. (15.1).
Moreover y(t,x) and §(t,z) are jointly continuous in (t,x).

Proof. Let Jy = (ag,bp) > 0 be a precompact subinterval of J and Y :=
BC (Jo, X) . By compactness, M := sup,cj, ||Z(t,0)| < oo which combined
with Eq. (15.20)) implies

sup ||Z(t,x)|| < M + K ||z|| for all z € X.
tedo

Using this estimate and Lemma 8.7 one easily shows S, (Y) C Y for all z € X.
The proof of Theorem [15.4 now goes through without any further change. m

15.4 Global Properties

Definition 15.6 (Local Lipschitz Functions). Let U C, X, J be an open
interval and Z € C(J x U, X). The function Z is said to be locally Lipschitz in
x if for all x € U and all compact intervals I C J there exists K = K(x,I) <
oo and € = e(x,I) > 0 such that B(x,e(x,I)) C U and

|Z (¢, z1) — Z(t,x0)|| < K(z,I)||z1 — 20| V zo, 21 € B(z,e(x,I)) &tel.
(15.21)

For the rest of this section, we will assume J is an open interval containing
0, U is an open subset of X and Z € C'(JxU, X) is a locally Lipschitz function.

Lemma 15.7. Let Z € C(J x U, X) be a locally Lipschitz function in X and
E be a compact subset of U and I be a compact subset of J. Then there exists
e > 0 such that Z(t,x) is bounded for (t,x) € I x E. and and Z(t,x) is K —
Lipschitz on E. for all t € I, where

E.:={zecU:dist(z,F) < e}.

Proof. Let ¢(z,I) and K(z,I) be as in Definition [15.6/ above. Since
E is compact, there exists a finite subset A C E such that £ C V :=
UzeaB(z,e(x,1)/2). If y € V, there exists x € A such that ||y — x| < e(z,I)/2
and therefore

12l <12 @) + Kz, 1) ly — =f| < |2 2)|| + K(z, De(x, I)/2

< sup {||Z(t,z)|| + K(z,De(x,1)/2} =: M < 0.
zeAte]

This shows Z is bounded on I x V. Let
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e:=d(E,V°) < 1mine(gv I)
’ — 2 zcA ’

and notice that ¢ > 0 since F is compact, V¢ is closed and E N V¢ = (.
If y,z € E. and ||y — z|| < ¢, then as before there exists € A such that
lly — z|| < e(x,I)/2. Therefore

[z =zl < llz =yl +lly —zll <e+elx,I)/2 < ez, 1)
and since y, z € B(x,e(x, I)), it follows that
1Z(t,y) — Z(t, 2)|| < K(z, D)|ly — z|| < Kolly — =]l

where Ky := max;cq K(z,I) < oco. On the other hand if y,z € E. and
lly — z|| > €, then

2M
12(t,9) - Z(t, ) < 2M < == ly — 2].

Thus if we let K := max {2M /e, Ky}, we have shown
1Z(t,y) — Z(t, 2)|| < K|y — z|| for all y, 2z € E. and t € I.
]

Proposition 15.8 (Maximal Solutions). Let Z € C(J x U, X) be a locally
Lipschitz function in x and let x € U be fized. Then there is an interval J, =
(a(x),b(z)) with a € [—00,0) and b € (0,00] and a C'—function y : J — U
with the following properties:

1. y solves ODE in Eq. (15.1).
2.If g : J = (a,b) — U is another solution of Eq. (15.1) (we assume that
0€ J) then J C J and § =yl ;.

The function y : J — U is called the maximal solution to Eq. (15.1).

Proof. Suppose that y; : J; = (a;,b;) — U, i = 1,2, are two solutions to
Eq. (15.1). We will start by showing the y; = y» on J; N Jo. To do this! let

! Here is an alternate proof of the uniqueness. Let
T = sup{t € [0, min{b1,b2}) : y1 =y2 on [0,¢]}.

(T is the first positive time after which y; and y» disagree.

Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T) =
y2(T) =: z’. Applying the local uniqueness theorem to y1(- — T') and y2(- — T')
thought as function from (—4§,8) — B(z',e(z’)) for some § sufficiently small, we
learn that y1 (-—T") = y2(-—T') on (—0, §). But this shows that y; = y2 on [0,T'+6)
which contradicts the definition of 7. Hence we must have the 7" = min{b1, b2},
ie. y1 = y2 on J1 N J2N[0,00). A similar argument shows that y1 = y» on
J1NJz N (—o0,0] as well.
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Jo = (ag, bp) be chosen so that 0 € Jy C J1NJ, and let E := y1(Jo)Uya(Jo) —
a compact subset of X. Choose ¢ > 0 as in Lemma [15.7/ so that Z is Lipschitz
on E.. Then yi|1,,y2]5 : Jo — E- both solve Eq. (15.1) and therefore are
equal by Corollary [15.3. Since Jy = (ag,bp) was chosen arbitrarily so that
[a,b] C J1 N J2, we may conclude that y1 = y2 on Jy N Ja. Let (Yo, Jo =
(@asba))aca denote the possible solutions to (15.1) such that 0 € J,. Define
Jr = UJ, and set y = y, on J,. We have just checked that y is well defined
and the reader may easily check that this function y : J, — U satisfies all the
conclusions of the theorem. ]

Notation 15.9 For each x € U, let J, = (a(z),b(x)) be the mazimal in-
terval on which Eq. (15.1) may be solved, see Proposition [15.8. Set D(Z) :=
Uzev (Jz x {x}) C J x U and let ¢ : D(Z) — U be defined by ¢(t,x) = y(t)
where y is the mazximal solution to Eq. (15.1). (So for each x € U, ¢(-,x) is
the mazimal solution to Eq. (15.1)).)

Proposition 15.10. Let Z € C(J x U, X) be a locally Lipschitz function in x
andy : Jy = (a(x),b(z)) — U be the maximal solution to Eq. (15.1). If b(z) <
b, then either imsup,jp(,) | Z (¢, y(t))|| = 0o ory(b(z)—) = limyyp() y(t) exists
and y(b(x)—) ¢ U. Similarly, if a > a(z), then either imsup, 4, [[y(t)| = oo
or y(a(z)+) :=lims |, y(t) exists and y(a(z)+) ¢ U.

Proof. Suppose that b < b(z) and M := limsup,,, [ Z(t, y(1))| < oo.
Then there is a by € (0,b(z)) such that || Z(¢,y(t))|| < 2M for all ¢ € (bg, b(x)).
Thus, by the usual fundamental theorem of calculus argument,

ly(t) — w(®)]| < / 1Z(t,y(r)) dr| < 2M]t — ¢

for all ¢t,¢' € (bg,b(x)). From this it is easy to conclude that y(b(z)—) =
limyqp(z) y(t) exists. If y(b(z)—) € U, by the local existence Theorem [15.4,
there exists § > 0 and w € C* ((b(z) — 6, b(x) + §),U) such that

w(t) = Z(t,w(t)) and w(b(z)) = y(b(z)-).
Now define 7 : (a,b(z) + ) — U by

. (t) ifteJ,
y(t) = {fu@ if t € [b(z),b(z) +0)"

The reader may now easily show § solves the integral Eq. (15.2) and hence
also solves Eq. [15.1 for ¢ € (a(z),b(z) + §).? But this violates the maximality
of y and hence we must have that y(b(x)—) ¢ U. The assertions for ¢ near
a(z) are proved similarly. |

2 See the argument in Proposition [15.13 for a slightly different method of extending
y which avoids the use of the integral equation (15.2).
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Ezample 15.11. Let X = R?, J =R, U = {(z,y) € R?: 0 <r < 1} where
r?2 = 22 + y? and

Z(e,) = (00) + 1 ().

1—1r2
The the unique solution (z(t),y(t)) to

@ alt), 1) = Z(a(t), o) with (2(0),5(0)) = (

is given by

(@(1),y(t)) = <t+ ;) (COS (Uzl_t) Sin (1/21— t)>

for t € Ji1 /2,0y = (—00,1/2). Notice that || Z(x(t),y(t))|| — oo ast T 1/2 and
dist((z(t),y(¢)),U°) = 0ast ] 1/2.

1
20

Example 15.12. (Not worked out completely.) Let X = U = 2, o) € C(R?)
be a smooth function such that ¢ = 1 in a neighborhood of the line segment
joining (1, 0) to (0,1) and being supported within the 1/10 — neighborhood of
this segment. Choose a,, T oo and b, T co and define

Z(@) = anth(bn(@n, Tni1))(€ns1 — €n). (15.22)

n=1

For any x € £2, only a finite number of terms are non-zero in the above some
in a neighborhood of x. Therefor Z : £2 — (2 is a smooth and hence locally
Lipshcitz vector field. Let (y(t), J = (a,b)) denote the maximal solution to

y(t) = Z(y(t)) with y(0) = e1.

Then if the a, and b, are chosen appropriately, then b < co and there will
exist ¢, T b such that y(t,) is approximately e,, for all n. So again y(¢,) does
not have a limit yet sup,¢jo ) [|y(¢)[| < oo. The idea is that Z is constructed
to blow the particle form e; to es to e3 to e4 ete. etc. with the time it takes to
travel from e, to e, being on order 1/2™. The vector field in Eq. (15.22) is
a first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition 15.10/ which is more useful when
dim(X) < o0.

Proposition 15.13. Let Z € C(J x U, X) be a locally Lipschitz function in
x andy: Jp = (a(x),b(x)) — U be the mazimal solution to Eq. (15.1)).

1. If b(x) < b, then for every compact subset K C U there exists Tk < b(x)
such that y(t) ¢ K for all t € [Tk,b(x)).
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2. When dim(X) < oo, we may write this condition as: if b(x) < b, then
either

limsup ||y(t)|| = oo or liminf dist(y(t), U¢) = 0.
t1b(z) £16(x)

Proof. 1) Suppose that b(z) < b and, for sake of contradiction, there
exists a compact set K C U and t, 1 b(z) such that y(t,) € K for all n.
Since K is compact, by passing to a subsequence if necessary, we may assume
Yoo 1= limy, 00 Y(tn) exists in K C U. By the local existence Theorem [15.4]
there exists Tp > 0 and § > 0 such that for each 2’ € B (Yoo, d) there exists a
unique solution w(-,z") € C*((—Ty,Ty),U) solving

w(t,z") = Z(t,w(t,z")) and w(0,2") = 2.

Now choose n sufficiently large so that ¢, € (b(z) — Tp/2,b(x)) and y(t,) €
B (Yc0,9) - Define § : (a(x),b(x) + To/2) — U by

~ (t) ifted,
y(t) = {Z;(t — b, yY(tn)) if t € (tn — To,b(x) + To/2).

wherein we have used (¢, — T, b(z)+T0/2) C (tn —To,tn+Tp). By uniqueness
of solutions to ODE’s ¢ is well defined, § € C1((a(x),b(x) + Tp/2), X ) and §
solves the ODE in Eq. [15.1. But this violates the maximality of y. 2) For each
n € N let

K, :={xeU:|z| <nand dist(z,U°) > 1/n}.

Then K,, T U and each K, is a closed bounded set and hence compact if
dim(X) < oo. Therefore if b(z) < b, by item 1., there exists T,, € [0,b(z))
such that y(t) ¢ K, for all ¢ € [T,,b(z)) or equivalently ||y(¢)|| > n or
dist(y(t),U°) < 1/n for all t € [T}, b(x)). ]

Remark 15.14. In general it is not true that the functions a and b are contin-
uous. For example, let U be the region in R? described in polar coordinates
by r > 0 and 0 < 6 < 37/4 and Z(z,y) = (0,—1) as in Figure 15.2 below.
Then b(z,y) = y for all z,y > 0 while b(z,y) = oo for all z < 0 and y € R
which shows b is discontinuous. On the other hand notice that

{b>t}={z<0}U{(z,y): 2 >0,y >t}

is an open set for all ¢ > 0. An example of a vector field for which b(x) is
discontinuous is given in the top left hand corner of Figure [15.2. The map
3 would allow the reader to find an example on R? if so desired. Some cal-
culations shows that Z transferred to R? by the map 1 is given by the new
vector

Haom = s (2 it ) cos (2 4 2t ).
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\PLP&£9> - Qio&r, {-M(_L%e__-g-zo

Fig. 15.2. Manufacturing vector fields where b(x) is discontinuous.

Theorem 15.15 (Global Continuity). Let Z € C(J x U, X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J x U and the func-
tions ¢ : D(Z) — U and b D(Z) — U are continuous. More precisely, for
all o € U and all open intervals Jy such that 0 € Jy CC Jg, there exists
0 =0(xg,Jo, Z) > 0 and C = C(xg, Jo, Z) < 0o such that for all x € B(xg,9),
Jo C Jp and

16(12) = 620l e < C llz = woll. (15.23)

Proof. Let |Jy| = by — ag, I = Jy and E := y(Jo) — a compact subset of U
and let ¢ > 0 and K < oo be given as in Lemma [15.7, i.e. K is the Lipschitz
constant for Z on E.. Also recall the notation: A;(¢) = [0,¢] if ¢ > 0 and
Ay (t) = [t,0] if t < 0. Suppose that z € E., then by Corollary [15.3|

(¢, 2) = ¢(t, z0) || < & — wolle"1 < |z — ol X1 ”! (15.24)

for all ¢ € Jy N J, such that such that ¢ (Ay(¢),z) C E.. Letting § :=
ge~ K170l /2 and assuming = € B(z, ), the previous equation implies

lop(t,z) — d(t,z0)|| <e/2<eVteJoNJd, D ¢(A1(t),z) C E-..

This estimate further shows that ¢(¢,x) remains bounded and strictly away
from the boundary of U for all such t. Therefore, it follows from Proposition
15.8 and “continuous induction®” that Jo C J, and Eq. (15.24) is valid for all

3 See the argument in the proof of Proposition [8.11l
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t € Jo. This proves Eq. (15.23) with C := X170l Suppose that (ty, z¢) € D(Z)
and let 0 € Jy CC Jy, such that ¢ty € Jy and § be as above. Then we have
just shown Jy x B(xg,d) C D(Z) which proves D(Z) is open. Furthermore,
since the evaluation map

(t(),y) S J(] X BC(J(), U) i’ y(t()) cX

is continuous (as the reader should check) it follows that ¢ = eo(x — ¢(+,x)) :
Jo X B(zg,d) — U is also continuous; being the composition of continuous
maps. The continuity of gz.S(tO, x) is a consequences of the continuity of ¢ and
the differential equation [15.1] Alternatively using Eq. (15.2)),

[6(to, ©) — &(t, zo)|| < l[¢(to, 2) — ¢(to, zo) || + l[¢(to, 20) — &(£, o)

to

<Clloaoll +| [ 12 otrzo)ar
t

< Cllz — ol + M |to — t|

where C'is the constant in Eq. (15.23) and M = sup,.¢ 5, | Z(7, ¢(7, z0))|| < oo.
This clearly shows ¢ is continuous. [ ]

15.5 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field Z. It will be convenient to introduce the following
suggestive notation. For (t,z) € D(Z), set e'?(x) = ¢(t,z). So the path
t — et?(x) is the maximal solution to

d
aetz(x) = Z(e'?(x)) with ?(z) = .

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 15.16 We write f : X — X to mean a function defined on some
open subset D(f) C X. The open set D(f) will be called the domain of f.
Given two functions f : X — X and g : X — X with domains D(f) and
D(g) respectively, we define the composite function fog: X — X to be the
function with domain

D(fog)={zxeX:ze€D(g) andg(zx) € D(f)} =g "(D(f))

given by the rule fog(x) = f(g(x)) for allz € D(fog). We now write f =g
iff D(f) = D(g) and f(x) = g(z) for all x € D(f) = D(g). We will also write
fcgiff D(f) € D(g) and glp(y) = f-
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Theorem 15.17. For fized t € R we consider et? as a function from X to X
with domain D(et?) = {x € U : (t,z) € D(Z)}, where D(¢) = D(Z) C R x U,
D(Z) and ¢ are defined in Notation[15.9. Conclusions:

1. Ift,seR andt-s >0, then e'% o e5Z = e(t+9)Z,
2. Ift S R, then etZ o e_tZ = IdD(e—tZ).
3. For arbitrary t,s € R, e'Z o e5% C e(t+9)Z,

Proof. Item 1. For simplicity assume that ¢, s > 0. The case ¢, s < 0 is left
to the reader. Suppose that 2 € D(e'? 0e®?). Then by assumption x € D(e*?)
and e*Z(x) € D(e'?). Define the path y(7) via:

() = e (z) if0<7<s
yir = T2 (z) ifs<T<t+s"

It is easy to check that y solves ¢(7) = Z(y(7)) with y(0) = z. But since,
e™?(z) is the maximal solution we must have that 2 € D(e**+)%) and y(t +
s) = e(*9)Z (). That is e*+9)%(z) = ¢'% 0 e*#(z). Hence we have shown that
et? o esZ C e+9)Z To finish the proof of item 1. it suffices to show that
D(eltt9)7) C D(et? 0e*?). Take x € D(e(*+)2) then clearly = € D(e*?). Set
y(1) = e"t9)Z () defined for 0 < 7 < t. Then y solves

y(r) = Z(y(r)) with y(0) = e*(x).

But since 7 — e™Z(e*4(z)) is the maximal solution to the above initial valued
problem we must have that y(7) = e"?(e*?(z)), and in particular at 7 =
t, e+3)2 () = etZ(e*Z(z)). This shows that 2 € D(e!? o e*?) and in fact
t+8)Z = 2 o 57

Item 2. Let € D(e”'?) — again assume for simplicity that ¢+ > 0. Set
y(1) = e"YZ(2) defined for 0 < 7 < t. Notice that y(0) = e~ *4(x) and
(1) = Z(y(7)). This shows that y(7) = e7?(e~*?(x)) and in particular that
z € D(e'? o e7??) and €'Z o e7t4(x) = x. This proves item 2.

Item 3. I will only consider the case that s < 0 and ¢ + s > 0, the other
cases are handled similarly. Write u for t 4+ s, so that ¢t = —s 4+ u. We know
that et = €*Z o0 e~*Z by item 1. Therefore

etZ OeSZ _ (euZ o e—sZ) o esZ.
Notice in general, one has (f o g) o h = f o (goh) (you prove). Hence, the
above displayed equation and item 2. imply that

tZ sZ uZ

e“oe’” =e"o (e*SZ ) esz) = e(t+9)Z t+s)Z

o ID(esZ) (- 6(

]

The following result is trivial but conceptually illuminating partial con-
verse to Theorem [15.17.



238 15 Ordinary Differential Equations in a Banach Space

Proposition 15.18 (Flows and Complete Vector Fields). Suppose U C,
X, 0 € CRxU,U) and ¢(x) = ¢(t,x). Suppose ¢ satisfies:

L ¢O = IU;

2. 910 ¢s= ¢Qrys forallt,s € R, and

3. Z(z) := ¢(0,z) exists for allz € U and Z € C(U,X) is locally Lipschitz.
Then ¢y = et%.

Proof. Let x € U and y(t) := ¢¢(z). Then using Item 2.,

5(0) = - loy(t 1) = ~lodien)(x) = b Gu(x) = Z(y(1)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary [15.3) that ¢;(z) = y(t) = e*?(x).
]

15.6 Exercises

Exercise 15.1. Find a vector field Z such that e®*+5)Z is not contained in
tZ sZ
e oe”.

Definition 15.19. A locally Lipschitz function Z : U C, X — X is said to
be a complete vector field if D(Z) = R x U. That is for any x € U, t — e'?(x)
is defined for all t € R.

Exercise 15.2. Suppose that Z : X — X is a locally Lipschitz function.
Assume there is a constant C' > 0 such that

1Z(z)|| < C(1+ ||z||) forall z e X.
Then Z is complete. Hint: use Gronwall’s Lemma [15.2/and Proposition [15.10.

Exercise 15.3. Suppose y is a solution to (t) = |y(t)|1/2 with y(0) = 0.
Show there exists a,b € [0, 0] such that

(=02 if t>b
y(t) = 0 if —a<t<b
—i(t+a)?if t<-a

Exercise 15.4. Using the fact that the solutions to Eq. (15.3) are never 0 if
x # 0, show that y(¢) = 0 is the only solution to Eq. (15.3) with y(0) = 0.

Exercise 15.5 (Higher Order ODE). Let X be a Banach space, ,U C, X™
and f € C(J xU,X) be a Locally Lipschitz function in x = (x1,...,2y).
Show the n'" ordinary differential equation,
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y ™M (1) = F(ty(),9(t), ...y V(X)) with y®(0) = yg for k<n  (15.25)

where (y3,...,y5 ") is given in U, has a unique solution for small ¢ € J.

Hint: let y(t) = (y(),9(t),...y™ 1 (t)) and rewrite Eq. (15.25) as a first
order ODE of the form

y(t) = Z(t,y(t)) with y(0) = (yg,--.,55 ")
Exercise 15.6. Use the results of Exercises 8.20/ and [15.5 to solve
§(t) — 29(t) + y(t) = 0 with y(0) = a and y(0) = b.

Hint: The 2 x 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I + B where B? = 0.

Exercise 15.7 (Non-Homogeneous ODE). Suppose that U C, X is open
and Z : Rx U — X is a continuous function. Let J = (a,b) be an interval and
to € J. Suppose that y € C1(J,U) is a solution to the “non-homogeneous”
differential equation:

y(t) = Z(t,y(t)) with y(t,) =x € U. (15.26)

Define Y € C1(J —tg,RxU) by Y (t) := (t+to,y(t+tg)). Show that Y solves
the “homogeneous” differential equation

Y (t) = Z(Y (t)) with Y (0) = (to,%0), (15.27)

where Z(t,z) := (1, Z(z)). Conversely, suppose that Y € C1(J —tg,R x U)
is a solution to Eq. (15.27). Show that Y (t) = (¢ + to,y(t + to)) for some y €
C1(J,U) satisfying Eq. (15.26). (In this way the theory of non-homogeneous
ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 15.8 (Differential Equations with Parameters). Let W be
another Banach space, U x V C, X x W and Z € C(U x V, X) be a locally
Lipschitz function on U x V. For each (z,w) € U x V,let t € J, ,, — ¢(t, x,w)
denote the maximal solution to the ODE

y(t) = Z(y(t), w) with y(0) = x. (15.28)

Prove
D:={(t,z,w) eERxUxV:teJy,} (15.29)

isopenin R x U x V and ¢ and ¢ are continuous functions on D.
Hint: If y(t) solves the differential equation in (15.28), then v(t) :=
(y(t), w) solves the differential equation,

o(t) = Z(v(t)) with v(0) = (z,w), (15.30)

where Z(z,w) := (Z(z,w),0) € X x W and let ¢(t, (x,w)) := v(t). Now apply
the Theorem [15.15 to the differential equation (15.30).
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Exercise 15.9 (Abstract Wave Equation). For A € L(X) and t € R, let

— (=" 2, 4o
cos(tA) = t*" A°" and
(t4) nzzo (2n)!
sin(tA) — - (=" £2n+1 g2n
A = (2n+1)! '

Show that the unique solution y € C? (R, X) to
ii(t) + A%y(t) = 0 with y(0) = yo and §(0) = go € X (15.31)
is given by

sin(tA) .
( >y0.

y(t) = cos(tA)yo +

Remark 15.20. Exercise [15.9 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (15.31) as a first order ODE using Exercise
15.5. In doing so you will be lead to compute e'? where B € L(X x X) is

given by
0 I
B = (_A2 0>a

where we are writing elements of X x X as column vectors, (il > . You should
2
then show i
B — cos(tA) %
—Asin(tA) cos(tA)
where

: o~ (D" i g2t
Asin(tA) = E 2l p2(nt),
= (2n+1)!

Exercise 15.10 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise [15.9, but now consider the ODE,

(1) + A%y(t) = () with y(0) = yo and §(0) =go € X (15.32)

where f € C(R, X). Show the unique solution to Eq. (15.32) is given by

in(tA Psin((t —7) A

y(t) = cos(tA)yo + sin( )y'o + / Mf(T)dT (15.33)
A 0 A

Hint: Again this could be proved by direct calculation. However it is more

instructive to deduce Eq. (15.33) from Exercise 8.22 and the comments in
Remark [15.20.
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Banach Space Calculus

In this section, X and Y will be Banach space and U will be an open subset
of X.

Notation 16.1 (g, O, and o notation) Let 0 € U C, X, and f : U — Y
be a function. We will write:

1 (@) = @) if limg o [If(x)] = 0.

2. f(x) = O(x) if there are constants C < oo and r > 0 such that
lf (@) < Cllz|| for all x € B(0,7). This is equivalent to the condition
that lim sup,_o (||| 71| f(2)]]) < oo, where

If @)l

lim sup ——— := limsu )| 0 < ||z|| <7}
msup liny p{llf (@)l [zl <7}

3. f(x) =o(x) if f(zx) = e(x)O(x), i.e. limgo |f(2)]/]z] = 0.
Ezxample 16.2. Here are some examples of properties of these symbols.
1. A function f : U C, X — Y is continuous at zg € U if f(zg+ h) =
f(zo) +e(h).
2. If f(z) = e(x) and g(x) = e(x) then f(z) + g(x) = e(x).
Now let g : Y — Z be another function where Z is another Banach space.
3. If f(z) = O(x) and ¢g(y) = o(y) then go f(z) = o(x).
4. 1f f(z) = e(x) and g(y) = e(y) then go f(z) = e(x).

16.1 The Differential

Definition 16.3. A function f: U C, X — Y is differentiable at o € U
if there exists a linear transformation A € L(X,Y) such that

f(zo+h) — f(xo) — Ah = o(h). (16.1)

We denote A by f'(xo) or Df(xo) if it exists. As with continuity, [ is dif-
ferentiable on U if f is differentiable at all points in U.
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Remark 16.4. The linear transformation A in Definition [16.3] is necessarily
unique. Indeed if A; is another linear transformation such that Eq. (16.1)
holds with A replaced by A;, then

(A — Ak = o(h),

Jim sup [(A—=A)h|

0.
h—0 7]

On the other hand, by definition of the operator norm,

A—Ay)h
lim sup it = ARl =||A—= Ay
h—0 ||h’H
The last two equations show that A = A;.

Exercise 16.1. Show that a function f : (a,b) — X is a differentiable at
t € (a,b) in the sense of Definition 8.8 iff it is differentiable in the sense of
Definition [16.3. Also show Df(t)v = vf(¢) for all v € R.

Ezample 16.5. f T € L (X,Y) and z,h € X, then
Tx+h)—T(x)—Th=0
which shows 7" (z) =T for all x € X.
Ezample 16.6. Assume that GL(X,Y) is non-empty. Then by Corollary [7.20,
GL(X,Y) is an open subset of L(X,Y) and the inverse map f : GL(X,Y) —
GL(Y, X), defined by f(A) := A~ is continuous. We will now show that f
is differentiable and
f'(A)B=—-A"'BA~! for all B € L(X,Y).
This is a consequence of the identity,
fA+H) —f(A)=(A+H) " (A-(A+ H)A ' = —(A+ H)'HA™!
which may be used to find the estimate,

|f(A+H) = f(A)+ AT HATY| = ||[[A™" = (A+ H)'|HA™Y|
AT = A+ )7 H] A7

IAYP A 2
=O(IH]
L — [|A= [ H]] ( )

IN

wherein we have used the bound in Eq. (7.8) of Corollary [7.20 for the last
inequality.
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16.2 Product and Chain Rules

The following theorem summarizes some basic properties of the differential.
Theorem 16.7. The differential D has the following properties:

1. Linearity: D is linear, i.e. D(f + A\g) = Df + ADg.
2. Product Rule: If f : U C, X =Y and A:U C, X — L(X,Z) are
differentiable at xg then so is x — (Af)(z) := A(z) f(z) and

D(Af)(zo)h = (DA(x0)h) f(x0) + A(xo) D f(x0)h.
3. Chain Rule: If f: U C, X -V C, Y is differentiable at ¢y € U, and

g:V Co Y — Z is differentiable at yo := f(xq), then go f is differentiable
at zg and (go f) (zo) = ¢ (yo) f'(x0).

4. Converse Chain Rule: Suppose that f : U C, X -V C, Y is contin-
uous at xo € U, g: V C, Y — Z is differentiable yo := f(ho), g'(yo) is
invertible, and g o f is differentiable at xg, then f is differentiable at xg
and

(o) = [g'(x0)] " (g 0 f)'(x0)- (16.2)

Proof. Linearity. Let f,g : U C, X — Y be two functions which are
differentiable at g € U and A € R, then

(f + Ag)(zo + h)
= f(zo) + Df(zo)h + o(h) + Ag(wo) + Dg(xo)h + o(h)
= (f 4+ Ag)(wo) + (D f(xo) + ADg(z0))h + o(h),

which implies that (f + Ag) is differentiable at 2 and that
D(f + Ag)(zo) = D f(z0) + ADg(zo).
Product Rule. The computation,

= (A(zo) + DA(wo)h + o(h))(f(x0) + f'(z0)h + o(h))
= A(wo) f (o) + A(zo) f'(x0)h + [DA(wo)h] f (z0) + o(h),
verifies the product rule holds. This may also be considered as a special case

of Proposition [16.9. Chain Rule. Using f(zq + h) — f(zo) = O(h) (see Eq.
(16.1)) and o(O(h)) = o(h),

(gof)(zo+h

)
= g(f(x0)) + 9" (f(20))(f(xo + h) — f(x0)) + o(f(x0 + h) — f(x0))
= g(f(z0)) + ¢'(f (20))(D f(w0)xo + o(h)) + o f(xo + h) — f(20)
= g(f(0)) + ¢'(f(z0))Df(z0)h + o(h).
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Converse Chain Rule. Since ¢ is differentiable at yo = f(z¢) and ¢’ (yo) is
invertible,

g(f(xo +h)) — g(f(z0))
= g'(f(0))(f(zo + h) = f(x0)) + o(f(zo + h) = f(x0))
= ¢'(f(z0)) [f(xo + R) — f(x0) + o(f(20 + h) — f(x0))]-

And since g o f is differentiable at z,
(g0 f)(@o+h)—g(f(xo)) = (g0 f) (xo)h+ o(h).

Comparing these two equations shows that

f(xo +h) = f(z0) + o(f(zo + h) — f(x0))
=g (f(z0)) " (g0 f) (zo)h + o(h)]

which is equivalent to

f(xo + h) — f(zo) + o f(zo + h) — f(20))
=g (f(x0)) " [(g 0 f) (x0)h + o(h)]
=g (f(20)) " H{(g o ) (xo)h + o(h) — o(f(xo + h) — f(z0))}
=g (f(20)) "' (g o f) (wo)h + o(h) + o(f (w0 + h) — f(w0)). (16.3)

Using the continuity of f, f(xg + h) — f(xo) is close to 0 if & is close to zero,
and hence

lo(f(wo+ 1)~ Fao))ll < gl 7o+ 1)~ fao)| (164

for all h sufficiently close to 0. (We may replace % by any number o > 0
above.) Taking the norm of both sides of Eq. (16.3) and making use of Eq.
(16.4) shows, for h close to 0, that

1/ (xo +h) — f(zo)]l
< llg'(f(0)) " (g o f) (@o) 1Al + o(l|All) + %Ilf(xo +h) = f(zo)l-
Solving for ||f(zo + h) — f(zo)]|| in this last equation shows that
flxo+ h) — f(xzo) = O(h). (16.5)

(This is an improvement, since the continuity of f only guaranteed that f(xo+
h) — f(zo) = €(h).) Because of Eq. (16.5)), we now know that o(f(zo + h) —
f(zo)) = o(h), which combined with Eq. (16.3) shows that

flwo+h) = f(zo) = ¢'(f(x0) (g 0 f) (zo)h + o(h),
i.e. f is differentiable at xo and f'(xo) = ¢'(f(20)) 1 (g 0 f) (x0). |
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Corollary 16.8 (Chain Rule). Suppose that o : (a,b) — U C, X is differ-
entiable at t € (a,b) and f: U Co, X — 'Y is differentiable at o(t) € U. Then
f oo is differentiable at t and

d(f o o)(t)/dt = f'(a(t))6(t).

Proposition 16.9 (Product Rule II). Suppose that X = X3 x --- x X,
with each X; being a Banach space and T : X1 x---x X,, — Y is a multilinear
map, i.e.

z;, € X; — T(xl,.. .7$i,1,(Ei,(Ei+1,...,.’IJn) ey

is linear when x1,...,Ti—1,Tit1,...,Ty are held fired. Then the following are

equivalent:

1. T is continuous.
2. T is continuous at 0 € X.
3. There exists a constant C < oo such that

IT (2)lly < C T llillx, (16.6)
i=1
forallz = (z1,...,2,) € X.
4. T is differentiable at all z € X7 X -+ X X,,.
Moreover if T the differential of T is given by
T, ({E) h = ZT((El, ey L1, hi71'i+17 [N ,iCn) (167)
i=1

where h = (hq,...,hy) € X.

Proof. Let us equip X with the norm

2y += max {||zill, } -
If T is continuous then T is continuous at 0. If T' is continuous at 0, using
T (0) = 0, there exists a § > 0 such that ||T (x)||,, < 1 whenever ||z| < 0.
Now if x € X is arbitrary, let 2’ := ¢ (HmlHZ acl,,||xn||;(i acn) Then

llz'|l y < ¢ and hence

‘ <5"H II%IIX1> T(x1,...,2n)
i=1

from which Eq. (16.6) follows with C' = 6—".
Now suppose that Eq. (16.6) holds. For z,h € X and ¢ € {0,1}" let
lel =>1 & and

=T @) <1
Y
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i (h) = ((1 — 81) 1 + €1h1, ey (1 — En) Tn + Enhn) e X.

By the multi-linearity of T,

T(z+h)=T(x1+h1,....zn+hy)= > T(af(h))
ee{0,1}"™

n

= T((E) +ZT(xh...,xi,l,hi,xiﬂ,...,xn)
i=1
+ ) T@E(h). (16.8)

e€{0,1}:|e|>2

From Eq. (16.6)),

> T || =o(InF).

£€{0,1}:]e|>2

and so it follows from Eq. (16.8)) that 7" (x) exists and is given by Eq. (16.7).
This completes the proof since it is trivial to check that T being differentiable
at x € X implies continuity of T" at z € X. [ ]

Exercise 16.2. Let det : L (R™) — R be the determinant function on n x n
matrices and for A € L (R™) we will let A; denote the i*" — column of A and
write A = (A1|A2| N |An) .

1. Show det’ (A) exists for all A € L(R") and
’ n
det (A) H = det (Ay|... [A;i1|Hi|Aija] ... |Ay) (16.9)
=1

for all H € L (R™). Hint: recall that det (A) is a multilinear function of
its columns.

2. Use Eq. (16.9) along with basic properties of the determinant to show
det’ (I) H = tr(H).

3. Suppose now that A € GL (R™), show

det (A) H = det (A) tr(A~VH).

Hint: Notice that det (A + H) = det (4) det (I + A7 H).
4.1f A € L(R"), show det (e?) = e*(). Hint: use the previous item and
Corollary 16.8 to show

9 det (e4) = det (¢ ().
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Definition 16.10. Let X and Y be Banach spaces and let LY (X,Y) :=
L(X,Y) and for k > 2 let L¥(X,Y) be defined inductively by LF1(X,Y) =
L(X,LF(X,Y)). For exzample L2(X,Y) = L(X,L(X,Y)) and L3(X,Y) =
L(X,L(X,L(X,Y))).

Suppose f:U C, X — Y is a function. If f is differentiable on U, then it
makes sense to ask if f' = Df : U — L(X,Y) = L1(X,Y) is differentiable. If
Df is differentiable on U then f” = D?f := DDf : U — £?(X,Y). Similarly
we define f(") = D"f: U — £*(X,Y) inductively.

Definition 16.11. Given k € N, let C* (U,Y) denote those functions f :
U — Y such that f9) .= Dif : U — LI (X,Y) exists and is continuous for
i=1,2,... k.

Ezample 16.12. Let us continue on with Example 16.6 but now let X =Y to
simplify the notation. So f : GL(X) — GL(X) is the map f(A) = A~! and

f/(A) = —LA—IRA—I, ie. f/ = —LfRf.

where LyB = AB and RyB = AB for all A, B € L(X). As the reader may
easily check, the maps

A€ L(X)— La,Ra € L(L(X))

are linear and bounded. So by the chain and the product rule we find f”(A)
exists for all A € L(X) and

f"(A)B = —LpaypRs — LRy (a)p-
More explicitly
[f"(A)B]C = A"'BA™'CA ' + A7'CA™'BA™L. (16.10)

Working inductively one shows f : GL(X) — GL(X) defined by f(A) := A~}
is C*°.

16.3 Partial Derivatives

Definition 16.13 (Partial or Directional Derivative). Let f : U C, X —
Y be a function, xg € U, and v € X. We say that f is differentiable at xy in
the direction v iff L|o(f(zo + tv)) = (Ouf)(zo) ezists. We call (0, f)(zo) the
directional or partial derivative of f at xqy in the direction v.

Notice that if f is differentiable at zq, then 9, f(zo) exists and is equal to
f'(xo)v, see Corollary 16.8!
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Proposition 16.14. Let f : U C, X — Y be a continuous function and
D C X be a dense subspace of X. Assume 0, f(x) exists for all x € U and
v € D, and there exists a continuous function A : U — L(X,Y) such that
Oy f(x) = A(x)v for allv € D and v € UND. Then f € CYU,Y) and
Df = A.

Proof. Let zg € U, € > 0 such that B(zg,2¢) C U and M := sup{||A(z)| :
zr € B(z0,2¢)} < odt. For @ € B(zg,e) N D and v € D N B(0,¢), by the
fundamental theorem of calculus,

flato) =)= [ HEEE o

_ /1(6Uf)(:1:+tv)dt_/1A(:c+tv)vdt. (16.11)
0 0

For general x € B(xg,¢) and v € B(0,¢), choose z, € B(xg,e) N D and
v, € DN B(0,¢) such that x,, — x and v,, — v. Then

1
flzn +vn) — fla,) = / A2y + tuy) v, dt (16.12)
0
holds for all n. The left side of this last equation tends to f(x +v) — f(z) by
the continuity of f. For the right side of Eq. (16.12) we have

1 1
||/ A(x+tv)vdt7/ A(zy, + to,) vy, dt]]
0 0

1
< / 1Az + tv) — Al + ton) [[[o]] dt + Mo — v,
0

It now follows by the continuity of A, the fact that ||A(x+tv)— Az, +tv,) || <
M, and the dominated convergence theorem that right side of Eq. (16.12)
€)

converges to fol A(z + tv) vdt. Hence Eq. (16.11) is valid for all z € B(x,
and v € B(0,£). We also see that

fl@+v) — f(z) — A(z)v = e(v)v, (16.13)
where £(v) := fol [A(z + tv) — A(x)] dt. Now

L Tt should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not sufficient to choose e sufficiently small so that
B(zo,2¢) C U. Here is a counter example. Let X = H be a Hilbert space, {en }ne1
be an orthonormal set. Define f(z) =Y > n¢(||x — exn||), where ¢ is any contin-
uous function on R such that ¢(0) =1 and ¢ is supported in (—1,1). Notice that
len —em||* = 2 for all m # n, so that ||e, —em|| = v/2. Using this fact it is rather
easy to check that for any z¢ € H, there is an € > 0 such that for all z € B(xo,¢),
only one term in the sum defining f is non-zero. Hence, f is continuous. However,
flen) =n — oo as n — oo.
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lle(w)l S/O [A(z + tv) — A(z)|| dt

< max ||A(x +tv) — A(z)|] = 0asv — 0,
te[0,1]
by the continuity of A. Thus, we have shown that f is differentiable and that
Df(z) = A(z). ]

Corollary 16.15. Suppose now that X =R?, f:U C, X — Y be a contin-
uous function such that 0; f(x) := 0., f (x) exists and is continuous on U for
t=1,2,...,d, where {ei}?zl is the standard basis for RY. Then f € CY(U,Y)
and Df (x)e; = 0;f (x) for all i.

Proof. For x € U, let A () : R? — Y be the unique linear map such that
A(z)e; = 0;f () for i = 1,2,...,d. Then A: U — L(R%Y) is a continuous
map. Now let v € R? and v := (v1,v9,...,9;,0,...,0) fori =1,2,...,d and
v(® := 0. Then for ¢t € R near 0, using the fundamental theorem of calculus
and the definition of 9;f (x),

flx+tv)—f(x) = Xd: [f (a: +tv(i)> —f (z +tv("*1)>}

i=1
d 1 d
= Z/ %f (:c + o= 4 stviei> ds
i=1"0

d 1
= Ztvi / o; f (:17 + ol 4 stviei) ds
i=1 0

d 1
= Ztvi/ A (a: + ol 4 stviei) e;ds.
i=1 0

Using the continuity of A, it now follows that

li J @+ t0) = f (@) _
t—0 t

d 1
Z v; }ir% A (:I: + o= 4 stviei) e;ds
-1 Jo

d 1
:i_zlvi/o A(x)e;ds=A(x)v

which shows 0, f (z) exists and 0, f () = A () v. The result now follows from
an application of Proposition [16.14L [ ]

16.4 Higher Order Derivatives

It is somewhat inconvenient to work with the Banach spaces £F(X,Y) in Def-
inition [16.10. For this reason we will introduce an isomorphic Banach space,
My(X,Y).
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Definition 16.16. For k € {1,2,3,...}, let M (X,Y) denote the set of func-
tions f : X* —Y such that

1. Fori e {1,2,....k}, v € X — flv1,v2,...,0i—1,0,V11,...,0) €Y is
linear® for all {v;}*_, C X.
2. The norm || f|| s, (x,v) should be finite, where

I[f{v1,va, .- ve)lly k
I £l a1, (x,v) = sup{ {vitizg € X\ {0}}.
L ol Tl '
Lemma 16.17. There are linear operators ji : LM(X,Y) — Mi(X,Y)
defined inductively as follows: j1 = Idpxy) (notice that My(X,Y) =
LYX,Y)=L(X,Y)) and
(Jrr1A){(vg,v1, ..., vk) = (Je(Avo)){v1,v2,...,05) Vu; € X.

(Notice that Avy € LF(X,Y).) Moreover, the maps ji are isometric isomor-
phisms.

Proof. To get a feeling for what ji is let us write out jo and j3 explicitly.
If Ae L2(X,Y) = L(X,L(X,Y)), then (joA){(v1,v2) = (Avy)vy and if A €
ES(X,Y) = L(X,L(X,L(X, Y))), (ng)<U1,U2,U3> = ((AUl)UQ)’L}g for all v; €
X. Tt is easily checked that jj is linear for all k. We will now show by induction
that ji is an isometry and in particular that ji is injective. Clearly this is true
if k = 1 since j; is the identity map. For A € £F1(X)Y),

k1 Al (x 1)

Ur(Avo)) (s va, vl o vk o e gony

:= sup{ I

lvollllvxllflve]l - - vkl =0
i (Av
{”(Jk( 0))“Mk(X,Y) L € X\{O}}
[[voll
Av
— supg 1A%l ey e e oy
[[voll
= HAHL(X,U(X,Y)) = ||AHM+1(X,Y)a

wherein the second to last inequality we have used the induction hypothesis.
This shows that jgi1 is an isometry provided jx is an isometry. To finish the
proof it suffices to show that ji is surjective for all k. Again this is true for
k = 1. Suppose that ji is invertible for some k > 1. Given f € Mj1(X,Y) we
must produce A € L¥1(X|Y) = L(X, £*(X,Y)) such that jz 1 A = f. If such
an equation is to hold, then for vy € X, we would have jx(Avg) = f(vo,---).
That is Avg = jk_l(f<v0, -+-)). It is easily checked that A so defined is linear,
bounded, and jx11A4 = f. [
From now on we will identify £F with M; without further mention. In
particular, we will view D¥ f as function on U with values in My(X,Y).

2 T will routinely write f{(v1,vs,...,vs) rather than f(v1,v2, ..., vx) when the func-
tion f depends on each of variables linearly, i.e. f is a multi-linear function.
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Theorem 16.18 (Differentiability). Suppose k € {1,2,...} and D is
a dense subspace of X, f : U C, X — Y is a function such that
(Ovy Oy + -+ Oy, ) () exists for allz € DNU, {v;}_, C D, and 1 = 1,2,...k.
Further assume there exists continuous functions Ay : U C, X — My(X,Y)
such that such that (Oy, Oy, -+ Oy, f)(x) = Ai(x){v1,v2,...,0;) for all x €
DNU {v}}_; € D, and 1 = 1,2,...k. Then D'f(z) exists and is equal
to Ai(z) forallz €U andl=1,2,... k.

Proof. We will prove the theorem by induction on k. We have already
proved the theorem when k = 1, see Proposition [16.14. Now suppose that
k > 1 and that the statement of the theorem holds when £ is replaced by k—1.
Hence we know that D'f(z) = A;(x) forall z € U and | = 1,2,...,k — 1. We
are also given that

(Opy Opy + -+ O, [)(x) = Ap(x){v1,v2,...,05) Yx e UND,{v;} CD. (16.14)

Now we may write (Jy, - - - Oy, f)(z) as (D*~1f)(x)(v2, vs, ..., vx) so that Eq.
(16.14) may be written as

8U1 (Dk_lf)(.’L‘)<’U2, V3, ... ,Uk>)
= Ag(z){v1,v9,...,05) Yz eUND,{v;} CD. (16.15)

So by the fundamental theorem of calculus, we have that
(DE1 ) (@ +01) = (DE7 ) (@) (vz, 03,y o)

1
:/ Ap(x 4 tvr){vy,ve, ..., v5) dt (16.16)
0

for all x € UN D and {v;} C D with v; sufficiently small. By the same
argument given in the proof of Proposition [16.14, Eq. (16.16) remains valid
for all z € U and {v;} C X with vy sufficiently small. We may write this last
equation alternatively as,

(D) (@ +v1) — (DP L) (2) = /01 Ap(z +toy)(vy,---)ydt.  (16.17)
Hence
(DM f) (@ +v1) = (DM ) (@) = Ag(a) (v, ---)
_ /Ol[Ak(ac t tor) — Ax(@)){vy, ) dt
from which we get the estimate,
[(D¥1 F) (@ +v1) = (DF1 f)(2) = Ag(@)(or, )| < e(vi)]on] (16.18)

where e(vy) = fol |Ak(z + tv1) — Ag(z)]| dt. Notice by the continuity of Ay
that e(v;) — 0 as v; — 0. Thus it follow from Eq. (16.18) that D*~!f is
differentiable and that (D*f)(x) = Ap(x). |
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Example 16.19. Let f : GL(X,Y) — GL(Y, X) be defined by f(A) := AL
We assume that GL(X,Y") is not empty. Then f is infinitely differentiable and

(D" F)(A)(V1, Vo, .., Vi)
= ()" (B WoyB WVoyB~ - B W,y B7'}, (16.19)

where sum is over all permutations of ¢ of {1,2,... k}.

Let me check Eq. (16.19) in the case that &k = 2. Notice that we have
already shown that (dy, f)(B) = Df(B)Vy = —B~'V; B~1. Using the product
rule we find that

(Ov,0v, )(B) = B"'VoB 'ViB™ ' + B'ViB "W, B ™! =: Ay(B)(Vy, Va).

Notice that [[A2(B)(Vi,Va)|| < 2/ B7P|[Vi]| - [[Vll, so that [|A2(B)] <
2||B7Y|? < 0o. Hence Ay : GL(X,Y) — Ma(L(X,Y), L(Y, X)). Also
1(A2(B) = A2(C))(Vi, Vo)|| < 2|B~ VB iB™H = C™ 10 'O
<2|B~'WoB~'WiB~!' - BTV, BTV, C Y|
+2|B"'VoB~tViCT - BTV, Ot Y|
+2|B~ Va0t viCT = 0T TRCTTVICTY|
<2|B7Y PVl B~ = 7|
+2|BHIC Ve lliVa |l B~ = Y|
+2C7 P Ve llIvalll B= = 7.

This shows that
|42(B) — Ao (O)|| <2[[B~" = CTH{IIB7HIP + IBTHIIICTH + [[CH1*}-

Since B — B! is differentiable and hence continuous, it follows that As(B)
is also continuous in B. Hence by Theorem [16.18 D? f(A) exists and is given
as in Eq. (16.19)

Ezample 16.20. Suppose that f : R — R is a C°°— function and F(z) :
fol flz(t)dt for z € X := C(]0,1],R) equipped with the norm |z| :=
maxyeo,1) |2(f)]. Then F': X — R is also infinitely differentiable and

(D*F)(z){(v1, v, ..., 0) = /0 FE ()i (t) - - - v (t) dt, (16.20)

for all x € X and {v;} C X.

To verify this example, notice that
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(0, F)(z) := —|0F(x+sv —\o/ fz(t) + sv(t)) dt

/—|of(<)+sv )) dt = /f

Similar computations show that

(8U1 vy T ka / f ) Uk(t>dt = Ak($)<1}1,?]2,...,1]k>.
Now for z,y € X,
| A (2){v1,v2, .., 0k) — Ar(y)(v1,v2, .- Vi)

< / 1 @) = FE yO)] - lon(t) - oi(t) |at

< H o / P9 a(0) — £ (y(e))ldt,
which shows that

1
[ Ak (2) = Ar(y)| S/O [F® (@) = F Py (1))l dt.

This last expression is easily seen to go to zero as y — x in X. Hence Ay, is
continuous. Thus we may apply Theorem [16.18 to conclude that Eq. (16.20)
is valid.

16.5 Inverse and Implicit Function Theorems

In this section, let X be a Banach space, R > 0, U = B = B(0,R) C X
and € : U — X be a continuous function such that € (0) = 0. Our immedi-
ate goal is to give a sufficient condition on € so that F(x) := x + ¢(z) is a
homeomorphism from U to F(U) with F (U) being an open subset of X. Let’s
start by looking at the one dimensional case first. So for the moment assume
that X = R, U = (—1,1), and ¢ : U — R is C!. Then F will be injective
iff F' is either strictly increasing or decreasing. Since we are thinking that F’
is a “small” perturbation of the identity function we will assume that F' is
strictly increasing, i.e. F/ = 1+¢&’ > 0. This positivity condition is not so eas-
ily interpreted for operators on a Banach space. However the condition that
le'] < @ < 1 is easily interpreted in the Banach space setting and it implies
1+ >0.

Lemma 16.21. Suppose that U = B = B(0,R) (R > 0) is a ball in X and
e:B — X is a C! function such that | De|| < a < 0o on U. Then

le(2) = e@)ll < allz = yl| for all 2,y € U. (16.21)
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Proof. By the fundamental theorem of calculus and the chain rule:
Ld
e(y) —e(z) = / —e(x +t(y — x))dt

_ /0 [De(z + ty — )] (y — 2)dt.

Therefore, by the triangle inequality and the assumption that ||De(z)| < «
on B,

le(y) —e(@)] < /0 [1De(z + t(y —2))l|dt - [[(y — )| < all(y — ).
|

Remark 16.22. 1t is easily checked that if ¢ : U = B(0,R) — X is C' and
satisfies (16.21) then ||De|| < « on U.

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 16.23. Suppose a € (0,1), R > 0, U = B(0,R) C, X and
e:U — X is a continuous function such that € (0) =0 and

le(z) —e@)l < allz -yl Va,yel (16.22)
Then F : U — X defined by F(x) := x +¢e(x) for x € U satisfies:

1. F is an injective map and G = F~1:V := F (U) — U is continuous.
2. Ifxg € U, z9 = F (x0) and r > 0 such the B(xo,r) C U, then

B(zo, (1 — a)r) C F(B(zo,7)) C B(z0, (1 + a)r). (16.23)
In particular, for allT™ < R,
B(0,(1—-a)r) C F(B(0,r)) C B(0,(1+a)r), (16.24)

see Figure|16.1| below.
3.V .= F(U) is open subset of X and F : U — V is a homeomorphism.

Proof.
1. Using the definition of F' and the estimate in Eq. (16.22),
[l =yl = [(F(x) = F(y)) — (e(x) — ()]

< 1F(x) = F)ll + lle(z) — ()
<IF(x) = F)ll + ol (z - y)ll

_ —

for all x,y € U. This implies
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we G %)

Fig. 16.1. Nesting of F' (B(zo,r)) between B(zo, (1 — a)r) and B(zo, (1 + a)r).

lz =yl < (1 = )" H|F(z) = F(y)ll (16.25)

which shows F' is injective on U and hence shows the inverse function
G=F1:V:=F(U)— U is well defined. Moreover, replacing z,y in
Eq. (16.25) by G (z) and G (y) respectively with =,y € V' shows

IG@) -G <A-a) -yl forallzyeV.  (16.26)

Hence G is Lipschitz on V' and hence continuous.
2. Let kg € U, r > 0 and 29 = F(zg) = o + €(xg) be as in item 2. The
second inclusion in Eq. (16.23) follows from the simple computation:

1 (zo + h) = zoll = [P + & (xo + h) — & (o)
< IRl + Nl (zo + h) — & (o)l
<A4+a)|h<d4+a)r
for all h € B(0,r). To prove the first inclusion in Eq. (16.23) we must
find, for every z € B(zg, (1—a)r), an h € B (0,7) such that z = F (xg + h)
or equivalently an h € B (0,7) solving
z—z0=F(xzg+h)— F(xg) =h+e(xo+ h)—e(xo).

Let k:= 2z — 29 and for h € B(0,7), let § (h) := e(zo + h) — e(xp). With
this notation it suffices to show for each k € B(zo, (1 — a)r) there exists
h € B(0,r) such that k = h + § (h) . Notice that § (0) = 0 and

18 () = & (ha) | = lle(wo + hu) — (o + ho)l| < by — hal  (16.27)

for all hy,he € B(0,r). We are now going to solve the equation k& =
h+ 6 (h) for h by the method of successive approximations starting with
ho = 0 and then defining h,, inductively by

By =k — 8 (). (16.28)

A simple induction argument using Eq. (16.27) shows that
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gt — Bl < @™ |k for all n € Ny

and in particular that

N-1 N—-1
HhNH - Z (h"Jrl o h") < Z th+1 - hn”
n=0 n=0
N-1 N
11—«
<D ot |kl = —— Ikl (16.29)
n=0

Since ||k|| < (1 — «)r, this implies that ||hyx]|| < 7 for all N showing the
approximation procedure is well defined. Let

hi= lim h, = Za(hn+1 —h,) €X

which exists since the sum in the previous equation is absolutely con-
vergent. Passing to the limit in Egs. (16.29) and (16.28) shows that
|| < (1 —a)7 k]| < rand h = k —6(h), i.e. h € B(0,r) solves
k=h+6(h) as desired.

3. Given z( € U, the first inclusion in Eq. (16.23) shows that zo = F' (z0) is
in the interior of F (U). Since zy € F (U) was arbitrary, it follows that
V = F(U) is open. The continuity of the inverse function has already
been proved in item 1.

]
For the remainder of this section let X and Y be two Banach spaces,
UCo X, k>1,and f € CF(U,Y).

Lemma 16.24. Suppose o € U, R > 0 is such that BX(z¢,R) C U and
T : BX(x9,R) — Y is a C' — function such that T'(xq) is invertible. Let

a(R):= sup ||T'(xo) 'T"(z) - IHL(X) (16.30)
z€BX (z0,R)
and e € C* (BX(0, R), X) be defined by
e(h) =T (z0) " [T(xo + h) — T(z0)] — h (16.31)
so that
T(xo+ h) =T (xo) + T"(z0) (h +e(h)). (16.32)
Then e(h) = o(h) as h — 0 and
le(h') —e(h)|| < a(R)||W — h| for all h,h' € BX(0,R). (16.33)

If a(R) < 1 (which may be achieved by shrinking R if necessary), then T'(x)
is invertible for all x € BX (x¢, R) and

1

)71||L(Y7X) = 1—a(R) ||T,(x0)71||L(Y,X) : (16.34)

sup  ||T"(z
z€BX(z0,R)
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Proof. By definition of T” (zo) and using 7" (z¢) " exists,
T(a?o + h) — T(l‘o) = T/(.T())h + O(h)

from which it follows that e(h) = o(h). In fact by the fundamental theorem
of calculus,

s(h):/o (T (20) T (wo + th) — I) hdt

but we will not use this here. Let h, b’ € BX(0, R) and apply the fundamental
theorem of calculus to t — T'(xg + t(h' — h)) to conclude

e(W') —e(h) = T'(x0) " [T(zo + B') — T(xo + h)] — (W' — h)
1
= [/O (T' (z0) T (wo + t(K' — h)) — 1) dt] (' = h).

Taking norms of this equation gives

1
Je(h) il < | [ 7o) 1o+ 20 ) = 1 e ¢ =
0
< a(R) [N =]
It only remains to prove Eq. (16.34), so suppose now that o (R) < 1. Then by
Proposition [7.19, T (o) ~*T"(z) = I — (I — T'(xo) "'T"(z)) is invertible and

H [T'(mo)_lT'(a:)]ilH < #(R) for all z € B* (x0, R).

Since T"(x) = T"(zo) [T"(x0) *T"(x)] this implies T"(z) is invertible and

7@ = [ (7o) @) ™ o) | €t 170
for all € BX(z9, R). n

Theorem 16.25 (Inverse Function Theorem). Suppose U C, X, k > 1
and T € C*(U,Y) such that T'(z) is invertible for all x € U. Further assume
x9 € U and R > 0 such that BX (x, R) C U.

1. For all r < R,

T(BX (x0,7)) C T (x0) + T’ (x0) BX (0, (1 + a (r))r). (16.35)
2. If we further assume that
a(R):= sup |T'(wo) 'T'(z) —1I|| <1,
z€BX (z0,R)

which may always be achieved by taking R sufficiently small, then
T (z0) + T’ (w0) B* (0, (1 — a (r))r) C T(BX(w0,7)) (16.36)
for allr < R, see Figure|16.2.
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3.T:U —Y is an open mapping, in particular V :=T(U) C, Y.

4. Again if R is sufficiently small so that a(R) < 1, then T|px(4,Rr) :
BX(z9,R) — T(BX(xo, R)) is invertible and T|§§(wO7R) : T (BX (20, R)) —
BX(xg, R) is a C* — map.

5. If T is injective, then T~ : V — U is also a C* — map and

(T (y) = [T'(T ()] " forally V.

Pow + {ow] Btoy(i-ateyr)]

B rsere)

3
fis (o) Uy + 87 (%) [R %0 b4l

[T IT)) r)

Fig. 16.2. The nesting of T(B* (0, 7)) between T (x0)+T" (x0) B* (0, (1 — a (r))r)
andT (z0) + T’ (z0) BX (0, (1 + a (r))r).

Proof. Let ¢ € C* (B*(0, R), X) be as defined in Eq. (16.31).
1. Using Egs. (16.32) and (16.24),

T (B* (z0,7)) =T (z0) + T (z0) (I + ) (B* (0,7)) (16.37)
C T (wo) + T" (o) B* (0,(1 +a(r))7)

which proves Eq. (16.35).
2. Now assume « (R) < 1, then by Egs. (16.37) and (16.24),

T (o) + T (x9) B (0,(1 —a(r))r)
C T (z0) + T (z0) (I +¢) (B* (0,7)) =T (B (0,7))

which proves Eq. (16.36)).

3. Notice that h € X — T (x9) + T’ (x9) h € Y is a homeomorphism. The
fact that T is an open map follows easily from Eq. (16.36) which shows
that T (xg) is interior of T (W) for any W C, X with o € W.

4. The fact that T|gx (4, r) : B* (v, R) — T(B~ (w0, R)) is invertible with
a continuous inverse follows from Eq. (16.32) and Proposition [16.23. It
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now follows from the converse to the chain rule, Theorem [16.7, that g :=
T|;§(w0 r T (BX (20, R)) — BX (0, R) is differentiable and

g (y)=[T" (g ()" for all y € T (B (20, R)) .

This equation shows g is C'. Now suppose that k& > 2. Since 17" €
CkY(B,L(X)) and i(A) := A~! is a smooth map by Example 16.19,
g =ioT ogis Cl,ie. gis C? If k > 2, we may use the same argument
to now show ¢ is C®. Continuing this way inductively, we learn g is C*.

5. Since differentiability and smoothness is local, the assertion in item 5.
follows directly from what has already been proved.

Theorem 16.26 (Implicit Function Theorem). Suppose that X, Y, and
W are three Banach spaces, k > 1, A C X x Y is an open set, (xo,yo) is
a point in A, and f : A — W is a C* — map such f(xo,y0) = 0. Assume
that Daf(x0,v0) := D(f(z0,-))(v0) : Y — W is a bounded invertible linear
transformation. Then there is an open neighborhood Uy of xo in X such that
for all connected open neighborhoods U of xy contained in Uy, there is a unique
continuous function u : U — Y such that u(zo) = yo, (z,u(x)) € A and
f(z,u(z)) =0 for all x € U. Moreover u is necessarily C* and

Du(z) = —Dof(z,u(x)) Dy f(x,u(x)) for all x € U. (16.38)

Proof. By replacing f by (x,y) — Daf(z0,y0) " f(x,y) if necessary, we
may assume with out loss of generality that W =Y and Dsf(zo,y0) = Iy.
Define F': A — X XY by F(z,y) := (z, f(z,y)) for all (z,y) € A. Notice that

prsn=[o B

which is invertible iff Dy f(x,y) is invertible and if Ds f(z,y) is invertible then

o= [§ )

Since Do f(xo,y0) = I is invertible, the inverse function theorem guarantees
that there exists a neighborhood Uy of ¢ and Vj of yg such that Uy x Vy C A,
F(Uy x V) is open in X x Y, F|y,xv,) has a C*—inverse which we call F~1.
Let ma(z,y) ==y for all (x,y) € X x Y and define C* — function ug on Uy by
ug(x) := mg o F~1(x,0). Since F~1(x,0) = (%, uo(x)) iff

(1‘,0) = F(i‘7u0(x)) = (i,f(i:,uo(x))),
it follows that = & and f(x,up(x)) = 0. Thus

(z,up(x)) = Fﬁl(x,()) cUyxVogCA
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and f(z,up(x)) = 0 for all z € Uy. Moreover, ug is C* being the composition
of the C*~ functions, 2 — (z,0), F~!, and m,. So if U C Uy is a connected set
containing xg, we may define u := ug|y to show the existence of the functions
u as described in the statement of the theorem. The only statement left to
prove is the uniqueness of such a function u. Suppose that uy : U — Y is
another continuous function such that uj(zg) = yo, and (z,u;(z)) € A and
f(z,u1(z)) =0 for all x € U. Let

O :={z e Ulu(z) =ui(z)} = {z € Ulug(z) = ui(x)}.

Clearly O is a (relatively) closed subset of U which is not empty since z € O.
Because U is connected, if we show that O is also an open set we will have
shown that O = U or equivalently that u; = ug on U. So suppose that x € O,
ie. up(z) = ui(z). For & near x € U,

0=0-0= f(Z,uo()) — f(T,u1(7)) = R(Z)(u1(T) — uo(%)) (16.39)
where

R(%) = /0 Daf((&,u0(F) + t(ur () — uo()))dt. (16.40)

From Eq. (16.40) and the continuity of wy and wy, limz_, R(Z) =
Ds f(x, ug(x)) which is invertible.® Thus R(Z) is invertible for all & sufficiently
close to « which combined with Eq. (16.39) implies that u1(Z) = uo(Z) for all
Z sufficiently close to x. Since x € O was arbitrary, we have shown that O is
open. ]

16.6 Smooth Dependence of ODE’s on Initial
Conditions*

In this subsection, let X be a Banach space, U C, X and J be an open interval
with 0 € J.

Lemma 16.27. If Z € C(J x U, X) such that D, Z(t, ) exists for all (t,x) €
Jx U and Dy Z(t,x) € C(J x U, X) then Z is locally Lipschitz in x, see
Definition [15.6.

Proof. Suppose I CC J and = € U. By the continuity of DZ, for every
t € I there an open neighborhood N; of t € I and ¢; > 0 such that B(x,e;) C
U and
sup {||DZ(t',2")|| : (t',2") € Ny x B(x, &)} < 00.

By the compactness of I, there exists a finite subset A C I such that I C
UterNt. Let e(x, I) := min{g; : t € A} and

3 Notice that DF(z,uo(z)) is invertible for all x € Uy since Fly,xv, has a ok
inverse. Therefore D f(x,uo(x)) is also invertible for all = € U.
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K(x,I):=sup{||DZ(t,2")||(t,2") € I x B(z,e(x, 1))} < oco.

Then by the fundamental theorem of calculus and the triangle inequality,

1
1Z(t,21) — Z(t, 20) | < ( 10220 + st~ ) ds) a1 — ol
0
< K(a, 1)1 — a0l
for all xg,z1 € B(x,e(x, 1)) and t € I. ]

Theorem 16.28 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let X be a Banach space, U C, X, Z € C(R x U, X) such that
D,Z e CRxU,X) and ¢ : D(Z) C Rx X — X denote the mazimal solution
operator to the ordinary differential equation

y(t) = Z(t,y(t)) with y(0) =z € U, (16.41)

see Notation [15.9 and Theorem [15.15. Then ¢ € CH(D(Z),U), ;D (t,x)
exists and is continuous for (t,x) € D(Z) and D,¢(t,z) satisfies the linear
differential equation,

d

2 Du(t,w) = [(D2) (. 6(t,2))IDod(t, ) with Dog(0,) = I (16.42)

fort e J,.

Proof. Let 7y € U and J be an open interval such that 0 € J C J CC Jy,,
Yo := y(+,2o)|s and

O :={y € BC(J,U) : |ly —woll <} Co BC(J, X).

By Lemma [16.27, Z is locally Lipschitz and therefore Theorem [15.15 is ap-
plicable. By Eq. (15.23) of Theorem [15.15) there exists € > 0 and § > 0 such
that G : B(zg,0) — O, defined by G(x) := ¢(-, )| is continuous. By Lemma
16.29] below, for € > 0 sufficiently small the function F' : O, — BC(J, X)
defined by

F(y):=y— /0. Z(t,y(t))dt. (16.43)

is C! and )
DF(y)o = v — /O Dy Z(t, y())o(t)dt. (16.44)

By the existence and uniqueness Theorem [8.21] for linear ordinary differen-
tial equations, DF'(y) is invertible for any y € BC(J,U). By the definition
of ¢, F(G(z)) = h(z) for all z € B(xg,d) where h : X — BC(J,X) is de-
fined by h(z)(t) = x for all t € J, i.e. h(x) is the constant path at z. Since
h is a bounded linear map, h is smooth and Dh(z) = h for all z € X.
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We may now apply the converse to the chain rule in Theorem [16.7 to con-
clude G € C* (B(xo,6),0) and DG(z) = [DF(G(x))] "' Dh(z) or equivalently,
DF(G(x))DG(z) = h which in turn is equivalent to

D,é(t,z) — /0 (DZ(6(r,2)|Dsd(r,2) dr = Ix.

As usual this equation implies D, ¢(¢,x) is differentiable in ¢, D ¢(t, ) is
continuous in (¢,x) and D, ¢(t, x) satisfies Eq. (16.42). ]

Lemma 16.29. Continuing the notation used in the proof of Theorem [16.28
and further let

f(g) = / Z(r.y(r)) dr fory € O..

0
Then f € CY(O.,Y) and for all y € O,

f(w)h = / D, Z(r,y(r)h(r) dr =: Ayh.

Proof. Let h € Y be sufficiently small and 7 € J, then by fundamental
theorem of calculus,

Zry(r) + h(r)) - Z(r.y(r))
-/ [DuZ(r,y(r) + rh(r) — Dy Z(r,y(r)))dr
and therefore,
Py +h) = Fy) = Ah()

= /0 [Z(7,y(7) + h(7)) = Z(7,y(7)) = Do Z(7,y(7))h(7) | dT

_ / dr / dr[De Z(r,y(7) + rh(r)) — DaZ(r,y(7))h(7).

Therefore,
[(F(y+h) = fly) = Ayh)ll o, < hllcd(h) (16.45)

where
1
o(h) = / dT/ dr || D Z(1,y(7) + rh(7)) — D Z (1, y(7))|l -
J 0
With the aide of Lemmas 16.27 and Lemma [15.7,

(r,7,h) € 0,1] x J XY — || D Z(7,y(T) + 7h(7))]|

is bounded for small h provided € > 0 is sufficiently small. Thus it follows
from the dominated convergence theorem that §(h) — 0 as h — 0 and hence
Eq. (16.45) implies f'(y) exists and is given by A,. Similarly,
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1y + 1) = ' (W)lop
< /J D Z(1,y(7) + k(7)) — Dy Z(7,y(7))||dT — 0 as h — 0

showing f’ is continuous. [ |

Remark 16.30.1f Z € C*(U, X), then an inductive argument shows that
¢ € CH(D(Z),X). For example if Z € C%*(U,X) then (y(t),u(t)) =
(¢(t,x), Dyp(t, x)) solves the ODE,

%(y(t)W(t)) = Z ((y(t),u(t))) with (y(0),u(0)) = (z, Idx)

where Z is the C! — vector field defined by

Z (z,u) = (Z(x), D Z(x)u) .

Therefore Theorem [16.28 may be applied to this equation to deduce: D2¢(t, )
and D2¢(t,x) exist and are continuous. We may now differentiate Eq. (16.42)
to find D2¢(t, r) satisfies the ODE,

L D26t 2) = (O, 5000/ Da ) (1, 81, 2))| Da (2, 2)

dt
+(D2Z) (1, ¢(t, )| D3g(t, )

with D2¢(0,x) = 0.

16.7 Existence of Periodic Solutions

A detailed discussion of the inverse function theorem on Banach and Frechét
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper. In what follows we say f € C¥ (R, (c,d)) if f € C§_(R,(c,d)) and f is
271 — periodic, i.e. f(x +27m) = f () for all z € R.

Theorem 16.31 (Taken from Hamilton, p. 110.). Let p : U := (a,b) —
V = (¢,d) be a smooth function with p" > 0 on (a,b). For every g €
CS2 (R, (¢, d)) there exists a unique function y € CS2(R, (a,b)) such that

y(t) +p(y(t)) = g(t)-

Proof. Let V := C9 (R, (¢,d)) C, C9 (R,R) and U C, C3_(R, (a,b)) be
given by

Ui={yeC03,R,R):a<y(t)<b&c<y(t)+pyt) <dV¥t}.

The proof will be completed by showing P : U — V defined by
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P(y)(t) = 9(t) + p(y(t)) fory € U and t € R

is bijective. Note that if P (y) is smooth then so is y.

Step 1. The differential of P is given by P'(y)h = h+p'(y)h, see Exercise
16.8. We will now show that the linear mapping P’(y) is invertible. Indeed let
f =1p'(y) > 0, then the general solution to the Eq. h+ fh =k is given by

t
h(t) = e I8 FOdrg 4 / eI FOs () 7
0

where hg is a constant. We wish to choose hg so that h(27) = hg, i.e. so that
2m .
ho (1 — e_c(f)) = / e~ - 1) dr
0

where
27

27
o(fy= [ frydr = /0 P (y(r))dr > 0.

0
The unique solution h € C3_(R,R) to P'(y)h = k is given by

1 . 2 . t .
h(t) = (l—e_c(f)) e~ Jo f(T)dT/O e - f(s)dsk(T)dT—i-/O e~ I I g (r)dr

-1 p 2 . t .
= (1 — efc(f)) e Jo f(s)ds / eI~ f(s)dsk(T)dT + / e I7 f(s)dsk(T)dT.
0 0

Therefore P’(y) is invertible for all y. Hence by the inverse function Theorem
16.25, P : U—Visan open mapping which is locally invertible.

Step 2. Let us now prove P : U — Vis injective. For this suppose
y1, 12 € U such that P(y,) = g = P(y3) and let z = yo — y;. Since

(1) + p(y2(t)) — p(v1(8)) = g(t) — g(t) = 0,

if ¢,, € R is point where z(t,,) takes on its maximum, then 2(¢,,) = 0 and
hence

p(W2(tm)) — p(y1(tm)) = 0.

Since p is increasing this implies y2(¢,,) = y1(tm) and hence z(¢,,) = 0. This
shows z(t) < 0 for all ¢ and a similar argument using a minimizer of z shows
z(t) > 0 for all t. So we conclude y; = y2.

Step 3. Let W := P(U), we wish to show W = V. By step 1., we know
W is an open subset of V and since V is connected, to finish the proof it
suffices to show W is relatively closed in V. So suppose Y; € U such that
gj :=P(y;) = g€ V. We must now show g € W, i.e. ¢ = P(y) for some y € W.
If t,,, is a maximizer of y;, then y;(¢,,) = 0 and hence g;(t,) = p(y;(tm)) < d
and therefore y;(¢,,) < b because p is increasing. A similar argument works
for the minimizers then allows us to conclude Ranpoy;) C Rang;) CC (c,d)
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for all j. Since g; is converging uniformly to g, there exists ¢ < v < 6 < d
such that Ran(p o y;) C Ran(g;) C [v, 9] for all j. Again since p’ > 0,

Ran(y;) € p~ "' ([7,4]) = [a, 5] CC (a,b) for all j.
In particular sup {|y;(¢)| : t € R and j} < oo since

9;(t) = g;(t) = p(y; () < [, 6] = [, ] (16.46)

which is a compact subset of R. The Ascoli-Arzela Theorem [11.29/ now allows
us to assume, by passing to a subsequence if necessary, that y; is converging
uniformly to y € CY, (R, [a, 3]). It now follows that

95 (t) = g;(t) — p(y;(t)) — 9 —p(y)

uniformly in ¢. Hence we concluded that y € C3_(R,R)NCY. (R, [, B]), 95 — y
and P(y) = g. This has proved that g € W and hence that W is relatively
closed in V. [ ]

16.8 Contraction Mapping Principle

Some of the arguments uses in this chapter and in Chapter [15 may be ab-
stracted to a general principle of finding fixed points on a complete metric
space. This is the content of this chapter.

Theorem 16.32. Suppose that (X, p) is a complete metric space and S : X —
X is a contraction, i.e. there exists o € (0,1) such that p(S(x),S(y)) <
ap(z,y) for all z,y € X. Then S has a unique fized point in X, i.e. there
exists a unique point x € X such that S(z) = .

Proof. For uniqueness suppose that x and 2’ are two fixed points of S,
then

p(z, ') = p(S(x), S(a)) < ap(x, 2’).

Therefore (1 — a)p(x,2’) < 0 which implies that p(z,z") =0 since 1 — « > 0.
Thus z = 2’. For existence, let 9 € X be any point in X and define x,, € X
inductively by z,+1 = S(z,) for n > 0. We will show that z := lim,, o
exists in X and because S is continuous this will imply,

x= lim z,41 = lim S(z,)=S5(lim z,) = S(x),

n—oo n—o0 n—oo

showing x is a fixed point of S. So to finish the proof, because X is complete,
it suffices to show {x,}>2; is a Cauchy sequence in X. An easy inductive
computation shows, for n > 0, that

p(xns1,xn) = p(S(xn), S(Tn-1)) < ap(@n, Tn-1) < - < a"p(z1, 20).
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Another inductive argument using the triangle inequality shows, for m > n,

that,

m—
p(xmaxn) < p(xmvxm—l) + ﬂ(ﬂﬁm—l’xn > Z -rk+17$k

Combining the last two inequalities gives (using again that « € (0, 1)),

a’ﬂ

1—

m—1 o)
n
(T, ) < g ¥ p(x1,0) < p(1,20)0 E ol = p(x1,20)
k=n 1=0

This last equation shows that p(zm,,x,) — 0 as m,n — oo, i.e. {2,152, is a
Cauchy sequence. [

Corollary 16.33 (Contraction Mapping Principle II). Suppose that
(X, p) is a complete metric space and S : X — X is a continuous map such
that S is a contraction for some n € N. Here

n times

——
S .—66S0...09

and we are assuming there exists o € (0,1) such that p(S™(z), 8™ (y)) <
ap(x,y) for all x,y € X. Then S has a unique fized point in X.

Proof. Let T := S then T : X — X is a contraction and hence T has
a unique fixed point z € X. Since any fixed point of S is also a fixed point of
T, we see if S has a fixed point then it must be x. Now

T(S(x)) = 8™ (S(x)) = S(S™(2)) = S(T(x)) = S(x),

which shows that S(z) is also a fixed point of T. Since T has only one fixed
point, we must have that S(x) = x. So we have shown that z is a fixed point
of S and this fixed point is unique. [

Lemma 16.34. Suppose that (X, p) is a complete metric space, n € N, Z is
a topological space, and o € (0,1). Suppose for each z € Z there is a map
S, : X — X with the following properties:

Contraction property p(Sgn) (x),Sgn)(y)) < ap(x,y) for all z,y € X and z €
Z.
Continuity in z For each x € X the map z € Z — S,(x) € X is continuous.

By Corollary [16.33 above, for each z € Z there is a unique fized point
G(z) € X of S..
Conclusion: The map G : Z — X is continuous.



16.9 Exercises 267
Proof. Let T, := Sg"). If z,w € Z, then

p(G(2),G(w)) = p(T=(G(2)), Tw(G(w)))
(T=(G(2)), Tw(G(2)) + p(Tw(G(2), Tw(G(w)))

(T:(G(2)), Tw(G(2))) + ap(G(2), G(w)).

IAIA
T T D

Solving this inequality for p(G(z), G(w)) gives

p(G(2), Glw)) < —

T 11—«

P(T=(G(2)), Tw(G(2)))-

Since w — T,,(G(z)) is continuous it follows from the above equation that
G(w) — G(z) as w — z, i.e. G is continuous. ]

16.9 Exercises

Exercise 16.3. Suppose that A : R — L(X) is a continuous function and
V :R — L(X) is the unique solution to the linear differential equation

V(t) = A(t)V(t) with V(0) = I. (16.47)

Assuming that V (¢) is invertible for all ¢+ € R, show that V=1(¢) := [V (¢)]~!
must solve the differential equation

%V‘l(t) =~V ) A(t) with V71(0) = I. (16.48)

See Exercise [8.13 as well.

Exercise 16.4 (Differential Equations with Parameters). Let W be
another Banach space, U x V C, X x W and Z € C*(U x V, X). For each
(x,w) e U xV,let t € Jy. — ¢(t, z,w) denote the maximal solution to the
ODE

y(t) = Z(y(t), w) with y(0) = (16.49)

and
D:={(t,z,w) ERXU XV :t € Jyu}

as in Exercise [15.8l

1. Prove that ¢ is C* and that D, ¢(t,z,w) solves the differential equation:

d

5 Dwd(t,2,w) = (D22)(4(t, 2, w), w) Duwd(t, 2, w) +(Dw 2)(4(t, 2, w), w)
with Dy, ¢(0,z,w) = 0 € L(W, X). Hint: See the hint for Exercise [15.8
with the reference to Theorem [15.15 being replace by Theorem [16.28.
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2. Also show with the aid of Duhamel’s principle (Exercise 8.23) and Theo-
rem [16.28 that

Dyo(t, z,w) = Dy(t, z,w) /t D, é(1,2,w) N DWZ)(o(1,z,w), w)dr
0

Exercise 16.5. (Differential of e4) Let f : L(X) — GL(X) be the expo-
nential function f(A) = e?. Prove that f is differentiable and that

1
Df(A)B:/ e1=DABetA 1. (16.50)
0

Hint: Let B € L(X) and define w(t, s) = (455 for all t, s € R. Notice that
dw(t,s)/dt = (A+ sB)w(t, s) with w(0,s) = I € L(X). (16.51)

Use Exercise 16.4 to conclude that w is C1 and that w'(¢,0) := dw(t, s)/ds|s=o
satisfies the differential equation,

%w'(t, 0) = Aw'(t,0) + Be!” with w(0,0) = 0 € L(X). (16.52)

Solve this equation by Duhamel’s principle (Exercise [8.23) and then apply
Proposition 16.14' to conclude that f is differentiable with differential given
by Eq. (16.50)).

Exercise 16.6 (Local ODE Existence). Let S, be defined as in Eq. (15.15])
from the proof of Theorem [15.4. Verify that S, satisfies the hypothesis of
Corollary 16.33L In particular we could have used Corollary [16.33 to prove
Theorem [15.4.

Exercise 16.7 (Local ODE Existence Again). Let J = (-1,1), Z €
CYX,X),Y :=BC(J,X) and for y € Y and s € J let y; € Y be defined by
ys(t) := y(st). Use the following outline to prove the ODE

§(t) = Z(y(1)) with y(0) = @ (16.53)
has a unique solution for small ¢ and this solution is C* in z.
1. If y solves Eq. (16.53) then y; solves
Us(t) = sZ(ys(t)) with ys(0) =z
or equivalently .
yot) = 2+ s/o Z(ys(7))dr. (16.54)

Notice that when s = 0, the unique solution to this equation is yo(t) = «.
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2.Let F': J xY — J xY be defined by

F(s,y) = (s,y(t) — s / Z(y(r))dr).

Show the differential of F' is given by

F'(s,y)(a,v) = (a,t —o(t) — s/ot Z'(y(r))v(r)dr — a/o. Z(y(T))dT) .

3. Verify F'(0,y) : RxY — R xY is invertible for all y € Y and notice that
F(0,y) = (0,y).

4. For x € X, let C,, € Y be the constant path at z, i.e. Cp(t) = x for all
t € J. Use the inverse function Theorem [16.25 to conclude there exists
e>0and a C! map ¢ : (—¢,¢) x B(zg,€) — Y such that

F(s,¢(s,z)) = (s,Cy) for all (s,z) € (—¢,¢) x B(zg, ).

5. Show, for s < e that y;s(t) := ¢(s,z)(t) satisfies Eq. (16.54)). Now define
y(t,z) = ¢(e/2,2)(2t/e) and show y(t,x) solve Eq. (16.53) for |t| < /2
and = € B(xg,¢€).

Exercise 16.8. Show P defined in Theorem [16.31 is continuously differen-
tiable and P'(y)h = h + p'(y)h.

Exercise 16.9. Embedded sub-manifold problems.
Exercise 16.10. Lagrange Multiplier problems.

16.9.1 Alternate construction of g. To be made into an exercise.

Suppose U C, X and f:U — Y is a C? — function. Then we are looking for
a function ¢(y) such that f(g(y)) = y. Fix an 29 € U and yo = f(zo) € V.
Suppose such a g exists and let z(t) = g(yo + th) for some h € Y. Then
differentiating f(z(t)) = yo + th implies

d , Lo
@) = f(®)2(t) = h
or equivalently that
z(t) = [f’(;zc(t))r1 h = Z(h,z(t)) with 2(0) = zg (16.55)

where Z(h,z) = [f'(z(t))]" h. Conversely if z solves Eq. (16.55) we have
%f(x(t)) = h and hence that

f(2(1)) =yo +h.
Thus if we define
9o + h) = ?" ) (xy),
then f(g(yo+h)) = yo+h for all h sufficiently small. This shows f is an open
mapping.
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Introduction: What are measures and why
“measurable” sets

Definition 17.1 (Preliminary). A measure p “on” a set X is a function
p: 2% — [0, 00] such that

1. pu(0) =0

2. If {Ai}f\il is a finite (N < 00) or countable (N = o) collection of subsets
of X which are pair-wise disjoint (i.e. A;NA; =0 if i # j) then

N
P A) = Zu(Ai).

Ezxample 17.2. Suppose that X is any set and z € X is a point. For A C X,

let
1if x€ A

MA):{O if o A

Then p = §, is a measure on X called the Dirac delta measure at x.
Ezxample 17.3. Suppose that p is a measure on X and A > 0, then A -y
is also a measure on X. Moreover, if {{q}acs are all measures on X, then
K= Zaej Pa, i-e.
p(A) = Z ta(A) forall A C X
aelJ

is a measure on X. (See Section 2| for the meaning of this sum.) To prove
this we must show that p is countably additive. Suppose that {Az‘}?L is a
collection of pair-wise disjoint subsets of X, then

PUZA) =D (A =YY HalAi)
=1 i=1 acJ
= Z Zﬂa(Ai) = Zﬂa(uioilAi)
acJ i=1 acJ

= (U2, Ay)
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wherein the third equality we used Theorem 4.22] and in the fourth we used
that fact that u, is a measure.

Ezample 17.4. Suppose that X is a set A : X — [0, 00] is a function. Then

W= Z Ax)dy

zeX

is a measure, explicitly
pA) = M)
T€EA
for all A C X.

17.1 The problem with Lebesgue “measure”

So far all of the examples of measures given above are “counting” type mea-
sures, i.e. a weighted count of the number of points in a set. We certainly are
going to want other types of measures too. In particular, it will be of great
interest to have a measure on R (called Lebesgue measure) which measures
the “length” of a subset of R. Unfortunately as the next theorem shows, there
is no such reasonable measure of length if we insist on measuring all subsets
of R.

Theorem 17.5. There is no measure p : 28—[0, 0o] such that

1. u([a, b)) = (b—a) for alla < b and
2. is translation invariant, i.e. u(A + z) = p(A) for all z € R and A € 28,
where
A+z:={y+z:yec A} CR.
In fact the theorem is still true even if (1) is replaced by the weaker con-

dition that 0 < p((0,1]) < 0.

The counting measure p(A) = # (A) is translation invariant. However
1((0,1]) = oo in this case and so u does not satisfy condition 1.

Proof. First proof. Let us identify [0, 1) with the unit circle S* := {z €
C: |z| =1} by the map

o(t) = ™ = (cos2mt + isin27t) € '

for t € [0,1). Using this identification we may use p to define a function v on
25" by v(p(A)) = u(A) for all A C [0,1). This new function is a measure on
S* with the property that 0 < v((0,1]) < cc. For z € ST and N C S! let

zN :={zn € S':ne N}, (17.1)
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that is to say e’ N is N rotated counter clockwise by angle §. We now claim
that v is invariant under these rotations, i.e.

v(zN) =v(N) (17.2)
for all z € St and N C S'. To verify this, write N = ¢(A4) and z = ¢(t) for
some t € [0,1) and A C [0,1). Then

o(t)Pp(A) = d(t + Amod 1)
where for A C [0,1) and « € [0,1),
t+Amod1l:={a+tmodl€[0,1):a€ N}

=(a+Anfa<1—tHU(t-1+An{a>1-1t}).

Thus
v(¢(t)¢(A)) = p(t + Amod1)

(a+Anfa<1—tHu(t—-1)+An{a>1-1t}))
(a+An{a<l—t}))+p((t—-1)+ANn{a>1-1t}))
Anfa<l—tHh)+puAn{a>1-1t})
(An{a<l-tHuAn{a>1-1t}))
(4) = v(¢(4)).
Therefore it suffices to prove that no finite non-trivial measure v on S* such

that Eq. (17.2) holds. To do this we will “construct” a non-measurable set
N = ¢(A) for some A C [0,1). Let

e (
1 (
= p(
1 (
I

Ri={z=¢e?":tcQ}={2=¢%":tc[0,1)NQ}

— a countable subgroup of S'. As above R acts on S* by rotations and divides
S1 up into equivalence classes, where z,w € S! are equivalent if z = rw for
some r € R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N C S' be the set of these
representative points. Then every point z € S! may be uniquely written as
z =mnr with n € N and r € R. That is to say

s'=T1J oN) (17.3)

reR

where [, Aq is used to denote the union of pair-wise disjoint sets {A,}. By
Egs. (17.2) and (17.3),

v(S) = Z v(rN) = ZV(N).

reR reR
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The right member from this equation is either 0 or oo, 0 if ¥(IN) = 0 and oo if
v(N) > 0. In either case it is not equal v(S') € (0,1). Thus we have reached
the desired contradiction. [ ]

Proof. Second proof of Theorem [17.5. For N C [0,1) and « € [0,1),
let

N®=N+amod1
={a+amodl e€[0,1):a€ N}
=(a+Nn{a<l—ah)U((a=1)+Nn{a>1-a}).

Then
p(N)Y=pla+Nnfa<l—a})+p((ea—1)+Nn{a>1-a})
=uNnfa<l—-a})+p(Nn{a>1-a})
=uNnfa<l—-a}U(NnN{a>1-a}))
— (). (7.4

We will now construct a bad set N which coupled with Eq. (17.4) will lead to
a contradiction. Set

Qs ={x+reR:reQ}=x+Q.

Notice that Q, N Q, # 0 implies that Q, = Q. Let O = {Q, : * € R} — the
orbit space of the Q action. For all A € O choose f(A) € [0,1/3) N AT and
define N = f(O). Then observe:

1. f(A) = f(B) implies that AN B # () which implies that A = B so that f
is injective.
2. 0={Qn:ne N}

Let R be the countable set,

R:=QnJ0,1).
‘We now claim that
N'NN®*=0ifr # s and (17.5)
[0,1) = UrerN". (17.6)

Indeed, if z € N"NN® # () then x = r + nmod 1 and = s + n’ mod 1, then
n—n' € Q,ie Q, = Qn. Thatis to say, n = f(Q,) = f(Qn/) = n' and hence
that s = rmod 1, but s,r € [0,1) implies that s = r. Furthermore, if x € [0,1)
and n := f(Q,), then  —n = r € Q and z € N"™°4!, Now that we have
constructed N, we are ready for the contradiction. By Equations (17.4-17.6))
we find

! We have used the Axiom of choice here, i.e. [T, -(AN[0,1/3]) # 0
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1= u([0,1)) = 3 u(N) = 3 (i)
reR reR
_ {oo if W(N) >0
L0 ifuN)=0"

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set. [ ]

Because of Theorem [17.5] it is necessary to modify Definition [17.1. Theo-
rem [17.5/ points out that we will have to give up the idea of trying to measure
all subsets of R but only measure some sub-collections of “measurable” sets.
This leads us to the notion of ¢ — algebra discussed in the next chapter. Our
revised notion of a measure will appear in Definition [19.1/ of Chapter 19 below.
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Measurability

18.1 Algebras and o — Algebras

Definition 18.1. A collection of subsets A of a set X is an algebra if

1.0, Xec A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then A{U---UA, €
A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 18.2. A collection of subsets M of X is a o — algebra (or some-
times called a o — field) if M is an algebra which also closed under countable
unions, i.e. if {A;};o; C M, then U2, A; € M. (Notice that since M is also
closed under taking complements, M is also closed under taking countable in-
tersections.) A pair (X, M), where X is a set and M is a o — algebra on X,
1s called a measurable space.

The reader should compare these definitions with that of a topology in
Definition [10.1. Recall that the elements of a topology are called open sets.
Analogously, elements of and algebra A or a o — algebra M will be called
measurable sets.

Ezample 18.3. Here are some examples of algebras.

1. M = 2% then M is a topology, an algebra and a o — algebra.

2. Let X = {1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which is not
an algebra.

3.7=A={{1},{2,3},0, X} is a topology, an algebra, and a o — algebra
on X. The sets X, {1}, {2,3}, 0 are open and closed. The sets {1,2} and
{1, 3} are neither open nor closed and are not measurable.

The reader should compare this example with Example [10.3.
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Proposition 18.4. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.

Proof. The proof is the same as the analogous Proposition [10.6! for topolo-
gies, i.e.

A(€) = ﬂ{A : A is an algebra such that £ C A}

and

(€)= ﬂ{/\/l : M is a o — algebra such that &€ C M}.
[

Ezample 18.5. Suppose X = {1,2,3} and € = {0, X, {1,2}, {1, 3}}, see Figure
18.1L

G

Fig. 18.1. A collection of subsets.

Then

(&)
A(E)

0, X, {1},{1,2},{1,3}}
o(&) =2%.

The next proposition is the analogue to Proposition [10.7 for topologies
and enables us to give and explicit descriptions of A(£). On the other hand
it should be noted that o(€) typically does not admit a simple concrete de-
scription.

Proposition 18.6. Let X be a set and €& C 2%. Let £ := {A°: A € £} and
E:=EU{X, 0t UE&" Then

A(E) = {finite unions of finite intersections of elements from E.}. (18.1)

Proof. Let A denote the right member of Eq. (18.1). From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices
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to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z= 4

i=1j=1

where A;; € &. Therefore, writing B;; = Af; € &, we find that

N K K
ZC:ﬂUBij: U (BljlﬂB2jzﬁ"'ﬂBNjN)€A
i=1j=1 J1sedN=1

wherein we have used the fact that Bij, N Baj, N---N By, is a finite inter-
section of sets from &.. [}

Remark 18.7. One might think that in general o(£) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
oo o0
z=UMN 4y

i=1j=1
with Aij S gc; then

SV 16
=1,... \/=1

ji=1,j2=1,...jn=1

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe o(&), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition [18.13 below.

Exercise 18.1. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F'NV where F' is closed and V is open.

The following notion will be useful in the sequel and plays an analogous
role for algebras as a base (Definition [10.8) does for a topology.

Definition 18.8. A set £ C 2X is said to be an elementary family or
elementary class provided that

o Dec&

o & is closed under finite intersections

o if E €&, then E° is a finite disjoint union of sets from E. (In particular
X = 0° is a finite disjoint union of elements from &£.)
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Ezample 18.9. Let X = R, then

E = {(a,b]ﬂR:a,bER}
={(a,b] : a € [~00,00) and a < b < oo} U {0, R}

is an elementary family.

Exercise 18.2. Let A C 2% and B C 2¥ be elementary families. Show the
collection

E=AxB={AxB:A€Aand B € B}

is also an elementary family.

Proposition 18.10. Suppose £ C 2% is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E.

Proof. This could be proved making use of Proposition [18.6. However it
is easier to give a direct proof. Let A denote the collection of sets which may
be written as finite disjoint unions of sets from &. Clearly £ C A C A(€) so it
suffices to show A is an algebra since A(E) is the smallest algebra containing
E. By the properties of £, we know that #, X € A. Now suppose that A; =
HFeAi F € A where, fori =1,2,...,n, A; is a finite collection of disjoint sets
from £. Then

ﬁAi:ﬁ<H F): U (FLNFyN---NFy)

(Fiyyee, Fp)EAL XX Ay

and this is a disjoint (you check) union of elements from £. Therefore A is
closed under finite intersections. Similarly, if A = [[,., F with A being a
finite collection of disjoint sets from &, then A° = (., F'. Since by assump-
tion F¢ € A for F € A C £ and A is closed under finite intersections, it
follows that A¢ € A. ]

Definition 18.11. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F.

Ezample 18.12. Let X be a set and £ = {Ay,..., A} where 4y,..., A, is a
partition of X. In this case

AE)=0(&) =7(8) = {Uieadi : A C{1,2,...,n}}
where U;c 1 4; :== 0 when A = (). Notice that

#(A©) = #2lh2mm) = 2
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Proposition 18.13. Suppose that M C 2% is a 0 — algebra and M is at
most a countable set. Then there exists a unique finite partition F of X such
that F C M and every element B € M is of the form

B=U{AeF:ACB}. (18.2)
In particular M is actually a finite set and # (M) = 2™ for some n € N.

Proof. For each x € X let
A, =N{AeM:ze€ A} e M,

wherein we have used M is a countable o — algebra to insure A, € M. Hence
A, is the smallest set in M which contains z. Let C' = A, NA,. If ¢ C then
A \C C A, is an element of M which contains x and since A, is the smallest
member of M containing z, we must have that C' = ). Similarly if y ¢ C then
C = (). Therefore if C' # (), then z,y € A, N A, € M and A, N A, C A, and
AzNA, C Ay from which it follows that A, = A,NA, = A,. This shows that
F={A;:z € X} C Mis a (necessarily countable) partition of X for which
Eq. (18.2) holds for all B € M. Enumerate the elements of F as F = {P,}N_;
where N € Nor N = co. If N = oo, then the correspondence

ac{0, 1} - A, =U{P,:a, =1} e M

is bijective and therefore, by Lemma 2.6, M is uncountable. Thus any count-
able o — algebra is necessarily finite. This finishes the proof modulo the unique-
ness assertion which is left as an exercise to the reader. ]

Ezample 18.14. Let X =R and
E={(a,0) :a e R}U{R,0} = {(a,00) NR:a € R} C 2%

Notice that £ = &£ and that £ is closed under unions, which shows that
7(€) = €&, ie. € is already a topology. Since (a,00)¢ = (—00,a] we find that
& ={(a,00), (—00,a], —00 < a < oo} U{R, 0}. Noting that

(a7 OO) n (700, b} - (CL, b]

it follows that A(E) = A(E) where
£ = {(a,b]NR:a,beR}.

Since £ is an elementary family of subsets of R, Proposition [18.10 implies
A(E) may be described as being those sets which are finite disjoint unions of
sets from &£. The o — algebra, o(€), generated by £ is very complicated.
Here are some sets in o(€) — most of which are not in A(E).

(a) (a,b) = E:Jl(a,b ~ e g(€).
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(b) All of the standard open subsets of R are in o(&).
(c) {z} = Q (-1 2] €0(é)
(dg [a,b] = {a} U (a,b] € 0(&)

(e) Any countable subset of R is in o(&).

Remark 18.15. In the above example, one may replace £ by £ = {(a,00) : a €
Q} U {R, 0}, in which case A(€) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a,00), (—00,al, (a,b] : a,b € Q} U{D,R}.

This shows that A(€) is a countable set — a useful fact which will be needed
later.

Notation 18.16 For a general topological space (X, 7), the Borel ¢ — alge-
bra is the o — algebra Bx = o(7) on X. In particular if X = R™, Bgrn will
be used to denote the Borel o — algebra on R™ when R™ is equipped with its
standard Euclidean topology.

Exercise 18.3. Verify the o —algebra, Bg, is generated by any of the following
collection of sets:

1. {(a,00):a €R}, 2. {(a,0) :a € Q} or 3. {[a,0):acQ}.

Proposition 18.17. If 7 is a second countable topology on X and & is a
countable collection of subsets of X such that T = 7(&), then Bx = o(7) =
(&), i.e. a(t(€)) = a(€).

Proof. Let £; denote the collection of subsets of X which are finite inter-
section of elements from € along with X and ). Notice that £ is still countable
(you prove). A set Z is in 7(€) iff Z is an arbitrary union of sets from &y.

Therefore Z = |J A for some subset F C &; which is necessarily count-
AceF
able. Since & C o(€) and o(€) is closed under countable unions it follows

that Z € 0(€) and hence that 7(£) C o(&). Lastly, since £ C 7(£) C o(€),
o(&) Co(r(&)) Ca(é). [

18.2 Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose (X, M, 1) is a measure
space and f : X — R,. Roughly speaking, in the next Chapter we are going
to define [ fdu as a certain limit of sums of the form,

X

o0

S ap(f N aiaiga).

O<ai;<az<as<...
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For this to make sense we will need to require f~*((a,b]) € M for all a <
b. Because of Lemma [18.22 below, this last condition is equivalent to the
condition f~!(Bg) C M.

Definition 18.18. Let (X, M) and (Y,F) be measurable spaces. A function
f: X —Y is measurable if f~*(F) C M. We will also say that f is M/F
— measurable or (M, F) — measurable.

Ezample 18.19 (Characteristic Functions). Let (X, M) be a measurable space
and A C X. We define the characteristic function 14 : X — R by

lifxe A
1A(x)_{01fx§éA.

If A € M, then 1, is (M,2%) — measurable because 1, (W) is either ), X,
A or A€ for any W C R. Conversely, if F is any o — algebra on R containing
aset W C Rsuchthat 1 € W and 0 € W¢, then A € M if 14 is (M, F) -
measurable. This is because A = 1,*(W) € M.

Exercise 18.4. Suppose f : X — Y is a function, F C 2¥ and M C 2¥.
Show f~!F and f.M (see Notation 2.7) are algebras (o — algebras) provided
F and M are algebras (o — algebras).

Remark 18.20. Let f : X — Y be a function. Given a ¢ — algebra F C 2V,
the o — algebra M := f~1(F) is the smallest o — algebra on X such that f is
(M, F) - measurable . Similarly, if M is a o - algebra on X then F = f. M
is the largest o — algebra on Y such that f is (M, F) - measurable .

Recall from Definition 2.8 that for &€ ¢ 2% and A C X that
Ea=i"(§)={ANE:Ec&}

where 14 : A — X is the inclusion map. Because of Exercise 10.3, when
€ = M is an algebra (o — algebra), M 4 is an algebra (o — algebra) on A and
we call M 4 the relative or induced algebra (o — algebra) on A.

The next two Lemmas are direct analogues of their topological counter
parts in Lemmas [10.13] and [10.14. For completeness, the proofs will be given
even though they are same as those for Lemmas [10.13 and [10.14.

Lemma 18.21. Suppose that (X, M), (Y,F) and (Z,G) are measurable
spaces. If f : (X,M) — (Y,F) and g : (Y, F) — (Z,G) are measurable
functions then go f : (X, M) — (Z,G) is measurable as well.

Proof. By assumption ¢g~1(G) C F and f~! (F) C M so that

(go £ (@) =F"(g7"(9) C fTHF) c M.
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Lemma 18.22. Suppose that f : X — Y is a function and £ C 2¥ and ACY
then

o (f71(E) = ) and (18.3)
(0(&)a= (SA )- (18.4)

(Similar assertion hold with o () being replaced by A(-).) Moreover, if F =
o(&) and M is a o — algebra on X, then f is (M, F) — measurable iff f~1(€) C
M.

Proof. By Exercise 18.4, f~!(c(£)) is a 0 — algebra and since £ C F,
7€) C fL(a(€)). It now follows that o (f~1(€)) C f~ (o (£)). For the

reverse inclusion, notice that
feo (f_l(é')) = {B CY:fY(B)eco (f_l(é'))}

is a 0 — algebra which contains € and thus ¢(€) C f.o (f'(£)). Hence if
B € o(&) we know that f~1(B) € o (f~*(€)), ie. f71(c(&)) C o (f71(E))
and Eq. (18.3) has been proved. Applying Eq. (18.3) with X = A and f =i4
being the inclusion map implies

(@) a = i3 (0(E)) = a(ix"(£)) = o(Ea)-

Lastly if f71€ C M, then f~1lo(€) = a(f_lé') C M which shows f is
(M, F) — measurable. -

Corollary 18.23. Suppose that (X, M) is a measurable space. Then the fol-
lowing conditions on a function f: X — R are equivalent:

1. f is (M, Bgr) — measurable,
2. f7((a,00)) € M for all a € R,
3. f~1((a,00)) € M for all a € Q,
4. f1((—o0,a]) € M for all a € R.
Proof. An exercise in using Lemma [18.22/ and is the content of Exercise
18.8. [ |
Here is yet another way to generate o — algebras. (Compare with the
analogous topological Definition [10.20.)

Definition 18.24 (0 — Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Ya,Fa) : v € A}
and functions fo : X — Y, for all « € A. Let o(fs : a € A) denote the
smallest o — algebra on X such that each f, is measurable, i.e.

0(foa:a € A)=0cUafi (Fa)).

Proposition 18.25. Assuming the notation in Definition|18.24 and addition-
ally let (Z, M) be a measurable space and g : Z — X be a function. Then g
is M,0(fa : @ € A)) — measurable iff fo 0 g is (M, Fq)—measurable for all
a € A
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Proof. This proof is essentially the same as the proof of the topological
analogue in Proposition 10.21. (=) If g is (M, 0(fs : @ € A)) — measurable,
then the composition f, o g is (M, F,) — measurable by Lemma [18.21. (<)
Let

G=0(fa:acA) =0 (Uacafi (Fa))-
If fo0gis (M,F,) — measurable for all o, then

g TN F) Cc MYacg A
and therefore

gil (UaeAfojl(]:a)) = UozeAgilfojl(]:a) c M.

Hence
g_l (g) = 9_1 (J (UaeAfojl(]:a))) = U(g_l (UaeAfo?l(]:a)) cM
which shows that g is (M, G) — measurable. ]

Definition 18.26. A function f : X — Y between two topological spaces is
Borel measurable if f~'(By) C Bx.

Proposition 18.27. Let X and Y be two topological spaces and f : X — Y
be a continuous function. Then f is Borel measurable.

Proof. Using Lemma [18.22/ and By = o(71y),

S By) = fo(ry)) = o(fHry)) C o(rx) = Bx.
| |

Definition 18.28. Given measurable spaces (X, M) and (Y,F) and a subset
A C X. We say a function f : A — Y is measurable iff f is Ma/F -
measurable.

Proposition 18.29 (Localizing Measurability). Let (X, M) and (Y, F)
be measurable spaces and f: X —Y be a function.

1. If f is measurable and A C X then fla: A —Y is measurable.
2. Suppose there exist A, € M such that X = US2 1A, and f|A, is Ma,
measurable for all n, then f is M — measurable.

Proof. As the reader will notice, the proof given below is essentially iden-
tical to the proof of Proposition [10.19/ which is the topological analogue of
this proposition. 1. If f : X — Y is measurable, f~1(B) € M for all B € F
and therefore

flat(B)=Anf~Y(B) € My for all B € F.
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2. If B € F, then

FHB) = 0L, (fHB) N Ay) = Uiy fl4, (B).

Since each A,, € M, M 4, C M and so the previous displayed equation shows
f~Y(B) e M. [

Proposition 18.30. If (X, M) is a measurable space, then

f:(f1,f2,...,fn):X—>R"

is (M, Bgn) — measurable iff f; : X — R is (M, Bgr) — measurable for each
i. In particular, a function f: X — C is (M, Bc) — measurable iff Re f and
Im f are (M, Br) — measurable.

Proof. This is formally a consequence of Corollary [18.65 and Proposition
18.60 below. Nevertheless it is instructive to give a direct proof now. Let
T = 7re denote the usual topology on R™ and 7; : R®™ — R be projection
onto the i*" — factor. Since =; is continuous, m; is Bgn /Br — measurable and
therefore if f : X — R™ is measurable then so is f; = m; o f. Now suppose
fi : X — R is measurable for all i = 1,2, ... ,n. Let

E:={(a,b) :a,be Q" 3a < b},
where, for a,b € R", we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (G, by) .

Since £ C 7 and every element V' € 7 may be written as a (necessarily)
countable union of elements from &£, we have o (£) C Brr =0 (1) C 0 (€), i.e.
0 () = Bgn. (This part of the proof is essentially a direct proof of Corollary
18.65 below.) Because

F7((a,0)) = fi7 1 ((ar, 1)) 0 f5 H ((az,b2)) N0 f 7 (@, b)) € M
for all a,b € Q with a < b, it follows that f~'£ C M and therefore
[ Brn = flo (&) =0 (f1€) c M.
| |

Corollary 18.31. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,Bc) -
measurable.

Proof. Define F': X - CxC, A4 :CxC—-Cand M :CxC — C by
F(z) = (f(x),9(x)), Ax(w,2) = w =+ z and M(w, z) = wz. Then Ay and M
are continuous and hence (Bgz, Bc) — measurable. Also F is (M, Be ® Be) =
(M, Bg2) — measurable since 1 o F = f and my 0 F = g are (M, Bg) —
measurable. Therefore AL oF = f+gand MoF = f-g, being the composition
of measurable functions, are also measurable. [
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Lemma 18.32. Let a € C, (X, M) be a measurable space and f : X — C be
a (M, Be) — measurable function. Then
Ty i flx) #0

e = {70 10 Ly

is measurable.

Proof. Define i : C — C by

, 1if 240
Z(’Z)_{()if 2=0.

For any open set V C C we have
iTH(V)y =it (VA {oh vtV n{o})

Because 4 is continuous except at z = 0, i~1(V'\ {0}) is an open set and hence
in Bc. Moreover, i~1(V N {0}) € Be since i~1(V N {0}) is either the empty
set or the one point set {0} . Therefore i~!(7¢) C B¢ and hence i~(Bg) =
i~1(o(1¢)) = o(i~*(7¢)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m
We will often deal with functions f : X — R = RU {400} . When talking
about measurability in this context we will refer to the o — algebra on R

defined by
Bg =0 ({[a,] : a € R}). (18.5)

Proposition 18.33 (The Structure of Bg). Let Br and Bz be as above,
then -
B ={ACR:ANR eBg}. (18.6)

In particular {oo} ,{—oc} € Bg and Br C Bg.
Proof. Let us first observe that

{_OO} = m'?zozl[_oo7 —Tl) = m?f:l[_na OO]C € B]R7

{00} = N2, [n, 0] € Bg and R = R\ {0} € Bz.
Letting i : R — R be the inclusion map,

i (Bg) =0 (z‘*l ({la,00] :a €R})) =0 ({i" ([a,00]) : a € R})
=0 ({la,c]NR:a €R}) =0 ({[a,0) : a € R}) = Br.

Thus we have shown
Br = it (Bg) ={ANR: A€ Bg}.

This implies:
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1. Ae Bg = ANR eBr and

2. if A C R is such that ANR €Bg there exists B € By such that ANR =
B NR. Because AAB C {£oo} and {0}, {—00} € Bz we may conclude
that A € By as well.

This proves Eq. (18.6)). ]
The proofs of the next two corollaries are left to the reader, see Exercises
18.5/ and [18.6.

Corollary 18.34. Let (X, M) be a measurable space and f : X — R be a
function. Then the following are equivalent

1. f is (M, Bg) - measurable,

2. f~Y((a,o0]) € M for all a € R,

3. f71((—o0,a]) € M for all a € R,

4. f7H{—oc}) e M, f71({oo}) € M and f: X — R defined by

Pw=t @)= {177 0EE

1s measurable.

Corollary 18.35. Let (X, M) be a measurable space, f,g: X — R be func-
tions and define f-g: X — R and (f +g) : X — R using the conventions,
0-co=0and (f+g)(z)=01if f(z) =00 and g(x) = —o0 or f(x) = —oc0
and g (x) = oo. Then f-g and f + g are measurable functions on X if both f
and g are measurable.

Exercise 18.5. Prove Corollary [18.34/ noting that the equivalence of items 1.
— 3. is a direct analogue of Corollary [18.23. Use Proposition [18.33] to handle
item 4.

Exercise 18.6. Prove Corollary [18.35.

Proposition 18.36 (Closure under sups, infs and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence
of M/Bg — measurable functions. Then

sup, fj, inf;f;, limsup f; and liminf f;
j—oo J—0o0

are all M /By — measurable functions. (Note that this result is in generally
false when (X, M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g4 (z) := sup f;(x), then

{z:g94(x) <a} =A{z: fj(z) <aVj}
=Nj{z: fi(z) <a} e M
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so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then
fo:g9-(2) 2 a} = Ny{a: f5(2) = a} € M,

Since
limsup f; =infsup{f;:j >n} and
j—oo n
liminf f; =supinf{f;:j > n}
J—o0 n
we are done by what we have already proved. [

Definition 18.37. Given a function f : X — R let fi(z) := max {f(z),0}
and f_ (z) := max (—f(x),0) = —min (f(z),0). Notice that f = f4 — f_.

Corollary 18.38. Suppose (X, M) is a measurable space and f : X — R is
a function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [18.36 implies fi are measur-
able. Conversely if fi are measurable then sois f = f. — f_. [

18.2.1 More general pointwise limits

Lemma 18.39. Suppose that (X, M) is a measurable space, (Y, d) is a metric
space and f; : X — Y is (M, By) — measurable for all j. Also assume that for
each v € X, f(x) = lim, o fn(z) ezists. Then f: X — Y is also (M, By) -
measurable.

Proof. Let V € 7y and Wy, :={y € Y : dy<(y) > 1/m} for m =1,2,....
Then W,, € 74,

Wi CWi C{y €Y tdye(y) >1/myCV

for all m and W,,, T V as m — oo. The proof will be completed by verifying
the identity,

FTHV) = Uno UN—t Mo fr (W) € M.

If x € f~4(V) then f(z) € V and hence f(x) € W, for some m. Since f,(z) —
f (), fn(z) € Wy, for almost all n. That is z € USS_; US_; Nusn fr - (Whn).
Conversely when @ € USS_, US_; Np>n fr H(W,,) there exists an m such that
fn(z) € W, C W, for almost all n. Since f,,(x) — f(z) € W, C V, it follows
that x € f=1(V). |

Remark 18.40. In the previous Lemma [18.39 it is possible to let (Y, 7) be any
topological space which has the “regularity” property that if V' € 7 there
exists W,,, € 7 such that W,,, CW,,, CV and V = Use_ Wi, Moreover, some
extra condition is necessary on the topology 7 in order for Lemma [18.39 to
be correct. For example if Y = {1,2,3} and 7 = {Y,0,{1,2},{2,3},{2}} as
in Example [10.36 and X = {a,b} with the trivial ¢ — algebra. Let f;(a) =
fj(b) = 2 for all j, then f; is constant and hence measurable. Let f(a) = 1
and f(b) = 2, then f; — f as j — oo with f being non-measurable. Notice
that the Borel o — algebra on Y is 2V,



292 18 Measurability

18.3 o — Function Algebras

In this subsection, we are going to relate o — algebras of subsets of a set X to
certain algebras of functions on X. We will begin this endeavor after proving
the simple but very useful approximation Theorem [18.42 below.

Definition 18.41. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — By
measurable and ¢(X) contains only finitely many elements.

Any such simple functions can be written as

¢ = Aila, with A; € M and ); € F. (18.7)
i=1
Indeed, take A1, Ao, ..., A, to be an enumeration of the range of ¢ and A; =

#~1({\i}). Note that this argument shows that any simple function may be
written intrinsically as

(b = Zyltﬁ*l({y})' (188)

y€eF
The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 18.42 (Approximation Theorem). Let f : X — [0, 00] be mea-
surable and define, see Figurel18.2,

22n 1
k n
On(T) = Z 27”1f,1((2%7k2t/1])(x) +2 1f—1((2n7oc])(‘r)
k=0
227 —1 i
= Z 271{2—’2<f§% (l‘)+2n1{f>2n}($)
k=0

then ¢, < f for all n, ¢, (x) T f(x) for all x € X and ¢, T [ uniformly on
the sets Xpr = {x € X : f(z) < M} with M < co. Moreover, if f : X —
C is a measurable function, then there exists simple functions ¢, such that
limy, oo ¢n(x) = f() for all x and |¢n| T |f] as n — .

Proof. Since

k k+1 2k 2k+1 2k+1 2k+2
(277 on ]:(2n+1’ 2n+1] (2n+1 7 on+l ]’

if @ € f7'((53, 354]) then ¢u(2) = dnii(z) = 5245 and if = €
7 ((312111’ %ﬁilz]) then ¢, (z) = 2351 < gﬁi} = ¢p+1(x). Similarly

(2", 00] = (2", 2" U (2", o0,
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Fig. 18.2. Constructing simple functions approximating a function, f : X — [0, co].

and so for x € f71((2"M, q]), ¢p(x) = 2" < 2" = ¢, 1(x) and for z €
(2™, 27, dpyr(x) > 27 = ¢, (). Therefore ¢, < ¢y for all n. It is
clear by construction that ¢,,(x) < f(x) for all z and that 0 < f(x) — ¢, (z) <
27" if x € Xon. Hence we have shown that ¢, (z) 1 f(x) for all z € X and
¢n T f uniformly on bounded sets. For the second assertion, first assume that
f : X — R is a measurable function and choose qﬁf to be simple functions
such that ¢ 1 f1 as n — oo and define ¢,, = ¢ — ¢,,. Then

|¢n‘ = QSI + ¢, < :lr+1 + ¢;+1 = |¢n+1|

and clearly ¢, = ¢F + ¢, 1 fr+ /- = |fland ¢, = & — 65 — fr—f- = f
as n — 0o. Now suppose that f: X — C is measurable. We may now choose
simple function w, and v, such that |u,| T |[Re f|, [vn| T [Im f|, u, — Re f
and v, — Im f as n — oo. Let ¢, = u, + iv,, then

6n)? = u2 +02 1 [Re f|> + |Im f* = |

and ¢, = u, +iv, — Ref+iIlm f = f as n — oo. n
For the rest of this section let X be a given set.

Definition 18.43 (Bounded Convergence). We say that a sequence of
functions f, from X to R or C converges boundedly to a function f if
lim, o0 fu(x) = f(2) for allz € X and

sup{|fn(x)] ;2 € X andn=1,2,...} < cc.

Definition 18.44. A function algebra H on X is a linear subspace of
£ (X,R) which contains 1 and is closed under pointwise multiplication, i.e.
H is a subalgebra of £° (X, R) which contains 1. If H is further closed under
bounded convergence then H is said to be a 0 — function algebra.
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Ezample 18.45. Suppose M is a o — algebra on X, then
0 (M,R) :={f €~ (X,R): fis M/Bgr — measurable} (18.9)

is a o — function algebra. The next theorem will show that these are the only
example of o — function algebras. (See Exercise [18.7 below for examples of
function algebras on X.)

Notation 18.46 If H C ¢ (X,R) be a function algebra, let
MMH)={ACX:1a€H}. (18.10)
Theorem 18.47. Let H be a 0 — function algebra on a set X. Then

1. M(H) is a 0 — algebra on X.
2.H=1(°(M(H),R).
3. The map

M € {o - algebras on X} — £° (M,R) € {o - function algebras on X}
(18.11)
is bijective with inverse given by H — M (H).

Proof. Let M := M (H).

1. Since 0,1 € H, 0, X € M. If A € M then, since H is a linear subspace
of > (X,R), 1ac =1 —14 € H which shows A° € M. If {A,} 2, C M,
then since H is an algebra,

N
lnN A, = 1_‘[1‘,471 =ZfN€H

n=1 ol
for all N € N. Because H is closed under bounded convergence it follows
that

1ﬂ°°:1An = ]\}im fNeEH
—00

n

and this implies N{2; A,, € M. Hence we have shown M is a ¢ — algebra.
2. Since H is an algebra, p (f) € H for any f € H and any polynomial p on R.
The Weierstrass approximation Theorem [8.34) asserts that polynomials on
R are uniformly dense in the space of continuos functions on any compact
subinterval of R. Hence if f € H and ¢ € C (R), there exists polynomials
prn on R such that p, o f (z) converges to ¢ o f (z) uniformly (and hence
boundedly) in € X as n — co. Therefore ¢ o f € H for all f € H and
¢ € C(R) and in particular |f| € H and fy := W% e Hif f € H.
Fix an a € R and for n € N let ¢,, (¢) := (¢ —a)i/", where (t —a), =
max {t — a,0}. Then ¢, € C(R) and ¢, (t) = li>q as n — oo and the
convergence is bounded when ¢ is restricted to any compact subset of R.
Hence if f € H it follows that 15, = lim, o ¢p (f) € H for all a € R,
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ie. {f > a} € M for all @ € R. Therefore if f € H then f € £ (M,R)
and we have shown H C ¢*° (M, R). Conversely if f € £~ (M,R), then
for any @ < B, {a< f<p} € M = M(H) and so by assumption
l{a<f<py € H. Combining this remark with the approximation Theo-
rem [18.42 and the fact that H is closed under bounded convergence shows
that f € H. Hence we have shown ¢ (M,R) C ‘H which combined with
H C £ (M, R) already proved shows H = (> (M (H),R).

3. Items 1. and 2. shows the map in Eq. (18.11) is surjective. To see the
map is injective suppose M and F are two o — algebras on X such that
£° (M,R) = £ (F,R), then

M={ACX:1y€l>®(M,R)}
={ACX:14€l>™(FR}=F.

Notation 18.48 Suppose M is a subset of £ (X,R).

1. Let H (M) denote the smallest subspace of £>° (X, R) which contains M
and the constant functions and is closed under bounded convergence.
2. Let H, (M) denote the smallest o — function algebra containing M.

Theorem 18.49. Suppose M is a subset of £ (X,R), then H, (M) =
£ (o (M),R) or in other words the following diagram commutes:

M — o (M)
M {Multiplicative Subsets} — {o - algebras} M
l ! ! 1

Hy (M) {o- function algebras} = {o— function algebras} £ (M, R).

Proof. Since ¢ (o (M) ,R) is o — function algebra which contains M it
follows that
Ho (M) C £ (0 (M),R).

For the opposite inclusion, let
M=MMH,(M)):={ACX:14 €H,(M)}.

By Theorem [18.47, M C H, (M) = £ (M,R) which implies that every
f € M is M — measurable. This then implies o (M) C M and therefore

0 (o (M) ,R) C £ (M,R) =H, (M).
|

Definition 18.50 (Multiplicative System). A collection of bounded real or
complex valued functions, M, on a set X is called a multiplicative system
if f-g€ M whenever f and g are in M.
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Theorem 18.51 (Dynkin’s Multiplicative System Theorem). Suppose
M C £ (X,R) is a multiplicative system, then

H (M) = H, (M) = £ (o (M) ,R). (18.12)

In words, the smallest subspace of bounded real valued functions on X which
contains M that is closed under bounded convergence is the same as the space
of bounded real valued o (M) — measurable functions on X.

Proof. We begin by proving H := H (M) is a o — function algebra. To do
this, for any f € H let

Hy={9geH: fgecH} CH

and notice that My is a linear subspace of ¢>° (X,R) which is closed under
bounded convergence. Moreover if f € M, M C Hy since M is multiplicative.
Therefore Hy = ‘H and we have shown that fg € H whenever f € M and
g € H. Given this it now follows that M C H; for any f € H and by
the same reasoning just used, Hy = H. Since f € H is arbitrary, we have
shown fg € H for all f,g € H, i.e. H is an algebra. Since it is harder to
be an algebra of functions containing M (see Exercise 18.13) than it is to
be a subspace of functions containing M it follows that H (M) C H, (M).
But as we have just seen H (M) is a ¢ — function algebra which contains
M so we must have H, (M) C H (M) because H, (M) is by definition the
smallest such ¢ — function algebra. Hence H, (M) = H (M) . The assertion
that H, (M) = ¢ (¢ (M), R) has already been proved in Theorem [18.49. m

Theorem 18.52 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of £°° (X, C) such that: 1 € H, H is closed under
complex conjugation, and H is closed under bounded convergence. If M C 'H
is multiplicative system which is closed under conjugation, then H contains all
bounded complex valued o (M )-measurable functions, i.e. £ (o (M),C) C H.

Proof. Let My = spang(M U {1}) be the complex span of M. As the
reader should verify, My is an algebra, My C ‘H, My is closed under complex
conjugation and that o (My) = o (M) . Let H® := H N ¢>°(X,R) and M =
Mnee°(X,R). Then (you verify) MY is a multiplicative system, M5 C H® and
H® is a linear space containing 1 which is closed under bounded convergence.
Therefore by Theorem [18.51), £*° (O‘ (M(]%Q) ,R) C H®. Since H and M, are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = % (erf) and Im f = 2% (f - f) are in H (M)
or My respectively. Therefore H = H® + iH®, My = M3 +iMZ, o (MOR) =
o (My) =0 (M) and

< (0 (M), €) = £< (o (M) R) +i6> (o (M) ,R)
CHRE+iHE =H.



18.3 o — Function Algebras 297

Exercise 18.7 (Algebra analogue of Theorem [18.47). Call a function
algebra H C ¢*° (X, R) a simple function algebra if the range of each func-
tion f € H is a finite subset of R. Prove there is a one to one correspondence
between algebras A on a set X and simple function algebras H on X.

Definition 18.53. A collection of subsets, C, of X is a multiplicative
class(or a m — class) if C is closed under finite intersections.

Corollary 18.54. Suppose H is a subspace of £°°(X,R) which is closed under
bounded convergence and 1 € H. If C C 2% is a multiplicative class such
that 14 € H for all A € C, then H contains all bounded o(C) — measurable
functions.

Proof. Let M = {1} U{l4: A€ C}. Then M C H is a multiplicative
system and the proof is completed with an application of Theorem [18.51. =

Corollary 18.55. Suppose that (X,d) is a metric space and Bx = o(7q)
is the Borel o — algebra on X and H is a subspace of ¢°(X,R) such that
BC(X,R) C 'H and H is closed under bounded convergence'. Then H contains
all bounded Bx — measurable real valued functions on X. (This may be stated
as follows: the smallest vector space of bounded functions which is closed under
bounded convergence and contains BC(X,R) is the space of bounded Bx —
measurable real valued functions on X.)

Proof. Let V € 74 be an open subset of X and for n € N let
fn(x) :=min(n - dye(x),1) for all z € X.

Notice that f,, = ¢, o dye where ¢, (t) = min(nt, 1) (see Figure [18.3)) which
is continuous and hence f,, € BC(X,R) for all n. Furthermore, f,, converges
boundedly to 14,.>0 = 1y as n — oo and therefore 1y, € H for all V' € 7.
Since 7 is a m — class, the result now follows by an application of Corollary
18.54.

Plots of ¢1, ¢2 and ¢3.

! Recall that BC(X,R) are the bounded continuous functions on X.
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Here are some more variants of Corollary [18.55.

Proposition 18.56. Let (X,d) be a metric space, Bx = o(14) be the Borel
o — algebra and assume there exists compact sets Ky C X such that K T X.
Suppose that H is a subspace of £>°(X,R) such that C.(X,R) C H (C.(X,R)
is the space of continuous functions with compact support) and H is closed
under bounded convergence. Then H contains all bounded Bx — measurable
real valued functions on X.

Proof. Let k and n be positive integers and set 1y, k() = min(1,n -
d(K;;)C(x))' Then ¢, € Co(X,R) and {¢nr # 0} C K7. Let H,  denote
those bounded Bx — measurable functions, f: X — R, such that ¢, 1. f € H.
It is easily seen that H, j is closed under bounded convergence and that
Hy, 1 contains BC(X,R) and therefore by Corollary [18.55] 1, 1 f € H for all
bounded measurable functions f : X — R. Since ¢y, f — 1kpf boundedly
as n — 00, 1go f € H for all k and similarly 1k, f — f boundedly as k — oo
and therefore f € H. ]

Lemma 18.57. Suppose that (X,7) is a locally compact second countable
Hausdorff space? Then:

1. every open subset U C X is o — compact. In fact U is still a locally compact
second countable Hausdorff space.

2.If F C X is a closed set, there exist open sets V,, C X such that V,, | F
as n — oo.

3. To each open set U C X there exists fp, < U (i.e. fp € C.(U,[0,1])) such
that limy,— o fn = 1y

4. Bx = c(C.(X,R)), i.e. the o — algebra generated by C.(X) is the Borel o
— algebra on X.

Proof.

1. Let U be an open subset of X, V be a countable base for 7 and
VW.={W eV :W CU and W is compact}.

For each = € U, by Proposition [12.7, there exists an open neighborhood
V of z such that V C U and V is compact. Since V is a base for the
topology 7, there exists W € V such that € W C V. Because W C V, it
follows that W is compact and hence W € VV. As x € U was arbitrary,
U = UVY. This shows VY is a countable basis for the topology on U and
that U is still locally compact.

Let {W,}>7, be an enumeration of VY and set K,, := UP_, Wj. Then
K, T U asn — oo and K, is compact for each n. This shows U is o —
compact. (See Exercise 11.7.)

2 For example any separable locally compact metric space and in particular any
open subset of R".
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2. Let {K,} —, be compact subsets of F° such that K,, T F as n — oo and
set V,, := K& = X\ K,,. Then V,, | F and by Proposition [12.5, V,, is open
for each n.

3. Let U C X be an open set and {K,}, ., be compact subsets of U such
that K,, T U. By Urysohn’s Lemma [12.8], there exist f, < U such that
fn =1 on K,. These functions satisfy, 1y = lim,, .o fin-

4. By item 3., 1y is o(C.(X,R)) — measurable for all U € 7 and hence
T C 0(C.(X,R)). Therefore Bx = o(r) C o(C.(X,R)). The converse
inclusion holds because continuous functions are always Borel measurable.

]
Here is a variant of Corollary [18.55l

Corollary 18.58. Suppose that (X, T) is a second countable locally compact
Hausdorff space and Bx = o(1) is the Borel o — algebra on X. If H is a
subspace of £>°(X,R) which is closed under bounded convergence and contains
C.(X,R), then H contains all bounded Bx — measurable real valued functions
on X.

Proof. By Item 3. of Lemma [18.57, for every U € 7 the characteristic
function, 1y, may be written as a bounded pointwise limit of functions from
C. (X,R). Therefore 1y € H for all U € 7. Since 7 is a 7 — class, the proof is
finished with an application of Corollary [18.54 [ ]

18.4 Product o — Algebras

Let {(Xa; Ma)}aca be a collection of measurable spaces X = X4 = J] X,
acA
and 7, : X4 — X, be the canonical projection map as in Notation 2.2l

Definition 18.59 (Product o — Algebra). The product ¢ — algebra,
QacaMa, is the smallest o — algebra on X such that each 7w, for a € A is
measurable, i.e.

RaecaMy i =0(m:a€ A)=0c (angl(/\/la)) .

Applying Proposition [18.25/ in this setting implies the following proposi-
tion.

Proposition 18.60. Suppose Y is a measurable space and f:Y — X = X4
is a map. Then f is measurable iff mo o f 1 Y — X, is measurable for all
a € A. In particular if A ={1,2,...,n} so that X = X1 x Xo x---x X,, and
fy) = (i), fo(y)s - fuly)) € X1 x Xg X -+ X Xy, then f:Y — Xy is
measurable iff f; : Y — X; is measurable for all i.
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Proposition 18.61. Suppose that (X, Ma),e 4 i a collection of measurable
spaces and E, C M, generates M, for each o € A, then

®Qaca Ma =0 (Uaeamy  (Ea)) (18.13)

Moreover, suppose that A is either finite or countably infinite, X, € &, for
each a € A, and M, = o(&,) for each o € A. Then the product o — algebra
satisfies

®aeAMa:U<{HEa : By €&, for allaeA}) . (18.14)

a€A
In particular if A={1,2,...,n}, then X = X3 x Xo X --- x X,, and
M @Mo® - @My =0(Mip X My x -+ X My,),
where My X Mo X -+ X M, is as defined in Notation [10.26.
Proof. Since Uy, (€E4) C Uamy ' (My), it follows that
Fi=0 (angl(é’a)) Co (uawgl(/\/la)) = QaecaMa.
Conversely,
Foo(ry!(Ea)) = 7o' (0(Ea)) = mg (Ma)
holds for all o implies that
Uamy ' (Mg) CF

and hence that ®,caMy C F. We now prove Eq. (18.14). Since we are
assuming that X, € &, for each o € A, we see that

UaTs (Ea) C {H E,:E,€&, foral ac A}

acA

and therefore by Eq. (18.13)

QacaMa =0 (Uamy ' (Ea)) Co ({ H E,:E,€é&, forall ae A}) .

acA

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,

H E(x - maeAﬂ-gl(Ea) S ®aeAM(x
a€cA

and hence

o ({ H E,:E,€é&, forall ae A}) C Q®aqeaMy.

acA
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Remark 18.62. One can not relax the assumption that X, € &, in the second
part of Proposition [18.61. For example, if X; = Xy = {1,2} and & = & =

gg}}x then o(&; x &) = {0, X1 x Xz, {(1,1)}} while o(0(&) x (&) =

Theorem 18.63. Let {X,},c4 be a sequence of sets where A is at most
countable. Suppose for each o € A we are given a countable set £, C 2%~ Let
Ta = T(Ex) be the topology on X, generated by &, and X be the product space
[loca Xa with equipped with the product topology T := @aeaT(Ex). Then the
Borel o — algebra Bx = o(7) is the same as the product o — algebra:

Bx = ®acaBx.,

where Bx, = 0(17(&y)) = 0(&a) for all a € A.
In particular if A = {1,2,...,n} and each (X;,7;) is a second countable
topological space, then

Bx =0(m®mn®- - ®71,) =cBx, X+ xBx,)=:Bx,® - ®Bx,.

Proof. By Proposition 10.25, the topology 7 may be described as the
smallest topology containing € = Uae a7, }(£4). Now & is the countable union
of countable sets so is still countable. Therefore by Proposition 18.17 and
Proposition [18.61]

Bx =o(r) = 0(7(£)) = 0(&) = ®aecao(a)
= ®a€AU(Ta) = ®a€ABXa~
|

Corollary 18.64. If (X;,d;) are separable metric spaces fori =1,...,n, then
Bx, ®: - ®Bx, = B(Xlx-»-xXn)

where Bx, 1is the Borel o — algebra on X; and Bix, x..xx,) s the Borel
o — algebra on X7 X --- x X, equipped with the metric topology associ-
ated to the metric d(z,y) = >, di(wi,y;) where x = (x1,22,...,2,) and
y= 1,92, Yn)

Proof. This is a combination of the results in Lemma10.28|, Exercise10.12
and Theorem [18.63. [ ]
Because all norms on finite dimensional spaces are equivalent, the usual
Euclidean norm on R™ x R"™ is equivalent to the “product” norm defined by

1, )]

Hence by Lemma [10.28, the Euclidean topology on R™" is the same as the
product topology on R™*" = R™ x R™. Here we are identifying R™ x R™ with
R™*" by the map

rmxre = [Zlgm + [Yllgn -

(2,9) ER™ X R"™ — (T1,...,Tm, Y1, -+, Yn) € R™T™,

These comments along with Corollary 18.64 proves the following result.



302 18 Measurability

Corollary 18.65. After identifying R™ x R™ with R™*" as above and letting
Bgrn denote the Borel o —algebra on R™, we have

n—times

——
BRm+n, = BRn ® BRWL and B]Rn == B]R ® M ® B]R.

18.4.1 Factoring of Measurable Maps

Lemma 18.66. Suppose that (Y, F) is a measurable space and F : X =Y s
a map. Then to every (o(F), Bg) — measurable function, H : X — R, there is
a (F,Bg) — measurable function h: Y — R such that H = ho F.

Proof. First suppose that H = 14 where A € o(F) = F~(F). Let
B € F such that A = F~!(B) then 14 = 1p-1(p) = 1p o F' and hence the
Lemma is valid in this case with h = 1g. More generally if H = ) a;14,
is a simple function, then there exists B; € F such that 14, = 1p, o F' and
hence H = ho F with h := ) a;1p, — a simple function on R. For general
(0(F),F) — measurable function, H, from X — R, choose simple functions
H,, converging to H. Let h,, be simple functions on R such that H,, = h,, o F.
Then it follows that

H = lim H, =limsup H, =limsuph, o F =hoF

n—oo n—oo n— oo

where h := limsup,,_, , h, — a measurable function from Y to R. |
The following is an immediate corollary of Proposition [18.25 and Lemma
18.66.

Corollary 18.67. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Y4 Let Y := ] ca Ya,
F = QacaFa be the product o — algebra on'Y and M := o(fs : @ € A)
be the smallest o — algebra on X such that each f, is measurable. Then the
function F : X — 'Y defined by [F(x)], := fa(x) for each o € A is (M, F)
— measurable and a function H : X — R is (M, Bg) — measurable iff there

exists a (F,Bg) — measurable function h from'Y to R such that H = ho F.

18.5 Exercises

Exercise 18.8. Prove Corollary [18.23. Hint: See Exercise [18.3.

Exercise 18.9. If M is the o — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C £.

Exercise 18.10. Let (X, M) be a measure space and f, : X — F be a se-
quence of measurable functions on X. Show that {z : lim,_,c fn(z) exists in F} €

M.
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Exercise 18.11. Show that every monotone function f : R — R is (Bg, Br)
— measurable.

Exercise 18.12. Show by example that the supremum of an uncountable
family of measurable functions need not be measurable. (Folland problem 2.6
on p. 48.)

Exercise 18.13. Let X =

{1,2,3,4}, A = {1,2}, B = {2,3} and M :=
{1A,1B}.ShOWHU(M)7éH(

M) in this case.
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Measures and Integration

Definition 19.1. A measure p on a measurable space (X, M) is a function
p: M —[0,00] such that

1. (@) =0 and
2. (Finite Additivity) If {A;};_, C M are pairwise disjoint, i.e. A;NA; =0

when i #£ j, then
nJA) =D w4
i=1

i=1
3. (Continuity) If A, € M and A, 1 A, then u(Ayn) 1 n(A).

We call a triple (X, M, ), where (X, M) is a measurable space and p :
M — [0,00] is a measure, a measure space.

Remark 19.2. Properties 2) and 3) in Definition [19.1 are equivalent to the
following condition. If {A4;};°, C M are pairwise disjoint then

w((JA) =3 ulAy). (19.1)
=1 =1

To prove this assume that Properties 2) and 3) in Definition [19.1 hold and
{A;};2, C M are pairwise disjoint. Letting B,, :== |J A; 1 B := |J Ai, we
i=1 i=1

1=

have

> @ . @ % -

p((JA) = n(B) = lim p(B,) = lim Y w(ds) = u(4).
i=1 i=1 i=1

Conversely, if Eq. (19.1) holds we may take A; = () for all j > n to see that

Property 2) of Definition [19.1 holds. Also if 4,, 1 4, let B,, := A, \ 4,,—1 with

Ag := 0. Then {B,},_ are pairwise disjoint, A,, = Uj_; Bj and A = U5, B;.

So if Eq. (19.1) holds we have
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oo

u(A) = p (U2, B)) = Z 1(B;)

= lim > p(Bj) = lim p(Uj_yB;) = lim u(A,).
j=1
Proposition 19.3 (Basic properties of measures). Suppose that (X, M, p)
18 a measure space and E,F € M and {Ej};il C M, then :

(B) < u(F) f EC F.

(VE;) < > u(Ej).

w(Er) <oo and E; | E, i.e. By D Ey D E3 D ... and E =N,E;, then
E}) L u(E) as j — .

T E

1.
2.
3.

/-\q

I
Proof.
1. Since F = EU(F\ E),

u(F) = p(E) + p(F\ E) = p(E).

2. Let Ej = F; \ (E; U---UE;_) so that the E; ’s are pair-wise disjoint
and E = UE;. Since E; C E; it follows from Remark [19.2 and part (1),

that _
p(E) = pu(E;) <> u(Ey).
3. Define D; := F; \ E; then D; T E; \ E which implies that

p(Er) — p(B) = lim p(D;) = p(Er) — lim p(E;)

which shows that lim; . pu(E;) = u(E).
[
Definition 19.4. A set E C X is a null set if E € M and u(E) =0. If P is

some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for x}

is a null set. For example if f and g are two measurable functions on
(X, M, ), f =g ae. means that u(f # g) = 0.

Definition 19.5. A measure space (X, M, u) is complete if every subset of
a null set is in M, i.e. for all F C X such that F C E € M with u(E) =0
implies that F € M.
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Proposition 19.6 (Completion of a Measure). Let (X, M, ) be a mea-
sure space. Set

N=Nt={NCX:3FeM>NCF and u(F) =0},
M=M':={AUN:AeMand N € N} and
A(AUN) := pu(A) for Ae M and N € N,

see Fig.[19.1. Then M is a o — algebra, [i is a well defined measure on M, [i is
the unique measure on M which extends p on M, and (X, M, i) is complete
measure space. The o-algebra, M, is called the completion of M relative to
u and fi, is called the completion of u.

Proof. Clearly X, € M. Let A € M and N € N and choose F € M

Fig. 19.1. Completing a o — algebra.

such that N C F and u(F) = 0. Since N° = (F'\ N) U F¢,

(AUN)*=A°NN°=A°N(F\NUF°)
=[A°N(F\ N)JU[A° N F9]

where [A°N (F\ N)] € N and [A°N F¢] € M. Thus M is closed under
complements. If A; € M and N; C F; € M such that u(F;) = 0 then
U(AiUNZ‘) = (UAi)U(UNi) € M since UA; € M and UN; C UF; and ,LL(UFi) <
3" u(F;) = 0. Therefore, M is a o — algebra. Suppose AU N; = B U N, with
A,Be Mand N;,Ny,€ N. Then ACc AUN, C AUN,UF, = BUF, which
shows that

1(A) < u(B) + u(Fz) = u(B).

Similarly, we show that p(B) < p(A) so that pu(A) = p(B) and hence (A U
N) := p(A) is well defined. It is left as an exercise to show [ is a measure,
i.e. that it is countable additive. [ ]

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a ¢ — finite measure defined next.
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Definition 19.7. Suppose X is a set, € C M C 2% and p: M — [0,00] is a
function. The function p is o — finite on & if there exists F, € £ such that
w(Ey) < oo and X = U5 Ey. If M is a 0 — algebra and p is a measure on
M which is o - finite on M we will say (X, M,p) is a o — finite measure
space.

The reader should check that if y is a finitely additive measure on an
algebra, M, then p is o — finite on M iff there exists X,, € M such that
X, T X and pu(X,) < co.

19.1 Example of Measures

Most o — algebras and ¢ -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F C 2% is a countable or finite partition of X and M C 2¥ is
the o — algebra which consists of the collection of sets A C X such that

A=U{a e F:aCA}. (19.2)

It is easily seen that M is a o — algebra.
Any measure p: M — [0, 00] is determined uniquely by its values on F.
Conversely, if we are given any function A : F — [0, 00] we may define, for

Ae M,
pA)=" > Ma)= M)laca

acEFd3aCA aeF

where 1,c4 is one if @ C A and zero otherwise. We may check that p is a
measure on M. Indeed, if A =]];2, A; and o € F, then o C A iff &« C A; for
one and hence exactly one A;. Therefore 1oca = > o) laca, and hence

pA) = 37 M@)laca = 3 M@)Y - Laca,

aeF aeF
=SS M@ laca, = u(4y)
i=1 aeF i=1

as desired. Thus we have shown that there is a one to one correspondence
between measures p on M and functions A : F — [0, c0].

The construction of measures will be covered in Chapters 77 — 7?7 below.
However, let us record here the existence of an interesting class of measures.

Theorem 19.8. To every right continuous non-decreasing function F
R — R there exists a unique measure g on Br such that

pr((a,b) =F(b)—Fa)V —co<a<b< o (19.3)
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Moreover, if A € B then

pir(A) = inf {Z(F(bi) — Fla;)) : A C U2, (as, bi}} (19.4)

= inf {Z(F(bi) — F(a;)) : A [ (as, bi]} . (19.5)
i=1 i=1

In fact the map F — up is a one to one correspondence between right con-
tinuous functions F with F(0) = 0 on one hand and measures u on Bg such
that pu(J) < oo on any bounded set J € Bg on the other.

Proof. See Section 7?7 below or Theorem 7?7 below. [}

Ezample 19.9. The most important special case of Theorem [19.8 is when
F(x) = x, in which case we write m for up. The measure m is called Lebesgue
measure.

Theorem 19.10. Lebesque measure m is invariant under translations, i.e.
for B € Bgr and x € R,
m(z + B) = m(B). (19.6)

Moreover, m is the unique measure on Bgr such that m((0,1]) = 1 and Eq.
(19.6) holds for B € Bg and x € R. Moreover, m has the scaling property

m(AB) = |A| m(B) (19.7)
where A € R, B € Br and AB :={\z : z € B}.

Proof. Let m,(B) := m(z + B), then one easily shows that m, is a
measure on Bgr such that m,((a,b]) = b— a for all a < b. Therefore, m, =m
by the uniqueness assertion in Theorem [19.8. For the converse, suppose that
m is translation invariant and m((0,1]) = 1. Given n € N, we have

k-1 k. (k-1 1
o1 =uin (o - (B v o).

Therefore,

That is to say
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Similarly, m((0, £]) = I/n for all ,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,, b, € Q such that b, | b and
an 1 a, then (an,b,] | (a,b] and thus
m((a,b]) = lim m((an,by]) = lim (b, —a,) =b—a,
n—oo n—oo
i.e. m is Lebesgue measure. To prove Eq. (19.7) we may assume that A # 0

since this case is trivial to prove. Now let my(B) := |A|”' m(AB). It is easily
checked that m) is again a measure on Br which satisfies

ma((a, b)) = A7 m (Aa, \b)) = A1 (Ab— Xa) = b —a
if A >0 and
ma((a,b]) = A" " m ([Ab,Aa)) = —[A| 7P (Ab— Aa) =b—a

if A < 0. Hence my = m. [}

We are now going to develop integration theory relative to a measure. The
integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

19.1.1 ADD: Examples of Measures

BRUCE: ADD details.

Product measure for the flipping of a coin.

Haar Measure

Measure on embedded submanifolds, i.e. Hausdorff measure.
Wiener measure.

Gibbs states.

Measure associated to self-adjoint operators and classifying them.

SR e

19.2 Integrals of Simple functions

Let (X, M, 1) be a fixed measure space in this section.

Definition 19.11. Let F = C or [0,00) and suppose that ¢ : X — F is
a simple function as in Definition 18.41. If F = C assume further that
w(d({y})) < oo for all y # 0 in C. For such functions ¢, define I,,(¢) by

= yule~ ({y})-

yeF
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Proposition 19.12. Let A € F and ¢ and ¢ be two simple functions, then I,
satisfies:

1.
Iu(A) = M (6). (19.8)

IM(¢ + w) = IM(¢) + Ip(¢)-
3. If ¢ and ¢ are non-negative simple functions such that ¢ <) then

Lu(¢) < 1u(¥).

Proof. Let us write {¢ = y} for the set ¢~1({y}) C X and u(¢ = y) for
n({¢=y}) = u(¢~" ({y})) so that

Iu(¢) = > yn(¢ = v)-

y€eF

We will also write {¢ = a,v = b} for ¢~ ({a}) N~1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that A € F then

L) =D yué=y) =D yud=y/N

y€eF y€F
=D Az pld = 2) = M,(0)
z€F

provided that A # 0. The case A = 0 is clear, so we have proved 1. Suppose
that ¢ and ¥ are two simple functions, then

L(o+v) =Y 2z plo+v =2

z€F

=Y 2 u(Uper{d =w, ¢ =2—w})
z€F

S o=, b= —w)
zeF  weF

=Y (z+wplé=w, ¢ =2z)
z,weF

=> zp =2+ wpuld=uw)
zeF weF

= 1,(¢) + 1u(9).

which proves 2. For 3. if ¢ and v are non-negative simple functions such that

¢ <1
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I(¢) =Y ap(¢=a)= Y ap(¢p=a,¢=1)

a>0 a,b>0
<N b =a,p=b) = bu(h =b) = L(¥),
a,b>0 b>0
wherein the third inequality we have used {¢ = a, =b} =0 if a > b. [

19.3 Integrals of positive functions

Definition 19.13. Let Lt = Lt (M) = {f : X — [0,00] : f is measurable}.
Define

/ f(z)dp(z) = / fdp :=sup{I,(¢) : ¢ is simple and ¢ < f}.
b's b's
We say the f € Lt is integrable if fX fdp < oco. If A € M, let

Af(x)du(x):Afduzz/)(lAf an

Remark 19.14. Because of item 3. of Proposition [19.12] if ¢ is a non-negative
simple function, fX ¢dp = 1,,(¢) so that fX is an extension of I,,. This exten-
sion still has the monotonicity property if I,, : namely if 0 < f < g then

/ fdp =sup{I,(¢): ¢ is simple and ¢ < f}
X

< sup {I,(¢) : ¢ is simple and ¢ < g} < / gdu.
X

/chdu:c/xfd,u.

Also notice that if f is integrable, then u ({f = c0}) = 0.

Similarly if ¢ > 0,

Lemma 19.15 (Sums as Integrals). Let X be a set and p: X — [0,00] be
a function, let p =73, .y p(x)d, on M =2%ie.

p(A) =" pla).

z€A

If f : X —[0,00] is a function (which is necessarily measurable), then

/X fis=3 1o
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Proof. Suppose that ¢ : X — [0,00) is a simple function, then ¢ =
ZzE[O,oo) 21{4):2} and

ZW—Z ) Y Ap=@) = Y 2 Y @)= (@)

reX z€[0,00) z€[0,00) wEX
- ijmw=wszﬁww
2z€[0,00) X

So if ¢ : X — [0,00) is a simple function such that ¢ < f, then

[ oau=3"er<> tr
X X X

Taking the sup over ¢ in this last equation then shows that

/X i <3 1o

For the reverse inequality, let A CC X be a finite set and N € (0, c0).
Set fN(z) = min{N, f(x)} and let ¢y 4 be the simple function given by
én.A(z) = 14(x) fV (x). Because ¢n a(7) < f(x),

ngp;¢N,Ap/X¢N,Adug/deu,

Since fV 1 f as N — oo, we may let N — oo in this last equation to concluded

zA:fp < /deu-

Since A is arbitrary, this implies

ZX:fp < /deu-

Theorem 19.16 (Monotone Convergence Theorem). Suppose f, € L
is a sequence of functions such that f, 1 f (f is necessarily in L™) then

/hT/f%nﬁm‘

Proof. Since f, < fi,, < f, for all n < m < oo,

[taz [fuz 1
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from which if follows f fn is increasing in n and

lim | f, g/f. (19.9)
For the opposite inequality, let ¢ : X — [0,00) be a simple function such

that 0 < ¢ < f, @ € (0,1) and X,, := {f, > a¢}. Notice that X,, T X and
fn > alx, ¢ and so by definition of [ f,,

/fn > /ozlanb: Oz/lanﬁ. (19.10)

Then using the continuity property of p,

Jin frxo= i f15 3 st

y>0
= nlirr;o Z yu( X, N{p=y}) = Z ynlggo WX N{¢p =y}
y>0 y>0
=Y ou lim o =v)) = [

y>0

This identity allows us to let n — oo in Eq. (19.10) to conclude

1
[o<y im [
X o n—00

Since this is true for all non-negative simple functions ¢ with ¢ < f;

/f:sup{/xgzﬁz(bissimpleand¢<f}<1lim I

o n—00

Because « € (0,1) was arbitrary, it follows that [ f < lim [ f,, which com-

bined with Eq. (19.9) proves the theorem. |
The following simple lemma will be use often in the sequel.

Lemma 19.17 (Chebyshev’s Inequality). Suppose that f > 0 is a mea-
surable function, then for any e > 0,

uw(f>e) < E/deu. (19.11)

In particular if [y fdp < oo then p(f = 00) =0 (i.e. f < oo a.e.) and the
set {f > 0} is o — finite.

Proof. Since 15>, < 1{f28}éf <1y

1 1
u(fzs):/ l{fza}dué/ Lifsey=fdp < 7/ fdp.
X X € €Jx
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If M := [y fdp < oo, then

p(f =00) <pu(f>n) < %—N)asn—m)o

and {f > 1/n} 1 {f > 0} with u(f > 1/n) < nM < oo for all n. ]

Corollary 19.18. If f,, € LT is a sequence of functions then

[Er-2n

In particular, if Y .o 1 [ fn < oo then Y " | fr < 00 a.e.

Proof. First off we show that

/(f1+f2)=/f1+/f2

by choosing non-negative simple function ¢,, and 1, such that ¢, T fi and
Un T fo. Then (¢, +1,,) is simple as well and (¢, + 1) T (f1 + f2) so by the

monotone convergence theorem,

[t =t [ v =tim ([o.+ [.)
= Jim [+t fv.=[fi+ [

Now to the general case. Let gy : Z fnand g = Z fn, then gy T g and so

=1
again by monotone convergence theorem and the add1t1v1ty just proved,
0o N N
S [ = Jim 3 [ = gim [5 5
n=1 n=1 n=1

=Nliinoo/gzv=/g=:/ifn-

Remark 19.19. 1t is in the proof of this corollary (i.e. the linearity of the
integral) that we really make use of the assumption that all of our functions are
measurable. In fact the definition | fdu makes sense for all functions f : X —
[0,00] not just measurable functions. Moreover the monotone convergence
theorem holds in this generality with no change in the proof. However, in
the proof of Corollary 19.18, we use the approximation Theorem [18.42] which
relies heavily on the measurability of the functions to be approximated.
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The following Lemma and the next Corollary are simple applications of
Corollary 19.18.

Lemma 19.20 (The First Borell — Carntelli Lemma). Let (X, M, u) be
a measure space, A, € M, and set

{A,, i.0.} ={x € X : x € A, for infinitely many n’s} = ﬂ U Ap,.
N=1n>N

If > u(Ay) < oo then p({A, i.0.}) =0.
Proof. (First Proof.) Let us first observe that

{4, i0.} = {xGX : ilAn(x) :oo}.

n=1

Hence if > | u(A,) < oo then
00 > Zu(An)=Z/ lAndu=/ > la, du
n=1 n=17X X p=1

implies that Y 14 (x) < oo for u - a.e. . That is to say u({A, i.0.}) = 0.
1

n
(Second Proof.) Of course we may give a strictly measure theoretic proof of

this fact:
N(Anlo):Nh_{nOO,“ U Ap
n>N
< lim Z w(Ap)
N —o0 NN
and the last limit is zero since > - | pu(A,) < oo. [

Corollary 19.21. Suppose that (X, M, i) is a measure space and {A,},> , C
M is a collection of sets such that pu(A; N Aj;) =0 for all i # j, then

1 (UnZiAn) = Z 1(Ap).
n=1
Proof. Since

u(Ui’leAn)=/ lus 4, dp and
X

> u(An) =/ > la,dp
n=1 X p=1
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it suffices to show

Z la, =1u= 4, p—ae. (19.12)
n=1

Now > 14, > Ly 4, and S 1a,(x) # Lu=  a,(x) iff z € A;NA; for

n —

some i # j, that is

{.’L’ : Z 1a, (St’,’) #* 1U,°L°=1An (.’17)} = Ui<in n Aj
n=1

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (19.12)) and hence the corollary. ]

Notation 19.22 If m is Lebesque measure on By, f is a non-negative Borel
measurable function and a < b with a,b € R, we will often write f; f(x)dz

or fab fdm for f(a,b]m]R fdm.

Ezample 19.23. Suppose —00 < a < b < oo, f € C([a,b],[0,00)) and m be
Lebesgue measure on R. Also let m, = {a = af < af <--- <ak =1b} bea
sequence of refining partitions (i.e. mp C 741 for all k) such that

mesh(7g) := max{’a;? - affﬂ cj=1,...,n5} = 0as k — occ.

For each k, let

nk—l

fr(z) = f(a)l{a} + Z min {f(x) : af <z < aﬁl} 1(a;c,a;c+1]($)
1=0

then fr T f as k — oo and so by the monotone convergence theorem,

b b
/ fdm ::/ fdm = lim / fr dm
a la,b] k—oo Jq

neg—1

= klirgo ZZ: min {f(x) : af“ <z< aﬁ_l} m ((af,aﬁl])

, =0
/a f(@)da.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Ezxzample 19.2. For all A > 0,

/ e dm(z) = A1 and / L dm(z) = 7.
0 R
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The proof of these identities are similar. By the monotone convergence the-
orem, Example [19.23| and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 8.13 above or Theorem [19.40 below),

oo N N
/ e dm(z) = lim e dm(z) = lim e Mdx
0 N—oo 0 N—oo 0

1
= — lim 7e—>\x|é\/:)\—1
N —o0
and
1 N N
—d = i = = i S
/Rler? m(@) = lim [ gedmle) = Jim s

— ngnoo [tan_l(N) — tan_l(—N)] =T.

dzx

Let us also consider the functions =77,

1 ! 1
— dm(z) = lim L1 qy(z) —dm(z)
(071] xP n—oo J, n xP
1 —p+1 |1
= lim —dxr = lim
n—oo Tll €T n—oo p 1/TL
= ifp<1
| oo ifp>1

If p=1 we find
1 VS . !
— dm(z) = lim —dz = lim In(z)|;,, = oco.
(0

1) TP n—oo f1 n—00
’ n

Ezample 19.25. Let {r,}52; be an enumeration of the points in QN [0, 1] and

define
> 1
fl) =Y
; Ve —rnl

with the convention that
1

Ve =

Since, By Theorem [19.40),

=5ifx=r,.

/11daz—/lldm+/rnldm
0 \/|I*Tn| Tn T —Tn 0 T'n — %
= 20/T i}, — 2V gy =2 (VI 1 — /)

<4,
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we find

dx§i27"4:4<oo.

> 1
faymiz) = > 2 [
[0,1] ; 0,1] V]T —7al =

In particular, m(f = oo) = 0, i.e. that f < oo for almost every x € [0,1] and
this implies that

. 1
Z 2™n < oo for a.e. z € [0,1].
n=1

Vi]E =yl

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

Proposition 19.26. Suppose that f > 0 is a measurable function. Then
fX fdu =04 f =0 a.e. Alsoif f,g > 0 are measurable functions such that
f<gae then [ fdu < [ gdp. In particular if f = g a.e. then [ fdu = [ gdp.

Proof. If f = 0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e.
This implies that u(¢~*({y})) = 0 for all y > 0 and hence [, ¢dp = 0 and
therefore [, fdu = 0. Conversely, if [ fdu = 0, then by (Lemma 19.17),

w(f >1/n) Sn/fdu:()for all n.

Therefore, p(f > 0) < >0, u(f > 1/n) =0, i.e. f =0 a.e. For the second
assertion let E be the exceptional set where f > g,i.e. E:={z € X : f(z) >
g(x)}. By assumption E is a null set and 1ge f < 1geg everywhere. Because
g=1geg+1gg and 1gg =0 a.e.,

/gdu:/lEcgdu+/1Egdu: /1Ecgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,
/ﬁMz/M#@S/Mw@:/Mw

Corollary 19.27. Suppose that { f,,} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

[t [fasnc

Proof. Let E C X be a null set such that f,1gc T flge as n — co. Then
by the monotone convergence theorem and Proposition [19.26)

/fnz/fnlEcT/flECZ/fasn—m)o.
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Lemma 19.28 (Fatou’s Lemma). If f, : X — [0,00] is a sequence of
measurable functions then

/liminf frn < lim inf/fn

Proof. Define g, := 1r;fk fn so that gx T liminf, . fn as k — oo. Since
n=

gr < fn forall k <n,
/gkg/fnforaHHZk

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let & — oo to find

/lim inf f, = /klim Gk MCT klim /gk < lim inf /fn.

and therefore

19.4 Integrals of Complex Valued Functions

Definition 19.29. A measurable function f : X — R is integrable if f, =
flis>0y and f— = —f 1{y<0y are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

[ tdn= [ edu~ [ 1an

Convention: If f g : X — R are two measurable functions, let f + ¢
denote the collection of measurable functions h : X — R such that h(z) =
f(x)+g(x) whenever f(x)+g(x) is well defined, i.e. is not of the form co—o0 or
—00+00. We use a similar convention for f — g. Notice that if f,g € L' (u; R)
and hi,he € f + g, then hy = hg a.e. because |f| < co and |g] < o0 a.e.

Notation 19.30 (Abuse of notation) We will sometimes denote the in-
tegral [ fdu by p(f). With this notation we have p(A) = p(1a) for all
AeM.

Remark 19.31. Since
fiS|f|Sf++f—7

a measurable function f is integrable iff [ |f| du < co. Hence

L' (u;R) :== {f:X—>R: fismeasurableand/|f| d,u<oo}.
X
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If f,g € L' (u;R) and f = g a.e. then fi = g4 a.e. and so it follows from
Proposition 19.26 that [ fdu = [ gdp. In particular if f,g € L! (u;R) we may

define
/X(f+g)du=/xhdu

where h is any element of f + g.

Proposition 19.32. The map
fELl(u;R)ﬁ/ fdueR
X

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
L' (u;R) such that f < g a.e.

Proof. Let f,g € L' (1;R) and a,b € R. By modifying f and g on a null
set, we may assume that f, g are real valued functions. We have af + bg €
L' (u;R) because

laf +bg| < la| |f| + bl |g] € L* (i1sR).

If a < 0, then
(af)+ = —af- and (af)- = —afy

Jor=afsvaft=afsi-[rr=a]r

A similar calculation works for a > 0 and the case a = 0 is trivial so we have

shown that
/af :a/f.

Now set h = f +¢g. Since h =hy — h_,

so that

hy —h-=fy—f-+9+—9g-

or
hy+f-+9-=h_+ fr +94.
Therefore,
/h++/f_+/g_:/h_+/f++/g+
and hence

foe fru-foom froe for- [ o= [+ o

Finally if f, — f- = f <g=g+ —g— then fy +¢g_ < gy + f— which implies
that
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/f++/9—§/g++/f—
or equivalently that
/f=/f+—/f7§/g+—/gf=/g-

The monotonicity property is also a consequence of the linearity of the inte-
gral, the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [19.26.
]

Definition 19.33. A measurable function f : X — C is integrable if
Jx |f] dp < oo Analogously to the real case, let

Ll(u;(C)::{f:X—NC: fismeasumbleand/ |f] d,u<oo}.
b

denote the complex valued integrable functions. Because, max (|Re f], [Im f]) <

[fl < VZmax (|Re f|, [Im f]), [1f] du < oo iff
/\Ref|du+/|1mf|d,u<oo.

For f € L' (u;C) define

/fdp:/Refdu—i-i/Imfdu.

It is routine to show the integral is still linear on L' (11; C) (prove!). In the
remainder of this section, let L' (1) be either L* (11;C) or L' (u;R) . If A € M
and f € L' (u;C) or f: X — [0,00] is a measurable function, let

/A fdu = /X Lafdp.

Proposition 19.34. Suppose that f € L' (u;C), then

‘ /X fdﬂ‘é /X fl d. (19.13)

Proof. Start by writing [y f du = Re" with R > 0. We may assume that
R= UX fdu| > 0 since otherwise there is nothing to prove. Since

R:e*ie/xfdu:/xe*wf dp:/XRe (e7f) du—H’/ Im (e” ™ f) dp,

X

it must be that fX Im [e_wf] dp = 0. Using the monotonicity in Proposition

19.26,
_ —i6 —if
’/deu’—/XRe(e f)duﬁ/X\Re(e f)!duﬁ/xlfldu-
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Proposition 19.35. Let f,g € L (u), then

1. The set {f # 0} is o — finite, in fact {|f| = 2} 1T {f # 0} and p(|f| >
1) < oo for all n.
2. The following are equivalent

a) [ f=[pg foral E€ M
b))[lf—g|=0

c) f=g ae

Proof. 1. By Chebyshev’s inequality, Lemma [19.17,

u51= D < [ 1l <o

for all n. 2. (a) = (c) Notice that

/Ef:/Eg@/EU—g):o

for all E € M. Taking E = {Re(f — g) > 0} and using 15 Re(f — g) > 0, we
learn that

OzRe/E(f—g)duz/lERe(f—g):>1ERe(f—g):0a.e.

This implies that 15 = 0 a.e. which happens iff

i ({Re(f - g) > 0}) = u(E) = 0.

Similar u(Re(f—g) < 0) = 0so that Re(f—g) = 0 a.e. Similarly, Im(f—g) =0
a.e and hence f —g =0 a.e., i.e. f =g a.e. (¢) = (b) is clear and so is (b)

= (a) since
L1 [o< [1-a-0

Definition 19.36. Let (X, M, i) be a measure space and L* (1) = LY (X, M, 1)
denote the set of L' (u) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

1 =gl :/\ffgldu

and into a metric space using p1(f,q) = ||f — gl 1 -

Warning: in the future we will often not make much of a distinction
between L'(u) and L* (1) . On occasion this can be dangerous and this danger
will be pointed out when necessary.
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Remark 19.37. More generally we may define LP(u) = LP(X, M, ) for p €
[1,00) as the set of measurable functions f such that

/ [fIP dp < o0
X

modulo the equivalence relation; f ~ g iff f = g a.e.

We will see in Chapter 21/ that

1/p
1l = ( / Ifl”du) for f € L7 ()

is a norm and (L”(u), ||-||;») is a Banach space in this norm.

Theorem 19.38 (Dominated Convergence Theorem). Suppose fr, gn, g €
Ll (M)? fn/ - f a'e'7 ‘fTL| S gn e Ll (/U’)7 g'n — g a.e. and fX g'ﬂd/’[’ — fX gdl”"

Then f € L (u) and
/ fdp = lim / fndp.
X h—oo [x

(In most typical applications of this theorem g, = g € L () for all n.)

Proof. Notice that |f| = lim, o |fn] < lim, oo |gn| < ¢ a.e. so that
f € L' (u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

/X(gif)du=/Xliminf(gnifn)duélgggf/)((gnifn)du

= lim gndp + lim inf (:I:/ fndu>
/ gdp + lim inf (:t/ fndu)

X n—oo X
Since liminf,, o (—ay,) = —limsup,,, ., an, we have shown,

liminf, o [y fndp
dp + dp < du + . X
Joows [Lgaws fomwe (U0 P,

and therefore

n—oo

limsup/ fnd,ug/ fdugliminf/ fndu.
X X n—oo Jx

This shows that lim [ f,du exists and is equal to [y fdp. m

Exercise 19.1. Give another proof of Proposition [19.34 by first proving Eq.
(19.13)) with f being a cylinder function in which case the triangle inequality
for complex numbers will do the trick. Then use the approximation Theorem
18.42 along with the dominated convergence Theorem [19.38 to handle the
general case.



19.4 Integrals of Complex Valued Functions 325

Corollary 19.39. Let {f,},-, C L' (1) be a sequence such thaty ., [ falln g <
00, then Y o, fn is convergent a.e. and

/. (if) du=§:l |

Proof. The condition Y -, [ fnllL1 () < o0 is equivalent to S | fnl €
L' (u). Hence Y 07, fn is almost everywhere convergent and if Sy :=

27]:]:1 fn, then

N (e’
ISNI <D Ul <D 1fal €LY ().
n=1 n=1

So by the dominated convergence theorem,

fn du:/ lim Sydy = lim /S du
N oo
lim / Jndp = / Jndp.
2 f =2 )

Theorem 19.40 (The Fundamental Theorem of Calculus). Suppose
—00 < a<b<oo, feC((ab),R)NL ((a,b),m) and F(z) := [T f(y)dm(y).
Then

1. F € C(la,b],R) N C((a,b),R).

2. F'(z) = f(z) for all x € (a,b).

3. If G € C([a,b],R) N CY((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f= G/|(a,b)) then

b
/ f(@)dm(z) = G(b) — G(a).

Proof. Since F(x) := [ 1ia) () f(y)dm(y), lime_ 142 (y) = L(ax) ()
for m — a.e. y and |1(q®)f(¥)| < L (@) |f(Y)] is an L' — function, it
follows from the dominated convergence Theorem 19.38| that F' is continuous

on [a, b]. Simple manipulations show,
Flo+h) - F(a) _ f@)‘ [T - s@ldm()| itk > 0
" I (£ ) = F@)) dm(y) | iR <0

o LLETM) — @) dmy) ith > 0
R\ Lo (@) = f(@) | dm(y) if h <0

<sup{|f(y) — f(@)| : y € [x = [h[,z + |h]]}
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and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F' = f on (a,b). For the converse direction, we have by assumption
that G'(z) = F'(z) for x € (a,b). Therefore by the mean value theorem,
F — G = C for some constant C. Hence

/ f(@)dm(z) = F(b) = F(b) — F(a)
= (G() + C) — (G(a) + C) = G(b) — G(a).

Example 19.41. The following limit holds,

lim [ (1-Z)mdm(z) =1.
n—oo Jq n
Let fn(x) = (1 = %)™, (z) and notice that lim, .. fn(z) = e™*. We will
now show
0< fo(z) <e *forall z>0.
It suffices to consider = € [0,n]. Let g(z) = e® f(x), then for z € (0,n),

1 1
e L

which shows that Ing(z) and hence g(z) is decreasing on [0,n]. Therefore
g(x) < g(0) =1, ie.

d
—Ing(z)=1+n <0

dxr

0< fulz) <e ™

From Example [19.24, we know

(o)
/ e Tdm(z) =1 < oo,
0

so that e™® is an integrable function on [0, c0). Hence by the dominated con-
vergence theorem,

n

lim (1- E)"dm(m) = lim h fn(x)dm(z)

n—oo 0 n n—oo 0

_ /0 T lim o (2)dm(z) = /O " e~ dm(z) = 1.

n—oo

Ezample 19.42 (Integration of Power Series). Suppose R > 0 and {a,} -, is
a sequence of complex numbers such that Y |a,|r™ < oo for all » € (0, R).
Then

O S O e e

6n+1 an+1
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for all —R < a < # < R. Indeed this follows from Corollary [19.39 since

= [P o 18l o
nz_;)/oz |an| |J3‘ dm(x) < nz:% </0 |an| |$‘ dm(x) +/O |G,n| |J,‘| dm(g;))

o] n+1 n+1 [ee]
16" + o
<Y la "‘n—+1<2’"§ |an|r™ < oo
=0 n=0

where r = max(|5], |a]).

Corollary 19.43 (Differentiation Under the Integral). Suppose that
J C R is an open interval and f: J x X — C is a function such that

x — f(t,x) is measurable for each t € J.
f(to,) € LY () for some tg € J.

9r (t x) exists for all (t,x).

Ther@ is a function g € L (1) such that
teJ

Then f(t,-) € L' (p) for all t € J (ie. [y |f(t,x)|du(z) < o0), t —
fX ft, x)du(x) is a differentiable function on J and

G [ feadute) = [ Gt oiu),

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of f separately, we may assume that f is real. Also
notice that

of

8t ( ) = lim n(f(t + n_lax) - f(t,l‘))

n—oo

1.
2.
3.
4-

d—f(t )’ < g € LY (u) for each

and therefore, for x — 8—’:(7?, x) is a sequential limit of measurable functions
and hence is measurable for all t € J. By the mean value theorem,

|[f(t,x) — f(to,x)| < g(x) |t —to| forallt € J (19.14)

and hence

[f (&) < |f(tx) = fto, 2)| + | f (o, 2)| < g(@) [t —to| + [f(to, z)] -

This shows f(t,-) € L' (y) for all t € J. Let G(t) := [ f(t,z)du(x), then
—to —to

By assumption,

oo ft2) = f(tow) _ 0f

o t—to = o (t,r) forall z € X
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and by Eq. (19.14),

ft,2) = f(to, )

- < g(z) forall t € J and z € X.
—to

Therefore, we may apply the dominated convergence theorem to conclude

lim ———— nleréo /X Pa— du(x)

X

n—oo tn— 1

~ [ Gt a)auta)

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =
(t)=G(to)
t—to

nooo t, —to

. G .
lim; ., exists and

mmzég%www

Example 19.44. Recall from Example [19.24 that
A= / e dm(z) for all A > 0.
[0,00)
Let € > 0. For A > 2¢ > 0 and n € N there exists Cp,(g) < oo such that
d n
< [ —Az =" —Az < —EI.
0< ( dA) e z"e < Cle)e

Using this fact, Corollary 19.43 and induction gives

d n d n
-1 _ (2 -1 _ = — Az
ni\ ( dA) A /[O,oo) ( dA) e "*dm(x)

= / e Mdm(x).
[0,00)

That is n! = A" f[o 00) " dm(z). Recall that
()= / z'te " dx for t > 0.
[0,00)

(The reader should check that I'(t) < oo for all ¢ > 0.) We have just shown
that I'(n + 1) = n! for all n € N.
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Remark 19.45. Corollary [19.43 may be generalized by allowing the hypothesis
to hold for x € X \ E where E € M is a fixed null set, i.e. E must be
independent of ¢. Consider what happens if we formally apply Corollary [19.43
to g(t) := [, lo<edm(z),

] d 0 ? 0
g(t) = a/o 1I§tdm(x)—/0 alzgtdm(l’)'

The last integral is zero since %hgt = 0 unless t = x in which case it is
not defined. On the other hand g(¢) = ¢ so that ¢(¢t) = 1. (The reader should
decide which hypothesis of Corollary [19.43 has been violated in this example.)

19.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 19.46. Suppose that (X, M, p) is a complete measure space'
and f: X — R is measurable.

1. If g : X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If f, + X — R are measurable and f : X — R is a function such that
limy, oo frn=f, p - a.e., then f is measurable as well.

Proof. 1. Let E = {z : f(x) # g(x)} which is assumed to be in M and
w(E) =0. Then g = 1gef + 1gg since f = g on E°. Now 1gef is measurable
so g will be measurable if we show 1gg is measurable. For this consider,

1,0 JE‘UQgg)Tt(A\{0})if0€e A
(1pg)~ (A) = { (1pg)~L(A) if0¢ A (19.15)
Since (1gg)~Y(B) C Eif 0 ¢ B and p(E) = 0, it follow by completeness of
M that (1gg)~1(B) € M if 0 ¢ B. Therefore Eq. (19.15) shows that 1gg is
measurable. 2. Let F = {z : lim f,(z) # f(x)} by assumption £ € M and

w(E) =0. Since g := 1gf = limy o 1ge fn, ¢ is measurable. Because f = g
on E¢ and u(F) =0, f = g a.e. so by part 1. f is also measurable. [ ]

The above results are in general false if (X, M, u) is not complete. For
example, let X = {0,1,2}, M = {{0}, {1,2}, X, ¢} and p = Jp. Take g(0) =
0, g(1) =1, g(2) =2, then g = 0 a.e. yet g is not measurable.

! Recall this means that if N C X is a set such that N ¢ A € M and p(A) = 0,
then N € M as well.
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Lemma 19.47. Suppose that (X, M, p) is a measure space and M is the
completion of M relative to pu and fi is the extension of u to M. Then a
function f : X — R is (M, B = Br) - measurable iff there exists a function
g: X — R that is (M, B) — measurable such E = {x : f(x) # g(z)} € M and
a(E)=0, e f(x)=g(x) for i — a.e. x. Moreover for such a pair f and g,
feL'(n) iff g€ L' (u) and in which case

L[;fdﬂ:=‘[;gdu-

Proof. Suppose first that such a function g exists so that i(E) = 0. Since
g is also (M, B) — measurable, we see from Proposition [19.46/that f is (M, B)
— measurable. Conversely if f is (M, B) — measurable, by considering fi we
may assume that f > 0. Choose (M, B) — measurable simple function ¢, > 0
such that ¢, T f as n — co. Writing

¢n = Z ak]-A;C

with Ay € M, we may choose By, € M such that By, C Ay and ji(A\By) = 0.

Letting
On = Z ailp,

we have produced a (M, B) — measurable simple function ¢, > 0 such that
E, = {¢n # ¢n} has zero i — measure. Since i (U, Ey) < > [ (E,), there
exists F' € M such that U, E,, C F and p(F) = 0. It now follows that

lpdn =1pp, 1 g:=1pf asn — oo

This shows that ¢ = 1pf is (M, B) — measurable and that {f # g} C F has
[i — measure zero. Since f = g, i — a.e., [ fdji = [y gdi so to prove Eq.

(19.16)) it suffices to prove
/ gdi = / gdj. (19.16)
p'e X

Because i = p on M, Eq. (19.16) is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem [18.42 it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by
considering (Reg), and (Img), . |

19.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let —oo < a < b < oo and f : [a,b] — R be a
bounded function. A partition of [a, b] is a finite subset @ C [a, b] containing
{a, b}. To each partition
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ﬂ:{a:t0<t1<"'<tn:b} (1917)
of [a, b] let
mesh(7) := max{|t; —t;,_1|:j=1,...,n},
M; =sup{f(z):t; <x <tj_1}, m; =inf{f(z):t; <z <11}

Gr = f(a)l{a) +ZM‘1<tJ tils 9n = F@) 1y + Y myle, ;) and
1

Syf = ZM tj—1) and sp f = Zmy tj-1)-
Notice that

b b
St f :/ Grdm and s, f :/ grdm.

The upper and lower Riemann integrals are defined respectively by
b a
/ f(x)dx = inf S, f and / f(x)dx =sup sqf.
a 4 J p 77

Definition 19.48. The function f is Riemann integrable iff fabf = fbf €

R and which case the Riemann integral f; f is defined to be the common value:

/ab f(z)dx = /abf(ac)dx = /ff(x)dm

The proof of the following Lemma is left to the reader as FExercise 19.20L
Lemma 19.49. If 7’ and © are two partitions of [a,b] and m C 7’ then
Gr2>2Gr = f2gr > gr and
Spf 2 8uf = 8w f 2 saf

There exists an increasing sequence of partitions {my}ro, such that mesh(my) |
0 and

Sﬁkfl/abf andsﬂka/bf as k — oo.

If we let
G = klim G, and g := klim Gy (19.18)
then by the dominated convergence theorem,
b
/ gdm = lim G, = lim s, f z/ f(z)dz (19.19)
[a,b] h=00 Jlab) koo Ja_
and

b
/ Gdm = lim Gr, = klim Sro f :/ f(z)de. (19.20)
[a,b] o0 a

k—o0 [a,b]
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Notation 19.50 For x € [a,b], let

H(x) =limsup f(y) =lim sup{f(y): [y —a[ <<, y € [a, 0]} and

Yy—x

h(z) = liminf f(y) := 11{51 inf {f(y):|ly—z|<e, y€la,bl}.

Yy—x

Lemma 19.51. The functions H,h : [a,b] — R satisfy:

1.

2.

h(z) < f(z) < H(z) for all z € [a,b] and h(zx) = H(z) iff f is continuous
at x.

If {mi} 1, is any increasing sequence of partitions such that mesh(my) | 0
and G and g are defined as in Eq. (19.18), then

G(z)=H(z) > f(x) > h(z) =g(z) Vaé¢r:=U Tk (19.21)

(Note 7 is a countable set.)
H and h are Borel measurable.

Proof. Let Gy := G, | G and gi. := g, T g.

. Tt is clear that h(x) < f(z) < H(x) for all z and H(x) = h(x) iff lim f(y)
y—T

exists and is equal to f(z). That is H(z) = h(z) iff f is continuous at x.

. Forz ¢ ,

Gr(z) > H(x) > f(x) > h(x) > gi(z) V k

and letting k — oo in this equation implies
G@)> H(z) > f() > hz) > g(@) Vo gm  (1922)
Moreover, given € > 0 and z ¢ T,

sup{f(y) : ly —z[ <&, y € [a,b]} > Gi(2)

for all k large enough, since eventually Gi(z) is the supremum of f(y)
over some interval contained in [z —e, z +¢]. Again letting k — oo implies

sup  f(y) > G(z) and therefore, that
ly—z|<e

H(z) =limsup f(y) > G(z)

Yy—z

for all x ¢ m. Combining this equation with Eq. (19.22) then implies
H(z) = G(x) if ¢ ¢ m. A similar argument shows that h(z) = g(x) if
x ¢ 7 and hence Eq. (19.21)) is proved.

. The functions G and g are limits of measurable functions and hence mea-

surable. Since H = G and h = g except possibly on the countable set ,
both H and h are also Borel measurable. (You justify this statement.)
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Theorem 19.52. Let f : [a,b] — R be a bounded function. Then

b b
/ f= Hdm and/ f :/ hdm (19.23)
a [a,b] Ja [a,b]

and the following statements are equivalent:

1. H(x) = h(z) for m -a.e. x,
2. the set
E :={x € [a,b] : f is discontinuous at x}

s an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesque measurable®, i.e. f is L/B —
measurable where L is the Lebesgue o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm:/ f(x)dm:/ fdm:/ hdm. (19.24)
[a,b] a [a,b] [a,b]

Proof. Let {m},-, be an increasing sequence of partitions of [a,b] as
described in Lemma [19.49 and let G and g be defined as in Lemma [19.51.
Since m(w) =0, H = G a.e., Eq. (19.23) is a consequence of Egs. (19.19)) and
(19.20)). From Eq. (19.23), f is Riemann integrable iff

/ Hdm = hdm
[a,b] [a,b]

and because h < f < H this happens iff h(x) = H(z) for m - a.e. z. Since
E = {z : H(x) # h(z)}, this last condition is equivalent to E being a m
— null set. In light of these results and Eq. (19.21)), the remaining assertions
including Eq. (19.24) are now consequences of Lemma [19.47. |

Notation 19.53 In view of this theorem we will often write f; f(x)dx for
f: fdm.

19.7 Determining Classes of Measures

Definition 19.54 (o — finite). Let X be a set and £ C F C 2%X. We say
that a function p: F — [0,00] is ¢ — finite on & if there exist X,, € € such
that X, T X and u(X,) < oo for all n.

2 f need not be Borel measurable.
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Theorem 19.55 (Uniqueness). Suppose that C C 2% is a m — class (see
Definition[18.53), M = o(C) and p and v are two measure on M. If i and v
are o — finite on C and p=v on C, then u =v on M.

Proof. We begin first with the special case where p(X) < oo and therefore
also
v(X)= lim v(X,)= lim u(X,)=pX) < .

Let
H:={f et MR):u(f)=v(f)}.

Then H is a linear subspace which is closed under bounded convergence (by the
dominated convergence theorem), contains 1 and contains the multiplicative
system, M := {1¢ : C € C}. Therefore, by Theorem [18.51 or Corollary [18.54]
H = £ (M,R) and hence p = v. For the general case, let X! X2 € C be
chosen so that X! T X and X2 1 X as n — oo and u (X}L) +v (X,QL) < oo for
all n. Then X,, := X! N X2 € C increases to X and v (X,,) = pu(X,,) < oo for
all n. For each n € N, define two measures u,, and v,, on M by

pn(A) == (AN X,) and v, (A4) =v(AN X,).

Then, as the reader should verify, u, and v, are finite measure on M such
that pu,, = v, on C. Therefore, by the special case just proved, p,, = v,, on M.
Finally, using the continuity properties of measures,

w(A) = lim p(ANX,)= lim v(ANX,)=rv(A4)
n—00 n—oo
for all A € M. .
As an immediate consequence we have the following corollaries.

Corollary 19.56. Suppose that (X, T) is a topological space, Bx = o(T) is
the Borel o — algebra on X and p and v are two measures on Bx which are
o — finite on 1. If p =v on T then p=v on Bx, i.e. 4 = .

Corollary 19.57. Suppose that i and v are two measures on Bgrn which are
finite on bounded sets and such that u(A) = v(A) for all sets A of the form

A= (a,b] = (a1,b1] X -+ X (an, by]
with a,b € R™ and a < b, i.e. a; < b; for all i. Then = v on Bgn.

Proposition 19.58. Suppose that (X,d) is a metric space, u and v are two
measures on Bx = o(1q4) which are finite on bounded measurable subsets of

X and
/X fdp = /X f (19.25)

for all f € BCy(X,R) where
BCy(X,R) = {f € BC(X,R) : supp(f) is bounded}. (19.26)

Then p = v.
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Proof. To prove this fix a 0 € X and let
Yr(x)=([R+1—d(z,0)]A1)VO (19.27)

so that ¥r € BCy(X,[0,1]), supp(vr) C B(o,R+2) and g T 1 as R — oo.
Let Hp denote the space of bounded real valued Bx — measurable functions
f such that

/X Vrfdp = /X Vnfdv. (19.28)

Then Hp is closed under bounded convergence and because of Eq. (19.25)

contains BC(X,R). Therefore by Corollary [18.55, Hpr contains all bounded

measurable functions on X. Take f = 14 in Eq. (19.28) with A € Bx, and

then use the monotone convergence theorem to let R — oo. The result is

u(A) =v(A) for all A € Bx. |
Here is another version of Proposition [19.58.

Proposition 19.59. Suppose that (X,d) is a metric space, u and v are two
measures on Bx = o(14) which are both finite on compact sets. Further assume
there exists compact sets K, C X such that K7 T X. If

du = d 19.29
[ san= [ sav (19.29)
for all f € Co.(X,R) then p=v.

Proof. Let v, be defined as in the proof of Proposition [18.56/ and let
‘H,, i denote those bounded Bx — measurable functions, f : X — R such that

/X Fibmpdps = /X Fibn v

By assumption BC'(X,R) C H,,, and one easily checks that H,, j is closed
under bounded convergence. Therefore, by Corollary [18.55, H,, ;, contains all
bounded measurable function. In particular for A € By,

/ Lt pdpt = / e
X X

Letting n — oo in this equation, using the dominated convergence theorem,

one shows
/lAlKgd,uZ/ lAlKng/
X X

holds for k. Finally using the monotone convergence theorem we may let
k — oo to conclude

((A) = /X Ladp = /X Ladv = v(A)

for all A € By. [
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19.8 Exercises

Exercise 19.2. Let p be a measure on an algebra A C 2%, then u(A4) +
w(B) =pu(AUB)+ u(ANB) for all A,B € A.

Exercise 19.3 (From problem 12 on p. 27 of Folland.). Let (X, M, u)
be a finite measure space and for A, B € M let p(A, B) = u(AAB) where
AAB = (A\ B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:

1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) forall A,B,C € M.

2. Define A ~ B iff u(AAB) = 0 and notice that p(A,B) = 0 iff A ~ B.
Show “~ ” is an equivalence relation.

3. Let M/ ~ denote M modulo the equivalence relation, ~, and let
[A] .= {Be M : B~ A}. Show that p([A],[B]) := p(A, B) is gives a
well defined metric on M/ ~ .

4. Similarly show fi ([A]) = p(A) is a well defined function on M/ ~ and
show fi: (M/ ~) — R, is p — continuous.

Exercise 19.4. Suppose that p, : M — [0, 00| are measures on M for n €
N. Also suppose that p,(A) is increasing in n for all A € M. Prove that
p: M — [0, 00] defined by p(A) := lim, o f1n(A) is also a measure.

Exercise 19.5. Now suppose that A is some index set and for each A € A,
px : M — [0,00] is a measure on M. Define p : M — [0,00] by p(A) =
> xea Ha(A) for each A € M. Show that p is also a measure.

Exercise 19.6. Let (X, M, 1) be a measure space and p : X — [0,00] be a
measurable function. For A € M, set v(A) := [, pdp.

1. Show v : M — [0, 0] is a measure.
2. Let f: X — [0,00] be a measurable function, show

[ v = [ soan (19.30)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — Cis in L'(v) iff |f| p € L'(n)
and if f € L'(v) then Eq. (19.30) still holds.

Notation 19.60 It is customary to informally describe v defined in Fxercise
19.6 by writing dv = pdp.

Exercise 19.7. Let (X, M, ) be a measure space, (Y,F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0, o0]
by v(A) := pu(f~1(A)) for all A € F.
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1. Show v is a measure. (We will write v = f.p or v =po f71)
2. Show

/Ygdzx:/x(gof)du (19.31)

for all measurable functions g : ¥ — [0,00]. Hint: see the hint from
Exercise 19.6.

3. Show a measurable function g : Y — C is in L*(v) iff go f € L*(u) and
that Eq. (19.31) holds for all g € L(v).

Exercise 19.8. Let F': R — R be a C''-function such that F'(x) > 0 for all
x € R and lim,_, 4o F(x) = +oo. (Notice that F' is strictly increasing so that
F~!':R — R exists and moreover, by the inverse function theorem that F~!
is a C! — function.) Let m be Lebesgue measure on By and

-1

v(A) =m(F(A)) =m((F~1) " (4) = (F.'m) (4)

for all A € Bg. Show dv = F’dm. Use this result to prove the change of
variable formula,

/hoF~F’dm:/hdm (19.32)
R R

which is valid for all Borel measurable functions h : R — [0, 00].

Hint: Start by showing dv = F’'dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Theorem [19.8 (or
see Corollary 19.57) to conclude dv = F'dm on all of Bg. To prove Eq. (19.32)
apply Exercise [19.7 with g =ho F and f = F~ L.

Exercise 19.9. Let (X, M, 1) be a measure space and {4, },—; C M, show
w({A, a.a.}) <liminf u (A,)

and if p (Up>nAm) < 0o for some n, then

w({A, i.0.}) > limsup u (4,).
Exercise 19.10. BRUCE: Delete this exercise which is contained in Lemma
19.17. Suppose (X, M, 1) be a measure space and f : X — [0o0] be a mea-
surable function such that [, fdu < oo. Show p ({f = co}) = 0 and the set
{f > 0} is o — finite.

Exercise 19.11. Folland 2.13 on p. 52. Hint: “Fatou times two.”
Exercise 19.12. Folland 2.14 on p. 52. BRUCE: delete this exercise

Exercise 19.13. Give examples of measurable functions { f,,} on R such that
[n decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0,1] such that g, — 0 while
J gndm =1 for all n.
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Exercise 19.14. Folland 2.19 on p. 59. (This problem is essentially covered
in the previous exercise.)

Exercise 19.15. Suppose {a,},- . C C is a summable sequence (i.e.
S lan] < o0), then f(0) := >°7 __a,e™ is a continuous function
for § € R and .
1 .
an = | fO)e nfdp.

—T

Exercise 19.16. For any function f € L' (m),showz € R — f(foo ot (t) dm (t)
is continuous in z. Also find a finite measure, p, on Bg such that z —
f(foo 2 f (£) dpe () is not continuous.

Exercise 19.17. Folland 2.28 on p. 60.

Exercise 19.18. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of —1 and the sum is on k = 1 to co. In part e, s should be
taken to be a. You may also freely use the Taylor series expansion

_ o~ (2n — 1) = (2n)!
(1-2)"2= 2" = 52" for |z < 1.
ST

Exercise 19.19. There exists a meager (see Definition [13.4 and Proposition
13.3)) subsets of R which have full Lebesgue measure, i.e. whose complement
is a Lebesgue null set. (This is Folland 5.27. Hint: Consider the generalized
Cantor sets discussed on p. 39 of Folland.)

Exercise 19.20. Prove Lemma [19.49.



20

Multiple Integrals

In this chapter we will introduce iterated integrals and product measures. We
are particularly interested in when it is permissible to interchange the order
of integration in multiple integrals.

Ezample 20.1. As an example let X = [1,00) and Y = [0, 1] equipped with
their Borel o - algebras and let p = v = m, where m is Lebesgue measure.
The iterated integrals of the function f (z,y) := e~*¥ — 2e~2%¥ satisfy,

/01 [/loo(e‘””y - Qe%y)dx] dy = /01 eV (1 _ye_y> dy € (0,00)
and
[ [ -emma) = [T [P e o0

and therefore are not equal. Hence it is not always true that order of integra-
tion is irrelevant.

Lemma 20.2. Let F be either [0,00), R or C. Suppose (X, M) and (Y,N)
are two measurable spaces and f : X XY — F is a (M @ N, Br) — measurable
function, then for each y € Y,

x — f(x,y) is (M, Br) measurable, (20.1)

for each x € X,
y— f(x,y) is (N, Br) measurable. (20.2)

Proof. Suppose that E = Ax Be€ &£ := M x N and f = 1g. Then
f(w7y) = 1A><B(CC/!/) = 1A($)1B(y)

from which it follows that Eqgs. (20.1)) and (20.2)) for this function. Let H be the
collection of all bounded (M ® N, By) — measurable functions on X X Y such
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that Egs. (20.1) and (20.2) hold, here we assume F = R or C. Because mea-
surable functions are closed under taking linear combinations and pointwise
limits, A is linear subspace of £>° (M ® N, F) which is closed under bounded
convergence and contain 1z € H for all E in the 7w — class, £. Therefore by by
Corollary 18.54, that H = £ (M Q@ N, F).

For the general (M ® N, Br) — measurable functions f: X x Y — F and
M e N, let far := Ljsj<mf € £° (M @N,F). Then Egs. (20.1) and (20.2)
hold with f replaced by fj; and hence for f as well by letting M — co. =

Notation 20.3 (Iterated Integrals) If (X, M,u) and (Y,N,v) are two
measure spaces and f : X xY — C is a M @ N — measurable function,
the iterated integrals of f (when they make sense) are:

[ n [ vt = [ [ / f(aay)du(y)} ()

[t [ an@sa= [ | [ i) ao

Notation 20.4 Suppose that f : X — C and g : Y — C are functions, let
f ® g denote the function on X XY given by

f@gx,y) = f(x)g(y).

Notice that if f, g are measurable, then f®g is (M ® N, Bc) — measurable.
To prove this let F(z,y) = f(x) and G(z,y) = g(y) so that f @ g = F -G will
be measurable provided that F' and G are measurable. Now F' = f o where
w1 : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

20.1 Fubini-Tonelli’s Theorem and Product Measure

Theorem 20.5. Suppose (X, M, u) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N,Br) — measurable function, then for each
yey,

r — f(z,y) is M — Big,oc)] measurable, (20.3)
for each z € X,
y— f(z,y) is N = Bjo,oc] measurable, (20.4)
x —>/ f(z,y)dv(y) is M — B o) measurable, (20.5)
Y

y —>/ f(z,y)du(z) is N~ B, o) measurable, (20.6)
b's
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and

[ au) [ avsan = [ avt) [ du@sen. @)
Proof. Suppose that E=Ax B€ £ := M x N and f = 1g. Then

f(w7y) = 1A><B(~T/y) = 1A(m)1B(y)
and one sees that Egs. (20.3)) and (20.4) hold. Moreover

/ £ y)dv(y) = / 1a(2) 15 (y)dv(y) = La(z)v(B).
Y Y

so that Eq. (20.5) holds and we have

[ dute) [ dvt)ste.n) = vBInca), (20.8)

Similarly,
/X F (& y)dp(x) = p(A)1p(y) and
[ v [ dnto)sw.0) = v(Buta)
Y X

from which it follows that Egs. (20.6) and (20.7) hold in this case as well. For
the moment let us further assume that u(X) < oo and v(Y) < oo and let
'H be the collection of all bounded (M ® N, Br) — measurable functions on
X x Y such that Eqgs. (20.3) — (20.7) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1g € H for all F in the w — class, &, it follows by Corollary [18.54/ that H is the
space of all bounded (M ® N, Bg) — measurable functions on X x Y. Finally if
f:XxY —[0,00] is a (M ®N,Bg) — measurable function, let foy = M A f
so that fas T f as M — oo and Egs. (20.3) — (20.7) hold with f replaced by
fa for all M € N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M — oo in these equations to deduce the theorem in
the case y and v are finite measures. For the ¢ — finite case, choose X,, € M,
Y, € N such that X, T X, Y, 1Y, u(X,) < oo and v(Y¥,) < oo for all
m,n € N. Then define p,(A) = (X, N A) and v, (B) = v(Y, N B) for all
A€ M and B € N or equivalently du,, = 1x, dp and dv, = ly, dv. By what
we have just proved Egs. (20.3) — (20.7) with u replaced by p,, and v by v,
for all (M ® N, Bg) — measurable functions, f : X XY — [0, oo]. The validity
of Egs. (20.3) — (20.7)) then follows by passing to the limits m — oo and then
n — oo making use of the monotone convergence theorem in the form,

/ud,um:/ ulxmd,uT/ud,uasmﬂoo
X X X
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/vd,un:/ulynd/LT/vduasnﬁoo
Y Y Y

for all u € L1 (X, M) and v € LT(Y,N). [

and

Corollary 20.6. Suppose (X, M, u) and (Y,N,v) are o - finite measure
spaces. Then there exists a unique measure m on MQN such that m(Ax B) =
w(A)v(B) for all A€ M and B € N. Moreover  is given by

w(B) = [ @) [ avto)isten) = [ avt) [ dueiey)  (209)

forall E € M@N and 7 is o — finite.

Proof. Notice that any measure 7w such that 7(A x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y,, € N be chosen so that u(X,) < oo, v(Y,) < oo, X,, T X and Y;, 1Y, then
Xp XY, e MRON, X, xY, T X xY and m(X,, xY,) < oo for all n. The
uniqueness assertion is a consequence of Theorem [19.55 or see Theorem 77
below with £ = M x N. For the existence, it suffices to observe, using the
monotone convergence theorem, that 7 defined in Eq. (20.9) is a measure on
M@ N. Moreover this measure satisfies (A x B) = u(A)v(B) for all A € M
and B € N from Eq. (20.8 [

Notation 20.7 The measure 7 is called the product measure of p and v and
will be denoted by p ® v.

Theorem 20.8 (Tonelli’s Theorem). Suppose (X, M, u) and (Y,N,v) are
o — finite measure spaces and ™ = p @ v is the product measure on M @ N.
Iffe LT X xY,M®N), then f(-,y) € LT(X,M) for ally €Y, f(x,") €
LY (Y, N) for all x € X,

/ Fw)duly) € LH(X, M), / f(x, Ydu(z) € LY N)
Y X

and

/X fdn= /X dp(x) /Y dv(y) f(w,y) (20.10)
:/YdV(y)/Xdu(x)f(x,y). (20.11)

Proof. By Theorem 20.5/ and Corollary [20.6, the theorem holds when
f = 1g with £ € M ® N. Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-
tone convergence theorem repeatedly along with the approximation Theorem
18.42, one deduces the theorem for general f € LT (X x Y, M @ N). [
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The following convention will be in force for the rest of this chapter.

Convention: If (X, M, i) is a measure space and f : X — C is a measur-
able but non-integrable function, i.e. [ « [fldu = oo, by convention we will de-
fine [, fdp := 0. However if f is a non-negative function (i.e. f: X — [0, oc])
is a non-integrable function we will still write [ fdu = occ.

Theorem 20.9 (Fubini’s Theorem). Suppose (X, M, u) and (Y,N,v) are
o — finite measure spaces, T = yu @ v is the product measure on M @ N and
f: X XY —>CisaM®N - measurable function. Then the following three
conditions are equivalent:

/ |fldm < oo, i.e. f € L(m), (20.12)
XxXY

/X (/Y | f(z,y)] dV(ZU)) dp(r) < oo and (20.13)

/Y (/le(:c,y)mm)) dv(y) < oc. (20.14)

If any one (and hence all) of these condition hold, then f(z,-) € L*(v) for p

a.e. r, f(7y) € Ll(u) fO’/’ voae.y, fy f(,y)d’l}(y) € Ll(,u)7 fX f(l', )d,u(m) €
L' (v) and Egs. (20.10) and (20.11) are still valid.

Proof. The equivalence of Eqgs. (20.12) — (20.14) is a direct consequence
of Tonelli’s Theorem 20.8. Now suppose f € L!() is a real valued function
and let

o {xeX:/Y|f(a:,y)|dy(y):oo}. (20.15)

Then by Tonelli’s theorem, x — [, |f (x,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X{/Y|f($,y)|du(y)} d”(x):/xw‘f'd“”

which implies that p (E) = 0. Let fi be the positive and negative parts of f,
then using the above convention we have

/ f (@ y)dv (y) = / 15 (2) f (2,y) dv (y)
Y Y
_ /Y 1p (2) [fs (.9) — f— (2,9)] dv (y)

_ / 15 (2) £ (2,y) dv (y) — / 15 (2) f— (2, ) dv (1)
Y Y
(20.16)

Noting that 1g (z) f+ (z,y) = (1 ® 1y - f+) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem
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that z — fy f(z,y)dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

/fwde()‘du /Ulfxymu )} 1 (2) < oo,

which shows [, f(-,y)dv(y) € L*(p). Integrating Eq. (20.16) on x and using
Tonelli’s theorem repeatedly implies,

/X [/Yf(x,y) dv (y)] dp ()
:/xd“(x)/de(y)lE z

@ fiew) = [ du@) [ ar@)1e@ £ )
= [ [ an@)1s@ f @~ [ arw [ au@is@ s @y

:/Ydu(y)/xdu(x)]ﬁr(x,y)—/Yd’/(y)/xdﬂ(x)ff(x»y)

which proves Eq. (20.10) holds.

Now suppose that f = u + iv is complex valued and again let F be as
in Eq. (20.15)). Just as above we still have E € M and p(F) < co. By our
convention,

/ f (@, y)dv (y) = / 15 (2) f (2, y) dv (y) = / 1 (2) [u (2, ) + iv (, )] dv (4)
Y Y Y
=/ 1E<x>u<x,y>du<y>+z/ 1 (@) v (2, y) dv ()
Y Y

Which is measurable in by what we have just proved. Similarly one shows
Iy f( (y) € L' (i) and Eq. (20.10) still holds by a computation similar
to that done in Eq. (20.17). The assertions pertaining to Eq. (20.11) may be
proved in the same way. [

Notation 20.10 Given E C X XY and x € X, let
E={yeY:(z,y) € E}.

Similarly if y € Y is given let
E,:={zeX:(z,y) € E}.

If f : X XY — C is a function let f, = f(z,:) and fY := f(-,y) so that
fz:Y —=Cand f¥: X — C.
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Theorem 20.11. Suppose (X, M, u) and (Y,N,v) are complete o — finite
measure spaces. Let (X x Y, L, \) be the completion of (X XY, MQN, u®@v).
If f is L — measurable and (a) f > 0 or (b) f € L*(\) then f, is N —
measurable for i a.e. x and fY is M — measurable for v a.e. y and in case (b)
fr € LY(v) and fY € LY (i) for p a.e. x and v a.e. y respectively. Moreover,

(ac—>/yfzdu) e L' (p) and (y—>/Xfyd,u> cL'(v)
AxyfdA:Ady/)(duf:Adu/}/duf.

Proof. f F e M®@N is a p® v null set (ie. (u®@v)(E) = 0), then

0= (n0)(E) = [ vleB)dutz) = [ ulE,)avty

X X

and

This shows that

u({z: v(.B) #0}) = 0 and v({y : p(E,) # 0}) =0,

ie. v(yF) =0for pa.e. xand u(E,) =0 for v a.e. y. If h is £ measurable and
h =0 for A — a.e., then there exists £ € M ® N such that {(z,y) : h(z,y) #
0} C F and (u®v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and (n@v)(E) = 0.
Since

{he #0} ={y €Y : h(z,y) #0} C ,FE and

{hy £0} = { € X : h(z,y) £ 0} C B,
we learn that for p a.e. z and v a.e. y that {h, # 0} € M, {h, #O}EN
v({hy #0}) = 0 and a.e. and u({h, # 0}) = 0. This 1mphes Jy bz, y)dv(y)

exists and equals 0 for y a.e. x and similarly that [ h(z,y)du(x) exists and
equals 0 for v a.e. y. Therefore

o= = () o= ()

For general f € L'()\), we may choose g € L'(M ® N, u ® v) such that
f(z,y) = g(z,y) for A\— a.e. (x,y). Define h := f — g. Then h = 0, \— a.e.
Hence by what we have just proved and Theorem [20.8 f = g + h has the
following properties:

1. For pae. z,y — f(x,y) = g(z,y) + h(x,y) is in L' (v) and

/Y F(y)dv(y) = /Y oz, y)dv(y).
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2. For v a.e. y, * — f(x,y) = g(z,y) + h(x,y) is in L' (u) and

/Xf(%y)du(w)=/Xg(w,y)du(w)-

From these assertions and Theorem [20.8, it follows that

[ auta) [ vt = [ dute) [ dvtrgtan)

:/Ydu(y)[/dV(x)g(z,y)
_ / g(z,y)d(u ® v)(z, y)
XxY

- / f(@,)dA (e, v).
XxY

Similarly it is shown that

| ) [ dn@rsan = [ @i,

]
The previous theorems have obvious generalizations to products of any

finite number of o — finite measure spaces. For example the following theorem
holds.

Theorem 20.12. Suppose {(X;, M, ju;)};_, are o — finite measure spaces
and X = X7 X --- x X,,. Then there exists a unique measure, w, on
(X, M1 -+ @ M,,) such that m(Ay X -+ X Ap) = u1(Ar) ... un(Ay) for all
A; € M;. (This measure and its completion will be denote by p ® -+ ® )
Iff: X - [0,00] is a M1 ® -+ @ M,, — measurable function then

/ fdm = / dug(l)@;a(l)) .. / Al (n) (xg(n)) f(z1,...,2,) (20.18)
X Xo(1) Xo(n)

where o is any permutation of {1,2,...,n}. This equation also holds for any
f € LY(m) and moreover, f € L'(m) iff

/ d:ua(l)(xa(l))"'/ d:ua(n)(mo(n)) |f(I‘1,...,ZIIn)| <
Xo(1) o(n)
for some (and hence all) permutations, o.

This theorem can be proved by the same methods as in the two factor case,
see Exercise 20.5. Alternatively, one can use the theorems already proved and
induction on n, see Exercise 20.6 in this regard.



20.1 Fubini-Tonelli’s Theorem and Product Measure 347

Ezample 20.13. In this example we will show

. M gin g
lim
M—oo 0

do = /2. (20.19)

To see this write % = fooo e 'dt and use Fubini-Tonelli to conclude that

M . M o)
/ Smxdm = / {/ e P ging dt} dx
0 €z 0 0
[e%e) M
z/ / e sing dr| dt
0 0

o0
1
:/ (1—te_MtsinM—e_MtcosM) dt
0

14¢2

oo

1

—>/ 7dt:zasM—>oo,
o 14+t 2

wherein we have used the dominated convergence theorem to pass to the limit.
The next example is a refinement of this result.

Ezample 20.14. We have

/ ST —Avgy — 3T~ arctan A for all A > 0 (20.20)
0 €T
and forA, M € [0, 00),

efMA

M .
1
/ ST gy 5Tt arctan A| < C (20.21)
0

T

where C' = max;>g fj‘—;’z = 2\/%72 2~ 1.2. In particular Eq. (20.19) is valid.

To verify these assertions, first notice that by the fundamental theorem of

calculus,
T T xT
|sinz| = ‘/ cosydy‘ < ‘/ |cosy|dy‘ < ‘/ 1dy’ = ||
0 0 0

SO ‘%’ <1 for all = # 0. Making use of the identity

/ e dt =1/x
0

and Fubini’s theorem,
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M . M [e%s)
sinz _ 4. . . i
/ —e A“‘dm:/ drsinze A‘/ et dt
0 € 0

0
%) M
= / dt/ dx sin x e~ (AT
0 0

B /OO 1 — (cos M + (A+t)sin M) e~ MA+)
0 (A+1)2+1

:/oo 12 dt—/oo cosM+(A—21-t)SinMe_M(A+t)dt
o (A+1t)+1 0 (A+t)"+1

dt

1
=T arctan A — (M, A) (20.22)

where
FeosM+ (A+)sinM _yroapy

e(M,A) = /0 R e dt.

cos M + (A+t)sin M < 14+ (A+1¢) <
(A+t)*+1 T A+ +1 T

Since

e—MA

(M, A)| g/ M@+ gy _
0

This estimate along with Eq. (20.22) proves Eq. (20.21) from which Eq. (20.19)
follows by taking A — oo and Eq. (20.20) follows (using the dominated con-
vergence theorem again) by letting M — oo.

20.2 Lebesgue Measure on R¢ and the Change of
Variables Theorem

Notation 20.15 Let

d times d times
mé=me---Qm onBri =Br® - @ Br

be the d — fold product of Lebesgue measure m on Br. We will also use m?

to denote its completion and let Lq be the completion of Bga relative to m?.
A subset A € Lg is called a Lebesque measurable set and m? is called d
dimensional Lebesque measure, or just Lebesque measure for short.

Definition 20.16. A function f : R? — R is Lebesgue measurable if
f1(Br) C Ly.

Notation 20.17 I will often be sloppy in the sequel and write m for m® and
dz for dm(z) = dm?(x), i.e.
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f(z)dx = / fdm = [ fdm?.
Rd Rd Rd

Hopefully the reader will understand the meaning from the context.
Theorem 20.18. Lebesgque measure m® is translation invariant. Moreover m?

is the unique translation invariant measure on Bga such that m®((0,1]¢) = 1.
Proof. Let A=J; x --- x J; with J; € Bg and = € R?%. Then
x4+ A=(x1+ 1) x (@2 + J2) X -+ X (®g + Jg)
and therefore by translation invariance of m on Br we find that
mé(x+ A) =m(zy + J1)...m(zqg + Jg) = m(J1) ... m(Jy) = mi(A)

and hence m?(x + A) = m?(A) for all A € Bga by Corollary [19.57. From this
fact we see that the measure m?(z + -) and m?(-) have the same null sets.
Using this it is easily seen that m(x + A) = m(A) for all A € L,4. The proof
of the second assertion is Exercise 20.7. ]

Exercise 20.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations
and satisfies, m(By(g)) > 0 for all € > 0. Show m(V') = oo for all non-empty
open subsets V C H.

Theorem 20.19 (Change of Variables Theorem). Let 2 C, RY be an
open set and T : 2 — T(2) C, RY be a C' — diffeomorphism,” see Figure
20.1. Then for any Borel measurable function, f : T(£2) — [0, 0],

[ra@ et @li= [ 1w, (20.23)
Q T(£2)
where T'(x) is the linear transformation on R? defined by T'(z)v := % loT (z+
tv). More explicitly, viewing vectors in R? as columns, T (x) may be repre-
sented by the matrix
81T1 (LC) .o BdTl (.’E)
T' (2) = ST : (20.24)
31Td (x) N &de (:L')

i.e. the i - j — matriz entry of T'(x) is given by T'(x);; = 0;T;(x) where
T(z) = (Ty(x),...,Ty(x))" and 9; = 0/0x;.

! That is T : 2 — T(£2) C, R? is a continuously differentiable bijection and the
inverse map T~ ! : T(£2) — 2 is also continuously differentiable.
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Remark 20.20. Theorem 20.19 is best remembered as the statement: if we
make the change of variables y = T (z), then dy = |detT” (x) |dx. As usual,
you must also change the limits of integration appropriately, i.e. if x ranges

20 Multiple Integrals

T(x)=¢

5
Y - Spoce
dy = datTon| dx
5
K- Sprce

Fig. 20.1. The geometric setup of Theorem 20.19.

through (2 then y must range through 7 (£2).

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise [19.8. Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < o < 3 < b such that [a,b] is a compact

subinterval of 2. Then |detT’| = |T"| and

.

L7 (o)) (T (2)) [T (2)| d = /

[a,

If T'(x) > 0 on [a,b], then

/j T (2)| da

I
S~
»
!
=
&
I
S
=
|
S
2

while if 77 (z) < 0 on [a, ], then

B B
/\T’(x)|da::—/ T (z)dx =T (a) — T (B)

[e3

= (T (0, B))) = / o LT ()

a’

B
La,g (@) |T" ()| dz = / T ()| d.



20.2 Lebesgue Measure on R? and the Change of Variables Theorem 351

Combining the previous three equations shows

£ (T (@) [T (2)] da = / f () dy (20.25)

[ab] T([a,b])

whenever f is of the form f = 1p((,g) With a < a < 8 < b. An application of
Dynkin’s multiplicative system Theorem [18.51] then implies that Eq. (20.25)
holds for every bounded measurable function f : T ([a,b]) — R. (Observe
that |T” (z)| is continuous and hence bounded for z in the compact interval,
[a,b] . From Exercise [10.14, {2 = H:Ll (an, by) where ap,b, € RU{+oo} for
n=1,2---< N with N = oo possible. Hence if f : T'(£2) — R 4 is a Borel
measurable function and a,, < ay < Ok < b, with ai | a, and Gk T by, then
by what we have already proved and the monotone convergence theorem

/1(an,,bn) (foT)-|T'|dm = / (Lr((an,bn)) - f) 0 T+ |T"|dm
(93 (9]
= lim [ (1o, g - f) o T+ [T'] dm

k—o0

2

= lim L7 ((ar,8]) - f dm

k—oo
T(£2)

= / 1T((an7bn)) f dm.

T(02)

Summing this equality on n, then shows Eq. (20.23) holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d—1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, 7' (), will always be taken to be
given as in Eq. (20.24).

Case 1. Suppose T (x) has the form

or
T(x)=(T1(x),...,Ta1 (), 2) (20.27)
for some i € {1,...,d}. For definiteness we will assume 7 is as in Eq. (20.26)),

the case of T' in Eq. (20.27) may be handled similarly. For ¢t € R, let i :
R4 — R? be the inclusion map defined by

’it (’U)) =W = (wl, e 7wi,1,t,wi+1, e ,’U.)dfl) s
2 be the (possibly empty) open subset of R?~! defined by

(2 := {w S Rdil : (wl,.. .,wi_l,t,wi+1,...,wd_1) S .Q}



352 20 Multiple Integrals
and T} : £2; — R ! be defined by
T (w) = (Ta (wi) ..., Ta (we)),

see Figure20.2. Expanding det T" (w;) along the first row of the matrix T (w;)

Fig. 20.2. In this picture d = ¢ = 3 and {2 is an egg-shaped region with an egg-
shaped hole. The picture indicates the geometry associated with the map T and
slicing the set {2 along planes where x3 = t.

shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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/foT|detT’\dm:/1Q~foT\detT'|dm

Rd

= /19 (we) (f o T) (wy) | det T (wy) |dwdt
R

:/ /(foT)(wt)|detT’(wt)\dw dt
R K

:/ /f(t,Tt (w)) | det T/ (w) |dw | dt
R L 2¢

:/R / £(t,2)dz dt:/R /IT(Q)(t,z)f(t,z)dz dt

T+ (£2:) d—1

I
—
K’ﬁ
—~
s
U
<

wherein the last two equalities we have used Fubini-Tonelli along with the
identity;
=17 G (2)=[[{(t.2): 2 € Ts (2)}.
teR teR

Case 2. (Eq. (20.23) is true locally.) Suppose that 7' : £2 — R? is a general
map as in the statement of the theorem and xg € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C {2 of x( such that

/f0T|detT’\dm:/ fdm
o (W)

holds for all Borel measurable function, f : T(W) — [0, 0c]. Let M; be the 1-i
minor of 7" (%), i.e. the determinant of 7" () with the first row and ‘" —
column removed. Since

0% detT' (z0) = Hl@T (z0) - My,

M&

i=1
there must be some i such that M; # 0. Fix an i such that M; # 0 and let,
S(x) = (x5, To (z),..., Ty (x)). (20.28)

Observe that |det S’ (xg)| = |M;| # 0. Hence by the inverse function Theorem
16.25 there exist an open neighborhood W of xy such that W C, {2 and
S(W)CoR¥and S: W — S (W) is a C! — diffeomorphism. Let R : S (W) —
T (W) C, R? to be the C! — diffeomorphism defined by
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R(2):=ToS ' (z) forall z€ S (W).
Because
(Th (x),...,Ta(x)) =T (x) = R(S (z)) = R((zi, T (), ..., Ta(x)))
for all z € W, if
(21,20, -, 24) = 8 (2) = (4, Ta (2) , ..., Ty (2))

then
R(z) = (Ty (57" (2)),22,--.,2a) - (20.29)

Observe that S is a map of the form in Eq. (20.26), R is a map of the form
in Eq. (20.27), T’ (z) = R’ (S (z)) S’ (x) (by the chain rule) and (by the mul-
tiplicative property of the determinant)

|det T’ (z)] = | det R’ (S (z)) | |det §' (z)| ¥ x € W.

Soif f: T(W) — [0,00] is a Borel measurable function, two applications of
the results in Case 1. shows,

/fOT-|detT’|dm:/(f0R-|detR’\)OS~|detS’| dm
W W
_ / foR.|det R'|dm = / fdm

S(W) R(S(W))

= / fdm
(W)

and Case 2. is proved.
Case 3. (General Case.) Let f : 2 — [0,00] be a general non-negative
Borel measurable function and let

K, = {z € 2:dist(z,2°) > 1/n and |z| < n}.

Then each K, is a compact subset of {2 and K,, T {2 as n — oo. Using the
compactness of K,, and case 2, for each n € N, there is a finite open cover
Wi, of K, such that W C (2 and Eq. (20.23)) holds with 2 replaced by W for
each W € W,. Let {W;}:2, be an enumeration of U3, W,, and set Wy =W,
and W; := W, \ (Wi U---UW,_q) for all i > 2. Then 2 =[]2, W; and by
repeated use of case 2.,
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/foT|detT’|dm 2/1 ) | det T'|dm

1= 19

:Z/ (1) f) o T] - | det T'|dm
ilei

:OO /1(V~V)fdm i/lT(Wi)-fdm
=lriw) =l7(2)

Il
—
~
.

s

Remark 20.21. When d = 1, one often learns the change of variables formula
as )
[ ra@rwa= [ s (20.30)
T(a)
where f : [a,b] — R is a continuous function and 7" is C' — function defined
in a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b))
and Eq. (20.30)) is implies Eq. (20.23) with 2 = (a,b). On the other hand if
T" < 0 on (a,b) then T ((a,b)) = (T'(b),T (a)) and Eq. (20.30) is equivalent
to
T(a)

(T () (=T (w)l)dﬂC:—/ fy)dy = —/T(( b))f(y)dy

(a;b) T(b)

which is again implies Eq. (20.23). On the other hand Eq. Eq. (20.30) is
more general than Eq. (20.23) since it does not require T to be injective. The
standard proof of Eq. (20.30) is as follows. For z € T ([a, b)), let

F(2) =/T( Sy

Then by the chain rule and the fundamental theorem of calculus,

b

/f N ( dm—/ T ’(x)dx:/ %[F(T(m))]dw
—F(T @)= / " way
U1 '

An application of Dynkin’s multiplicative systems theorem (in the form of
Corollary [18.55) now shows that Eq. (20.30) holds for all bounded measurable
functions f on (a,b). Then by the usual truncation argument, it also holds
for all positive measurable functions on (a,b) .
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Ezxample 20.22. Continuing the setup in Theorem 20.19, if A € By, then
m (@) = [t @)y = [ gy (T0) [T @)]de
R R

= / 14 (z) |det T' (z)| dx
Rd
wherein the second equality we have made the change of variables, y = T () .
Hence we have shown
d(moT)=|detT" (-)|dm.

In particular if T € GL(d, R) = GL(R?) — the space of dx d invertible matrices,
then m o T = |det T| m, i.e.

m (T (A)) = |det T|m (A) for allA € Bga. (20.31)

This equation also shows that m o7 and m have the same null sets and hence
the equality in Eq. (20.31) is valid for any A € L.

Exercise 20.2. Show that f € L' (T (£2),m?) iff

/|fOT||detT’|dm<oo
2

and if f € L' (T (£2),m?), then Eq. (20.23) holds.

Ezample 20.23 (Polar Coordinates). Suppose T : (0,00) x (0,27) — R? is
defined by
x=T(r,0) = (rcosf,rsinf),

i.e. we are making the change of variable,

r1 =rcosf and x5 = rsinf for 0 < r < oo and 0 < 6 < 2.

T'(r,0) = <cos€) —Tsin9)

sinf rcosf

In this case

and therefore
dx = |det T (r,0)| drdf = rdrde.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(x,0) : & > 0}

has m?

that

— measure zero, it follows from the change of variables Theorem [20.19

f(z)dz = /0 ! do /OOO dr r- f(r(cosf,sinf)) (20.32)

for any Borel measurable function f : R? — [0, c].

R2
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Ezample 20.24 (Holomorphic Change of Variables). Suppose that f : 2 C,
C = R?— C is an injective holomorphic function such that f’(z) # 0 for all
z € 2. We may express f as

fla+iy) =U(z,y) +iV (2,y)
for all z =z + iy € (2. Hence if we make the change of variables,

w=u+iv=f(x+iy) =U(x,y) +iV (z,y)

U, Uy
det |:Vm Vy}

Recalling that U and V satisfy the Cauchy Riemann equations, U, = V, and
Uy, = =V, with f' = U, + iV,, we learn

then

dudv = dedy = |U, Vy — U, V| dady.

UsVy = UVo = U2+ V2= |f.

Therefore
dudv = | (z + iy)|* dady.

Ezample 20.25. In this example we will evaluate the integral

I:= //Q (x4 — y4) dxdy

Q={(z,y):1<2®—y* <2, 0<ay<1},

where

see Figure 20.3 We are going to do this by making the change of variables,

Fig. 20.3. The region (2 consists of the two curved rectangular regions shown.
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(’Z,L,’U) = T(xay) = (IQ - y27xy) )

in which case

dudv =

2x —2
det [ ; xy] ‘ dedy =2 («* + y*) dedy
Notice that
(@ = o) = (2 ) (& +07) = (& +07) = Judude.

The function 7' is not injective on {2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
2 =-DUD and T (£D) = (1,2) x (0,1) The change of variables theorem
then implies

Ii—// ot — gt dxdy— // ududv—f—| :§
+D (1,2)%(0,1) 4

and therefore I = I, +1_=2-(3/4) = 3/2.

Exercise 20.3 (Spherical Coordinates). Let T : (0, 00) x (0, 7) x (0, 27) —
R3 be defined by

T(r,¢,0) = (rsin¢gcosd,rsingsinb, rcos @)

= r (sin ¢ cos 0, sin ¢ sin 6, cos @) ,

see Figure [20.4. By making the change of variables © = T (r, ¢, ) , show

Fig. 20.4. The relation of z to (r, ¢, 0) in spherical coordinates.

T 27 o0
_ 24ind -
. f(a:)dx_/o d¢/0 dG/O dr rsing - f(T (r, ¢,0))

for any Borel measurable function, f : R® — [0, 00].
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Lemma 20.26. Let a > 0 and
Ii(a) := /e‘“lw‘2dm(m).
R4
Then Iy(a) = (7/a)??.

Proof. By Tonelli’s theorem and induction,

Lu(a) = / el o=at o (dy) de
Ri—1xR
=1I; 1(a)I,(a) = I{(a). (20.33)
So it suffices to compute:
Ir(a) = /67a|"”‘2dm(o:) = / e~o@+3) g, ds.
R? R2\{0}

Using polar coordinates, see Eq. (20.32), we find,

o) 27 R [e%s) N
Is(a) :/ dr r/ df e = 27?/ re” " dr
0 0 0
M

—ar M

. —ar? . e 2m

=27 lim re” " dr =27 lim = — =7/a.
M—oo [ M—oo —2a 0 2a

This shows that I3(a) = w/a and the result now follows from Eq. (20.33). =

20.3 The Polar Decomposition of Lebesgue Measure

Let
St = {z cRe: \aﬁ|2 = fo =1}
i=1

be the unit sphere in R¢ equipped with its Borel o — algebra, Bgs—1 and
@ : R4\ {0} — (0,00) x S9! be defined by #(z) := (|z|,|z| " 2). The inverse
map, 7! : (0,00) x §4°1 — R4\ {0}, is given by &~ (r,w) = rw. Since @
and &~ are continuous, they are both Borel measurable. For E € Bga—1 and
a >0, let

E,:={rw:r€(0,a) and w € E} = &7*((0,a] x E) € Bga.

Definition 20.27. For E € Bga-1, let 0(E) = d - m(E1). We call o the
surface measure on S¢1.
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It is easy to check that o is a measure. Indeed if £ € Bga-1, then F; =
@1 ((0,1] x E) € Bga so that m(E; ) is well defined. Moreover if E = [[;2, E;,
then Ey = [];2, (E;), and

o(B) = d-m(E) = Y m((E),) = Y o(E).

The intuition behind this definition is as follows. If E C S9! is a set and
€ > 0 is a small number, then the volume of

(Ll+el-E={rw:re(l,1+¢eland w € E}

should be approximately given by m ((1,1+¢] - E) = o(E)e, see Figure 20.5
below. On the other hand

Fig. 20.5. Motivating the definition of surface measure for a sphere.

m (1,14 €)B) = m (Bupe \ Ey) = {(1+2)" — 1} m(Ey).
Therefore we expect the area of E should be given by

o(E) = lim {0 4e) — 1} m(E)
10 €

=d- m(El)

The following theorem is motivated by Example 20.23| and Exercise 20.3.
Theorem 20.28 (Polar Coordinates). If f : R? — [0,00] is a (Bga, B)-
measurable function then
/f(a:)dm(x) = / frw)ri=t drde(w). (20.34)
R4 (0,00) x §4—1

Proof. By Exercise 19.7,
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/fdm: / (fod ') od dm = / (fod™') d(d.m) (20.35)
Rd R4\ {0} (0,00) x §4-1

and therefore to prove Eq. (20.34) we must work out the measure ®.m on
B0,00) @ Bga-1 defined by

®.m(A) :=m (D" (A)) V A€ B(g,o0) @ Bga-1. (20.36)
If A= (a,b] x E with 0 <a <band E € Bga-1, then
oY A)={rw:r € (a,b] and w € E} = bE; \ aFy

wherein we have used F, = aFE; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(P.m) ((a,b] x E) = m (bEy \ aFy) = m(bE1) — m(aE)
= bIm(E)) — a®m(E,)) = d - m(E)) /b ri=tdr.  (20.37)

a

Letting dp(r) = r¢~dr, i.c.

p(J) = / rldr ¥ J € Bo,00), (20.38)
J
Eq. (20.37) may be written as
(@.m) ((a,6] x E) = p((a,b]) - 0(E) = (p@ o) ((a,b] x B).  (20.39)
Since

E={(a,b] x E:0<a<band F € Bga-1},

is a 7 class (in fact it is an elementary class) such that o(£) = B(g,00) ® Bga-1,
it follows from Theorem [19.55 and Eq. (20.39) that &.m = p ® 0. Using this
result in Eq. (20.35) gives

fam= [ (fee7) d(pmo)
Rd (0,00) x Sd—1
which combined with Tonelli’s Theorem 20.8 proves Eq. (20.35)). [ |
Corollary 20.29. The surface area o(S9™1) of the unit sphere S?~1 C R? is

27Td/2
S = 20.40
o(5°) = Frr (20.40)
where I' is the gamma function given by
I(x) ::/ u” e tdr (20.41)
0

Moreover, I'(1/2) = \/m, I'(1) =1 and I'(x + 1) = xI'(x) for z > 0.
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Proof. Using Theorem [20.28 we find
o0 2 o0 2
I,(1) :/ dr ri1le™" / do = O'(Sd_1>/ rd=le="" dr.
0 0

gd—1

We simplify this last integral by making the change of variables u = r2 so

that r = «!/2 and dr = %u‘l/Qdu. The result is

o0 2 o0 d—1 ].
/ rdle™m dr:/ uT e vy 2y
0 0 2

1 [ 1
= f/ w e du = =I'(d/2). (20.42)
2 J 2

Combing the the last two equations with Lemma 20.26 which states that
I4(1) = 72 we conclude that

72 = [(1) = %U(Sd’l)F(d/Z)

which proves Eq. (20.40). Example [19.24] implies I'(1) = 1 and from Eq.

(20.42),
Ira/2) = 2/00 e dr = /OO e dr
0 —00
=5L(1) = V.

The relation, I'(z+1) = «I'(x) is the consequence of the following integration
by parts argument:

I'(z+1) z/ ety du :/ u” (—d e_“) du
0 U 0 du

:x/ u e du =z I'(x).
0
BRUCE: add Morrey’s Inequality ?? here.

20.4 More proofs of the classical Weierstrass
approximation Theorem 8.34

In each of these proofs we will use the reduction explained the previous proof
of Theorem 8.34 to reduce to the case where f € C([0,1]%). The first proof we
will give here is based on the “weak law” of large numbers. The second will
be another approximate § — function argument.
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Proof. of Theorem [8.34. Let 0: = (0,0,...,0), 1: = (1,1,...,1) and
[0,1] := [0, 1]%. By considering the real and imaginary parts of f separately,
it suffices to assume f € C([0,1],R). For = € [0, 1], let v, be the measure on
{0,1} such that v, ({0}) =1 — 2 and v, ({1}) = 2. Then

/ ydvg(y) =0-(1—2)+ 1 -2z =z and (20.43)
{0.1}

/ (y — 2)dv,(y) = 22(1 —2) + (1 —2)* -z = z(1 — x). (20.44)
{0,1}

For z € [0,1] let puy = vy ® -+ ® vy, be the product of vy,,...,v,, on
2:=10, 1}d. Alternatively the measure p, may be described by

d
ey = —2)' 2 (20.45)
=1

for € € 2. Notice that p, ({e}) is a degree d polynomial in z for each € € (2.
For n € N and z € [0,1], let u denote the n — fold product of p, with itself
on 2" X;(w) =w; € 2 CR? for w € N" and let

Sp=(Sh,...,8H) = (X1 + Xo+ -+ X,,)/n,
s0 S, : 2" — R?. The reader is asked to verify (Exercise 20.4) that

Spdpl = ( Stdu”, ..., Szdug> =(21,...,xq) = (20.46)
on on on

and
d
S, — > du” = = (1 —z;) < —. 20.47
[ 180 =l au E:x y< = (20.47)

From these equations it follows that 5, is concentratlng near x as n — 00, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

Pn(x) = - f(Sn)dus (20.48)

should approach f(x) asn — oco. Let € > 0 be given, M = sup {|f(z)| : = € [0, 1]}
and

b =sup{|f(y) — f(x)]:x,y € ]0,1] and |y — z| < e}.
By uniform continuity of f on [0, 1], lim. ¢ é. = 0. Using these definitions and
the fact that p2(£2") =1,

@) =@l = | [ @)= fsdiz| < [ 15 - £l

RS du S
<[ @ rsad [ i - f(sd
< 2M i (|Sy — 2| > €) + 0. (20.49)
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By Chebyshev’s inequality,

. 1 L, . d
Mm(|5n—33|>5)§;2/ (Sn — ) dﬂx:@a

and therefore, Eq. (20.49) yields the estimate

2dM
1f = Palloe < e + 0e

and hence
limsup || f —pnllo <9 = 0ase | 0.

This completes the proof since, using Eq. (20.45),

n

pal@) = Y fSu@Drp({w}) = > f(Salw) [T relwid),

wenn wenn i=1
is an nd — degree polynomial in x € R9). [ ]

Exercise 20.4. Verify Eqs. (20.46) and (20.47)). This is most easily done using
Egs. (20.43) and (20.44) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless
it is convenient to use this formulation.)

The second proof requires the next two lemmas.

Lemma 20.30 (Approximate § — sequences). Suppose that {Q,},— is a
sequence of positive functions on R% such that

Qn(z) dv =1 and (20.50)

lim Qn(2)dz =0 for all € > 0. (20.51)

For f € BC(RY), Q,, * f converges to f uniformly on compact subsets of R

Proof. The proof is exactly the same as the proof of Lemma [8.28)] it is
only necessary to replace R by R? everywhere in the proof. [ ]

Define
Qn : R" —[0,00) by Qn(z) = gn(r1) ... gn(Ta)- (20.52)

where ¢, is defined in Eq. (8.23).

Lemma 20.31. The sequence {Qn}f;l 18 an approrimate & — sequence, i.e.
they satisfy Eqs. (20.50) and (20.51).
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Proof. The fact that @), integrates to one is an easy consequence of
Tonelli’s theorem and the fact that ¢, integrates to one. Since all norms on
R? are equivalent, we may assume that |z| = max {|z;| : i = 1,2,...,d} when
proving Eq. (20.51). With this norm

{xeRd:|x\25}zui:1{x€Rd:|xi|25}

and therefore by Tonelli’s theorem,

d
Qu(z)dz <> / Qu(z)de = d / qn (t)dt

{lz]>¢} =z >e} {z€R|x|>e}

which tends to zero as n — oo by Lemma [8.29. [ ]

Proof. Proof of Theorem [8.34. Again we assume f € C' (Rd, (C) and f =0
on Q§ where Qg = (0, 1), Let Qn(z) be defined as in Eq. (20.52). Then by
Lemma [20.31l and 20.30,, p,,(z) := (Qn* F)(x) — F(z) uniformly for z € [0,1]
as n — 00. So to finish the proof it only remains to show p,(z) is a polynomial
when z € [0,1]. For z € [0,1],

pn(x) = e Qn(x - y)f(y)dy
d
_ L FO) T fen" (0= (@i = 9)*) U —yai<a] dy
n J[0.1] i=1
1 d
- f ’I’_Lll_ i_iznd-
o Jox (y)g[c (1= (2 —y)®)"] dy

Since the product in the above integrand is a polynomial if (z,y) € R x R?,
it follows easily that p,(x) is polynomial in x. ]

20.5 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals
on spheres. As usual when n = 2 define spherical coordinates (r, 6) € (0, 00) x

[0, 27) so that
x1\ [rcosf\
(9@) o <rsin9> =T2(0,7).

For n = 3 we let x3 = r cos ¢; and then

<.’E1) = TQ(Q,TSin)l),

T2

as can be seen from Figure [20.6, so that
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Fig. 20.6. Setting up polar coordinates in two and three dimensions.

T . 7 sin ¢ cos 6

o _ (TQ(&,TSIH¢1)> _ TSiHQSl sin @ = T3(9’¢)1,7‘,).
7 COS ¢1

T3 7 COS ¢1

We continue to work inductively this way to define

Z1
_ Tn(oad)lv"'7¢7L—2aTSin¢7L—17) _
. - ( TCOS¢n_1 —Tn+1(9a¢17---a¢n727¢n717r)-
anrl

So for example,

1 = 7 8in ¢ sin ¢ cos 6
To = 7 8in ¢ sin @1 sin 6
T3 = r8in ¢ cos P1

T4 = T COS (2
and more generally,

r1 = rsing,_s...sin ¢y sin ¢ cosf
To = rsing,_o...sin ¢; sin ¢ sin 6

T3 = rsing,_s...sin ¢s cos @1

Tp—2 = 1r8in ¢n—2 sin ¢n73 Ccos ¢n74
Ip—1 =T sin ¢n—2 COS ¢n—3

Tp = T COS ¢n—2- (2053)

By the change of variables formula,
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f(z)dm(z)
RTI,
= / d’/’/ d¢1...d¢7L_2d0An(0,¢1,...7¢n_2,7‘)f(Tn(9,¢)1,...7(;5.”_2,7‘))
0 0<¢; <m,0<0<2m
(20.54)
where
An(e, ¢1, ey ¢n—277') = |det TT/L(Q, ¢)17 ey ¢n_2,7”)| .
Proposition 20.32. The Jacobian, A, is given by
Dn(0, 01, bp_o,r) =" sin® % ¢, o .. .sin? o sin . (20.55)

If f is a function on rS™' — the sphere of radius r centered at 0 inside of
R"™, then

_/TS"_1 f(z)do(z) = r”_l/ Frw)do(w)

Sgn—1
f(Tn(ea (blv ey ¢n727 T))An(eu ¢17 ey ¢n72u T)d(bl cee d¢n72d0
(20.56)

/oswg,oseszw

Proof. We are going to compute 4, inductively. Letting p := rsin ¢,,_1

and writing Bg;" for ‘98%(9, D15y Pn_2,p) we have

An+1(97¢1, BERE) ¢n—2a ¢n—17 7”)

aT, OT. T, T, T,
_ 56" 95 - T DT Cos Pn—1 o, Sin Pn—1
0o 0 ... O —rsing,_1 COS 1

=T (C082 (bn—l + Sil’l2 ¢n—1) An(y 97 ¢17 ey ¢7L—27 p)
= TAn(aa d)la ey ¢n727 7T sin ¢n71)a
ie.
An+1(97 (rbl) cey ¢n—27 ¢n—17 T) = TA?L(97 ¢17 EERR ¢n—25 T 8in d)n—l)- (2057)
To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ay(0,r) = r already derived in Example 20.23, Eq. (20.57)

implies,

A3(0,¢1,7) = rAg(0,rsing;) = 2 sin ¢
A4(0a ¢17 ¢27 T) = TA3(9a ¢17 rsin ¢2) = TS Sin2 ¢2 sin ¢1

Ap(0,01,. .., Ip_o,r) =1r""tsin" "2 ¢, _o...sin” o sin ¢y
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which proves Eq. (20.55). Eq. (20.56) now follows from Egs. (?7), (20.54) and
(20.55). .
As a simple application, Eq. (20.56) implies

(8" = / Sin" "2 o ...sin? o sin Gp1dey . . . dd,_odf
0<¢; <m,0<0<2m
n—2
=21 [T =0(5" )2 (20.58)
k=1

where 7y 1= fow sin® ¢de. If k > 1, we have by integration by parts that,

Y = / sin® ¢pdop = —/ sin® "1 ¢ dcos ¢ = 20k1 + (kK — 1)/ sin®=2 ¢ cos? ¢dg
0 0

0

=201+ (k—1) /ﬂ sin "2 ¢ (1 —sin®¢) dp = 2051 + (k — 1) [ye—2 — W]
0

and hence 7 satisfies 79 = 7, 71 = 2 and the recursion relation

k —

1
M = Yr—2 for k > 2.

Hence we may conclude

1 2 31 42 531

Yo =T, 11=2 T2 =5 W3=§27 V4=

—_—— :772 =
42" BT 530 6T gya"

and more generally by induction that

2k — 1! L (2K

Mok =T G A e = 2

Indeed,
2k 42 _2k+2, (R0 (D)
T T o T T k3 2k ) T2k + 1) + D!

and

C2%k+1  2k+1 (2k—DI (2k+ 1!

D) T o 1R T ok 12 20 (2k+ 2
The recursion relation in Eq. (20.58) may be written as
o(S") =0 (5" Y1 (20.59)

which combined with o (S 1) = 27 implies
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o (Sl) = 2m,
o(S?) =2m -y =272,
2272
3\ _ _ _
o(S%) =22y =272 5T = o
2272 272 2 2372
4 _ .92
o)== 237
1 2 31 2373
5 _
o857 =2m -2 gm g2 5T = T
2 31 422 2473

and more generally that

2 (2m)" (2m)" !
2ny\ 2n+1y __
o(S") = @11 and o(S )= @)l (20.60)
which is verified inductively using Eq. (20.59). Indeed,
202" @2n-1I  (2m)" !
2n+1y _ 2n _ —
o) = oS e = B T @ @)t
and
n+1 n n+1
(n+1)y _ 2042y _ 2n+1 _ (2) 9 (2n)! _ 2 (2m)
() = o (ST = o (ST ) vanin = T S g s 0 T @n g DU
Using

2n)ll=2n(2(n—-1))...(2-1) =2"n!

we may write o(S?T1) = QWnL,H which shows that Eqs. (??) and (20.60 in
agreement. We may also write the formula in Eq. (20.60) as

2(27)"/?

n n—1)!
o) =\
(n—1)!

for n even

for n odd.

20.6 Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower’s Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 20.33. LetU C, R™, f € C*(U,R?%) and C := {x € U : Rank(f'(z)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel mea-
surable subset of R% of Lebesgue measure 0.
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Remark 20.34. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the
norm, |x| := max; |x;| . Recall that if f € C1(U,R%) and p € U, then

1
fp+a) = /f (p+ta)wdt = f(p)+f’(p)fv+/0 [f'(p+tx) = f'(p)] wdt

so that if

1
Rip.2) = f(p+2) — f(p) — f'(p) = / F/(p + tx) — f'(p)) adt

we have

1
Rv)| < | [ 170 +t2) = 7] de = o] e(p. ).
0
By uniform continuity, it follows for any compact subset K C U that
sup{le(p,z)|:p € K and |z| <6} - 0asd | 0.

Proof. Notice that if z € U\ C, then f'(x) : R™ — R" is surjective,
which is an open condition, so that U \ C is an open subset of U. This shows
C' is relatively closed in U, i.e. there exists C = R™ such that C = C N U.
Let K,, C U be compact subsets of U such that K,, T U, then K, NC T C
and K, N C = K,, N C is compact for each n. Therefore, f(K, NC) 1 f(C)
ie. f(C)=U,f(K,NC)is a countable union of compact sets and therefore
is Borel measurable. Moreover, since m(f(C)) = limy_oo m(f(K, N C)), it
suffices to show m(f(K)) = 0 for all compact subsets K C C. Case 1. (n < m)
Let K = [a,a + 7] be a cube contained in U and by scaling the domain we
may assume vy = (1,1,1,...,1). For N € Nand j € Sy :={0,1,...,N —1}"
let Kj = j/N + [a,a +v/N] so that K = Ujes, K; with K¢ N K$, = 0 if
j#j . Let {Q;:j=1...,M} be the collection of those {K : j € Sy} which
intersect C. For each j, let p; € Q; N C and for z € (); — p; we have

fpj+ ) = fpy) + f'(pj)z + R;(2)
where |R;(z)] <&;(N)/N and ¢(N) := max;¢;(IN) — 0 as N — oco. Now
m (f(Q;)) =m (f(p;) + (f'(p )+R)(Qj—pj))

m (f
m ((f'(pj) + B;) (Q; — p5))

m (O; (f'(p;) + R;) (Qj - p5)) (20.61)
where O; € SO(n) is chosen so that O;f'(p;)R* C R™! x {0}. Now

O;f'(p;)(Q; — pj) is contained in I" x {0} where I' C R™~! is a cube cen-
tered at 0 € R™~! with side length at most 2|f/(p;)| /N < 2M/N where
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M = max,ck |f'(p)|. It now follows that O, (f'(p;) + R;) (Q; — p;) is con-
tained the set of all points within e(N)/N of I" x {0} and in particular
O; (f'(pj) + R;j) (Q; —pj) € (1+e(N)/N)I" x [e(N)/N,e(N)/N].
From this inclusion and Eq. (20.61) it follows that
M m—1
(@) < |2 e eym)| 20
_ 1
= 2" M (L + (V)N e(N) 3
and therefore,
1

m (f(CNK)) < Zm (f(Qy) < N"2mM™H[(1 +e(N)/N)]" ™ e(N) 3

=2"M" 1 [(14&(N)/N)" " e(N) —0as N — 00

Nmfn

since m > n. This proves the easy case since we may write U as a countable
union of cubes K as above. Remark. The case (m < n) also follows from the
case m = n as follows. When m < n, C' = U and we must show m(f(U)) = 0.
Letting F' : UxR"™™ — R"™ be the map F(z,y) = f(z). Then F'(z,y)(v,w) =
f'(z)v, and hence Cr := U x R*™™. So if the assertion holds for m = n we
have

m(f(U)) = m(P(U x R"™™)) = 0.

Case 2. (m > n) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

Ci:={zxeU:0%(x) =0 when |o| <i}

so that C D C; D Cy D C3 D .... The proof is by induction on n and goes
by the following steps:

Lo m(f(C\Cy)) =0.
2. m(f(C; \ Ci11)) =0 for all 4 > 1.
3. m(f(C;)) =0 for all i sufficiently large.

Step 1. If m = 1, there is nothing to prove since C' = C; so we may assume
m > 2. Suppose that © € C'\ Cy, then f/(p) # 0 and so by reordering the
components of z and f(p) if necessary we may assume that 9y f1 (p) # 0 where
we are writing 0f(p)/0x; as 0;f (p) . The map h(z) := (f1(x),x2,...,2,) has

differential
O1f1(p) Oaf1 (p) ... Onfi(p)
0 1 0 0
W (p) =
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which is not singular. So by the implicit function theorem, there exists there
exists V' € 7, such that h : V. — h(V) € 7, is a diffeomorphism and in
particular df1(x)/0z1 # 0 for x € V and hence V' C U \ Cy. Consider the
map g:= foh !: V' :=h(V)— R™, which satisfies

(fi(@), fa(2), -, [ (@) = f(2) = g(h(2)) = g((f(2), 22, .., Tn))

which implies g(t,y) = (t,u(t,y)) for (t,y) € V' := h(V) € 73(p), see Figure
20.7 below where p = Z and m = p. Since

Figure . Construction of the map g

Fig. 20.7. Making a change of variable so as to apply induction.

1 0
/ t —
IEY) = gult,y) d,ult,y)

it follows that (¢,y) is a critical point of g iff y € C} — the set of critical points
of y — wu(t,y). Since h is a diffeomorphism we have C’ := h(C' NV) are the
critical points of g in V'’ and

FCNV) =g(C) = U [{t} x ue(CH].

By the induction hypothesis, m,—1(u.(C})) = 0 for all ¢, and therefore by
Fubini’s theorem,

m(f(C V) = /R M1 (un(C)) Ly gt = 0.

Since C'\ C7 may be covered by a countable collection of open sets V' as above,
it follows that m(f(C \ C1)) = 0. Step 2. Suppose that p € C, \ Ci1, then
there is an « such that |a| = k + 1 such that 9% f(p) = 0 while 9°f(p) = 0
for all |5] < k. Again by permuting coordinates we may assume that ay # 0
and 0 f1(p) # 0. Let w(z) := 9% fi(x), then w(p) = 0 while dyw(p) # 0.
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So again the implicit function theorem there exists V' € 7, such that h(z) :=
(w(z),x2,...,2,) maps V — V' := h(V) € 7, in a diffeomorphic way and
in particular Ojw(z) # 0 on V so that V C U\Cj1. As before, let g := foh™!
and notice that C}, := h(C, N V) C {0} x R"~! and

f(CnV) =g(Cy) =3 (Cy)

where g := g[ ({0} xrn-1)nv/- Clearly C} is contained in the critical points of g,
and therefore, by induction

0=m(g(Cy)) = m(f(CrNV)).

Since C\Cr41 is covered by a countable collection of such open sets, it follows
that
m(f(Ck \Ok+1)) =0forall kK> 1.

Step 3. Suppose that @ is a closed cube with edge length § contained in U
and k£ > n/m — 1. We will show m(f(Q NCy)) = 0 and since @ is arbitrary it
will follows that m(f(Cj)) = 0 as desired. By Taylor’s theorem with (integral)
remainder, it follows for x € Q N Cy and h such that z + h € Q that

f(z+h) = f(z) + Rz, h)

where

|R(a, h)| < [l

where ¢ = ¢(Q, k). Now subdivide @ into r™ cubes of edge size §/r and let
Q@' be one of the cubes in this subdivision such that Q' N Cy # @ and let
x € Q N C. It then follows that f(Q') is contained in a cube centered at
f(z) € R™ with side length at most 2¢(6/7)**" and hence volume at most
(2¢)™ (§/r)m(k+1) . Therefore, f(Q N Cy) is contained in the union of at most
r™ cubes of volume (2¢)™ (6/r)™ %) and hence meach

m (F(QNCy)) < (20)™ (6 /7)™ pn = (9¢)™ gL pn=—mk+1) _, 0 a5 1 1 00

provided that n — m(k + 1) < 0, i.e. provided k > n/m — 1. [

20.7 Exercises

Exercise 20.5. Prove Theorem [20.12. Suggestion, to get started define

7 (A) ::/deﬂ(xl).../x dp(xp)la(z1,. .., 20)

n

and then show Eq. (20.18)) holds. Use the case of two factors as the model of
your proof.
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Exercise 20.6. Let (X;, M, ;) for j =1,2,3 be o — finite measure spaces.
Let F': (Xl X XQ) X X3 — X1 X X2 X X3 be defined by

F((xl, 172), 173) = (131,$2,933)-

1. Show F is (M7 ® M3y) ® M3, M1 ® My ® M3) — measurable and F~1
is (M1 @ Ma @ M3, (M1 ® M3) ® M3) — measurable. That is

F: ((X1 x Xo)x X3, (M1 & M2)®M3) — (X1 X Xox X3, M1@Ma®@M3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. w(A) = [(u1 @ p2) @ uz] (F~1(A)) for all
A€ M;® My ® Ms. Then 7 is the unique measure on M1 ® My ® M;s
such that

m(Ar x Az x Az) = p1(Ar)p2(A2)ps(As)

for all A; € M;. We will write 7 := 1 ® pi2 ® ps.
3. Let f: X; X Xo x X3 — [0,00] be a (M) ® My ® Ms, Bg) — measurable
function. Verify the identity,

dm = d d d 7 7
/Xlxxzxng /X3 u3($3)/X2 /“2(5”2)/)(1 pa(w1) f (21, w2, T3)

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six
possible orderings of the iterated integrals.

Exercise 20.7. Prove the second assertion of Theorem [20.18. That is show
m? is the unique translation invariant measure on Bga such that m?((0,1]9) =
1. Hint: Look at the proof of Theorem [19.10.

Exercise 20.8. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1],
M = Byg,1] be the Borel o — field on X, m be Lebesgue measure on [0, 1] and
v be counting measure, v(A) = #(A). Finally let D = {(z,z) € X?: 2z € X}
be the diagonal in X 2. Show

J [ [ ot amta) # [ [ [ toesamio)] avi

by explicitly computing both sides of this equation.

Exercise 20.9. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 20.10. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M x Bgr should be M ® Bg in this problem.)

Exercise 20.11. Folland Problem 2.55 on p. 77. (Explicit integrations.)
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Exercise 20.12. Folland Problem 2.56 on p. 77. Let f € L'((0,a),dm),
glz) = [* @dt for z € (0,a), show g € L*((0,a),dm) and

/Oag(x)dx = /Oa f(t)dt.

Exercise 20.13. Show 171222 | dm(z) = oo. So =2 ¢ L1([0,00),m) and
Jo° #22dm(x) is not defined as a Lebesgue integral.

Exercise 20.14. Folland Problem 2.57 on p. 77.

Exercise 20.15. Folland Problem 2.58 on p. 77.

Exercise 20.16. Folland Problem 2.60 on p. 77. Properties of the I" — func-
tion.

Exercise 20.17. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 20.18. Folland Problem 2.62 on p. 80. Rotation invariance of sur-
face measure on S !,

Exercise 20.19. Folland Problem 2.64 on p. 80. On the integrability of
|| |log |x\|b for x near 0 and z near co in R™.

Exercise 20.20. Show, using Problem 20.18| that

/ wiwjdo (W) = %(5@'0’ (Sd_l) .
Gd—1

Hint: show [g, , w?do (w) is independent of ¢ and therefore

d
1
2 2
/Sdi1 wido (w) = p ]E:l /Sdil wido (w).






21

LP-spaces

Let (X, M, u) be a measure space and for 0 < p < oo and a measurable

function f: X — C let
1/p
= ([ 1a) (21.1)

[fllec = inf{a > 0: u([f] > a) = 0} (21.2)

When p = oo, let

For 0 < p < o0, let
LP(X,M,p) ={f: X — C: f is measurable and ||f]|, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g|, =0iff f ~gandif f~g
then || fll, = |lgllp- In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 21.1. Suppose that || f|lec < M, then for all a > M, u(|f| > a) =0
and therefore p(|f| > M) = lim, 0o p(|f| > M +1/n) =0, ie. |f(x)] < M
for u - a.e. x. Conversely, if |f| < M a.e. and a > M then p(|f| > a) = 0 and
hence || f]lco < M. This leads to the identity:

Iflloc =inf{a>0:|f(z)| <afor p—ae. x}.

The next theorem is a generalization Theorem 5.6/ to general integrals and
the proof is essentially identical to the proof of Theorem [5.6.

Theorem 21.2 (Hélder’s inequality). Suppose that 1 < p < oo and q :=
or equivalently p~' + ¢~ ' = 1. If f and g are measurable functions then

gl < 1 £1lp - lgllg- (21.3)

Assuming p € (1,00) and ||f|l,- |lglly < oo, equality holds in Eq. (21.3) iff | f|”
and |g|? are linearly dependent as elements of L' which happens iff

gl If 115 = llgllg 1f1” a.e. (21.4)

P
p—1’
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Proof. The cases where || f||; = 0 or oo or ||g||, = 0 or co are easy to deal
with and are left to the reader. So we will now assume that 0 < || f1|q, [|g]l, <
oo. Let s = [f| /|| fll, and ¢ = |g|/||g]lq then Lemma /5.5 implies

[fol 1P 1 gl
I£llpllglle = 2 [1£ll, g llgl®

. . . —1 —1 .
with equality iff [g/|lgllq| = [FP~" /11 = A7/ /A5, de. [glellfIIE =
lgllZ|fI". Integrating Eq. (21.5) implies

1 1
gl 11

Ifllpllglls =2 g

(21.5)

with equality iff Eq. (21.4) holds. The proof is finished since it is easily checked

that equality holds in Eq. (21.3) when |f|” = c|g|? of |g|? = ¢|f|" for some

constant c. |
The following corollary is an easy extension of Holder’s inequality.

Corollary 21.3. Suppose that f; : X — C are measurable functions for i =

1,...,n and p1,...,pn and r are positive numbers such that Z?:l p{l =1

then
n n n
ILA] <TI0l where > pit=r"
=1 i=1 =1

Proof. To prove this inequality, start with n = 2, then for any p € [1, o0],

r

p*

19ll” = /X A1 Lol de < 1571 Nlg”

where p* = ﬁ is the conjugate exponent. Let p; = pr and ps = p*r so that

pfl + sy L' — =1 as desired. Then the previous equation states that

1£gll, < [1£11,, lgll,,

as desired. The general case is now proved by induction. Indeed,

n+1

I+
i=1

n

Hfi “fr

i=1

n

11+

i=1

<

[ fntally, .,

r q

T

where g~ ' +p, 1, =771 Since S p; = ¢7?

hypothesis to conclude
n
<T1usl,,
i=1

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality. [ ]

, we may now use the induction

n

11+

i=1

q
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Theorem 21.4 (Minkowski’s Inequality). If 1 < p < oo and f,g € L?
then

If + QH;D < Hf”p + {19l p- (21.6)

Moreover, assuming f and g are not identically zero, equality holds in Eq.
(21.6) iff sgn(f) = sgn(g) a.e. (see the notation in Definition|5.7) when p = 1
and f =cg a.e. for some ¢ > 0 for p € (1,00).

Proof. When p = oo, |f| < || f]|,, a.e. and |g| < ||g]|,, a.e.sothat [f + g <
[fI+19] < 1 flloo + llgll o, a-e. and therefore

1f + 9l < Iflle + l9ll s -
When p < oo,
If +gl” < 2max (|f],|g)" = 2P max (|, |g") < 27 (IfI" + 1gI") .

I1F + glly < 2° (I£15 + llgll}) < oo

In case p =1,

||f+9||1=/X\f+glduS/X|f|du+/X|g\du

with equality iff | f| + |g| = |f + g| a.e. which happens iff sgn(f) = sgn(g) a.e.
In case p € (1,00), we may assume ||f + gl|p, [|f], and [|g|[, are all positive
since otherwise the theorem is easily verified. Now

f+alP =1f+allf +gP " < (fl+ gD f + g/

with equality iff sgn(f) = sgn(g). Integrating this equation and applying
Holder’s inequality with ¢ = p/(p — 1) gives

Pq p—ld p—ld
/X\f+g| MS/XIfI |f + gl u+/X|g| If +glP dp
< Ul + gl I11F + g’ g (21.7)

with equality iff

sgn(f) = sgn(g) and

] )p: |f + gl :< lg| )p
(IIfllp vl = \Tal,) *© (21.8)

I1F + gl e = /X (I +glP~")edp = /X fglPdn (209)

Therefore

Combining Egs. (21.7) and (21.9)) implies
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1F + glly < WFUpILF + glls/ e+ Ngllp L f + gllz/? (21.10)

with equality iff Eq. (21.8) holds which happens iff f = cg a.e. with ¢ > 0.
Solving for ||f + g||, in Eq. (21.10) gives Eq. (21.6). |
The next theorem gives another example of using Holder’s inequality

Theorem 21.5. Suppose that (X, M, u) and (Y,N,v) be o - finite measure
spaces, p € [1,0], g =p/(p—1) and k : X XY — C be a MQN — measurable
function. Assume there exist finite constants Cy1 and Co such that

/X \k(z,y)| du(z) < Cy for v a.e. y and
[ el dnt) < Ca for .
If f € LP(v), then
/ \k(z,y) f(y)| dv(y) < oo for i — a.e. x,
r— Kf(x) = [}k y)dv(y) € LP(p) and

1 1
I Fll oy < CPC N F oo (21.11)

Proof. Suppose p € (1,00) to begin with and let ¢ = p/(p — 1), then by
Holder’s inequality,

/vmy )] du(y /\kxyl/q\k(xy)l””\f( )] du(y)

<[ [ wamiany } [ el s ]W
<y [ [ If(y)pdz/(y)] )

Therefore,

| sl avty)

;(H J o) | [ s |dv()}

<l /X dpu(z) /Y du(y) |k(z,y)||F ()P

— oyl /Y dv(y) | F () /X dyu(z) k()|

< ey [ av) Il = CE Il
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wherein we used Tonelli’s theorem in third line. From this it follows that
Jy [E(z,9) f(y) dv(y) < oo for p - ae. w,

o= K@) = [ b f)dvty) € ()

Y

and that Eq. (21.11) holds.
Similarly if p = oo,

[ 1k ) dvt) < 1l [ el dvly) < ol for = e
Y Y

so that | K fll ey < C2llfllpe(y - I p=1, then

/X dp(z) /Y dv(y) k(e y) f )] = /Y dv() | ()] /X dyu(z) [K(z, y)|
<o / v (y) |f )]
Y

which shows ||Kf||L1(u) < ||f||L1(l,) . "

21.1 Jensen’s Inequality

Definition 21.6. A function ¢ : (a,b) — R is convez if for alla < z¢g < z1 <
bandt e [0,1] ¢p(xy) < tp(x1) + (1 — t)p(xo) where z, = txy + (1 — t)xo.

Ezample 21.7. The functions exp(x) and —log(z) are convex and aP is
convex iff p > 1 as follows from Corollary 21.9 below which in part states
that any ¢ € C? ((a,b),R) such that ¢” > 0 is convex.

The following Proposition is clearly motivated by Figure 21.1.
Proposition 21.8. Suppose ¢ : (a,b) — R is a convex function, then

1. For all u,v,w, z € (a,b) such that u < z, w € [u,z) and v € (u, 2],

$(v) — ¢(u) < ¢(2) — ¢(w)

v—1Uu Z—w

(21.12)

2. For each ¢ € (a,b), the right and left sided derivatives ¢, (c) exists in R
and if a < u < v <b, then ¢/, (u) < ¢"_(v) < ¢, (v).
3. The function ¢ is continuous.

4. For all t € (a,b) and B € [¢'_ (1), (t)], ¢(x) > o(t) + B(x —t) for all
z € (a,b). In particular,

d(x) > o(t) + ¢ (t)(x —t) for all x,t € (a,b).
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Fig. 21.1. A convex function along with two cords corresponding to zop = —2 and
r1 =4 and g = —5 and z1 = —2.

Proof. 1a) Suppose first that u < v = w < 2, in which case Eq. (21.12) is
equivalent to

(¢(v) = d(u) (z — v) < (¢(2) — ¢(v)) (v —u)
which after solving for ¢(v) is equivalent to the following equations holding:

v—1U zZ—U

+ ¢(u)

z—u z—u

p(v) < o(2)

But this last equation states that ¢(v) < ¢(2)t + ¢(u) (1 —t) where t = 2=

Z—u

and v =tz + (1 — t)u and hence is valid by the definition of ¢ being convex.
1b) Now assume u = w < v < z, in which case Eq. (21.12)) is equivalent to

(@(v) = d(u)) (z = u) < ($(2) — d(u)) (v —w)

which after solving for ¢(v) is equivalent to

¢(v) (z = u) < (2) (v = u) + d(u) (z = v)

which is equivalent to

v—1U zZ—U

+ o(u)

z—u z—u

p(v) < ¢(2)

Again this equation is valid by the convexity of ¢. 1c) u < w < v = z, in
which case Eq. (21.12)) is equivalent to

(¢(2) = ¢(u)) (z —w) < (¢(2) — p(w)) (z — u)

and this is equivalent to the inequality,
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w—u zZ—w

+ ¢(u)

Z—U Z—U

which again is true by the convexity of ¢. 1) General case. If u < w < v < z,
then by la-1c)

P(2) — p(w) > P(v) — p(w) > P(v) — d(u)
andifu<v<w<z
P(2) — p(w) > P(w) — ¢(v) > ¢(w) — $(u)

We have now taken care of all possible cases. 2) On the set a < w < z < b,
Eq. (21.12) shows that (¢(z) — ¢(w)) / (2 — w) is a decreasing function in w
and an increasing function in z and therefore ¢/, (z) exists for all z € (a,b).
Also from Eq. (21.12) we learn that

¢\ (u) < Wbr ala<u<w<z<b, (21.13)
w <¢ (z)forala<u<v<z<b, (21.14)

and letting w T z in the first equation also implies that
¢\ (u) < ¢ () foralla <u < z<b.

The inequality, ¢’ (2) < ¢/, (2), is also an easy consequence of Eq. (21.12). 3)
Since ¢(x) has both left and right finite derivatives, it follows that ¢ is contin-
uous. (For an alternative proof, see Rudin.) 4) Given ¢, let 8 € [¢_(), ¢/, (t)],
then by Egs. (21.13) and (21.14),

o@t) —o(uw) _ , , 9(z) — o(t)
ﬁ < Qb—(t) <8< ¢+(t) < ﬁ
forall a < u <t < z<b. Item 4. now follows. [

Corollary 21.9. Suppose ¢ : (a,b) — R is differential then ¢ is convex iff ¢’
is non decreasing. In particular if ¢ € C?(a,b) then ¢ is convez iff ¢" > 0.

Proof. By Proposition 21.8| if ¢ is convex then ¢’ is non-decreasing. Con-
versely if ¢ is increasing then by the mean value theorem,

A= _ g1(61) for some &4 € (c)
and

c—zo ¢’ (&2) for some &; € (g, c).
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Hence
P(x1) — p(c) > ¢(c) — ¢(zo)

rp —¢C CcC— X

for all zp < ¢ < 1. Solving this inequality for ¢(c) gives

le) < 0 () 4 2 C

_1‘17560 1 — 2o

¢(xo)

showing ¢ is convex. [ ]

Theorem 21.10 (Jensen’s Inequality). Suppose that (X, M, i) is a prob-
ability space, i.e. p is a positive measure and u(X) = 1. Also suppose that
feLYu), f: X — (a,b), and ¢ : (a,b) — R is a convex function. Then

¢( /X fdu) < /X o(f)dp

where if ¢ o f ¢ LY (u), then ¢ o f is integrable in the extended sense and
fX ¢(f>dﬂ = Q.

Proof. Let t = [ fdu € (a,b) and let 3 € R be such that (b(s) o(t) >
B(s—t) for all s € (a,b). Then integrating the inequality, ¢(f)—o(t) > B(f—1),

implies that
0</¢> Yt — $(t) /</> Yt — ¢/fdu

Moreover, if ¢(f) is not integrable, then ¢(f) > ¢(¢t) + B(f — t) which shows
that negative part of ¢(f) is integrable. Therefore, fX d(f)dp = oo in this
case. ]

Ezample 21.11. The convex functions in Example 21.7 lead to the following

inequalities,
exp (/ fdu) §/ el du, (21.15)
X X

/Xlog(lfl)du < log (/X Jl du)
‘/deﬂp§</xlfdu)p§/x|fpdu'

The last equation may also easily be derived using Hoélder’s inequality. As a
special case of the first equation, we get another proof of Lemma 5.5. Indeed,
more generally, suppose p;,s; >0 fori=1,2,...,n and 2?21 % =1, then

and for p > 1,
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1 P n 1 n gP
n . n Lilns:?t Pi ;
S1...8y = exi=1 s = gluiz1p; ST < g —ensi g z (21.16)

Di

where the inequality follows from Eq. (21.15) with X = {1,2,...,n}, p =

S p%&- and f (7) := Ins?". Of course Eq. (21.16) may be proved directly

using the convexity of the exponential function.

21.2 Modes of Convergence

As usual let (X, M, u) be a fixed measure space, assume 1 < p < oo and let
{fn}o—, U{f} be a collection of complex valued measurable functions on X.
We have the following notions of convergence and Cauchy sequences.

Definition 21.12. 1. f,, — f a.e. if there is a set E € M such that p(E) =
0 and limy, oo 1ge frn = 1ge f.
2. fo — fin p — measure if limy, oo pu(|fr — f| > €) =0 for all e > 0. We
will abbreviate this by saying fn — f in L° or by fn 5 f.
8. fo — fin LPiff f € L and f, € LP for alln, andlimy, o || fn — f|, = 0.

Definition 21.13. 1. {f,} is a.e. Cauchy if there is a set E € M such that
wW(E) =0 and{1ge fn} is a pointwise Cauchy sequences.
2. {fn} is Cauchy in u — measure (or L° — Cauchy) if limy, n—oo (| fn —
fm| >¢€) =0 for alle > 0.
3. {fn} is Cauchy in LP if lim,, p—oo || fr — fm||p =0.

Lemma 21.14 (Chebyshev’s inequality again). Let p € [1,00) and f €
LP, then

1
p(lfl=e) < 57,||f\|£ for all e > 0.

In particular if {fn} C LP is LP — convergent (Cauchy) then {f,} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (19.11)),
(f12 ) =n(iP > ) < o [ 1P du= SI71E
w(lf] > [ 2 <5 | n=SlIf15
and therefore if {f,} is L? — Cauchy, then

1
:u(|fn - fm| Z 5) S g”fn - fm”g — 0 as m,n — oo

showing {f,,} is L’ — Cauchy. A similar argument holds for the L? — convergent
case. ]
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. . . m
Here is a sequence of functions where f,, — 0 a.e., f, - 0in L', f, 55 0.

Above is a sequence of functions where f, — 0 a.e., yet f,, - 0 in L'. or in
measure.

Here is a sequence of functions where f, — 0 a.e., f, — 0 but f, - 0 in L.

Above is a sequence of functions where f, — 0 in L', f, - 0 a.e., and
fu 0.

o0
Lemma 21.15. Suppose a,, € C and |an+1 —an| < e, and > e, < 0o. Then
- n=1
lim a, =a € C exists and |a — ap| < 0y, := Y €.

n—oo k=n
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Proof. (This is a special case of Exercise[6.9.) Let m > n then

m—1 m—1 00
|am — an] = | > (ag+1 —ap)| < D Jags1 —ag] < Y ep:=6,. (21.17)
k=n k=n k=n

S0 |am — an| < dmin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (21.17) to find |a — a,| < 0. |

Theorem 21.16. Suppose {f,} is L°-Cauchy. Then there exists a subse-
quence g; = fn, of {fu} such that limg; := f exists a.e. and f, Ly

asn — co. Moreover if g is a measurable function such that f, % g asn — oo,
then f =g a.e.

Proof. Let €, > 0 such that > &, < oo (¢, = 27" would do) and set

n=1

[e.e]
dn = > €k. Choose g; = f,, such that {n;} is a subsequence of N and

k=n
n({lgj+1 — g5l > €;}) <ej.
Let Ej = {|gj+1 — g;| > &},
o0 o0
Fy = B = U {lgj1 — 95l > 5}
J=N J=N
and

Bi= ﬂ Fy = m U Ej ={lgj+1 — g;] > ¢j i.0.}.

N=1 N=1j=N

Then p(E) = 0 by Lemma [19.20/ or the computation
w(E) < ZH(EJ‘)S ZEJ’:(SNHO&SNHOO.
Jj=N j=N

If ¢ Fy, ie. |gjt1(x) —gj(x)| < ¢; for all j > N, then by Lemma 21.15|
f(z) = lim g;(x) exists and |f(z) — g;(x)| < ¢; for all j > N. Therefore,
j—oo

since B¢ = |J Fg, lim g;(z) = f(z) exists for all x ¢ E. Moreover, {z :
N=1 j—o0
|f(z) — gj(z)] > d;} C Fj for all j > N and hence
u(|f =gl > 85) < p(Fj) <6; — 0as j — oo.

Therefore g, £ fas j — oo. Since

Ufn = f1> ey =Alf =9 + 95 = ful > ¢}
Clf —gil > e/2y U{lg; — ful > €/2},
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n({[fn = f1>e}) < p(lf —gil > €/2}) + ullg; — ful > €/2)

and

p{|fn—fI>¢€}) < jlglolosupuﬂgj — ful >€/2) — 0as n — co.

If there is another function g such that f, > g as n — oo, then arguing as
above

p(lf =gl >¢e) <p({lf — ful >€/2}) + p(lg — ful >€/2) = 0asn — oc.

Hence
pl1f = 9> 0) = (A flF — 9l > 1) < S ullf gl > ) =0,
n=1

ie. f=ga.e. [

Corollary 21.17 (Dominated Convergence Theorem). Suppose {f.},
{gn}, and g are in L' and f € L° are functions such that

‘fn|§gn a.e., fnL)fa gnl’ga and ‘/gn—>/g as n — o0.

Then f € L* and lim,_.oo ||f — full, = 0, ice. f,, — f in L'. In particular
hmn—»ooffn = ff

Proof. First notice that |f| < g a.e. and hence f € L! since g € L'. To
see that |f| < g, use Theorem 21.16! to find subsequences { f,,} and {gn, } of
{fn} and {g,} respectively which are almost everywhere convergent. Then

|| = Jim || < Jimgn, = g ae.

If (for sake of contradiction) lim,, o || f — fu|l; # O there exists ¢ > 0 and a
subsequence {fp, } of {f,} such that

/\f — fui| = € for all k. (21.18)

Using Theorem 21.16/ again, we may assume (by passing to a further subse-
quences if necessary) that f,, — f and g,, — g almost everywhere. Noting,
If = faxl < 9+ gn, — 29 and [ (g+ gn,) — [ 2g, an application of the
dominated convergence Theorem 19.38 implies limy_,oo [ |f — fn,| = 0 which
contradicts Eq. (21.18). |

Exercise 21.1 (Fatou’s Lemma). If f,, > 0 and f,, — f in measure, then

[ f<liminf, . [ fn
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Theorem 21.18 (Egoroff’s Theorem). Suppose pu(X) < oo and f, — f
a.e. Then for all € > 0 there exists E € M such that u(E) < € and f, — f

uniformly on E°. In particular f, -~ f asn — co.

Proof. Let f, — f a.e. Then pu({|f, — f| > 1 i.0. n}) =0 for all k& > 0,

i.e.

Jim U{\fn—f\>%} =u| U{|f’n_f|>%} =0.

n>N N=1n>N
Let B, .= U {|fn — f| > 1} and choose an increasing sequence {Nj};~,
n>Ny

such that u(Ey) < €27F for all k. Setting F := UEy, uw(E) < >, 27" =«
and if z ¢ E, then |f, — f| < % for all n > Ni and all k. That is f,, — f
uniformly on E°. [ ]

Exercise 21.2. Show that Egoroff’s Theorem remains valid when the as-
sumption u(X) < oo is replaced by the assumption that | f,| < g € L for all n.
Hint: make use of Theorem 21.18 applied to f,|x, where X}, := {|g| > kfl} .

21.3 Completeness of LP — spaces

Theorem 21.19. Let ||-|| , be as defined in Eq. (21.2), then (L>(X, M, i), ||-||o) s
a Banach space. A sequence {fy},..; C L™ converges to f € L> iff there ex-

ists E € M such that w(E) = 0 and f, — f uniformly on E€. Moreover,
bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem 21.4, |-||  satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure |||
is a norm. Suppose that {f,} ~, C L> is a sequence such f, — f € L™, i.e.
|f = fulloo — 0 as n — oo. Then for all k£ € N, there exists N}, < oo such that

p(If = fal > E71) = 0 for all n > Nj.

Let
E= UZO:1 UnZNk {|f_ fn| > k_l} .

Then p(E) = 0 and for z € E°, |f(z) — fo(x)| < k7! for all n > Nj. This
shows that f, — f uniformly on E°. Conversely, if there exists £ € M such
that u(E) = 0 and f,, — f uniformly on E¢, then for any € > 0,

p(f =falze) =p{lf = fal 2} NET) =0

for all n sufficiently large. That is to say limsup, . || f — fall, < € for
all ¢ > 0. The density of simple functions follows from the approximation
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Theorem [18.42. So the last item to prove is the completeness of L> for which
we will use Theorem [7.13.

Suppose that {f,} -, C L* is a sequence such that > 7, || fall, < oo
Let My, := ||falloo s En == {|fn| > My}, and E := U2 E, so that u(E) = 0.
Then - -

Z sup |fn(x)] < ZMn < 00
n=1

n=1 zEEC

which shows that Sy(z) = ZnN:1 fn(x) converges uniformly to S(x) :=
Soo fa(z) on E€ ie. lim, o ||S — Syl = 0.

Alternatively, suppose €y, = [[fm — fullo — 0 as m,n — oo. Let
Epn ={lfn — fm|l > emn} and E := UE,, ,, then u(E) = 0 and

sup |fm (ZL’) - fn ((E)| < Emmn — 0 as m,n — o0.
reke

Therefore, f := lim, . f, exists on E¢ and the limit is uniform on FE*°.
Letting f = limy, o 1ge fp, it then follows that lim, . ||fn — f|l., =0. m

Theorem 21.20 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, |||, (see Eq. (21.1)), is a Banach space.

Proof. By Minkowski’s Theorem 21.4, ||-[|, satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure
[[[I, is a norm. So we are left to prove the completeness of LP () for 1 < p < oo,
the case p = oo being done in Theorem [21.19.

Let {fn},—; C LP(p) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 21.14)), {f,} is L°-Cauchy (i.e. Cauchy in measure) and by Theorem
21.16/ there exists a subsequence {g;} of { f,,} such that g; — f a.e. By Fatou’s
Lemma,

lg; = Iz = /kli_{go inf|g; — gu[Pdp < lim inf/ l9; — gi[Pdp

= lim inf||g; — gx|h — 0 as j — oc.
k— oo

In particular, || f]l, < |lg; — fllp +1lg;llp < 0o so the f € L? and g, L%, f. The
proof is finished because,

[ = Fllp < 1fn = gillp +[lg; = Fllp — 0 as j,n — oo

]

The LP(u) — norm controls two types of behaviors of f, namely the “be-
havior at infinity” and the behavior of “local singularities.” So in particular, if
f is blows up at a point o € X, then locally near xg it is harder for f to be in
LP?(u) as p increases. On the other hand a function f € LP(u) is allowed to de-
cay at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect LP(u) C L(p) or L9(p) C LP(u). However,
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there are two notable exceptions. (1) If u(X) < oo, then there is no behavior
at infinity to worry about and L7(u) C LP(p) for all ¢ < p as is shown in
Corollary 21.21] below. (2) If g is counting measure, i.e. u(A) = #(A), then
all functions in LP(u) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case LP(u) C L(u) for all ¢ < p,
see Corollary [21.25 below.

Corollary 21.21. If u(X) < 00 and 0 < p < ¢ < oo, then Li(u) C LP(p),
the inclusion map is bounded and in fact

11
11, < kCOIE5) 11,
Proof. Take a € [1, 00| such that

1 1. pg
=—4+ -, le.a=—.

1
p a q q—Dp
Then by Corollary 21.3,
1_1
11, = 1 - 2L, < 1 fllg - 1l = w2 fllg = w(X) T £l

The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/00 to be 1/p. ]

Proposition 21.22. Suppose that 0 < po < p1 < 00, A € (0,1) and px €
(po,p1) be defined by

1 1—X A
[ + =
Y25\ Po 41
with the interpretation that \/p1 = 0 if p1 = co.X' Then LP> C LPo + LP1, d.e.

every function f € LP> may be written as f = g+h with g € LP° and h € LP*.
For1<py<ps <ooand feLPo+ LP [et

(21.19)

11 = int {llgl,, + 1bll, = f = g+h}.

Then (LP° 4 LP* ||-||) is a Banach space and the inclusion map from LP> to
Lro + LP is bounded; in fact ||f|| < 2| fll,, for all f € LP>.

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f| > M} and the behavior of f at “infinity” is solely determined
by f on E°. Hence let g = flg and h = flge so that f = g+ h. By our earlier
discussion we expect that g € LP° and h € LP* and this is the case since,

1 A little algebra shows that A may be computed in terms of pg, px and p1 by

U i )

Pr» P1—DPo
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f
pPo __ p _
lotge = [ 157 toae =30 [ |

|2

Po
Lig>m

P
L < M7 fIP < o0

and

P1
Lis<m

IBIE = || FLyp<ar|2 = / £ Lig<ar = M7 / ‘Aff

o fIf

Moreover this shows

Px
1|f‘SM S Mplip)‘ ||f||gi < Q.

[ fIl < Mtmpa/po ||f||§i/p0 + M1pa/pn Hf”p)\/pl .

Px

Taking M = || f|,, then gives

LAl < (A o xmm o )

and then taking A = 1 shows |[f|| < 2|f[l,, . The the proof that
(LPo 4 LP1 ||-||) is a Banach space is left as Exercise 21.7 to the reader.  m

Corollary 21.23 (Interpolation of LP? — norms). Suppose that 0 < py <
p1 < 00, A € (0,1) and px € (po,p1) be defined as in Eq. (21.19), then
LPoNLPr C LPX and

A 1-X
11y < 1l 1F 11, 7 - (21.20)
Further assume 1 < pg < px < p1 < 00, and for f € LPo N LP* et
LA =Wl + 1AL, -

Then (LPo N LP ||-|) is a Banach space and the inclusion map of LP° N LP
into LP> is bounded, in fact

171, <max (A™%, (1= )Y (||f\|p0 + Hf||p1) . (21.21)

The heuristic explanation of this corollary is that if f € LPo N LP!, then f
has local singularities no worse than an LP! function and behavior at infinity
no worse than an LP° function. Hence f € LP* for any p) between py and p;.

Proof. Let A be determined as above, a = po/A and b = p;/(1 — A), then
by Corollary [21.3]

171y = L2 < =, = g

It is easily checked that |-|| is a norm on LP° N LP*. To show this space is
complete, suppose that {f,} C LP° N L' is a ||-|| — Cauchy sequence. Then
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{fn} is both LPo and LP* — Cauchy. Hence there exist f € LP° and g € LP* such
that lim, oo || f = full,, = 0 and lim,_. [|[g — fall,, = 0. By Chebyshev’s
inequality (Lemma 21.14)) f,, — f and f,, — g in measure and therefore by
Theorem 21.16, f = g a.e. It now is clear that lim, o ||f — fn|]| = 0. The
estimate in Eq. (21.21) is left as Exercise 21.6/ to the reader. ]

Remark 21.24. Combining Proposition 21.22| and Corollary [21.23] gives
LPoNLPL C [P» C LPo + Pt
for 0 < pg < p1 < 00, A € (0,1) and py € (po, p1) as in Eq. (21.19).

Corollary 21.25. Suppose now that p is counting measure on X. Then
LP () € L) for all 0 < p < q < o0 and | f],, < ||, -

Proof. Suppose that 0 < p < ¢ = o0, then

1% = sup {|f(@) sz € X3 < D7 F @)1 = [I£1I},

zeX

Le. [[fllo < IIfll, for all 0 < p < co. For 0 < p < ¢ < o0, apply Corollary
21.23| with py = p and p; = oo to find

£, < IAIZ AP < AN = N1, -

21.3.1 Summary:

L. Since pu(|f| > ) <eP|/f|;, L? — convergence implies LY — convergence.

2. LY — convergence implies almost everywhere convergence for some subse-
quence.

3. If u(X) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L? —
convergence.

4. If u(X) < oo, then L2 C LP for all p < g and LY — convergence implies LP
— convergence.

5. LPo N LP1 C L9 C LPo + LPt for any q € (po,p1)-

6. If p < g, then 7 C £% and||f[|, < || f]l, -

21.4 Converse of Holder’s Inequality
Throughout this section we assume (X, M, ) is a o — finite measure space,

q € [1,00] and p € [1,00] are conjugate exponents, i.e. p~! + ¢~ = 1. For
g € L1, let ¢, € (LP)* be given by
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bolf) = / of du=:g.]). (21.22)

By Holder’s inequality

16,()] < / 19f1di < llgllal 1l (21.23)
which implies that

[0l (Lry :=sup{leg ()] : [If]l, = 1} < llgllq- (21.24)

Proposition 21.26 (Converse of Hélder’s Inequality). Let (X, M, ) be
a o — finite measure space and 1 < p < oo as above. For all g € LY,

lolly = 16l zry- = sup {164(F)1 < 171, = 1} (21.25)

and for any measurable function g : X — C,

lglly = sup{ [ lol s 151, = 1 and 1 > o}. (21.26)

Proof. We begin by proving Eq. (21.25). Assume first that ¢ < oo so
p > 1. Then

160(f)] = \ [as du‘ < [ losldn < gl 1,

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 21.2, when |f|” = c|g|? for some
constant ¢ > 0. So let f := sgn(g)|g|?/? which for p = oo is to be interpreted

as f = sgn(g), i.e. ||/ = 1. When p = o0,

165(f)] = /X gsen(g)di = gl sy = lglly I1f]lc

which shows that [|¢g|(z=)- > [|g]l1. If p < oo, then

1= [157 = [1al" = ol

while
00(0) = [ asdu= [ lgllg""du= [ lgidn =l
o o) _ lol
o gllg q(1-1)
— e =gl = gl
1l gla” !

This shows that ||¢4|| > |lg|l; which combined with Eq. (21.24) implies Eq.
(21.25).
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The last case to consider is p = 1 and ¢ = co. Let M := ||g||oo and choose
X, € M such that X,, 1 X as n — oo and p(X,) < oo for all n. For any
e>0,u(lgl > M—e)>0and X,N{|lg| > M —e} 1 {|lg| > M —e}. Therefore,
w(Xn N{lgl > M —e}) > 0 for n sufficiently large. Let

f=sen(9)1x,n{gl=M—c}>

then
£l = p(Xn N {lg] = M —€}) € (0,00)

and

|pg (f)] =/ Sgn(g)gdu:/ lg|dp
XnN{lg|>M—c} XnN{lg|>M—e}

> (M —e)p(Xn N {lgl = M —e}) = (M —¢)||f]1-

Since € > 0 is arbitrary, it follows from this equation that [|¢g4||(f1y- > M =
191

Now for the proof of Eq. (21.26). The key new point is that we no longer
are assuming that g € L9. Let M(g) denote the right member in Eq. (21.26)
and set g, = lx,n{|g<n}g- Then [g,| T |g| as n — oo and it is clear that
M/(gy) is increasing in mn. Therefore using Lemma 4.10 and the monotone
convergence theorem,

lim M(g,) =sup M (gn) = supsup{/ gn| fdp: [|f]l, =1 and f > O}
n n X

n—oo

- sup{sup/X lgal fdpe: £]}, = 1 and f > o}

— li nl fdu =land f>0
sup{nggo/xg | fdu:|[fll, =1and f> }
= du : =1 and 0y, =M(g).
sup{ [ tal fd 171, = 1and £ > } (9)

Since g, € L7 for all n and M(gy) = ||¢g, || 1)~ (as you should verify), it
follows from Eq. (21.25) that M (gn) = ||gnl|, - When ¢ < oo (by the monotone
convergence theorem) and when ¢ = oo (directly from the definitions) one
learns that lim,,_ o Hgan = ||g||q . Combining this fact with lim,, ., M(g,) =
M(g) just proved shows M(g) = [|g|l, - ]

As an application we can derive a sweeping generalization of Minkowski’s
inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 21.27 (Minkowski’s Inequality for Integrals). Let (X, M, u)
and (Y,N,v) be o — finite measure spaces and 1 < p <oo. If f isa M QN
measurable function, then y — ||f(-, )| ey is measurable and
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1. if f is a positive M @ N measurable function, then

|| /f () oo / 17 G 2o di (). (21.27)

2. If f : XxY — Cis a M@N measurable function and [y || f(-,y)||Lrdv(y) <
oo then

a) for p — a.e. z, f(x,-) € L*(v),
b) the u —a.e. defined function, x — fy flz,y)dv(y), is in LP(u) and
¢) the bound in Eq. (21.27) holds.

Proof. For p € [1,00], let Fy,(y) := || f(-,¥)||Le(w)- If p € [1,00)

B) = 17C9)llergn = </X f (@, y)l” dﬂ(x)) v

is a measurable function on Y by Fubini’s theorem. To see that F,, is mea-
surable, let X,, € M such that X,, T X and u(X,) < oo for all n. Then by
Exercise 21.5),

Foo(y) = lim lim [[f(,9)1x,[lze )

which shows that F., is (Y, ') — measurable as well. This shows that integral
on the right side of Eq. (21.27) is well defined.

Now suppose that f >0, ¢ =p/(p—1)and g € LI(u) such that g > 0 and
llgl] ra(uy = 1. Then by Tonelli’s theorem and Holder’s inequality,

/. [ / f(a:,wdu(y] s)in(e) = [ avty) [ au) (o

<190 g / 17 2oy d ()
/ 107G )Ly ()-

Therefore by the converse to Holder’s inequality (Proposition 21.26),

I ] senavl
—sw{ [ | [ tenavtn] staino) ol =1 o g > 0}

< /Y 17 Co9) 2w oy ()

proving Eq. (21.27)) in this case.
Now let f: X XY — C be as in item 2) of the theorem. Applying the first
part of the theorem to |f| shows
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/ |f(z,y)| dv(y) < oo for u— a.e. x,
Y

ie. f(z,") € L*(v) for the p—a.e. z. Since | [y, f(z, y)dv(y)| < [y If(@,y)| dv(y)
it follows by item 1) that

\ < [ 156y 0,
Lr(p) Y

Hence the function, z € X — [, f(z,y)dv(y), is in LP(u) and the bound in
Eq. (21.27) holds. [ ]

Here is an application of Minkowski’s inequality for integrals. In this the-
orem we will be using the convention that 21/ := 1.

/ f(y)dv(y)
Y

/ FCo9)| dv(y)
Y

<|
Lr(p)

Theorem 21.28 (Theorem 6.20 in Folland). Suppose that k : (0,00) x
(0,00) — C is a measurable function such that k is homogenous of degree —1,

i.e. k(Az, \y) = \Yk(z,y) for all X > 0. If, for some p € [1, 0],
Cp:= / |k(z,1)| 2~ Pdz < oo
0

then for f € LP((0,00),m), k(z,-)f(:) € L*((0,00),m) for m — a.e. . More-
over, the m — a.e. defined function

(Kf)(z) = / k() f(y)dy (21.28)
0
is in LP((0,00),m) and
1K S omermy < CollFllzo(0.00)m)-

Proof. By the homogeneity of k, k(z,y) = 2~ 'k(1, £). Using this relation
and making the change of variables, y = zz, gives

| sy = [ o [k s ay
0 0 N
:/ m*1|k(1,z)f(xz)|xdz:/ |k(1, 2) f(z2)|dz.
0 0

Since -
dzr

16 Moy = [ WPs= [ 1@l

0 z

¢ 2)lze(0,00),m) = 2~ PIF |l Le((0,00),m) -

Using Minkowski’s inequality for integrals then shows
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| s

o0
< / (L FC 0.0y 2

L ((0,00),m) .
= Wflznooorm [ K127
= Cpllflle((0,00),m) < 00.
This shows that K f in Eq. (21.28) is well defined from m — a.e. z. The proof
is finished by observing

< Cpll fll e (0,00),m)
L7((0,00),m)

VK £l 0y < H / (o)l dy

for all f € LP((0,00), m). |
The following theorem is a strengthening of Proposition 21.26. It may be
skipped on the first reading.

Theorem 21.29 (Converse of Holder’s Inequality II). Assume that
(X, M, p) is a o — finite measure space, q,p € [1,00] are conjugate exponents
and let Sy denote the set of simple functions ¢ on X such that (¢ # 0) < oo.
Let g : X — C be a measurable function such that ¢pg € L* (u) for all ¢ € Sy,
and define

My(a) = s {| [ oatu| -0 €7 with o, = 1. (21.29)

If My(g) < oo then g € L (p) and My(g) = |9l -

Proof. Let X,, € M be sets such that u(X,) < oo and X,, T X asn 1 oo.
Suppose that ¢ = 1 and hence p = oco. Choose simple functions ¢, on X
such that |¢,| < 1 and sgn(g) = lim, 0 ¢, in the pointwise sense. Then
1x,.0n € Sy and therefore

‘/X 1xm¢>ngdu‘ < M,(9)

for all m,n. By assumption 1x, g € L'(1) and therefore by the dominated
convergence theorem we may let n — oo in this equation to find

/X 1x,, |9l du < M,(g)

for all m. The monotone convergence theorem then implies that

/Iglduz lim / 1x,, lgldp < Mq(g)
D'e m—eo Jx

2 This is equivalent to requiring 1ag € L' (u) for all A € M such that u(A) < co.
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showing g € L*(p) and ||g||, < M,(g). Since Holder’s inequality implies that
My(g) < llgll; » we have proved the theorem in case ¢ = 1. For ¢ > 1, we will
begin by assuming that g € L?(u). Since p € [1,00) we know that Sy is a
dense subspace of LP(u) and therefore, using ¢, is continuous on LP(u),

M,(g) = sup {\ /. ¢gdu‘ 6 € LP() with [g], = 1} ~ lgll,

where the last equality follows by Proposition [21.26. So it remains to show
that if ¢pg € L' for all ¢ € Sy and My(g) < oo then g € L9(u). For n € N, let
gn = 1x,19<ng. Then g, € L(u), in fact [|gnlly < nﬂ(Xn)l/q < 00. So by
the previous paragraph, ||gn |, = Mq(gn) and hence
ol =0 { | [ o1, tcusd 6 € 27 winh o1, =1}
< My(9) |91, Ligi<nl|,, < Mq(g) - 1 = Mqy(g)

wherein the second to last inequality we have made use of the definition of
M,(g) and the fact that ¢lx, 1i4<, € Sy. If ¢ € (1,00), an application of the
monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, |-, implies

lal, = lim_[lgall, < M,(g) < oo,
If ¢ = oo, then ||gn |l < My(g) < oo for all n implies |g,,| < M,(g) a.e. which

then implies that |g| < M, (g) a.e. since |g| = lim,,—o |gn|. That is g € L ()
and [|gl|o < Moo(9)- =

21.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L? — convergent sequence is LP — convergent.

Notation 21.30 For f € L'(u) and E € M, let
p(f - E) = / fdp.
E
and more generally if A, B € M let
W(fAB) = [ fd.
ANB

Lemma 21.31. Suppose g € L*(p), then for any ¢ > 0 there exist a § > 0
such that p(lg| : E) < € whenever u(E) < 4.
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Proof. If the Lemma is false, there would exist € > 0 and sets FE,, such
that u(E,) — 0 while u(|g| : E,) > € for all n. Since |1g,g| < |g| € L' and
for any § € (0,1), pu(lg, |g| > ) < w(E,) — 0 as n — oo, the dominated
convergence theorem of Corollary 21.17 implies lim,,—. p(|g| : Ey) = 0. This
contradicts u(|g| : En) > € for all n and the proof is complete. ]

Suppose that {f,},-, is a sequence of measurable functions which con-
verge in L'(u) to a function f. Then for E € M and n € N,

[u(fn s E) < |u(f = fu: )+ p(f - E) <\ = fally + [u(f: E)]-

Let ey :=sup,~n ||f — full;, then ex | 0 as N T co and

sup lu(fn s B)| < sup. lu(fn: E)V (en +|u(f: E)) <env+pulgn : E),

(21.30)

where gy = |f] + ij:l |fn] € L. From Lemma 21.31 and Eq. (21.30) one
easily concludes,

Ve>036>0 5 sup|u(fn: E)| < e when p(F) < 4. (21.31)

Definition 21.32. Functions {f,},.;, C L'(u) satisfying Eq. (21.31) are
said to be uniformly integrable.

Remark 21.33. Let {f,} be real functions satisfying Eq. (21.31), E be a set
where pu(E) < § and E,, = EN{f, > 0}. Then p(E,) < ¢ so that u(f, :
E) = u(fn : En) < € and similarly u(f,, : E) < e. Therefore if Eq. (21.31)
holds then

sup u(|fn] : F) < 2e when p(FE) < 4. (21.32)

Similar arguments work for the complex case by looking at the real and imag-
inary parts of f,,. Therefore {f,} -, C L'(x) is uniformly integrable iff

Ve>036>0 3 supu(|fu]: F) < e when u(E) < 6. (21.33)

Lemma 21.34. Assume that p(X) < oo, then {fn} is uniformly bounded in
LY(p) (i.e. K =sup,, || fall; < 00) and {f.} is uniformly integrable iff

i sup (|l = 1l > M) =0, (21.34)

Proof. Since {f,} is uniformly bounded in L!(u), u(|fa] > M) < K/M.
So if (21.33) holds and € > 0 is given, we may choose M sufficiently large so
that p(|fn] > M) < é(g) for all n and therefore,

sup fu(| ful | ful = M) <e.

Since € is arbitrary, we concluded that Eq. (21.34) must hold. Conversely,
suppose that Eq. (21.34) holds, then automatically K = sup,, u(|fn]) < o0
because



21.5 Uniform Integrability 401

u(lfnl) =l fnl = 1fnl 2 M) + | frl < [fnl < M)
< Slipu(lfnl Hfal =2 M) + Mp(X) < oo.

Moreover,

w(fal : ) = p(|fal 2 [ful = M, E) + p(| fol © | fnl < M, E)
< Sl:lpﬂ(|fn| : |fn| > M) +M:L"(E)

So given € > 0 choose M so large that sup,, u(|fn] : |fn] > M) < /2 and then
take § = ¢/ (2M). |

Remark 21.85. 1t is not in general true that if {f,} C L'(u) is uniformly
integrable then sup,, (| fn]) < co. For example take X = {*} and p({x}) = 1.
Let fn(*) = n. Since for § < 1 a set E C X such that pu(E) < 0 is in fact
the empty set, we see that Eq. (21.32) holds in this example. However, for
finite measure spaces with out “atoms”, for every § > 0 we may find a finite
partition of X by sets {E;};_, with u(E¢) < 8. Then if Eq. (21.32) holds with

2¢ =1, then
E

N’(lan = Z,U'Ofnl : EZ) <k

=1
showing that pu(|f]) < k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly bounded and uniformly in-
tegrable.

Lemma 21.36. Suppose that u(X) < oo, and A C L°(X) is a collection of
functions.

1. If there exists a non decreasing function ¢ : Ry — Ry such that
lim, 00 ¢(x)/x = 00 and

K = sup p(o(|f])) < oo (21.35)
fea

then
A}gnoo?gﬂ(uu‘f,w) =0. (21.36)

2. Conversely if Eq. (21.36) holds, there exists a non-decreasing continuous
function ¢ : Ry — Ry such that $(0) = 0, lim,_,o ¢(z)/x = o0 and Eq.
(21.35) is valid.

Proof. 1. Let ¢ be as in item 1. above and set e 1= sup, >, ﬁ — 0

as M — oo by assumption. Then for f € A
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| f1 = [f1 = M) = u( |(‘|fj|f|) (LD = [f1 = M) < emp(@(1f]) : |f] = M)

<emm(¢(|f])) < Kem

and hence
s sup e (|f101200) < Jim Keas = 0.

2. By assumption, ey = Supgpe 4 i (|f\ 1|f|2M) — 0 as M — oo. Therefore
we may choose M,, T oo such that

o0

Z(n+1)€Mn < oo

n=0
where by convention My := 0. Now define ¢ so that ¢(0) = 0 and

o0

¢/(I) = Z (Tl + 1) I(Mn,Mn+1](x)a

n=0
i.e.
n= O

By construction ¢ is continuous, ¢(0) = 0, ¢’(z) is increasing (so ¢ is convex)
and ¢'(z) > (n+ 1) for > M,. In particular

02) _ 9(My) + (n+ )a

T T

>n+1 for x > M,

from which we conclude lim,_ o, ¢(x)/x = co. We also have ¢'(z) < (n+ 1)
on [0, M,,+1] and therefore

o(x) < (n+ 1)z for £ < Mp4q.

So for f € A,
o(1£1) Zu (DL at0 141 (1£1)
< Z (n+1) 1 (11 Lot 1,01 (L)
<Z (n+1)pu |f\1|f|>M")S§:(n+1)€M
n=0
and hence -
?23” o(1f1)) nz:% 1)em, < oo.
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Theorem 21.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 < p < co. A sequence {f,} C L? is Cauchy iff

1. {fn} is L° — Cauchy,

2.{|fu|"} — is uniformly integrable.

3. For all € > 0, there exists a set E € M such that u(E) < oo and
Jge | fnl? dp < € for all n. (This condition is vacuous when pu(X) < co.)

Proof. (=) Suppose {f,} C LP is Cauchy. Then (1) {f,} is LY —
Cauchy by Lemma 21.14. (2) By completeness of L, there exists f € LP such
that || f, — f||, — 0 as n — oc. By the mean value theorem,

P = 1fal?] < plmax(|f], D))"= 1fall < pOF1+ 1 DPTHIE = 1l

and therefore by Holder’s inequality,

/W | ful?ldp Sp/(lfl P A = ol dp Sp/(lfl LM — faldu

< DIS = Fallp 1A+ 1P g = DU+ Ll IE S = fulls
< p(IF o + 1Fallp)?41F = Fallp

where ¢ := p/(p — 1). This shows that [ ||f|" — |f.[P|dp — 0 as n — c0.* By
the remarks prior to Definition 21.32, {| f,, |’} is uniformly integrable. To verify
(3), for M >0 and n € Nlet Eyy = {|f| > M} and Ep(n) = {|fn| > M}.
Then u(En) < 575 | fI[5 < oo and by the dominated convergence theorem,

J 1817 dn= [ 171 cardi = 0.as Mt 0,
By

Moreover,

[ faleg, ||, < [1£165,

ot H(fn — e,

» = | f1ee, b T [ fn = fll,- (21.37)

So given € > 0, choose N sufficiently large such that for all n > N, ||f —
fall5 < €. Then choose M sufficiently small such that [,. [f[" du < e and
M

fEfvz(n) |fI? du < e forallm =1,2,...,N — 1. Letting E := Ej)y U Ep (1)U
-+ UEpM(N —1), we have

w(E) < oo, [folP du <eforn < N-—1
EC

and by Eq. (21.37)

3 Here is an alternative proof. Let hn = ||fal? — | f|IP| < |fal? + 1P =: gn € L' and
g = 2|f|”. Then g, % g, hn, £ 0 and J gn — [ g. Therefore by the dominated
convergence theorem in Corollary 21.17, lim [ h, du = 0.
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/ |fl? dp < (€Y7 + Y/PYP < 2P¢ for n > N.
Therefore we have found E € M such that u(E) < oo and

sup [\l d < 27
EC

which verifies (3) since ¢ > 0 was arbitrary. («<=) Now suppose{f,} C L?
satisfies conditions (1) - (3). Let ¢ > 0, FE be as in (3) and
Apn = {z € E|fm(z) — fulz)] = €}
Then
||(fn - fm) 1E°Hp < ||fn1EC||p + Hfm 1E“Hp <2e'/P

and

1fn = fanllp = 1(fn = fm)LEellp + [[(fr = fr)1EN A |l
+ H(fn - fm)]‘Amn H;D
<N (fa = fm)

Using properties (1) and (3) and 1gngjs,. —f,|<et|fm — fal? < €Plp € L', the
dominated convergence theorem in Corollary [21.17 implies

p+ 1 (fn = Fm)la,, llp + 2677 (21.38)

Jm)1E\A,,,

I = fn) 1o = [ L5t-picer U = Fal? 0

,M—00

which combined with Eq. (21.38) implies

limsup || fr = fonllp < Tmsup |[(fo = fin) 14, llp + 267

m,n— o0

Finally
H (fn - f7n) LApn

p = I fala,,, pT I fn 14 p < 20(¢)

where
d(e) :=sup sup{ ||fn 1gllp: E € M > u(E) <e}

By property (2), d(¢) — 0 as € — 0. Therefore

limsup || fr — fmllp < 2P +0+25() = 0ase | 0

m,n— o0

and therefore {f,} is LP-Cauchy. ]
Here is another version of Vitali’s Convergence Theorem.

Theorem 21.38 (Vitali Convergence Theorem). (This is problem 9 on
p. 133 in Rudin.) Assume that 1(X) < oo, {fn} is uniformly integrable, f, —
f a.e. and |f| < oo a.e., then f € L*(p) and f, — f in L*(p).
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Proof. Let € > 0 be given and choose 6 > 0 as in the Eq. (21.32)). Now use
Egoroft’s Theorem [21.18 to choose a set E° where {f,} converges uniformly
on E° and p(F) < 6. By uniform convergence on E€, there is an integer
N < oo such that |f, — fm| <1 on E° for all m,n > N. Letting m — oo, we
learn that

|fN 7f| < 1 on E°.

Therefore |f| < |fn|+ 1 on E¢ and hence
plf1) = wdlf]: B + pllf] = E)
< ) + p(X) + u(f] - B).
Now by Fatou’s lemma,

p(lf: E) <lim inf p([fa]: E) <2 < oo
by Eq. (21.32). This shows that f € L. Finally

pl1f = fal) = 1 f = fal : B+ p(|f — fu] : E)
<ullf = ful - B+ w11 + fu] - E)
<l = ful - B) + e

and so by the Dominated convergence theorem we learn that

lim sup u(|f — ful) < 4e.

n—oo
Since € > 0 was arbitrary this completes the proof. [

Theorem 21.39 (Vitali again). Suppose that f,, — f in p measure and Eq.
(21.84) holds, then f, — f in L'.

Proof. This could of course be proved using 21.38 after passing to sub-
sequences to get {f,} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f € L!(u). Now let

then ¢x(fn) 2 ¢ (f) because |dx (f) — dx(fa)l < |f — fol and since
Lf = fal SUf = dx (O +1ox(f) — dx(fu)l + 10K (fr) — fal
we have that

plf = ful < plf = o (N + plox (f) — dx (fa)l + pldx (fn) — fal
= u(f1: 11 2 K) + plor () = ¢x (fo)l + u( ful : 1fa] = K).

Therefore by the dominated convergence theorem

lim sup plf — ful < p(|f]:]f] = K)+lim sup p(lful 2 | ful > K).

n—oo

This last expression goes to zero as K — oo by uniform integrability. [ ]
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21.6 Exercises

Definition 21.40. The essential range of f, essran(f), consists of those
A € C such that p(|f — A <€) >0 for all e > 0.

Definition 21.41. Let (X, 7) be a topological space and v be a measure on
Bx = o(1). The support of v, supp(v), consists of those x € X such that
v(V) > 0 for all open neighborhoods, V, of x.

Exercise 21.3. Let (X, 7) be a second countable topological space and v be
a measure on By — the Borel o — algebra on X. Show

1. supp(v) is a closed set. (This is actually true on all topological spaces.)

2. v(X \ supp(v)) = 0 and use this to conclude that W := X \ supp(v)
is the largest open set in X such that v(W) = 0. Hint: let & C 7 be
a countable base for the topology 7. Show that W may be written as a
union of elements from V' € V with the property that u(V) = 0.

Exercise 21.4. Prove the following facts about essran(f).

1. Let v = fou:= pof~' —a Borel measure on C. Show essran(f) = supp(v).

2. essran(f) is a closed set and f(z) € essran(f) for almost every z, i.e.
ulf & ossran(f)) = 0.

3.If F Cc Cis a closed set such that f(x) € F for almost every x then
essran(f) C F. So essran(f) is the smallest closed set F' such that f(z) € F
for almost every .

4. [ fllo =sup{|A| : A € essran(f)}.

Exercise 21.5. Let f € L? N L*> for some p < oo. Show |f|, =
limg oo || f]], - If we further assume p(X) < oo, show || f[|, = limg—.c || f[|, for
all measurable functions f : X — C. In particular, f € L iff lim, o, ||fﬁq <
oco. Hints: Use Corollary 21.23 to show limsup,_, [|f[, < [[fll and to
show liminf, oo [ fl|, = Il . let M <|[[f]|,, and make use of Chebyshev’s
inequality.

Exercise 21.6. Prove Eq. (21.21)) in Corollary 21.23. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! + b~ = 1 chosen
appropriately,
st < s + i
— a b 3
(see Lemma (5.5 for Eq. (21.16])) applied to the right side of Eq. (21.20).

Exercise 21.7. Complete the proof of Proposition 21.22] by showing (LP +
L",||I|l) is a Banach space. Hint: you may find using Theorem [7.13]is helpful
here.

Exercise 21.8. Folland 6.5 on p. 186.
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Exercise 21.9. By making the change of variables, © = Inxz, prove the fol-
lowing facts:

1/2
/ 2% Inz|’dr <co<=a<lora=1landb< —1
0
/ 27%|Inz/"dr <co <= a>1lora=1andb< —1
2

1
/ 27 %|Inz"dr < oo <= a<landb> -1
0

oo
/ 27 Inz"dr < co <= a>1andb> —1.
1

Suppose 0 < po < p1 < oo and m is Lebesgue measure on (0,00). Use
the above results to manufacture a function f on (0,00) such that f €

L?((0,00) ,m) iff (a) p € (po,p1), (b) p € [po,p1] and (c) p = po.
Exercise 21.10. Folland 6.9 on p. 186.

Exercise 21.11. Folland 6.10 on p. 186. Use the strong form of Theorem
19.38.

Exercise 21.12. Let (X, M, ) and (Y,N,v) be o — finite measure spaces,
f€L*v)and k € L*(u®v). Show

/|kxy y)|dv(y) < oo for p — a.e. x.

Let K f(x fY x,y) f(y)dv(y) when the integral is defined. Show K f €
L?(u) and K : L?(v) — L*(u) is a bounded operator with 1K1, <
&l L2 (ur) -

Exercise 21.13. Folland 6.27 on p. 196. Hint: Theorem [21.28.
Exercise 21.14. Folland 2.32 on p. 63.

Exercise 21.15. Folland 2.38 on p. 63.
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Approximation Theorems and Convolutions

22.1 Density Theorems

In this section, (X, M, u) will be a measure space A will be a subalgebra of
M.

Notation 22.1 Suppose (X, M, ) is a measure space and A C M is a sub-
algebra of M. Let S(A) denote those simple functions ¢ : X — C such that
¢ ({A}) € A for all X € C and let S§(A, ) denote those ¢ € S(A) such that

(¢ # 0) < oc.

Remark 22.2. For ¢ € Sy(A, p) and p € [1,00), [¢]” = 30 o |2[P1g=-) and
hence

167 du=3"lalPuo = 2) < oc (221)

27#0

so that Sy(A, u) C LP(p). Conversely if ¢ € S(A)NLP(u), then from Eq. (22.1)
it follows that 1 (¢ = z) < oo for all z # 0 and therefore p (¢ # 0) < co. Hence
we have shown, for any 1 < p < o0,

Sp(A, 1) = S(A) N L ().

Lemma 22.3 (Simple Functions are Dense). The simple functions,
S¢(M, w), form a dense subspace of LP(u) for all 1 < p < oo.

Proof. Let {¢,},-, be the simple functions in the approximation Theo-
rem [18.42. Since |¢,,| < | f| for all n, ¢, € S§(M, ) and

|[f = onl” < (1f] +10ul)? < 27 [fI” € L' (1)

Therefore, by the dominated convergence theorem,

lim \f—¢n|pd,u=/ lim |f — ¢, |Pdu = 0.
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]
The goal of this section is to find a number of other dense subspaces of
LP () for p € [1,00). The next theorem is the key result of this section.

Theorem 22.4 (Density Theorem). Let p € [1,00), (X, M, ) be a mea-
sure space and M be an algebra of bounded F — valued (F=R or F =C)
measurable functions such that

1. M C L? (u,F) and o (M) = M.
2. There exists 1y, € M such that ¥y, — 1 boundedly.
3. If F = C we further assume that M is closed under complex conjugation.

Then to every function f € LP (u,F), there exists ¢, € M such that
imy, oo [|f = @nll 1o = 0, t.e. M is dense in LP (p,F).

Proof. Fix k € N for the moment and let H denote those bounded M —
measurable functions, f : X — F, for which there exists {¢,},., C M such
that lim, e ||k f — ¢n||LP(;L) = 0. A routine check shows H is a subspace
of £ (M,F) such that 1 € H, M C H and H is closed under complex
conjugation if F = C. Moreover, H is closed under bounded convergence.
To see this suppose f, € H and f, — f boundedly. Then, by the dominated
convergence theorem, limy, oo [t% (f = fu)ll 1oy = 0.1 (Take the dominating
function to be g = [2C |1x|]’ where C is a constant bounding all of the
{Ifa1}221 ) We may now choose ¢, € M such that [|¢n — ¥rfull oy < &
then

lim sup ||¢kf_ (anLP(H) <lim sup ”wk (f - fn)”Lp(H)
n—oo

n—oo
+lim sup [[Yxfn — Onllpogy =0  (22.2)

n—oo

which implies f € H. An application of Dynkin’s Multiplicative System The-
orem 18.51/if F = R or Theorem [18.52/ if F = C now shows H contains all
bounded measurable functions on X.

Let f € LP(u) be given. The dominated convergence theorem implies
limg— 00 H¢k1{|f|§k}f — f||Lp(M) = 0. (Take the dominating function to be

g = [2C|f|]” where C is a bound on all of the |¢/y|.) Using this and what we
have just proved, there exists ¢ € M such that

| =

[l f = Okl 1o <

The same line of reasoning used in Eq. (22.2) now implies limg oo || f — ¢kl 1o(,) =
0. u

L 1t is at this point that the proof would break down if p = co.
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Definition 22.5. Let (X, 7) be a topological space and u be a measure on
Bx = o (7). A locally integrable function is a Borel measurable function
f X — C such that fK |f]dp < oo for all compact subsets K C X. We will
write L}, .(u) for the space of locally integrable functions. More generally we

say fe LV (u) iff ||1Kf||Lp(M) < oo for all compact subsets K C X.

loc

Definition 22.6. Let (X, 7) be a topological space. A K -finite measure on
X is Borel measure p such that u (K) < oo for all compact subsets K C X.

Lebesgue measure on R is an example of a K-finite measure while counting
measure on R is not a K-finite measure.

Ezxample 22.7. Suppose that u is a K-finite measure on Brs. An application of
Theorem 22.4/shows C.. (R, C) is dense in LP(R%, Bga, u; C). To apply Theorem
224, let M := C, (]Rd,(C) and ¢y (z) := ¢ (z/k) where ¢ € C. (Rd,C) with
¥ (z) = 1 in a neighborhood of 0. The proof is completed by showing o (M) =
o (CC (Rd, (C)) = Bga, which follows directly from Lemma [18.57.

We may also give a more down to earth proof as follows. Let o € R?, R >
0, A := B(x,R)" and f, (z) := di‘/n (). Then f, € M and f, — 1p(z,R)
as n — oo which shows 1p(,, ) is o (M)-measurable, i.e. B (xo, R) € o (M).
Since zg € R? and R > 0 were arbitrary, o (M) = Bga.

More generally we have the following result.

Theorem 22.8. Let (X, 7) be a second countable locally compact Hausdorff
space and p : Bx — [0,00] be a K-finite measure. Then C.(X) (the space
of continuous functions with compact support) is dense in LP(u) for all p €
[1,00). (See also Proposition 7?7 below.)

Proof. Let M := C.(X) and use Item 3. of Lemma [18.57/ to find functions
Y € M such that ¥, — 1 to boundedly as k& — oco. The result now follows
from an application of Theorem [22.4' along with the aid of item 4. of Lemma
18.57. [

Exercise 22.1. Show that BC (R, C) is not dense in L (R, Bg, m;C). Hence
the hypothesis that p < co in Theorem [22.4] can not be removed.

Corollary 22.9. Suppose X C R" is an open set, Bx is the Borel o — algebra
on X and p be a K-finite measure on (X, Bx). Then C.(X) is dense in LP (1)
for all p € [1,00).

Corollary 22.10. Suppose that X is a compact subset of R™ and p is a finite
measure on (X, Bx), then polynomials are dense in LP(X,pu) for all 1 < p <
0.

Proof. Consider X to be a metric space with usual metric induced
from R™. Then X is a locally compact separable metric space and therefore
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C.(X,C) = C(X,C) is dense in LP(u) for all p € [1,00). Since, by the domi-
nated convergence theorem, uniform convergence implies LP (1) — convergence,
it follows from the Weierstrass approximation theorem (see Theorem [8.34 and
Corollary [8.36] or Theorem [12.31] and Corollary [12.32) that polynomials are
also dense in LP(u). n

Lemma 22.11. Let (X, 7) be a second countable locally compact Hausdorff

space and p : Bx — [0,00] be a K-finite measure on X. If h € L}, (1) is a

function such that
/ fhdp =0 for all f € C.(X) (22.3)
X

then h(z) =0 for p — a.e. x. (See also Corollary 7?7 below.)

Proof. Let dv(z) = |h(z)| dz, then v is a K-finite measure on X and hence
C.(X) is dense in L'(v) by Theorem 22.8. Notice that

/ f-sgn(h)dv = / fhdp =0 for all f € C.(X). (22.4)
X X
Let {Kj}ro; be a sequence of compact sets such that Kx 7 X as in Lemma

11.23. Then 1g,sgn(h) € L'(v) and therefore there exists f,, € C.(X) such
that f,, — 1x,sgn(h) in L'(v). So by Eq. (22.4),

v(Ky) = / lg,dv = lim fmsgn(h)dv = 0.
X

m— 00 X

Since K 1 X as k — 00, 0 =v(X) = [ |h|dp, i.e. h(z) =0 for 4 — ae. z. m
As an application of Lemma 22.11 and Example [12.34, we will show that
the Laplace transform is injective.

Theorem 22.12 (Injectivity of the Laplace Transform). For f €
LY([0,0),dx), the Laplace transform of f is defined by

LF(N) := /Ooo e f(x)dx for all X > 0.

If Lf(A) :=0 then f(x) =0 for m -a.e. .

Proof. Suppose that f € L'([0,00),dz) such that Lf(\) = 0. Let g €
Cy([0,0),R) and € > 0 be given. By Example [12.34] we may choose {ax}r>0
such that # ({A > 0:ax #0}) < co and

lg(x) — Z axe | < ¢ for all z > 0.
A>0

Then
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/OOO (g(a:) - Z a,\e)‘“’) f(z)dz

A>0
oo
< /
0

Since € > 0 is arbitrary, it follows that fooo g(x)f(x)dx = 0 for all g €
Co([0,00),R). The proof is finished by an application of Lemma 22.11. [ ]
Here is another variant of Theorem 22.8|

/ " ge) f(a)da

g@) =Y axe™||f(x)| dz < | fl1.

A>0

Theorem 22.13. Let (X,d) be a metric space, T4 be the topology on X gen-
erated by d and Bx = o(14) be the Borel o — algebra. Suppose p: Bx — [0, 0]
is a measure which is o — finite on Tq and let BCy(X) denote the bounded
continuous functions on X such that u(f # 0) < co. Then BC§(X) is a dense
subspace of LP(u) for any p € [1,00).

Proof. Let X}, € 74 be open sets such that X T X and u(Xy) < oo and
let

Yr(z) = min(1, k - dxg (v)) = dr(dx; (7)),
see Figure 22.1 below. It is easily verified that M := BCy(X) is an algebra,

Fig. 22.1. The plot of ¢, for n =1, 2, and 4. Notice that ¢, — 1(0,o0)-

Y € M for all k and ¢ — 1 boundedly as & — oco. Given V' € 7 and
k,n € N let

Jim (2) :==min(1,n - dynx,)e ().
Then {fr, #0} =V N Xy so fin € BO(X). Moreover

lim lim fk,n = klim IVﬁXk = 1\/

k—o00 n—o00

which shows V' € o (M) and hence o (M) = Bx. The proof is now completed
by an application of Theorem [22.4. [ ]
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Exercise 22.2. (BRUCE: Should drop this exercise.) Suppose that (X, d) is
a metric space, 4 is a measure on Bx := o(74) which is finite on bounded
measurable subsets of X. Show BCj(X,R), defined in Eq. (19.26), is dense in
L? (). Hints: let ¢, be as defined in Eq. (19.27) which incidentally may be
used to show o (BCy(X,R)) = ¢ (BC(X,R)). Then use the argument in the
proof of Corollary [18.55 to show o (BC(X,R)) = Bx.

Theorem 22.14. Suppose p € [1,00), A C M is an algebra such that o(A) =
M and p is o — finite on A. Then S¢(A, i) is dense in LP (). (See also Remark
?? below.)

Proof. Let M := S¢(A, 1). By assumption there exits X € A such that
(X)) < ccand X T X as k — oco. If A € A, then X; NA € A and
p(XpNA) < oo sothat 1x,na € M. Therefore 14 = limg_,00 1x,n4 is o (M)
— measurable for every A € A. So we have shown that A C o (M) C M
and therefore M = 0 (A) C ¢ (M) C M, ie. 0(M) = M. The theorem
now follows from Theorem 22.4! after observing i, := 1x, € M and ¢y, — 1
boundedly. [ ]

Theorem 22.15 (Separability of L? — Spaces). Suppose, p € [1,00), A C
M is a countable algebra such that o(A) = M and p is o — finite on A. Then
LP(u) is separable and

D={> ajla, :a; € Q+iQ, A; € A with u(A;) < oo}
is a countable dense subset.

Proof. It is left to reader to check D is dense in Sy(A, ) relative to the
LP(p) — norm. The proof is then complete since S¢(A, pt) is a dense subspace
of LP () by Theorem [22.14. |

Ezample 22.16. The collection of functions of the form ¢ = > 7'_, ¢ Liaw, by
with ag, by € Q and ay < by are dense in LP(R, Bg, m; C) and LP(R, Bg,m;C)
is separable for any p € [1, 00). To prove this simply apply Theorem [22.14 with
A being the algebra on R generated by the half open intervals (a,b] NR with
a < banda,b € QU{*oo},ie. A consists of sets of the form [[}_, (ax, bx] R,
where ay, by, € QU {*o0}.

Exercise 22.3. Show L*°([0, 1], Bg, m;C) is not separable. Hint: Suppose
I' is a dense subset of L>°([0,1], Bg,m;C) and for A € (0,1), let fi (z) :=
Ljo,z] () . For each A € (0,1), choose gx € I' such that || fx — gx|l, < 1/2 and
then show the map A € (0,1) — gy € I' is injective. Use this to conclude that
I" must be uncountable.

Corollary 22.17 (Riemann Lebesgue Lemma). Suppose that f € L*(R, m),
then

: AT _
lim /Rf(x)e dm(z) = 0.

A—+oo
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Proof. By Example 22.16, given ¢ > 0 there exists ¢ = ZZ=1 Ckl(ay,by
with ay, br € R such that

/|ff¢|dm<5.
R

Notice that
/ ¢($)€i/\xdm($) = / Z ckl(ak,bk](m)eikxdm(‘x)
R R k=1
n b ) n .
= ch/ el)‘xdm(x) == ch)\*lel)\w|glz
=1 ag k=1
Y ()~ 0 3] =
k=1

Combining these two equations with

Af@ﬁ”mmm

<

Auuwwm»wwmm

4 ’ /R 6(2)e ™ dm(z)

<§4V—¢Wm+m4¢@k”Wm@)

<e+

A¢@EMme>

we learn that

lim sup
|A|—o0

<e+lim sup

|A|— o0

=£.

Afuw”mmm

Awmwwmm

Since € > 0 is arbitrary, this completes the proof of the Riemann Lebesgue
lemma. [ ]

Corollary 22.18. Suppose A C M is an algebra such that o(A) = M and p
is o — finite on A. Then for every B € M such that u(B) < co and € > 0
there exists D € A such that n(BAD) < e. (See also Remark 77 below.)

Proof. By Theorem 22.14, there exists a collection, {A;};_, , of pairwise
disjoint, subsets of A and A; € R such that [ [1p — f|dp < & where f =
S Aila,. Let Ag:= X \ U A; € A then
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/Xlleldu;/AiIleldu

/ 15— Ai\dw/ 15— Aildu]
A;NB A;\B

i

ZM(AOHB)—FXTL:

i=1

=p(AgNB)+ ) [I1 = Xi|p (BN A;) + |\i| (A \ B)] (22.5)
=1

zu(AomB)+Zmin{p (BN A;), (A \ B)} (22.6)

where the last equality is a consequence of the fact that 1 < |X;| + |1 — X\;].

Let '_{OifM(BﬂAi)<M(Ai\B)
YT\ it (BN A) > (4 )\ B)

and g = Y7 | a;14, = 1p where
D:=U{4;:i>0& a; =1} € A

Equation (22.5) with \; replaced by «; and f by g implies

n

/X|1B—1D|du:u(AoﬂB)+Zmin{u(BﬂAi),u(Ai\B)}.

=1

The latter expression, by Eq. (22.6), is bounded by [y [1p — f|dp < € and
therefore,

/L(BAD) :/ |1B - 1D|d/14 <eE.
X
]

Remark 22.19. We have to assume that p(B) < oo as the following example
shows. Let X =R, M = B, u =m, A be the algebra generated by half open
intervals of the form (a, b}, and B = U2, (2n, 2n+ 1]. Tt is easily checked that
for every D € A, that m(BAD) = oo.

22.2 Convolution and Young’s Inequalities

Throughout this section we will be solely concerned with d — dimensional
Lebesgue measure, m, and we will simply write LP for LP (Rd, m) .

Definition 22.20 (Convolution). Let f,g : R — C be measurable func-
tions. We define

fxg(r) = y flz —y)g(y)dy (22.7)
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whenever the integral is defined, i.c. either f(x—-)g(-) € L'(R* m) or
f(x—-)g(-) > 0. Notice that the condition that f(x —-)g(-) € L*(R% m)
is equivalent to writing |f| * |g| (x) < oo. By convention, if the integral in Eq.
(22.7) is not defined, let f = g(x) := 0.

Notation 22.21 Given a multi-indexr o € Z%, let |a| = a1 + -+ + aq,

. d o . o\ d 9 \%
x :=HJ;]-J, and aw:(&r) :H((,m) .

j=1
Forz € R% and f :R? — C, let . f : R? — C be defined by 7. f(z) = f(x—z).
Remark 22.22 (The Significance of Convolution).

1. Suppose that f,g € L' (m) are positive functions and let u be the measure
on (Rd)2 defined by

dp (z,y) := f () g (y) dm (x) dm (y) .

Then if A : R — [0, 00] is a measurable function we have
/ h(z+y)du(z,y) = / h(z +y) f(z) g (y) dm (x) dm (y)
(Re)? (Re)?
= [ A@ =0 g W dn @) dn ()

:/ h(z) f+*g(x)dm(z).
Rd

In other words, this shows the measure (f * g) m is the same as S,y where
S (z,y) := z+y. In probability lingo, the distribution of a sum of two “in-
dependent” (i.e. product measure) random variables is the the convolution
of the individual distributions.

2. Suppose that L = Zlal <k a,,0% is a constant coefficient differential oper-
ator and suppose that we can solve (uniquely) the equation Lu = ¢ in the
form

u(z) = Kg(x) := /Rd k(z,y)g(y)dy
where k(z,y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the
inverse operation to differentiation.) Since 7,L = L7, for all z € R?, (this
is another way to characterize constant coefficient differential operators)
and L~! = K we should have 7, K = K7,. Writing out this equation then
says

g k(z = 2,y)9(y)dy = (Kg) (¢ — 2) = . Kg(z) = (K729) (z)

= / k(x,y)g(y — z)dy = / k(x,y + 2)g(y)dy.
Rd Rd
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Since g is arbitrary we conclude that k(z — z,y) = k(x,y + z). Taking
y = 0 then gives

k(x,z) = k(z — 2,0) =: p(x — 2).

We thus find that Kg = p* g. Hence we expect the convolution operation
to appear naturally when solving constant coefficient partial differential
equations. More about this point later.

Proposition 22.23. Suppose p € [1,00], f € L* and g € LP, then f x g(z)
exists for almost every x, fx g € LP and

I1f gll, < [1£111 [1gll, -

Proof. This follows directly from Minkowski’s inequality for integrals,
Theorem [21.27. ]

Proposition 22.24. Suppose that p € [1,00), then T, : LP — L? is an iso-
metric isomorphism and for f € LP, z € R* — 7, f € L is continuous.

Proof. The assertion that 7, : LP — LP is an isometric isomorphism
follows from translation invariance of Lebesgue measure and the fact that
T_, o T, = id. For the continuity assertion, observe that

7= f — Tnyp =7y (7 — Tyf)Hp =y f - f”p

from which it follows that it is enough to show 7. f — f in LP as z — 0 € R%.
When f € Ce(R?), 7. f — f uniformly and since the K := U}, <isupp(r. f) is
compact, it follows by the dominated convergence theorem that 7,f — f in
LP as z — 0 € R%. For general g € L? and f € C.(R?),

729 — 9||p <9 — Tzf”p + | f — f||p +IIf - 9||p
= lm=f = fll, + 211f —gll,
and thus

lim sup [7:9 — gll, < lim sup I f = fl, +20f=gll,=21f-4gl,-
zZ— zZ—

Because C.(R?) is dense in LP, the term || f — gll, may be made as small as
we please. n

Exercise 22.4. Let p € [1,00] and |[7. — ||} 1s(;n)) be the operator norm
7. — 1. Show |72 — I{|(1n(my) = 2 for all z € R<\ {0} and conclude from
this that z € R? — 7, € L(LP?(m)) is not continuous. Hints: 1) Show
| — I||L(Lp(m)) = HT‘Z‘GI — IHL(Lp(m)). 2) Let z = te; with ¢ > 0 and look
for f € L? (m) such that 7, f is approximately equal to —f. (In fact, if p = oo,
you can find f € L* (m) such that 7.f = —f.) (BRUCE: add on a problem
somewhere showing that o (7,) = S! C C. This is very simple to prove if p = 2
by using the Fourier transform.)
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Definition 22.25. Suppose that (X, 7) is a topological space and u is a mea-
sure on Bx = o(1). For a measurable function f : X — C we define the
essential support of f by

supp, (f) ={z € X : u({y € V : f(y) # 0}}) > 0 V neighborhoods V' of x}.
(22.8)
Equivalently, x ¢ suppu(f) iff there exists an open neighborhood V' of x such
that 1y f =0 a.e.

It is not hard to show that if supp(u) = X (see Definition 21.41) and
f € C(X) then supp,,(f) = supp(f) := {f # 0}, see Exercise 22.7.

Lemma 22.26. Suppose (X, 7) is second countable and f : X — C is a mea-
surable function and yu is a measure on Bx. Then X := U \ supp,(f) may
be described as the largest open set W such that fly(x) = 0 for p — a.e. x.
Equivalently put, C := suppu(f) is the smallest closed subset of X such that

f=f1lc a.e.

Proof. To verify that the two descriptions of Suppu( f) are equivalent,
suppose supp,,(f) is defined as in Eq. (22.8) and W := X \ supp,,(f). Then

W={zxeX:37>5V 3z such that u({y € V: f(y) #0}}) =0}
=U{V C, X : u(f1ly #0) =0}
=U{V C, X: fly =0for p—ae}.

So to finish the argument it suffices to show p (flw # 0) = 0. To to this let
U be a countable base for 7 and set

U ={V elU: fly =0 ae.}.
Then it is easily seen that W = Ul{y and since Uy is countable
p(flw #0)< Y u(fly #0)=0.
Veuy

Lemma 22.27. Suppose f,g,h : R? — C are measurable functions and as-
sume that = is a point in RY such that | f|*|g| (x) < oo and |f|*(|g| * |h|) (z) <
oo, then

1. frg(x)=gx* f(x)
2. fx(g*h)(z)=(f*g)*h(x)
3. If z € R and 7.(|f| * |g])(x) = | f| * |g] (x — ) < oo, then

T.(fxg)(x) =T fxg(x) = f*T.9(x)
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4. If x ¢ supp,, (f) + supp,,,(g) then f* g(x) =0 and in particular,

supp,,,(f * g) C supp,,,(f) + supp,,(9)

where in defining supp,, (f *g) we will use the convention that “f xg(x) #
0” when |f| *|g| (x) = oc.

Proof. For item 1.,

|f]* gl (z) =/Rd|f| (. —y)lgl (y)dy:/Rdlfl () gl (y — 2)dy = |g| = | f] (x)

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y — x — y. Similar computations prove
all of the remaining assertions of the first three items of the lemma. Item
4. Since f * g(z) = f gla) if f = f and ¢ = § a.e. we may, by replacing
by flsupp,, () and g by glgupp, (o) if necessary, assume that {f # 0} C
supp,, (f) and {g # 0} C supp,,(g). So if x ¢ (supp,,(f) + supp,,(g)) then
x ¢ ({f#0}+{g+#0}) and for all y € R?, either x —y ¢ {f #0} or y ¢
{g # 0}. That is to say either x —y € {f =0} or y € {g =0} and hence
f(x—y)g(y) = 0 for all y and therefore f*g(x) = 0. This shows that fxg =10

on R?\ (suppm( f) + supp,, (g)) and therefore

R%\ (Sum)m(f )+ suppm(g)) C R\ supp,,(f * g),

i.e. supp,, (f * g) C supp,, (f) + supp,,(g)- "

Remark 22.28. Let A, B be closed sets of R?, it is not necessarily true that
A+ B is still closed. For example, take

A={(z,y):x>0and y > 1/z} and B ={(z,y):x <0and y > 1/|x|},

then every point of A+ B has a positive y - component and hence is not zero.
On the other hand, for z > 0 we have (z,1/z)+ (—z,1/2) = (0,2/x) € A+ B
for all x and hence 0 € A + B showing A + B is not closed. Nevertheless if
one of the sets A or B is compact, then A + B is closed again. Indeed, if A is
compact and z,, = a, + b, € A+ B and z,, — z € R?, then by passing to a
subsequence if necessary we may assume lim,_ .., a, = a € A exists. In this
case

lim b, = lim (z, —an,) =z —a € B
n—o0 n—od

exists as well, showing x =a+be€ A+ B.

Proposition 22.29. Suppose that p,q € [1,00] and p and q are conjugate
exponents, f € LP and g € LY, then f xg € BO(RY), ||f*g| ., < ||f||p Hqu
and if p,q € (1,00) then f x g € Co(RY).



22.2 Convolution and Young’s Inequalities 421

Proof. The existence of f*g(x) and the estimate [f x g| (z) < || f|[, [|g]|, for

all z € R? is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows || f = g|[, < || f][, l4ll, -
By relabeling p and ¢ if necessary we may assume that p € [1,00). Since

72 (fxg) — f*gll, = lT=fxg— f*gll,
< ”TZf_pr ||g||q —0asz—0

it follows that f x ¢ is uniformly continuous. Finally if p, ¢ € (1, 00), we learn
from Lemma 22.27 and what we have just proved that f,, * g, € C.(R?)
where f,, = f1)f<m and g, = gl|g/<m- Moreover,

< = fmlly lglly + 1wl lg = gmll,
<N = Fally Nglly + 11, llg = gmll; — 0 as m — oo

showing, with the aid of Proposition 12.23, f x g € Co(R?). ]

Theorem 22.30 (Young’s Inequality). Let p,q,r € [1,00] satisfy
S4S=1+4- (22.9)
P q r

If f € LP and g € L then |f] *|g| (x) < 0o for m — a.e. © and

1 gl < £l llgll - (22.10)

In particular L* is closed under convolution. (The space (L', *) is an example
of a “Banach algebra” without unit.)

Remark 22.31. Before going to the formal proof, let us first understand Eq.
(22.9) by the following scaling argument. For A > 0, let fy(z) := f(\x), then
after a few simple change of variables we find

LA, = AP fIl and (f * g)x = A% * ga-
Therefore if Eq. (22.10) holds for some p, g, € [1, 00], we would also have
1F % gll, = X771 * @Al S A" XSl lgall, = A= p= D g ig]l,
for all A > 0. This is only possible if Eq. (22.9)) holds.

Proof. By the usual sorts of arguments, we may assume f and g are
positive functions. Let v, 3 € [0, 1] and py, pp € (0, 00] satisfy p; *+py +r~1 =
1. Then by Hélder’s inequality, Corollary [21.3]
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frat@) = [ =009 =0 9)dy

1/r 1/p1
S( ﬂz—w“””mw“ﬁ”@> </ ﬂx—@”%@ x
R4 Rd

1/p2
x (][ g(yY%”dy>
Rd
1/r
= ([ fa= gy} 115, ol

Taking the r'" power of this equation and integrating on x gives

Ireaty < [ ([, 5= 00t ray) o 1515, o1,

1—a)r 1-08)r ar r
= IS gl = 1A, gl G, - (22.11)

Let us now suppose, (1 — a)r = ap; and (1 — 8)r = Bpe, in which case Eq.
(22.11) becomes,

1f g7 < 1fllop, 11915,
which is Eq. (22.10) with

p:=(1—-a)r =ap and ¢ := (1 - B)r = Bpa. (22.12)

So to finish the proof, it suffices to show p and ¢ are arbitrary indices in
[1, 00] satisfying p~! +¢~ ! = 1+77L. If o, 8, p1, p2 satisfy the relations above,
then

a=—" and § = !
T+ p1 T+ p2
and
1 1 1 1 1r+ 1r+
ST I S p1+7 D2
p q api ap2 pr T p2 T
1 1 2 1
=—+—4+-=14+-.
D1 D2 r r

Conversely, if p, g, r satisfy Eq. (22.9), then let o and S satisfy p = (1 — a)r

and ¢ = (1 — B)r, i.e.

r—q
r

a:zr_pzl—gglandﬁ:
r r

=1-1<1.
r
Using Eq. (22.9) we may also express a and 3 as

1 1
azp(l—g)ZOandﬂzq(l—5)>O

and in particular we have shown «, 8 € [0, 1]. If we now define p; := p/a €
(0,00] and py := q/83 € (0, 00], then
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—+ —+-=0-4+a—+ -
P1r P2 r q p T
1 1
=(1--)+0-=)+-
q
1 1
=2 1+)+:1
r r
as desired. [ |

Theorem 22.32 (Approximate 6 — functions). Let p € [1,00], ¢ €
LY'(RY), a:= [pa ¢(zx)dx, and for t > 0 let ¢y(x) = t~p(x/t). Then

1. If f € LP withp < oo then ¢y x f — af in LP ast | 0.

2. If f € BC(RY) and f is uniformly continuous then |¢s x f —af|| ., — 0
ast | 0.

3. If f € L*> and f is continuous on U C, RY then ¢y * f — af uniformly
on compact subsets of U ast | 0.

Proof. Making the change of variables y = tz implies

ous f@) = [ fe—matds= [ rla =)o)
so that

bux J(@) = af(@) = [ | 1fla=t2) = )] (a)ds

= /Rd [T f(z) — f(x)] p(2)dz. (22.13)

Hence by Minkowski’s inequality for integrals (Theorem [21.27)), Proposition
22.24] and the dominated convergence theorem,

0% £ ~afl, < [ lred = 1,10 dz 0 ast Lo,

Item 2. is proved similarly. Indeed, form Eq. (22.13))

o0+ 1 =afle < [ Imed = Sl o) d:

which again tends to zero by the dominated convergence theorem because
limy|o || 72 f — f|.. = 0 uniformly in z by the uniform continuity of f.
Item 3. Let Br = B(0, R) be a large ball in R? and K CC U, then
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sup |y * f(z) — af (z)|
rzEK

<

+

/B [fla—t2) — f(2)] d(2)d=

/B (o —t2) — f(2)] d(2)d=

c
R

< [ 16@lds s ifm—t2) - @1+ 200 [ 1612

rzeK,z€BRr <

<|¢lly-  sup If(ﬂf—tZ)—f(x)H?IIfHoo/ 6(2)| d=

r€K,2€BRr |z|>R

so that using the uniform continuity of f on compact subsets of U,

timsup sup |01 £(2) ~ af (@) < 20f e [ Jol2)dz 0 as R oc,
t10 z€K |z|>R
]
See Theorem 8.15 of Folland for a statement about almost everywhere
convergence.

Exercise 22.5. Let

e Vtif t >0
f(t)_{ 0 ift<0.

Show f € C®(R, [0,1]).

Lemma 22.33. There ewists ¢ € C®(R%,[0,00)) such that ¢(0) > 0,
supp(¢) C B(0,1) and [pq ¢(z)dz = 1.

Proof. Define h(t) = f(1 —t)f(t + 1) where f is as in Exercise 22.5.
Then h € C*(R,[0,1]), supp(h) C [-1,1] and h(0) = e=2 > 0. Define ¢ =
Jga h(|x|?)dx. Then ¢(x) = ¢ h(|z[?) is the desired function. |

The reader asked to prove the following proposition in Exercise 22.9 below.

Proposition 22.34. Suppose that f € L} (R m) and ¢ € CHR?), then

fxé € CYRY) and 0;(f * ¢) = f * 0;¢. Moreover if ¢ € CX(R?) then
fx¢eCe(RY).

Corollary 22.35 (C*° — Uryhson’s Lemma). Given K CC U C, RY, there
exists f € C(R%,[0,1]) such that supp(f) CU and f =1 on K.

Proof. Let ¢ be as in Lemma 22.33, ¢;(z) = t~¢(x/t) be as in Theorem
92.32 d be the standard metric on R? and ¢ = d(K,U*®). Since K is compact
and U¢€ is closed, € > 0. Let V5 = {ar eR?:d(x,K) < (5} and f = ¢ /3% 1y,
then

supp(f) C supp(¢e/3) + Veyz C Voeyz C UL
Since Va3 is closed and bounded, f € C2°(U) and for = € K,

flz) = /Rd Lagy,k)<e/3 * Pey3(x —y)dy = /Rd bey3(x —y)dy = 1.
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The proof will be finished after the reader (easily) verifies 0 < f < 1. ]
Here is an application of this corollary whose proof is left to the reader,
Exercise 22.10.

Lemma 22.36 (Integration by Parts). Suppose f and g are measur-

able functions on R? such that t — f(x1,...,2i 1,t,Ti41,...,24) and t —
g(x1, .1, b, Tiq1, ..., 2q) are continuously differentiable functions on R
for each fized x = (a;l,.. ,zq) € RY. Moreover assume f - g, aa{ - g and
I % are in L*(R?, m). Then
of dg
-gdm = — dm
/Rd 8@ 9 Rdf 8.131

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 22.37 (Riemann Lebesgue Lemma). For f € L'(R% m) let
(&)= @m)™ | fl@)e™ " dm(x)
Rd

be the Fourier transform of f. Then f € Co(R?) and HfH 2m)= 2|1 £, -

/2

(The choice of the normalization factor, (2m)~%2 in f is for later conve-

nience. )

Proof. The fact that f is continuous is a simple application of the domi-
nated convergence theorem. Moreover,

f©]< [ 1f@ldm(z) < en =21,

so it only remains to see that f(£) — 0 as |¢| — oo. First suppose that
f e C2RY) and let A = N4 2% be the Laplacian on R?. Notice that

j=1 dz2
%e‘ié‘“’ = —ifje_’f'w and Ae %7 = — |§|2 e~ %? Using Lemma 22.36 re-
peatedly,
Arf(a)e™ T dm(z) = | fx)Afe " Tdm(a ¢ / f@)e™ " dm()
Rd Rd

= —(@m)"2 g f(©)
for any k € N. Hence

(@2 | f)| < g7 [|laks], — 0

as |¢] — oo and f € Co(R?). Suppose that f € L'(m) and fr € C=(R?) is

a sequence such that limg_. || f — fx|l; = 0, then limy_. Hf — fk = 0.

o0

Hence f € Cy(R%) by an application of Proposition [12.23. ]
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Corollary 22.38. Let X C R? be an open set and p be a K-finite measure
on Bx.

1. Then C°(X) is dense in LP(u) for all 1 < p < 0.
2.If h € L, (n) satisfies

loc

/ fhdp =0 for all f € C°(X) (22.14)
bl

then h(x) =0 for p — a.e. x.

Proof. Let f € C.(X), ¢ be as in Lemma [22.33, ¢; be as in Theorem
22.32] and set ¢y := ¢+ * (f1x) . Then by Proposition 22.34 ¢, € C*°(X) and
by Lemma 22.27 there exists a compact set K C X such that supp(¢;) C K
for all ¢ sufficiently small. By Theorem 22.32, ¢); — f uniformly on X ast¢ | 0

1. The dominated convergence theorem (with dominating function being
I fllo 1x), shows ¢y — f in LP(u) as t | 0. This proves Item 1., since
Theorem 22.8 guarantees that C.(X) is dense in LP(u).

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being || f||, || 1x) implies

=1 hdp = [ 1i hdp = hdp.
0 tllrg/xwt 7 /thi%”/)t I /Xf v
The proof is now finished by an application of Lemma 22.11l

22.2.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 12.16, Theorem [12.18
and Corollary [12.20. The proofs of these results are the same as their contin-
uous counterparts. One simply uses the smooth version of Urysohn’s Lemma
of Corollary [22.35 in place of Lemma [12.8.

Proposition 22.39 (Smooth Partitions of Unity for Compacts). Sup-
pose that X is an open subset of R, K C X is a compact set and U = {Uj}?:1
is an open cover of K. Then there exists a smooth (i.e. h; € C*(X,[0,1]))
partition of unity {hj}?zl of K such that hy < U; for all j =1,2,...,n.

Theorem 22.40 (Locally Compact Partitions of Unity). Suppose that
X is an open subset of R and U is an open cover of X. Then there exists a
smooth partition of unity of {h;}}., (N = oo is allowed here) subordinate to
the cover U such that supp(h;) is compact for all i.

Corollary 22.41. Suppose that X is an open subset of R? and U =
{Ua}pca C 7 is an open cover of X. Then there exists a smooth partition
of unity of {ha}aca subordinate to the cover U such that supp(hy) C Uy for
all o € A. Moreover if U, is compact for each o € A we may choose hy so
that hy < U,.
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22.3 Exercises

Exercise 22.6. Let (X,7) be a topological space, u a measure on Bx =
o(r) and f : X — C be a measurable function. Letting v be the measure,
dv = |f| du, show supp(v) = supp,,(f), where supp(v) is defined in Definition
21.41)).

Exercise 22.7. Let (X, 7) be a topological space, y a measure on Bx = o(7)
such that supp(u) = X (see Definition 21.41). Show supp,,(f) = supp(f) =

{f # 0} for all f € C(X).

Exercise 22.8. Prove the following strong version of item 3. of Proposition
10.52, namely to every pair of points, z¢, x1, in a connected open subset V'
of R? there exists 0 € C*(R, V) such that o(0) = x¢ and o(1) = x;. Hint:
First choose a continuous path v : [0, 1] — V such that v (t) = ¢ for ¢ near 0
and v (t) = x; for ¢t near 1 and then use a convolution argument to smooth +.

Exercise 22.9. Prove Proposition [22.34/ by appealing to Corollary 19.43.

Exercise 22.10 (Integration by Parts). Suppose that (z,7) € R x R¥™! —
f(z,y) € C and (z,y) € R xR — g(z,y) € C are measurable functions
such that for each fixed y € RY, x — f(z,y) and z — g(x,y) are continuously
differentiable. Also assume f - g, 0, f - g and f - Jd,¢g are integrable relative to
Lebesgue measure on R x R where 9, f(z,y) := 4 f(x +t,y)|i=0. Show

/ O:f(2,y) - g(x,y)dzdy = f/ f(z,y) - Opg(x,y)dxdy. (22.15)
RxR4—1

RxR4-1

(Note: this result and Fubini’s theorem proves Lemma [22.36)

Hints: Let ¢ € C°(R) be a function which is 1 in a neighborhood of
0 € R and set ¢ (z) = ¢(ex). First verify Eq. (22.15) with f(z,y) replaced
by . (x)f(x,y) by doing the x — integral first. Then use the dominated con-
vergence theorem to prove Eq. (22.15)) by passing to the limit, £ | 0.
Exercise 22.11. Let p be a finite measure on Bga, then D := span{e?*? :
A € R4} is a dense subspace of LP(u) for all 1 < p < oo. Hints: By Theorem
22.8, C.(RY) is a dense subspace of LP(u). For f € C.(R?) and N € N, let

fn(x) = Z f(z + 27 Nn).

nezd

Show fy € BC(R?) and  — fx(Nx) is 27 — periodic, so by Exercise 12.13)
r — fn(Nz) can be approximated uniformly by trigonometric polynomials.
Use this fact to conclude that fy € D" ("), After this show fx — f in LP(p).

Exercise 22.12. Suppose that p and v are two finite measures on R% such
that
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/R , e du(x) = /R , e dy(x) (22.16)

for all A € R%. Show u = v.

Hint: Perhaps the easiest way to do this is to use Exercise [22.11/ with the
measure g being replaced by p + v. Alternatively, use the method of proof
of Exercise 22.11/ to show Eq. (22.16) implies [, fdu(x) = [pa fdv(zx) for all
f € C.(R?%) and then apply Corollary [18.58!

Exercise 22.13. Again let p be a finite measure on Bga. Further assume that
Cy = fpa €MI7ldp(z) < oo for all M € (0,00). Let P(R?) be the space of
polynomials, p(z) = 3, <y Paz® With po € C, on R<. (Notice that |p(z)|” <
CeMlzl for some constant C = C(p,p, M), so that P(R?) c LP(u) for all
1 < p < 00.) Show P(R?) is dense in LP(u) for all 1 < p < co. Here is a
possible outline.

Outline: Fix a A € R? and let f,(x) = (A- )" /n! for all n € N.

1. Use calculus to verify sup,qt*e~ ™" = (a/M)" e for all & > 0 where
(0/M)° := 1. Use this estimate along with the identity

‘)\ . z|lm < ‘)\|:lm ‘x|Pn _ (|x|1m efM\z\) |>\‘P” M|zl

to find an estimate on || f,|[, .
2. Use your estimate on || f, ||, to show 3°7% ;|| fa ||, < 0o and conclude

=0.

p

lim
N—oo

. N
PO Y i,
n=0

3. Now finish by appealing to Exercise 22.11.

Exercise 22.14. Again let u be a finite measure on Bra but now assume
there exists an € > 0 such that C' := [, esl*ldpu(z) < oo. Also let ¢ > 1 and
h € L(p) be a function such that [p, h(x)z*du(x) = 0 for all o € N§. (As
mentioned in Exercise22.14, P(R4) C LP(u) for all 1 < p < 0o, so x — h(z)x®
is in L'(u).) Show h(x) = 0 for p— a.e. x using the following outline.

Outline: Fix a A € RY let f,,(z) = (A-2)" /n! for all n € N, and let
p=¢q/(q — 1) be the conjugate exponent to g.

1. Use calculus to verify sup;sqt®e™ <" = (a/e)® e for all & > 0 where

(0/¢)° := 1. Use this estimate along with the identity
A-a™ < AP [l = (Jaf™ eelel) AP este

to find an estimate on || f,|,, -
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. Use your estimate on ||f,[[, to show there exists § > 0 such that
> omeo lfall, < oo when [A| < § and conclude for [A| < 4§ that eNT =
LP(p)-Y"07 o i" fn(z). Conclude from this that
/ h(x)e™®du(z) = 0 when |\ < 4.
Rd

. Let A € R? (JA| not necessarily small) and set g(t) := [p. € "h(z)dp(z)
for t € R. Show g € C*°(R) and

g™ (t) = /]Rd (i) - )" T h(z)du(x) for all n € N.
. Let T = sup{7 > 0: g|j,;1 = 0}. By Step 2., T'> 6. If T < o0, then
0=g"(T) = /Rd (X - 2)"e T h(x)du(x) for all n € N.
Use Step 3. with h replaced by eT**h(zx) to conclude
g(T+1t) = /Rd e THONTh (Y dp(z) = 0 for all t < 5/ |A|.

This violates the definition of T" and therefore 7' = oo and in particular
we may take T =1 to learn

/ h(x)e* ®du(z) = 0 for all A € R%.
]Rd
. Use Exercise 22.11] to conclude that
[ ha)g(a)duta) =0
R4

for all g € LP(u). Now choose g judiciously to finish the proof.
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L2 - Hilbert Spaces Techniques and Fourier
Series

This section is concerned with Hilbert spaces presented as in the following
example.

Ezample 23.1. Let (X, M, ) be a measure space. Then H := L*(X, M, )
with inner product

(o) = [ 1~ gdu
X
is a Hilbert space.

It will be convenient to define
<f7g>:==j/ f (@) g (2) dpt () (23.1)
X

for all measurable functions f,g on X such that fg € L' (u). So with this
notation we have (f|g) = (f,g) for all f,g € H.

Exercise 23.1. Let K : L?(v) — L?(u) be the operator defined in Exercise
21.12. Show K* : L?(u) — L?(v) is the operator given by

wazéamwmwm.

23.1 L2-Orthonoramal Basis

Example 23.2. 1. Let H = L*([-1,1],dm), A:={1,z,2%,23... } and 3 C H
be the result of doing the Gram-Schmidt procedure on A. By the Stone-
Weierstrass theorem or by Exercise 22.13 directly, A is total in H. Hence
by Remark [14.26, § is an orthonormal basis for H. The basis, (3, consists
of polynomials which up to normalization are the so called “Legendre
polynomials.”
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2. Let H = LQ(R,e*%IQdI) and A := {1,x,2% 2%...}. Again by Exercise
22.13, A is total in H and hence the Gram-Schmidt procedure applied to
A produces an orthonormal basis, 8, of polynomial functions for H. This
basis consists, up to normalizations, of the so called “Hermite polyno-
mials” on R.

Remark 23.8 (An Interesting Phenomena). Let H = L?([—1,1],dm) and B :=
{1,23,25,2% ... }. Then again A is total in H by the same argument as in
item 2. Example 23.2. This is true even though B is a proper subset of A.
Notice that A is an algebraic basis for the polynomials on [—1,1] while B is
not! The following computations may help relieve some of the reader’s anxiety.
Let f € L?([~1,1],dm), then, making the change of variables z = y'/3, shows
that

[@ra= [ | = [ 0 a2

where du(y) = 2y~%3dy. Since p([-1,1]) = m([—1,1]) = 2, p is a finite
measure on [—1,1] and hence by Exercise 22.13 A := {1,z,2%,2%...} is a
total (see Definition [14.25) in L?([—1,1],dp). In particular for any € > 0
there exists a polynomial p(y) such that

/_11 ‘f(?f“) - p(y)‘2 du(y) < €.

However, by Eq. (23.2)) we have
1 9 1
2 1/3\ _ . 312 _
2> [ )=o) dut) = [ 150 - p(e®) do

Alternatively, if f € C([—1,1]), then g(y) = f(y'/3) is back in C([~1,1]).
Therefore for any £ > 0, there exists a polynomial p(y) such that

e>|lg —pllo =sup{lgly) —p)|:y € [-1,1]}
=sup {[g(«”) — p(2®)| : 2 € [-1,1]}
= sup{|f(a?) —p(x3)‘ cx € [-1, 1]}

This gives another proof the polynomials in 23 are dense in C([—1,1]) and
hence in L?([—1,1]).

Exercise 23.2. Suppose (X, M, u) and (Y, N,v) are o-finite measure spaces
such that L?(u) and L?(v) are separable. If {f,}>2, and {gm}o_,
are orthonormal bases for L% (u) and L% (v) respectively, then 3 :=
{fn ® gm : m,n € N} is an orthonormal basis for L?(u®v). (Recall that
f®g(x,y) == f(x)g(y), see Notation 20.4.) Hint: model your proof of
the proof of Proposition [14.28.
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Exercise 23.3. Suppose H is a Hilbert space and {H, : n € N} are closed
subspaces of H such that H,, | H,, for all m #n and if f € H with f 1L H,
for all n € N, then f = 0. Show:

1. If f,, € H, for all n € N satisfy 3°° [|£n]|® < 0o then S2°° . f,, exists in
H.

2. Every element f € H may be uniquely written as f = > >0 f, with
fn € H as in item 1.
(For this reason we will write H = @22 ; H,, under the hypothesis of this
exercise. )

Exercise 23.4. Suppose (X, M, ) is a measure space and X = [[°2, X,,

n=1
with X,, € M and u(X,,) > 0 for all n. Then U : L? (X, ) — &%, L* (X, 1)
defined by (Uf),, := flx, is unitary.

23.2 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces.

Proposition 23.4. Let H and B be a separable Hilbert spaces, K : H — B
be a bounded linear operator, {e,}2, and {um}, _, be orthonormal basis for
H and B respectively. Then:

1.3, |Ken||> = - | K *um||* allowing for the possibility that the

sums are infinite. In particular the Hilbert Schmidt norm of K,

[e%S)

2 2

1K |5s =Y I1Kenl”,
n=1

is well defined independent of the choice of orthonormal basis {€,}52 4.

We say K : H — B is a Hilbert Schmidt operator if | K| ;¢ < 0o and

let HS(H, B) denote the space of Hilbert Schmidt operators from H to B.
2. For all K € L(H, B), | K| gg = |K*| gg and

1K gs = 1Ko, == sup {|KR] :h € H 5 [[b]| =1}.

3. The set HS(H, B) is a subspace of L (H, B) (the bounded operators from
H — B), |I|lgg % a norm on HS(H, B) for which (HS(H,B), ||| y5) s
a Hilbert space, and the corresponding inner product is given by

oo
Kl‘K2 Z Klen|K2€n . (233)

4. If K : H — B is a bounded finite rank operator, then K is Hilbert Schmidt.
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5. Let Pyx := Zﬁle (z|en) e, be orthogonal projection onto span{e, :n < N} C
H and for K € HS(H, B), let Ky := KPy. Then

1K — Knl, < 1K — Kl — 0 as N — oo,

which shows that finite rank operators are dense in (HS(H, B), |||l yg) -
In particular of HS(H,B) C K(H,B) — the space of compact operators
from H — B.

6. If Y is another Hilbert space and A:Y — H and C : B — 'Y are bounded
operators, then

KAl gs < [Kllgs 1All,, and [CK|gs < [Kllgs [C]]

op

in particular HS(H, H) is an ideal in L (H).

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

oo oo

= Z Z [(e| K )| Z Kt |-

This proves ||K|| g is well defined independent of basis and that || K| ;¢ =
| K*|| gg - For x € H\ {0}, 2/ ||| may be taken to be the first element in an
orthonormal basis for H and hence

A

Multiplying this inequality by ||z|| shows |Kz| < | K| g |l#| and hence
||K||op = HKHHS
Item 3. For K1, K, € L(H, B),

<Kl s -

1K1+ Kall g = 4| Y |1 K1en + Kaenl|?

n=1

oo

2
> lKen]l + ([ Kaen]]

n=1

H{lI K enl| + ([ EKzenll} o2,
< I K enll bz, + K 2enll} o2y,
= ”Kl“HS + ||K2HHS'

IN
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From this triangle inequality and the homogeneity properties of ||-|| 4, we
now easily see that HS(H, B) is a subspace of L(H, B) and ||-|| ;¢ is a norm
on HS(H, B). Since

|(Kren| Koen)| < Y (1K ren]| [[Kzenll

1 n=1

M8

n

oo o0
2 2
<A Do el | D0 1Kaenll® = 1Kl s 1Kol s »
n=1

n=1

the sum in Eq. (23.3)) is well defined and is easily checked to define an inner
product on HS(H, B) such that ||K||§JS = (K|K)yg -

To see that HS(H, B) is complete in this inner product suppose {K,, },-_,
is a ||| ;g — Cauchy sequence in HS(H,B). Because L(H, B) is complete,
there exists K € L(H, B) such that |K — Kp,|,, — 0 as m — oo. Thus,
making use of Fatou’s Lemma 4.12]

2 2
1K — Knllgs = Z (K = Km) enl|
n=1

oo
> lim inf [[(K; — Km) en|
ot l—o0

oo
S hng}goz H(Kl - an) 6n||2
n=1
= limlinf | — Km”?{g — 0 as m — oo.
— 00

Hence K € HS(H, B) and lim,;, oo | K — Kp|7 = 0.
Item 4. Let N := dim K (H) and {vn}ﬁ[zl be an orthonormal basis for
Ran(K) = K (H). Then, for all h € H,

N

N
IKA|IE =Y [(Ehlv)* =D (Al va)

n=1 n=1

Summing this equation on h € [ where an 3 is an orthonormal basis for H
shows

N
2 2 2
1K 5 = D IKR|G =Y K vall; < oc.
hepg n=1

Item 5. Simply observe,

IK = Kl < 1K = KylZs = 32 [Keal? = 0 as N = ox.

op —
n>N

Item 6. For C € L(B,Y) and K € L(H, B) then
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2 2 2 2 2 2
ICK|Gs =Y ICKenl* < ICI2, > [ Kenl® = ICI2, 1 K55

n=1 n=1

and for Ae L(Y,H),
KAl s = [AK | g < 1A oy 1K s = [[Allop 1Kl s -
|

Remark 23.5. The separability assumptions made in Proposition [23.4/ are un-
necessary. In general, we define

2 2
1K |75 = > 15l

eef

where 8 C H is an orthonormal basis. The same proof of Item 1. of Proposition
23.4 shows | K|| ;¢ is well defined and ||[K|| ;g = [|K*|5g- If || K|%g < 0o,
then there exists a countable subset 3y C ( such that Ke = 0if e € 8\ Bp. Let
Hy := span(f) and By := K(Ho). Then K (H) C Bo, K|y = 0 and hence
by applying the results of Proposition 23.4 to K| g, : Hy — By one easily sees
that the separability of H and B are unnecessary in Proposition 23.4.

Example 23.6. Let (X, 1) be a measure space, H = L?(X, 1) and

) = Z fi(®)gi(y)

where

fi,g; € LQ(X,M) fori=1,...,n
Define (K f)(x) = [y k( y)du(y), then K : L?(X,p) — L?*(X,p) is a
finite rank operator and hence H11bert Schmidt.

Exercise 23.5. Suppose that (X, u) is a o—finite measure space such that
H = L?(X, p) is separable and k : X x X — R is a measurable function, such
that

2
bl o = [ o) Pa)duy) < .
XxX

Define, for f € H,
0= [ M) wn),

when the integral makes sense. Show:

1. K f(x) is defined for py—a.e. z in X.
2. The resulting function K f is in H and K : H — H is linear.
3Kl s = Ikl L2(x % x pepy < o0- (This implies K’ € HS(H, H).)
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Ezample 23.7. Suppose that 2 C R” is a bounded set, a < n, then the oper-
ator K : L?(£2,m) — L?(§2,m) defined by

1
AKfu»::/;E;;aaf@y@

is compact.

Proof. For € > 0, let
1
Kef@) = | e 0y = g + (1) @)

where g.(z) = Wﬁlg(ﬂ:) with C C R™ a sufficiently large ball such that
2 — 2 C C. Since o < n, it follows that
9: < go=||""1c € L'(R", m).
Hence it follows by Proposition 22.23 that
(K = Ke) fllL2 o) < [1(90 = g) * (L f)ll L2 @ny
< [l(g0 — gs)”Ll(R") [1of]
= [/(g0 — ge)HLl(Rn) ||f||L2(Q)

L2(R™)

which implies
IK — Kellprao) < 190 — 9ell 11 gn)

_/ 1 1
C

— — —=&|d Oase |0 23.4
@ ve Jap| T 0 Ed (23.4)
by the dominated convergence theorem. For any € > 0,
1 2
/ [a] dzdy < oo,
oxo Llz—y[" +e

and hence K. is Hilbert Schmidt and hence compact. By Eq. (23.4), K. — K
as € | 0 and hence it follows that K is compact as well. [ ]

Exercise 23.6. Let H := L?([0,1],m), k (x,y) := min (z,y) for z,y € [0,1]
and define K : H — H by

Kﬂ®=ékmwﬂw@

By Exercise 23.5, K is a Hilbert Schmidt operator and it is easily seen that
K is self-adjoint. Show:
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1. Show (K f|g") = —(f|g) for all g € C¢°((0,1)) and use this to conclude
that Nul(K) = {0}.

2. Now suppose that f € H is an eigenvector of K with eigenvalue A # 0.
Show that there is a version of f in C ([0,1])NC? ((0,1)) and this version,
still denoted by f, solves

Af" = —f with £(0) = f' (1) = 0. (23.5)

where f' (1) := limy1 f/ ().
3. Use Eq. (23.5)) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem [14.45, to show

. 71— .
{\/ism (ngx) in e N}
is an orthonormal basis for L2 ([0,1],m).

Exercise 23.7. Let (X, M, i) be a o — finite measure space, a € L>(u) and
let A be the bounded operator on H := L?(u1) defined by Af (z) = a (z) f (z)
for all f € H. (We will denote A by M, in the future.) Show:

L. HAHop - ”aHLOC(H) :

2. A* == Mfz.

3. 0 (A) = essran(a) where o (A) is the spectrum of A and essran(a) is the
essential range of a, see Definitions [14.30/ and 21.40] respectively.

4. Show X\ is an eigenvalue for A = M, iff p({a=A}) > 0, ie. iff a has a
“flat spot of height \.”

23.3 Fourier Series Considerations

Throughout this section we will let df, dx, da, etc. denote Lebesgue measure
on R? normalized so that the cube, Q := (—m,7|?, has measure one, i.e.
df = (2rr)~%dm(0) where m is standard Lebesgue measure on R?. As usual,

for a € Ng, let
la la|
1 0
Da = — _—
o (z) 07 .. 905

Notation 23.8 Let CF,.(R?) denote the 2r — periodic functions in C*(R?),
that is f € C¥, (R?) iff f € C*(R?) and f(0+2me;) = f(0) for all § € R? and
i=1,2,...,d. Further let (-]-) denote the inner product on the Hilbert space,

H = L*([~7,7]%), given by

o) = | ro)ate)an - () | 56y 0

and define e (0) := e*? for all k € Z%. For f € LY(Q), we will write f(k) for
the Fourier coefficient,
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f(k)ikak>lZ;f(9)ei”9d9- (23.6)

Since any 27 — periodic functions on R? may be identified with function
on the d - dimensional torus, T¢ = R?/ (2rZ)" = (Sl)d, I may also write
C*(T?) for CF,,(R?) and LP (T?) for L? (Q) where elements in f € LP (Q) are
to be thought of as there extensions to 27 — periodic functions on R?.
Theorem 23.9 (Fourier Series). The functions 3 := {ex : k € Z?} form
an orthonormal basis for H, i.e. if f € H then

f= Z(f\€k>€k = Z f(k’)ek (23.7)

kezd kezd
where the convergence takes place in L?([—m,7]%).

Proof. Simple computations show [ := {ek ke Zd} is an orthonormal
set. We now claim that ( is an orthonormal basis. To see this recall that
Co((—m,m)%) is dense in L2((—m,7)%,dm). Any f € Co((—m, 7)) may be ex-
tended to be a continuous 27 — periodic function on R and hence by Exercise
12.13 and Remark 12.44, f may uniformly (and hence in L?) be approximated
by a trigonometric polynomial. Therefore 3 is a total orthonormal set, i.e. 3
is an orthonormal basis.

This may also be proved by first proving the case d = 1 as above and then
using Exercise 23.2] inductively to get the result for any d. [

Exercise 23.8. Let A be the operator defined in Lemma [14.36 and for
g € L2(T), let Ug (k) := g (k) so that U : L?(T) — ¢2(Z) is unitary. Show
U 'AU = M, where a € Cp2, (R) is a function to be found. Use this repre-
sentation and the results in Exercise [23.7 to give a simple proof of the results

in Lemma, 14.36.

23.3.1 Dirichlet, Fejér and Kernels

Although the sum in Eq. (23.7) is guaranteed to converge relative to the
Hilbertian norm on H it certainly need not converge pointwise even if
f € Cper (R‘i) as will be proved in Section ?? below. Nevertheless, if f is
sufficiently regular, then the sum in Eq. (23.7) will converge pointwise as we
will now show. In the process we will give a direct and constructive proof of
the result in Exercise [12.13, see Theorem 23.11 below.

Let us restrict our attention to d = 1 here. Consider

JW%Zﬂm@—Z;U]mWW+M>

[k|<n [k|<n
_ L ik-(0—2) 7, _ i/ N
= o f(l') Z e dr = o - f(iU)Dn(e l‘)dLE

[—m,m] |k|<n

(23.8)



440 23 L2 - Hilbert Spaces Techniques and Fourier Series

where

D, (0) := 2”: e'h?

k=—n

is called the Dirichlet kernel. Letting o = €*%/2, we have

&2(n+1) —q2n a2n+l _ a—(2n+1)

a?—1 oa—a1
k=—n
_ 2isin(n + )6 _sin(n + )6
27 sin %9 ~ sin %0
and therefore )
LI sin(n + 5 )6

D, (0) := (L A 23.9

L( ) k;ﬂ € Sin %9 ( )

see Figure 23.3.1l

This is a plot D7 and Dg.

with the understanding that the right side of this equation is 2n + 1 whenever
0 € 2.

Theorem 23.10. Suppose f € L' ([—m,n],dm) and f is differentiable at
some 0 € [—m,m], then lim, .o fr (0) = f(0) where f, is as in Eq. (23.8).

Proof. Observe that
1 1 ik-(0—2) 7. _
Py D, (6 — z)dx Z e’ Pdr =1

[~mm] 27 Jimmm) =

and therefore,
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O =1 O = [ 1)~ £ @10~ )
= [ U@ =102 Dawya
RN VIR B 0| P N
= [M]{ T (n+3)w dz.  (23.10)

If f is differentiable at 6, the last expression in Eq. (23.10) tends to 0 as
n — oo by the Riemann Lebesgue Lemma (Corollary 22.17 or Lemma [22.37)
and the fact that 1;_. - () f(e%)gxf@ € L (dz). [

Despite the Dirichlet kernel not being positive, it still satisfies the approx-
imate & — sequence property, %Dn — 6y as m — 00, when acting on C' —
periodic functions in 6. In order to improve the convergence properties it is
reasonable to try to replace {f, : n € Ng} by the sequence of averages (see
Exercise [7.13),

1 & 1 K1 ik-(6—2)
FN(G)M;_%]%(Q)M;%/[ f(l')ze dzx

mr kg
1

= [ Kn(0 —z)f(z)dx

—m,m]

where
N

Kn(9) := ﬁ 3O ekt (23.11)

n=0 |k|<n

is the Fejér kernel.

Theorem 23.11. The Fejér kernel Ky in Eq. (23.11) satisfies:

1.
S n]
Kn(0) = 1— ———|¢m? 23.12
CED> - (23.12)
1 sin? (&g
- il (2 2 ) (23.13)
N+1 sin® (%)
2. Kn(6) > 0.
3. 5= [T Kn(0)dd =1
4-8Up.<|gj<r KN (0) — 0 as N — oo for all € > 0, see Figure23.1.
5. For any continuous 2w — periodic function f on R, Ky *x f(0) — f(0)

uniformly in 0 as N — oo, where
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s

Kj\pkf(ﬁ):i Kn(0 — ) f(a)da

2 J_,
N

=2 [1N|1Jf(n)ei”0. (23.14)

n=—N

Fig. 23.1. Plots of Ky (6) for N =2, 7 and 13.

Proof. 1. Equation (23.12) is a consequence of the identity,

N

Z Z eik~9: Z eik~9: Z (N+1—|l<:|)e“""9.
n=0 |k|<n |k|<n<N |k|<N

i6/2

Moreover, letting a = e and using Eq. (3.3) shows



23.3 Fourier Series Considerations 443

2n+2 _ a2n

N N N
Kn ZZ N—i—lz a? -1
n=0k|<n

1 N
B (N—l—l)(oz—a—l)z

1 Al 2n -1 _—2n
:(N+1)(a_a_1)2[aa —ata™?"]

1
N+ 1) (a—a™?) a2—1 @ a2 —
1

Q

_ . 2ANFL) ] 4 o 2(N+D) 1]
(N+1)(a—a™1h

_ 1

B (N+1)(a— a—1)2

1 sin® ((N+1)

 N+1  sin®?(0/2)

2
QN+ _ a—(N“)]

/2

> — —

Items 2. and 3. follow easily from Egs. (23.13) and (23.12) respectively.
Item 4. is a consequence of the elementary estimate;

1 1
sup Kn(0) < -
e<|0|<n v (6) N + 1 sin? (%)

and is clearly indicated in Figure 23.1. Item 5. now follows by the standard
approximate § — function arguments, namely,

Ky # £(0) — £ (0)] = —

| " Kn(0—0) [f(a) - £ (0)] da

21
S*/ En(a)|f(0 —a) = f(0)]do
1
+ 7rN+1sm (%) 1o + 5 ‘QISSKN(OZ)If(H—a)—f(0)|da
1 1
S TN lsmZ(2) (%)”fﬂ + sup |0~ )= ()]

Therefore,

limNsup BN *f— flloo < sup sup |f(0—a)—f(#)] —0ase |0

la|<e
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23.3.2 The Dirichlet Problems on D and the Poisson Kernel

Let D := {z € C: |z| < 1} be the open unit disk in C = R?, write z € C as
z=1x+iyor z =re? and let A = % + 88,—; be the Laplacian acting on
C? (D).

Theorem 23.12 (Dirichlet problem for D). To every continuous function
g € C (bd(D)) there exists a unique function u € C(D) N C?(D) solving

Au(z) =0 for z € D and ulop = g. (23.15)

Moreover for r < 1, u is given by,

. 1 ™ . .
u(re??) = o / Pr(0 — a)u(e®)da =: P, * u(e”) (23.16)
™ —T
1 T ] 4 pei@-a) io

where P, is the Poisson kernel defined by

1—7r2

P, =—
+(9) 1—2rcosd +r2

(The problem posed in Eq. (23.15) is called the Dirichlet problem for D.)

Proof. In this proof, we are going to be identifying S' = bd(D) :=
{2 € D:|z| =1} with [-m, 7]/ (7 ~ —7) by the map 0 € [-m, 7] — ' € SL.
Also recall that the Laplacian A may be expressed in polar coordinates as,

1
Au=1r"19, (r_laru) + —2892u,
r
where

(Oru) (reie) = %u (reie) and (Gpu) (reie) = %u (rew) .

Uniqueness. Suppose u is a solution to Eq. (23.15) and let

1 [~ ,
g(k) == o [W g(elke)eﬂkede

and

u(r k) :== %/ u(re’®)e="*0qdg (23.18)

—T

be the Fourier coefficients of g (0) and § — u (7"6“9) respectively. Then for
re(0,1),
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1 (™ _ _

10, (royu(r, k) = o P10, (r' o) (re'?)e=*0do
T™J -7

IR B P
2r J_,r

11 (/7 , )
= _,],,7227 u(rele)age—Zdea

T J—r

1 -
= r—2k2u(r, k)

or equivalently
0, (roya(r, k) = k*u(r, k). (23.19)

Recall the general solution to
0, (ropy(r)) = kxy(r) (23.20)

may be found by trying solutions of the form y(r) = r® which then implies
a? = k% or a = +k. From this one sees that u(r, k) solving Eq. (23.19) may
be written as a(r, k) = Apr!®l + Ber—*l for some constants Ay and By when
k # 0. If kK = 0, the solution to Eq. (23.20)) is gotten by simple integration and
the result is @(r,0) = Ag + Bglnr. Since @(r, k) is bounded near the origin
for each k it must be that By, = 0 for all k¥ € Z. Hence we have shown there
exists Ay € C such that, for all 7 € (0,1),

Apr® = G(r k) = QL/ u(re?)e="*0dp. (23.21)
i

—T

Since all terms of this equation are continuous for r € [0,1], Eq. (23.21)
remains valid for all r € [0, 1] and in particular we have, at r = 1, that

Ay ! / u(e®)e*0dp = (k).

:% .

Hence if u is a solution to Eq. (23.15) then u must be given by

u(re’?) = Zg(k)r‘k‘e““e for r < 1. (23.22)
kEZ

or equivalently,

u(z) = > glh)F + > g(—k)z".

keNp keN

Notice that the theory of the Fourier series implies Eq. (23.22)) is valid in the
L? (d#) - sense. However more is true, since for 7 < 1, the series in Eq. (23.22) is
absolutely convergent and in fact defines a C* — function (see Exercise[4.11]or
Corollary 19.43) which must agree with the continuous function, § — u (rew) ,
for almost every 6 and hence for all . This completes the proof of uniqueness.
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Existence. Given g € C (bd(D)), let u be defined as in Eq. (23.22). Then,
again by Exercise [4.11] or Corollary [19.43, uw € C* (D). So to finish the proof
it suffices to show lim,_., u (z) = g (y) for all y € bd(D). Inserting the formula
for g(k) into Eq. (23.22) gives

1 [ -
= —/ P. (0 — @) u(e'™)da for all r < 1
a —T

where

Z |k| ikd Z zk§+z k 71k5

keZ

1 1—|—re“5
=Re|2—— —-1| =R -
e[ 1—re ] e[l—rez‘s}

(1 + reié) (1 — re_i‘s)
11— reid)?
_ 1—172
1—2rcosd +r2’

_ Re [1 — 72 4 2irsiné

23.2
1—2rcosd +1r2 (23.23)

The Poisson kernel again solves the usual approximate § — function prop-
erties (see Figure 2), namely:

1. P.(6) >0 and

1 4 )
— || pik(0—cr)
o | P (0 — /_ E rPle =Y doy

T kez
rlkl k(0—a) g, —
=3 / do =1
kEZ
and
2.
Pa(9) < L Oasr 11
su — —~ —0asr |1l
E<|9|p<7r ~ 1—2rcose+12

A plot of P,(6) for r = 0.2, 0.5 and 0.7.
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Therefore by the same argument used in the proof of Theorem [23.11),
limsup [u (re'”) —g (¢)| = limsup|(P; + 9) () —g ()| = 0

which certainly implies lim,_,, u () = g (y) for all y € bd(D). ]

Remark 23.13 (Harmonic Conjugate). Writing z = re'®, Eq. (23.17) may be
rewritten as )
1 Tl4ze ™

which shows © = Re F' where

1 (™ 14zei@ .
F(z):= —/ iu(ew‘)da.

2 J_, 1 —ze e

Moreover it follows from Eq. (23.23) that

rsin(6 — @) ;
Im F( 71 e
m F(re” m/ 1 —2rcos(f — a)+r2g<e da
(@ ) ()
where )
Q. (0) = 7 sin(9)

1 —2rcos(8) + 72’

From these remarks it follows that v =: (Q, * g) (¢*?) is the harmonic conju-
gate of v and P, = @,.. For more on this point see Section 7?7 below.

23.4 Weak LZ2-Derivatives

Theorem 23.14 (Weak and Strong Differentiability). Suppose that f €
L?(R") and v € R™\ {0}. Then the following are equivalent:

1. There exists {t,},.; C R\ {0} such that lim,_. t, =0 and

fC+tav) — f()
tn

< 00.
2

sup

2. There exists g € L?(R™) such that (f,0,0) = —(g, ) for all $ € C=(R").

3. There exists g € L>(R"™) and f, € C(R") such that f, A f and O, fn, 5
g as n — oo.

4. There exists g € L? such that

S0 2y gy
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(See Theorem ?? for the LP generalization of this theorem.)

Proof. 1. = 2. We may assume, using Theorem [14.52/ and passing to a
subsequence if necessary, that ﬂ“’;iz)_f() % g for some g € L%(R™). Now
for ¢ € C°(R™),

(9]¢) = lim <f(+t"v)_f()¢> — lim <f¢(_tn“)_¢()>
A T lim -
- <f’ i w> = —(f,0,0),

wherein we have used the translation invariance of Lebesgue measure and
the dominated convergence theorem. 2. = 3. Let ¢ € C°(R™,R) such that
Jgn @(x)dz = 1 and let ¢, (x) = m"¢(mx), then by Proposition 22.34, h,, :=
¢Gm * [ € C°(R™) for all m and

Ouhm () = Ovom * f(x) = /n Budm(x — y) f(Y)dy = (f, =0y [dm (z = -)])

By Theorem 22.32, h,, — f € L*(R") and O,h,, = ¢m * g — g in L*(R")
as m — oo. This shows 3. holds except for the fact that h,, need not have
compact support. To fix this let ¢ € C°(R™,[0,1]) such that ¢y = 1 in a
neighborhood of 0 and let 9. (x) = ¥ (ex) and (9,v), (x) := (0p¥) (ex). Then

av (wshm) = avwehm + weavhm =€ (5v¢)5 hm + 'll)eavhm

so that ¢¥.h,, — hy, in L? and 8, (Ychym) — Ophm in L? as e | 0. Let
fm = e, hm where €, is chosen to be greater than zero but small enough so
that

Ve, han = hanlly + 100 (Ve im) — Ouhim ||y < 1/m.

Then f,, € C®(R"), f, — f and O, f,, — g in L? as m — oco. 3. = 4. By
the fundamental theorem of calculus

T—tvfm(x) - fm(x) _ fm(x +t1}) - fm(x)
t t
1 (' d !
=7 [ gttt stods = [ (@uf) (@t stois

t
(23.24)

Let ) )
Gi(x) := / T_stvg(x)ds = / g(x + stv)ds
0 0

which is defined for almost every x and is in L?(R"™) by Minkowski’s inequality
for integrals, Theorem 21.27. Therefore
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r_wfm(xt) — fm(z) _ Gi(z) = /0 [(Dy fin) (2 + stv) — g(x + stv)] ds

and hence again by Minkowski’s inequality for integrals,

T—tvfm - fm

t — G

1
< / ||Tfstv (8vfm) - Tfstng2 ds
2 0

1
— [ 10t gl
0

Letting m — oo in this equation implies (17—, f — f) /t = G a.e. Finally one
more application of Minkowski’s inequality for integrals implies,

T tof — f !
— = g =G —gl, = / (T_stwg — g) ds
t 2 0

2
1
S / HTfstvg - g||2 ds.
0

By the dominated convergence theorem and Proposition 22.24] the latter term
tends to 0 as t — 0 and this proves 4. The proof is now complete since 4. —>
1. is trivial. [ ]

23.5 *Conditional Expectation

In this section let (£2, F, P) be a probability space, i.e. (2, F, P) is a measure
space and P({2) = 1. Let G C F be a sub — sigma algebra of F and write
feGyif f: 82 — Cisbounded and f is (G, Bc) — measurable. In this section
we will write

Ef:= [ fdP.
2

Definition 23.15 (Conditional Expectation). Let Eg : L*(2,F,P) —
L?(02,G, P) denote orthogonal projection of L*(£2,F, P) onto the closed sub-
space L2(2,G, P). For f € L?(02,G, P), we say that Egf € L*(2, F, P) is the
conditional expectation of f.

Theorem 23.16. Let (2, F,P) and G C F be as above and f,g €
L?(2,F,P).

1.If f>0, P —a.e. then Egf >0, P — a.e.

2.If f > g, P — a.e. there Egf > Egg, P — a.e.

3. |ng‘ < Eg |f|, P - a.e.

4. 1Egflly < ||fller for all f € L2 So by the B.L.T. Theorem [8.4, Eg
extends uniquely to a bounded linear map from L*($2, F, P) to L*(£2,G, P)
which we will still denote by Eg.
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5. If f € LYN(Q,F,P) then F = Egf € L(2,G, P) iff
E(Fh) = E(fh) for all h € Gy.
6. If g € Gy and f € LY (2, F, P), then Eg(gf) =g - Egf, P — a.e.
Proof. By the definition of orthogonal projection for h € Gy,
E(fh) = E(f - Egh) = E(Egf - h).

So if f,h > 0 then 0 < E(fh) < E(Egf - h) and since this holds for all h > 0
in Gy, Egf > 0, P — a.e. This proves (1). Item (2) follows by applying item
(1). to f —g. If fisreal, +f < |f| and so by Item (2), £FEgf < Eg|f], i.e.
|Egf| < Eg|f|, P — a.e. For complex f, let h > 0 be a bounded and G —
measurable function. Then

E[|Egf|h] = B [Eqf -sen(Eg/)h| = B[/ -sgn (Bg ]
< Bl|f|n] = E[Es |f]- ).

Since h is arbitrary, it follows that |Egf| < Eg|f|, P — a.e. Integrating this
inequality implies

[Egfller < E|Egf| < E[Eg|f|-1] = E[Ifl} = [l

Item (5). Suppose f € L' (2, F,P) and h € Gy. Let f, € L?(2,F,P) be a
sequence of functions such that f,, — f in L'(£2, F, P). Then

E(Egf-h)=E(lim Egf,-h)= lim E(Egf, -h)
= lim E(f,-h)=E(f-h). (23.25)
This equation uniquely determines Eg, for if F € L'(£2,G, P) also satisfies
E(F-h) = E(f-h) for all h € Gy, then taking h = sgn (F — Egf) in Eq.

(23.25) gives
0= B((F - Egf)h) = E(IF — Fgfl).

This shows F' = Egf, P — a.e. Item (6) is now an easy consequence of this
characterization, since if h € Gy,

E(9Egf)hl =E[Egf-hg]=E|[f-hgl=E|gf - h] = E[Eg (gf) - h].
Thus Eg (¢9f) = g+ Egf, P - a.e. .
Proposition 23.17. If Gy C G, C F. Then

Eg,Eg, = Eg,Eg, = Eg,. (23.26)

Proof. Equation (23.26) holds on L2(£2,F, P) by the basic properties of
orthogonal projections. It then hold on L(£2,F, P) by continuity and the
density of L2(£2, F, P) in L'(2, F, P). .
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Ezample 23.18. Suppose that (X, M, ) and (Y, N, v) are two o — finite mea-
sure spaces. Let 2 =X xY, F = M QN and P(dz,dy) = p(z,y)p(dz)v(dy)
where p € L'(£2, F, u®v) is a positive function such that [, pd (p®v) = 1.
Let mx : £2 — X be the projection map, 7x (z,y) = x, and

G=o(rx)=mx' (M) ={AxY:Ac M}.

Then f : 2 — R is G — measurable iff f = Fonrx for some function F': X — R
which is /' — measurable, see Lemma [18.66. For f € L(£2, F, P), we will now
show Fgf = F o mx where

Fla) = =Yoo () [ G w)olep)vias).
p(x) = [y p(x,y)v(dy). By convention, [, f(z,y)p(z,y)v(dy) = 0 if

Jy 1f (@ 9)| p(z, y)v(dy) = o0.)
By Tonelli’s theorem, the set

E:={xeX:px)=00}U {x €X: /Y |f(z,9)| p(z, y)v(dy) = oo}
is a p — null set. Since

E[Forx| = /X dpu(z) /Y du(y) |F ()| ple, ) = /X dp() |F(z)]| pla)

- [ duta)

< [ duta) [ vt 1)) < .

/Y u(dy)f(x,yw(x,y)\

Forx € LY(£2,G, P). Let h = Homx be a bounded G — measurable function,
then

ElFory-h = /X e /Y du(y)F () H (2)p(z, y)
- /X dpu(x) F () H (2)5(z)

— [ du@) @) [ i) ppten)
X Y
= E[nf]
and hence Egf = F omx as claimed.

This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise [23.25/ to gain more intuition about
conditional expectations.
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Theorem 23.19 (Jensen’s inequality). Let (£2, F, P) be a probability space
and ¢ : R — R be a convex function. Assume f € L*(£2, F, P;R) is a function
such that (for simplicity) o(f) € L' (02, F, P;R), then p(Egf) < Eg[o(f)],
P - a.e.

Proof. Let us first assume that ¢ is C! and f is bounded. In this case
o(x) — p(x0) > @' (z0)(x — x0) for all zg,x € R. (23.27)
Taking zo = Fgf and x = f in this inequality implies
o(f) = w(Egf) = ¢ (Egf)(f — Egf)
and then applying Fg to this inequality gives

Eg [p(f)] — w(Egf) = Egle(f) — ¢(Egf)]
> ¢ (Egf)(Egf — EgEgf) =0

The same proof works for general ¢, one need only use Proposition 21.8 to
replace Eq. (23.27) by

o(x) — (z0) > ¢ (x0)(x — o) for all zg,z € R

where ¢’ (x¢) is the left hand derivative of ¢ at xg. If f is not bounded, apply
what we have just proved to fM = F151<m, to find

Eg [e(f")] > o(EgfM). (23.28)

Since Eg : L' (2, F, P;R) — L'(£2, F, P;R) is a bounded operator and fM —
fand o(fM) — ¢(f) in L'(£2,F,P;R) as M — oo, there exists {M},-,
such that M 1 oo and fMx — f and ¢(f™*) — ¢(f), P — a.e. So passing to
the limit in Eq. (23.28) shows Eg [¢(f)] > ¢(Egf), P — a.e. |

23.6 Exercises

Exercise 23.9. Let (X, M, ) be a measure space and H = L?(X, M, ).
Given f € L*°(u) let My : H — H be the multiplication operator defined by
Mg = fg. Show M} = My iff there exists A € M such that f =14 a.e.

Exercise 23.10 (Haar Basis). In this problem, let L? denote L%([0,1],m)
with the standard inner product,

Y(r) = 1[0,1/2) (z) — 1[1/2,1)@)

and for k,j € Ny := NU{0} with 0 < j < 2F let
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Uiy (x) = 222" — )
=252 (Iy-n 4172 (2) = Lo-rpypa/agen) () -

The following pictures shows the graphs of Y9, 1,0, %1,1,%2,1,%2,2 and a3
respectively.

Plot of g, 0.
Plot of 4,0. Plot of ¥11.
Plot of ¥50. Plot of ¥,1.
Plot of 152. Plot of ,3.

1. Forn € N, let My = span({1}) and M,, := span ({1} U {¢y; : 0 < k <nand 0 < j < 2F})
for n € N, where 1 denotes the constant function 1. Show

M,, = span ({1[j27n’(j+1)2—n) rand 0 < j < 2") .
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2. Show g := {1} U {wkj :0<kand 0<j< Qk} is an orthonormal
set. Hint: show p41,; € M,ﬁ- for all 0 < j < 2F*! and show
{wkj :0<5< 2’“} is an orthonormal set for fixed k.

3. Show U2 M,, is a dense subspace of L? and therefore (3 is an orthonormal
basis for L2. Hint: see Theorem 22.15.

4. For f € L?, let

n—12%—1

Hyf = (f1)1+ Z Z (florj ) rs-

k=0 j=0
Show (compare with Exercise 23.25)

2" —1

(G+1)27"

H,f = Z <2"/ f(x)d95> Ljjo—n (j+1)2-7)
=0 2"

and use this to show ||f — H,f||,, — 0 as n — oo for all f € C([0,1]).

Hint: Compute orthogonal projection onto M,, using a judiciously chosen

basis for M,,.

Exercise 23.11. Let O(n) be the orthogonal groups consisting of n x n real
orthogonal matrices O, i.e. OO = I. For O € O(n) and f € L*(R") let
Uof(z) = f(O~'x). Show

1. Uo f is well defined, namely if f = g a.e. then Upf = Upg a.e.

2. Up : L*(R") — L?(R™) is unitary and satisfies Up, Uo, = Uo,0, for all
01,05 € O(n). That is to say the map O € O(n) — U(L*(R™)) — the
unitary operators on L?(R") is a group homomorphism, i.e. a “unitary
representation” of O(n).

3. For each f € L?(R™), the map O € O(n) — Uof € L*(R") is continu-
ous. Take the topology on O(n) to be that inherited from the Euclidean
topology on the vector space of all n x n matrices. Hint: see the proof of
Proposition 22.24.

Exercise 23.12. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 23.13. Spherical Harmonics.
Exercise 23.14. The gradient and the Laplacian in spherical coordinates.

Exercise 23.15. Legendre polynomials.

23.7 Fourier Series Exercises

Exercise 23.16. Show Y .-, k=2 = 72 /6, by taking f(z) = z on [—, 7| and
computing || f Hg directly and then in terms of the Fourier Coefficients f of f.
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Exercise 23.17 (Riemann Lebesgue Lemma for Fourier Series). Show
for f € L'([—m,7]%) that f € ¢o(Z%), ice. f : Z% — C and limy .o f(k) =
0. Hint: If f € H, this follows form Bessel’s inequality. Now use a density
argument.

Exercise 23.18. Suppose f € L' ([—n,n]?) is a function such that f € ¢1(Z%)
and set

g(z) = Z f(k)e™® (pointwise).

kezd

1. Show g € Cper(RY).
2. Show g(x) = f(z) for m — a.e. x in [—m, 7]%. Hint: Show §(k) = f(k) and
then use approximation arguments to show

/ F@)h(z)dz = / g(@)h(z)dz ¥ h € C(|—m, ]b).
(=)o

[—7‘r,7r]d

3. Conclude that f € LY([—m, x]¢) N L®([~7, 7]¢) and in particular f €
LP([—m, %) for all p € [1, ).

Exercise 23.19. Suppose m € Ny, « is a multi-index such that || < 2m and
feczm®R
1. Using integration by parts, show (using Notation 22.21)) that
(ik)* f(k) = (0° flex) for all k € Z°.

Note: This equality implies
3 1 o 1 o
70| < 10l < 25 10°F | -
2. Now let Af = Zf-l:l 02 f/0x2, Working as in part 1) show

(1= 2)"flex) = (1 + [KI*)™ F (k). (23.29)

Remark 25.20. Suppose that m is an even integer, « is a multi-index and
fe Cﬂﬁal(Rd), then

! We view Cper(R) as a subspace of H = L? ([—m,7]) by identifying f € Cper(R)
with f|[_7r’7r] € H.
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2 2

NI S 107 Flewd] (1+ [b2)™/2(1 + )~/

keZd keze

Z ‘<(1 - A)m/2aaf|ek>) (1 + |k|2)_m/2

kezd
< 3 - ayzorpien| - 3 @ )
kezd kezd

-cula- o,

where Cp, 1= 3 ) cza(1+ k|*)™™ < oo iff m > d/2. So the smoother f is the
faster f decays at infinity. The next problem is the converse of this assertion
and hence smoothness of f corresponds to decay of f at infinity and visa-versa.

Exercise 23.20 (A Sobolev Imbedding Theorem). Suppose s € R and
{ck eC: ke Zd} are coefficients such that

> el (14 [k*)* < oo
kezZd

Show if s > % + m, the function f defined by

f@) =3 et

is in C72 (R?). Hint: Work as in the above remark to show

Z lek] |E| < oo for all |a| < m.
kezd

Exercise 23.21 (Poisson Summation Formula). Let F € L}(R?),

E:={zcR%: Z |F(x 4 27k)| = o0
kezd

and set

Fk):==2r)" Y | F(x)e **da.
Rd

Further assume F e (*(Z4).

1. Show m(E) = 0 and E + 27k = E for all k € Z? Hint: Compute
f[_ﬁ,ﬂ]d Zkezd |F(z + 27k)| dz.
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2. Let > ( ) p
+F(x +27k) for x ¢ E
- kEZ
f(x)'_{ 0 if =€k

Show f € L!([—m,7]%) and f(k) = (2r)" 7 F(k).
3. Using item 2) and the assumptions on F, show f € LY([-m,7]%) N
L= ([-m,7]%) and

flz) = Z f(k;)eik‘”” = Z (27r)7d/2 ﬁ'(k)eik'w for m — a.e. x,

kezd kezd
ie.
3" F(a+2rk) = 2m) Y2 Y F(k)e™ form —ae. x. (23.30)
keze kezZd

4. Suppose we now assume that F € C(R?) and F satisfies 1) [F(z)| <
C(1+ |z|)~* for some s > d and C' < oo and 2) F' € ¢}(Z?), then show
Eq. (23.30) holds for all z € R? and in particular

S Frk) = @n) S Fk).

kezd kezd

For notational simplicity, in the remaining problems we will assume that
d=1.

Exercise 23.22 (Heat Equation 1.). Let (¢,z) € [0,00) X R — u(t, x) be a
continuous function such that u(t,-) € Cper(R) for all £ > 0, @ := uy, ug, and
Uz, exists and are continuous when ¢ > 0. Further assume that u satisfies the
heat equation @ = Jug,. Let @(t, k) := (u(t,-)|ex) for k € Z. Show for t > 0
and k € Z that a(t, k) is differentiable in ¢t and 2-a(t, k) = —k*a(t, k)/2. Use
this result to show

u(t,z) =Y e 5 fk)ette (23.31)

kEZ

where f(z) := u(0,z) and as above
Fo = (fle) = [ sy =5- [ f@e i ).

Notice from Eq. (23.31)) that (¢,2) — u(t,x) is C* for ¢ > 0.
Exercise 23.23 (Heat Equation 2.). Let ¢(z) := izkezeféﬁeikm.
Show that Eq. (23.31) may be rewritten as

uto) = [ " gele — ) F(y)dy

—T

and
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qi(x) = Zpt(x + k27)

keZ

;ﬂte*iﬁ. Also show u(t,z) may be written as

u(t,x) = p * f(x) ::/

g pe(z —y) f(y)dy.

Hint: To show q;(x) = ), p¢e(7+k27), use the Poisson summation formula
and the Gaussian integration identity,

A 1 we 1 —tw?
Pr(w) = m/ﬂ@pt(x)e dx = \/ﬂe 2%, (23.32)

Equation (23.32) will be discussed in Example ?? below.

Exercise 23.24 (Wave Equation). Let u € C?(R xR) be such that u(t,-) €
Cper(R) for all t € R. Further assume that u solves the wave equation, uy, =
Uge- Let f(z) := u(0,2) and g(x) = u(0,x). Show u(t, k) := (u(t,-),e) for
k € Z is twice continuously differentiable in ¢ and %ﬂ(t, k) = —k%*au(t, k). Use
this result to show

~ in kt .
ut,z) =3 ( F(k) cos(kt) + g(k)S”; ) eike (23.33)
keZ
with the sum converging absolutely. Also show that u(t, z) may be written as

t

[flx+t)+ fla —t)] + % /_tg(x + 7)dr. (23.34)

N =

u(t,x) =

Hint: To show Eq. (23.33) implies (23.34) use

okt — ikt 4 ikt

S —

ikt _ =ikt

sin kt = — and
7
ik (ot ik(z—t t
eik(z+t) ;ez (z—t) :/ eik(z+7) g0

g —t

23.8 Conditional Expectation Exercises

Exercise 23.25. Suppose (12, F, P) is a probability space and A := {A4;};2, C
F is a partition of §2. (Recall this means 2 = [[;2, A;.) Let G be the o —
algebra generated by 4. Show:

1. Be G iff B=U;cpA; for some A C N.
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2.g:8 — Ris G — measurable iff g = Zf; Aila, for some \; € R.
3. For f € LY(2,F,P), let E(f|A;) := E[la,f]/P(A;) if P(A;) # 0 and
E(f|A;) = 0 otherwise. Show

Egf =Y E(f|Ai)la,.

i=1
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A

Multinomial Theorems and Calculus Results

Given a multi-index a € Z7, let |a| = a1 + -+ ap, al == ay! - o,
n « n (o]
) 1o} 0 J
o . 6% o __ —
Jj=1 Jj=1

We also write J
Oy f(x) = %f(x + tv)|t=0-

A.1 Multinomial Theorems and Product Rules

For a = (0/170/2,...761,”) € Cn? m € N and (Zl,,lm) € {1727'--771}7” let
é‘j(ilv--wim):#{kiik:j}.Then

<Zai> = Z iy ... 0, = Z C(a)a”
i=1

11,0y im =1 \oz|:m
where

Cla) =#{(i1,. . im) : & (11,...,im) = o for j =1,2,...,n}

I claim that C(a) = Z}—,‘ Indeed, one possibility for such a sequence
(a1,...,a;, ) for a given a is gotten by choosing
aq a2 Qn
—N— — ———
(@1,...,01,G2,...,42, ..., Qny...,a(p).

Now there are m! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these m! permuta-
tions we must divide by the number of permutation which just rearrange the
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groups of a;’s among themselves for each i. There are a! := a;!--- ;! such
permutations. Therefore, C(a) = m!/a! as advertised. So we have proved

m
(Z m-) =D as (A1)
i=1 |aj=m
Now suppose that a,b € R"™ and « is a multi-index, we have
ol
o aPre—>t —
(a+b)* Z Bl(a b Z @51 (A2)
B<Lla B+é=«
Indeed, by the standard Binomial formula,
@by = Y g
ﬁ1<a1 61 Z)

from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

@tra) = Y o O‘!ﬂk & (A.3)

Bit+Pr=c

where a1, as2,...,ar € R® and o € Z7}.
Now let us consider the product rule for derivatives. Let us begin with the
one variable case (write d™ f for f(") = (ng f) where we will show by induction

that .
d"(fg)=>_ (Z) dif-dnrg. (A.4)
k=0

Indeed assuming Eq. (A.4) we find

dn+1(fg):Z( >dk+1f dn— kg_|_z< > A" k+1g
k=0
n+1 n
(k_1>dk cdr k+lg+z< ) cdr k+lg

_ [(kil) 4 <Z)] d¥f o dnR g gt g g f ot

Since

(k . 1) + (Z) ~ Tk +T)!(k it m —nI!c)!k:!

n! 1 1
S D=k [(nkﬂ)*k}

n! n+1 n+1
B (k—l)!(n—k)!(n—k+1)k:< k )
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the result follows.
Now consider the multi-variable case

[i (i) 07 f - 3?"_'“91

k;=0

n

0°(fg) = (_H a;“) (fo) =11

i=1
:ZZH Qi 3kf.aa—kgzz Yok . gatkg
; ki k
k1=0  kn=0i=1 k<o
where k = (k1, ko, ..., k,) and

(1) =T1(2) = s

(2

So we have proved

o7 = 3 (§)0°r -0 (4.5)

BLa

A.2 Taylor’s Theorem

Theorem A.1. Suppose X C R™ is an open set, x : [0,1] — X is a C! -
path, and f € CN(X,C). Let vs := (1) — x(s) and v = v; = z(1) — x(0), then

N-1
fla()=>" —7 00 f) (@(0)) + Ry (A.6)
where
! N-1 ! d N
Ry = ﬁ/o (556(5)8% f) (z(s))ds = %/0 (—dsavsf) (z(s))ds.
(A7)
and 0! := 1.

Proof. By the fundamental theorem of calculus and the chain rule,

Falt)) = 1) + [ - fal)ds = FO)+ [ (2i1) (s (A5)

and in particular,

1
F@)) = £O) + [ @s0 ) ((s))ds.

This proves Eq. (A.6) when N = 1. We will now complete the proof using
induction on N. Applying Eq. (A.8) with f replaced by ﬁ (3i(s)6£_1f)
gives
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m (8:&(5)8%_1 ) (z(s)) = ﬁ (8i(s)3£_1f) (x(0))

+ﬁ/ (ax(s) Di()f) (a(t))dt

— (& f><<>>—]$!/ (Fo%ouof ) (e

wherein we have used the fact that mixed partial derivatives commute to show
%aﬁf = NOi()0N 1 f. Integrating this equation on s € [0,1] shows, using
the fundamental theorem of calculus,

=N o e+ ﬁ /0 (O8001) el

3 (07) (@(0) + R

which completes the inductive proof. [ ]

Remark A.2. Using Eq. (A.1) with a; replaced by v;0; (although {v;d;},_, are
not complex numbers they are commuting symbols), we find

m S " m! [e%aTe%
omf = <Zvi8i> f=> o,
i=1 lal=m
Using this fact we may write Eqs. (A.6) and (A.7) as
1 [epaTe
f(z(1)) = Z Y 9% f(x(0)) + Rn
la] <N -1

and

Ry= > / (— v f )( (s))ds.

lee|= N

Corollary A.3. Suppose X C R™ is an open set which contains x(s) = (1 —
s)xg + sxy for 0 < s <1 and f € CN(X,C). Then

flar) = NZ Lo f) (wo) + — / C(0N F) (a(s)dvn (5) (A.9)
m=0 m' ! N| 0 Y ’
1
= Y Lo pe0) (@1 — w0) + 0% F(@(s))dva (s)] (1 — o)
jaen @ |a\ N U

(A.10)
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where v := x1 — xg and dvy is the probability measure on [0,1] given by
dvy(s) := N(1 — s)V " lds. (A.11)

If we let x = xg and y = 21 — g (so x+y = x1) Eq. (A.10) may be written
as

favn = X E ey ¥ ([ orstas man(s)) o
la|<N ’ aila)|=N 0
(A.12)
Proof. This is a special case of Theorem [A.1l Notice that
vs=z(1) —a(s) = (1= 9)(x1 —x0) = (1 — s)v

and hence

_L 1 —i —s)NoN x(s $:i ' N x(s —s)V-1ds
Ry =y [ (-0 = 9% ) s = g [ @21) )N G- as
|

Ezample A.4. Let X = (-1,1) C R, 3 € R and f(x) = (1 — z)®. The reader
should verify

F(z) = (=)"BB=1) ... (B =m+1)(L—z)’"

and therefore by Taylor’s theorem (Eq. (??) with © =0 and y = z)

N-1
-2 =1+ Y %(—1)%(5 1) (B—m+1)2™ 4 Ra(z) (A.13)
m=1 !
where
xN 1
Ry(z) = bl /0 (~D)NB(B—1)...(B— N +1)(1 —s2)’Nduy(s)
N

BB -1) . (p N 1) [ MO

- NI o (1—sx)N-8 >

Now for z € (—1,1) and N > 3,

"N(1—s)N ! "N - s)N ! ! N
< —Z_ —ds < —ds = N(1—5s)P"tds = —
05 [ st < [ aoaperds = [ M- s =

and therefore,

N
Ry (2)| < (N'[l)!wl)...(ﬂmm — ow.
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Since

N —
lim sup AN+l _ || - lim sup ~ p

=lz| <1
N—oco PN N—o00

and so by the Ratio test, |Ry(z)| < py — 0 (exponentially fast) as N — oo.
Therefore by passing to the limit in Eq. (A.13)) we have proved

- (_1)771 m
1-2)f =1+ BB -1 (B m+ e (A.14)
m=1
which is valid for || < 1 and 8 € R. An important special cases is § = —1

in which case, Eq. (A.14) becomes ﬁ = Zﬁ:o ™, the standard geometric

series formula. Another another useful special case is § = 1/2 in which case
Eq. (A.14) becomes

B = (-1)™1,1 1 m
ﬁiE_l+Z; —5G D (g mm Atz
= (2m — 3)!!
=1- Z U;ni?)xm for all |z| < 1. (A.15)
m:

3
£



B

Zorn’s Lemma and the Hausdorff Maximal
Principle

Definition B.1. A partial order < on X is a relation with following properties

(i) If t <y andy < z then x < z.
(ii)If t <y andy < x then x =y.
(i < x for all x € X.

Example B.2. Let Y be a set and X = 2. There are two natural partial
orders on X.

1. Ordered by inclusion, A < Bis A C B and
2. Ordered by reverse inclusion, A < B if B C A.

Definition B.3. Let (X, <) be a partially ordered set we say X is linearly a
totally ordered if for all x,y € X either x <y ory < x. The real numbers R
with the usual order < is a typical ezample.

Definition B.4. Let (X, <) be a partial ordered set. We say x € X is a
maximal element if for all y € X such that y > x implies y = x, i.e. there is
no element larger than x. An upper bound for a subset E of X is an element
x € X such that x >y for all y € E.

Ezample B.5. Let
X={a={1}b={1,2} c={3}d={2,4} e={2} }

ordered by set inclusion. Then b and d are maximal elements despite that fact
that b £ a and a £ b. We also have

e If E ={a,e,c}, then FE has no upper bound.

Definition B.6. ¢ If E = {a,e}, then b is an upper bound.
e FE =/{e}, then b and d are upper bounds.

Theorem B.7. The following are equivalent.
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1. The axiom of choice: to each collection, {Xa},c 4, of non-empty sets
there exists a “choice function,” x : A — [] Xa such that z(o) € X, for

acA
alla € A, e [[oen Xa #0.
2. The Hausdorff Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.
3. Zorn’s Lemma: If X is partially ordered set such that every linearly
ordered subset of X has an upper bound, then X has a mazimal element

Proof. (2 = 3) Let X be a partially ordered subset as in 3 and let F =
{E C X : F is linearly ordered} which we equip with the inclusion partial
ordering. By 2. there exist a maximal element E € F. By assumption, the
linearly ordered set E has an upper bound x € X. The element x is maximal,
forif y € Y and y > «, then EU {y} is still an linearly ordered set containing
E. So by maximality of E, E = EU{y}, i.e. y € E and therefore y < x showing
which combined with y > 2 implies that y = 2.* (3= 1) Let {Xo},c4 be
a collection of non-empty sets, we must show [[,., Xo is not empty. Let G
denote the collection of functions g : D(g) — [],c 4 Xa such that D(g) is a
subset of A, and for all @ € D(g), g(a) € X,,. Notice that G is not empty, for
we may let ap € A and g € X, and then set D(g) = {ap} and g(ap) = zo
to construct an element of G. We now put a partial order on G as follows. We
say that f < g for f,g € G provided that D(f) C D(g) and f = g|p(y). If
@ C G is a linearly ordered set, let D(h) = UgeaD(g) and for o € D(g) let
h(a) = g(a). Then h € G is an upper bound for ¢. So by Zorn’s Lemma there
exists a maximal element h € G. To finish the proof we need only show that
D(h) = A. If this were not the case, then let ag € A\ D(h) and 2y € X,,.
We may now define D(h) = D(h) U {ao} and

=« [ h(a)if e D(h)
h(a)—{ zo if a=ap.

!If X is a countable set we may prove Zorn’s Lemma by induction. Let {zn};2,
be an enumeration of X, and define F,, C X inductively as follows. For n = 1
let E1 = {z1}, and if E, have been chosen, let Eny1 = Ep U {zpy1} if zpy1
is an upper bound for E,, otherwise let Ey,11 = E,. The set £ = U2 FE, is a
linearly ordered (you check) subset of X and hence by assumption E has an upper
bound, z € X. I claim that his element is maximal, for if there exists y = x,, € X
such that y > x, then xz,, would be an upper bound for F,,_1 and therefore
Yy = Tm € B C E. That is to say if y > z, then y € E and hence y < x, so
y = z. (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similarly one may show that 3 = 2. Let F = {E C X : E is linearly ordered}

and order F by inclusion. If M C F is linearly ordered, let E = UM = |J A.
AeM
Ifz,y € Ethenz € Aand y € B for some A, B C M. Now M is linearly ordered

by set inclusion so A C Bor B C Aie. x,y € Aor z,y € B. Since A and B are
linearly order we must have either x < y or y < x, that is to say FE is linearly
ordered. Hence by 3. there exists a maximal element E € F which is the assertion
in 2.
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Then h < h while h #* h violating the fact that h was a maximal element.
(1 =2) Let (X,<) be a partially ordered set. Let F be the collection of
linearly ordered subsets of X which we order by set inclusion. Given zy € X,
{zo} € F is linearly ordered set so that F # . Fix an element Py € F. If P,
is not maximal there exists P; € F such that Py & P;. In particular we may
choose © ¢ Py such that Py U {z} € F. The idea now is to keep repeating
this process of adding points x € X until we construct a maximal element
P of F. We now have to take care of some details. We may assume with out
loss of generality that F = {P € F : P is not maximal} is a non-empty set.
For P € F,let P* = {x € X : PU{z} € F}. As the above argument shows,
P* # () for all P € F. Using the axiom of choice, there exists f € [Ipcr P*.
We now define g : F — F by

P if P is maximal

g(P) = {p U {f(z)} if P is not maximal. (B.1)

The proof is completed by Lemma B.8 below which shows that g must have
a fixed point P € F. This fixed point is maximal by construction of g. [

Lemma B.8. The function g : F — F defined in Eq. (B.1) has a fived point.*

Proof. The idea of the proof is as follows. Let Py € F be chosen
arbitrarily. Notice that @ = { g(”)(PO)}:LOZO C F is a linearly ordered set and it

oo

is therefore easily verified that P, = |J g™ (P,) € F. Similarly we may repeat
n=0

o0

the process to construct Py = |J g™ (P) € Fand Ps = |J ¢™(R,) € F,

etc. etc. Then take Py, = U;’L"ZSPS and start again with Ponreoplaced by Ps-
Then keep going this way until eventually the sets stop increasing in size, in
which case we have found our fixed point. The problem with this strategy is
that we may never win. (This is very reminiscent of constructing measurable
sets and the way out is to use measure theoretic like arguments.) Let us now
start the formal proof. Again let Py € F and let 7y = {P € F: Py C P}.
Notice that F; has the following properties:

1. Py e Fi1.
2. If & C F; is a totally ordered (by set inclusion) subset then U® € Fj.
3. If P € F; then g(P) € F;.

Let us call a general subset F' C F satisfying these three conditions a
tower and let
Fo=n{F : F'is a tower} .

3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set P € F with a maximal number of elements. In this case the
condition that P C g(P) would imply that P = g(P), otherwise g(P) would have
more elements than P.
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Standard arguments show that Fy is still a tower and clearly is the smallest
tower containing Py. (Morally speaking F consists of all of the sets we were
trying to constructed in the “idea section” of the proof.) We now claim that
Fo is a linearly ordered subset of F. To prove this let I" C Fy be the linearly
ordered set

I'={CeFy: forall Ae Fjeither AC Cor C C A}.

Shortly we will show that I" C Fy is a tower and hence that Fy = I'. That is
to say Fy is linearly ordered. Assuming this for the moment let us finish the
proof. Let P = UFy which is in Fy by property 2 and is clearly the largest
element in Fy. By 3. it now follows that P C g(P) € Fo and by maximality of
P, we have g(P) = P, the desired fixed point. So to finish the proof, we must
show that I' is a tower. First off it is clear that Py € I so in particular I is
not empty. For each C' € I let

$c:={A € Fy:either AC Cor g(C) C A}.

We will begin by showing that @ C Fy is a tower and therefore that & = Fy.
1. Py € &¢ since Py C C forall C € I' C Fy. 2. f @ C & C Fy is totally
ordered by set inclusion, then Ag := U® € Fy. We must show Ag € P¢, that
is that Ag C C or C C Ag. Now if A C C for all A € &, then A C C and
hence Ag € P¢. On the other hand if there is some A € @ such that g(C) C A
then clearly g(C') C Ag and again Ag € P¢. 3. Given A € $¢ we must show
g(A) € &, i.e. that

g(A) Cc Cor g(C) C g(A). (B.2)

There are three cases to consider: either A ¢ C, A = C, or g(C) C A. In the
case A =C, g(C) = g(A) C g(A) and if g(C) C A then g(C) C A C g(A) and
Eq. (B.2) holds in either of these cases. So assume that A & C. Since C € I
either g(A) € C (in which case we are done) or C C g(A). Hence we may
assume that

AG CcCyg(Ah).

Now if C were a proper subset of g(A) it would then follow that g(A4)\ A would
consist of at least two points which contradicts the definition of g. Hence we
must have g(A) = C C C and again Eq. (B.2) holds, so @¢ is a tower. It is
now easy to show I is a tower. It is again clear that Py € I' and Property
2. may be checked for I" in the same way as it was done for &~ above. For
Property 3., if C' € I' we may use ®¢ = Fy to conclude for all A € Fy, either
AcCC cCyg(C)org(C)cC A, ie g(C) e I Thus I' is a tower and we are
done. ]



Nets

In this section (which may be skipped) we develop the notion of nets. Nets are
generalization of sequences. Here is an example which shows that for general
topological spaces, sequences are not always adequate.

Example C.1. Equip CF with the topology of pointwise convergence, i.e. the
product topology and consider C(R,C) C CE. If {f,,} € C(R,C) is a sequence
which converges such that f,, — f € C® pointwise then f is a Borel measurable
function. Hence the sequential limits of elements in C'(R,C) is necessarily
contained in the Borel measurable functions which is properly contained in
CR. In short the sequential closure of C(R,C) is a proper subset of CE. On

the other hand we have C(R,C) = CF. Indeed a typical open neighborhood
of f € CR is of the form

N ={geCk:|g(x)— f(x)| < e for z € A},

where £ > 0 and A is a finite subset of R. Since N N C(R,C) # § it follows

that f € C(R,C).
Definition C.2. A directed set (A, <) is a set with a relation “<” such that

l.a<a foralaeA.
2. If a < B and B <y then a < 7.
3. A is cofinite, i.e. a, 3 € A there exists v € A such that o < v and 3 < 7.

A net is function x : A — X where A is a directed set. We will often
denote a net x by {Totaca-

Ezample C.3 (Directed sets).

1. A = 2% ordered by inclusion, i.e. « < fif o C 8. If a < B and 8 < v then
a C  C vand hence a < 4. Similalry if a, 3 € 2% then o, § < aUS =: 7.

2. A = 2% ordered by reverse inclusion, i.e. a < Bif 3 C a. If a < 8 and
B<~vthenaDpfOvyandsoa<~vyandif a,0€ A then o, < anNg.
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3. Let A = N equipped with the usual ordering on N. In this case nets are
simply sequences.

Definition C.4. Let {za},c4 C X be a net then:

1.z, converges to x € X (written o — x) iff for all V € 7., zo, € V
eventually, i.e. there exists 5 = Oy € A such that xo, € V for all a > f3.

2. x is a cluster point of {xo}taca if for allV € 1., x4 € V frequently,
i.e. for all B € A there exists a > 3 such that ., € V.

Proposition C.5. Let X be a topological space and E C X. Then

1. 2 is an accumulation point of E (see Definition[10.29) iff there exists net
{za} C E\{x} such that zo, — .
2. x € E iff there exists {xo} C E such that o — .

Proof.

1. Suppose z is an accumulation point of F and let A = 7, be ordered by
reverse set inclusion. To each o € A = 7, choose z,, € (a\ {z}) N E which
is possible sine z is an accumulation point of . Then given V € 7, for
all @ >V (ie. and o C V), 2, € V and hence x, — x. Conversely if
{Za}taca C E\ {2z} and z, — x then for all V € 7, there exists § € A
such that z, € V for all @ > 3. In particular z, € (E'\ {z})NV # 0 and
so = € acc(E) — the accumulation points of E.

2. If {z,} C E such that z, — x then for all V' € 7, there exists § € A such
that z, € VN E for all @« > 3. In particular VN E # @ for all V € 7,
and this implies z € E. For the converse recall Proposition [10.31 implies
E = EUacc(E). If x € acc(E) there exists a net {z,} C E such that
ZTo — x by item 1. If x € E we may simply take z, = x foralln € A :=N.

Proposition C.6. Let X and Y be two topological spaces and f : X — Y
be a function. Then f is continuous at x € X iff f(xo) — f(z) for all nets
To — .

Proof. If f is continuous at = and x, — x then for any V' € 74, there
exists W € 7, such that f(W) C V. Since z, € W eventually, f(z,) € V
eventually and we have shown f(z,) — f(x). Conversely, if f is not contin-
uous at x then there exists W € 77, such that f(V) € W for all V € 7.
Let A = 7, be ordered by reverse set inclusion and for V' € 7, choose (axiom
of choice) xy € V such that f(zy) ¢ W. Then xy — z since for any U € 7,
xy € UitV >U (ie. V CU). On the over hand f(xy) ¢ W for all V € 7,
showing f(zv) - f(z). |

Definition C.7 ( Subnet). A net (yg)sep is a subnet of a net (xa)aca if
there ezists a map B € B — ag € A such that
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1. yg = o, for all 3 € B and
2. for all ap € A there exists By € B such that g > oy whenever 8 > By,
i.e. ag > ap eventually.

Proposition C.8. A point x € X is a cluster point of a net (xy)aca iff
there exists a subnet (yg)gep such that yg — x.

Proof. Suppose (ys)secp is a subnet of (z4)aca such that yg = 24, — 2.
Then for W € 7, and o € A there exists fy € B such that yg = 7., € W
for all 3 > By. Choose 31 € B such that ag > op for all 8 > 3; then choose
B3 € B such that 83 > 31 and 33 > (2 then ag > ag and z,, € W for all
B > B3 which implies z, € W frequently. Conversely assume z is a cluster
point of a net (x4)aca. We mak B := 7, x A into a directed set by defining
U,a) < (U,d) iff « < o and U D U'. For all (U,y) € B = 7, X A,
choose a(y4) = 7 in A such that yw ) = Za(,.,, € U. Then if ay € A for all
(U',7") = (U,ag), ie. v > ag and U' C U, a4y = > ap. Now if W € 7,
is given, then y ) € U C W for all U C W. Hence fixing o € A we see if
(U,v) > (W,a) then yw.) = Tay, ., € U C W showing that y ) — 2. =

Exercise C.1 (Folland #34, p. 121). Let (z,)ac be a net in a topological
space and for each a € A let E, = {xg: 3 > a}. Then z is a cluster point of
(xq) iff x € N Ea.

a€cA

Solution to Exercise (C.1). If z is a cluster point, then given W e, we
know E, "W i@ for all a € E since xg € W frequently thus z € E,, for all

a,ie. x € (| E4. Conversely if x is not a cluster point of (z,) then there
a€cA
exists W € 7, and o € A such that z3 ¢ W for all 8 > a, i.e. WNE, = 0.

But this shows = ¢ F, and hence x ¢ () E,.
acA

Theorem C.9. A topological space X is compact iff every net has a cluster
point iff every net has a convergent subnet.

Proof. Suppose X is compact, (Za)aca C X is a net and let F, :=
{zg: 8> a}. Then F, is closed for all « € A, F, C Fy if @« > o and
F,,N---NF,, D F, whenever v > «; for i = 1,...,n. (Such a ~y always exists
since A is a directed set.) Therefore F,, N---NF, # 0 ie. {F,}aca has the
finite intersection property and since X is compact this implies there exists
x € [\ F, By Exercise [C.1], it follows that = is a cluster point of (z,)aca-

aca
Conversely, if X is not compact let {U;};cs be an infinite cover with no finite

subcover. Let A be the directed set A = {a C J: # (o) < oo} with a < 3 iff
a C . Define a net (x4)aca in X by choosing

To € X\ UUj # () for all « € A.

JjEa
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This net has no cluster point. To see this suppose x € X and j € J is chosen

so that € U;. Then for all @ > {j} (ie. j € a), 2o ¢ U Us 2 U; and
YEQ

in particular z, ¢ U;. This shows z, ¢ U; frequently and hence z is not a
cluster point. [
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Study Guides

D.1 Study Guide For Math 240A: Fall 2003

D.1.1 Basic things you should know about numbers and limits

1. T am taking for granted that you know the basic properties of R and C
and that they are complete.

2. Should know how to compute lim a,, limsup a,, and liminf a,, and their
basic properties. See Lemma 4.2/ and Proposition 4.5 for example.

D.1.2 Basic things you should know about topological and
measurable spaces:

1. You should know the basic definitions, Definition [10.1/and Definition [18.1.

2. It would be good to understand the notion of generating a topology or a o
— algebra by either a collection of sets or functions. This is key to under-
standing product topologies and product o — algebras. See Propositions
10.7, [10.21) and [18.4' and Definition [18.24/ and Proposition [18.25l

3. You should be able to check whether a given function is continuous or
measurable. Hints:

a) If possible avoid going back to the definition of continuity or measura-
bility. Do this by using the stability properties of continuous (measur-
able) functions. For example continuous (measurable) functions are
stable under compositions and algebraic operations, under uniform
(pointwise) limits and sums. Measurable functions are also stable un-
der taking sup, inf liminf and limsup of a sequence of measruable
functions, see Proposition 18.36. Also recall if we are using the Borel
o — algebras, then continuous functions are automatically measurable.

b) It is also possible to check continuity and measurability by splitting the
space up and checking continuity and measurability on the individual
pieces. See Proposition [10.19/and Exercise[10.7 and Proposition [18.29.
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¢) If you must go back to first principles, then the fact that o (ffl (5)) =
f7Ho(€)) and 7 (F7H(E)) = fH(7(£)) is key, see Lemma [18.22 and
10.14! respectively.

4. Dynkin’s multiplicative system Theorems [18.51/ and [18.52 are extremely
useful for understanding the structure of measurable functions. They are
also very useful for proving general theorems which are to hold for all
bounded measurable functions. See the examples following Theorem [18.52
and the examples in Section [19.7.
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D.1.3 Basic things you should know about Metric Spaces

1. The associated topology, see Example [10.3L

2. How to find the closure of a set. I typically would use the sequential
definition of closure here.

3. Continuity is equivalent to the sequential notion of continuity, see Section
6.1

4. The continuity properties of the metric, see Lemma [6.6.

5. The notions of Cauchy sequences and completeness.

D.1.4 Basic things you should know about Banach spaces

1. They are complete normed spaces.

2. (P (i) — spaces are Banach spaces, see Theorems 5.6, 5.8, and [7.5. Later
we will see that all of these theorem hold for more general L? (1) — spaces
as well.

3. BC'(X) is a closed subset of the Banach space £*° (X) and hence is a
Banach space, see Lemma [7.3.

4. The space of operators L (X,Y) between two Banach spaces is a Banach
space. In particular the dual space X* is a Banach space, see Proposition
7.12.

5. How to find the norm of an operator and the basic properties of the

operator norm, Lemma [7.10.

Boundedness of an operator is equivalent to continuity, Proposition [7.8.

7. Small perturbations of an invertible operator is still invertible, see Propo-
sition [7.19 and Corollary [7.20.

&

D.1.5 The Riemann integral

The material on Riemann integral in Chapter 8 served as an illustration of
much of the general Banach space theory described above. We also saw inter-
esting applications to linear ODE.

However the most important result from Chapter I8 is the Weierstrass
Approximation Theorem 8.34 and its complex version in Corollary [8.36.
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D.1.6 Basic things you should know about Lebesgue integration
theory and infinite sums

Recall that the Lebesgue integral relative to a counting type measure corre-
sponds to an infinite sum, see Lemma [19.15. As a rule one does not need to
go back to the definitions of integrals to work with them. The key points to
working with integrals (and hence sums as well) are the following facts.

1. The integral is linear and satisfies the monotonicity properties: [ f < [g
if f <g a.e. and ‘ff‘§f|f|

2. The monotone convergence Theorem [19.16/ and its Corollary [19.18 about
interchanging sums and integrals.

3. The dominated convergence Theorem [19.38 and its Corollary [19.39 about
interchanging sums and integrals.

4. Fatou’s Lemma [19.28 is used to a lesser extent.

5. Fubini and Tonelli theorems for computing multiple integrals. We have
not done this yet for integrals, but the result for sums is in Theorems 4.22
and 4.23.

6. To compute integrals involving Lebesgue measure you will need to know
the basic properties of Lebesgue measure, Theorem [19.10 and the funda-
mental theorem of calculus, Theorem [19.40.

7. You should understand when it is permissible to differentiate past the
integral, see Corollary 19.43.

Remark D.1. Again let me stress that the above properties are typically all
that are needed to work with integrals (sums). In particular to understand
/ + fdu for a general measurable f it suffices to understand:

1. If A € M, then fX 1adp = p(A). By linearity of the integral this deter-
mines [ « fdp on simple functions f.

2. Using either the monotone or dominated convergence theorem along with
the approximation Theorem 18.42, [, fdu may be written as a limit of
integrals of simple functions.
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D.2.1 Basic things you should know about Multiple Integrals:

1. Product measures, Fubini and Tonelli theorems for computing multiple
integrals, see Theorems 20.8| and 20.9. Keep in mind Driver’s “rule;” if
you see a multiple integral you should probably try to change the order
of integration.

2. Lebesgue Measure on R? and the change of variables formula, see Theorem
20.19. Also how to work in “abstract polar” coordinates, see Theorem
20.28.

D.2.2 Basic things you should know about LP — spaces

1. LP — spaces are Banach spaces, Theorems 21.19/ and [21.20.
2. Key inequalities:

a) Holder inequality, Theorem [21.2.

b) Minkowski’s Inequality, Theorem 21.4.

¢) Jensen’s Inequality, Theorem 21.10.

d) Chebyshev’s inequality, Lemma [21.14.

e) Minkowski’s Inequality for Integrals, Theorem [21.27.

You should be able to use these inequalities in basic situations.

3. Recall that the LP(u) — norm controls two types of behaviors of f, namely
the “behavior at infinity” and the behavior of “local singularities.” See
the comments after Theorem 21.20.

4. You should have some feeling for the different modes of convergence, see
Section 21.2.

D.2.3 Additional Basic things you should know about topological
spaces:

1. The operations of closure, boundary and interior and in particular the
interaction of closure with relative topologies. See Proposition [10.31] and
Lemma [10.32.

2. The basic definitions of first countability, second countability, separability,
density, etc., see Section [10.4.

3. The basic properties of connected sets, Theorems [10.48, 10.49, 10.50 and
Proposition 10.53.

4. Compactness:

a) The continuous image of compact sets are compact, Exercise T1.2.

b) Dini’s Theorem, Exercise 11.3.

¢) Equivalent characterizations of compactness in metric spaces, Theo-
rem [11.7. Also see Corollary [11.9. You should be able to check com-
pactness of a set in basic situations.
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d) Extreme value theorem (Exercise [11.5)), uniform continuity (Exercise
11.6).

The consequences for normed vector spaces, see Theorem [11.12, Corol-
lary [11.13, Corollary [11.14/ and Theorem [11.15.

Ascoli-Arzela Theorem [11.29 for checking function space compactness.
The definition of a compact operator, Definition [11.16.

The notions of locally and o - compact spaces, Section [11.3.
Tychonoff’s Theorem [11.34, i.e. the product of compact sets is still
compact.

) @
~

= 0o
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D.2.4 Things you should know about Locally Compact Hausdorff
Spaces:

1.

Know the definition.

2. They have lots of open sets and lots of continuous functions, see Propo-

sitions 12.5 and [12.7/ and Urysohn’s Lemma 12.8 for LCH Spaces and the
Locally Compact Tietz Extension Theorem12.9.

Basic knowledge of partitions of unity, Section [12.2.

Alexanderov Compactification, Proposition [12.24. (Probably will not ap-
pear on any test.)

The Stone-Weierstrass Theorem, see Theorem [12.31/ and Corollary [12.32.

D.2.5 Approximation Theorems and Convolutions

1.

4.

The density of C.(X) in LP(u) for all p € [1,00) when (X, 7) is a second
countable locally compact Hausdorff space and p : Bx — [0,00] be a
K-finite measure, see Theorem 22.8. See the important special cases in
Corollaries 22.9 and 22.10. Also see the closely related Lemma [22.11.
Density of smaller spaces of functions by using the results in item 1. with
the Stone Weierstrass theorem, see Exercises 22.11/ —[22.14.

The density of Sy (A, i) in LP () when g is o - finite on A and M = o (A),

see Theorem [22.14. Also see Theorem 22.15/ on the separability of LP -
spaces and Example 22.16.

Convolution

a) Know the Definition 22.20

b) Know || f *gl|, <|/fIl, lgll,, , Proposition 22.23.

c¢) Understand the basic properties of convolution in Lemma 22.27.

d) Understand Theorem 22.32 about approximate ¢ — functions.

e) Know that f % g is smooth if g € C° (]Rd)7 see Proposition 22.34.
Coupling this with Theorem 22.32 shows (for example): 1) continuous
functions may be locally approximated by C'*° - functions, 2) C2° (Rd)
is dense in LP (Rd, ,u) where p € [1,00) and p is any K — finite mea-
sure on Bra (see Corollary 22.38 more generally), 3) there are C*°
versions of Urysohn’s Lemma (Corollary 22.35) and smooth versions
of partitions of unity, see Section 22.2.1l
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f) The integration by parts Lemma [22.36] is also often very useful.

D.2.6 Things you should know about Hilbert Spaces

1.

The definition and the fact that L? (u) is an example.

2. The Schwarz Inequality Theorem [14.2/ and the fact that the Hilbert norm

©w

is a norm, Corollary [14.3.

The notions of orthogonality, see Proposition [14.5.

The Best Approximation Theorem [14.10/ and the Projection Theorem
14.13], see also Corollary [14.14l.

The very important Riesz Theorem [14.15.

The notion of the adjoint of operators and their properties in Proposition
14.16/ and Lemma [14.17.

The notions of orthonormal bases on Hilbert Spaces and their basic prop-
erties, see Section [14.1. Basically the results of this section, show you
may manipulate with orthonormal bases on Hilbert spaces as you would
in finite dimensional inner product spaces. Understand the examples in
Example 23.2 and the important Fourier Series example in Theorem [23.9.
Many of the basic properties about Hilbert spaces can easily be deduced
from your knowledge about £2 (X) and the fact that every Hilbert space
is unitarily equivalent (see Definition [14.29) to such a Hilbert space, see
Exercise 14.7.

The notion of the spectrum of an operator, Definition [14.30L
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