
Part IV

Calculus and Ordinary Di erential Equations
in Banach Spaces

15

Ordinary Di erential Equations in a Banach
Space

Let be a Banach space, = ( ) 3 0 and ( × ) —
is to be interpreted as a time dependent vector-field on In this section
we will consider the ordinary di erential equation (ODE for short)

˙( ) = ( ( )) with (0) = (15.1)

The reader should check that any solution 1( ) to Eq. (15.1) gives a
solution ( ) to the integral equation:

( ) = +

Z
0

( ( )) (15.2)

and conversely if ( ) solves Eq. (15.2) then 1( ) and solves
Eq. (15.1).

Remark 15.1. For notational simplicity we have assumed that the initial con-
dition for the ODE in Eq. (15.1) is taken at = 0 There is no loss in generality
in doing this since if ˜ solves

˜
( ) = ˜( ˜( )) with ˜( 0) =

i ( ) := ˜( + 0) solves Eq. (15.1) with ( ) = ˜( + 0 )

15.1 Examples

Let = R ( ) = with N and consider the ordinary di erential
equation

˙( ) = ( ( )) = ( ) with (0) = R (15.3)

If solves Eq. (15.3) with 6= 0 then ( ) is not zero for near 0 Therefore
up to the first time possibly hits 0 we must have
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=

Z
0

˙( )

( )
=

Z ( )

0

=

[ ( )]1 1

1 if 1

ln
¯̄̄
( )
¯̄̄

if = 1

and solving these equations for ( ) implies

( ) = ( ) =

(
1 1 ( 1) 1

if 1

if = 1
(15.4)

The reader should verify by direct calculation that ( ) defined above does
indeed solve Eq. (15.3). The above argument shows that these are the only
possible solutions to the Equations in (15.3).
Notice that when = 1 the solution exists for all time while for 1

we must require
1 ( 1) 1 0

or equivalently that

1

(1 ) 1
if 1 0 and

1

(1 ) | | 1 if
1 0

Moreover for 1 ( ) blows up as approaches the value for which
1 ( 1) 1 = 0 The reader should also observe that, at least for and
close to 0

( ( )) = ( + ) (15.5)

for each of the solutions above. Indeed, if = 1 Eq. (15.5) is equivalent to the
well know identity, = + and for 1

( ( )) =
( )

1
p
1 ( 1) ( ) 1

=
1 1 ( 1) 1

1

s
1 ( 1)

·
1 1 ( 1) 1

¸ 1

=
1 1 ( 1) 1

1

q
1 ( 1)

1

1 ( 1) 1

=
1
p
1 ( 1) 1 ( 1) 1

=
1
p
1 ( 1)( + ) 1

= ( + )

Now suppose ( ) = | | with 0 1 and we now consider the
ordinary di erential equation
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˙( ) = ( ( )) = | ( )| with (0) = R (15.6)

Working as above we find, if 6= 0 that

=

Z
0

˙( )

| ( )| =

Z ( )

0

| | =
[ ( )]

1 1

1

where 1 := | |1 sgn( ) Since sgn( ( )) = sgn( ) the previous equation
implies

sgn( )(1 ) = sgn( )
h
sgn( ( )) | ( )|1 sgn( ) | |1

i
= | ( )|1 | |1

and therefore,

( ) = sgn( )
³
| |1 + sgn( )(1 )

´ 1
1

(15.7)

is uniquely determined by this formula until the first time where | |1 +
sgn( )(1 ) = 0 As before ( ) = 0 is a solution to Eq. (15.6), however it
is far from being the unique solution. For example letting 0 in Eq. (15.7)
gives a function

( 0+) = ((1 ) )
1

1

which solves Eq. (15.6) for 0 Moreover if we define

( ) :=

½
((1 ) )

1
1 if 0

0 if 0

(for example if = 1 2 then ( ) = 1
4
21 0) then the reader may easily check

also solve Eq. (15.6). Furthermore, ( ) := ( ) also solves Eq. (15.6)
for all 0 see Figure 15.1 below.
With these examples in mind, let us now go to the general theory. The

case of linear ODE’s has already been studied in Section 8.3 above.

15.2 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 15.2. Gronwall’s Lemma. Suppose that and are non-
negative functions of a real variable such that

( ) ( ) +

¯̄̄̄Z
0

( ) ( )

¯̄̄̄
(15.8)

Then
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Fig. 15.1. Three di erent solutions to the ODE ˙( ) = | ( )|1 2 with (0) = 0

( ) ( ) +

¯̄̄̄Z
0

( ) ( ) |
R

( ) |
¯̄̄̄

(15.9)

and in particular if and are constants we find that

( ) | | (15.10)

Proof. I will only prove the case 0 The case 0 can be derived
by applying the 0 to (̃ ) = ( ) ˜( ) = ( ) and ( ) = ( ) Set
( ) =

R
0
( ) ( ) . Then by (15.8),

˙ = +

Hence,

(
R
0

( ) ) =
R
0

( ) ( ˙ )
R
0

( )

Integrating this last inequality from 0 to and then solving for yields:

( )
R
0

( ) ·
Z
0

( ) ( )
R
0

( ) =

Z
0

( ) ( )
R

( )

But by the definition of we have that

+

and hence the last two displayed equations imply (15.9). Equation (15.10)
follows from (15.9) by a simple integration.

Corollary 15.3 (Continuous Dependence on Initial Data). Let
0 ( ) and : ( ) × be a continuous function which is —

Lipschitz function on i.e. k ( ) ( 0)k k 0k for all and 0

in Suppose 1 2 : ( ) solve
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( )
= ( ( )) with (0) = for = 1 2 (15.11)

Then
k 2( ) 1( )k k 2 1k | | for ( ) (15.12)

and in particular, there is at most one solution to Eq. (15.1) under the above
Lipschitz assumption on

Proof. Let ( ) := k 2( ) 1( )k Then by the fundamental theorem of
calculus,

( ) = k 2(0) 1(0) +

Z
0

( ˙2( ) ˙1( )) k

(0) +

¯̄̄̄Z
0

k ( 2( )) ( 1( ))k
¯̄̄̄

= k 2 1k+
¯̄̄̄Z
0

( )

¯̄̄̄
Therefore by Gronwall’s inequality we have,

k 2( ) 1( )k = ( ) k 2 1k | |

15.3 Local Existence (Non-Linear ODE)

We now show that Eq. (15.1) under a Lipschitz condition on Another
existence theorem was given in Exercise 11.16.

Theorem 15.4 (Local Existence). Let 0 = ( ) 0 0
and

( 0 ) := { : k 0k }
be the closed — ball centered at 0 Assume

= sup {k ( )k : ( ) × ( 0 )} (15.13)

and there exists such that

k ( ) ( )k k k for all ( 0 ) and (15.14)

Let 0 min { } and 0 := ( 0 0) then for each ( 0 0)
there exists a unique solution ( ) = ( ) to Eq. (15.2) in ( 0 ( 0 ))
Moreover ( ) is jointly continuous in ( ) ( ) is di erentiable in
˙( ) is jointly continuous for all ( ) 0 × ( 0 0) and satisfies
Eq. (15.1).
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Proof. The uniqueness assertion has already been proved in Corollary
15.3. To prove existence, let := ( 0 ) := ( 0 ( 0 )) and

( )( ) := +

Z
0

( ( )) (15.15)

With this notation, Eq. (15.2) becomes = ( ) i.e. we are looking for a
fixed point of If then

k ( )( ) 0k k 0k+
¯̄̄̄Z
0

k ( ( ))k
¯̄̄̄

k 0k+ | |

k 0k+ 0 0 + 0 =

showing ( ) for all ( 0 0) Moreover if

k ( )( ) ( )( )k =
°°°°Z

0

[ ( ( )) ( ( ))]

°°°°¯̄̄̄Z
0

k ( ( )) ( ( ))k
¯̄̄̄

¯̄̄̄Z
0

k ( ) ( )k
¯̄̄̄

(15.16)

Let 0( ) = and (· ) defined inductively by

(· ) := ( 1(· )) = +

Z
0

( 1( )) (15.17)

Using the estimate in Eq. (15.16) repeatedly we find

|| +1( ) ( ) ||¯̄̄̄Z
0

k ( ) 1( )k
¯̄̄̄

2

¯̄̄̄Z
0

1

¯̄̄̄Z
1

0
2 k 1( 2) 2( 2)k

¯̄̄̄¯̄̄̄
... ¯̄̄̄Z

0
1

¯̄̄̄Z
1

0
2

¯̄̄̄Z
1

0

k 1( ) 0( )k
¯̄̄̄ ¯̄̄̄¯̄̄̄

k 1(· ) 0(· )k
Z

( )

=
| |
!

k 1(· ) 0(· )k 2
| |
!

(15.18)

wherein we have also made use of Lemma 8.19. Combining this estimate with
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k 1( ) 0( )k =
°°°°Z

0

( )

°°°° ¯̄̄̄Z
0

k ( )k
¯̄̄̄

0

where

0 = 0max

(Z
0

0

k ( )k
Z 0

0

k ( )k
)

0

shows

k +1( ) ( )k 0
| |
!

0
0

!

and this implies

X
=0

sup{ k +1(· ) (· )k
0
: 0}

X
=0

0
0

!
= 0

0

where

k +1(· ) (· )k
0
:= sup {k +1( ) ( )k : 0}

So ( ) := lim ( ) exists uniformly for and using Eq. (15.14)
we also have

sup{ k ( ( )) ( 1( ))k : 0}
k (· ) 1(· )k

0
0 as

Now passing to the limit in Eq. (15.17) shows solves Eq. (15.2). From this
equation it follows that ( ) is di erentiable in and satisfies Eq. (15.1).
The continuity of ( ) follows from Corollary 15.3 and mean value inequality
(Corollary 8.14):

k ( ) ( 0 0)k k ( ) ( 0)k+ k ( 0) ( 0 0)k

= k ( ) ( 0)k+
°°°°Z 0

( ( 0))
°°°°

k ( ) ( 0)k+
¯̄̄̄Z

0
k ( ( 0))k

¯̄̄̄
k 0k +

¯̄̄̄Z
0
k ( ( 0))k

¯̄̄̄
(15.19)

k 0k + | 0|

The continuity of ˙( ) is now a consequence Eq. (15.1) and the continuity
of and
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Corollary 15.5. Let = ( ) 3 0 and suppose ( × ) satisfies

k ( ) ( )k k k for all and (15.20)

Then for all there is a unique solution ( ) (for ) to Eq. (15.1).
Moreover ( ) and ˙( ) are jointly continuous in ( )

Proof. Let 0 = ( 0 0) 3 0 be a precompact subinterval of and :=
( 0 ) By compactness, := sup

0̄
k ( 0)k which combined

with Eq. (15.20) implies

sup
0̄

k ( )k + k k for all

Using this estimate and Lemma 8.7 one easily shows ( ) for all
The proof of Theorem 15.4 now goes through without any further change.

15.4 Global Properties

Definition 15.6 (Local Lipschitz Functions). Let be an open
interval and ( × ) The function is said to be locally Lipschitz in
if for all and all compact intervals there exists = ( )
and = ( ) 0 such that ( ( )) and

k ( 1) ( 0)k ( )k 1 0k 0 1 ( ( )) &
(15.21)

For the rest of this section, we will assume is an open interval containing
0 is an open subset of and ( × ) is a locally Lipschitz function.

Lemma 15.7. Let ( × ) be a locally Lipschitz function in and
be a compact subset of and be a compact subset of Then there exists
0 such that ( ) is bounded for ( ) × and and ( ) is —

Lipschitz on for all where

:= { : dist( ) }

Proof. Let ( ) and ( ) be as in Definition 15.6 above. Since
is compact, there exists a finite subset such that :=

( ( ) 2) If there exists such that k k ( ) 2
and therefore

k ( )k k ( )k+ ( ) k k k ( )k+ ( ) ( ) 2

sup {k ( )k+ ( ) ( ) 2} =:

This shows is bounded on × Let
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:= ( )
1

2
min ( )

and notice that 0 since is compact, is closed and =
If and k k then as before there exists such that
k k ( ) 2 Therefore

k k k k+ k k + ( ) 2 ( )

and since ( ( )) it follows that

k ( ) ( )k ( )k k 0k k
where 0 := max ( ) On the other hand if and
k k then

k ( ) ( )k 2
2 k k

Thus if we let := max {2 0} we have shown

k ( ) ( )k k k for all and

Proposition 15.8 (Maximal Solutions). Let ( × ) be a locally
Lipschitz function in and let be fixed. Then there is an interval =
( ( ) ( )) with [ 0) and (0 ] and a 1—function :
with the following properties:

1. solves ODE in Eq. (15.1).
2. If ˜ : ˜ = (˜ ˜) is another solution of Eq. (15.1) (we assume that
0 )̃ then ˜ and ˜ = | ˜
The function : is called the maximal solution to Eq. (15.1).

Proof. Suppose that : = ( ) = 1 2, are two solutions to
Eq. (15.1). We will start by showing the 1 = 2 on 1 2 To do this1 let

1 Here is an alternate proof of the uniqueness. Let

sup{ [0 min{ 1 2}) : 1 = 2 on [0 ]}
( is the first positive time after which 1 and 2 disagree.
Suppose, for sake of contradiction, that min{ 1 2} Notice that 1( ) =

2( ) =: 0 Applying the local uniqueness theorem to 1(· ) and 2(· )
thought as function from ( ) ( 0 ( 0)) for some su ciently small, we
learn that 1(· ) = 2(· ) on ( ) But this shows that 1 = 2 on [0 + )
which contradicts the definition of Hence we must have the = min{ 1 2}
i.e. 1 = 2 on 1 2 [0 ) A similar argument shows that 1 = 2 on
1 2 ( 0] as well.
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0 = ( 0 0) be chosen so that 0 0 1 2 and let := 1( 0) 2( 0) —
a compact subset of Choose 0 as in Lemma 15.7 so that is Lipschitz
on Then 1| 0 2| 0 : 0 both solve Eq. (15.1) and therefore are
equal by Corollary 15.3. Since 0 = ( 0 0) was chosen arbitrarily so that
[ ] 1 2 we may conclude that 1 = 2 on 1 2 Let ( =
( )) denote the possible solutions to (15.1) such that 0 . Define
= and set = on . We have just checked that is well defined

and the reader may easily check that this function : satisfies all the
conclusions of the theorem.

Notation 15.9 For each let = ( ( ) ( )) be the maximal in-
terval on which Eq. (15.1) may be solved, see Proposition 15.8. Set D( ) :=

( × { }) × and let : D( ) be defined by ( ) = ( )
where is the maximal solution to Eq. (15.1). (So for each (· ) is
the maximal solution to Eq. (15.1).)

Proposition 15.10. Let ( × ) be a locally Lipschitz function in
and : = ( ( ) ( )) be the maximal solution to Eq. (15.1). If ( )
then either lim sup ( ) k ( ( ))k = or ( ( ) ) := lim ( ) ( ) exists

and ( ( ) ) Similarly, if ( ) then either lim sup ( ) k ( )k =
or ( ( )+) := lim ( ) exists and ( ( )+)

Proof. Suppose that ( ) and := lim sup ( ) k ( ( ))k
Then there is a 0 (0 ( )) such that k ( ( ))k 2 for all ( 0 ( ))
Thus, by the usual fundamental theorem of calculus argument,

k ( ) ( 0)k
¯̄̄̄
¯
Z 0

k ( ( ))k
¯̄̄̄
¯ 2 | 0|

for all 0 ( 0 ( )) From this it is easy to conclude that ( ( ) ) =
lim ( ) ( ) exists. If ( ( ) ) by the local existence Theorem 15.4,
there exists 0 and 1 (( ( ) ( ) + ) ) such that

˙ ( ) = ( ( )) and ( ( )) = ( ( ) )

Now define ˜ : ( ( ) + ) by

˜( ) =

½
( ) if
( ) if [ ( ) ( ) + )

The reader may now easily show ˜ solves the integral Eq. (15.2) and hence
also solves Eq. 15.1 for ( ( ) ( ) + ) 2 But this violates the maximality
of and hence we must have that ( ( ) ) The assertions for near
( ) are proved similarly.

2 See the argument in Proposition 15.13 for a slightly di erent method of extending
which avoids the use of the integral equation (15.2).
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Example 15.11. Let = R2 = R =
©
( ) R2 : 0 1

ª
where

2 = 2 + 2 and

( ) =
1
( ) +

1

1 2
( )

The the unique solution ( ( ) ( )) to

( ( ) ( )) = ( ( ) ( )) with ( (0) (0)) = (
1

2
0)

is given by

( ( ) ( )) =

µ
+
1

2

¶µ
cos

µ
1

1 2

¶
sin

µ
1

1 2

¶¶
for (1 2 0) = ( 1 2) Notice that k ( ( ) ( ))k as 1 2 and
dist(( ( ) ( )) ) 0 as 1 2

Example 15.12. (Not worked out completely.) Let = = 2 (R2)
be a smooth function such that = 1 in a neighborhood of the line segment
joining (1 0) to (0 1) and being supported within the 1 10 — neighborhood of
this segment. Choose and and define

( ) =
X
=1

( ( +1))( +1 ) (15.22)

For any 2 only a finite number of terms are non-zero in the above some
in a neighborhood of Therefor : 2 2 is a smooth and hence locally
Lipshcitz vector field. Let ( ( ) = ( )) denote the maximal solution to

˙( ) = ( ( )) with (0) = 1

Then if the and are chosen appropriately, then and there will
exist such that ( ) is approximately for all So again ( ) does
not have a limit yet sup [0 ) k ( )k The idea is that is constructed
to blow the particle form 1 to 2 to 3 to 4 etc. etc. with the time it takes to
travel from to +1 being on order 1 2 The vector field in Eq. (15.22) is
a first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because ( ) is “going o in dimensions.”

Here is another version of Proposition 15.10 which is more useful when
dim( )

Proposition 15.13. Let ( × ) be a locally Lipschitz function in
and : = ( ( ) ( )) be the maximal solution to Eq. (15.1).

1. If ( ) then for every compact subset there exists ( )
such that ( ) for all [ ( ))
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2. When dim( ) we may write this condition as: if ( ) then
either

lim sup
( )

k ( )k = or lim inf
( )

dist( ( ) ) = 0

Proof. 1) Suppose that ( ) and, for sake of contradiction, there
exists a compact set and ( ) such that ( ) for all
Since is compact, by passing to a subsequence if necessary, we may assume

:= lim ( ) exists in By the local existence Theorem 15.4,
there exists 0 0 and 0 such that for each 0 ( ) there exists a
unique solution (· 0) 1(( 0 0) ) solving

( 0) = ( ( 0)) and (0 0) = 0

Now choose su ciently large so that ( ( ) 0 2 ( )) and ( )
( ) Define ˜ : ( ( ) ( ) + 0 2) by

˜( ) =

½
( ) if
( ( )) if ( 0 ( ) + 0 2)

wherein we have used ( 0 ( )+ 0 2) ( 0 + 0) By uniqueness
of solutions to ODE’s ˜ is well defined, ˜ 1(( ( ) ( ) + 0 2) ) and ˜
solves the ODE in Eq. 15.1. But this violates the maximality of 2) For each

N let
:= { : k k and dist( ) 1 }

Then and each is a closed bounded set and hence compact if
dim( ) Therefore if ( ) by item 1., there exists [0 ( ))
such that ( ) for all [ ( )) or equivalently k ( )k or
dist( ( ) ) 1 for all [ ( ))

Remark 15.14. In general it is not true that the functions and are contin-
uous. For example, let be the region in R2 described in polar coordinates
by 0 and 0 3 4 and ( ) = (0 1) as in Figure 15.2 below.
Then ( ) = for all 0 while ( ) = for all 0 and R
which shows is discontinuous. On the other hand notice that

{ } = { 0} {( ) : 0 }
is an open set for all 0 An example of a vector field for which ( ) is
discontinuous is given in the top left hand corner of Figure 15.2. The map
would allow the reader to find an example on R2 if so desired. Some cal-

culations shows that transferred to R2 by the map is given by the new
vector

˜( ) =

µ
sin

µ
3

8
+
3

4
tan 1 ( )

¶
cos

µ
3

8
+
3

4
tan 1 ( )

¶¶
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Fig. 15.2. Manufacturing vector fields where ( ) is discontinuous.

Theorem 15.15 (Global Continuity). Let ( × ) be a locally
Lipschitz function in Then D( ) is an open subset of × and the func-
tions : D( ) and ˙ : D( ) are continuous. More precisely, for
all 0 and all open intervals 0 such that 0 0 @@ 0 there exists
= ( 0 0 ) 0 and = ( 0 0 ) such that for all ( 0 )

0 and
k (· ) (· 0)k ( 0 ) k 0k (15.23)

Proof. Let | 0| = 0 0 = 0̄ and := ( 0̄) — a compact subset of
and let 0 and be given as in Lemma 15.7, i.e. is the Lipschitz
constant for on Also recall the notation: 1( ) = [0 ] if 0 and
1( ) = [ 0] if 0 Suppose that then by Corollary 15.3,

k ( ) ( 0)k k 0k | | k 0k | 0| (15.24)

for all 0 such that such that ( 1( ) ) Letting :=
| 0| 2 and assuming ( 0 ) the previous equation implies

k ( ) ( 0)k 2 0 3 ( 1( ) )

This estimate further shows that ( ) remains bounded and strictly away
from the boundary of for all such Therefore, it follows from Proposition
15.8 and “continuous induction3” that 0 and Eq. (15.24) is valid for all

3 See the argument in the proof of Proposition 8.11.
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0 This proves Eq. (15.23) with := | 0| Suppose that ( 0 0) D( )
and let 0 0 @@ 0 such that 0 0 and be as above. Then we have
just shown 0 × ( 0 ) D( ) which proves D( ) is open. Furthermore,
since the evaluation map

( 0 ) 0 × ( 0 ) ( 0)

is continuous (as the reader should check) it follows that = ( (· )) :

0 × ( 0 ) is also continuous; being the composition of continuous
maps. The continuity of ˙( 0 ) is a consequences of the continuity of and
the di erential equation 15.1 Alternatively using Eq. (15.2),

k ( 0 ) ( 0)k k ( 0 ) ( 0 0)k+ k ( 0 0) ( 0)k

k 0k+
¯̄̄̄Z

0

k ( ( 0))k
¯̄̄̄

k 0k+ | 0 |

where is the constant in Eq. (15.23) and = sup
0
k ( ( 0))k

This clearly shows is continuous.

15.5 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field . It will be convenient to introduce the following
suggestive notation. For ( ) D( ) set ( ) = ( ) So the path

( ) is the maximal solution to

( ) = ( ( )) with 0 ( ) =

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 15.16 We write : to mean a function defined on some
open subset ( ) The open set ( ) will be called the domain of
Given two functions : and : with domains ( ) and
( ) respectively, we define the composite function : to be the

function with domain

( ) = { : ( ) and ( ) ( )} = 1( ( ))

given by the rule ( ) = ( ( )) for all ( ) We now write =
i ( ) = ( ) and ( ) = ( ) for all ( ) = ( ) We will also write

i ( ) ( ) and | ( ) =
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Theorem 15.17. For fixed R we consider as a function from to
with domain ( ) = { : ( ) D( )} where ( ) = D( ) R×
D( ) and are defined in Notation 15.9. Conclusions:

1. If R and · 0 then = ( + )

2. If R, then = ( )

3. For arbitrary R ( + )

Proof. Item 1. For simplicity assume that 0 The case 0 is left
to the reader. Suppose that ( ) Then by assumption ( )
and ( ) ( ) Define the path ( ) via:

( ) =

½
( ) if 0

( ) ( ) if +

It is easy to check that solves ˙( ) = ( ( )) with (0) = But since,
( ) is the maximal solution we must have that ( ( + ) ) and ( +

) = ( + ) ( ) That is ( + ) ( ) = ( ) Hence we have shown that
( + ) To finish the proof of item 1. it su ces to show that

( ( + ) ) ( ) Take ( ( + ) ), then clearly ( ). Set
( ) = ( + ) ( ) defined for 0 Then solves

˙( ) = ( ( )) with (0) = ( )

But since ( ( )) is the maximal solution to the above initial valued
problem we must have that ( ) = ( ( )) and in particular at =

( + ) ( ) = ( ( )) This shows that ( ) and in fact
( + ) Item 2. Let ( ) — again assume for simplicity that
0 Set ( ) = ( ) ( ) defined for 0 Notice that (0) = ( )

and ˙( ) = ( ( )) This shows that ( ) = ( ( )) and in particular
that ( ) and ( ) = This proves item 2. Item 3. I will
only consider the case that 0 and + 0 the other cases are handled
similarly. Write for + so that = + We know that =
by item 1. Therefore

= ( )

Notice in general, one has ( ) = ( ) (you prove). Hence, the
above displayed equation and item 2. imply that

= ( ) = ( + )
( )

( + )

The following result is trivial but conceptually illuminating partial con-
verse to Theorem 15.17.

Proposition 15.18 (Flows and Complete Vector Fields). Suppose
(R× ) and ( ) = ( ) Suppose satisfies:
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1. 0 =
2. = + for all R and
3. ( ) := ˙(0 ) exists for all and ( ) is locally Lipschitz.

Then =

Proof. Let and ( ) := ( ) Then using Item 2.,

˙( ) = |0 ( + ) = |0 ( + )( ) = |0 ( ) = ( ( ))

Since (0) = by Item 1. and is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 15.3) that ( ) = ( ) = ( )

15.6 Exercises

Exercise 15.1. Find a vector field such that ( + ) is not contained in

Definition 15.19. A locally Lipschitz function : is said to
be a complete vector field if D( ) = R× That is for any ( )
is defined for all R

Exercise 15.2. Suppose that : is a locally Lipschitz function.
Assume there is a constant 0 such that

k ( )k (1 + k k) for all
Then is complete.Hint: use Gronwall’s Lemma 15.2 and Proposition 15.10.

Exercise 15.3. Suppose is a solution to ˙( ) = | ( )|1 2 with (0) = 0
Show there exists [0 ] such that

( ) =

1
4( )2 if

0 if
1
4( + )2 if

Exercise 15.4. Using the fact that the solutions to Eq. (15.3) are never 0 if
6= 0 show that ( ) = 0 is the only solution to Eq. (15.3) with (0) = 0

Exercise 15.5 (Higher Order ODE). Let be a Banach space, , U
and ( × U ) be a Locally Lipschitz function in x = ( 1 )
Show the th ordinary di erential equation,

( )( ) = ( ( ) ˙( ) ( 1)( )) with ( )(0) = 0 for (15.25)

where ( 0
0

1
0 ) is given in U has a unique solution for small

Hint: let y( ) =
¡
( ) ˙( ) ( 1)( )

¢
and rewrite Eq. (15.25) as a first

order ODE of the form

ẏ( ) = ( y( )) with y(0) = ( 0
0

1
0 )
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Exercise 15.6. Use the results of Exercises 8.20 and 15.5 to solve

¨( ) 2 ˙( ) + ( ) = 0 with (0) = and ˙(0) =

Hint: The 2× 2 matrix associated to this system, , has only one eigenvalue
1 and may be written as = + where 2 = 0

Exercise 15.7 (Non-Homogeneous ODE). Suppose that is open
and : R× is a continuous function. Let = ( ) be an interval and
0 Suppose that 1( ) is a solution to the “non-homogeneous”
di erential equation:

˙( ) = ( ( )) with ( ) = (15.26)

Define 1( 0 R× ) by ( ) := ( + 0 ( + 0)) Show that solves
the “homogeneous” di erential equation

˙ ( ) = ˜( ( )) with (0) = ( 0 0) (15.27)

where ˜( ) := (1 ( )) Conversely, suppose that 1( 0 R × )
is a solution to Eq. (15.27). Show that ( ) = ( + 0 ( + 0)) for some
1( ) satisfying Eq. (15.26). (In this way the theory of non-homogeneous

ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 15.8 (Di erential Equations with Parameters). Let be an-
other Banach space, × × and ( × ) be a locally
Lipschitz function on × For each ( ) × let ( )
denote the maximal solution to the ODE

˙( ) = ( ( ) ) with (0) = (15.28)

Prove
D := {( ) R× × : } (15.29)

is open in R× × and and ˙ are continuous functions on D
Hint: If ( ) solves the di erential equation in (15.28), then ( ) :=

( ( ) ) solves the di erential equation,

˙( ) = ˜( ( )) with (0) = ( ) (15.30)

where ˜( ) := ( ( ) 0) × and let ( ( )) := ( ) Now apply
the Theorem 15.15 to the di erential equation (15.30).

Exercise 15.9 (Abstract Wave Equation). For ( ) and R let

cos( ) :=
X
=0

( 1)

(2 )!
2 2 and

sin( )
:=
X
=0

( 1)

(2 + 1)!
2 +1 2
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Show that the unique solution 2 (R ) to

¨( ) + 2 ( ) = 0 with (0) = 0 and ˙(0) = ˙0 (15.31)

is given by

( ) = cos( ) 0 +
sin( )

˙0

Remark 15.20. Exercise 15.9 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (15.31) as a first order ODE using Exercise
15.5. In doing so you will be lead to compute where ( × ) is
given by

=

µ
0
2 0

¶
where we are writing elements of × as column vectors,

µ
1

2

¶
You should

then show

=

µ
cos( ) sin( )

sin( ) cos( )

¶
where

sin( ) :=
X
=0

( 1)

(2 + 1)!
2 +1 2( +1)

Exercise 15.10 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 15.9, but now consider the ODE,

¨( ) + 2 ( ) = ( ) with (0) = 0 and ˙(0) = ˙0 (15.32)

where (R ) Show the unique solution to Eq. (15.32) is given by

( ) = cos( ) 0 +
sin( )

˙0 +

Z
0

sin(( ) )
( ) (15.33)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (15.33) from Exercise 8.22 and the comments in
Remark 15.20.

16

Banach Space Calculus

In this section, and will be Banach space and will be an open subset
of

Notation 16.1 ( and notation) Let 0 and :
be a function. We will write:

1. ( ) = ( ) if lim 0 k ( )k = 0
2. ( ) = ( ) if there are constants and 0 such that
k ( )k k k for all (0 ) This is equivalent to the condition
that lim sup 0

¡k k 1k ( )k¢ where

lim sup
0

k ( )k
k k := lim

0
sup{k ( )k : 0 k k }

3. ( ) = ( ) if ( ) = ( ) ( ) i.e. lim 0 k ( )k k k = 0
Example 16.2. Here are some examples of properties of these symbols.

1. A function : is continuous at 0 if ( 0 + ) =
( 0) + ( )

2. If ( ) = ( ) and ( ) = ( ) then ( ) + ( ) = ( )
Now let : be another function where is another Banach space.

3. If ( ) = ( ) and ( ) = ( ) then ( ) = ( )
4. If ( ) = ( ) and ( ) = ( ) then ( ) = ( )

16.1 The Di erential

Definition 16.3. A function : is di erentiable at 0

if there exists a linear transformation ( ) such that

( 0 + ) ( 0) = ( ) (16.1)

We denote by 0( 0) or ( 0) if it exists. As with continuity, is dif-
ferentiable on if is di erentiable at all points in
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Remark 16.4. The linear transformation in Definition 16.3 is necessarily
unique. Indeed if 1 is another linear transformation such that Eq. (16.1)
holds with replaced by 1 then

( 1) = ( )

i.e.

lim sup
0

k( 1) k
k k = 0

On the other hand, by definition of the operator norm,

lim sup
0

k( 1) k
k k = k 1k

The last two equations show that = 1

Exercise 16.1. Show that a function : ( ) is a di erentiable at
( ) in the sense of Definition 8.8 i it is di erentiable in the sense of

Definition 16.3. Also show ( ) = ˙( ) for all R

Example 16.5. If ( ) and then

( + ) ( ) = 0

which shows 0 ( ) = for all

Example 16.6. Assume that ( ) is non-empty. Then by Corollary 7.20,
( ) is an open subset of ( ) and the inverse map : ( )
( ) defined by ( ) := 1 is continuous. We will now show that

is di erentiable and

0( ) = 1 1 for all ( )

This is a consequence of the identity,

( + ) ( ) = ( + ) 1 ( ( + )) 1 = ( + ) 1 1

which may be used to find the estimate,°° ( + ) ( ) + 1 1
°° = °°£ 1 ( + ) 1

¤
1
°°°° 1 ( + ) 1

°° k k°° 1
°°

k 1k3 k k2
1 k 1k k k =

³
k k2

´
wherein we have used the bound in Eq. (7.8) of Corollary 7.20 for the last
inequality.
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16.2 Product and Chain Rules

The following theorem summarizes some basic properties of the di erential.

Theorem 16.7. The di erential has the following properties:

1. Linearity: is linear, i.e. ( + ) = +
2. Product Rule: If : and : ( ) are
di erentiable at 0 then so is ( )( ) := ( ) ( ) and

( )( 0) = ( ( 0) ) ( 0) + ( 0) ( 0)

3. Chain Rule: If : is di erentiable at 0 and
: is di erentiable at 0 := ( 0) then is di erentiable

at 0 and ( )0( 0) =
0( 0)

0( 0)
4. Converse Chain Rule: Suppose that : is contin-
uous at 0 : is di erentiable 0 := ( ) 0( 0) is
invertible, and is di erentiable at 0 then is di erentiable at 0

and
0( 0) := [

0( 0)]
1( )0( 0) (16.2)

Proof. Linearity. Let : be two functions which are
di erentiable at 0 and R then

( + )( 0 + )

= ( 0) + ( 0) + ( ) + ( ( 0) + ( 0) + ( )

= ( + )( 0) + ( ( 0) + ( 0)) + ( )

which implies that ( + ) is di erentiable at 0 and that

( + )( 0) = ( 0) + ( 0)

Product Rule. The computation,

( 0 + ) ( 0 + )

= ( ( 0) + ( 0) + ( ))( ( 0) +
0( 0) + ( ))

= ( 0) ( 0) + ( 0)
0( 0) + [ ( 0) ] ( 0) + ( )

verifies the product rule holds. This may also be considered as a special case
of Proposition 16.9. Chain Rule. Using ( 0 + ) ( 0) = ( ) (see Eq.
(16.1)) and ( ( )) = ( )

( )( 0 + )

= ( ( 0)) +
0( ( 0))( ( 0 + ) ( 0)) + ( ( 0 + ) ( 0))

= ( ( 0)) +
0( ( 0))( ( 0) 0 + ( )) + ( ( 0 + ) ( 0)

= ( ( 0)) +
0( ( 0)) ( 0) + ( )
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Converse Chain Rule. Since is di erentiable at 0 = ( 0) and 0 ( 0) is
invertible,

( ( 0 + )) ( ( 0))

= 0( ( 0))( ( 0 + ) ( 0)) + ( ( 0 + ) ( 0))

= 0( ( 0)) [ ( 0 + ) ( 0) + ( ( 0 + ) ( 0))]

And since is di erentiable at 0

( )( 0 + ) ( ( 0)) = ( )0( 0) + ( )

Comparing these two equations shows that

( 0 + ) ( 0) + ( ( 0 + ) ( 0))

= 0( ( 0))
1 [( )0( 0) + ( )]

which is equivalent to

( 0 + ) ( 0) + ( ( 0 + ) ( 0))

= 0( ( 0))
1 [( )0( 0) + ( )]

= 0( ( 0))
1{( )0( 0) + ( ) ( ( 0 + ) ( 0))}

= 0( ( 0))
1( )0( 0) + ( ) + ( ( 0 + ) ( 0)) (16.3)

Using the continuity of ( 0 + ) ( 0) is close to 0 if is close to zero,
and hence

k ( ( 0 + ) ( 0))k 1

2
k ( 0 + ) ( 0)k (16.4)

for all su ciently close to 0 (We may replace 1
2 by any number 0

above.) Taking the norm of both sides of Eq. (16.3) and making use of Eq.
(16.4) shows, for close to 0 that

k ( 0 + ) ( 0)k
k 0( ( 0))

1( )0( 0)kk k+ (k k) + 1
2
k ( 0 + ) ( 0)k

Solving for k ( 0 + ) ( 0)k in this last equation shows that
( 0 + ) ( 0) = ( ) (16.5)

(This is an improvement, since the continuity of only guaranteed that ( 0+
) ( 0) = ( ) ) Because of Eq. (16.5), we now know that ( ( 0 + )
( 0)) = ( ) which combined with Eq. (16.3) shows that

( 0 + ) ( 0) =
0( ( 0))

1( )0( 0) + ( )

i.e. is di erentiable at 0 and 0( 0) =
0( ( 0))

1( )0( 0)
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Corollary 16.8 (Chain Rule). Suppose that : ( ) is di er-
entiable at ( ) and : is di erentiable at ( ) Then

is di erentiable at and

( )( ) = 0( ( )) ˙ ( )

Proposition 16.9 (Product Rule II). Suppose that := 1 × · · · ×
with each being a Banach space and : 1×· · ·× is a multilinear
map, i.e.

( 1 1 +1 )

is linear when 1 1 +1 are held fixed. Then the following are
equivalent:

1. is continuous.
2. is continuous at 0
3. There exists a constant such that

k ( )k
Y
=1

k k (16.6)

for all = ( 1 )
4. is di erentiable at all 1 × · · · ×
Moreover if the di erential of is given by

0 ( ) =
X
=1

( 1 1 +1 ) (16.7)

where = ( 1 )

Proof. Let us equip with the norm

k k := max
©k k ª

If is continuous then is continuous at 0 If is continuous at 0 using
(0) = 0 there exists a 0 such that k ( )k 1 whenever k k

Now if is arbitrary, let 0 :=
³
k 1k 1

1 1 k k 1
´

Then

k 0k and hence°°°°°
Ã Y

=1

k k 1

!
( 1 )

°°°°° = k ( 0)k 1

from which Eq. (16.6) follows with =
Now suppose that Eq. (16.6) holds. For and {0 1} let

| | =P =1 and
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( ) := ((1 1) 1 + 1 1 (1 ) + )

By the multi-linearity of

( + ) = ( 1 + 1 + ) =
X
{0 1}

( ( ))

= ( ) +
X
=1

( 1 1 +1 )

+
X

{0 1} :| | 2

( ( )) (16.8)

From Eq. (16.6), °°°°°°
X

{0 1} :| | 2

( ( ))

°°°°°° =
³
k k2

´
and so it follows from Eq. (16.8) that 0 ( ) exists and is given by Eq. (16.7).
This completes the proof since it is trivial to check that being di erentiable
at implies continuity of at

Exercise 16.2. Let det : (R ) R be the determinant function on ×
matrices and for ( 6 R ) we will let denote the th — column of and
write = ( 1| 2| | )

1. Show det0 ( ) exists for all ( 6 R ) and

0
det ( ) =

X
=1

det ( 1| | 1| | +1| | ) (16.9)

for all (R ) Hint: recall that det ( ) is a multilinear function of
its columns.

2. Use Eq. (16.9) along with basic properties of the determinant to show
det0 ( ) = tr( )

3. Suppose now that (R ) show

0
det ( ) = det ( ) tr( 1 )

Hint: Notice that det ( + ) = det ( ) det
¡
+ 1

¢
4. If (R ) show det

¡ ¢
= tr( ) Hint: use the previous item and

Corollary 16.8 to show

det
¡ ¢

= det
¡ ¢

tr( )
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Definition 16.10. Let and be Banach spaces and let L1( ) :=
( ) and for 2 let L ( ) be defined inductively by L +1( ) =
( L ( )) For example L2( ) = ( ( )) and L3( ) =
( ( ( )))

Suppose : is a function. If is di erentiable on then it
makes sense to ask if 0 = : ( ) = L1( ) is di erentiable. If

is di erentiable on then 00 = 2 := : L2( ) Similarly
we define ( ) = : L ( ) inductively.

Definition 16.11. Given N let ( ) denote those functions :
such that ( ) := : L ( ) exists and is continuous for

= 1 2

Example 16.12. Let us continue on with Example 16.6 but now let = to
simplify the notation. So : ( ) ( ) is the map ( ) = 1 and

0( ) = 1 1 i.e. 0 =

where = and = for all ( ) As the reader may
easily check, the maps

( ) ( ( ))

are linear and bounded. So by the chain and the product rule we find 00( )
exists for all ( ) and

00( ) = 0( ) 0( )

More explicitly

[ 00( ) ] = 1 1 1 + 1 1 1 (16.10)

Working inductively one shows : ( ) ( ) defined by ( ) := 1

is

16.3 Partial Derivatives

Definition 16.13 (Partial or Directional Derivative). Let :
be a function, 0 and We say that is di erentiable at 0 in

the direction i |0( ( 0 + )) =: ( )( 0) exists. We call ( )( 0) the
directional or partial derivative of at 0 in the direction

Notice that if is di erentiable at 0 then ( 0) exists and is equal to
0( 0) see Corollary 16.8.
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Proposition 16.14. Let : be a continuous function and
be a dense subspace of Assume ( ) exists for all and
and there exists a continuous function : ( ) such that

( ) = ( ) for all and Then 1( ) and
=

Proof. Let 0 0 such that ( 0 2 ) and := sup{k ( )k :
( 0 2 )} 1. For ( 0 ) and (0 ) by the

fundamental theorem of calculus,

( + ) ( ) =

Z 1

0

( + )

=

Z 1

0

( )( + ) =

Z 1

0

( + ) (16.11)

For general ( 0 ) and (0 ) choose ( 0 ) and
(0 ) such that and Then

( + ) ( ) =

Z 1

0

( + ) (16.12)

holds for all The left side of this last equation tends to ( + ) ( ) by
the continuity of For the right side of Eq. (16.12) we have

k
Z 1

0

( + )

Z 1

0

( + ) kZ 1

0

k ( + ) ( + ) kk k + k k

It now follows by the continuity of the fact that k ( + ) ( + ) k
and the dominated convergence theorem that right side of Eq. (16.12)

converges to
R 1
0

( + ) Hence Eq. (16.11) is valid for all ( 0 )
and (0 ) We also see that

( + ) ( ) ( ) = ( ) (16.13)

where ( ) :=
R 1
0
[ ( + ) ( )] Now

1 It should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not su cient to choose su ciently small so that
( 0 2 ) Here is a counter example. Let be a Hilbert space, { } =1

be an orthonormal set. Define ( )
P

=1 (k k) where is any contin-
uous function on R such that (0) = 1 and is supported in ( 1 1) Notice that
k k2 = 2 for all 6= so that k k = 2 Using this fact it is rather
easy to check that for any 0 there is an 0 such that for all ( 0 )
only one term in the sum defining is non-zero. Hence, is continuous. However,
( ) = as
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k ( )k
Z 1

0

k ( + ) ( )k
max
[0 1]

k ( + ) ( )k 0 as 0

by the continuity of Thus, we have shown that is di erentiable and that
( ) = ( )

Corollary 16.15. Suppose now that = R : be a contin-
uous function such that ( ) := ( ) exists and is continuous on for
= 1 2 where { } =1 is the standard basis for R Then 1( )
and ( ) = ( ) for all

Proof. For let ( ) : R be the unique linear map such that
( ) = ( ) for = 1 2 Then : (R ) is a continuous

map. Now let R and ( ) := ( 1 2 0 0) for = 1 2 and
(0) := 0 Then for R near 0 using the fundamental theorem of calculus
and the definition of ( )

( + ) ( ) =
X
=1

h ³
+ ( )

´ ³
+ ( 1)

´i
=
X
=1

Z 1

0

³
+ ( 1) +

´
=
X
=1

Z 1

0

³
+ ( 1) +

´
=
X
=1

Z 1

0

³
+ ( 1) +

´
Using the continuity of it now follows that

lim
0

( + ) ( )
=
X
=1

lim
0

Z 1

0

³
+ ( 1) +

´
=
X
=1

Z 1

0

( ) = ( )

which shows ( ) exists and ( ) = ( ) The result now follows from
an application of Proposition 16.14.

16.4 Higher Order Derivatives

It is somewhat inconvenient to work with the Banach spaces L ( ) in De-
finition 16.10. For this reason we will introduce an isomorphic Banach space,
( )
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Definition 16.16. For {1 2 3 } let ( ) denote the set of func-
tions : such that

1. For {1 2 } h 1 2 1 +1 i is
linear 2 for all { } =1

2. The norm k k ( ) should be finite, where

k k ( ) := sup{k h 1 2 ik
k 1kk 2k · · · k k : { } =1 \ {0}}

Lemma 16.17. There are linear operators : L ( ) ( )
defined inductively as follows: 1 = ( ) (notice that 1( ) =
L1( ) = ( )) and

( +1 )h 0 1 i = ( ( 0))h 1 2 i
(Notice that 0 L ( ) ) Moreover, the maps are isometric isomor-
phisms.

Proof. To get a feeling for what is let us write out 2 and 3 explicitly.
If L2( ) = ( ( )) then ( 2 )h 1 2i = ( 1) 2 and if
L3( ) = ( ( ( ))) ( 3 )h 1 2 3i = (( 1) 2) 3 for all
It is easily checked that is linear for all We will now show by induction

that is an isometry and in particular that is injective. Clearly this is true
if = 1 since 1 is the identity map. For L +1( )

k +1 k
+1( )

:= sup{k( ( 0))h 1 2 ik
k 0kk 1kk 2k · · · k k : { } =0 \ {0}}

= sup{k( ( 0))k ( )

k 0k : 0 \ {0}}

= sup{k 0kL ( )

k 0k : 0 \ {0}}
= k k ( L ( )) := k kL +1( )

wherein the second to last inequality we have used the induction hypothesis.
This shows that +1 is an isometry provided is an isometry. To finish the
proof it su ces to show that is surjective for all Again this is true for
= 1 Suppose that is invertible for some 1 Given +1( ) we

must produce L +1( ) = ( L ( )) such that +1 = If such
an equation is to hold, then for 0 we would have ( 0) = h 0 · · · i
That is 0 =

1( h 0 · · · i) It is easily checked that so defined is linear,
bounded, and +1 =
From now on we will identify L with without further mention. In

particular, we will view as function on with values in ( )

2 I will routinely write h 1 2 i rather than ( 1 2 ) when the func-
tion depends on each of variables linearly, i.e. is a multi-linear function.
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Theorem 16.18 (Di erentiability). Suppose {1 2 } and is
a dense subspace of : is a function such that
(

1 2 · · · )( ) exists for all { } =1 and = 1 2
Further assume there exists continuous functions : ( )
such that such that ( 1 2 · · · )( ) = ( )h 1 2 i for all

{ } =1 and = 1 2 Then ( ) exists and is equal
to ( ) for all and = 1 2

Proof. We will prove the theorem by induction on We have already
proved the theorem when = 1 see Proposition 16.14. Now suppose that

1 and that the statement of the theorem holds when is replaced by 1
Hence we know that ( ) = ( ) for all and = 1 2 1 We
are also given that

(
1 2 · · · )( ) = ( )h 1 2 i { } (16.14)

Now we may write ( 2 · · · )( ) as ( 1 )( )h 2 3 i so that Eq.
(16.14) may be written as

1(
1 )( )h 2 3 i)

= ( )h 1 2 i { } (16.15)

So by the fundamental theorem of calculus, we have that

(( 1 )( + 1) ( 1 )( ))h 2 3 i

=

Z 1

0

( + 1)h 1 2 i (16.16)

for all and { } with 1 su ciently small. By the same
argument given in the proof of Proposition 16.14, Eq. (16.16) remains valid
for all and { } with 1 su ciently small. We may write this last
equation alternatively as,

( 1 )( + 1) ( 1 )( ) =

Z 1

0

( + 1)h 1 · · · i (16.17)

Hence

( 1 )( + 1) ( 1 )( ) ( )h 1 · · · i

=

Z 1

0

[ ( + 1) ( )]h 1 · · · i

from which we get the estimate,

k( 1 )( + 1) ( 1 )( ) ( )h 1 · · · ik ( 1)k 1k (16.18)

where ( 1) :=
R 1
0
k ( + 1) ( )k Notice by the continuity of

that ( 1) 0 as 1 0 Thus it follow from Eq. (16.18) that 1 is
di erentiable and that ( )( ) = ( )
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Example 16.19. Let : ( ) ( ) be defined by ( ) := 1

We assume that ( ) is not empty. Then is infinitely di erentiable and

( )( )h 1 2 i
= ( 1)

X
{ 1

(1)
1

(2)
1 · · · 1

( )
1} (16.19)

where sum is over all permutations of of {1 2 }
Let me check Eq. (16.19) in the case that = 2 Notice that we have

already shown that (
1 )( ) = ( ) 1 =

1
1

1 Using the product
rule we find that

( 2 1 )( ) = 1
2

1
1

1 + 1
1

1
2

1 =: 2( )h 1 2i

Notice that k 2( )h 1 2ik 2k 1k3k 1k · k 2k so that k 2( )k
2k 1k3 Hence 2 : ( ) 2( ( ) ( )) Also

k( 2( ) 2( ))h 1 2ik 2k 1
2

1
1

1 1
2

1
1

1k
2k 1

2
1
1

1 1
2

1
1

1k
+ 2k 1

2
1
1

1 1
2

1
1

1k
+ 2k 1

2
1
1

1 1
2

1
1

1k
2k 1k2k 2kk 1kk 1 1k
+ 2k 1kk 1kk 2kk 1kk 1 1k
+ 2k 1k2k 2kk 1kk 1 1k

This shows that

k 2( ) 2( )k 2k 1 1k{k 1k2 + k 1kk 1k+ k 1k2}

Since 1 is di erentiable and hence continuous, it follows that 2( )
is also continuous in Hence by Theorem 16.18 2 ( ) exists and is given
as in Eq. (16.19)

Example 16.20. Suppose that : R R is a — function and ( ) :=R 1
0
( ( )) for := ([0 1] R) equipped with the norm k k :=

max [0 1] | ( )| Then : R is also infinitely di erentiable and

( )( )h 1 2 i =
Z 1

0

( )( ( )) 1( ) · · · ( ) (16.20)

for all and { }
To verify this example, notice that
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( )( ) := |0 ( + ) = |0
Z 1

0

( ( ) + ( ))

=

Z 1

0

|0 ( ( ) + ( )) =

Z 1

0

0( ( )) ( )

Similar computations show that

( 1 2 · · · )( ) =

Z 1

0

( )( ( )) 1( ) · · · ( ) =: ( )h 1 2 i

Now for

| ( )h 1 2 i ( )h 1 2 i|Z 1

0

| ( )( ( )) ( )( ( ))| · | 1( ) · · · ( ) |

Y
=1

k k
Z 1

0

| ( )( ( )) ( )( ( ))|

which shows that

k ( ) ( )k
Z 1

0

| ( )( ( )) ( )( ( ))|

This last expression is easily seen to go to zero as in Hence is
continuous. Thus we may apply Theorem 16.18 to conclude that Eq. (16.20)
is valid.

16.5 Inverse and Implicit Function Theorems

In this section, let be a Banach space, 0 = = (0 )
and : be a continuous function such that (0) = 0 Our immedi-
ate goal is to give a su cient condition on so that ( ) := + ( ) is a
homeomorphism from to ( ) with ( ) being an open subset of Let’s
start by looking at the one dimensional case first. So for the moment assume
that = R = ( 1 1) and : R is 1 Then will be injective
i is either strictly increasing or decreasing. Since we are thinking that
is a “small” perturbation of the identity function we will assume that is
strictly increasing, i.e. 0 = 1+ 0 0 This positivity condition is not so eas-
ily interpreted for operators on a Banach space. However the condition that
| 0| 1 is easily interpreted in the Banach space setting and it implies
1 + 0 0

Lemma 16.21. Suppose that = = (0 ) ( 0) is a ball in and
: is a 1 function such that k k on Then

k ( ) ( )k k k for all (16.21)
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Proof. By the fundamental theorem of calculus and the chain rule:

( ) ( ) =

Z 1

0

( + ( ))

=

Z 1

0

[ ( + ( ))]( )

Therefore, by the triangle inequality and the assumption that k ( )k
on

k ( ) ( )k
Z 1

0

k ( + ( ))k · k( )k k( )k

Remark 16.22. It is easily checked that if : = (0 ) is 1 and
satisfies (16.21) then k k on

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 16.23. Suppose (0 1) 0 = (0 ) and
: is a continuous function such that (0) = 0 and

k ( ) ( )k k k (16.22)

Then : defined by ( ) := + ( ) for satisfies:

1. is an injective map and = 1 : := ( ) is continuous.
2. If 0 0 = ( 0) and 0 such the ( 0 ) then

( 0 (1 ) ) ( ( 0 )) ( 0 (1 + ) ) (16.23)

In particular, for all

(0 (1 ) ) ( (0 )) (0 (1 + ) ) (16.24)

see Figure 16.1 below.
3. := ( ) is open subset of and : is a homeomorphism.

Proof.

1. Using the definition of and the estimate in Eq. (16.22),

k k = k( ( ) ( )) ( ( ) ( ))k
k ( ) ( )k+ k ( ) ( )k
k ( ) ( )k+ k( )k

for all This implies
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Fig. 16.1. Nesting of ( ( 0 )) between ( 0 (1 ) ) and ( 0 (1 + ) )

k k (1 ) 1k ( ) ( )k (16.25)

which shows is injective on and hence shows the inverse function
= 1 : := ( ) is well defined. Moreover, replacing in

Eq. (16.25) by ( ) and ( ) respectively with shows

k ( ) ( ) k (1 ) 1k k for all (16.26)

Hence is Lipschitz on and hence continuous.
2. Let 0 0 and 0 = ( 0) = 0 + ( 0) be as in item 2. The
second inclusion in Eq. (16.23) follows from the simple computation:

k ( 0 + ) 0k = k + ( 0 + ) ( 0)k
k k+ k ( 0 + ) ( 0)k
(1 + ) k k (1 + )

for all (0 ) To prove the first inclusion in Eq. (16.23) we must
find, for every ( 0 (1 ) ) an (0 ) such that = ( 0 + )
or equivalently an (0 ) solving

0 = ( 0 + ) ( 0) = + ( 0 + ) ( 0)

Let := 0 and for (0 ) let ( ) := ( 0 + ) ( 0) With
this notation it su ces to show for each ( 0 (1 ) ) there exists

(0 ) such that = + ( ) Notice that (0) = 0 and

k ( 1) ( 2)k = k ( 0 + 1) ( 0 + 2)k k 1 2k (16.27)

for all 1 2 (0 ) We are now going to solve the equation =
+ ( ) for by the method of successive approximations starting with
0 = 0 and then defining inductively by

+1 = ( ) (16.28)

A simple induction argument using Eq. (16.27) shows that
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k +1 k k k for all N0

and in particular that

k k =
°°°°°

1X
=0

( +1 )

°°°°°
1X

=0

k +1 k

1X
=0

k k = 1

1
k k (16.29)

Since k k (1 ) this implies that k k for all showing the
approximation procedure is well defined. Let

:= lim =
X
=0

( +1 )

which exists since the sum in the previous equation is absolutely con-
vergent. Passing to the limit in Eqs. (16.29) and (16.28) shows that
k k (1 ) 1 k k and = ( ) i.e. (0 ) solves
= + ( ) as desired.

3. Given 0 the first inclusion in Eq. (16.23) shows that 0 = ( 0) is
in the interior of ( ) Since 0 ( ) was arbitrary, it follows that
= ( ) is open. The continuity of the inverse function has already

been proved in item 1.

For the remainder of this section let and be two Banach spaces,
1 and ( )

Lemma 16.24. Suppose 0 0 is such that ( 0 ) and
: ( 0 ) is a 1 — function such that 0( 0) is invertible. Let

( ) := sup
( 0 )

°° 0( 0)
1 0( )

°°
( )

(16.30)

and 1
¡

(0 )
¢
be defined by

( ) = 0( 0)
1 [ ( 0 + ) ( 0)] (16.31)

so that
( 0 + ) = ( 0) +

0( 0) ( + ( )) (16.32)

Then ( ) = ( ) as 0 and

k ( 0) ( )k ( ) k 0 k for all 0 (0 ) (16.33)

If ( ) 1 (which may be achieved by shrinking if necessary), then 0( )
is invertible for all ( 0 ) and

sup
( 0 )

°° 0( ) 1
°°

( )

1

1 ( )

°° 0( 0)
1
°°

( )
(16.34)
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Proof. By definition of 0 ( 0) and using 0 ( 0)
1 exists,

( 0 + ) ( 0) =
0( 0) + ( )

from which it follows that ( ) = ( ) In fact by the fundamental theorem
of calculus,

( ) =

Z 1

0

¡ 0( 0)
1 0( 0 + )

¢
but we will not use this here. Let 0 (0 ) and apply the fundamental
theorem of calculus to ( 0 + ( 0 )) to conclude

( 0) ( ) = 0( 0)
1 [ ( 0 +

0) ( 0 + )] ( 0 )

=

·Z 1

0

¡ 0( 0)
1 0( 0 + ( 0 ))

¢ ¸
( 0 )

Taking norms of this equation gives

k ( 0) ( )k
·Z 1

0

°° 0( 0)
1 0( 0 + ( 0 ))

°° ¸
k 0 k

( ) k 0 k
It only remains to prove Eq. (16.34), so suppose now that ( ) 1 Then by
Proposition 7.19, 0( 0)

1 0( ) =
¡ 0( 0)

1 0( )
¢
is invertible and°°°£ 0( 0)

1 0( )
¤ 1
°°° 1

1 ( )
for all ( 0 )

Since 0( ) = 0( 0)
£ 0( 0)

1 0( )
¤
this implies 0( ) is invertible and°° 0( ) 1

°° = °°°£ 0( 0)
1 0( )

¤ 1 0( 0)
1
°°° 1

1 ( )

°° 0( 0)
1
°°

for all ( 0 )

Theorem 16.25 (Inverse Function Theorem). Suppose 1
and ( ) such that 0( ) is invertible for all Further assume
0 and 0 such that ( 0 )

1. For all

( ( 0 )) ( 0) +
0 ( 0) (0 (1 + ( )) ) (16.35)

2. If we further assume that

( ) := sup
( 0 )

°° 0( 0)
1 0( )

°° 1

which may always be achieved by taking su ciently small, then

( 0) +
0 ( 0) (0 (1 ( )) ) ( ( 0 )) (16.36)

for all see Figure 16.2.
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3. : is an open mapping, in particular := ( )
4. Again if is su ciently small so that ( ) 1 then | ( 0 ) :

( 0 ) ( ( 0 )) is invertible and | 1
( 0 )

:
¡

( 0 )
¢

( 0 ) is a — map.
5. If is injective, then 1 : is also a — map and¡

1
¢0
( ) =

£ 0( 1( ))
¤ 1

for all

Fig. 16.2. The nesting of ( ( 0 )) between ( 0)+
0 ( 0) (0 (1 ( )) )

and ( 0) +
0 ( 0) (0 (1 + ( )) )

Proof. Let 1
¡

(0 )
¢
be as defined in Eq. (16.31).

1. Using Eqs. (16.32) and (16.24),¡
( 0 )

¢
= ( 0) +

0 ( 0) ( + )
¡

(0 )
¢

(16.37)

( 0) +
0 ( 0) (0 (1 + ( )) )

which proves Eq. (16.35).
2. Now assume ( ) 1 then by Eqs. (16.37) and (16.24),

( 0) +
0 ( 0) (0 (1 ( )) )

( 0) +
0 ( 0) ( + )

¡
(0 )

¢
=

¡
( 0 )

¢
which proves Eq. (16.36).

3. Notice that ( 0) +
0 ( 0) is a homeomorphism. The

fact that is an open map follows easily from Eq. (16.36) which shows
that ( 0) is interior of ( ) for any with 0

4. The fact that | ( 0 ) : ( 0 ) ( ( 0 )) is invertible with
a continuous inverse follows from Eq. (16.32) and Proposition 16.23. It
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now follows from the converse to the chain rule, Theorem 16.7, that :=
| 1

( 0 )
:
¡

( 0 )
¢

( 0 ) is di erentiable and

0 ( ) = [ 0 ( ( ))] 1 for all
¡

( 0 )
¢

This equation shows is 1 Now suppose that 2 Since 0
1( ( )) and ( ) := 1 is a smooth map by Example 16.19,

0 = 0 is 1 i.e. is 2 If 2 we may use the same argument
to now show is 3 Continuing this way inductively, we learn is

5. Since di erentiability and smoothness is local, the assertion in item 5.
follows directly from what has already been proved.

Theorem 16.26 (Implicit Function Theorem). Suppose that and
are three Banach spaces, 1 × is an open set, ( 0 0) is

a point in and : is a — map such ( 0 0) = 0 Assume
that 2 ( 0 0) := ( ( 0 ·))( 0) : is a bounded invertible linear
transformation. Then there is an open neighborhood 0 of 0 in such that
for all connected open neighborhoods of 0 contained in 0 there is a unique
continuous function : such that ( 0) = ( ( )) and
( ( )) = 0 for all Moreover is necessarily and

( ) = 2 ( ( )) 1
1 ( ( )) for all (16.38)

Proof. By replacing by ( ) 2 ( 0 0)
1 ( ) if necessary, we

may assume with out loss of generality that = and 2 ( 0 0) =
Define : × by ( ) := ( ( )) for all ( ) Notice that

( ) =

·
1 ( )

0 2 ( )

¸
which is invertible i 2 ( ) is invertible and if 2 ( ) is invertible then

( ) 1 =

·
1 ( ) 2 ( ) 1

0 2 ( ) 1

¸
Since 2 ( 0 0) = is invertible, the inverse function theorem guarantees
that there exists a neighborhood 0 of 0 and 0 of 0 such that 0× 0

( 0 × 0) is open in × |( 0× 0) has a —inverse which we call 1

Let 2( ) := for all ( ) × and define — function 0 on 0 by
0( ) := 2

1( 0) Since 1( 0) = (˜ 0( )) i

( 0) = (˜ 0( )) = (˜ (˜ 0( )))

it follows that = ˜ and ( 0( )) = 0 Thus

( 0( )) =
1( 0) 0 × 0
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and ( 0( )) = 0 for all 0 Moreover, 0 is being the composition
of the — functions, ( 0) 1 and 2 So if 0 is a connected set
containing 0 we may define := 0| to show the existence of the functions
as described in the statement of the theorem. The only statement left to

prove is the uniqueness of such a function Suppose that 1 : is
another continuous function such that 1( 0) = 0 and ( 1( )) and
( 1( )) = 0 for all Let

:= { | ( ) = 1( )} = { | 0( ) = 1( )}
Clearly is a (relatively) closed subset of which is not empty since 0

Because is connected, if we show that is also an open set we will have
shown that = or equivalently that 1 = 0 on So suppose that
i.e. 0( ) = 1( ) For ˜ near

0 = 0 0 = (˜ 0(˜)) (˜ 1(˜)) = (˜)( 1(˜) 0(˜)) (16.39)

where

(˜) :=

Z 1

0
2 ((˜ 0(˜) + ( 1(˜) 0(˜))) (16.40)

From Eq. (16.40) and the continuity of 0 and 1 lim˜ (˜) =

2 ( 0( )) which is invertible.3 Thus (˜) is invertible for all ˜ su ciently
close to which combined with Eq. (16.39) implies that 1(˜) = 0(˜) for all
˜ su ciently close to Since was arbitrary, we have shown that is
open.

16.6 Smooth Dependence of ODE’s on Initial
Conditions*

In this subsection, let be a Banach space, and be an open interval
with 0

Lemma 16.27. If ( × ) such that ( ) exists for all ( )
× and ( ) ( × ) then is locally Lipschitz in see

Definition 15.6.

Proof. Suppose @@ and By the continuity of for every
there an open neighborhood of and 0 such that ( )

and
sup {k ( 0 0)k : ( 0 0) × ( )}

By the compactness of there exists a finite subset such that
Let ( ) := min { : } and

3 Notice that ( 0( )) is invertible for all 0 since | 0× 0 has a
1

inverse. Therefore 2 ( 0( )) is also invertible for all 0
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( ) := sup {k ( 0)k( 0) × ( ( ))}

Then by the fundamental theorem of calculus and the triangle inequality,

k ( 1) ( 0)k
µZ 1

0

k ( 0 + ( 1 0)k
¶
k 1 0k

( )k 1 0k

for all 0 1 ( ( )) and

Theorem 16.28 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let be a Banach space, (R × ) such that

(R× ) and : D( ) R× denote the maximal solution
operator to the ordinary di erential equation

˙( ) = ( ( )) with (0) = (16.41)

see Notation 15.9 and Theorem 15.15. Then 1(D( ) ) ( )
exists and is continuous for ( ) D( ) and ( ) satisfies the linear
di erential equation,

( ) = [( ) ( ( ))] ( ) with (0 ) = (16.42)

for

Proof. Let 0 and be an open interval such that 0 ¯@@ 0

0 := (· 0)| and

O := { ( ) : k 0k } ( )

By Lemma 16.27, is locally Lipschitz and therefore Theorem 15.15 is ap-
plicable. By Eq. (15.23) of Theorem 15.15, there exists 0 and 0 such
that : ( 0 ) O defined by ( ) := (· )| is continuous. By Lemma
16.29 below, for 0 su ciently small the function : O ( )
defined by

( ) :=

Z ·

0

( ( )) (16.43)

is 1 and

( ) =

Z ·

0

( ( )) ( ) (16.44)

By the existence and uniqueness Theorem 8.21 for linear ordinary di eren-
tial equations, ( ) is invertible for any ( ) By the definition
of ( ( )) = ( ) for all ( 0 ) where : ( ) is de-
fined by ( )( ) = for all i.e. ( ) is the constant path at Since
is a bounded linear map, is smooth and ( ) = for all
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We may now apply the converse to the chain rule in Theorem 16.7 to con-
clude 1 ( ( 0 ) O) and ( ) = [ ( ( ))] 1 ( ) or equivalently,

( ( )) ( ) = which in turn is equivalent to

( )

Z
0

[ ( ( )] ( ) =

As usual this equation implies ( ) is di erentiable in ( ) is
continuous in ( ) and ( ) satisfies Eq. (16.42).

Lemma 16.29. Continuing the notation used in the proof of Theorem 16.28
and further let

( ) :=

Z ·

0

( ( )) for O

Then 1(O ) and for all O
0( ) =

Z ·

0

( ( )) ( ) =:

Proof. Let be su ciently small and then by fundamental
theorem of calculus,

( ( ) + ( )) ( ( ))

=

Z 1

0

[ ( ( ) + ( )) ( ( ))]

and therefore,

( + ) ( ) ( )

=

Z
0

[ ( ( ) + ( )) ( ( )) ( ( )) ( ) ]

=

Z
0

Z 1

0

[ ( ( ) + ( )) ( ( ))] ( )

Therefore,
k( ( + ) ( ) )k k k ( ) (16.45)

where

( ) :=

Z Z 1

0

k ( ( ) + ( )) ( ( ))k

With the aide of Lemmas 16.27 and Lemma 15.7,

( ) [0 1]× × k ( ( ) + ( ))k
is bounded for small provided 0 is su ciently small. Thus it follows
from the dominated convergence theorem that ( ) 0 as 0 and hence
Eq. (16.45) implies 0( ) exists and is given by Similarly,
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|| 0( + ) 0( )||Z
k ( ( ) + ( )) ( ( ))k 0 as 0

showing 0 is continuous.

Remark 16.30. If ( ) then an inductive argument shows that
(D( ) ) For example if 2( ) then ( ( ) ( )) :=

( ( ) ( )) solves the ODE,

( ( ) ( )) = ˜ (( ( ) ( ))) with ( (0) (0)) = ( )

where ˜ is the 1 — vector field defined by

˜ ( ) = ( ( ) ( ) )

Therefore Theorem 16.28 may be applied to this equation to deduce: 2 ( )
and 2 ˙( ) exist and are continuous. We may now di erentiate Eq. (16.42)
to find 2 ( ) satisfies the ODE,

2 ( ) = [
¡

( )

¢
( ( ))] ( )

+ [( ) ( ( ))] 2 ( )

with 2 (0 ) = 0

16.7 Existence of Periodic Solutions

A detailed discussion of the inverse function theorem on Banach and Frechét
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper. In what follows we say 2 (R ( )) if 2 (R ( )) and is
2 — periodic, i.e. ( + 2 ) = ( ) for all R

Theorem 16.31 (Taken from Hamilton, p. 110.). Let : := ( )
:= ( ) be a smooth function with 0 0 on ( ) For every

2 (R ( )) there exists a unique function 2 (R ( )) such that

˙( ) + ( ( )) = ( )

Proof. Let ˜ := 0
2 (R ( )) 0

2 (R R) and ˜ 1
2 (R ( )) be

given by

˜ :=
©

1
2 (R R) : ( ) & ˙( ) + ( ( ))

ª
The proof will be completed by showing : ˜ ˜ defined by
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( )( ) = ˙( ) + ( ( )) for ˜ and R

is bijective. Note that if ( ) is smooth then so is
Step 1. The di erential of is given by 0( ) = ˙ + 0( ) see Exercise

16.8. We will now show that the linear mapping 0( ) is invertible. Indeed let
= 0( ) 0 then the general solution to the Eq. ˙ + = is given by

( ) =
R
0

( )
0 +

Z
0

R
( ) ( )

where 0 is a constant. We wish to choose 0 so that (2 ) = 0 i.e. so that

0

³
1 ( )

´
=

Z 2

0

R
( ) ( )

where

( ) =

Z 2

0

( ) =

Z 2

0

0( ( )) 0

The unique solution 1
2 (R R) to 0( ) = is given by

( ) =
³
1 ( )

´ 1 R
0

( )

Z 2

0

R
( ) ( ) +

Z
0

R
( ) ( )

=
³
1 ( )

´ 1 R
0

( )

Z 2

0

R
( ) ( ) +

Z
0

R
( ) ( )

Therefore 0( ) is invertible for all Hence by the inverse function Theorem
16.25, : ˜ ˜ is an open mapping which is locally invertible.
Step 2. Let us now prove : ˜ ˜ is injective. For this suppose

1 2
˜ such that ( 1) = = ( 2) and let = 2 1 Since

˙( ) + ( 2( )) ( 1( )) = ( ) ( ) = 0

if R is point where ( ) takes on its maximum, then ˙( ) = 0 and
hence

( 2( )) ( 1( )) = 0

Since is increasing this implies 2( ) = 1( ) and hence ( ) = 0 This
shows ( ) 0 for all and a similar argument using a minimizer of shows
( ) 0 for all So we conclude 1 = 2

Step 3. Let := ( ˜) we wish to show = ˜ By step 1., we know
is an open subset of ˜ and since ˜ is connected, to finish the proof it

su ces to show is relatively closed in ˜ So suppose ˜ such that
:= ( ) ˜ Wemust now show i.e. = ( ) for some

If is a maximizer of then ˙ ( ) = 0 and hence ( ) = ( ( ))
and therefore ( ) because is increasing. A similar argument works
for the minimizers then allows us to conclude Ran ) Ran ) @@ ( )
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for all Since is converging uniformly to there exists
such that Ran( ) Ran( ) [ ] for all Again since 0 0

Ran( ) 1 ([ ]) = [ ] @@ ( ) for all

In particular sup {| ˙ ( )| : R and } since

˙ ( ) = ( ) ( ( )) [ ] [ ] (16.46)

which is a compact subset of R The Ascoli-Arzela Theorem 11.29 now allows
us to assume, by passing to a subsequence if necessary, that is converging
uniformly to 0

2 (R [ ]) It now follows that

˙ ( ) = ( ) ( ( )) ( )

uniformly in Hence we concluded that 1
2 (R R) 0

2 (R [ ]) ˙
and ( ) = This has proved that and hence that is relatively
closed in ˜

16.8 Contraction Mapping Principle

Some of the arguments uses in this chapter and in Chapter 15 may be ab-
stracted to a general principle of finding fixed points on a complete metric
space. This is the content of this chapter.

Theorem 16.32. Suppose that ( ) is a complete metric space and :
is a contraction, i.e. there exists (0 1) such that ( ( ) ( ))
( ) for all Then has a unique fixed point in i.e. there

exists a unique point such that ( ) =

Proof. For uniqueness suppose that and 0 are two fixed points of
then

( 0) = ( ( ) ( 0)) ( 0)

Therefore (1 ) ( 0) 0 which implies that ( 0) = 0 since 1 0
Thus = 0 For existence, let 0 be any point in and define
inductively by +1 = ( ) for 0 We will show that := lim
exists in and because is continuous this will imply,

= lim +1 = lim ( ) = ( lim ) = ( )

showing is a fixed point of So to finish the proof, because is complete,
it su ces to show { } =1 is a Cauchy sequence in An easy inductive
computation shows, for 0 that

( +1 ) = ( ( ) ( 1)) ( 1) · · · ( 1 0)
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Another inductive argument using the triangle inequality shows, for
that,

( ) ( 1) + ( 1 ) · · ·
1X

=

( +1 )

Combining the last two inequalities gives (using again that (0 1)),

( )
1X

=

( 1 0) ( 1 0)
X
=0

= ( 1 0)
1

This last equation shows that ( ) 0 as i.e. { } =0 is a
Cauchy sequence.

Corollary 16.33 (Contraction Mapping Principle II). Suppose that
( ) is a complete metric space and : is a continuous map such
that ( ) is a contraction for some N Here

( ) :=

timesz }| {
and we are assuming there exists (0 1) such that ( ( )( ) ( )( ))
( ) for all Then has a unique fixed point in

Proof. Let := ( ) then : is a contraction and hence has
a unique fixed point Since any fixed point of is also a fixed point of
we see if has a fixed point then it must be Now

( ( )) = ( )( ( )) = ( ( )( )) = ( ( )) = ( )

which shows that ( ) is also a fixed point of Since has only one fixed
point, we must have that ( ) = So we have shown that is a fixed point
of and this fixed point is unique.

Lemma 16.34. Suppose that ( ) is a complete metric space, N is
a topological space, and (0 1) Suppose for each there is a map
: with the following properties:

Contraction property (
( )
( )

( )
( )) ( ) for all and

Continuity in For each the map ( ) is continuous.

By Corollary 16.33 above, for each there is a unique fixed point
( ) of
Conclusion: The map : is continuous.
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Proof. Let :=
( ) If then

( ( ) ( )) = ( ( ( )) ( ( )))

( ( ( )) ( ( ))) + ( ( ( )) ( ( )))

( ( ( )) ( ( ))) + ( ( ) ( ))

Solving this inequality for ( ( ) ( )) gives

( ( ) ( ))
1

1
( ( ( )) ( ( )))

Since ( ( )) is continuous it follows from the above equation that
( ) ( ) as i.e. is continuous.

16.9 Exercises

Exercise 16.3. Suppose that : R ( ) is a continuous function and
: R ( ) is the unique solution to the linear di erential equation

˙ ( ) = ( ) ( ) with (0) = (16.47)

Assuming that ( ) is invertible for all R show that 1( ) := [ ( )] 1

must solve the di erential equation

1( ) = 1( ) ( ) with 1(0) = (16.48)

See Exercise 8.13 as well.

Exercise 16.4 (Di erential Equations with Parameters). Let be an-
other Banach space, × × and 1( × ) For each
( ) × let ( ) denote the maximal solution to the
ODE

˙( ) = ( ( ) ) with (0) = (16.49)

and
D := {( ) R× × : }

as in Exercise 15.8.

1. Prove that is 1 and that ( ) solves the di erential equation:

( ) = ( )( ( ) ) ( )+( )( ( ) )

with (0 ) = 0 ( ) Hint: See the hint for Exercise 15.8
with the reference to Theorem 15.15 being replace by Theorem 16.28.
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2. Also show with the aid of Duhamel’s principle (Exercise 8.23) and Theo-
rem 16.28 that

( ) = ( )

Z
0

( ) 1( )( ( ) )

Exercise 16.5. (Di erential of ) Let : ( ) ( ) be the expo-
nential function ( ) = Prove that is di erentiable and that

( ) =

Z 1

0

(1 ) (16.50)

Hint: Let ( ) and define ( ) = ( + ) for all R Notice that

( ) = ( + ) ( ) with (0 ) = ( ) (16.51)

Use Exercise 16.4 to conclude that is 1 and that 0( 0) := ( ) | =0
satisfies the di erential equation,

0( 0) = 0( 0) + with (0 0) = 0 ( ) (16.52)

Solve this equation by Duhamel’s principle (Exercise 8.23) and then apply
Proposition 16.14 to conclude that is di erentiable with di erential given
by Eq. (16.50).

Exercise 16.6 (Local ODE Existence). Let be defined as in Eq. (15.15)
from the proof of Theorem 15.4. Verify that satisfies the hypothesis of
Corollary 16.33. In particular we could have used Corollary 16.33 to prove
Theorem 15.4.

Exercise 16.7 (Local ODE Existence Again). Let = ( 1 1)
1( ) := ( ) and for and let be defined by
( ) := ( ) Use the following outline to prove the ODE

˙( ) = ( ( )) with (0) = (16.53)

has a unique solution for small and this solution is 1 in

1. If solves Eq. (16.53) then solves

˙ ( ) = ( ( )) with (0) =

or equivalently

( ) = +

Z
0

( ( )) (16.54)

Notice that when = 0 the unique solution to this equation is 0( ) =
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2. Let : × × be defined by

( ) := ( ( )

Z
0

( ( )) )

Show the di erential of is given by

0( )( ) =

µ
( )

Z
0

0( ( )) ( )
Z ·

0

( ( ))

¶
3. Verify 0(0 ) : R× R× is invertible for all and notice that

(0 ) = (0 )
4. For let be the constant path at i.e. ( ) = for all

Use the inverse function Theorem 16.25 to conclude there exists
0 and a 1 map : ( )× ( 0 ) such that

( ( )) = ( ) for all ( ) ( )× ( 0 )

5. Show, for that ( ) := ( )( ) satisfies Eq. (16.54). Now define
( ) = ( 2 )(2 ) and show ( ) solve Eq. (16.53) for | | 2
and ( 0 )

Exercise 16.8. Show defined in Theorem 16.31 is continuously di eren-
tiable and 0( ) = ˙ + 0( )

Exercise 16.9. Embedded sub-manifold problems.

Exercise 16.10. Lagrange Multiplier problems.

16.9.1 Alternate construction of g. To be made into an exercise.

Suppose and : is a 2 — function. Then we are looking for
a function ( ) such that ( ( )) = Fix an 0 and 0 = ( 0)
Suppose such a exists and let ( ) = ( 0 + ) for some Then
di erentiating ( ( )) = 0 + implies

( ( )) = 0( ( )) ˙( ) =

or equivalently that

˙ ( ) = [ 0( ( ))] 1
= ( ( )) with (0) = 0 (16.55)

where ( ) = [ 0( ( ))] 1 Conversely if solves Eq. (16.55) we have
( ( )) = and hence that

( (1)) = 0 +

Thus if we define
( 0 + ) := ( ·)( 0)

then ( ( 0+ )) = 0+ for all su ciently small. This shows is an open
mapping.


