
23

L2 - Hilbert Spaces Techniques and Fourier
Series

This section is concerned with Hilbert spaces presented as in the following
example.

Example 23.1. Let (X,M, µ) be a measure space. Then H := L2(X,M, µ)
with inner product

hf |gi =
Z
X

f · ḡdµ

is a Hilbert space.

It will be convenient to define

hf, gi :=
Z
X

f (x) g (x) dµ (x) (23.1)

for all measurable functions f, g on X such that fg ∈ L1 (µ) . So with this
notation we have hf |gi = hf, ḡi for all f, g ∈ H.

Exercise 23.1. Let K : L2(ν) → L2(µ) be the operator defined in Exercise
21.12. Show K∗ : L2(µ)→ L2(ν) is the operator given by

K∗g(y) =
Z
X

k̄(x, y)g(x)dµ(x).

23.1 L2-Orthonoramal Basis

Example 23.2. 1. Let H = L2([−1, 1], dm) and A := {1, x, x2, x3 . . . }. Then
A is total in H by the Stone-Weierstrass theorem and a similar argument
as in the first example or directly from Exercise 22.13. The result of doing
Gram-Schmidt on this set gives an orthonormal basis of H consisting of
the “Legendre Polynomials.”
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2. Let H = L2(R, e− 1
2x

2

dx).Exercise 22.13 implies A := {1, x, x2, x3 . . . }
is total in H and the result of doing Gram-Schmidt on A now gives an
orthonormal basis for H consisting of “Hermite Polynomials.”

Remark 23.3 (An Interesting Phenomena). Let H = L2([−1, 1], dm) and B :=
{1, x3, x6, x9, . . . }. Then again A is total in H by the same argument as in
item 2. Example 23.2. This is true even though B is a proper subset of A.
Notice that A is an algebraic basis for the polynomials on [−1, 1] while B is
not! The following computations may help relieve some of the reader’s anxiety.
Let f ∈ L2([−1, 1], dm), then, making the change of variables x = y1/3, shows
thatZ 1

−1
|f(x)|2 dx =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2 1
3
y−2/3dy =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2
dµ(y) (23.2)

where dµ(y) = 1
3y
−2/3dy. Since µ([−1, 1]) = m([−1, 1]) = 2, µ is a finite

measure on [−1, 1] and hence by Exercise 22.13 A := {1, x, x2, x3 . . . } is a
total (see Definition 14.25) in L2([−1, 1], dµ). In particular for any ε > 0
there exists a polynomial p(y) such thatZ 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) < ε2.

However, by Eq. (23.2) we have

ε2 >

Z 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) =

Z 1

−1

¯̄
f(x)− p(x3)

¯̄2
dx.

Alternatively, if f ∈ C([−1, 1]), then g(y) = f(y1/3) is back in C([−1, 1]).
Therefore for any ε > 0, there exists a polynomial p(y) such that

ε > kg − pk∞ = sup {|g(y)− p(y)| : y ∈ [−1, 1]}
= sup

©¯̄
g(x3)− p(x3)

¯̄
: x ∈ [−1, 1]ª

= sup
©¯̄
f(x)− p(x3)

¯̄
: x ∈ [−1, 1]ª .

This gives another proof the polynomials in x3 are dense in C([−1, 1]) and
hence in L2([−1, 1]).
Exercise 23.2. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
such that L2 (µ) and L2 (ν) are separable. If {fn}∞n=1 and {gm}∞m=1
are orthonormal bases for L2 (µ) and L2 (ν) respectively, then β :=
{fn ⊗ gm : m,n ∈ N} is an orthonormal basis for L2 (µ⊗ ν) . (Recall that
f ⊗ g (x, y) := f (x) g (y) , see Notation 20.4.) Hint: model your proof of
the proof of Proposition 14.28.

Exercise 23.3. Suppose H is a Hilbert space and {Hn : n ∈ N} are closed
subspaces of H such that Hn ⊥ Hm for all m 6= n and if f ∈ H with f ⊥ Hn

for all n ∈ N, then f = 0. Show:
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1. If fn ∈ Hn for all n ∈ N satisfy
P∞

n=1 kfnk2 <∞ then
P∞

n=1 fn exists in
H.

2. Every element f ∈ H may be uniquely written as f =
P∞

n=1 fn with
fn ∈ H as in item 1.
(For this reason we will write H = ⊕∞n=1Hn under the hypothesis of this
exercise.)

Exercise 23.4. Suppose (X,M, µ) is a measure space and X =
`∞

n=1Xn

with Xn ∈M and µ (Xn) > 0 for all n. Then U : L2 (X,µ)→ ⊕∞n=1L2 (Xn, µ)
defined by (Uf)n := f1Xn is unitary.

23.2 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces. Typically H and B will be
separable, but we will not assume this until it is needed later.

Proposition 23.4. Let H and B be a separable Hilbert spaces, K : H → B
be a bounded linear operator, {en}∞n=1 and {um}∞m=1 be orthonormal basis for
H and B respectively. Then:

1.
P∞

n=1 kKenk2 =
P∞

m=1 kK∗umk2 allowing for the possibility that the
sums are infinite. In particular the Hilbert Schmidt norm of K,

kKk2HS :=
∞X
n=1

kKenk2 ,

is well defined independent of the choice of orthonormal basis {en}∞n=1.
We say K : H → B is a Hilbert Schmidt operator if kKkHS <∞ and
let HS(H,B) denote the space of Hilbert Schmidt operators from H to B.

2. For all K ∈ L(H,B), kKkHS = kK∗kHS and

kKkHS ≥ kKkop := sup {kKhk : h ∈ H 3 khk = 1} .
3. The set HS(H,B) is a subspace of K(H,B) (the compact operators from

H → B) and k·kHS is a norm on HS(H,B) for which (HS(H,B), k·kHS)
is a Hilbert space. The inner product on HS(H,B) is given by

hK1|K2iHS =
∞X
n=1

hK1en|K2eni . (23.3)

4. If K : H → B is a bounded finite rank operator, then K is Hilbert Schmidt.
5. Let PNx :=

PN
n=1(x, en)en be orthogonal projection onto span {ei : i ≤ N} ⊂

H and for K ∈ HS(H,B), let Kn := KPn. Then

kK −KNk2op ≤ kK −KNk2HS → 0 as N →∞,

which shows that finite rank operators are dense in (HS(H,B), k·kHS) .
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6. If L is another Hilbert space and A : L→ H and C : B → L are bounded
operators, then

kKAkHS ≤ kKkHS kAkop and kCKkHS ≤ kKkHS kCkop .

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

∞X
n=1

kKenk2 =
∞X
n=1

∞X
m=1

|(Ken, um)|2

=
∞X

m=1

∞X
n=1

|(en,K∗um)|2 =
∞X

m=1

kK∗umk2 .

This proves kKkHS is well defined independent of basis and that kKkHS =
kK∗kHS . For x ∈ H \ {0} , x/ kxk may be taken to be the first element in an
orthonormal basis for H and hence°°°°K x

kxk
°°°° ≤ kKkHS .

Multiplying this inequality by kxk shows kKxk ≤ kKkHS kxk and hence
kKkop ≤ kKkHS .
Item 3. For K1,K2 ∈ L(H,B),

kK1 +K2kHS =

vuut ∞X
n=1

kK1en +K2enk2

≤
vuut ∞X

n=1

[kK1enk+ kK2enk]2

= k{kK1enk+ kK2enk}∞n=1kc2
≤ k{kK1enk}∞n=1kc2 + k{kK2enk}∞n=1kc2
= kK1kHS + kK2kHS .

From this triangle inequality and the homogeneity properties of k·kHS , we
now easily see that HS(H,B) is a subspace of K(H,B) and k·kHS is a norm
on HS(H,B). Since

∞X
n=1

|hK1en|K2eni| ≤
∞X
n=1

kK1enk kK2enk

≤
vuut ∞X

n=1

kK1enk2
vuut ∞X

n=1

kK2enk2 = kK1kHS kK2kHS ,
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the sum in Eq. (23.3) is well defined and is easily checked to define an inner
product onHS(H,B) such that kKk2HS = hK1,K2iHS . To see thatHS(H,B)
is complete in this inner product suppose {Km}∞m=1 is a k·kHS — Cauchy se-
quence in HS(H,B). Because L(H,B) is complete, there exists K ∈ L(H,B)
such that kKm −Kkop → 0 as m→∞. Since

NX
n=1

k(K −Km) enk2 = lim
l→∞

NX
n=1

k(Kl −Km) enk2 ≤ lim sup
l→∞

kKl −KmkHS ,

kKm −Kk2HS =
∞X
n=1

k(K −Km) enk2 = lim
N→∞

NX
n=1

k(K −Km) enk2

≤ lim sup
l→∞

kKl −KmkHS → 0 as m→∞.

Item 4. Let {vn}N :=dimK(H)
n=1 be an orthonormal basis for Ran(K) =

K (H) . Then, for all h ∈ H,

kKhk2B =
NX
n=1

|hKh|vni|2 =
NX
n=1

|hh|K∗vni|2 .

Summing this equation on h ∈ Γ where an Γ is an orthonormal basis for H
shows

kKk2HS =
X
h∈Γ

kKhk2B =
NX
n=1

kK∗vnk2H <∞.

Item 5. Simply observe,

kK −KNk2op ≤ kK −KNk2HS =
X
n>N

kKenk2 → 0 as N →∞.

Item 6. For C ∈ L(B,L) and K ∈ L(H,B) then

kCKk2HS =
∞X
n=1

kCKenk2 ≤ kCk2op
∞X
n=1

kKenk2 = kCk2op kKk2HS

and for A ∈ L (L,H) ,

kKAkHS = kA∗K∗kHS ≤ kA∗kop kK∗kHS = kAkop kKkHS .

Remark 23.5. The separability assumptions made in Proposition 23.4 are un-
necessary. In general, we define

kKk2HS =
X
e∈Γ

kKek2
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where Γ ⊂ H is an orthonormal basis. The same proof of Item 1. of Proposi-
tion 23.4 shows kKkHS is well defined and kKkHS = kK∗kHS . If kKk2HS <
∞, then there exists a countable subset Γ0 ⊂ Γ such that Ke = 0 if e ∈ Γ \Γ0.
Let H0 := span(Γ0) and B0 := K(H0). Then K (H) ⊂ B0, K|H⊥0 = 0 and
hence by applying the results of Proposition 23.4 to K|H0 : H0 → B0 one
easily sees that the separability of H and B are unnecessary in Proposition
23.4.

Example 23.6. Let (X,µ) be a measure space, H = L2(X,µ) and

k(x, y) :=
nX
i=1

fi(x)gi(y)

where
fi, gi ∈ L2(X,µ) for i = 1, . . . , n.

Define (Kf)(x) =
R
X
k(x, y)f(y)dµ(y), then K : L2(X,µ) → L2(X,µ) is a

finite rank operator and hence Hilbert Schmidt.

Exercise 23.5. Suppose that (X,µ) is a σ—finite measure space such that
H = L2(X,µ) is separable and k : X ×X → R is a measurable function, such
that

kkk2L2(X×X,µ⊗µ) :=
Z
X×X

|k(x, y)|2dµ(x)dµ(y) <∞.

Define, for f ∈ H,

Kf(x) =

Z
X

k(x, y)f(y)dµ(y),

when the integral makes sense. Show:

1. Kf(x) is defined for µ—a.e. x in X.
2. The resulting function Kf is in H and K : H → H is linear.
3. kKkHS = kkkL2(X×X,µ⊗µ) <∞. (This implies K ∈ HS(H,H).)

Example 23.7. Suppose that Ω ⊂ Rn is a bounded set, α < n, then the oper-
ator K : L2(Ω,m)→ L2(Ω,m) defined by

Kf(x) :=

Z
Ω

1

|x− y|α f(y)dy

is compact.

Proof. For ε ≥ 0, let

Kεf(x) :=

Z
Ω

1

|x− y|α + ε
f(y)dy = [gε ∗ (1Ωf)] (x)

where gε(x) = 1
|x|α+ε1C(x) with C ⊂ Rn a sufficiently large ball such that

Ω −Ω ⊂ C. Since α < n, it follows that
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gε ≤ g0 = |·|−α 1C ∈ L1(Rn,m).

Hence it follows by Proposition 22.23 that

k(K −Kε) fkL2(Ω) ≤ k(g0 − gε) ∗ (1Ωf)kL2(Rn)
≤ k(g0 − gε)kL1(Rn) k1ΩfkL2(Rn)
= k(g0 − gε)kL1(Rn) kfkL2(Ω)

which implies

kK −KεkB(L2(Ω)) ≤ kg0 − gεkL1(Rn)
=

Z
C

¯̄̄̄
1

|x|α + ε
− 1

|x|α
¯̄̄̄
dx→ 0 as ε ↓ 0 (23.4)

by the dominated convergence theorem. For any ε > 0,Z
Ω×Ω

·
1

|x− y|α + ε

¸2
dxdy <∞,

and hence Kε is Hilbert Schmidt and hence compact. By Eq. (23.4), Kε → K
as ε ↓ 0 and hence it follows that K is compact as well.

Exercise 23.6. Let H := L2 ([0, 1] ,m) , k (x, y) := min (x, y) for x, y ∈ [0, 1]
and define K : H → H by

Kf (x) =

Z 1

0

k (x, y) f (y) dy.

By Exercise 23.5, K is a Hilbert Schmidt operator and it is easily seen that
K is self-adjoint. Show:

1. Show hKf |g00i = −hf |gi for all g ∈ C∞c ((0, 1)) and use this to conclude
that Nul(K) = {0} .

2. Now suppose that f ∈ H is an eigenvector of K with eigenvalue λ 6= 0.
Show that there is a version of f in C ([0, 1])∩C2 ((0, 1)) and this version,
still denoted by f, solves

λf 00 = −f with f (0) = f 0 (1) = 0. (23.5)

where f 0 (1) := limx↑1 f 0 (x) .
3. Use Eq. (23.5) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem 14.45, to shown√

2 sin
³
n
π

2
x
´
: n ∈ N

o
is an orthonormal basis for L2 ([0, 1] ,m) .
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Exercise 23.7. Suppose a ∈ L∞(X,M, µ) and let A be the bounded operator
on H := L2(X,M, µ) defined by Af (x) = a (x) f (x) for all f ∈ H. (We will
denote A by Ma in the future.) Show:

1. A is a bounded operator and A∗ =Mā.
2. σ (A) = essran(a) where σ (A) is the spectrum of A and essran(a) is the
essential range of a, see Definitions 14.30 and 21.40 respectively.

3. Show λ is an eigenvalue for a iff µ ({a = λ}) > 0.

23.3 Fourier Series Considerations

Throughout this section we will let dθ, dx, dα, etc. denote Lebesgue measure
on Rd normalized so that the cube, Q := (−π, π]d, has measure one, i.e.
dθ = (2π)−ddm(θ) where m is standard Lebesgue measure on Rd. As usual,
for α ∈ Nd0, let

Dα
θ =

µ
1

i

¶|α|
∂|α|

∂θα11 . . . ∂θαdd
.

Notation 23.8 Let Ck
per(Rd) denote the 2π — periodic functions in Ck(Rd),

that is f ∈ Ck
per(Rd) iff f ∈ Ck(Rd) and f(θ+2πei) = f(θ) for all θ ∈ Rd and

i = 1, 2, . . . , d. Further let h·|·i denote the inner product on the Hilbert space,
H := L2([−π, π]d), given by

hf |gi :=
Z
Q

f(θ)ḡ(θ)dθ =

µ
1

2π

¶d Z
Q

f(θ)ḡ(θ)dm (θ)

and define ek(θ) := eik·θ for all k ∈ Zd. For f ∈ L1(Q), we will write f̃(k) for
the Fourier coefficient,

f̃(k) := hf |eki =
Z
Q

f(θ)e−ik·θdθ. (23.6)

Since any 2π — periodic functions on Rd may be identified with function
on the d - dimensional torus, Td ∼= Rd/ (2πZ)d ∼= ¡

S1
¢d

, I may also write
Ck(Td) for Ck

per(Rd) and Lp
¡
Td
¢
for Lp (Q) where elements in f ∈ Lp (Q) are

to be thought of as there extensions to 2π — periodic functions on Rd.

Theorem 23.9 (Fourier Series). The functions β :=
©
ek : k ∈ Zd

ª
form

an orthonormal basis for H, i.e. if f ∈ H then

f =
X
k∈Zd

hf |ekiek =
X
k∈Zd

f̃(k)ek (23.7)

where the convergence takes place in L2([−π, π]d).
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Proof. Simple computations show β :=
©
ek : k ∈ Zd

ª
is an orthonormal

set. We now claim that β is an orthonormal basis. To see this recall that
Cc((−π, π)d) is dense in L2((−π, π)d, dm). Any f ∈ Cc((−π, π)) may be ex-
tended to be a continuous 2π — periodic function on R and hence by Exercise
12.13 and Remark 12.44, f may uniformly (and hence in L2) be approximated
by a trigonometric polynomial. Therefore β is a total orthonormal set, i.e. β
is an orthonormal basis.
This may also be proved by first proving the case d = 1 as above and then

using Exercise 23.2 inductively to get the result for any d.

Exercise 23.8. Let A be the operator defined in Lemma 14.36 and for
g ∈ L2 (T) , let Ug (k) := g̃ (k) so that U : L2 (T) → c2 (Z) is unitary. Show
U−1AU = Ma where a ∈ C∞per (R) is a function to be found. Use this repre-
sentation and the results in Exercise 23.7 to give a simple proof of the results
in Lemma 14.36.

23.3.1 Dirichlet, Fejér and Kernels

Although the sum in Eq. (23.7) is guaranteed to converge relative to the
Hilbertian norm on H it certainly need not converge pointwise even if
f ∈ Cper

¡
Rd
¢
as will be proved in Section 35.1.1 below. Nevertheless, if f

is sufficiently regular, then the sum in Eq. (23.7) will converge pointwise as
we will now show. In the process we will give a direct and constructive proof
of the result in Exercise 12.13, see Theorem 23.11 below.
Let us restrict our attention to d = 1 here. Consider

fn (θ) =
X
|k|≤n

f̃(k)ek (θ) =
X
|k|≤n

1

2π

"Z
[−π,π]

f(x)e−ik·xdx

#
ek (θ)

=
1

2π

Z
[−π,π]

f(x)
X
|k|≤n

eik·(θ−x)dx =
1

2π

Z
[−π,π]

f(x)Dn(θ − x)dx

(23.8)

where

Dn(θ) :=
nX

k=−n
eikθ

is called the Dirichlet kernel. Letting α = eiθ/2, we have

Dn(θ) =
nX

k=−n
α2k =

α2(n+1) − α−2n

α2 − 1 =
α2n+1 − α−(2n+1)

α− α−1

=
2i sin(n+ 1

2)θ

2i sin 12θ
=
sin(n+ 1

2)θ

sin 12θ
.

and therefore
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Dn(θ) :=
nX

k=−n
eikθ =

sin(n+ 1
2 )θ

sin 12θ
, (23.9)

see Figure 23.3.1.

52.50-2.5-5

20

15

10

5

0

�heta�heta

This is a plot D1 and D10.

with the understanding that the right side of this equation is 2n+1 whenever
θ ∈ 2πZ.
Theorem 23.10. Suppose f ∈ L1 ([−π, π] , dm) and f is differentiable at
some θ ∈ [−π, π] , then limn→∞ fn (θ) = f (θ) where fn is as in Eq. (23.8).

Proof. Observe that

1

2π

Z
[−π,π]

Dn(θ − x)dx =
1

2π

Z
[−π,π]

X
|k|≤n

eik·(θ−x)dx = 1

and therefore,

fn (θ)− f (θ) =
1

2π

Z
[−π,π]

[f(x)− f (θ)]Dn(θ − x)dx

=
1

2π

Z
[−π,π]

[f(x)− f (θ − x)]Dn(x)dx

=
1

2π

Z
[−π,π]

·
f(θ − x)− f (θ)

sin 12x

¸
sin(n+

1

2
)x dx. (23.10)

If f is differentiable at θ, the last expression in Eq. (23.10) tends to 0 as
n→∞ by the Riemann Lebesgue Lemma (Corollary 22.17 or Lemma 22.37)
and the fact that 1[−π,π] (x)

f(θ−x)−f(θ)
sin 1

2x
∈ L1 (dx) .

Despite the Dirichlet kernel not being positive, it still satisfies the approx-
imate δ — sequence property, 1

2πDn → δ0 as n → ∞, when acting on C1 —
periodic functions in θ. In order to improve the convergence properties it is
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reasonable to try to replace {fn : n ∈ N0} by the sequence of averages (see
Exercise 7.15),

FN (θ) =
1

N + 1

NX
n=0

fn (θ) =
1

N + 1

NX
n=0

1

2π

Z
[−π,π]

f(x)
X
|k|≤n

eik·(θ−x)dx

=
1

2π

Z
[−π,π]

KN (θ − x)f(x)dx

where

KN (θ) :=
1

N + 1

NX
n=0

X
|k|≤n

eik·θ (23.11)

is the Fejér kernel.

Theorem 23.11. The Fejér kernel KN in Eq. (23.11) satisfies:

1.

KN (θ) =
NX

n=−N

·
1− |n|

N + 1

¸
einθ (23.12)

=
1

N + 1

sin2
¡
N+1
2 θ

¢
sin2

¡
θ
2

¢ . (23.13)

2. KN (θ) ≥ 0.
3. 1

2π

R π
−πKN (θ)dθ = 1

4. supε≤|θ|≤πKN (θ)→ 0 as N →∞ for all ε > 0, see Figure 23.1.
5. For any continuous 2π — periodic function f on R, KN ∗ f(θ) → f(θ)
uniformly in θ as N →∞, where

KN ∗ f(θ) = 1

2π

Z π

−π
KN (θ − α)f(α)dα

=
NX

n=−N

·
1− |n|

N + 1

¸
f̃ (n) einθ. (23.14)

Proof. 1. Equation (23.12) is a consequence of the identity,

NX
n=0

X
|k|≤n

eik·θ =
X

|k|≤n≤N
eik·θ =

X
|k|≤N

(N + 1− |k|) eik·θ.

Moreover, letting α = eiθ/2 and using Eq. (3.3) shows
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2.51.250-1.25-2.5
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Fig. 23.1. Plots of KN (θ) for N = 2, 7 and 13.

KN (θ) =
1

N + 1

NX
n=0

X
|k|≤n

α2k =
1

N + 1

NX
n=0

α2n+2 − α−2n

α2 − 1

=
1

(N + 1) (α− α−1)

NX
n=0

£
α2n+1 − α−2n−1

¤
=

1

(N + 1) (α− α−1)

NX
n=0

£
αα2n − α−1α−2n

¤
=

1

(N + 1) (α− α−1)

·
α
α2N+2 − 1
α2 − 1 − α−1

α−2N−2 − 1
α−2 − 1

¸
=

1

(N + 1) (α− α−1)2
h
α2(N+1) − 1 + α−2(N+1) − 1

i
=

1

(N + 1) (α− α−1)2
h
α(N+1) − α−(N+1)

i2
=

1

N + 1

sin2 ((N + 1) θ/2)

sin2 (θ/2)
.

Items 2. and 3. follow easily from Eqs. (23.13) and (23.12) respectively.
Item 4. is a consequence of the elementary estimate;

sup
ε≤|θ|≤π

KN (θ) ≤ 1

N + 1

1

sin2
¡
ε
2

¢
and is clearly indicated in Figure 23.1. Item 5. now follows by the standard
approximate δ — function arguments, namely,



23.3 Fourier Series Considerations 453

|KN ∗ f(θ)− f (θ)| = 1

2π

¯̄̄̄Z π

−π
KN (θ − α) [f(α)− f (θ)] dα

¯̄̄̄
≤ 1

2π

Z π

−π
KN (α) |f(θ − α)− f (θ)| dα

≤ 1

π

1

N + 1

1

sin2
¡
ε
2

¢ kfk∞ + 1

2π

Z
|α|≤ε

KN (α) |f(θ − α)− f (θ)| dα

≤ 1

π

1

N + 1

1

sin2
¡
ε
2

¢ kfk∞ + sup
|α|≤ε

|f(θ − α)− f (θ)| .

Therefore,

lim sup
N→∞

kKN ∗ f − fk∞ ≤ sup
θ
sup
|α|≤ε

|f(θ − α)− f (θ)|→ 0 as ε ↓ 0.

23.3.2 The Dirichlet Problems on D and the Poisson Kernel

Let D := {z ∈ C : |z| < 1} be the open unit disk in C ∼= R2, write z ∈ C as
z = x + iy or z = reiθ, and let ∆ = ∂2

∂x2 +
∂2

∂y2 be the Laplacian acting on
C2 (D) .

Theorem 23.12 (Dirichlet problem for D). To every continuous function
g ∈ C (bd(D)) there exists a unique function u ∈ C(D̄) ∩ C2(D) solving

∆u(z) = 0 for z ∈ D and u|∂D = g. (23.15)

Moreover for r < 1, u is given by,

u(reiθ) =
1

2π

Z π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ) (23.16)

=
1

2π
Re

Z π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα (23.17)

where Pr is the Poisson kernel defined by

Pr(δ) :=
1− r2

1− 2r cos δ + r2
.

(The problem posed in Eq. (23.15) is called the Dirichlet problem for D.)

Proof. In this proof, we are going to be identifying S1 = bd(D) :=©
z ∈ D̄ : |z| = 1ª with [−π, π]/ (π ∼ −π) by the map θ ∈ [−π, π]→ eiθ ∈ S1.
Also recall that the Laplacian ∆ may be expressed in polar coordinates as,

∆u = r−1∂r
¡
r−1∂ru

¢
+
1

r2
∂2θu,
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where

(∂ru)
¡
reiθ

¢
=

∂

∂r
u
¡
reiθ

¢
and (∂θu)

¡
reiθ

¢
=

∂

∂θ
u
¡
reiθ

¢
.

Uniqueness. Suppose u is a solution to Eq. (23.15) and let

g̃(k) :=
1

2π

Z π

−π
g(eikθ)e−ikθdθ

and

ũ(r, k) :=
1

2π

Z π

−π
u(reiθ)e−ikθdθ (23.18)

be the Fourier coefficients of g (θ) and θ → u
¡
reiθ

¢
respectively. Then for

r ∈ (0, 1) ,

r−1∂r (r∂rũ(r, k)) =
1

2π

Z π

−π
r−1∂r

¡
r−1∂ru

¢
(reiθ)e−ikθdθ

= − 1

2π

Z π

−π

1

r2
∂2θu(re

iθ)e−ikθdθ

= − 1
r2
1

2π

Z π

−π
u(reiθ)∂2θe

−ikθdθ

=
1

r2
k2ũ(r, k)

or equivalently
r∂r (r∂rũ(r, k)) = k2ũ(r, k). (23.19)

Recall the general solution to

r∂r (r∂ry(r)) = k2y(r) (23.20)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) solving Eq. (23.19) may
be written as ũ(r, k) = Akr

|k| +Bkr
−|k| for some constants Ak and Bk when

k 6= 0. If k = 0, the solution to Eq. (23.20) is gotten by simple integration and
the result is ũ(r, 0) = A0 + B0 ln r. Since ũ(r, k) is bounded near the origin
for each k it must be that Bk = 0 for all k ∈ Z. Hence we have shown there
exists Ak ∈ C such that, for all r ∈ (0, 1),

Akr
|k| = ũ(r, k) =

1

2π

Z π

−π
u(reiθ)e−ikθdθ. (23.21)

Since all terms of this equation are continuous for r ∈ [0, 1], Eq. (23.21)
remains valid for all r ∈ [0, 1] and in particular we have, at r = 1, that

Ak =
1

2π

Z π

−π
u(eiθ)e−ikθdθ = g̃(k).
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Hence if u is a solution to Eq. (23.15) then u must be given by

u(reiθ) =
X
k∈Z

g̃(k)r|k|eikθ for r < 1. (23.22)

or equivalently,
u(z) =

X
k∈N0

g̃(k)zk +
X
k∈N

g̃(−k)z̄k.

Notice that the theory of the Fourier series implies Eq. (23.22) is valid in the
L2 (dθ) - sense. However more is true, since for r < 1, the series in Eq. (23.22) is
absolutely convergent and in fact defines a C∞ — function (see Exercise 4.11 or
Corollary 19.43) which must agree with the continuous function, θ→ u

¡
reiθ

¢
,

for almost every θ and hence for all θ. This completes the proof of uniqueness.
Existence. Given g ∈ C (bd(D)) , let u be defined as in Eq. (23.22). Then,

again by Exercise 4.11 or Corollary 19.43, u ∈ C∞ (D) . So to finish the proof
it suffices to show limx→y u (x) = g (y) for all y ∈ bd(D). Inserting the formula
for g̃(k) into Eq. (23.22) gives

u(reiθ) =
1

2π

Z π

−π
Pr (θ − α)u(eiα)dα for all r < 1

where

Pr (δ) =
X
k∈Z

r|k|eikδ =
∞X
k=0

rkeikδ +
∞X
k=0

rke−ikδ − 1 =

= Re

·
2

1

1− reiδ
− 1
¸
= Re

·
1 + reiδ

1− reiδ

¸
= Re

"¡
1 + reiδ

¢ ¡
1− re−iδ

¢
|1− reiδ|2

#
= Re

·
1− r2 + 2ir sin δ

1− 2r cos δ + r2

¸
(23.23)

=
1− r2

1− 2r cos δ + r2
.

The Poisson kernel again solves the usual approximate δ — function prop-
erties (see Figure 2), namely:

1. Pr (δ) > 0 and

1

2π

Z π

−π
Pr (θ − α) dα =

1

2π

Z π

−π

X
k∈Z

r|k|eik(θ−α)dα

=
1

2π

X
k∈Z

r|k|
Z π

−π
eik(θ−α)dα = 1

and
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2.

sup
ε≤|θ|≤π

Pr(θ) ≤ 1− r2

1− 2r cos ε+ r2
→ 0 as r ↑ 1.

52.50-2.5-5

5

3.75

2.5

1.25

x

y

x

y

A plot of Pr(δ) for r = 0.2, 0.5 and 0.7.

Therefore by the same argument used in the proof of Theorem 23.11,

lim
r↑1
sup
θ

¯̄
u
¡
reiθ

¢− g
¡
eiθ
¢¯̄
= lim

r↑1
sup
θ

¯̄
(Pr ∗ g)

¡
eiθ
¢− g

¡
eiθ
¢¯̄
= 0

which certainly implies limx→y u (x) = g (y) for all y ∈ bd(D).
Remark 23.13 (Harmonic Conjugate). Writing z = reiθ, Eq. (23.17) may be
rewritten as

u(z) =
1

2π
Re

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1

2π

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.

Moreover it follows from Eq. (23.23) that

ImF (reiθ) =
1

π
Im

Z π

−π

r sin(θ − α)

1− 2r cos(θ − α) + r2
g(eiα)dα

=: (Qr ∗ u) (eiθ)
where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v =: (Qr ∗ g) (eiθ) is the harmonic conju-
gate of u and P̃r = Qr. For more on this point see Section 49.7 below.

23.4 Weak L2-Derivatives

Theorem 23.14 (Weak and Strong Differentiability). Suppose that f ∈
L2(Rn) and v ∈ Rn \ {0} . Then the following are equivalent:
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1. There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

°°°°f(·+ tnv)− f(·)
tn

°°°°
2

<∞.

2. There exists g ∈ L2(Rn) such that hf, ∂vφi = −hg, φi for all φ ∈ C∞c (Rn).
3. There exists g ∈ L2(Rn) and fn ∈ C∞c (Rn) such that fn

L2→ f and ∂vfn
L2→

g as n→∞.
4. There exists g ∈ L2 such that

f(·+ tv)− f(·)
t

L2→ g as t→ 0.

(See Theorem 36.18 for the Lp generalization of this theorem.)

Proof. 1. =⇒ 2. We may assume, using Theorem 14.52 and passing to a
subsequence if necessary, that f(·+tnv)−f(·)

tn

w→ g for some g ∈ L2(Rn). Now
for φ ∈ C∞c (Rn),

hg|φi = lim
n→∞

¿
f(·+ tnv)− f(·)

tn
, φ

À
= lim

n→∞

¿
f,

φ(·− tnv)− φ(·)
tn

À
=

¿
f, lim

n→∞
φ(·− tnv)− φ(·)

tn

À
= −hf, ∂vφi,

wherein we have used the translation invariance of Lebesgue measure and
the dominated convergence theorem. 2. =⇒ 3. Let φ ∈ C∞c (Rn,R) such thatR
Rn φ(x)dx = 1 and let φm(x) = mnφ(mx), then by Proposition 22.34, hm :=
φm ∗ f ∈ C∞(Rn) for all m and

∂vhm(x) = ∂vφm ∗ f(x) =
Z
Rn

∂vφm(x− y)f(y)dy = hf,−∂v [φm (x− ·)]i
= hg, φm (x− ·)i = φm ∗ g(x).

By Theorem 22.32, hm → f ∈ L2(Rn) and ∂vhm = φm ∗ g → g in L2(Rn)
as m → ∞. This shows 3. holds except for the fact that hm need not have
compact support. To fix this let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a
neighborhood of 0 and let ψε(x) = ψ(εx) and (∂vψ)ε (x) := (∂vψ) (εx). Then

∂v (ψεhm) = ∂vψεhm + ψε∂vhm = ε (∂vψ)ε hm + ψε∂vhm

so that ψεhm → hm in L2 and ∂v (ψεhm) → ∂vhm in L2 as ε ↓ 0. Let
fm = ψεmhm where εm is chosen to be greater than zero but small enough so
that

kψεmhm − hmk2 + k∂v (ψεmhm)→ ∂vhmk2 < 1/m.

Then fm ∈ C∞c (Rn), fm → f and ∂vfm → g in L2 as m → ∞. 3. =⇒ 4. By
the fundamental theorem of calculus
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τ−tvfm(x)− fm(x)

t
=

fm(x+ tv)− fm(x)

t

=
1

t

Z 1

0

d

ds
fm(x+ stv)ds =

Z 1

0

(∂vfm) (x+ stv)ds.

(23.24)

Let

Gt(x) :=

Z 1

0

τ−stvg(x)ds =
Z 1

0

g(x+ stv)ds

which is defined for almost every x and is in L2(Rn) by Minkowski’s inequality
for integrals, Theorem 21.27. Therefore

τ−tvfm(x)− fm(x)

t
−Gt(x) =

Z 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds

and hence again by Minkowski’s inequality for integrals,°°°°τ−tvfm − fm
t

−Gt

°°°°
2

≤
Z 1

0

kτ−stv (∂vfm)− τ−stvgk2 ds

=

Z 1

0

k∂vfm − gk2 ds.

Letting m→∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one
more application of Minkowski’s inequality for integrals implies,°°°°τ−tvf − f

t
− g

°°°°
2

= kGt − gk2 =
°°°°Z 1

0

(τ−stvg − g) ds

°°°°
2

≤
Z 1

0

kτ−stvg − gk2 ds.

By the dominated convergence theorem and Proposition 22.24, the latter term
tends to 0 as t→ 0 and this proves 4. The proof is now complete since 4. =⇒
1. is trivial.

23.5 *Conditional Expectation

In this section let (Ω,F , P ) be a probability space, i.e. (Ω,F , P ) is a measure
space and P (Ω) = 1. Let G ⊂ F be a sub — sigma algebra of F and write
f ∈ Gb if f : Ω → C is bounded and f is (G,BC) — measurable. In this section
we will write

Ef :=

Z
Ω

fdP.

Definition 23.15 (Conditional Expectation). Let EG : L2(Ω,F , P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,F , P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,G, P ), we say that EGf ∈ L2(Ω,F , P ) is the
conditional expectation of f.



23.5 *Conditional Expectation 459

Theorem 23.16. Let (Ω,F , P ) and G ⊂ F be as above and f, g ∈
L2(Ω,F , P ).
1. If f ≥ 0, P — a.e. then EGf ≥ 0, P — a.e.
2. If f ≥ g, P — a.e. there EGf ≥ EGg, P — a.e.
3. |EGf | ≤ EG |f | , P — a.e.
4. kEGfkL1 ≤ kfkL1 for all f ∈ L2. So by the B.L.T. Theorem 8.4, EG
extends uniquely to a bounded linear map from L1(Ω,F , P ) to L1(Ω,G, P )
which we will still denote by EG .

5. If f ∈ L1(Ω,F , P ) then F = EGf ∈ L1(Ω,G, P ) iff
E(Fh) = E(fh) for all h ∈ Gb.

6. If g ∈ Gb and f ∈ L1(Ω,F , P ), then EG(gf) = g ·EGf, P — a.e.

Proof. By the definition of orthogonal projection for h ∈ Gb,
E(fh) = E(f ·EGh) = E(EGf · h).

So if f, h ≥ 0 then 0 ≤ E(fh) ≤ E(EGf · h) and since this holds for all h ≥ 0
in Gb, EGf ≥ 0, P — a.e. This proves (1). Item (2) follows by applying item
(1). to f − g. If f is real, ±f ≤ |f | and so by Item (2), ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P — a.e. For complex f, let h ≥ 0 be a bounded and G —
measurable function. Then

E [|EGf |h] = E
h
EGf · sgn (EGf)h

i
= E

h
f · sgn (EGf)h

i
≤ E [|f |h] = E [EG |f | · h] .

Since h is arbitrary, it follows that |EGf | ≤ EG |f | , P — a.e. Integrating this
inequality implies

kEGfkL1 ≤ E |EGf | ≤ E [EG |f | · 1] = E [|f |] = kfkL1 .
Item (5). Suppose f ∈ L1(Ω,F , P ) and h ∈ Gb. Let fn ∈ L2(Ω,F , P ) be a
sequence of functions such that fn → f in L1(Ω,F , P ). Then

E(EGf · h) = E( lim
n→∞EGfn · h) = lim

n→∞E(EGfn · h)
= lim

n→∞E(fn · h) = E(f · h). (23.25)

This equation uniquely determines EG, for if F ∈ L1(Ω,G, P ) also satisfies
E(F · h) = E(f · h) for all h ∈ Gb, then taking h = sgn (F −EGf) in Eq.
(23.25) gives

0 = E((F −EGf)h) = E(|F −EGf |).
This shows F = EGf, P — a.e. Item (6) is now an easy consequence of this
characterization, since if h ∈ Gb,

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .
Thus EG (gf) = g ·EGf, P — a.e.
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Proposition 23.17. If G0 ⊂ G1 ⊂ F . Then
EG0EG1 = EG1EG0 = EG0 . (23.26)

Proof. Equation (23.26) holds on L2(Ω,F , P ) by the basic properties of
orthogonal projections. It then hold on L1(Ω,F , P ) by continuity and the
density of L2(Ω,F , P ) in L1(Ω,F , P ).
Example 23.18. Suppose that (X,M, µ) and (Y,N , ν) are two σ — finite mea-
sure spaces. Let Ω = X × Y, F =M⊗N and P (dx, dy) = ρ(x, y)µ(dx)ν(dy)
where ρ ∈ L1(Ω,F , µ⊗ν) is a positive function such that R

X×Y ρd (µ⊗ ν) = 1.
Let πX : Ω → X be the projection map, πX(x, y) = x, and

G := σ(πX) = π−1X (M) = {A× Y : A ∈M} .
Then f : Ω → R is G — measurable iff f = F ◦πX for some function F : X → R
which is N — measurable, see Lemma 18.66. For f ∈ L1(Ω,F , P ), we will now
show EGf = F ◦ πX where

F (x) =
1

ρ̄(x)
1(0,∞)(ρ̄(x)) ·

Z
Y

f(x, y)ρ(x, y)ν(dy),

ρ̄(x) :=
R
Y
ρ(x, y)ν(dy). (By convention,

R
Y
f(x, y)ρ(x, y)ν(dy) := 0 ifR

Y
|f(x, y)| ρ(x, y)ν(dy) =∞.)
By Tonelli’s theorem, the set

E := {x ∈ X : ρ̄(x) =∞} ∪
½
x ∈ X :

Z
Y

|f(x, y)| ρ(x, y)ν(dy) =∞
¾

is a µ — null set. Since

E [|F ◦ πX |] =
Z
X

dµ(x)

Z
Y

dν(y) |F (x)| ρ(x, y) =
Z
X

dµ(x) |F (x)| ρ̄(x)

=

Z
X

dµ(x)

¯̄̄̄Z
Y

ν(dy)f(x, y)ρ(x, y)

¯̄̄̄
≤
Z
X

dµ(x)

Z
Y

ν(dy) |f(x, y)| ρ(x, y) <∞,

F ◦πX ∈ L1(Ω,G, P ). Let h = H ◦πX be a bounded G — measurable function,
then

E [F ◦ πX · h] =
Z
X

dµ(x)

Z
Y

dν(y)F (x)H(x)ρ(x, y)

=

Z
X

dµ(x)F (x)H(x)ρ̄(x)

=

Z
X

dµ(x)H(x)

Z
Y

ν(dy)f(x, y)ρ(x, y)

= E [hf ]

and hence EGf = F ◦ πX as claimed.
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This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise 23.25 to gain more intuition about
conditional expectations.

Theorem 23.19 (Jensen’s inequality). Let (Ω,F , P ) be a probability space
and ϕ : R→ R be a convex function. Assume f ∈ L1(Ω,F , P ;R) is a function
such that (for simplicity) ϕ(f) ∈ L1(Ω,F , P ;R), then ϕ(EGf) ≤ EG [ϕ(f)] ,
P — a.e.

Proof. Let us first assume that φ is C1 and f is bounded. In this case

ϕ(x)− ϕ(x0) ≥ ϕ0(x0)(x− x0) for all x0, x ∈ R. (23.27)

Taking x0 = EGf and x = f in this inequality implies

ϕ(f)− ϕ(EGf) ≥ ϕ0(EGf)(f −EGf)

and then applying EG to this inequality gives

EG [ϕ(f)]− ϕ(EGf) = EG [ϕ(f)− ϕ(EGf)]
≥ ϕ0(EGf)(EGf −EGEGf) = 0

The same proof works for general φ, one need only use Proposition 21.8 to
replace Eq. (23.27) by

ϕ(x)− ϕ(x0) ≥ ϕ0−(x0)(x− x0) for all x0, x ∈ R

where ϕ0−(x0) is the left hand derivative of φ at x0. If f is not bounded, apply
what we have just proved to fM = f1|f |≤M , to find

EG
£
ϕ(fM )

¤ ≥ ϕ(EGfM ). (23.28)

Since EG : L1(Ω,F , P ;R)→ L1(Ω,F , P ;R) is a bounded operator and fM →
f and ϕ(fM ) → φ(f) in L1(Ω,F , P ;R) as M → ∞, there exists {Mk}∞k=1
such that Mk ↑ ∞ and fMk → f and ϕ(fMk)→ φ(f), P — a.e. So passing to
the limit in Eq. (23.28) shows EG [ϕ(f)] ≥ ϕ(EGf), P — a.e.

23.6 Exercises

Exercise 23.9. Let (X,M, µ) be a measure space and H := L2(X,M, µ).
Given f ∈ L∞(µ) let Mf : H → H be the multiplication operator defined by
Mfg = fg. Show M2

f =Mf iff there exists A ∈M such that f = 1A a.e.
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Exercise 23.10 (Haar Basis). In this problem, let L2 denote L2([0, 1],m)
with the standard inner product,

ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x)
and for k, j ∈ N0 := N∪{0} with 0 ≤ j < 2k let

ψkj(x) := 2
k/2ψ(2kx− j).

The following pictures shows the graphs of ψ00, ψ1,0, ψ1,1, ψ2,1, ψ2,2 and ψ2,3
respectively.
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1. Show β := {1} ∪ ©ψkj : 0 ≤ k and 0 ≤ j < 2k
ª
is an orthonormal set, 1

denotes the constant function 1.
2. For n ∈ N, let Mn := span

¡{1} ∪ ©ψkj : 0 ≤ k < n and 0 ≤ j < 2k
ª¢

.
Show

Mn = span
¡{1[j2−n,(j+1)2−n) : and 0 ≤ j < 2n

¢
.

3. Show ∪∞n=1Mn is a dense subspace of L2 and therefore β is an orthonormal
basis for L2. Hint: see Theorem 22.15.

4. For f ∈ L2, let

Hnf := hf |1i1+
n−1X
k=0

2k−1X
j=0

hf |ψkjiψkj .

Show (compare with Exercise 23.25)

Hnf =
2n−1X
j=0

Ã
2n
Z (j+1)2−n

j2−n
f(x)dx

!
1[j2−n,(j+1)2−n)

and use this to show kf −Hnfk∞ → 0 as n→∞ for all f ∈ C([0, 1]).

Exercise 23.11. Let O(n) be the orthogonal groups consisting of n× n real
orthogonal matrices O, i.e. OtrO = I. For O ∈ O(n) and f ∈ L2(Rn) let
UOf(x) = f(O−1x). Show

1. UOf is well defined, namely if f = g a.e. then UOf = UOg a.e.
2. UO : L2(Rn) → L2(Rn) is unitary and satisfies UO1

UO2
= UO1O2

for all
O1, O2 ∈ O(n). That is to say the map O ∈ O(n) → U(L2(Rn)) — the
unitary operators on L2(Rn) is a group homomorphism, i.e. a “unitary
representation” of O(n).

3. For each f ∈ L2(Rn), the map O ∈ O(n) → UOf ∈ L2(Rn) is continu-
ous. Take the topology on O(n) to be that inherited from the Euclidean
topology on the vector space of all n× n matrices. Hint: see the proof of
Proposition 22.24.

Exercise 23.12. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 23.13. Spherical Harmonics.

Exercise 23.14. The gradient and the Laplacian in spherical coordinates.

Exercise 23.15. Legendre polynomials.
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23.7 Fourier Series Exercises

Exercise 23.16. Show
P∞

k=1 k
−2 = π2/6, by taking f(x) = x on [−π, π] and

computing kfk22 directly and then in terms of the Fourier Coefficients f̃ of f.
Exercise 23.17 (Riemann Lebesgue Lemma for Fourier Series). Show
for f ∈ L1([−π, π]d) that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) =
0. Hint: If f ∈ H, this follows form Bessel’s inequality. Now use a density
argument.

Exercise 23.18. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ c1(Zd)
and set

g(x) :=
X
k∈Zd

f̃(k)eik·x (pointwise).

1. Show g ∈ Cper(Rd).
2. Show g(x) = f(x) for m — a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and
then use approximation arguments to showZ

[−π,π]d
f(x)h(x)dx =

Z
[−π,π]d

g(x)h(x)dx ∀ h ∈ C([−π, π]d).

3. Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Exercise 23.19. Suppose m ∈ N0, α is a multi-index such that |α| ≤ 2m and
f ∈ C2mper(Rd)1 .

1. Using integration by parts, show (using Notation 22.21) that

(ik)αf̃(k) = h∂αf |eki for all k ∈ Zd.

Note: This equality implies¯̄̄
f̃(k)

¯̄̄
≤ 1

kα
k∂αfkH ≤

1

kα
k∂αfk∞ .

2. Now let ∆f =
Pd

i=1 ∂
2f/∂x2i , Working as in part 1) show

h(1−∆)mf |eki = (1 + |k|2)mf̃(k). (23.29)

Remark 23.20. Suppose that m is an even integer, α is a multi-index and
f ∈ C

m+|α|
per (Rd), then

1 We view Cper(R) as a subspace of H = L2 ([−π, π]) by identifying f ∈ Cper(R)
with f |[−π,π] ∈ H.
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k∈Zd

|kα|
¯̄̄
f̃(k)

¯̄̄2

=

X
k∈Zd

|h∂αf |eki| (1 + |k|2)m/2(1 + |k|2)−m/2

2

=

X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf |eki

¯̄̄
(1 + |k|2)−m/2

2

≤
X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf |eki

¯̄̄2
·
X
k∈Zd

(1 + |k|2)−m

= Cm

°°°(1−∆)m/2∂αf
°°°2
H

where Cm :=
P

k∈Zd(1 + |k|2)−m <∞ iff m > d/2. So the smoother f is the
faster f̃ decays at infinity. The next problem is the converse of this assertion
and hence smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 23.20 (A Sobolev Imbedding Theorem). Suppose s ∈ R and©
ck ∈ C : k ∈ Zd

ª
are coefficients such thatX

k∈Zd
|ck|2 (1 + |k|2)s <∞.

Show if s > d
2 +m, the function f defined by

f(x) =
X
k∈Zd

cke
ik·x

is in Cm
per(Rd). Hint: Work as in the above remark to showX

k∈Zd
|ck| |kα| <∞ for all |α| ≤ m.

Exercise 23.21 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
X
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)
−d/2

Z
Rd

F (x)e−ik·xdx.

Further assume F̂ ∈ c1(Zd).

1. Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: ComputeR
[−π,π]d

P
k∈Zd |F (x+ 2πk)| dx.
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2. Let

f(x) :=

½P
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)−d/2 F̂ (k).
3. Using item 2) and the assumptions on F, show f ∈ L1([−π, π]d) ∩
L∞([−π, π]d) and

f(x) =
X
k∈Zd

f̃(k)eik·x =
X
k∈Zd

(2π)
−d/2

F̂ (k)eik·x for m — a.e. x,

i.e. X
k∈Zd

F (x+ 2πk) = (2π)−d/2
X
k∈Zd

F̂ (k)eik·x for m — a.e. x. (23.30)

4. Suppose we now assume that F ∈ C(Rd) and F satisfies 1) |F (x)| ≤
C(1 + |x|)−s for some s > d and C < ∞ and 2) F̂ ∈ c1(Zd), then show
Eq. (23.30) holds for all x ∈ Rd and in particularX

k∈Zd
F (2πk) = (2π)−d/2

X
k∈Zd

F̂ (k).

For notational simplicity, in the remaining problems we will assume that
d = 1.

Exercise 23.22 (Heat Equation 1.). Let (t, x) ∈ [0,∞)×R→ u(t, x) be a
continuous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and
uxx exists and are continuous when t > 0. Further assume that u satisfies the
heat equation u̇ = 1

2uxx. Let ũ(t, k) := hu(t, ·)|eki for k ∈ Z. Show for t > 0

and k ∈ Z that ũ(t, k) is differentiable in t and d
dt ũ(t, k) = −k2ũ(t, k)/2. Use

this result to show
u(t, x) =

X
k∈Z

e−
t
2k

2

f̃(k)eikx (23.31)

where f(x) := u(0, x) and as above

f̃(k) = hf |eki =
Z π

−π
f(y)e−ikydy =

1

2π

Z π

−π
f(y)e−ikydm (y) .

Notice from Eq. (23.31) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 23.23 (Heat Equation 2.). Let qt(x) :=
1
2π

P
k∈Z e

− t
2k

2

eikx.
Show that Eq. (23.31) may be rewritten as

u(t, x) =

Z π

−π
qt(x− y)f(y)dy

and
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qt(x) =
X
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2

. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=
Z
Rd

pt(x− y)f(y)dy.

Hint: To show qt(x) =
P

k∈Z pt(x+k2π), use the Poisson summation formula
and the Gaussian integration identity,

p̂t(ω) =
1√
2π

Z
R
pt(x)e

iωxdx =
1√
2π

e−
t
2ω

2

. (23.32)

Equation (23.32) will be discussed in Example 31.4 below.

Exercise 23.24 (Wave Equation). Let u ∈ C2(R×R) be such that u(t, ·) ∈
Cper(R) for all t ∈ R. Further assume that u solves the wave equation, utt =
uxx. Let f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := hu(t, ·), eki for
k ∈ Z is twice continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use
this result to show

u(t, x) =
X
k∈Z

µ
f̃(k) cos(kt) + g̃(k)

sin kt

k

¶
eikx (23.33)

with the sum converging absolutely. Also show that u(t, x) may be written as

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ τ)dτ. (23.34)

Hint: To show Eq. (23.33) implies (23.34) use

cos kt =
eikt + e−ikt

2
,

sin kt =
eikt − e−ikt

2i
, and

eik(x+t) − eik(x−t)

ik
=

Z t

−t
eik(x+τ)dτ.

23.8 Conditional Expectation Exercises

Exercise 23.25. Suppose (Ω,F , P ) is a probability space andA := {Ai}∞i=1 ⊂
F is a partition of Ω. (Recall this means Ω =

`∞
i=1Ai.) Let G be the σ —

algebra generated by A. Show:
1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
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2. g : Ω → R is G — measurable iff g =
P∞

i=1 λi1Ai for some λi ∈ R.
3. For f ∈ L1(Ω,F , P ), let E(f |Ai) := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E(f |Ai) = 0 otherwise. Show

EGf =
∞X
i=1

E(f |Ai)1Ai .


