23

L? - Hilbert Spaces Techniques and Fourier
Series

This section is concerned with Hilbert spaces presented as in the following
example.

Example 23.1. Let (X, M, ) be a measure space. Then H := L*(X, M, u)
with inner product

(o) = [ 1 -9
X
is a Hilbert space.

It will be convenient to define
()= [ @)@ du (@) (23.1)
X

for all measurable functions f,g on X such that fg € L' (u). So with this
notation we have (f|g) = (f,g) for all f,g € H.

Exercise 23.1. Let K : L?(v) — L?(u) be the operator defined in Exercise
21.12. Show K* : L?(u) — L?(v) is the operator given by

wazﬂamwwww.

23.1 L2-Orthonoramal Basis

Ezample 23.2. 1. Let H = L?([-1,1],dm) and A := {1,z,2% 23...}. Then
A is total in H by the Stone-Weierstrass theorem and a similar argument
as in the first example or directly from Exercise 22.13. The result of doing
Gram-Schmidt on this set gives an orthonormal basis of H consisting of
the “Legendre Polynomials.”
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2. Let H = LQ(R,e’%Ide).Exercise 22.13 implies A = {l,z,2%,23...}
is total in H and the result of doing Gram-Schmidt on A now gives an
orthonormal basis for H consisting of “Hermite Polynomials.”

Remark 23.8 (An Interesting Phenomena). Let H = L?([—1,1],dm) and B :=
{1,23,25,2% ... }. Then again A is total in H by the same argument as in
item 2. Example 23.2. This is true even though B is a proper subset of A.
Notice that A is an algebraic basis for the polynomials on [—1, 1] while B is
not! The following computations may help relieve some of the reader’s anxiety.
Let f € L?([~1,1],dm), then, making the change of variables 2 = y'/3, shows
that

[era=[ i ra= [ e e e

where du(y) = $y~3dy. Since u([-1,1]) = m([—1,1]) = 2, p is a finite
measure on [—1,1] and hence by Exercise 22.13 A := {1,z,2%,2%...} is a
total (see Definition 14.25) in L?*([—1,1],du). In particular for any ¢ > 0
there exists a polynomial p(y) such that

/_11 ‘f(y1/3) _p(y)rdﬂ(y) e

However, by Eq. (23.2) we have
1 9 1
2 1/3 —_ = xX) — :ES 2 XZ.
€ >/_1’f(y ) p(y)} du(y) /_llf( ) = (=) d

Alternatively, if f € C([—1,1]), then g(y) = f(y'/3) is back in C([—1,1]).
Therefore for any £ > 0, there exists a polynomial p(y) such that

e >lg —pll =sup{lg(y) —py)| : y € [-1,1]}
=sup {|g(2°) — p(a”)[ : & € [-1,1]}
= sup{}f(aj) —p(x?’)} cx € [-1, 1]}

This gives another proof the polynomials in x3 are dense in C([—1,1]) and
hence in L?([-1,1]).

Exercise 23.2. Suppose (X, M, 1) and (Y, N,v) are o-finite measure spaces
such that L?(u) and L?(v) are separable. If {f,}-~, and {gm}_,
are orthonormal bases for L% (u) and L% (v) respectively, then [ :=
{fn ® gm : m,n € N} is an orthonormal basis for L?(u®v). (Recall that
f®g(z,y) = f(x)g(y), see Notation 20.4.) Hint: model your proof of
the proof of Proposition 14.28.

Exercise 23.3. Suppose H is a Hilbert space and {H, : n € N} are closed
subspaces of H such that H,, 1 H,, for all m # n and if f € H with f L H,
for all n € N, then f = 0. Show:
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1 If f,, € H, for all n € N satisfy 7%, || fn]|* < co then 32°° | f, exists in
H.

2. Every element f € H may be uniquely written as f = > °° | f, with
fn € H as in item 1.
(For this reason we will write H = @52 H,, under the hypothesis of this
exercise.)

Exercise 23.4. Suppose (X, M, u) is a measure space and X = [[°2; X,

n=1

with X,, € M and p (X,,) > 0 for alln. Then U : L? (X, p) — @52, L* (X, 1)
defined by (Uf),, := flx, is unitary.

23.2 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces. Typically H and B will be
separable, but we will not assume this until it is needed later.

Proposition 23.4. Let H and B be a separable Hilbert spaces, K : H — B
be a bounded linear operator, {e,}52q and {uy,},._; be orthonormal basis for
H and B respectively. Then:

1.5, |Ke,|* = S | K*upm||?® allowing for the possibility that the
sums are infinite. In particular the Hilbert Schmidt norm of K,

)

2 2

1K s =Y 1 Keall”,
n=1

is well defined independent of the choice of orthonormal basis {e,}>2 ;.

We say K : H — B is a Hilbert Schmidt operator if | K|| ;4 < 0o and

let HS(H, B) denote the space of Hilbert Schmidt operators from H to B.
2. For all K € L(H,B), | K|y = |K*|| 5 and

1K s = 1Koy = sup{I KRl : h € H > [|h]] = 1}.

3. The set HS(H, B) is a subspace of KK(H, B) (the compact operators from
H — B) and ||| g is a norm on HS(H, B) for which (HS(H, B), ||| y5)
is a Hilbert space. The inner product on HS(H, B) is given by

K1|K2 Z K16n|ngn . (233)

.If K : H — B is a bounded finite rank operator, then K is Hilbert Schmidt.
. Let Py = ZnNzl(x, en)en be orthogonal projection onto span{e; : i < N} C
H and for K € HS(H, B), let K,, := KP,. Then

W B

1K — KNHop <K — KNHHS—>O as N — oo,

which shows that finite rank operators are dense in (HS(H, B), |||l yzs) -
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6. If L is another Hilbert space and A: L — H and C : B — L are bounded
operators, then

KAl gs < [Kllgs Al and [CK|gs < [Kllgs [Cllp

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for

sums,
[eS) 0o 0o
2 IKeall” =3, 3 1(Ken,um)l
- - o0
=2 > len Ko um)* = 3 1K
m=1n=1 m=1

This proves ||K| ;g is well defined independent of basis and that || K| ;¢ =
| K*|| g - For x € H\ {0}, 2/ ||z| may be taken to be the first element in an
orthonormal basis for H and hence

HK < IKllys-

Multiplying this inequality by ||z| shows ||Kz| < [K| g ll#] and hence
1K op < 1K s -
Item 3. For Ky, K, € L(H, B),

1K+ Kall s = | D 1 K1en + Kaen |

n=1

o

2
> lKaen]l + ([ Kaen]]

n=1

= {1 Kenll + [ K2enll} o2y ll,,
< K enll bz, + 1K 2enl3 02, 1,
= [[Killys + [ K2llgs -

IN

From this triangle inequality and the homogeneity properties of ||-|| 4, we
now easily see that HS(H, B) is a subspace of K(H, B) and |- ;¢ is a norm
on HS(H, B). Since

D [{Kien|Kaen)| <Y [[Krenl| | Kaen|
n=1

n=1

o0 o0
2 2
< Z”KlenH Z||K2en” = 1K1l s 152l s »
n=1

n=1
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the sum in Eq. (23.3) is well defined and is easily checked to define an inner
product on HS(H, B) such that ”K”?{s = (K1, Ks) ¢ - To see that HS(H, B)
is complete in this inner product suppose {K,,} ~_; is a ||| ;g — Cauchy se-
quence in HS(H, B). Because L(H, B) is complete, there exists K € L(H, B)
such that [| K, — K]|,, — 0 as m — oo. Since

N N
Z K Km en” = hm Z ” Kl Km) enH2 < limlsuP HKl *Km”HS?

oo N
5 = Kzps = DI = Kn)eal” = lim Y (K = Ko) en]®

n=1 n=1
<lim sup ||K; — K|l g — 0 as m — oo.
l—o0

Item 4. Let {vn}fzvfldimK(H) be an orthonormal basis for Ran(K) =
K (H). Then, for all h € H,

N N
IERIE =D [(Khloa)[* =Y [(RIK v,)[*
n=1 n=1

Summing this equation on h € I" where an " is an orthonormal basis for H
shows

N
2 2 w2
1K s = Y IKAIE =D 1K vall3 < oo
her n=1
Item 5. Simply observe,

1K — Knlly, < IK = Knlfs = D [ Keal* = 0as N — oc.
n>N

Item 6. For C € L(B,L) and K € L(H, B) then

ICK |G =Y _CKenl* < ICI2, D" [ Kenl® = ICI2, 1 K55
n=1 n=1

and for Ae L(L,H),
KAl ps = 1A K [ gg < 1A op 1K s = 1Al 1K g1 -
]

Remark 23.5. The separability assumptions made in Proposition 23.4 are un-
necessary. In general, we define

1K Hs =Y IKel

ecl’
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where I" C H is an orthonormal basis. The same proof of Item 1. of Proposi-
tion 23.4 shows || K|| ;g is well defined and ||K| ;¢ = [|K*||5g- If | K|5g <
00, then there exists a countable subset Iy C I" such that Ke = 0ife € '\ I.
Let Ho := span(lp) and By := K(Hy). Then K (H) C By, K|y = 0 and
hence by applying the results of Proposition 23.4 to K|g, : Hy — By one
easily sees that the separability of H and B are unnecessary in Proposition
23.4.

Example 23.6. Let (X, 1) be a measure space, H = L?(X, 1) and

) = Z fi()gi(y)

where
fivgi € LQ(X p)fori=1,...,n

Define (K f)(x) = [y k( (y)du(y), then K : L*(X,p) — L*(X,p) is a
finite rank operator and hence Hllbert Schmidt.

Exercise 23.5. Suppose that (X, ) is a o—finite measure space such that
H = L?(X, 1) is separable and k : X x X — R is a measurable function, such
that

Il e == [ W) Pdu(a)dns) < .
Define, for f € H,
Ki@) = [ ko) )i,
when the integral makes sense. Show:

1. K f(x) is defined for py—a.e. z in X.
2. The resulting function K f is in H and K : H — H is linear.
3N K s = Ikl L2 (x x x ey < 0o (This implies K € HS(H, H).)

Ezxzample 25.7. Suppose that 2 C R" is a bounded set, & < n, then the oper-
ator K : L?(£2,m) — L?(£2,m) defined by

Kf@)s= | e fl)dy

is compact.

Proof. For € > 0, let
1
o= | e 0y = g+ () @)

where g.(z) = Wﬁlc(x) with C C R™ a sufficiently large ball such that
2 — 2 C C. Since a < n, it follows that
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9e < go=||""1c € L'(R", m).
Hence it follows by Proposition 22.23 that
(K = K2) fll 20y < 190 = 92) * (L f)ll 2 @)
< 190 = 9l L1y M f 1l L2 ey
= [|(g0 — gs)HLl(R") Hf||L2(Q)

which implies
I — KEHB(LQ(Q)) <Ilgo — gsHLl(]R")

_/ 1 1
C

2] +e o]
by the dominated convergence theorem. For any € > 0,
1 2
/ [7a] dxdy < oo,
oxe Lz —yl" +e

and hence K. is Hilbert Schmidt and hence compact. By Eq. (23.4), K. — K
as € | 0 and hence it follows that K is compact as well. [ |

der —0ase |0 (23.4)

Exercise 23.6. Let H := L% ([0,1],m), k (z,y) := min (z,y) for z,y € [0,1]
and define K : H — H by

1
Kf(z)= / k(,9) f () dy.

By Exercise 23.5, K is a Hilbert Schmidt operator and it is easily seen that
K is self-adjoint. Show:

1. Show (K f|g"") = —(f]g) for all g € C°((0,1)) and use this to conclude
that Nul(K) = {0}.

2. Now suppose that f € H is an eigenvector of K with eigenvalue A # 0.
Show that there is a version of f in C ([0, 1])NC? ((0,1)) and this version,
still denoted by f, solves

A" = —f with f(0) = f'(1) = 0. (23.5)
where f' (1) :=lim,1 f/ ().

. Use Eq. (23.5) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem 14.45, to show

{\/§Sin (n%x) 'n € N}

w

is an orthonormal basis for L2 ([0, 1],m).
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Exercise 23.7. Suppose a € L (X, M, u) and let A be the bounded operator
on H := L*(X, M, u) defined by Af (z) = a(x) f (z) for all f € H. (We will
denote A by M, in the future.) Show:

1. A is a bounded operator and A* = Mj.

2. 0 (A) = essran(a) where o (A) is the spectrum of A and essran(a) is the
essential range of a, see Definitions 14.30 and 21.40 respectively.

3. Show A is an eigenvalue for @ iff 4 ({a = A}) > 0.

23.3 Fourier Series Considerations

Throughout this section we will let df, dx, da, etc. denote Lebesgue measure
on R? normalized so that the cube, Q := (—7r,7r]‘7l7 has measure one, i.e.
df = (27)~%dm(0) where m is standard Lebesgue measure on R?. As usual,

for o € N, let
la| |
1 0
Dy =(2) —m—.
o (z> 207" ... 905"

Notation 23.8 Let C’;,fer(]Rd) denote the 2 — periodic functions in CF(R?),
that is f € C¥, (R?) iff f € C*(R?) and f(0+2me;) = f(0) for all € R? and
i=1,2,...,d. Further let {(-|-) denote the inner product on the Hilbert space,

H := L*([~7,7]%), given by

o) = | o)ato)an = (=) | 50y 0

and define e (0) := e*? for all k € Z%. For f € LY(Q), we will write f(k) for
the Fourier coefficient,

(k) o= (flew) = /Q F(0)e=*do. (23.6)

Since any 27 — periodic functions on R? may be identified with function
on the d - dimensional torus, T¢ = R?/ (277Z)" = (Sl)d, I may also write
C*(T?) for C%,,.(R?) and LP (T?) for L? (Q) where elements in f € LP (Q) are
to be thought of as there extensions to 27 — periodic functions on R?.

Theorem 23.9 (Fourier Series). The functions  := {ey, : k € Z*} form
an orthonormal basis for H, i.e. if f € H then

F=Y"flewer =Y f(k)ex (23.7)

kezd kezd

where the convergence takes place in L?([—m,]%).
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Proof. Simple computations show 5 := {ek ke Zd} is an orthonormal
set. We now claim that $ is an orthonormal basis. To see this recall that
C.((—m,m)%) is dense in L?((—m,7)% dm). Any f € C.((—m, 7)) may be ex-
tended to be a continuous 27 — periodic function on R and hence by Exercise
12.13 and Remark 12.44, f may uniformly (and hence in L?) be approximated
by a trigonometric polynomial. Therefore 3 is a total orthonormal set, i.e. 8
is an orthonormal basis.

This may also be proved by first proving the case d = 1 as above and then
using Exercise 23.2 inductively to get the result for any d. [ |

Exercise 23.8. Let A be the operator defined in Lemma 14.36 and for
g € L2(T), let Ug (k) := g (k) so that U : L?(T) — ¢2?(Z) is unitary. Show
U~'AU = M, where a € Cy2, (R) is a function to be found. Use this repre-
sentation and the results in Exercise 23.7 to give a simple proof of the results

in Lemma 14.36.

23.3.1 Dirichlet, Fejér and Kernels

Although the sum in Eq. (23.7) is guaranteed to converge relative to the
Hilbertian norm on H it certainly need not converge pointwise even if
f € Cper (Rd) as will be proved in Section 35.1.1 below. Nevertheless, if f
is sufficiently regular, then the sum in Eq. (23.7) will converge pointwise as
we will now show. In the process we will give a direct and constructive proof
of the result in Exercise 12.13, see Theorem 23.11 below.

Let us restrict our attention to d = 1 here. Consider

Fa0) =" f(R)ex ()= > % l/{_ ]f(:v)e‘“f'””dxl ex ()

|k|<n |k|<n
_ b ihe(0-2) g — L _
=3 f(z) E e dx = o7 f(z)Dy(0 — z)dx

[—m,m] |k|<n

(23.8)

where

D,,(0) := i e’

k=—n

is called the Dirichlet kernel. Letting o = €%/, we have

a2(n+1) —a~2n a2ntl _ a7(2n+1)

D,(0) = i % = = .

2 _ _ —
= a 1 a—«o
_ 2isin(n+1)0  sin(n+ $)6
2isindd  sinlf

and therefore
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n . 1
) sin(n + =)0
Dy (0) == Z ikt _ (.—12), (23.9)
P sin 59

see Figure 23.3.1.

This is a plot D7 and Dg.

with the understanding that the right side of this equation is 2n + 1 whenever
0 € 277

Theorem 23.10. Suppose f € L ([—m,x],dm) and f is differentiable at
some 6 € [—m, x|, then lim,_, f, (0) = f(0) where f, is as in Eq. (23.8).

Proof. Observe that
1 1 )
= D _ - ik-(0—x) =1
5 | (0 — z)dx 5 /7 Z e dx
[—m,7] [—m, 7] [k|<n

and therefore,

O 1O =gz [ 1)~ F 0100~y
= % - ][f(w) — [ (0 — )] Dy (x)dx
-1 JO=2) =S O] 4 Yo e
o /[7'r,7r] { sin }S (n+5)zde. (23.10)

If f is differentiable at 0, the last expression in Eq. (23.10) tends to 0 as
n — oo by the Riemann Lebesgue Lemma (Corollary 22.17 or Lemma 22.37)
and the fact that 1j_ - (z) W%);ﬂf@) € L (dx). ]

Despite the Dirichlet kernel not being positive, it still satisfies the approx-
imate & — sequence property, %Dn — 6y as n — oo, when acting on C' —
periodic functions in 6. In order to improve the convergence properties it is
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reasonable to try to replace {f, : n € Ng} by the sequence of averages (see
Exercise 7.15),

1 & 1 1 i (09—
PO =57 o 0= g [ 10 3

n= ] |k|<n
1

=5 [ Kn(0 —x)f(x)dx

—,m)

where

Kn(0) := ﬁ DN et (23.11)

n=0 |k|<n

is the Fejér kernel.

Theorem 23.11. The Fejér kernel K in Eq. (23.11) satisfies:

1.
- [
Kn(0) = 1- inf 23.12
0= 3 -y (23.12)
1 2 (Mtlp
= - lbm. 2 ) (23.13)
+ sin (5)
2. Kn(0) > 0.
3. 5= [ Kn(0)do =1
4. 8up.<jgj<x KN (0) = 0 as N — oo for all ¢ > 0, see Figure 23.1.
5. For any continuous 2w — periodic function f on R, Ky = f(8) — f(9)

uniformly in 6 as N — oo, where

K+ f(6) = % j Kn (0 — o) f(a)da
- i {1 __I ] Fn)em?. (23.14)
Mt N+1

Proof. 1. Equation (23.12) is a consequence of the identity,

N

Z Z eik0 Z eih0 Z (N+1_|k|)eik-9.
n=0 |k|<n |E|<n<N |k|<N

i0/2

Moreover, letting o = €'/ and using Eq. (3.3) shows
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Fig. 23.1. Plots of Kn(6) for N =2, 7 and 13.

N _
a2n+2 _ 2n

K@) = — XN: o1 a
N COTNFIA&T e

H
=
)
S
[ V)
3
|
2
L
S
8
3

(N+1)(a—a1)

NTD(a—aD)
1
(N+1)(a— orl)2

|
_ 1 [Q<N+1> _ O;(Nm] ?
0

(N +1) (@ —a"1)?
1 sin? (N +1)

_ /2)
CN+1  sin?(0/2)

Items 2. and 3. follow easily from Eqgs. (23.13) and (23.12) respectively.
Item 4. is a consequence of the elementary estimate;

11
sup Kn(0) < ,
B S IE)

and is clearly indicated in Figure 23.1. Item 5. now follows by the standard
approximate d — function arguments, namely,
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[+ £(8) = £ O] = 5=

/KN ) [f(a) — £ (0) dor

Sg 3 KN( Jf(0—a) = f(0)]da
1 1
< NI @ Il 57 [ (@) 170~ 0) = 7 @) do
1 1
S NI (%) 11l oo +@1|1£E|f(9—a)_f(9)|_
Therefore,
liml\fup |Kn* f— fllo <sup\st|1p |lf(0—a)— f(B)—0ase]O0.
|

23.3.2 The Dirichlet Problems on D and the Poisson Kernel

Let D := {z € C: |z| < 1} be the open unit disk in C & R?, write z € C as
z==x+iyor z=re? and let A = 8x2 + 6y be the Laplacian acting on

02 (D).

Theorem 23.12 (Dirichlet problem for D). To every continuous function
g € C (bd(D)) there exists a unique function u € C(D) N C?(D) solving

Au(z) =0 for z € D and ulop = g. (23.15)

Moreover for r < 1, u is given by,

4 1 [~ A 4
u(re'®) = 2— / Pr( — a)u(e®)da =: P, % u(e'?) (23.16)
™ —T
T ] 4 prei@=a) io

where P, is the Poisson kernel defined by

1—7r?
P.(0) = ——.
(9) 1—2rcosd +r?
(The problem posed in Eq. (23.15) is called the Dirichlet problem for D.)
Proof. In this proof, we are going to be identifying Sl = bd(D) :=
{z € D:|z| =1} with [-7, 7]/ (7 ~ —7) by the map 0 € [-7,7] — €/ € S'.
Also recall that the Laplacian A may be expressed in polar coordinates as,

Au=1r"19, (r_laru) + T%@gu,
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where

(Oru) (T‘Eio) = %u (T‘Eio) and (Jyu) (Tem) = %u (rew) .

Uniqueness. Suppose u is a solution to Eq. (23.15) and let

g(k) : 1/ g(eike)e*ikede

:% -

and 1 g
a(r, k) / u(re?®)e=*qdg (23.18)

= % .
be the Fourier coefficients of ¢ (0) and § — u (7"6“9) respectively. Then for
re(0,1),

r= 1o, (royi(r,k)) = Qi/ r10, (r='0,u) (re'?)e=*0do

L

1 (™1 . .
= f%/ T—zagu(rew)eﬂwdﬁ

11 (7 ) .
= _T_Q%/ u(re’)o3e=*dg

1 5.
= r—2/<:2u(r, k)
or equivalently
70, (royi(r, k) = k*a(r, k). (23.19)

Recall the general solution to
r, (royy(r)) = k*y(r) (23.20)

may be found by trying solutions of the form y(r) = r® which then implies
a? = k% or a = +k. From this one sees that a(r, k) solving Eq. (23.19) may
be written as @(r, k) = Agr!*l 4 Bpr~I¥l for some constants Ay and By when
k # 0. If k = 0, the solution to Eq. (23.20) is gotten by simple integration and
the result is a(r,0) = Ag + Bplnr. Since a(r, k) is bounded near the origin
for each k it must be that By, = 0 for all k¥ € Z. Hence we have shown there
exists Ay € C such that, for all r € (0,1),

1 4 ) .
Apr!®l = a(r, k) = 2—/ u(re?)e=*0dp. (23.21)
m

—T

Since all terms of this equation are continuous for r € [0,1], Eq. (23.21)
remains valid for all » € [0,1] and in particular we have, at = 1, that

1 ™

:% .

Ay u(e®)e*0dp = g(k).
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Hence if u is a solution to Eq. (23.15) then u must be given by

u(re'®) = Zf](k)r‘k‘eike for r < 1. (23.22)
keZ

or equivalently,

u(z) =Y (k) + Y a(—k)z*

keNg keN

Notice that the theory of the Fourier series implies Eq. (23.22) is valid in the
L? (df) - sense. However more is true, since for r < 1, the series in Eq. (23.22) is
absolutely convergent and in fact defines a C* — function (see Exercise 4.11 or
Corollary 19.43) which must agree with the continuous function, § — u (rew) ,
for almost every 6 and hence for all . This completes the proof of uniqueness.

Existence. Given g € C (bd(D)), let u be defined as in Eq. (23.22). Then,
again by Exercise 4.11 or Corollary 19.43, v € C* (D). So to finish the proof
it suffices to show lim,_., u (z) = g (y) for all y € bd(D). Inserting the formula
for g(k) into Eq. (23.22) gives

. 1 4 .
u(re'?) = %/ P. (0 — a)u(e**)da for all r < 1
where

(o) o0
Py (8) = S rlklemt = 57 pheikd 4 S pkemikd g
k=0 k=0

keZ

1 1+ re®
= e {21_—5 B 1] = He [1 _mw}
(1 + re“s) (1 — re_i‘s)

11— reid|?
_ 1 —r2
1—2rcosd +1r?’

= Re

_R [1 — 72 4 2irsind

23.23
1—2rcosd +1r2 ( )

The Poisson kernel again solves the usual approximate § — function prop-
erties (see Figure 2), namely:

1. P.(6) > 0 and

1" 1 (" .
G a P.(0 —a)da= 5 _Wzr\klezk(e—a)da
kEZ
1 L
Ll [ gy
27 o
kEZ

and
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1— 72
ap Po(0)< ——— L 0asrtl
E;‘lgﬂpgﬂ 0) < 1—2rcose+1r2 —0asrT

A plot of P,(6) for r = 0.2, 0.5 and 0.7.

Therefore by the same argument used in the proof of Theorem 23.11,

limsup [u (re'”) — g (¢*)| = limsup|(F, + 9) () — g ()| = 0
which certainly implies lim,_,, u (z) = g (y) for all y € bd(D). ]

Remark 23.13 (Harmonic Conjugate). Writing z = re®®, Eq. (23.17) may be
rewritten as )
1 Tl4ze ™™
U(Z) = % Re/ﬂ mu(e )da
which shows u = Re F’ where

F(z): 1/ 1—'_qu(em)aloz.

=5 _ —ix
2 J_. 1 —ze

Moreover it follows from Eq. (23.23) that

T rsin(d — «)

0\ _ l m 1o
fm F(re™) = ™ ! _»1—2rcos(6 —a)+ r29(€ Jdo
(@ ) ()
where )
0. (0) - rsin(J)

T 1-2r cos(d) + 12’

From these remarks it follows that v =: (Q, % g) (¢’?) is the harmonic conju-
gate of u and P, = @,. For more on this point see Section 49.7 below.
23.4 Weak L2-Derivatives

Theorem 23.14 (Weak and Strong Differentiability). Suppose that f €
L?(R") and v € R™\ {0}. Then the following are equivalent:
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1. There exists {tn},-; C R\ {0} such that lim, oo t, =0 and

fC+tav) = £C)
tn

< 00.
2

sup
n

2. There exists g € L?(R™) such that (f,0,0) = —{g,¢) for all $ € C(R™).

2 2
3. There exists g € L*(R™) and f,, € C(R™) such that f, L fando,f, 5
g as n — oo.
4. There exists g € L? such that

fert) = f0) e

2
n —gast—0.

(See Theorem 36.18 for the LP generalization of this theorem.)

Proof. 1. = 2. We may assume, using Theorem 14.52 and passing to a

subsequence if necessary, that ﬂﬂ'ziiw 2 g for some g € L?(R™). Now
for ¢ € CZ(R™),

(9l¢) = lim <w,¢> = lim <ﬁw>
= <f’ Am M> = —(f.0u0), n

wherein we have used the translation invariance of Lebesgue measure and
the dominated convergence theorem. 2. = 3. Let ¢ € C2°(R™,R) such that
Jgn @(x)dz =1 and let ¢y, (x) = m"¢(ma), then by Proposition 22.34, h, =
Om * f € C°(R™) for all m and

Ot (@) = 06+ J(2) = [ 060 =)@y = (.0, 6 2 = )
= <ga¢m (.CL‘ - )> = Om *g(.’E)

By Theorem 22.32, h,, — f € L*(R") and Oy,h,, = ¢m * g — g in L?(R")
as m — oo. This shows 3. holds except for the fact that h,, need not have
compact support. To fix this let ¢ € C°(R™,[0,1]) such that ¢y = 1 in a
neighborhood of 0 and let 9. (z) = 9 (ex) and (0,v). (x) := (0v¥) (ex). Then

Oy (¢6hm) = 8vwshm + wsavhm =€ <8v¢)5 R, 4 wsavhm

so that ¥.h,, — h, in L? and 0, (¥chy) — Ophy, in L? as € | 0. Let
fm = e, hm where €, is chosen to be greater than zero but small enough so
that

[V hm = Banlly + 180 (Y, him) — Buhum [l < 1/m.

Then f,, € C®(R"), fm — f and O, f,, — g in L? as m — oo. 3. = 4. By
the fundamental theorem of calculus
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Tftvfm(x) — fm(x) _ fm(ib-i-t’l)) — fm(x)
t t
1 (td !
:—/O Efm($+stv)ds:/0 (Ov fm) (x + stv)ds.

t
(23.24)

Let L L
Gi(x) := / T_stvg(x)ds = / g(x + stv)ds
0 0

which is defined for almost every x and is in L?(R™) by Minkowski’s inequality
for integrals, Theorem 21.27. Therefore

Tftvfm<x) B fm(ZC)
t

1

~Gy(w) = / (D fon) (2 + 5t0) — gla + stv)] ds
0

and hence again by Minkowski’s inequality for integrals,

T—tvfm - fm

t — G

1
< / HT—stv (avfm) - T—stngQ ds
2 0

1
=/Wmm—mﬂ&
0

Letting m — oo in this equation implies (17—, f — f) /t = G; a.e. Finally one
more application of Minkowski’s inequality for integrals implies,

T—t’uf_f _
- g

1
=|Gr—gb=H/’wﬂw9—mds
2 0

2
1
S / HTfstvg_gHQdS'
0

By the dominated convergence theorem and Proposition 22.24, the latter term
tends to 0 as t — 0 and this proves 4. The proof is now complete since 4. =—>
1. is trivial. [ ]

23.5 *Conditional Expectation

In this section let ({2, F, P) be a probability space, i.e. ({2, F, P) is a measure
space and P(f2) = 1. Let G C F be a sub — sigma algebra of F and write
fegyif f: 92 — Cisbounded and f is (G, Bc) — measurable. In this section

we will write

Ef ::/QfdP.

Definition 23.15 (Conditional Expectation). Let Eg : L?(2,F,P) —
L?(2,G, P) denote orthogonal projection of L?(§2,F, P) onto the closed sub-
space L?(£2,G, P). For f € L*(2,G, P), we say that Egf € L*(2,F, P) is the
conditional expectation of f.
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Theorem 23.16. Let (2,F,P) and G C F be as above and f,g €
L2(Q, F, P).

Aff >0, P —a.e. then Egf >0, P — a.e.

If f>g, P —a.e. there Egf > Egg, P — a.e.

|Egf| < Eg|f|, P — a.e.

NEgfllzr < Ifller for all f € L?. So by the B.L.T. Theorem 8.4, Eg
extends uniquely to a bounded linear map from L*(2, F, P) to L*(£2,G, P)
which we will still denote by Eg.

5.If f € LN, F,P) then F = Egf € L*(12,G, P) iff

E(Fh) = E(fh) for all h € Gy.
6. If g € Gy and f € LY (2, F, P), then Eg(gf) =g - Egf, P — a.e.

Bl WA ~

Proof. By the definition of orthogonal projection for h € Gy,
E(fh) = E(f - Egh) = E(Egf - h).
So if f,h > 0 then 0 < E(fh) < E(Egf - h) and since this holds for all A > 0
in Gy, Egf > 0, P — a.e. This proves (1). Item (2) follows by applying item
(1). to f —g. If fisreal, +f < |f| and so by Item (2), £FEgf < Eg|f], i.e.
|Egf| < Eg|f|, P — a.e. For complex f, let h > 0 be a bounded and G —
measurable function. Then
E[|Egf|h) = E |Egf -sen(Bg/h| = E |f -sen (Bg/)h]
< E[f[h] = E[Eg|f]-h].
Since h is arbitrary, it follows that |Egf| < Eg|f|, P — a.e. Integrating this
inequality implies
|Egfllr < E|Egf| < E[Eg|f]-1] = E[If[] =l

Item (5). Suppose f € L' (2, F,P) and h € Gy. Let f, € L*(2,F, P) be a
sequence of functions such that f,, — f in L'(£2, F, P). Then

E(Egf-h)=E(lim Egf,-h)= lim E(Egf,-h)
= lim E(f,-h)=E(f-h). (23.25)
This equation uniquely determines Eg, for if F € L'(£2,G, P) also satisfies
E(F-h) = E(f-h) for all h € G, then taking h = sgn (F — Egf) in Eq.

(23.25) gives
0=E((F - Egf)h) = E(F — Egfl).

This shows F' = Egf, P — a.e. Item (6) is now an easy consequence of this
characterization, since if h € Gy,

E(gEgf)hl = E[Egf-hg] = E[f -hgl=El[gf - h] = E[Eg (gf) - h].
Thus Eg (gf) =g Egf, P — ae. ]
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Proposition 23.17. If Gy C G C F. Then
EgOEgl = Eg1Ego = Ego' (2326)

Proof. Equation (23.26) holds on L?(£2,F, P) by the basic properties of
orthogonal projections. It then hold on L'(£2,F, P) by continuity and the
density of L?(2,F, P) in L'(2,F, P). ]

Ezample 23.18. Suppose that (X, M, ) and (Y, N, v) are two o — finite mea-
sure spaces. Let 2 = X xY, F = M QN and P(dz,dy) = p(z,y)p(dz)v(dy)
where p € L'(£2, F, p®v) is a positive function such that [, pd (p®@v) = 1.
Let mx : £2 — X be the projection map, 7x (z,y) = x, and
G=o(rx)=mx' (M) ={AxY:Ac M}.

Then f : 2 — R is G — measurable iff f = Fomrx for some function F': X — R
which is /' — measurable, see Lemma 18.66. For f € L*(£2, F, P), we will now
show Egf = F o mx where

F(z) = %uom) (5(x)) - /Y F@y)ple, y)v(dy),

p(x) = [y p(z,y)v(dy). (By convention, [, f(z,y)p(z,y)r(dy) = 0 if
Jy 1f (@ 9)| p(z, y)v(dy) = o0.)
By Tonelli’s theorem, the set

Bim o e X:p(e) =) Ude e X [ Il ooy = oo

is a p — null set. Since

E[Fonx| = /X dyu(z) /Y du(y) |F (@) pla,y) = /X dyu(x) |F(2)] plz)

— / dpi(z)
X
< /X dpu(z) /Y v(dy) £ (z,9)| pla,y) < oo,

Forx € LY(£2,G,P). Let h = Horx be a bounded G — measurable function,
then

/Y u<dy>f<x,y>p<x,y>\

E[Fony h = /X dp(z) /Y dv(y)F (@) H(@)p(z, y)
- /X dpu(x) F(2) H()p(x)
:/Xdu(x)H(x)/Yu(dy)f(a?,y)p(w,y)
= E[hf]

and hence Egf = F omx as claimed.
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This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise 23.25 to gain more intuition about
conditional expectations.

Theorem 23.19 (Jensen’s inequality). Let (2, F, P) be a probability space
and ¢ : R — R be a convex function. Assume f € L*(£2, F, P;R) is a function
such that (for simplicity) ¢(f) € L*(£2,F, P;R), then p(Egf) < Eg[p(f)],
P - a.e

Proof. Let us first assume that ¢ is C! and f is bounded. In this case
o(z) — p(xo) > ¢'(x0)(x — o) for all zg,z € R. (23.27)
Taking zo = Fgf and = = f in this inequality implies
o(f) —p(Egf) > ¢ (Egf)(f — Egf)
and then applying Fg to this inequality gives

Eg [p(f)] — o(Egf) = Eglp(f) — w(Eg f)]
> ¢ (Egf)(Egf — EgEgf) =0

The same proof works for general ¢, one need only use Proposition 21.8 to
replace Eq. (23.27) by

o(z) — p(xo) > ¢ (z0)(z — z0) for all zg,z € R

where ¢’ () is the left hand derivative of ¢ at xq. If f is not bounded, apply
what we have just proved to fM = J1 1<, to find

Eg [o(f™)] = o(Eg ™). (23.28)

Since Eg : L' (12, F, P;R) — L'(£2, F, P;R) is a bounded operator and f* —
fand o(fM) — ¢(f) in L' (2, F,P;R) as M — oo, there exists {My}re,
such that My T oo and fMx — f and ¢(fM*) — ¢(f), P — a.e. So passing to
the limit in Eq. (23.28) shows Eg [o(f)] > ¢(Egf), P — a.e. ]

23.6 Exercises

Exercise 23.9. Let (X, M, ) be a measure space and H := L?(X, M, p).
Given f € L>™(u) let My : H — H be the multiplication operator defined by
Mg = fg. Show M% = My iff there exists A € M such that f =14 a.e.
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Exercise 23.10 (Haar Basis). In this problem, let L? denote L*([0, 1],m)
with the standard inner product,

Y(z) = 1[0,1/2)(1’) - 1[1/2,1)(3'3)
and for k,j € Ny := NU{0} with 0 < j < 2F let
Uiy () = 22925 — j).

The following pictures shows the graphs of 1oo, ¥1,0,%1,1,%2,1,%2,2 and 23
respectively.

Plot of 1, 0.

o
025 05 075 1 0 025 05 075 1
x s x
1

Plot of ¢1 0. Plot of ¢1 1.

[
et

Plot of wgo Plot of ¢21

3 3
{7 0z 0s ors 4 J{a 0z 0s 07 4

1 '

2 E— 2 e

Plot of 152. Plot of 23.
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1. Show 3 := {1} U {¢4; : 0 < k and 0 < j < 2¥} is an orthonormal set, 1
denotes the constant function 1.
2. For n € N, let M, := span ({1} U {¢y; :O§k<nand0§j<2k}).
Show
M,, = span ({1[]42711,(34_5_1)27”) cand 0<j < 2") .

3. Show U2 M,, is a dense subspace of L? and therefore /3 is an orthonormal
basis for L2. Hint: see Theorem 22.15.
4. For f € L?, let

n—12F—1

Hof = (FI)1+ > (Fltbkg) ;-

k=0 j=0
Show (compare with Exercise 23.25)

(G+1)27"

2" —1
Hy,f= Z (2"/ f(x)d3?> Lijo-n (j+1)2-m)
i=0 e

and use this to show ||f — H,, f||,, — 0 as n — oo for all f € C([0, 1]).

Exercise 23.11. Let O(n) be the orthogonal groups consisting of n x n real
orthogonal matrices O, i.e. OO = I. For O € O(n) and f € L*(R") let
Uof(x) = f(O~'x). Show

1. Up f is well defined, namely if f = g a.e. then Upf = Upg a.e.

2. Up : L*(R™) — L?(R") is unitary and satisfies Up, Uo, = Up,0, for all
01,02 € O(n). That is to say the map O € O(n) — U(L?*(R™)) — the
unitary operators on L?(R™) is a group homomorphism, i.e. a “unitary
representation” of O(n).

3. For each f € L?*(R™), the map O € O(n) — Uof € L*(R") is continu-
ous. Take the topology on O(n) to be that inherited from the Euclidean
topology on the vector space of all n x n matrices. Hint: see the proof of
Proposition 22.24.

Exercise 23.12. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 23.13. Spherical Harmonics.
Exercise 23.14. The gradient and the Laplacian in spherical coordinates.

Exercise 23.15. Legendre polynomials.
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23.7 Fourier Series Exercises

Exercise 23.16. Show Y .2, k=2 = 72 /6, by taking f(z) = z on [—m, 7| and
computing || f H; directly and then in terms of the Fourier Coefficients f of f.

Exercise 23.17 (Riemann Lebesgue Lemma for Fourier Series). Show
for f € LY ([—m,7]%) that f € co(Z?), ie. f: Z? — C and limy_.o f(k) =
0. Hint: If f € H, this follows form Bessel’s inequality. Now use a density
argument.

Exercise 23.18. Suppose f € L'([—,7]?) is a function such that f € ¢*(Z%)
and set
g(x) := Z f(k)e™** (pointwise).
kezd

1. Show g € Cper(R?).
2. Show g(x) = f(z) for m — a.e. x in [~m, 7]%. Hint: Show §(k) = f(k) and
then use approximation arguments to show

/ F@)h(z)ds = / g(@)h(@)dz ¥ h € C(|—m, 7)),
"

[_ﬂvﬂ]d

3. Conclude that f € L'([—m,7]%) N L>®([-m,7]?) and in particular f €
LP([—m, %) for all p € [1, ).

Exercise 23.19. Suppose m € Ny, « is a multi-index such that || < 2m and
f € CamRY)",
1. Using integration by parts, show (using Notation 22.21) that
(ik)* f(k) = (0 f|ex) for all k € Z<.

Note: This equality implies

= 1 1
< — ||0* < —||0“ .
)| < o 10 iy < = 10 Fl

2. Now let Af = Zle 02 f/0x2, Working as in part 1) show
(1= 2)" flex) = (14 [KI*)™ F (k). (23.29)

Remark 23.20. Suppose that m is an even integer, « is a multi-index and
fe Cﬁj‘al(Rd), then

! We view Cper(R) as a subspace of H = L? ([—m,n]) by identifying f € Cper(R)
with f|_r. € H.
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ST )] | = {30 1O lewd] (1+ k)™ 21+ k)2

kezd kezd

S [ = aym720° fle| (1+ (k%) 2

kezd
< 3 Ja -y slen| - 30 @+ Py
kezd kezd

e aree],

where Cp, 1= 37 cpa(1+ |k|*)~™ < oo iff m > d/2. So the smoother f is the
faster f decays at infinity. The next problem is the converse of this assertion
and hence smoothness of f corresponds to decay of f at infinity and visa-versa.

Exercise 23.20 (A Sobolev Imbedding Theorem). Suppose s € R and
{ck € C: k € Z} are coefficients such that

3 Jewl (1 + [K[*)* < oc.
kezd

Show if s > % + m, the function f defined by

is in 72, (R?). Hint: Work as in the above remark to show

Z lek| |6%] < oo for all |a] < m.
kezd

Exercise 23.21 (Poisson Summation Formula). Let F € L}(R?),

E:={zcR%: Z |F(z + 27k)| = 00
kezd

and set

F(k) = (277)7'1/2/ F(x)e *edg.
Rd

Further assume F € (*(Z4).

1. Show m(E) = 0 and E + 27k = E for all k& € Z? Hint: Compute
Jiormja Zokeza | F (@ + 27k)| dz.
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2. Let
f(x) ._ Zkezd F(ﬂf + 27Tk) for z §§ E
o 0 if xz€ek.

Show f € LY([-m, 7)) and f(k) = (2r)" Y2 F (k).
3. Using item 2) and the assumptions on F, show f € L'([-m,x]%) N
L= ([—m,7]?) and

flz)= Z flk)er s = Z (27T)7d/2 F(k)e™® for m — a.e. z,

kezd kezd
ie.
Z F(z+2nk) = (271')_0l/2 Z F(k)e™® for m — a.e. x. (23.30)
kezd kezd

4. Suppose we now assume that F € C(R?) and F satisfies 1) [F(z)| <
C(1 + |x|)=* for some s > d and C < oo and 2) F' € ¢*(Z), then show
Eq. (23.30) holds for all x € R? and in particular

S F(erk) = 2m) " 3 Fk).

kezd kezd

For notational simplicity, in the remaining problems we will assume that
d=1.

Exercise 23.22 (Heat Equation 1.). Let (t,z) € [0,00) X R — u(t, x) be a
continuous function such that u(t,-) € Cpe,(R) for all ¢ > 0, @ = uy, ug, and
Uz, exists and are continuous when ¢ > 0. Further assume that u satisfies the
heat equation @ = Jug,. Let @(t, k) := (u(t,-)|ex) for k € Z. Show for t > 0
and k € Z that a(t, k) is differentiable in ¢ and 2a(t, k) = —k*a(t, k)/2. Use
this result to show

u(t,z) = eiész(k)e“” (23.31)

keZ

where f(z) := u(0,z) and as above
Fio = (flew) = [ fweMdy=5- [ f@)e im ).

Notice from Eq. (23.31) that (¢,2) — u(t,z) is C* for ¢ > 0.
Exercise 23.23 (Heat Equation 2.). Let q(z) = &>, ., e~k gike,
Show that Eq. (23.31) may be rewritten as

UGw%:/W%wfyﬁ@My

—T

and
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qi(z) = Zpt(x + k2m)

kEZ

1
27t

where pi(z) = e~ Also show u(t, ) may be written as

u(t,x) = py * f(z) = /

pe(z —y) f(y)dy.
Rd

Hint: To show ¢;(x) =}, ., p¢(x+k27), use the Poisson summation formula
and the Gaussian integration identity,

1 t,,2

A 1 W _ —sw
Pr(w) = \/—Q—W/Rpt(w)e dz = me . (23.32)

Equation (23.32) will be discussed in Example 31.4 below.

Exercise 23.24 (Wave Equation). Let u € C?(R xR) be such that u(t, -) €
Cper(R) for all t € R. Further assume that u solves the wave equation, uy =
Ugq. Let f(z) := u(0,z) and g(x) = 4(0,x). Show u(t, k) := (u(t,-),ex) for
k € Z is twice continuously differentiable in ¢ and ;Tzd(t, k) = —k*a(t, k). Use
this result to show

~ in kt .
ut,z) =Y ( F(k) cos(kt) + (k) SH;C ) etk (23.33)
keZ
with the sum converging absolutely. Also show that u(t,2) may be written as
1 I
u(t,x) = 3 [flz+t)+ flz—t)] + 3 g(x + T)dT. (23.34)
—t

Hint: To show Eq. (23.33) implies (23.34) use

skt — ikt 4 =ikt
2 )
eikt _ o—ikt
sin kt = — and
i
ik(z+t) _ ik(z—t) t
e e _ / k() g

23.8 Conditional Expectation Exercises

Exercise 23.25. Suppose (12, F, P) is a probability space and A := {A4;};2, C
F is a partition of £2. (Recall this means 2 = [[;2, A;.) Let G be the o —
algebra generated by A. Show:

1. Be Giff B=U;cpA; for some A C N.
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2.g: 2 — Ris G~ measurable iff g = > 7, \;14, for some \; € R.
3.For f € LY(2,F,P), let E(f|A;) := E[la,f]/P(4;) if P(A;) # 0 and
E(f|A;) = 0 otherwise. Show

Egf = E(f|Ai)la,.

i=1



