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Metric Spaces

Definition 6.1. A function d : X ×X → [0,∞) is called a metric if
1. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X
2. (Non-degenerate) d(x, y) = 0 if and only if x = y ∈ X
3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

As primary examples, any normed space (X, k·k) (see Definition 5.1) is a
metric space with d(x, y) := kx− yk . Thus the space cp(µ) (as in Theorem
5.2) is a metric space for all p ∈ [1,∞]. Also any subset of a metric space
is a metric space. For example a surface Σ in R3 is a metric space with the
distance between two points on Σ being the usual distance in R3.

Definition 6.2. Let (X,d) be a metric space. The open ball B(x, δ) ⊂ X
centered at x ∈ X with radius δ > 0 is the set

B(x, δ) := {y ∈ X : d(x, y) < δ}.

We will often also write B(x, δ) as Bx(δ). We also define the closed ball
centered at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.
Definition 6.3. A sequence {xn}∞n=1 in a metric space (X, d) is said to be
convergent if there exists a point x ∈ X such that limn→∞ d(x, xn) = 0. In
this case we write limn→∞ xn = x of xn → x as n→∞.

Exercise 6.1. Show that x in Definition 6.3 is necessarily unique.

Definition 6.4. A set E ⊂ X is bounded if E ⊂ B (x,R) for some x ∈ X
and R < ∞. A set F ⊂ X is closed iff every convergent sequence {xn}∞n=1
which is contained in F has its limit back in F. A set V ⊂ X is open iff V c

is closed. We will write F @ X to indicate the F is a closed subset of X and
V ⊂o X to indicate the V is an open subset of X. We also let τd denote the
collection of open subsets of X relative to the metric d.
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Definition 6.5. A subset A ⊂ X is a neighborhood of x if there exists an
open set V ⊂o X such that x ∈ V ⊂ A. We will say that A ⊂ X is an open
neighborhood of x if A is open and x ∈ A.

Exercise 6.2. Let F be a collection of closed subsets of X, show ∩F :=
∩F∈FF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fk}nk=1 are closed sets then ∪nk=1Fk is closed. (By taking complements, this
shows that the collection of open sets, τd, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 6.6. For any non empty subset A ⊂ X, let dA(x) := inf{d(x, a)|a ∈
A}, then

|dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X (6.1)

and in particular if xn → x in X then dA (xn)→ dA (x) as n→∞. Moreover
the set Fε := {x ∈ X|dA(x) ≥ ε} is closed in X.

Proof. Let a ∈ A and x, y ∈ X, then

d(x, a) ≤ d(x, y) + d(y, a).

Take the inf over a in the above equation shows that

dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

Therefore, dA(x)−dA(y) ≤ d(x, y) and by interchanging x and y we also have
that dA(y)− dA(x) ≤ d(x, y) which implies Eq. (6.1). If xn → x ∈ X, then by
Eq. (6.1),

|dA(x)− dA(xn)| ≤ d(x, xn)→ 0 as n→∞
so that limn→∞ dA (xn) = dA (x) . Now suppose that {xn}∞n=1 ⊂ Fε and
xn → x in X, then

dA (x) = lim
n→∞ dA (xn) ≥ ε

since dA (xn) ≥ ε for all n. This shows that x ∈ Fε and hence Fε is closed.

Corollary 6.7. The function d satisfies,

|d(x, y)− d(x0, y0)| ≤ d(y, y0) + d(x, x0).

In particular d : X × X → [0,∞) is “continuous” in the sense that d(x, y)
is close to d(x0, y0) if x is close to x0 and y is close to y0. (The notion of
continuity will be developed shortly.)
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Proof. By Lemma 6.6 for single point sets and the triangle inequality for the
absolute value of real numbers,

|d(x, y)− d(x0, y0)| ≤ |d(x, y)− d(x, y0)|+ |d(x, y0)− d(x0, y0)|
≤ d(y, y0) + d(x, x0).

Example 6.8. Let x ∈ X and δ > 0, then Cx (δ) and Bx (δ)
c are closed subsets

of X. For example if {yn}∞n=1 ⊂ Cx (δ) and yn → y ∈ X, then d (yn, x) ≤ δ for
all n and using Corollary 6.7 it follows d (y, x) ≤ δ, i.e. y ∈ Cx (δ) . A similar
proof shows Bx (δ)

c is open, see Exercise 6.3.

Exercise 6.3. Show that V ⊂ X is open iff for every x ∈ V there is a δ > 0
such that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and
δ > 0. Hint: by definition V is not open iff V c is not closed.

Lemma 6.9 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and Fε := {x ∈ X|dA(x) ≥ ε} @ X
be as in Lemma 6.6. Then Fε ↑ Ac as ε ↓ 0.
Proof. It is clear that dA(x) = 0 for x ∈ A so that Fε ⊂ Ac for each ε > 0 and
hence ∪ε>0Fε ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 6.3 there
exists an ε > 0 such that Bx(ε) ⊂ Ac, i.e. d(x, y) ≥ ε for all y ∈ A. Hence
x ∈ Fε and we have shown that Ac ⊂ ∪ε>0Fε. Finally it is clear that Fε ⊂ Fε0
whenever ε0 ≤ ε.

Definition 6.10. Given a set A contained a metric space X, let Ā ⊂ X be
the closure of A defined by

Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = lim
n→∞xn}.

That is to say Ā contains all limit points of A. We say A is dense in X if
Ā = X, i.e. every element x ∈ X is a limit of a sequence of elements from A.

Exercise 6.4. Given A ⊂ X, show Ā is a closed set and in fact

Ā = ∩{F : A ⊂ F ⊂ X with F closed}. (6.2)

That is to say Ā is the smallest closed set containing A.

6.1 Continuity

Suppose that (X, ρ) and (Y, d) are two metric spaces and f : X → Y is a
function.
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Definition 6.11. A function f : X → Y is continuous at x ∈ X if for all
ε > 0 there is a δ > 0 such that

d(f(x), f(x0)) < ε provided that ρ(x, x0) < δ. (6.3)

The function f is said to be continuous if f is continuous at all points x ∈ X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 6.12 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined in a neighborhood
of a point x ∈ X. Then the following are equivalent:

1. f is continuous at x ∈ X.
2. For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.
3. For all sequences {xn}∞n=1 ⊂ X such that x = limn→∞ xn, {f(xn)} is
convergent in Y and

lim
n→∞ f(xn) = f

³
lim
n→∞xn

´
.

Proof. 1 =⇒ 2. If A ⊂ Y is a neighborhood of f (x) , there exists ε > 0 such
that Bf(x) (ε) ⊂ A and because f is continuous there exists a δ > 0 such that
Eq. (6.3) holds. Therefore

Bx (δ) ⊂ f−1
¡
Bf(x) (ε)

¢ ⊂ f−1 (A)

showing f−1 (A) is a neighborhood of x.
2 =⇒ 3. Suppose that {xn}∞n=1 ⊂ X and x = limn→∞ xn. Then for

any ε > 0, Bf(x) (ε) is a neighborhood of f (x) and so f−1
¡
Bf(x) (ε)

¢
is a

neighborhood of x which must containing Bx (δ) for some δ > 0. Because
xn → x, it follows that xn ∈ Bx (δ) ⊂ f−1

¡
Bf(x) (ε)

¢
for a.a. n and this

implies f (xn) ∈ Bf(x) (ε) for a.a. n, i.e. d(f(x), f (xn)) < ε for a.a. n. Since
ε > 0 is arbitrary it follows that limn→∞ f (xn) = f (x) .
3. =⇒ 1. We will show not 1. =⇒ not 3. If f is not continuous at x,

there exists an ε > 0 such that for all n ∈ N there exists a point xn ∈ X with
ρ (xn, x) <

1
n yet d (f (xn) , f (x)) ≥ ε. Hence xn → x as n → ∞ yet f (xn)

does not converge to f (x) .
Here is a global version of the previous lemma.

Lemma 6.13 (Global Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined on all of X. Then
the following are equivalent:

1. f is continuous.
2. f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.
3. f−1(C) is closed in X if C is closed in Y.
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4. For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

lim
n→∞ f(xn) = f

³
lim
n→∞xn

´
.

Proof. Since f−1 (Ac) =
£
f−1 (A)

¤c
, it is easily seen that 2. and 3. are equiv-

alent. So because of Lemma 6.12 it only remains to show 1. and 2. are equiv-
alent. If f is continuous and V ⊂ Y is open, then for every x ∈ f−1 (V ) ,
V is a neighborhood of f (x) and so f−1 (V ) is a neighborhood of x. Hence
f−1 (V ) is a neighborhood of all of its points and from this and Exercise 6.3
it follows that f−1 (V ) is open. Conversely if x ∈ X and A ⊂ Y is a neigh-
borhood of f (x) , then there exists V ⊂o X such that f (x) ∈ V ⊂ A. Hence
x ∈ f−1 (V ) ⊂ f−1 (A) and by assumption f−1 (V ) is open showing f−1 (A)
is a neighborhood of x. Therefore f is continuous at x and since x ∈ X was
arbitrary, f is continuous.

Example 6.14. The function dA defined in Lemma 6.6 is continuous for each
A ⊂ X. In particular, if A = {x} , it follows that y ∈ X → d(y, x) is continuous
for each x ∈ X.

Exercise 6.5. Use Example 6.14 and Lemma 6.13 to recover the results of
Example 6.8.

The next result shows that there are lots of continuous functions on a
metric space (X,d) .

Lemma 6.15 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a
metric space and suppose that A and B are two disjoint closed subsets of X.
Then

f(x) =
dB(x)

dA(x) + dB(x)
for x ∈ X (6.4)

defines a continuous function, f : X → [0, 1], such that f(x) = 1 for x ∈ A
and f(x) = 0 if x ∈ B.

Proof. By Lemma 6.6, dA and dB are continuous functions on X. Since A and
B are closed, dA(x) > 0 if x /∈ A and dB(x) > 0 if x /∈ B. Since A ∩ B = ∅,
dA(x) + dB(x) > 0 for all x and (dA + dB)

−1 is continuous as well. The
remaining assertions about f are all easy to verify.
Sometimes Urysohn’s lemma will be use in the following form. Suppose

F ⊂ V ⊂ X with F being closed and V being open, then there exists f ∈
C (X, [0, 1])) such that f = 1 on F while f = 0 on V c. This of course follows
from Lemma 6.15 by taking A = F and B = V c.

6.2 Completeness in Metric Spaces

Definition 6.16 (Cauchy sequences). A sequence {xn}∞n=1 in a metric
space (X, d) is Cauchy provided that
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lim
m,n→∞ d(xn, xm) = 0.

Exercise 6.6. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of rational
numbers and d(x, y) = |x − y|. Choose a sequence {xn}∞n=1 ⊂ Q which con-
verges to

√
2 ∈ R, then {xn}∞n=1 is (Q, d) — Cauchy but not (Q, d) — convergent.

The sequence does converge in R however.

Definition 6.17. A metric space (X, d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 6.7. Let (X,d) be a complete metric space. Let A ⊂ X be a subset
of X viewed as a metric space using d|A×A. Show that (A, d|A×A) is complete
iff A is a closed subset of X.

Example 6.18. Examples 2. — 4. of complete metric spaces will be verified in
Chapter 7 below.

1. X = R and d(x, y) = |x− y|, see Theorem 3.8 above.
2. X = Rn and d(x, y) = kx− yk2 =

Pn
i=1(xi − yi)

2.
3. X = cp(µ) for p ∈ [1,∞] and any weight function µ : X → (0,∞).
4. X = C([0, 1],R) — the space of continuous functions from [0, 1] to R and

d(f, g) := max
t∈[0,1]

|f(t)− g(t)|.

This is a special case of Lemma 7.3 below.
5. Let X = C([0, 1],R) and

d(f, g) :=

Z 1

0

|f(t)− g(t)| dt.

You are asked in Exercise 7.14 to verify that (X,d) is a metric space which
is not complete.

Exercise 6.8 (Completions of Metric Spaces). Suppose that (X, d) is
a (not necessarily complete) metric space. Using the following outline show
there exists a complete metric space

¡
X̄, d̄

¢
and an isometric map i : X → X̄

such that i (X) is dense in X̄, see Definition 6.10.

1. Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ X. Given
two element a, b ∈ C show

dC (a, b) := lim
n→∞ d (an, bn) exists,

dC (a, b) ≥ 0 for all a, b ∈ C and dC satisfies the triangle inequality,

dC (a, c) ≤ dC (a, b) + dC (b, c) for all a, b, c ∈ C.
Thus (C, dC) would be a metric space if it were true that dC(a, b) = 0 iff
a = b. This however is false, for example if an = bn for all n ≥ 100, then
dC(a, b) = 0 while a need not equal b.
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2. Define two elements a, b ∈ C to be equivalent (write a ∼ b) whenever
dC(a, b) = 0. Show “ ∼ ” is an equivalence relation on C and that
dC (a0, b0) = dC (a, b) if a ∼ a0 and b ∼ b0. (Hint: see Corollary 6.7.)

3. Given a ∈ C let ā := {b ∈ C : b ∼ a} denote the equivalence class contain-
ing a and let X̄ := {ā : a ∈ C} denote the collection of such equivalence
classes. Show that d̄

¡
ā, b̄
¢
:= dC (a, b) is well defined on X̄ × X̄ and verify¡

X̄, d̄
¢
is a metric space.

4. For x ∈ X let i (x) = ā where a is the constant sequence, an = x for all n.
Verify that i : X → X̄ is an isometric map and that i (X) is dense in X̄.

5. Verify
¡
X̄, d̄

¢
is complete. Hint: if {ā(m)}∞m=1 is a Cauchy sequence in X̄

choose bm ∈ X such that d̄ (i (bm) , ā(m)) ≤ 1/m. Then show ā(m) → b̄
where b = {bm}∞m=1 .

6.3 Supplementary Remarks

6.3.1 Word of Caution

Example 6.19. Let (X, d) be a metric space. It is always true that Bx(ε) ⊂
Cx(ε) since Cx(ε) is a closed set containing Bx(ε). However, it is not always
true that Bx(ε) = Cx(ε). For example let X = {1, 2} and d(1, 2) = 1, then
B1(1) = {1} , B1(1) = {1} while C1(1) = X. For another counter example,
take

X =
©
(x, y) ∈ R2 : x = 0 or x = 1ª

with the usually Euclidean metric coming from the plane. Then

B(0,0)(1) =
©
(0, y) ∈ R2 : |y| < 1ª ,

B(0,0)(1) =
©
(0, y) ∈ R2 : |y| ≤ 1ª , while

C(0,0)(1) = B(0,0)(1) ∪ {(0, 1)} .
In spite of the above examples, Lemmas 6.20 and 6.21 below shows that

for certain metric spaces of interest it is true that Bx(ε) = Cx(ε).

Lemma 6.20. Suppose that (X, |·|) is a normed vector space and d is the
metric on X defined by d(x, y) = |x− y| . Then

Bx(ε) = Cx(ε) and

bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}.
where the boundary operation, bd(·) is defined in Definition 10.30 below.
Proof. We must show that C := Cx(ε) ⊂ Bx(ε) =: B̄. For y ∈ C, let v = y−x,
then

|v| = |y − x| = d(x, y) ≤ ε.

Let αn = 1 − 1/n so that αn ↑ 1 as n → ∞. Let yn = x + αnv, then
d(x, yn) = αnd(x, y) < ε, so that yn ∈ Bx(ε) and d(y, yn) = 1 − αn → 0 as
n→∞. This shows that yn → y as n→∞ and hence that y ∈ B̄.
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ε

δ

Fig. 6.1. An almost length minimizing curve joining x to y.

6.3.2 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 6.21. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(x, y) = inf {c(σ) : σ(0) = x and σ(1) = y}
where c(σ) is the length of the curve σ. We define c(σ) = ∞ if σ is not
piecewise smooth.
Then

Bx(ε) = Cx(ε) and

bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}
where the boundary operation, bd(·) is defined in Definition 10.30 below.
Proof. Let C := Cx(ε) ⊂ Bx(ε) =: B̄. We will show that C ⊂ B̄ by showing
B̄c ⊂ Cc. Suppose that y ∈ B̄c and choose δ > 0 such that By(δ) ∩ B̄ = ∅. In
particular this implies that

By(δ) ∩Bx(ε) = ∅.
We will finish the proof by showing that d(x, y) ≥ ε + δ > ε and hence
that y ∈ Cc. This will be accomplished by showing: if d(x, y) < ε + δ then
By(δ) ∩Bx(ε) 6= ∅.
If d(x, y) < max(ε, δ) then either x ∈ By(δ) or y ∈ Bx(ε). In either case

By(δ) ∩ Bx(ε) 6= ∅. Hence we may assume that max(ε, δ) ≤ d(x, y) < ε + δ.
Let α > 0 be a number such that

max(ε, δ) ≤ d(x, y) < α < ε+ δ

and choose a curve σ from x to y such that c(σ) < α. Also choose 0 < δ0 < δ
such that 0 < α−δ0 < ε which can be done since α−δ < ε. Let k(t) = d(y, σ(t))
a continuous function on [0, 1] and therefore k([0, 1]) ⊂ R is a connected
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set which contains 0 and d(x, y). Therefore there exists t0 ∈ [0, 1] such that
d(y, σ(t0)) = k(t0) = δ0. Let z = σ(t0) ∈ By(δ) then

d(x, z) ≤ c(σ|[0,t0]) = c(σ)− c(σ|[t0,1]) < α− d(z, y) = α− δ0 < ε

and therefore z ∈ Bx(ε) ∩Bx(δ) 6= ∅.
Remark 6.22. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(x, y) = inf {c(σ) : σ(0) = x and σ(1) = y} .
Let σ be a curve from x to y and let ε = c(σ)− d(x, y). Then for all 0 ≤ u <
v ≤ 1,

d(σ(u), σ(v)) ≤ c(σ|[u,v]) + ε.

So if σ is within ε of a length minimizing curve from x to y that σ|[u,v] is
within ε of a length minimizing curve from σ(u) to σ(v). In particular if
d(x, y) = c(σ) then d(σ(u), σ(v)) = c(σ|[u,v]) for all 0 ≤ u < v ≤ 1, i.e. if σ
is a length minimizing curve from x to y that σ|[u,v] is a length minimizing
curve from σ(u) to σ(v).
To prove these assertions notice that

d(x, y) + ε = c(σ) = c(σ|[0,u]) + c(σ|[u,v]) + c(σ|[v,1])
≥ d(x, σ(u)) + c(σ|[u,v]) + d(σ(v), y)

and therefore

c(σ|[u,v]) ≤ d(x, y) + ε− d(x, σ(u))− d(σ(v), y)

≤ d(σ(u), σ(v)) + ε.

6.4 Exercises

Exercise 6.9. Let (X,d) be a metric space. Suppose that {xn}∞n=1 ⊂ X is a
sequence and set εn := d(xn, xn+1). Show that for m > n that

d(xn, xm) ≤
m−1X
k=n

εk ≤
∞X
k=n

εk.

Conclude from this that if
∞X
k=1

εk =
∞X
n=1

d(xn, xn+1) <∞

then {xn}∞n=1 is Cauchy. Moreover, show that if {xn}∞n=1 is a convergent
sequence and x = limn→∞ xn then

d(x, xn) ≤
∞X
k=n

εk.
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Exercise 6.10. Show that (X,d) is a complete metric space iff every sequence
{xn}∞n=1 ⊂ X such that

P∞
n=1 d(xn, xn+1) < ∞ is a convergent sequence in

X. You may find it useful to prove the following statements in the course of
the proof.

1. If {xn} is Cauchy sequence, then there is a subsequence yj := xnj such
that

P∞
j=1 d(yj+1, yj) <∞.

2. If {xn}∞n=1 is Cauchy and there exists a subsequence yj := xnj of {xn}
such that x = limj→∞ yj exists, then limn→∞ xn also exists and is equal
to x.

Exercise 6.11. Suppose that f : [0,∞) → [0,∞) is a C2 — function such
that f(0) = 0, f 0 > 0 and f 00 ≤ 0 and (X, ρ) is a metric space. Show that
d(x, y) = f(ρ(x, y)) is a metric on X. In particular show that

d(x, y) :=
ρ(x, y)

1 + ρ(x, y)

is a metric on X. (Hint: use calculus to verify that f(a+ b) ≤ f(a) + f(b) for
all a, b ∈ [0,∞).)
Exercise 6.12. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=Q∞

n=1Xn, and for x = (x(n))
∞
n=1 and y = (y(n))

∞
n=1 in X let

d(x, y) =
∞X
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

Show:

1. (X, d) is a metric space,
2. a sequence {xk}∞k=1 ⊂ X converges to x ∈ X iff xk(n) → x(n) ∈ Xn as
k →∞ for each n ∈ N and

3. X is complete if Xn is complete for all n.

Exercise 6.13. Suppose (X,ρ) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if F : X → Y and G : X → Y are two continuous functions
such that F = G on A then F = G on X. Hint: consider the set C :=
{x ∈ X : F (x) = G (x)} .

2. Suppose f : A → Y is a function which is uniformly continuous, i.e. for
every ε > 0 there exists a δ > 0 such that

d (f (a) , f (b)) < ε for all a, b ∈ A with ρ (a, b) < δ.

Show there is a unique continuous function F : X → Y such that F = f on
A. Hint: each point x ∈ X is a limit of a sequence consisting of elements
from A.

3. Let X = R = Y and A = Q ⊂ X, find a function f : Q→ R which is
continuous on Q but does not extend to a continuous function on R.
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Banach Spaces

Let (X, k·k) be a normed vector space and d (x, y) := kx− yk be the asso-
ciated metric on X. We say {xn}∞n=1 ⊂ X converges to x ∈ X (and write
limn→∞ xn = x or xn → x) if

0 = lim
n→∞ d (x, xn) = lim

n→∞ kx− xnk .

Similarly {xn}∞n=1 ⊂ X is said to be a Cauchy sequence if

0 = lim
m,n→∞ d (xm, xn) = lim

m,n→∞ kxm − xnk .

Definition 7.1 (Banach space). A normed vector space (X, k·k) is a Ba-
nach space if the associated metric space (X,d) is complete, i.e. all Cauchy
sequences are convergent.

Remark 7.2. Since kxk = d (x, 0) , it follows from Lemma 6.6 that k·k is a
continuous function on X and that

|kxk− kyk| ≤ kx− yk for all x, y ∈ X.

It is also easily seen that the vector addition and scalar multiplication are
continuos on any normed space as the reader is asked to verify in Exercise
7.7. These facts will often be used in the sequel without further mention.

7.1 Examples

Lemma 7.3. Suppose that X is a set then the bounded functions, c∞(X), on
X is a Banach space with the norm

kfk = kfk∞ = sup
x∈X

|f(x)| .

Moreover if X is a metric space (more generally a topological space, see Chap-
ter 10) the set BC(X) ⊂ c∞(X) = B(X) is closed subspace of c∞(X) and
hence is also a Banach space.
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Proof. Let {fn}∞n=1 ⊂ c∞(X) be a Cauchy sequence. Since for any x ∈ X, we
have

|fn(x)− fm(x)| ≤ kfn − fmk∞ (7.1)

which shows that {fn(x)}∞n=1 ⊂ F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, f(x) := limn→∞ fn(x) exists for all x ∈ X. Passing
to the limit n→∞ in Eq. (7.1) implies

|f(x)− fm(x)| ≤ lim inf
n→∞ kfn − fmk∞

and taking the supremum over x ∈ X of this inequality implies

kf − fmk∞ ≤ lim inf
n→∞ kfn − fmk∞ → 0 as m→∞

showing fm → f in c∞(X).
For the second assertion, suppose that {fn}∞n=1 ⊂ BC(X) ⊂ c∞(X) and

fn → f ∈ c∞(X). We must show that f ∈ BC(X), i.e. that f is continuous.
To this end let x, y ∈ X, then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 kf − fnk∞ + |fn(x)− fn(y)| .

Thus if ε > 0, we may choose n large so that 2 kf − fnk∞ < ε/2 and
then for this n there exists an open neighborhood Vx of x ∈ X such that
|fn(x)− fn(y)| < ε/2 for y ∈ Vx. Thus |f(x)− f(y)| < ε for y ∈ Vx showing
the limiting function f is continuous.
Here is an application of this theorem.

Theorem 7.4 (Metric Space Tietze Extension Theorem). Let (X, d)
be a metric space, D be a closed subset of X, −∞ < a < b < ∞ and f ∈
C(D, [a, b]). (Here we are viewing D as a metric space with metric dD :=
dD×D.) Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof. 1. By scaling and translation (i.e. by replacing f by (b− a)−1 (f − a)),
it suffices to prove Theorem 7.4 with a = 0 and b = 1.

2. Suppose α ∈ (0, 1] and f : D → [0, α] is continuous function. Let A :=
f−1([0, 13α]) andB := f−1([23α, α]). By Lemma 6.15 there exists a function
g̃ ∈ C(X, [0, α/3]) such that g̃ = 0 on A and g̃ = 1 on B. Letting g := α

3 g̃,
we have g ∈ C(X, [0, α/3]) such that g = 0 on A and g = α/3 on B.
Further notice that

0 ≤ f(x)− g(x) ≤ 2
3
α for all x ∈ D.

3. Now suppose f : D → [0, 1] is a continuous function as in step 1. Let
g1 ∈ C(X, [0, 1/3]) be as in step 2, see Figure 7.1. with α = 1 and let
f1 := f − g1|D ∈ C(D, [0, 2/3]). Apply step 2. with α = 2/3 and f = f1 to
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find g2 ∈ C(X, [0, 13
2
3 ]) such that f2 := f − (g1 + g2) |D ∈ C(D, [0,

¡
2
3

¢2
]).

Continue this way inductively to find gn ∈ C(X, [0, 13
¡
2
3

¢n−1
]) such that

f −
NX
n=1

gn|D =: fN ∈ C(D, [0,

µ
2

3

¶N
]). (7.2)

4. Define F :=
P∞

n=1 gn. Since

∞X
n=1

kgnk∞ ≤
∞X
n=1

1

3

µ
2

3

¶n−1
=
1

3

1

1− 2
3

= 1,

the series defining F is uniformly convergent so F ∈ C(X, [0, 1]). Passing
to the limit in Eq. (7.2) shows f = F |D.

Fig. 7.1. Reducing f by subtracting off a globally defined function g1 ∈
C
¡
X, [0, 1

3
]
¢
.

Theorem 7.5 (Completeness of cp(µ)). Let X be a set and µ : X → (0,∞)
be a given function. Then for any p ∈ [1,∞], (cp(µ), k·kp) is a Banach space.
Proof. We have already proved this for p =∞ in Lemma 7.3 so we now assume
that p ∈ [1,∞). Let {fn}∞n=1 ⊂ cp(µ) be a Cauchy sequence. Since for any
x ∈ X,

|fn(x)− fm(x)| ≤ 1

µ(x)
kfn − fmkp → 0 as m,n→∞

it follows that {fn(x)}∞n=1 is a Cauchy sequence of numbers and f(x) :=
limn→∞ fn(x) exists for all x ∈ X. By Fatou’s Lemma,
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kfn − fkpp =
X
X

µ · lim
m→∞ inf |fn − fm|p ≤ lim

m→∞ inf
X
X

µ · |fn − fm|p

= lim
m→∞ inf kfn − fmkpp → 0 as n→∞.

This then shows that f = (f − fn) + fn ∈ cp(µ) (being the sum of two cp —

functions) and that fn
cp−→ f.

Remark 7.6. Let X be a set, Y be a Banach space and c∞(X,Y ) denote the
bounded functions f : X → Y equipped with the norm

kfk = kfk∞ = sup
x∈X

kf(x)kY .

If X is a metric space (or a general topological space, see Chapter 10), let
BC(X,Y ) denote those f ∈ c∞(X,Y ) which are continuous. The same proof
used in Lemma 7.3 shows that c∞(X,Y ) is a Banach space and that BC(X,Y )
is a closed subspace of c∞(X,Y ). Similarly, if 1 ≤ p <∞ we may define

cp (X,Y ) =

f : X → Y : kfkp =
ÃX
x∈X

kf (x)kpY
!1/p

<∞
 .

The same proof as in Theorem 7.5 would then show that
³
cp (X,Y ) , k·kp

´
is

a Banach space.

7.2 Bounded Linear Operators Basics

Definition 7.7. Let X and Y be normed spaces and T : X → Y be a linear
map. Then T is said to be bounded provided there exists C < ∞ such that
kT (x)k ≤ CkxkX for all x ∈ X. We denote the best constant by kTk, i.e.

kTk = sup
x 6=0

kT (x)k
kxk = sup

x6=0
{kT (x)k : kxk = 1} .

The number kTk is called the operator norm of T.

Proposition 7.8. Suppose that X and Y are normed spaces and T : X → Y
is a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(c) T is bounded.

Proof. (a)⇒ (b) trivial. (b)⇒ (c) If T continuous at 0 then there exist δ > 0
such that kT (x)k ≤ 1 if kxk ≤ δ. Therefore for any x ∈ X, kT (δx/kxk) k ≤ 1
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which implies that kT (x)k ≤ 1
δ kxk and hence kTk ≤ 1

δ < ∞. (c) ⇒ (a) Let
x ∈ X and ε > 0 be given. Then

kTy − Txk = kT (y − x)k ≤ kTk ky − xk < ε

provided ky − xk < ε/kTk := δ.
For the next three exercises, let X = Rn and Y = Rm and T : X → Y

be a linear transformation so that T is given by matrix multiplication by an
m× n matrix. Let us identify the linear transformation T with this matrix.

Exercise 7.1. Assume the norms on X and Y are the c1 — norms, i.e. for
x ∈ Rn, kxk =Pn

j=1 |xj | . Then the operator norm of T is given by

kTk = max
1≤j≤n

mX
i=1

|Tij | .

Exercise 7.2. Suppose that norms on X and Y are the c∞ — norms, i.e. for
x ∈ Rn, kxk = max1≤j≤n |xj| . Then the operator norm of T is given by

kTk = max
1≤i≤m

nX
j=1

|Tij | .

Exercise 7.3. Assume the norms on X and Y are the c2 — norms, i.e. for
x ∈ Rn, kxk2 = Pn

j=1 x
2
j . Show kTk2 is the largest eigenvalue of the matrix

T trT : Rn → Rn. Hint: Use the spectral theorem for orthogonal matrices.

Notation 7.9 Let L(X,Y ) denote the bounded linear operators from X to Y
and L (X) = L (X,X) . If Y = F we write X∗ for L(X,F) and call X∗ the
(continuous) dual space to X.

Lemma 7.10. Let X,Y be normed spaces, then the operator norm k·k on
L(X,Y ) is a norm. Moreover if Z is another normed space and T : X → Y
and S : Y → Z are linear maps, then kSTk ≤ kSkkTk, where ST := S ◦ T.
Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A,B ∈ L(X,Y ) then the triangle inequality is verified as follows:

kA+Bk = sup
x6=0

kAx+Bxk
kxk ≤ sup

x6=0
kAxk+ kBxk

kxk

≤ sup
x6=0

kAxk
kxk + sup

x6=0
kBxk
kxk = kAk+ kBk .

For the second assertion, we have for x ∈ X, that

kSTxk ≤ kSkkTxk ≤ kSkkTkkxk.
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From this inequality and the definition of kSTk, it follows that kSTk ≤
kSkkTk.
The reader is asked to prove the following continuity lemma in Exercise

7.12.

Lemma 7.11. Let X, Y and Z be normed spaces. Then the maps

(S, x) ∈ L(X,Y )×X −→ Sx ∈ Y

and
(S, T ) ∈ L(X,Y )× L(Y,Z) −→ ST ∈ L(X,Z)

are continuous relative to the norms

k(S, x)kL(X,Y )×X := kSkL(X,Y ) + kxkX and

k(S, T )kL(X,Y )×L(Y,Z) := kSkL(X,Y ) + kTkL(Y,Z)
on L(X,Y )×X and L(X,Y )× L(Y,Z) respectively.

Proposition 7.12. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y ), k · kop) is a Banach space. In particular the dual
space X∗ is always a Banach space.

Proof. Let {Tn}∞n=1 be a Cauchy sequence in L(X,Y ). Then for each x ∈ X,

kTnx− Tmxk ≤ kTn − Tmk kxk→ 0 as m,n→∞
showing {Tnx}∞n=1 is Cauchy in Y. Using the completeness of Y, there exists
an element Tx ∈ Y such that

lim
n→∞ kTnx− Txk = 0.

The map T : X → Y is linear map, since for x, x0 ∈ X and λ ∈ F we have
T (x+ λx0) = lim

n→∞Tn (x+ λx0) = lim
n→∞ [Tnx+ λTnx

0] = Tx+ λTx0,

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

kTx− Tnxk ≤ kTx− Tmxk+ kTmx− Tnxk ≤ kTx− Tmxk+ kTm − Tnk kxk
and therefore

kTx− Tnxk ≤ lim inf
m→∞ (kTx− Tmxk+ kTm − Tnk kxk)

= kxk · lim inf
m→∞ kTm − Tnk .

Hence
kT − Tnk ≤ lim inf

m→∞ kTm − Tnk→ 0 as n→∞.

Thus we have shown that Tn → T in L(X,Y ) as desired.
The following characterization of a Banach space will sometimes be useful

in the sequel.
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Theorem 7.13. A normed space (X, k · k) is a Banach space iff for every
sequence {xn}∞n=1 such that

∞P
n=1

kxnk <∞ implies limN→∞
NP
n=1

xn = s exists

in X (that is to say every absolutely convergent series is a convergent series

in X.) As usual we will denote s by
∞P
n=1

xn.

Proof. This is very similar to Exercise 6.10.

(⇒)If X is complete and
∞P
n=1

kxnk < ∞ then sequence sN :=
NP
n=1

xn for

N ∈ N is Cauchy because (for N > M)

ksN − sMk ≤
NX

n=M+1

kxnk→ 0 as M,N →∞.

Therefore s =
∞P
n=1

xn := limN→∞
NP
n=1

xn exists in X.

(⇐=) Suppose that {xn}∞n=1 is a Cauchy sequence and let {yk = xnk}∞k=1
be a subsequence of {xn}∞n=1 such that

∞P
n=1

kyn+1− ynk <∞. By assumption

yN+1 − y1 =
NX
n=1

(yn+1 − yn)→ s =
∞X
n=1

(yn+1 − yn) ∈ X as N →∞.

This shows that limN→∞ yN exists and is equal to x := y1+ s. Since {xn}∞n=1
is Cauchy,

kx− xnk ≤ kx− ykk+ kyk − xnk→ 0 as k, n→∞

showing that limn→∞ xn exists and is equal to x.

Example 7.14. Here is another proof of Theorem 7.12 which makes use of
Proposition 7.12. Suppose that Tn ∈ L(X,Y ) is a sequence of operators such

that
∞P
n=1

kTnk <∞. Then

∞X
n=1

kTnxk ≤
∞X
n=1

kTnk kxk <∞

and therefore by the completeness of Y, Sx :=
∞P
n=1

Tnx = limN→∞ SNx exists

in Y, where SN :=
NP
n=1

Tn. The reader should check that S : X → Y so defined

is linear. Since,
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kSxk = lim
N→∞

kSNxk ≤ lim
N→∞

NX
n=1

kTnxk ≤
∞X
n=1

kTnk kxk ,

S is bounded and

kSk ≤
∞X
n=1

kTnk. (7.3)

Similarly,

kSx− SMxk = lim
N→∞

kSNx− SMxk

≤ lim
N→∞

NX
n=M+1

kTnk kxk =
∞X

n=M+1

kTnk kxk

and therefore,

kS − SMk ≤
∞X

n=M

kTnk→ 0 as M →∞.

7.3 General Sums in Banach Spaces

Definition 7.15. Suppose X is a normed space.

1. Suppose that {xn}∞n=1 is a sequence in X, then we say
P∞

n=1 xn converges
in X and

P∞
n=1 xn = s if

lim
N→∞

NX
n=1

xn = s in X.

2. Suppose that {xα : α ∈ A} is a given collection of vectors in X. We say
the sum

P
α∈A xα converges in X and write s =

P
α∈A xα ∈ X if for all

ε > 0 there exists a finite set Γε ⊂ A such that
°°s−Pα∈Λ xα

°° < ε for
any Λ ⊂⊂ A such that Γε ⊂ Λ.

Warning: As usual if
P

α∈A kxαk < ∞ then
P

α∈A xα exists in X, see
Exercise 7.16. However, unlike the case of real valued sums the existence ofP

α∈A xα does not imply
P

α∈Λ kxαk <∞. See Proposition 29.19 below, from
which one may manufacture counter-examples to this false premise.

Lemma 7.16. Suppose that {xα ∈ X : α ∈ A} is a given collection of vectors
in a normed space, X.

1. If s =
P

α∈A xα ∈ X exists and T : X → Y is a bounded linear map
between normed spaces, then

P
α∈A Txα exists in Y and

Ts = T
X
α∈A

xα =
X
α∈A

Txα.
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2. If s =
P

α∈A xα exists in X then for every ε > 0 there exists Γε ⊂⊂ A

such that
°°P

α∈Λ xα
°° < ε for all Λ ⊂⊂ A \ Γε.

3. If s =
P

α∈A xα exists in X, the set Γ := {α ∈ A : xa 6= 0} is at most
countable. Moreover if Γ is infinite and {αn}∞n=1 is an enumeration of Γ,
then

s =
∞X
n=1

xαn := lim
N→∞

NX
n=1

xαn . (7.4)

4. If we further assume that X is a Banach space and suppose for all ε > 0
there exists Γε ⊂⊂ A such that

°°P
α∈Λ xα

°° < ε whenever Λ ⊂⊂ A \ Γε,
then

P
α∈A xα exists in X.

Proof.

1. Let Γε be as in Definition 7.15 and Λ ⊂⊂ A such that Γε ⊂ Λ. Then°°°°°Ts−X
α∈Λ

Txα

°°°°° ≤ kTk
°°°°°s−X

α∈Λ
xα

°°°°° < kTk ε
which shows that

P
α∈Λ Txα exists and is equal to Ts.

2. Suppose that s =
P

α∈A xα exists and ε > 0. Let Γε ⊂⊂ A be as in
Definition 7.15. Then for Λ ⊂⊂ A \ Γε,°°°°°X

α∈Λ
xα

°°°°° =
°°°°° X
α∈Γε∪Λ

xα −
X
α∈Γε

xα

°°°°°
≤
°°°°° X
α∈Γε∪Λ

xα − s

°°°°°+
°°°°°X
α∈Γε

xα − s

°°°°° < 2ε.
3. If s =

P
α∈A xα exists in X, for each n ∈ N there exists a finite subset

Γn ⊂ A such that
°°P

α∈Λ xα
°° < 1

n for all Λ ⊂⊂ A \ Γn. Without loss of
generality we may assume xα 6= 0 for all α ∈ Γn. Let Γ∞ := ∪∞n=1Γn — a
countable subset of A. Then for any β /∈ Γ∞, we have {β} ∩ Γn = ∅ and
therefore

kxβk =
°°°°°°
X

α∈{β}
xα

°°°°°° ≤ 1

n
→ 0 as n→∞.

Let {αn}∞n=1 be an enumeration of Γ and define γN := {αn : 1 ≤ n ≤ N} .
Since for any M ∈ N, γN will eventually contain ΓM for N sufficiently
large, we have

lim sup
N→∞

°°°°°s−
NX
n=1

xαn

°°°°° ≤ 1

M
→ 0 as M →∞.

Therefore Eq. (7.4) holds.
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4. For n ∈ N, let Γn ⊂⊂ A such that
°°P

α∈Λ xα
°° < 1

n for all Λ ⊂⊂ A \ Γn.
Define γn := ∪nk=1Γk ⊂ A and sn :=

P
α∈γn xα. Then for m > n,

ksm − snk =
°°°°°°

X
α∈γm\γn

xα

°°°°°° ≤ 1/n→ 0 as m,n→∞.

Therefore {sn}∞n=1 is Cauchy and hence convergent in X, because X is a
Banach space. Let s := limn→∞ sn. Then for Λ ⊂⊂ A such that γn ⊂ Λ,
we have°°°°°s−X

α∈Λ
xα

°°°°° ≤ ks− snk+
°°°°°°
X

α∈Λ\γn
xα

°°°°°° ≤ ks− snk+ 1

n
.

Since the right side of this equation goes to zero as n→∞, it follows thatP
α∈A xα exists and is equal to s.

Exercise 7.4. Prove Theorem 8.4. BRUCE: Delete

7.4 Inverting Elements in L(X)

Definition 7.17. A linear map T : X → Y is an isometry if kTxkY = kxkX
for all x ∈ X. T is said to be invertible if T is a bijection and T−1 is bounded.

Notation 7.18 We will write GL(X,Y ) for those T ∈ L(X,Y ) which are
invertible. If X = Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 7.19. Suppose X is a Banach space and Λ ∈ L(X) := L(X,X)

satisfies
∞P
n=0

kΛnk <∞. Then I − Λ is invertible and

(I − Λ)−1 = “
1

I − Λ
” =

∞X
n=0

Λn and
°°(I − Λ)−1

°° ≤ ∞X
n=0

kΛnk.

In particular if kΛk < 1 then the above formula holds and°°(I − Λ)−1
°° ≤ 1

1− kΛk .

Proof. Since L(X) is a Banach space and
∞P
n=0

kΛnk < ∞, it follows from

Theorem 7.13 that



7.4 Inverting Elements in L(X) 69

S := lim
N→∞

SN := lim
N→∞

NX
n=0

Λn

exists in L(X). Moreover, by Lemma 7.11,

(I − Λ)S = (I − Λ) lim
N→∞

SN = lim
N→∞

(I − Λ)SN

= lim
N→∞

(I − Λ)
NX
n=0

Λn = lim
N→∞

(I − ΛN+1) = I

and similarly S (I − Λ) = I. This shows that (I −Λ)−1 exists and is equal to
S. Moreover, (I − Λ)−1 is bounded because

°°(I − Λ)−1
°° = kSk ≤ ∞X

n=0

kΛnk.

If we further assume kΛk < 1, then kΛnk ≤ kΛkn and
∞X
n=0

kΛnk ≤
∞X
n=0

kΛkn = 1

1− kΛk <∞.

Corollary 7.20. Let X and Y be Banach spaces. Then GL(X,Y ) is an open
(possibly empty) subset of L(X,Y ). More specifically, if A ∈ GL(X,Y ) and
B ∈ L(X,Y ) satisfies

kB −Ak < kA−1k−1 (7.5)

then B ∈ GL(X,Y )

B−1 =
∞X
n=0

£
IX −A−1B

¤n
A−1 ∈ L(Y,X), (7.6)

°°B−1°° ≤ kA−1k 1

1− kA−1k kA−Bk (7.7)

and °°B−1 −A−1
°° ≤ kA−1k2 kA−Bk

1− kA−1k kA−Bk . (7.8)

In particular the map

A ∈ GL(X,Y )→ A−1 ∈ GL(Y,X) (7.9)

is continuous.
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Proof. Let A and B be as above, then

B = A− (A−B) = A
£
IX −A−1(A−B))

¤
= A(IX − Λ)

where Λ : X → X is given by

Λ := A−1(A−B) = IX −A−1B.

Now

kΛk = °°A−1(A−B))
°° ≤ kA−1k kA−Bk < kA−1kkA−1k−1 = 1.

Therefore I−Λ is invertible and hence so is B (being the product of invertible
elements) with

B−1 = (IX − Λ)−1A−1 =
£
IX −A−1(A−B))

¤−1
A−1.

Taking norms of the previous equation gives°°B−1°° ≤ °°(IX − Λ)−1
°° kA−1k ≤ kA−1k 1

1− kΛk
≤ kA−1k
1− kA−1k kA−Bk

which is the bound in Eq. (7.7). The bound in Eq. (7.8) holds because°°B−1 −A−1
°° = °°B−1 (A−B)A−1

°° ≤ °°B−1°°°°A−1°° kA−Bk

≤ kA−1k2 kA−Bk
1− kA−1k kA−Bk .

For an application of these results to linear ordinary differential equations,
see Section 8.3.

7.5 Hahn Banach Theorem

Our next goal is to show that continuous dual X∗ of a Banach space X is
always large. This will be the content of the Hahn — Banach Theorem 7.24
below.

Proposition 7.21. Let X be a complex vector space over C and let XR denote
X thought of as a real vector space. If f ∈ X∗ and u = Ref ∈ X∗R then

f(x) = u(x)− iu(ix). (7.10)

Conversely if u ∈ X∗R and f is defined by Eq. (7.10), then f ∈ X∗ and
kukX∗R = kfkX∗ . More generally if p is a semi-norm on X, then

|f | ≤ p iff u ≤ p.
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Proof. Let v(x) = Im f(x), then

v(ix) = Im f(ix) = Im(if(x)) = Ref(x) = u(x).

Therefore

f(x) = u(x) + iv(x) = u(x) + iu(−ix) = u(x)− iu(ix).

Conversely for u ∈ X∗R let f(x) = u(x)− iu(ix). Then

f((a+ ib)x) = u(ax+ ibx)− iu(iax− bx)

= au(x) + bu(ix)− i(au(ix)− bu(x))

while
(a+ ib)f(x) = au(x) + bu(ix) + i(bu(x)− au(ix)).

So f is complex linear.
Because |u(x)| = |Ref(x)| ≤ |f(x)|, it follows that kuk ≤ kfk. For x ∈ X

choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x) so

|f(x)| = f(λx) = u(λx) ≤ kuk kλxk = kukkxk.
Since x ∈ X is arbitrary, this shows that kfk ≤ kuk so kfk = kuk.1
For the last assertion, it is clear that |f | ≤ p implies that u ≤ |u| ≤ |f | ≤ p.

Conversely if u ≤ p and x ∈ X, choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x).
Then

|f(x)| = λf(x) = f(λx) = u(λx) ≤ p(λx) = p(x)

holds for all x ∈ X.

Definition 7.22 (Minkowski functional). A function p : X → R is a
Minkowski functional if

1

Proof. To understand better why kfk = kuk, notice that
kfk2 = sup

kxk=1
|f(x)|2 = sup

kxk=1
(|u(x)|2 + |u(ix)|2).

Supppose that M = sup
kxk=1

|u(x)| and this supremum is attained at x0 ∈ X with

kx0k = 1. Replacing x0 by −x0 if necessary, we may assume that u(x0) = M.
Since u has a maximum at x0,

0 =
d

dt

¯̄̄̄
0

u

µ
x0 + itx0
kx0 + itx0k

¶
=

d

dt

¯̄̄̄
0

½
1

|1 + it| (u(x0) + tu(ix0))

¾
= u(ix0)

since d
dt
|0|1 + it| = d

dt
|0
√
1 + t2 = 0.This explains why kfk = kuk.
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1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X and
2. p(cx) = cp(x) for all c ≥ 0 and x ∈ X.

Example 7.23. Suppose that X = R and

p(x) = inf {λ ≥ 0 : x ∈ λ[−1, 2] = [−λ, 2λ]} .
Notice that if x ≥ 0, then p(x) = x/2 and if x ≤ 0 then p(x) = −x, i.e.

p(x) =

½
x/2 if x ≥ 0
|x| if x ≤ 0.

From this formula it is clear that p(cx) = cp(x) for all c ≥ 0 but not for c < 0.
Moreover, p satisfies the triangle inequality, indeed if p(x) = λ and p(y) = µ,
then x ∈ λ[−1, 2] and y ∈ µ[−1, 2] so that

x+ y ∈ λ[−1, 2] + µ[−1, 2] ⊂ (λ+ µ) [−1, 2]
which shows that p(x+y) ≤ λ+µ = p(x)+p(y). To check the last set inclusion
let a, b ∈ [−1, 2], then

λa+ µb = (λ+ µ)

µ
λ

λ+ µ
a+

µ

λ+ µ
b

¶
∈ (λ+ µ) [−1, 2]

since [−1, 2] is a convex set and λ
λ+µ +

µ
λ+µ = 1.

BRUCE: Add in the relationship to convex sets and separation theorems,
see Reed and Simon Vol. 1. for example.

Theorem 7.24 (Hahn-Banach). Let X be a real vector space, M ⊂ X be a
subspace f :M → R be a linear functional such that f ≤ p on M . Then there
exists a linear functional F : X → R such that F |M = f and F ≤ p.

Proof. Step (1) We show for all x ∈ X \M there exists and extension F to
M ⊕ Rx with the desired properties. If F exists and α = F (x), then for all
y ∈ M and λ ∈ R we must have f(y) + λα = F (y + λx) ≤ p(y + λx) i.e.
λα ≤ p(y + λx)− f(y). Equivalently put we must find α ∈ R such that

α ≤ p(y + λx)− f(y)

λ
for all y ∈M and λ > 0

α ≥ p(z − µx)− f(z)

µ
for all z ∈M and µ > 0.

So if α ∈ R is going to exist, we have to prove, for all y, z ∈ M and λ, µ >
0 that

f(z)− p(z − µx)

µ
≤ p(y + λx)− f(y)

λ

or equivalently
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f(λz + µy) ≤ µp(y + λx) + λp(z − µx) (7.11)

= p(µy + µλx) + p(λz − λµx).

But by assumption and the triangle inequality for p,

f(λz + µy) ≤ p(λz + µy) = p(λz + µλx+ λz − λµx)

≤ p(λz + µλx) + p(λz − λµx)

which shows that Eq. (7.11) is true and by working backwards, there exist an
α ∈ R such that f(y) + λα ≤ p(y + λx). Therefore F (y + λx) := f(y) + λα is
the desired extension.
Step (2) Let us now write F : X → R to mean F is defined on a linear

subspace D(F ) ⊂ X and F : D(F ) → R is linear. For F,G : X → R we will
say F ≺ G if D(F ) ⊂ D(G) and F = G|D(F ), that is G is an extension of F.
Let

F = {F : X → R : f ≺ F and F ≤ p on D(F )}.
Then (F ,≺) is a partially ordered set. If Φ ⊂ F is a chain (i.e. a linearly
ordered subset of F) then Φ has an upper bound G ∈ F defined by D(G) =S
F∈Φ

D(F ) and G(x) = F (x) for x ∈ D(F ). Then it is easily checked that

D(G) is a linear subspace, G ∈ F , and F ≺ G for all F ∈ Φ. We may now
apply Zorn’s Lemma2 (see Theorem B.7) to conclude there exists a maximal
element F ∈ F . Necessarily, D(F ) = X for otherwise we could extend F by
step (1), violating the maximality of F. Thus F is the desired extension of f.

Corollary 7.25. Suppose that X is a complex vector space, p : X → [0,∞) is
a semi-norm, M ⊂ X is a linear subspace, and f :M → C is linear functional
such that |f(x)| ≤ p(x) for all x ∈ M. Then there exists F ∈ X 0 (X 0 is the
algebraic dual of X) such that F |M = f and |F | ≤ p.

Proof. Let u = Ref then u ≤ p onM and hence by Theorem 7.24, there exists
U ∈ X 0

R such that U |M = u and U ≤ p on M . Define F (x) = U(x)− iU(ix)
then as in Proposition 7.21, F = f on M and |F | ≤ p.

Theorem 7.26. Let X be a normed space M ⊂ X be a closed subspace and
x ∈ X \M . Then there exists f ∈ X∗ such that kfk = 1, f(x) = δ = d(x,M)
and f = 0 on M .

2 The use of Zorn’s lemma in this step may be avoided in the case that p (x) is a
norm and X may be written as M ⊕ span(β) where β := {xn}∞n=1 is a countable
subset ofX. In this case, by step (1) and induction, f :M → Rmay be extended to
a linear functional F :M ⊕ span(β)→ R with F (x) ≤ p (x) for x ∈M ⊕ span(β).
This function F then extends by continuity to X and gives the desired extension
of f.
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Proof. Defineh :M ⊕ Cx→ Cby h(m+ λx) ≡ λδ for all m ∈M and λ ∈ C.
Then

khk := sup
m∈M and λ6=0

|λ| δ
km+ λxk = sup

m∈M and λ6=0
δ

kx+m/λk =
δ

δ
= 1

and by the Hahn — Banach theorem there exists f ∈ X∗ such that f |M⊕Cx = h
and kfk ≤ 1. Since 1 = khk ≤ kfk ≤ 1, it follows that kfk = 1.
Corollary 7.27. The linear map x ∈ X → x̂ ∈ X∗∗ where x̂(f) = f(x) for
all x ∈ X is an isometry.

Proof. Since |x̂(f)| = |f(x)| ≤ kfkX∗ kxkX for all f ∈ X∗, it follows that
kx̂kX∗∗ ≤ kxkX . Now applying Theorem 7.26 with M = {0} , there exists
f ∈ X∗ such that kfk = 1 and |x̂(f)| = f(x) = kxk , which shows that
kx̂kX∗∗ ≥ kxkX . This shows that x ∈ X → x̂ ∈ X∗∗ is an isometry. Since
isometries are necessarily injective, we are done.

Definition 7.28. A Banach space X is reflexive if the map x ∈ X → x̂ ∈ X∗∗

is surjective. (BRUCE: this is defined again in Definition 33.44 below.)

Exercise 7.5. Show all finite dimensional Banach spaces are reflexive.

Definition 7.29. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and
N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

Lemma 7.30. Let M ⊂ X and N ⊂ X∗, then

1. M0 and N⊥ are always closed subspace of X∗ and X respectively.
2.
¡
M0

¢⊥
= M̄.

Proof. The first item is an easy consequence of the assumed continuity off all
linear functionals involved.
If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈ ¡M0

¢⊥
. Therefore

M̄ ⊂ ¡M0
¢⊥

. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0 while

f(x) 6= 0, i.e. f ∈ M0 yet f(x) 6= 0. This shows x /∈ ¡M0
¢⊥

and we have

shown
¡
M0

¢⊥ ⊂ M̄.

Proposition 7.31. Suppose X is a Banach space, then X∗∗∗ = [(X∗)⊕
³
X̂
´0

where ³
X̂
´0
= {λ ∈ X∗∗∗ : λ (x̂) = 0 for all x ∈ X} .

In particular X is reflexive iff X∗ is reflexive.
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Proof. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) := ψ(x̂) for all x ∈ X and
set ψ0 := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ0(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ0 ∈ X̂0 and we have shown X∗∗∗ = cX∗ + X̂0. If ψ ∈ cX∗ ∩ X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X, i.e.
f = 0 so ψ = 0. Therefore X∗∗∗ = cX∗ ⊕ X̂0 as claimed.
If X is reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing (X∗)∗∗ =

X∗∗∗ = [(X∗), i.e. X∗ is reflexive. Conversely if X∗ is reflexive we conclude

that
³
X̂
´0
= {0} and therefore

X∗∗ = {0}⊥ =
³
X̂0
´⊥

= X̂,

which shows X̂ is reflexive. Here we have used³
X̂0
´⊥

= X̂ = X̂

since X̂ is a closed subspace of X∗∗.
For the remainder of this section let X be an infinite set, µ : X → (0,∞)

be a given function and p, q ∈ [1,∞] such that q = p/ (p− 1) . it will also be
convenient to define δx : X → R for x ∈ X by

δx (y) =

½
1 if y = x
0 if y 6= x.

Notation 7.32 Let c0 (X) denote those functions f ∈ c∞ (X) which “vanish
at ∞,” i.e. for every ε > 0 there exists a finite subset Λε ⊂ X such that
|f (x)| < ε whenever x /∈ Λε. Also let cf (X) denote those functions f : X → F
with finite support, i.e.

cf (X) := {f ∈ c∞ (X) : # ({x ∈ X : f (x) 6= 0}) <∞} .
Exercise 7.6. Show cf (X) is a dense subspace of the Banach spaces³
cp (µ) , k·kp

´
for 1 ≤ p < ∞, while the closure of cf (X) inside the Ba-

nach space, (c∞ (X) , k·k∞) is c0 (X) . Note from this it follows that c0 (X) is
a closed subspace of c∞ (X) .

Theorem 7.33. Let X be an infinite set, µ : X → (0,∞) be a function,
p ∈ [1,∞], q := p/ (p− 1) be the conjugate exponent and for f ∈ cq (µ) define
φf : c

p (µ)→ F by
φf (g) :=

X
x∈X

f (x) g (x)µ (x) .

Then
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1. φf (g) is well defined and φf ∈ cp (µ)
∗
.

2. The map

f ∈ cq (µ)
φ→ φf ∈ cp (µ)

∗ (7.12)

is a isometric linear map of Banach spaces.
3. If p ∈ [1,∞), then the map in Eq. (7.12) is also surjective and hence,

cp (µ)∗ is isometrically isomorphic to cq (µ) . When p =∞, the map

f ∈ c1 (µ)→ φf ∈ c∗0

is an isometric and surjective, i.e. c1 (µ) is isometrically isomorphic to
c∗0.

4. cp (µ) is reflexive for p ∈ (1,∞) .
5. The map φ : c1 (µ)→ c∞ (X)∗ is not surjective.
6. c1 (µ) and c∞ (X) are not reflexive.

Proof.

1. By Holder’s inequality,X
x∈X

|f (x)| |g (x)|µ (x) ≤ kfkq kgkp

which shows that φf is well defined. The φf : cp (µ)→ F is linear by the
linearity of sums and since

|φf (g)| =
¯̄̄̄
¯X
x∈X

f (x) g (x)µ (x)

¯̄̄̄
¯ ≤X

x∈X
|f (x)| |g (x)|µ (x) ≤ kfkq kgkp ,

we learn that
kφfkcp(µ)∗ ≤ kfkq . (7.13)

Therefore φf ∈ cp (µ)∗ .
2. The map φ in Eq. (7.12) is linear in f by the linearity properties of infinite
sums.
For p ∈ (1,∞) , define g (x) = sgn(f (x)) |f (x)|q−1 where

sgn(z) :=

½ z
|z| if z 6= 0
0 if z = 0.

Then

kgkpp =
X
x∈X

|f (x)|(q−1)p µ (x) =
X
x∈X

|f (x)|( p
p−1−1)p µ (x)

=
X
x∈X

|f (x)|q µ (x) = kfkqq

and
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φf (g) =
X
x∈X

f (x) sgn(f (x)) |f (x)|q−1 µ (x) =
X
x∈X

|f (x)| |f (x)|q−1 µ (x)

= kfkq( 1q+ 1
p )

q = kfkq kfk
q
p
q = kfkq kgkp .

Hence kφfkcp(µ)∗ ≥ kfkq which combined with Eq. (7.13) shows
kφfkcp(µ)∗ = kfkq .
For p =∞, let g (x) = sgn(f (x)), then kgk∞ = 1 and

|φf (g)| =
X
x∈X

f (x) sgn(f (x))µ (x)

=
X
x∈X

|f (x)|µ (x) = kfk1 kgk∞

which shows kφfkc∞(µ)∗ ≥ kfkc1(µ) . Combining this with Eq. (7.13) shows
kφfkc∞(µ)∗ = kfkc1(µ) .
For p = 1,

|φf (δx)| = µ (x) |f (x)| = |f (x)| kδxk1
and therefore kφfkc1(µ)∗ ≥ |f (x)| for all x ∈ X. Hence kφfkc1(µ)∗ ≥ kfk∞
which combined with Eq. (7.13) shows kφfkc1(µ)∗ = kfk∞ .

3. Suppose that p ∈ [1,∞) and λ ∈ cp (µ)
∗ or p = ∞ and λ ∈ c∗0. We wish

to find f ∈ cq (µ) such that λ = φf . If such an f exists, then λ (δx) =
f (x)µ (x) and so we must define f (x) := λ (δx) /µ (x) . As a preliminary
estimate,

|f (x)| = |λ (δx)|
µ (x)

≤ kλkcp(µ)∗ kδxkcp(µ)
µ (x)

=
kλkcp(µ)∗ [µ (x)]

1
p

µ (x)
= kλkcp(µ)∗ [µ (x)]−

1
q .

When p = 1 and q =∞, this implies kfk∞ ≤ kλkc1(µ)∗ <∞. If p ∈ (1,∞]
and Λ ⊂⊂ X, then

kfkqcq(Λ,µ) :=
X
x∈Λ

|f (x)|q µ (x) =
X
x∈Λ

f (x) sgn(f (x)) |f (x)|q−1 µ (x)

=
X
x∈Λ

λ (δx)

µ (x)
sgn(f (x)) |f (x)|q−1 µ (x)

=
X
x∈Λ

λ (δx) sgn(f (x)) |f (x)|q−1

= λ

ÃX
x∈Λ

sgn(f (x)) |f (x)|q−1 δx
!

≤ kλkcp(µ)∗
°°°°°X
x∈Λ

sgn(f (x)) |f (x)|q−1 δx
°°°°°
p

.
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Since°°°°°X
x∈Λ

sgn(f (x)) |f (x)|q−1 δx
°°°°°
p

=

ÃX
x∈Λ

|f (x)|(q−1)p µ (x)
!1/p

=

ÃX
x∈Λ

|f (x)|q µ (x)
!1/p

= kfkq/pcq(Λ,µ)

which is also valid for p =∞ provided kfk1/∞c1(Λ,µ) := 1. Combining the last
two displayed equations shows

kfkqcq(Λ,µ) ≤ kλkcp(µ)∗ kfkq/pcq(Λ,µ)

and solving this inequality for kfkqcq(Λ,µ) (using q − q/p = 1) implies
kfkcq(Λ,µ) ≤ kλkcp(µ)∗ Taking the supremum of this inequality on Λ ⊂⊂ X

shows kfkcq(µ) ≤ kλkcp(µ)∗ , i.e. f ∈ cq (µ) . Since λ = φf agree on cf (X)

and cf (X) is a dense subspace of cp (µ) for p < ∞ and cf (X) is dense
subspace of c0 when p =∞, it follows that λ = φf .

4. This basically follows from two applications of item 3. More precisely if
λ ∈ cp (µ)

∗∗
, let λ̃ ∈ cq (µ)

∗ be defined by λ̃ (g) = λ (φg) for g ∈ cq (µ) .
Then by item 3., there exists f ∈ cp (µ) such that, for all g ∈ cq (µ) ,

λ (φg) = λ̃ (g) = φf (g) = φg (f) = f̂ (φg) .

Since cp (µ)∗ = {φg : g ∈ cq (µ)} , this implies that λ = f̂ and so cp (µ) is
reflexive.

5. Let 1 ∈ c∞ (X) denote the constant function 1 on X. Notice that
k1− fk∞ ≥ 1 for all f ∈ c0 and therefore there exists λ ∈ c∞ (X)∗

such that λ (1) = 0 while λ|c0 ≡ 0. Now if λ = φf for some f ∈ c1 (µ) ,
then µ (x) f (x) = λ (δx) = 0 for all x and f would have to be zero. This
is absurd.

6. As we have seen c1 (µ)
∗ ∼= c∞ (X) while c∞ (X)∗ ∼= c∗0 6= c1 (µ) . Let

λ ∈ c∞ (X)∗ be the linear functional as described above. We view this as
an element of c1 (µ)∗∗ by using

λ̃ (φg) := λ (g) for all g ∈ c∞ (X) .

Suppose that λ̃ = f̂ for some f ∈ c1 (µ) , then

λ (g) = λ̃ (φg) = f̂ (φg) = φg (f) = φf (g) .

But λ was constructed in such a way that λ 6= φf for any f ∈ c1 (µ) .
It now follows from Proposition 7.31 that c1 (µ)∗ ∼= c∞ (X) is also not
reflexive.
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7.6 Exercises

Exercise 7.7. Let (X, k·k) be a normed space over F (R or C). Show the map
(λ, x, y) ∈ F×X ×X → x+ λy ∈ X

is continuous relative to the norm on F×X ×X defined by

k(λ, x, y)kF×X×X := |λ|+ kxk+ kyk .
(See Exercise 10.21 for more on the metric associated to this norm.) Also show
that k·k : X → [0,∞) is continuous.
Exercise 7.8. Let X = N and for p, q ∈ [1,∞) let k·kp denote the cp(N) —
norm. Show k·kp and k·kq are inequivalent norms for p 6= q by showing

sup
f 6=0

kfkp
kfkq

=∞ if p < q.

Exercise 7.9. Suppose that (X, k·k) is a normed space and S ⊂ X is a linear
subspace.

1. Show the closure S̄ of S is also a linear subspace.
2. Now suppose that X is a Banach space. Show that S with the inherited
norm from X is a Banach space iff S is closed.

Exercise 7.10. Folland Problem 5.9. Showing Ck([0, 1]) is a Banach space.

Exercise 7.11. (Do not use.) Folland Problem 5.11. Showing Holder spaces
are Banach spaces.

Exercise 7.12. Suppose thatX,Y and Z are Banach spaces andQ : X×Y →
Z is a bilinear form, i.e. we are assuming x ∈ X → Q (x, y) ∈ Z is linear for
each y ∈ Y and y ∈ Y → Q (x, y) ∈ Z is linear for each x ∈ X. Show Q is
continuous relative to the product norm, k(x, y)kX×Y := kxkX + kykY , on
X × Y iff there is a constant M <∞ such that

kQ (x, y)kZ ≤M kxkX · kykY for all (x, y) ∈ X × Y. (7.14)

Then apply this result to prove Lemma 7.11.

Exercise 7.13. Let d : C(R)× C(R)→ [0,∞) be defined by

d(f, g) =
∞X
n=1

2−n
kf − gkn

1 + kf − gkn ,

where kfkn := sup{|f(x)| : |x| ≤ n} = max{|f(x)| : |x| ≤ n}.
1. Show that d is a metric on C(R).
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2. Show that a sequence {fn}∞n=1 ⊂ C(R) converges to f ∈ C(R) as n→∞
iff fn converges to f uniformly on bounded subsets of R.

3. Show that (C(R), d) is a complete metric space.

Exercise 7.14. Let X = C([0, 1],R) and for f ∈ X, let

kfk1 :=
Z 1

0

|f(t)| dt.

Show that (X, k·k1) is normed space and show by example that this space is
not complete. Hint: For the last assertion find a sequence of {fn}∞n=1 ⊂ X
which is “trying” to converge to the function f = 1[ 12 ,1] /∈ X.

Exercise 7.15. Let (X, k·k1) be the normed space in Exercise 7.14. Compute
the closure of A when

1. A = {f ∈ X : f (1/2) = 0} .
2. A =

n
f ∈ X : supt∈[0,1] f (t) ≤ 5

o
.

3. A =
n
f ∈ X :

R 1/2
0

f (t) dt = 0
o
.

Exercise 7.16. Suppose {xα ∈ X : α ∈ A} is a given collection of vectors in
a Banach space X. Show

P
α∈A xα exists in X and°°°°°X
α∈A

xα

°°°°° ≤X
α∈A

kxαk

if
P

α∈A kxαk < ∞. That is to say “absolute convergence” implies con-
vergence in a Banach space.

Exercise 7.17 (Dominated Convergence Theorem Again). Let X be a
Banach space, A be a set and suppose fn : A→ X is a sequence of functions.
Further assume there exists a summable function g : A → [0,∞) such that
kfn (α)k ≤ g (α) for all α ∈ A. Show

P
α∈A f (α) exists in X and

lim
n→∞

X
α∈A

fn (α) =
X
α∈A

f (α)

where f (α) := limn→∞ fn (α) .

7.6.1 Hahn — Banach Theorem Problems

Exercise 7.18. Folland 5.20, p. 160.

Exercise 7.19. Folland 5.21, p. 160.
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Exercise 7.20. Let X be a Banach space such that X∗ is separable. Show
X is separable as well. (The converse is not true as can be seen by taking
X = c1 (N) .) Hint: use the greedy algorithm, i.e. suppose D ⊂ X∗ \ {0} is a
countable dense subset of X∗, for c ∈ D choose xc ∈ X such that kxck = 1
and |c(xc)| ≥ 1

2kck.
Exercise 7.21. Folland 5.26.
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The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter.
In Definition 11.1 below, we will give a general notion of a compact subset of a
“topological” space. However, by Corollary 11.9 below, when we are working
with subsets of Rd this definition is equivalent to the following definition.

Definition 8.1. A subset A ⊂ Rd is said to be compact if A is closed and
bounded.

Theorem 8.2. Suppose that K ⊂ Rd is a compact set and f ∈ C (K,X) .
Then

1. Every sequence {un}∞n=1 ⊂ K has a convergent subsequence.
2. The function f is uniformly continuous on K, namely for every ε > 0
there exists a δ > 0 only depending on ε such that kf (u)− f (v)k < ε
whenever u, v ∈ K and |u− v| < δ where |·| is the standard Euclidean
norm on Rd.

Proof.

1. (This is a special case of Theorem 11.7 and Corollary 11.9 below.) SinceK
is bounded, K ⊂ [−R,R]d for some sufficiently large d. Let tn be the first
component of un so that tn ∈ [−R,R] for all n. Let J1 = [0, R] if tn ∈ J1
for infinitely many n otherwise let J1 = [−R, 0]. Similarly split J1 in half
and let J2 ⊂ J1 be one of the halves such that tn ∈ J2 for infinitely many
n. Continue this way inductively to find a nested sequence of intervals
J1 ⊃ J2 ⊃ J3 ⊃ J4 ⊃ . . . such that the length of Jk is 2−(k−1)R and for
each k, tn ∈ Jk for infinitely many n. We may now choose a subsequence,
{nk}∞k=1 of {n}∞n=1 such that τk := tnk ∈ Jk for all k. The sequence
{τk}∞k=1 is Cauchy and hence convergent. Thus by replacing {un}∞n=1 by a
subsequence if necessary we may assume the first component of {un}∞n=1 is
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convergent. Repeating this argument for the second, then the third and all
the way through the dth — components of {un}∞n=1 , we may, by passing to
further subsequences, assume all of the components of un are convergent.
But this implies limun = u exists and since K is closed, u ∈ K.

2. (This is a special case of Exercise 11.5 below.) If f were not uniformly
continuous on K, there would exists an ε > 0 and sequences {un}∞n=1 and
{vn}∞n=1 in K such that

kf (un)− f (vn)k ≥ ε while lim
n→∞ |un − vn| = 0.

By passing to subsequences if necessary we may assume that limn→∞ un
and limn→∞ vn exists. Since limn→∞ |un − vn| = 0, we must have

lim
n→∞un = u = lim

n→∞ vn

for some u ∈ K. Since f is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

ε ≤ lim
n→∞ kf (un)− f (vn)k = kf (u)− f (u)k = 0

which is a contradiction.

For the remainder of the chapter, let [a, b] be a fixed compact interval and
X be a Banach space. The collection S = S([a, b],X) of step functions,
f : [a, b]→ X, consists of those functions f which may be written in the form

f(t) = x01[a,t1](t) +
n−1X
i=1

xi1(ti,ti+1](t), (8.1)

where π := {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and xi ∈ X.
For f as in Eq. (8.1), let

I(f) :=
n−1X
i=0

(ti+1 − ti)xi ∈ X. (8.2)

Exercise 8.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition π of
[a, b] does not change the right side of Eq. (8.2).) Also verify that I : S → X
is a linear operator.

Notation 8.3 Let S̄ denote the closure of S inside the Banach space,
c∞([a, b],X) as defined in Remark 7.6.

The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.
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Theorem 8.4 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X
is a bounded linear transformation (i.e. there exists C <∞ such that kTzk ≤
C kzk for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X)
and this extension still satisfies°°T̄ z°° ≤ C kzk for all z ∈ S̄.
Exercise 8.2. Prove Theorem 8.4.

Proposition 8.5 (Riemann Integral). The linear function I : S → X
extends uniquely to a continuous linear operator Ī from S̄ to X and this
operator satisfies,

kĪ(f)k ≤ (b− a) kfk∞ for all f ∈ S̄. (8.3)

Furthermore, C([a, b],X) ⊂ S̄ ⊂ c∞([a, b],X) and for f ∈, Ī(f) may be com-
puted as

Ī(f) = lim
|π|→0

n−1X
i=0

f(cπi )(ti+1 − ti) (8.4)

where π := {a = t0 < t1 < · · · < tn = b} denotes a partition of [a, b],
|π| = max {|ti+1 − ti| : i = 0, . . . , n− 1} is the mesh size of π and cπi may be
chosen arbitrarily inside [ti, ti+1]. See Figure 8.1.

Fig. 8.1. The usual picture associated to the Riemann integral.

Proof. Taking the norm of Eq. (8.2) and using the triangle inequality shows,

kI(f)k ≤
n−1X
i=0

(ti+1 − ti)kxik ≤
n−1X
i=0

(ti+1 − ti)kfk∞ ≤ (b− a)kfk∞. (8.5)
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The existence of Ī satisfying Eq. (8.3) is a consequence of Theorem 8.4.
Given f ∈ C([a, b],X), π := {a = t0 < t1 < · · · < tn = b} a partition of

[a, b], and cπi ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1, let fπ ∈ S be defined by

fπ(t) := f(c0)01[t0,t1](t) +
n−1X
i=1

f(cπi )1(ti,ti+1](t).

Then by the uniform continuity of f on [a, b] (Theorem 8.2), lim|π|→0 kf −
fπk∞ = 0 and therefore f ∈ S̄. Moreover,

I (f) = lim
|π|→0

I(fπ) = lim
|π|→0

n−1X
i=0

f(cπi )(ti+1 − ti)

which proves Eq. (8.4).
If fn ∈ S and f ∈ S̄ such that limn→∞ kf − fnk∞ = 0, then for a ≤ α <

β ≤ b, then 1(α,β]fn ∈ S and limn→∞
°°1(α,β]f − 1(α,β]fn°°∞ = 0. This shows

1(α,β]f ∈ S̄ whenever f ∈ S̄.
Notation 8.6 For f ∈ S̄ and a ≤ α ≤ β ≤ b we will write denote Ī(1(α,β]f)

by
R β
α
f(t) dt or

R
(α,β]

f(t)dt. Also following the usual convention, if a ≤ β ≤
α ≤ b, we will let Z β

α

f(t) dt = −Ī(1(β,α]f) = −
Z α

β

f(t) dt.

The next Lemma, whose proof is left to the reader contains some of the
many familiar properties of the Riemann integral.

Lemma 8.7. For f ∈ S̄([a, b],X) and α, β, γ ∈ [a, b], the Riemann integral
satisfies:

1.
°°°R βα f(t) dt

°°°
X
≤ (β − α) sup {kf(t)k : α ≤ t ≤ β} .

2.
R γ
α
f(t) dt =

R β
α
f(t) dt+

R γ
β
f(t) dt.

3. The function G(t) :=
R t
a
f(τ)dτ is continuous on [a, b].

4. If Y is another Banach space and T ∈ L(X,Y ), then Tf ∈ S̄([a, b], Y )
and

T

ÃZ β

α

f(t) dt

!
=

Z β

α

Tf(t) dt.

5. The function t→ kf(t)kX is in S̄([a, b],R) and°°°°°
Z b

a

f(t) dt

°°°°°
X

≤
Z b

a

kf(t)kX dt.
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6. If f, g ∈ S̄([a, b],R) and f ≤ g, thenZ b

a

f(t) dt ≤
Z b

a

g(t) dt.

Exercise 8.3. Prove Lemma 8.7.

8.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results of differential calcu-
lus, more details and the next few results below will be done in greater detail
in Chapter 16.

Definition 8.8. Let (a, b) ⊂ R. A function f : (a, b)→ X is differentiable at
t ∈ (a, b) iff

L := lim
h→0

[f(t+ h)− f(t)]h−1 = lim
h→0

“
f(t+ h)− f(t)

h
”

exists in X. The limit L, if it exists, will be denoted by ḟ(t) or df
dt (t). We also

say that f ∈ C1((a, b) → X) if f is differentiable at all points t ∈ (a, b) and
ḟ ∈ C((a, b)→ X).

As for the case of real valued functions, the derivative operator d
dt is easily

seen to be linear. The next two results have proves very similar to their real
valued function analogues.

Lemma 8.9 (Product Rules). Suppose that t→ U (t) ∈ L (X) , t→ V (t) ∈
L (X) and t→ x (t) ∈ X are differentiable at t = t0, then

1. d
dt |t0 [U (t)x (t)] ∈ X exists and

d

dt
|t0 [U (t)x (t)] =

h
U̇ (t0)x (t0) + U (t0) ẋ (t0)

i
and

2. d
dt |t0 [U (t)V (t)] ∈ L (X) exists and

d

dt
|t0 [U (t)V (t)] =

h
U̇ (t0)V (t0) + U (t0) V̇ (t0)

i
.

3. If U (t0) is invertible, then t→ U (t)−1 is differentiable at t = t0 and

d

dt
|t0U (t)−1 = −U (t0)−1 U̇ (t0)U (t0)−1 . (8.6)
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Proof. The reader is asked to supply the proof of the first two items in Exercise
8.10. Before proving item 3., let us assume that U (t)−1 is differentiable, then
using the product rule we would learn

0 =
d

dt
|t0I =

d

dt
|t0
h
U (t)

−1
U (t)

i
=

·
d

dt
|t0U (t)−1

¸
U (t0) + U (t0)

−1
U̇ (t0) .

Solving this equation for d
dt |t0U (t)−1 gives the formula in Eq. (8.6). The

problem with this argument is that we have not yet shown t → U (t)
−1 is

invertible at t0. Here is the formal proof.
Since U (t) is differentiable at t0, U (t)→ U (t0) as t→ t0 and by Corollary

7.20, U (t0 + h) is invertible for h near 0 and

U (t0 + h)−1 → U (t0)
−1 as h→ 0.

Therefore, using Lemma 7.11, we may let h→ 0 in the identity,

U (t0 + h)
−1 − U (t0)

−1

h
= U (t0 + h)−1

µ
U (t0)− U (t0 + h)

h

¶
U (t0)

−1 ,

to learn

lim
h→0

U (t0 + h)
−1 − U (t0)

−1

h
= −U (t0)−1 U̇ (t0)U (t0)−1 .

Proposition 8.10 (Chain Rule). Suppose s → x (s) ∈ X is differentiable
at s = s0 and t → T (t) ∈ R is differentiable at t = t0 and T (t0) = s0, then
t→ x (T (t)) is differentiable at t0 and

d

dt
|t0x (T (t)) = x0 (T (t0))T 0 (t0) .

The proof of the chain rule is essentially the same as the real valued func-
tion case, see Exercise 8.11.

Proposition 8.11. Suppose that f : [a, b]→ X is a continuous function such
that ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. Let ε > 0 and α ∈ (a, b) be given. (We will later let ε ↓ 0.) By the
definition of the derivative, for all τ ∈ (a, b) there exists δτ > 0 such that

kf(t)− f(τ)k =
°°°f(t)− f(τ)− ḟ(τ)(t− τ)

°°° ≤ ε |t− τ | if |t− τ | < δτ .

(8.7)
Let

A = {t ∈ [α, b] : kf(t)− f(α)k ≤ ε(t− α)} (8.8)
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and t0 be the least upper bound for A. We will now use a standard argument
which is referred to as continuous induction to show t0 = b.
Eq. (8.7) with τ = α shows t0 > α and a simple continuity argument shows

t0 ∈ A, i.e.
kf(t0)− f(α)k ≤ ε(t0 − α). (8.9)

For the sake of contradiction, suppose that t0 < b. By Eqs. (8.7) and (8.9),

kf(t)− f(α)k ≤ kf(t)− f(t0)k+ kf(t0)− f(α)k
≤ ε(t0 − α) + ε(t− t0) = ε(t− α)

for 0 ≤ t− t0 < δt0 which violates the definition of t0 being an upper bound.
Thus we have shown b ∈ A and hence

kf(b)− f(α)k ≤ ε(b− α).

Since ε > 0 was arbitrary we may let ε ↓ 0 in the last equation to conclude
f(b) = f (α) . Since α ∈ (a, b) was arbitrary it follows that f(b) = f (α) for all
α ∈ (a, b] and then by continuity for all α ∈ [a, b], i.e. f is constant.
Remark 8.12. The usual real variable proof of Proposition 8.11 makes use
Rolle’s theorem which in turn uses the extreme value theorem. This latter
theorem is not available to vector valued functions. However with the aid
of the Hahn Banach Theorem 7.24 and Lemma 8.7, it is possible to reduce
the proof of Proposition 8.11 and the proof of the Fundamental Theorem of
Calculus 8.13 to the real valued case, see Exercise 8.24.

Theorem 8.13 (Fundamental Theorem of Calculus). Suppose that f ∈
C([a, b],X), Then

1. d
dt

R t
a
f(τ) dτ = f(t) for all t ∈ (a, b).

2. Now assume that F ∈ C([a, b],X), F is continuously differentiable on
(a, b) (i.e. Ḟ (t) exists and is continuous for t ∈ (a, b)) and Ḟ extends to
a continuous function on [a, b] which is still denoted by Ḟ . ThenZ b

a

Ḟ (t) dt = F (b)− F (a).

Proof. Let h > 0 be a small number and consider°°°°°
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)h

°°°°° =
°°°°°
Z t+h

t

(f(τ)− f(t)) dτ

°°°°°
≤
Z t+h

t

k(f(τ)− f(t))k dτ ≤ hε(h),

where ε(h) := maxτ∈[t,t+h] k(f(τ) − f(t))k. Combining this with a similar
computation when h < 0 shows, for all h ∈ R sufficiently small, that
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k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk ≤ |h|ε(h),

where now ε(h) := maxτ∈[t−|h|,t+|h|] k(f(τ)− f(t))k. By continuity of f at t,
ε(h)→ 0 and hence d

dt

R t
a
f(τ) dτ exists and is equal to f(t).

For the second item, set G(t) :=
R t
a
Ḟ (τ) dτ − F (t). Then G is continuous

by Lemma 8.7 and Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of
Proposition 8.11 shows G is a constant and in particular G(b) = G(a), i.e.R b
a
Ḟ (τ) dτ − F (b) = −F (a).

Corollary 8.14 (Mean Value Inequality). Suppose that f : [a, b] → X is
a continuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a
continuous function on [a, b]. Then

kf(b)− f(a)k ≤
Z b

a

kḟ(t)kdt ≤ (b− a) ·
°°°ḟ°°°

∞
. (8.10)

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
R b
a
ḟ(t)dt and

then by Lemma 8.7,

kf(b)− f(a)k =
°°°°°
Z b

a

ḟ(t)dt

°°°°° ≤
Z b

a

kḟ(t)kdt

≤
Z b

a

°°°ḟ°°°
∞
dt = (b− a) ·

°°°ḟ°°°
∞
.

Corollary 8.15 (Change of Variable Formula). Suppose that f ∈
C([a, b],X) and T : [c, d] → (a, b) is a continuous function such that T (s)
is continuously differentiable for s ∈ (c, d) and T 0 (s) extends to a continuous
function on [c, d]. ThenZ d

c

f (T (s))T 0 (s) ds =
Z T (d)

T (c)

f (t) dt.

Proof. For s ∈ (a, b) define F (t) := R t
T (c)

f (τ) dτ. Then F ∈ C1 ((a, b) ,X)

and by the fundamental theorem of calculus and the chain rule,

d

ds
F (T (s)) = F 0 (T (s))T 0 (s) = f (T (s))T 0 (s) .

Integrating this equation on s ∈ [c, d] and using the chain rule again givesZ d

c

f (T (s))T 0 (s) ds = F (T (d))− F (T (c)) =

Z T (d)

T (c)

f (t) dt.
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8.2 Integral Operators as Examples of Bounded
Operators

In the examples to follow all integrals are the standard Riemann integrals and
we will make use of the following notation.

Notation 8.16 Given an open set U ⊂ Rd, let Cc (U) denote the collection
of real valued continuous functions f on U such that

supp(f) := {x ∈ U : f (x) 6= 0}
is a compact subset of U.

Example 8.17. Suppose that K : [0, 1] × [0, 1] → C is a continuous function.
For f ∈ C([0, 1]), let

Tf(x) =

Z 1

0

K(x, y)f(y)dy.

Since

|Tf(x)− Tf(z)| ≤
Z 1

0

|K(x, y)−K(z, y)| |f(y)| dy
≤ kfk∞maxy |K(x, y)−K(z, y)| (8.11)

and the latter expression tends to 0 as x → z by uniform continuity of K.
Therefore Tf ∈ C([0, 1]) and by the linearity of the Riemann integral, T :
C([0, 1])→ C([0, 1]) is a linear map. Moreover,

|Tf(x)| ≤
Z 1

0

|K(x, y)| |f(y)| dy ≤
Z 1

0

|K(x, y)| dy · kfk∞ ≤ A kfk∞

where

A := sup
x∈[0,1]

Z 1

0

|K(x, y)| dy <∞. (8.12)

This shows kTk ≤ A < ∞ and therefore T is bounded. We may in fact
show kTk = A. To do this let x0 ∈ [0, 1] be such that

sup
x∈[0,1]

Z 1

0

|K(x, y)| dy =
Z 1

0

|K(x0, y)| dy.

Such an x0 can be found since, using a similar argument to that in Eq. (8.11),
x→ R 1

0
|K(x, y)| dy is continuous. Given ε > 0, let

fε(y) :=
K(x0, y)q

ε+ |K(x0, y)|2
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and notice that limε↓0 kfεk∞ = 1 and

kTfεk∞ ≥ |Tfε(x0)| = Tfε(x0) =

Z 1

0

|K(x0, y)|2q
ε+ |K(x0, y)|2

dy.

Therefore,

kTk ≥ lim
ε↓0

1

kfεk∞

Z 1

0

|K(x0, y)|2q
ε+ |K(x0, y)|2

dy

= lim
ε↓0

Z 1

0

|K(x0, y)|2q
ε+ |K(x0, y)|2

dy = A

since

0 ≤ |K(x0, y)|− |K(x0, y)|2q
ε+ |K(x0, y)|2

=
|K(x0, y)|q

ε+ |K(x0, y)|2
·q

ε+ |K(x0, y)|2 − |K(x0, y)|
¸

≤
q
ε+ |K(x0, y)|2 − |K(x0, y)|

and the latter expression tends to zero uniformly in y as ε ↓ 0.
We may also consider other norms on C([0, 1]). Let (for now) L1 ([0, 1])

denote C([0, 1]) with the norm

kfk1 =
Z 1

0

|f(x)| dx,

then T : L1 ([0, 1], dm) → C([0, 1]) is bounded as well. Indeed, let M =
sup {|K(x, y)| : x, y ∈ [0, 1]} , then

|(Tf)(x)| ≤
Z 1

0

|K(x, y)f(y)| dy ≤M kfk1

which shows kTfk∞ ≤M kfk1 and hence,

kTkL1→C ≤ max {|K(x, y)| : x, y ∈ [0, 1]} <∞.

We can in fact show that kTk =M as follows. Let (x0, y0) ∈ [0, 1]2 satisfying
|K(x0, y0)| = M. Then given ε > 0, there exists a neighborhood U = I × J
of (x0, y0) such that |K(x, y)−K(x0, y0)| < ε for all (x, y) ∈ U. Let f ∈
Cc(I, [0,∞)) such that

R 1
0
f(x)dx = 1. Choose α ∈ C such that |α| = 1 and

αK(x0, y0) =M, then
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|(Tαf)(x0)| =
¯̄̄̄Z 1

0

K(x0, y)αf(y)dy

¯̄̄̄
=

¯̄̄̄Z
I

K(x0, y)αf(y)dy

¯̄̄̄
≥ Re

Z
I

αK(x0, y)f(y)dy

≥
Z
I

(M − ε) f(y)dy = (M − ε) kαfkL1

and hence
kTαfkC ≥ (M − ε) kαfkL1

showing that kTk ≥M − ε. Since ε > 0 is arbitrary, we learn that kTk ≥M
and hence kTk =M.
One may also view T as a map from T : C([0, 1]) → L1([0, 1]) in which

case one may show

kTkL1→C ≤
Z 1

0

max
y
|K(x, y)| dx <∞.

8.3 Linear Ordinary Differential Equations

Let X be a Banach space, J = (a, b) ⊂ R be an open interval with 0 ∈ J,
h ∈ C(J → X) and A ∈ C(J → L(X)). In this section we are going to
consider the ordinary differential equation,

ẏ(t) = A(t)y(t) + h (t) where y(0) = x ∈ X, (8.13)

where y is an unknown function in C1(J → X). This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for y ∈ C(J,X) such that

y(t) = x+

Z t

0

h (τ) dτ +

Z t

0

A(τ)y(τ)dτ. (8.14)

In what follows, we will abuse notation and use k·k to denote the opera-
tor norm on L (X) associated to then norm, k·k , on X and let kφk∞ :=
maxt∈J kφ(t)k for φ ∈ BC(J,X) or BC(J, L (X)).

Notation 8.18 For t ∈ R and n ∈ N, let

∆n(t) =

½{(τ1, . . . , τn) ∈ Rn : 0 ≤ τ1 ≤ · · · ≤ τn ≤ t} if t ≥ 0
{(τ1, . . . , τn) ∈ Rn : t ≤ τn ≤ · · · ≤ τ1 ≤ 0} if t ≤ 0

and also write dτ = dτ1 . . . dτn andZ
∆n(t)

f(τ1, . . . τn)dτ : = (−1)n·1t<0
Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1f(τ1, . . . τn).
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Lemma 8.19. Suppose that ψ ∈ C (R,R) , then

(−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

µZ t

0

ψ(τ)dτ

¶n
. (8.15)

Proof. Let Ψ(t) :=
R t
0
ψ(τ)dτ. The proof will go by induction on n. The case

n = 1 is easily verified since

(−1)1·1t<0
Z
∆1(t)

ψ(τ1)dτ1 =

Z t

0

ψ(τ)dτ = Ψ(t).

Now assume the truth of Eq. (8.15) for n− 1 for some n ≥ 2, then

(−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1ψ(τ1) . . . ψ(τn)

=

Z t

0

dτn
Ψn−1(τn)
(n− 1)! ψ(τn) =

Z t

0

dτn
Ψn−1(τn)
(n− 1)! Ψ̇(τn)

=

Z Ψ(t)

0

un−1

(n− 1)!du =
Ψn(t)

n!
,

wherein we made the change of variables, u = Ψ(τn), in the second to last
equality.

Remark 8.20. Eq. (8.15) is equivalent toZ
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

ÃZ
∆1(t)

ψ(τ)dτ

!n

and another way to understand this equality is to view
R
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

as a multiple integral (see Section 20 below) rather than an iterated integral.
Indeed, taking t > 0 for simplicity and letting Sn be the permutation group
on {1, 2, . . . , n} we have

[0, t]n = ∪σ∈Sn{(τ1, . . . , τn) ∈ Rn : 0 ≤ τσ1 ≤ · · · ≤ τσn ≤ t}

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ψ(τ1) . . . ψ(τn) is invariant under permutations,
we find
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0

ψ(τ)dτ

¶n
=

Z
[0,t]n

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(τ1,...,τn)∈Rn:0≤τσ1≤···≤τσn≤t}

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(sσ−11) . . . ψ(sσ−1n)ds

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(s1) . . . ψ(sn)ds

= n!

Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ.

Theorem 8.21. Let φ ∈ BC(J,X), then the integral equation

y(t) = φ(t) +

Z t

0

A(τ)y(τ)dτ (8.16)

has a unique solution given by

y(t) = φ(t) +
∞X
n=1

(−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ (8.17)

and this solution satisfies the bound

kyk∞ ≤ kφk∞ e
R
J
kA(τ)kdτ .

Proof. Define Λ : BC(J,X)→ BC(J,X) by

(Λy)(t) =

Z t

0

A(τ)y(τ)dτ.

Then y solves Eq. (8.14) iff y = φ+ Λy or equivalently iff (I − Λ)y = φ.
An induction argument shows

(Λnφ)(t) =

Z t

0

dτnA(τn)(Λ
n−1φ)(τn)

=

Z t

0

dτn

Z τn

0

dτn−1A(τn)A(τn−1)(Λn−2φ)(τn−1)

...

=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1A(τn) . . . A(τ1)φ(τ1)

= (−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ.
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Taking norms of this equation and using the triangle inequality along with
Lemma 8.19 gives,

k(Λnφ)(t)k ≤ kφk∞ ·
Z
∆n(t)

kA(τn)k . . . kA(τ1)kdτ

≤kφk∞ · 1
n!

ÃZ
∆1(t)

kA(τ)kdτ
!n

≤kφk∞ · 1
n!

µZ
J

kA(τ)kdτ
¶n

.

Therefore,

kΛnkop ≤ 1

n!

µZ
J

kA(τ)kdτ
¶n

(8.18)

and ∞X
n=0

kΛnkop ≤ e
R
J
kA(τ)kdτ <∞

where k·kop denotes the operator norm on L (BC(J,X)) . An application of

Proposition 7.19 now shows (I − Λ)−1 =
∞P
n=0

Λn exists and

°°(I − Λ)−1
°°
op
≤ e

R
J
kA(τ)kdτ .

It is now only a matter of working through the notation to see that these
assertions prove the theorem.

Corollary 8.22. Suppose h ∈ C(J → X) and x ∈ X, then there exits a
unique solution, y ∈ C1 (J,X) , to the linear ordinary differential Eq. (8.13).

Proof. Let

φ (t) = x+

Z t

0

h (τ) dτ.

By applying Theorem 8.21 with and J replaced by any open interval J0 such
that 0 ∈ J0 and J̄0 is a compact subinterval1 of J, there exists a unique
solution yJ0 to Eq. (8.13) which is valid for t ∈ J0. By uniqueness of solutions,
if J1 is a subinterval of J such that J0 ⊂ J1 and J̄1 is a compact subinterval
of J, we have yJ1 = yJ0 on J0. Because of this observation, we may construct
a solution y to Eq. (8.13) which is defined on the full interval J by setting
y (t) = yJ0 (t) for any J0 as above which also contains t ∈ J.

Corollary 8.23. Suppose that A ∈ L(X) is independent of time, then the
solution to

ẏ(t) = Ay(t) with y(0) = x

1 We do this so that φ|J0 will be bounded.
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is given by y(t) = etAx where

etA =
∞X
n=0

tn

n!
An. (8.19)

Moreover,
e(t+s)A = etAesA for all s, t ∈ R. (8.20)

Proof. The first assertion is a simple consequence of Eq. 8.17 and Lemma 8.19
with ψ = 1. The assertion in Eq. (8.20) may be proved by explicit computation
but the following proof is more instructive.
Given x ∈ X, let y (t) := e(t+s)Ax. By the chain rule,

d

dt
y (t) =

d

dτ
|τ=t+seτAx = AeτAx|τ=t+s

= Ae(t+s)Ax = Ay (t) with y (0) = esAx.

The unique solution to this equation is given by

y (t) = etAx (0) = etAesAx.

This completes the proof since, by definition, y (t) = e(t+s)Ax.
We also have the following converse to this corollary whose proof is outlined

in Exercise 8.21 below.

Theorem 8.24. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies
1. (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity) t → Tt is continuous at 0, i.e. kTt − IkL(X) → 0 as

t ↓ 0.
Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.

(8.19).

8.4 Classical Weierstrass Approximation Theorem

Definition 8.25 (Support). Let f : X → Y be a function from a topological
space (X, τX) to a vector space Y. Then we define the support of f by

supp(f) := {x ∈ X : f(x) 6= 0},
a closed subset of X.

Example 8.26. For example if f : R→ R is defined by f(x) = sin(x)1[0,4π](x) ∈
R, then

{f 6= 0} = (0, 4π) \ {π, 2π, 3π}
and therefore supp(f) = [0, 4π].



98 8 The Riemann Integral

Definition 8.27 (Convolution). For f, g ∈ C (R) with either f or g having
compact support, we define the convolution of f and g by

f ∗ g(x) =
Z
R
f(x− y)g(y)dy =

Z
R
f(y)g(x− y)dy.

Lemma 8.28 (Approximate δ — sequences). Suppose that {qn}∞n=1 is a
sequence non-negative continuous real valued functions on R with compact
support that satisfy Z

R
qn(x) dx = 1 and (8.21)

lim
n→∞

Z
|x|≥ε

qn(x)dx = 0 for all ε > 0. (8.22)

If W is a compact subset of Rd and f ∈ BC(R×W ), then

qn ∗ f (x,w) :=
Z
R
qn(y)f(x− y, w)dy

converges to f uniformly on compact subsets of R×W ⊂ Rd+1.
Proof. Let (x,w) ∈ R×W, then because of Eq. (8.21),

|qn ∗ f(x,w)− f(x,w)| =
¯̄̄̄Z
R
qn(y) (f(x− y,w)− f(x,w)) dy

¯̄̄̄
≤
Z
R
qn(y) |f(x− y, w)− f(x,w)| dy.

Let M = sup {|f(x,w)| : (x,w) ∈ R×W} . Then for any ε > 0, using Eq.
(8.21),

|qn ∗ f(x,w)− f(x,w)| ≤
Z
|y|≤ε

qn(y) |f(x− y, w)− f(x,w)| dy

+

Z
|y|>ε

qn(y) |f(x− y,w)− f(x,w)| dy

≤ sup
|z|≤ε

|f(x+ z,w)− f(x,w)|+ 2M
Z
|y|>ε

qn(y)dy.

So if K is a compact subset of R (for example a large interval) we have

sup
(x,w)∈K×W

|qn ∗ f(x,w)− f(x,w)|

≤ sup
|z|≤ε,(x,w)∈K×W

|f(x+ z, w)− f(x,w)|+ 2M
Z
|y|>ε

qn(y)dy
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and hence by Eq. (8.22),

lim sup
n→∞

sup
(x,w)∈K×W

|qn ∗ f(x,w)− f(x,w)|

≤ sup
|z|≤ε,(x,w)∈K×W

|f(x+ z,w)− f(x,w)| .

This finishes the proof since the right member of this equation tends to 0 as
ε ↓ 0 by uniform continuity of f on compact subsets of R×W.
Let qn : R→[0,∞) be defined by

qn(x) :=
1

cn
(1− x2)n1|x|≤1where cn :=

Z 1

−1
(1− x2)ndx. (8.23)

Figure 8.2 displays the key features of the functions qn.

10.50-0.5-1

5

3.75

2.5

1.25

0

x

y

x

y

Fig. 8.2. A plot of q1, q50, and q100. The most peaked curve is q100 and the least is
q1. The total area under each of these curves is one.

Lemma 8.29. The sequence {qn}∞n=1 is an approximate δ — sequence, i.e.
they satisfy Eqs. (8.21) and (8.22).

Proof. By construction, qn ∈ Cc (R, [0,∞)) for each n and Eq. 8.21 holds.
Since
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|x|≥ε

qn(x)dx =
2
R 1
ε
(1− x2)ndx

2
R ε
0
(1− x2)ndx+ 2

R 1
ε
(1− x2)ndx

≤
R 1
ε

x
ε (1− x2)ndxR ε

0
x
ε (1− x2)ndx

=
(1− x2)n+1|1ε
(1− x2)n+1|ε0

=
(1− ε2)n+1

1− (1− ε2)n+1
→ 0 as n→∞,

the proof is complete.

Notation 8.30 Let Z+ := N ∪ {0} and for x ∈ Rd and α ∈ Zd+ let xα =Qd
i=1 x

αi
i and |α| =Pd

i=1 αi. A polynomial on Rd is a function p : Rd → C of
the form

p(x) =
X

α:|α|≤N
pαx

α with pα ∈ C and N ∈ Z+.

If pα 6= 0 for some α such that |α| = N, then we define deg(p) := N to be
the degree of p. The function p has a natural extension to z ∈ Cd, namely
p(z) =

P
α:|α|≤N pαz

α where zα =
Qd

i=1 z
αi
i .

Theorem 8.31 (Weierstrass Approximation Theorem). Suppose that
K ⊂ Rd is a compact subset and f ∈ C(K,C)2 . Then there exists polynomials
pn on Rd such that pn → f uniformly on K.

Proof. Choose λ > 0 and b ∈ Rd such that
K0 := λK − b := {λx− b : x ∈ K} ⊂ Bd

where Bd := (0, 1)d . The function F (y) := f
¡
λ−1 (y + b)

¢
for y ∈ K0 is in

C (K0,C) and if p̂n (y) are polynomials on Rd such that p̂n → F uniformly
on K0 then pn (x) := p̂n (λx− b) are polynomials on Rd such that pn → f
uniformly on K. Hence we may now assume that K is a compact subset of
Bd.
Let g ∈ C (K ∪Bc

d) be defined by

g (x) =

½
f (x) if x ∈ K
0 if x ∈ Bc

d

and then use the Tietze extension Theorem 7.4 to find a continuous function
F ∈ C(Rd,C) such that F = g|K∪Bc

d
. If pn are polynomials on Rd such

2 Note that f is automatically bounded because if not there would exist un ∈ K
such that limn→∞ |f (un)| = ∞. Using Theorem 8.2 we may, by passing to a
subsequence if necessary, assume un → u ∈ K as n→∞ . Now the continuity of
f would then imply

∞ = lim
n→∞

|f (un)| = |f (u)|
which is absurd since f takes values in C.
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that pn → F uniformly on [0, 1]d then pn also converges to f uniformly on
K. Hence, by replacing f by F, we may now assume that f ∈ C(Rd,C),
K = B̄d = [0, 1]

d , and f ≡ 0 on Bc
d.

With qn defined as in Eq. (8.23), x ∈ [0, 1] and w ∈ Rd−1, let

fn(x,w) := (qn ∗ f)(x,w) =
Z
R
qn(x− y)f(y, w)dy

=
1

cn

Z
[0,1]

f(y, w)
£
(1− (x− y)2)n1|x−y|≤1

¤
dy

=
1

cn

Z
[0,1]

f(y, w)(1− (x− y)2)ndy =
2nX
k=0

An
k (w)x

k

where

An
k (w) =

Z
[0,1]

f (y, w) ρnk (y) dy

and ρk is a polynomial function in y for each k. Then An
k (w) = 0 if w /∈

(0, 1)d−1 and using the uniform continuity of f on [0, 1]d , one easily shows
An
k ∈ C

¡
Rd−1,C

¢
. Moreover by Lemmas 8.28 and 8.29, fn(x,w) → f(x,w)

uniformly for (x,w) ∈ [0, 1]d as n → ∞. This completes the proof of d = 1
since then An

k are constants and pn (x) := fn (x) is a polynomial in x.
The case of general d now follows by induction. Indeed, by the inductive

hypothesis there exists polynomial functions ank on Rd−1 such that

sup
w∈[0,1]d−1

|An
k (w)− ank (w)| ≤

1

2 (n+ 1)n
.

Then

pn (x,w) :=
2nX
k=0

ank (w)x
k

is a polynomial function on Rd such that

|f (x,w)− pn (x,w)| ≤ |f (x,w)− fn (x,w)|+ |fn (x,w)− pn (x,w)|

≤ εn +
2nX
k=0

|An
k (w)− ank (w)|xk

≤ εn +
1

n

where
εn := sup

(x,w)∈[0,1]d
|f (x,w)− fn (x,w)|→ 0 as n→∞.

This shows

sup
(x,w)∈[0,1]d

|f (x,w)− pn (x,w)|→ 0 as n→∞

which completes the proof.
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Remark 8.32. The mapping (x, y) ∈ Rd × Rd → z = x + iy ∈ Cd is an
isomorphism of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2
and y = z−z̄

2i . Therefore under this identification any polynomial p(x, y) on
Rd ×Rd may be written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x+ iy, x− iy).

Corollary 8.33 (ComplexWeierstrass Approximation Theorem). Sup-
pose that K ⊂ Cd is a compact set and f ∈ C(K,C). Then there exists poly-
nomials pn(z, z̄) for z ∈ Cd such that supz∈K |pn(z, z̄)− f(z)|→ 0 as n→∞.

Proof. This is an immediate consequence of Theorem 8.31 and Remark 8.32.

Example 8.34. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomi-
als in (z, z̄) restricted to S1. Then A is dense in C(S1).3 Since z̄ = z−1 on S1,
we have shown polynomials in z and z−1 are dense in C(S1). This example
generalizes in an obvious way to K =

¡
S1
¢d ⊂ Cd.

Exercise 8.4. Suppose −∞ < a < b <∞ and f ∈ C ([a, b],C) satisfiesZ b

a

f (t) tndt = 0 for n = 0, 1, 2 . . . .

Show f ≡ 0.
Exercise 8.5. Suppose f ∈ C (R,C) is a 2π — periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) andZ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Example 8.34 to shows that any 2π —
periodic continuous function g on R is the uniform limit of trigonometric
polynomials of the form

p (x) =
nX

k=−n
pke

ikx with pk ∈ C for all k.

3 Note that it is easy to extend f ∈ C(S1) to a function F ∈ C(C) by setting
F (z) = zf( z

|z| ) for z 6= 0 and F (0) = 0. So this special case does not require the
Tietze extension theorem.
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8.5 Iterated Integrals

Theorem 8.35 (Baby Fubini Theorem). Let a, b, c, d ∈ R and f(s, t) ∈ X
be a continuous function of (s, t) for s between a and b and t between c and d.
Then the maps t→ R b

a
f(s, t)ds ∈ X and s→ R d

c
f(s, t)dt are continuous andZ d

c

"Z b

a

f(s, t)ds

#
dt =

Z b

a

"Z d

c

f(s, t)dt

#
ds. (8.24)

Proof. See Exercise 8.7 for a sketch of another, more instructive, proof of this
result. (BRUCE: Drop the following proof and leave it as an exercise.) With
out loss of generality we may assume a < b and c < d. By uniform continuity
of f (Theorem 8.2),

sup
c≤t≤d

kf(s, t)− f(s0, t)k→ 0 as s→ s0

and so by Lemma 8.7Z d

c

f(s, t)dt→
Z d

c

f(s0, t)dt as s→ s0

showing the continuity of s → R d
c
f(s, t)dt. The other continuity assertion is

proved similarly.
Now let

π = {a ≤ s0 < s1 < · · · < sm = b} and π0 = {c ≤ t0 < t1 < · · · < tn = d}

be partitions of [a, b] and [c, d] respectively. For s ∈ [a, b] let sπ = si if s ∈
(si, si+1] and i ≥ 1 and sπ = s0 = a if s ∈ [s0, s1]. Define tπ0 for t ∈ [c, d]
analogously. ThenZ b

a

"Z d

c

f(s, t)dt

#
ds =

Z b

a

"Z d

c

f(s, tπ0)dt

#
ds+

Z b

a

επ0(s)ds

=

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds+ δπ,π0 +

Z b

a

επ0(s)ds

where

επ0(s) =

Z d

c

f(s, t)dt−
Z d

c

f(s, tπ0)dt

and

δπ,π0 =

Z b

a

"Z d

c

{f(s, tπ0)− f(sπ, tπ0)} dt
#
ds.

The uniform continuity of f and the estimates
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sup
s∈[a,b]

kεπ0(s)k ≤ sup
s∈[a,b]

Z d

c

kf(s, t)− f(s, tπ0)k dt

≤ (d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
and

kδπ,π0k ≤
Z b

a

"Z d

c

kf(s, tπ0)− f(sπ, tπ0)k dt
#
ds

≤ (b− a)(d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
allow us to conclude thatZ b

a

"Z d

c

f(s, t)dt

#
ds−

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds→ 0 as |π|+ |π0|→ 0.

By symmetry (or an analogous argument),Z d

c

"Z b

a

f(s, t)ds

#
dt−

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt→ 0 as |π|+ |π0|→ 0.

This completes the proof sinceZ b

a

"Z d

c

f(sπ, tπ0)dt

#
ds =

X
0≤i<m,0≤j<n

f(si, tj)(si+1 − si)(tj+1 − tj)

=

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt.

Proposition 8.36 (Equality of Mixed Partial Derivatives). Let Q =
(a, b) × (c, d) be an open rectangle in R2 and f ∈ C(Q,X). Assume that
∂
∂tf(s, t),

∂
∂sf(s, t) and

∂
∂t

∂
∂sf(s, t) exists and are continuous for (s, t) ∈ Q,

then ∂
∂s

∂
∂tf(s, t) exists for (s, t) ∈ Q and

∂

∂s

∂

∂t
f(s, t) =

∂

∂t

∂

∂s
f(s, t) for (s, t) ∈ Q. (8.25)

Proof. Fix (s0, t0) ∈ Q. By two applications of Theorem 8.13,

f(s, t) = f(st0 , t) +

Z s

s0

∂

∂σ
f(σ, t)dσ

= f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
f(σ, τ) (8.26)

and then by Fubini’s Theorem 8.35 we learn

f(s, t) = f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z t

t0

dτ

Z s

s0

dσ
∂

∂τ

∂

∂σ
f(σ, τ).

Differentiating this equation in t and then in s (again using two more appli-
cations of Theorem 8.13) shows Eq. (8.25) holds.
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8.6 Exercises

Throughout these problems, (X, k·k) is a Banach space.
Exercise 8.6. Show f = (f1, . . . , fn) ∈ S̄([a, b],Rn) iff fi ∈ S̄([a, b],R) for
i = 1, 2, . . . , n andZ b

a

f(t)dt =

ÃZ b

a

f1(t)dt, . . . ,

Z b

a

fn(t)dt

!
.

Here Rn is to be equipped with the usual Euclidean norm. Hint: Use Lemma
8.7 to prove the forward implication.

Exercise 8.7. Prove Theorem 8.35 using the following strategy.

1. Use the results from the proof in the text of Theorem 8.35 that

s→
Z d

c

f(s, t)dt and t→
Z b

a

f(s, t)ds

are continuous maps.
2. For the moment take X = R and prove Eq. (8.24) holds by first proving it
holds when f (s, t) = smtn withm,n ∈ N0. Then use this result along with
Theorem 8.31 to show Eq. (8.24) holds for all f ∈ C ([a, b]× [c, d],R) .

3. For the general case, use the special case proved in item 2. along with
Hahn - Banach theorem.

Exercise 8.8. Give another proof of Proposition 8.36 which does not use
Fubini’s Theorem 8.35 as follows.

1. By a simple translation argument we may assume (0, 0) ∈ Q and we are
trying to prove Eq. (8.25) holds at (s, t) = (0, 0).

2. Let h(s, t) := ∂
∂t

∂
∂sf(s, t) and

G(s, t) :=

Z s

0

dσ

Z t

0

dτh(σ, τ)

so that Eq. (8.26) states

f(s, t) = f(0, t) +

Z s

0

∂

∂σ
f(σ, t0)dσ +G(s, t)

and differentiating this equation at t = 0 shows

∂

∂t
f(s, 0) =

∂

∂t
f(0, 0) +

∂

∂t
G(s, 0). (8.27)

Now show using the definition of the derivative that
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∂

∂t
G(s, 0) =

Z s

0

dσh(σ, 0). (8.28)

Hint: Consider

G(s, t)− t

Z s

0

dσh(σ, 0) =

Z s

0

dσ

Z t

0

dτ [h(σ, τ)− h(σ, 0)] .

3. Now differentiate Eq. (8.27) in s using Theorem 8.13 to finish the proof.

Exercise 8.9. Give another proof of Eq. (8.24) in Theorem 8.35 based on
Proposition 8.36. To do this let t0 ∈ (c, d) and s0 ∈ (a, b) and define

G(s, t) :=

Z t

t0

dτ

Z s

s0

dσf(σ, τ)

Show G satisfies the hypothesis of Proposition 8.36 which combined with two
applications of the fundamental theorem of calculus implies

∂

∂t

∂

∂s
G(s, t) =

∂

∂s

∂

∂t
G(s, t) = f(s, t).

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if t = t0 or s = s0 to conclude

G(s, t) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
G(σ, τ) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ
f(σ, τ). (8.29)

Finally let s = b and t = d in Eq. (8.29) and then let s0 ↓ a and t0 ↓ c to
prove Eq. (8.24).

Exercise 8.10 (Product Rule). Prove items 1. and 2. of Lemma 8.9. This
can be modeled on the standard proof for real valued functions.

Exercise 8.11 (Chain Rule). Prove the chain rule in Proposition 8.10.
Again this may be modeled on the on the standard proof for real valued
functions.

Exercise 8.12. To each A ∈ L (X) , we may define LA, RA : L (X)→ L (X)
by

LAB = AB and RAB = BA for all B ∈ L (X) .

Show LA, RA ∈ L (L (X)) and that

kLAkL(L(X)) = kAkL(X) = kRAkL(L(X)) .

Exercise 8.13. Suppose that A : R → L(X) is a continuous function and
U, V : R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I (8.30)
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and
U̇(t) = −U(t)A(t) with U(0) = I. (8.31)

Prove that V (t) is invertible and that V −1(t) = U(t)4 , where by abuse of
notation I am writing V −1 (t) for [V (t)]−1 . Hints: 1) show d

dt [U(t)V (t)] = 0
(which is sufficient if dim(X) < ∞) and 2) show compute y(t) := V (t)U(t)
solves a linear differential ordinary differential equation that has y ≡ Id as an
obvious solution. (The results of Exercise 8.12 may be useful here.) Then use
the uniqueness of solutions to linear ODEs.

Exercise 8.14. Suppose that (X, k·k) is a Banach space, J = (a, b) with
−∞ ≤ a < b ≤ ∞ and fn : R → X are continuously differentiable functions
such that there exists a summable sequence {an}∞n=1 satisfying

kfn (t)k+
°°°ḟn (t)°°° ≤ an for all t ∈ J and n ∈ N.

Show:

1. sup
n°°°fn(t+h)−fn(t)h

°°° : (t, h) ∈ J ×R 3 t+ h ∈ J and h 6= 0
o
≤ an.

2. The function F : R→ X defined by

F (t) :=
∞X
n=1

fn (t) for all t ∈ J

is differentiable and for t ∈ J,

Ḟ (t) =
∞X
n=1

ḟn (t) .

Exercise 8.15. Suppose that A ∈ L(X). Show directly that:

1. etA define in Eq. (8.19) is convergent in L(X) when equipped with the
operator norm.

2. etA is differentiable in t and that d
dte

tA = AetA.

Exercise 8.16. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of A
with eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that if
X = Rn and A is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn). Here diag(λ1, . . . , λn)
denotes the diagonal matrix Λ such that Λii = λi for i = 1, 2, . . . , n.

Exercise 8.17. Suppose that A,B ∈ L(X) and [A,B] := AB − BA = 0.
Show that e(A+B) = eAeB.

4 The fact that U(t) must be defined as in Eq. (8.31) follows from Lemma 8.9.
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Exercise 8.18. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s, t ∈ R. Show

y(t) := e(
R t
0
A(τ)dτ)x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 8.19. Compute etA when

A =

µ
0 1
−1 0

¶
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.
Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 8.20. Compute etA when

A =

0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is
the 3× 3 identity matrix. Hint: Sum the series.

Exercise 8.21. Prove Theorem 8.24 using the following outline.

1. Using the right continuity at 0 and the semi-group property for Tt, show
there are constants M and C such that kTtkL(X) ≤MCt for all t > 0.

2. Show t ∈ [0,∞)→ Tt ∈ L(X) is continuous.
3. For ε > 0, let Sε := 1

ε

R ε
0
Tτdτ ∈ L(X). Show Sε → I as ε ↓ 0 and

conclude from this that Sε is invertible when ε > 0 is sufficiently small.
For the remainder of the proof fix such a small ε > 0.

4. Show

TtSε =
1

ε

Z t+ε

t

Tτdτ

and conclude from this that

lim
t↓0

µ
Tt − I

t

¶
Sε =

1

ε
(Tε − IdX) .

5. Using the fact that Sε is invertible, conclude A = limt↓0 t−1 (Tt − I) exists
in L(X) and that

A =
1

ε
(Tε − I)S−1ε .

6. Now show, using the semigroup property and step 4., that d
dtTt = ATt for

all t > 0.
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7. Using step 5, show d
dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.

Exercise 8.22 (Duhamel’ s Principle I). Suppose that A : R → L(X) is
a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (8.30). Let x ∈ X and h ∈ C(R,X) be given. Show
that the unique solution to the differential equation:

ẏ(t) = A(t)y(t) + h(t) with y(0) = x (8.32)

is given by

y(t) = V (t)x+ V (t)

Z t

0

V (τ)−1h(τ) dτ. (8.33)

Hint: compute d
dt [V

−1(t)y(t)] (see Exercise 8.13) when y solves Eq. (8.32).

Exercise 8.23 (Duhamel’ s Principle II). Suppose that A : R→ L(X) is
a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (8.30). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be
given. Show that the unique solution to the differential equation:

Ẇ (t) = A(t)W (t) +H(t) with W (0) =W0 (8.34)

is given by

W (t) = V (t)W0 + V (t)

Z t

0

V (τ)−1H(τ) dτ. (8.35)

Exercise 8.24. Give another proof Corollary 8.14 based on Remark 8.12.
Hint: the Hahn Banach theorem implies

kf(b)− f(a)k = sup
λ∈X∗, λ6=0

|λ(f(b))− λ(f(a))|
kλk .




