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Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.
a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c) Integration relative to di erent weights or densities including singular
weights.

d) Characterization of dual spaces.
e) Completeness.

2. Infinite dimensional Linear algebra.
3. ODE and PDE.
4. Harmonic and Fourier Analysis.
5. Probability Theory

1.1 Topology beginnings

Recall the notion of a topology by extrapolating from the open sets on R2
Also recall what it means to be continuous, namely : R is continuous
at if for all 0 there exists such that

( ) ( ) + ( )

1.2 A Better Integral and an Introduction to Measure
Theory

Let R with and let

0( ) :=

Z
( ) for all ([ ])
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denote the Riemann integral. Also let H denote the smallest linear subspace
of bounded functions on [ ] which is closed under bounded convergence and
contains ([ ]) Such a space exists since we can take the intersection over
all such spaces of functions.

Theorem 1.1. There is an extension of 0 to H such that is still linear
and lim ( ) = ( ) for all H with boundedly. Moreover
this extension is unique and is positive in the sense that ( ) 0 if H
and 0

Proof. We will only prove the uniqueness here. Suppose that and are two
such extensions and let

K := { H : ( ) = ( )}
Then K is a linear subspace closed under bounded convergence which contains
([ ]) and hence K = H
The existence of is the hard part. The positivity of can be seen from

the existence construction.

Example 1.2. Here are some examples of functions in H and their integrals:

1. Suppose [ ] [ ] then 1[ ] H and
¡
1[ ]

¢
= (Draw a

picture.)
2.

¡
1{ }

¢
= 0

3. The space H is an algebra, i.e. if H then H To prove this,
first assume that ([ ]) and let

H := { H : H}
Then H is closed under bounded convergence and contains ([ ]) and
hence H = H i.e. the product of a continuous function and an element
in H is back in H
Now suppose that H and again let H be as above. By the same
reasoning we may show again that H = H and this proves the assertion.

4. If H and (R) then H This a consequence of the
Weierstrass approximation Theorem 22.34. In particular | | H and

± :=
| |±
2 H if H

5. If H 0 and =
P

=1 is a bounded function, then H
and

( ) =
X
=1

( ) (1.1)

To prove Eq. (1.1) we have

X
=1

( ) = lim

ÃX
=1

!
= ( )
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6. As an example of item 4., 1Q [ ] =
P

=1 1{ } H and ¡
1Q [ ]

¢
= 0

Here { } =1 is an enumeration of the rational numbers in the interval
[ ]

7. LetM := { [ ] : 1 H} and for M let ( ) := (1 ) Then
M and have the following properties:
a) [ ] M and ( ) = 0 and ([ ]) = Moreover ( ) 0
for all M

b) If M then M and ( ) = ( ) This follows
from the fact that 1 = 1 1

c) If M then M since if 1 = 1 · 1 and H is an
algebra.
Definition: a collection of sets M satisfying a) — c) is called an al-
gebra of subsets of [ ]

d) More generally if M then M since 1 =
lim 1

1
· · · 1 and the convergence is bounded.

Definition: a collection of setsM satisfying a) — d) is called an —
algebra.

e) If M then M Indeed we know M i ( )
M But

( ) = M
by item d. above.

f) If M are pairwise disjoint, then

( ) =
X
=1

( )

To prove this it su ces to observe that 1 =
P

=1 1
g)M is not 2[ ] i.e. M is not all subset of [ ] This is not obvious
and it is not possible to really write down an “explicit” subset [ ]
which is not inM We will prove the existence of such sets later.

8. Fact: M is the smallest — algebra on [ ] which contains all sub-
intervals of [ ]

9. Fact: A bounded function : [ ] R is in H i { } M for all
R

10. Fact: The integral may be recovered from the measure by the formula

( ) = lim
mesh 0

X
0 1 2 3

({ [ ] : ( ) })

We will prove items 8. — 10. later in the course. The proof if Items 9. and
10. is not so hard and the energetic reader may wish to give them a try.

Notation 1.3 The collection of sets M is called the Borel — algebra on
[ ] and the function :M R is called Lebesgue measure. We will usually
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write ( ) as
R
[ ]

and ( ) will be called the Lebesgue integral of This
integral may be extended to all positive functions such that 1| | H for
all by

( ) = lim
¡
1| |

¢
Again, we will come back to all of this again later.

2

Set Operations

Let N denote the positive integers, N0 := N {0} be the non-negative inte-
gers and Z = N0 ( N) — the positive and negative integers including 0 Q
the rational numbers, R the real numbers (see Chapter 3 below), and C the
complex numbers. We will also use F to stand for either of the fields R or C

Notation 2.1 Given two sets and let denote the collection of all
functions : If = N we will say that N is a sequence
with values in and often write for ( ) and express as { } =1

If = {1 2 } we will write in place of {1 2 } and denote
by = ( 1 2 ) where = ( )

Notation 2.2 More generally if { : } is a collection of non-empty
sets, let =

Q
and : be the canonical projection map

defined by ( ) =

Recall that an element is a “choice function,” i.e. an assignment
:= ( ) for each The axiom of choice (See Appendix B.)

states that 6= provided that 6= for each If = for some
fixed space then

Q
=

Notation 2.3 Given a set let 2 denote the power set of — the col-
lection of all subsets of including the empty set.

The reason for writing the power set of as 2 is that if we think of 2
meaning {0 1} then an element of 2 = {0 1} is completely determined
by the set

:= { : ( ) = 1}
In this way elements in {0 1} are in one to one correspondence with subsets
of
For 2 let
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:= \ = { : }
and more generally if let

\ := { : } =
We also define the symmetric di erence of and by

4 := ( \ ) ( \ )

As usual if { } is an indexed collection of subsets of we define the
union and the intersection of this collection by

:= { : 3 } and
:= { : }

Notation 2.4 We will also write
`

for in the case that
{ } are pairwise disjoint, i.e. = if 6=
Notice that is closely related to and is closely related to For

example let { } =1 be a sequence of subsets from and define

{ i.o.} := { : # { : } = } and
{ a.a.} := { : for all su ciently large}.

(One should read { i.o.} as infinitely often and { a.a.} as almost
always.) Then { i.o.} i

N 3
and this may be expressed as

{ i.o.} = =1

Similarly, { a.a.} i
N 3

which may be written as

{ a.a.} = =1

Definition 2.5. A set is said to be countable if is empty or there is an
injective function : N otherwise is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).

1. If is a subset of a countable set then is countable.
2. Any infinite subset N is in one to one correspondence with N
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3. A non-empty set is countable i there exists a surjective map, : N

4. If and are countable then × is countable.
5. Suppose for each N that is a countable subset of a set then

= =1 is countable. In short, the countable union of countable sets
is still countable.

6. If is an infinite set and is a set with at least two elements, then
is uncountable. In particular 2 is uncountable for any infinite set

Proof. 1. If : N is an injective map then so is the restriction, | of
to the subset
2. Let (1) = min and define inductively by

( + 1) = min \ { (1) ( )}
Since is infinite the process continues indefinitely. The function : N
defined this way is a bijection.
3. If : N is a surjective map, let

( ) = min 1 ({ }) = min { N : ( ) = }
Then : N is injective which combined with item 2. (taking = ( ))
shows is countable. Conversely if : N is injective let 0 be
a fixed point and define : N by ( ) = 1( ) for ( ) and
( ) = 0 otherwise.
4. Let us first construct a bijection, from N to N × N To do this put

the elements of N×N into an array of the form
(1 1) (1 2) (1 3)
(2 1) (2 2) (2 3)
(3 1) (3 2) (3 3)
...

...
...

. . .

and then “count” these elements by counting the sets {( ) : + = } one
at a time. For example let (1) = (1 1) (2) = (2 1) (3) = (1 2) (4) =
(3 1) (5) = (2 2) (6) = (1 3) etc. etc.
If : N and : N are surjective functions, then the function

( × ) : N × is surjective where ( × ) ( ) := ( ( ) ( )) for
all ( ) N×N
5. If = then is countable by definition so we may assume 6=

With out loss of generality we may assume 1 6= and by replacing by
1 if necessary we may also assume 6= for all For each N let
: N be a surjective function and then define : N×N =1 by

( ) := ( ) The function is surjective and hence so is the composition,
: N × where : N N×N is the bijection defined above.

6. Let us begin by showing 2N = {0 1}N is uncountable. For sake of
contradiction suppose : N {0 1}N is a surjection and write ( ) as
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( 1 ( ) 2 ( ) 3 ( ) ) Now define {0 1}N by := 1 ( ) By
construction ( ) 6= for all and so (N) This contradicts the
assumption that is surjective and shows 2N is uncountable.
For the general case, since 0 for any subset 0 if 0 is

uncountable then so is In this way we may assume 0 is a two point set
which may as well be 0 = {0 1} Moreover, since is an infinite set we
may find an injective map : N and use this to set up an injection,
: 2N 2 by setting ( ) ( ) = for all N and ( ) ( ) = 0

if { : N} If 2 were countable we could find a surjective map
: 2 N in which case : 2N N would be surjective as well. However

this is impossible since we have already seed that 2N is uncountable.
We end this section with some notation which will be used frequently in

the sequel.

Notation 2.7 If : is a function and E 2 let

1E := 1 (E) := { 1( )| E}

If G 2 let
G := { 2 | 1( ) G}

Definition 2.8. Let E 2 be a collection of sets, : be
the inclusion map ( ( ) = for all ) and

E = 1(E) = { : E}

2.1 Exercises

Let : be a function and { } be an indexed family of subsets of
verify the following assertions.

Exercise 2.1. ( ) =

Exercise 2.2. Suppose that show that \ ( ) = ( \ )

Exercise 2.3. 1( ) = 1( )

Exercise 2.4. 1( ) = 1( )

Exercise 2.5. Find a counter example which shows that ( ) = ( )
( ) need not hold.

3

The Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q =
n

: Z : 6= 0
o

As usual, for Q we define

| | =
½

if 0
if 0

Notice that if Q and | | 1 for all then = 0 Indeed 6= 0 then
| | = for some N and hence | | 1 A similar argument shows

0 i 1 for all N These trivial remarks will be used in the future
without further reference.

Definition 3.1. A sequence { } =1 Q converges to Q if | | 0
as i.e. if for all N | | 1 for a.a. As usual if { } =1

converges to we will write as or = lim

Definition 3.2. A sequence { } =1 Q is Cauchy if | | 0 as
More precisely we require for each N that | | 1 for

a.a. pairs ( )

Exercise 3.1. Show that all convergent sequences { } =1 Q are Cauchy
and that all Cauchy sequences { } =1 are bounded — i.e. there exists N
such that

| | for all N

Exercise 3.2. Suppose { } =1 and { } =1 are Cauchy sequences in Q
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1. Show { + } =1 and { · } =1 are Cauchy.
Now assume that { } =1 and { } =1 are convergent sequences in Q

2. Show { + } =1 { · } =1 are convergent in Q and

lim ( + ) = lim + lim and

lim ( ) = lim · lim

3. If we further assume for all show lim lim (It
su ces to consider the case where = 0 for all )

The rational numbers Q su er from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
3.14 below, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{ } =1 Q which is not convergent in Q

1. Recall that there is no element Q such that 2 = 21. To each N
let N be chosen so that

2

2
2

( + 1)
2

2
(3.1)

and let :=
2. Verify that 2 2 as and that { } =1 is a Cauchy sequence in
Q

3. Show { } =1 does not have a limit in Q

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences = { } =1 Q and say
C are equivalent (write ) i lim | | = 0 (The reader

should check that “ ” is an equivalence relation.)

Definition 3.3. A real number is an equivalence class, ¯ := { C : }
associated to some element C The collection of real numbers will be
denoted by R For Q let ( ) = ¯ where is the constant sequence =
for all N We will simply write 0 for (0) and 1 for (1)

Exercise 3.4. Given ¯ ¯ R show that the definitions

¯ = ( ) ¯ + ¯ := ( + ) and ¯ · ¯ := ·
1 This fact also shows that the intermediate value theorem, (See Theorem 10.57
below.) fails when working with continuous functions defined over Q
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are well defined. Here + and · denote the sequences { } =1

{ + } =1 and { · } =1 respectively. Further verify that with these op-
erations, R becomes a field and the map : Q R is injective homomorphism
of fields. Hint: if ¯ 6= 0 show that ¯ may be represented by a sequence C
with | | 1 for all and some N For this representative show the
sequence 1 :=

©
1
ª

=1
C The multiplicative inverse to ¯ may now be

constructed as: 1¯ = ¯
1 :=

©
1
ª

=1

Definition 3.4. Let ¯ ¯ R Then

1. ¯ 0 if there exists an N such that 1 for a.a.
2. ¯ 0 i either ¯ 0 or ¯ = 0 Equivalently (as the reader should verify),
¯ 0 i for all N 1 for a.a.

3. Write ¯ ¯ or ¯ ¯ if ¯ ¯ 0
4. Write ¯ ¯ or ¯ ¯ if ¯ ¯ 0

Exercise 3.5. Show “ ” make R into a linearly ordered field and the map
: Q R preserves order. Namely if ¯ ¯ R then

1. exactly one of the following relations hold: ¯ ¯ or ¯ ¯ or ¯ = ¯

2. If ¯ 0 and ¯ 0 then ¯ + ¯ 0 and ¯ · ¯ 0
3. If then i ( ) ( )

The absolute value of a real number ¯ is defined analogously to that of
a rational number by

|¯| =
½
¯ if ¯ 0
¯ if ¯ 0

Observe this definition is consistent with our previous definition of the ab-
solute value on Q namely (| |) = | ( )| Also notice that ¯ = 0 (i.e. 0
where 0 denotes the constant sequence of all zeros) i for all N | | 1

for a.a. This is equivalent to saying |¯| ¡
1
¢
for all N i ¯ = 0

Exercise 3.6. Given ¯ ¯ R show¯̄
¯¯
¯̄
= |¯| ¯̄¯¯̄ and ¯̄¯ + ¯¯̄ |¯|+ ¯̄¯¯̄

The latter inequality being referred to as the triangle inequality.

By exercise 3.6,

|¯| = ¯̄¯ ¯+ ¯
¯̄ ¯̄

¯ ¯
¯̄
+
¯̄
¯
¯̄

and hence
|¯| ¯̄

¯
¯̄ ¯̄

¯ ¯
¯̄

and by reversing the roles of ¯ and ¯ we also have¡|¯| ¯̄
¯
¯̄¢
=
¯̄
¯
¯̄ |¯| ¯̄

¯ ¯
¯̄
=
¯̄
¯ ¯

¯̄
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Therefore
¯̄|¯| ¯̄

¯
¯̄¯̄ ¯̄

¯ ¯
¯̄
and in particular if {¯ } =1 R converges to

¯ R then
||¯ | |¯|| |¯ ¯| 0 as

Definition 3.5. A sequence {¯ } =1 R converges to ¯ R if |¯ ¯ | 0
as i.e. if for all N |¯ ¯ | ¡

1
¢
for a.a. As before if

{¯ } =1 converges to ¯ we will write ¯ ¯ as or ¯ = lim ¯

Remark 3.6. The field (Q) is dense in R in the sense that if ¯ R there
exists { } =1 Q such that ( ) ¯ as Indeed, simply let
= where represents ¯ Since is a Cauchy sequence, to any N

there exits N such that

1 1
for all

and therefore µ
1
¶

( ) ¯

µ
1
¶
for all

This shows

| ( ) ¯| = | ( ) ¯|
µ
1
¶
for all

and since is arbitrary that ( ) ¯ as

Definition 3.7. A sequence {¯ } =1 R is Cauchy if |¯ ¯ | 0 as
More precisely we require for each N that |¯ ¯ | ¡

1
¢

for a.a. pairs ( )

Exercise 3.7. The analogues of the results in Exercises 3.1 and 3.2 hold with
Q replaced by R (We now say a subset R is bounded if there exists

N such that | | ( ) for all )

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Proof. Suppose that {¯ ( )} =1 is a Cauchy sequence in R By Remark 3.6,
we may choose Q such that

|¯ ( ) ( )| ¡
1
¢
for all N

Given N choose N such that |¯ ( ) ¯ ( )| ¡
1
¢
for all

Then
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| ( ) ( )| | ( ) ¯ ( )|+ |¯ ( ) ¯ ( )|+ |¯ ( ) ( )|¡
1
¢
+

¡
1
¢
+
¡

1
¢

and therefore

| | 1 + 1 + 1 for all

It now follows that = { } =1 C and therefore represents a point ¯ R
Using Remark 3.6 and the triangle inequality,

|¯ ( ) |̄ |¯ ( ) ( )|+ | ( ) |̄¡
1
¢
+ | ( ) |̄ 0 as

and therefore lim ¯ ( ) = ¯

Definition 3.9. A number R is an upper bound for a set R if
for all and a number R is an lower bound for a set

R if for all Upper and lower bounds need not exist. If
has upper (lower) bound, is said to be bounded from above (below).

Theorem 3.10. To each non-empty set R which is bounded from above
(below) there is a unique least upper bound denoted by sup R (respec-
tively greatest lower bound denoted by inf R)

Proof. Suppose is bounded from above and for each N let Z be
the smallest integer such that

¡
2

¢
is an upper bound for The sequence

:= 2 is Cauchy because [ 2 ] Q for all i.e.

| | 2 min( ) 0 as

Passing to the limit, in the inequality ( ) , which is valid for
all implies

¯= lim ( ) for all

Thus ¯ is an upper bound for
If there were another upper bound R for such that ¯ it would

follow that ( ) ¯ for some But this is a contradiction because
{ } =1 is a decreasing sequence, ( ) ( ) for all and therefore
( ) ¯ for all Therefore ¯ is the unique least upper bound for The
existence of lower bounds is proved analogously.

Proposition 3.11. If { } =1 R is an increasing (decreasing) sequence
which is bounded from above (below), then { } =1 is convergent and

lim = sup { : N} ( lim = inf { : N})

If R is a set bounded from above then there exists { } such that
:= sup as i.e. { } is increasing and lim =
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Proof. Let := sup { : N} then for each N there must exist
N such that

¡
1
¢

Since is increasing, it follows
that ¡

1
¢

for all

From this we conclude that lim exists and lim =
If = sup for each N we may choose such that¡

1
¢

(3.2)

By replacing by max { 1 }2 if necessary we may assume that is
increasing in It now follows easily from Eq. (3.2) that lim =

3.1.1 The Decimal Representation of a Real Number

Let R or Q Z and :=
P

= If = 1 then
P

= =
+ 1 while for 6= 1

= +1

and solving for gives the important geometric summation formula,

X
=

=
+1

1
if 6= 1 (3.3)

Taking = 10 1 in Eq. (3.3) implies

X
=

10 =
10 ( +1) 10

10 1 1
=

1

10 1

1 10 ( )

9

and in particular, for all

lim
X
=

10 =
1

9 · 10 1

X
=

10

Let D denote those sequences {0 1 2 9}Z with the following prop-
erties:

1. there exists N such that = 0 for all and
2. 6= 0 for some Z
2 The notation, max denotes sup along with the assertion that sup
Similarly, min = inf along with the assertion that inf
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Associated to each D is the sequence = ( ) defined by

:=
X
=

10

Since for

| | =
¯̄̄̄
¯ X
= +1

10

¯̄̄̄
¯ 9

X
= +1

10 9
1

9 · 10 =
1

10

it follows that

| | 1

10min( )
0 as

Therefore = ( ) C and we may define a map : {±1}×D R defined
by ( ) = ( ) As is customary we will denote ( ) = ( ) as

· 0 1 2 (3.4)

where is the largest integer in Z such that = 0 for all If 0
the expression in Eq. (3.4) should be interpreted as

· 0 0 0 +1

An element D has a tail of all 9’s starting at N if = 9 and for
all and 1 6= 9 If has a tail of 9’s starting at N then for

( ) =
1X

=

10 + 9
X
=

10

=
1X

=

10 +
9

10 1
· 1 10 ( )

9

1X
=

10 + 10 ( 1) as

If 0 is the digits in the decimal expansion of
P 1

= 10 + 10 ( 1)

then
0 D0 := { D : does not have a tail of all 9’s}

and we have just shown that ( ) = ( 0) In particular this implies

({±1} ×D0) = ({±1} ×D) (3.5)
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Theorem 3.12 (Decimal Representation). The map

: {±1} ×D0 R\ {0}
is a bijection.

Proof. Suppose ( ) = ( ) for some ( ) and ( ) in {±1} × D
Since ( ) 0 if = 1 and ( ) 0 if = 1 it follows that = Let
= ( ) and = ( ) be the sequences associated to and respectively.

Suppose that 6= and let Z be the position where and first
disagree, i.e. = for all while 6= For sake of definiteness
suppose Then for we have

= ( ) 10 +
X
= +1

( ) 10

10 9
X
= +1

10 10 9
1

9 · 10 = 0

Therefore 0 for all and lim ( ) = 0 i = +1 and = 9
and = 0 for all In summary, ( ) = ( ) with 6= implies
either or has an infinite tail of nines which shows that is injective when
restricted to {±1} ×D0
To see that is surjective it su ces to show any ¯ R with 0 ¯ 1 is

in the range of For each N let = 1 with {0 1 2 9}
such that

( ) ¯ ( ) +
¡
10

¢
(3.6)

Since +1 = + +110
( +1) for some +1 {0 1 2 9} we see that

+1 = 1 +1 i.e. the first digits in the decimal expansion of +1

are the same as in the decimal expansion of Hence this defines uniquely
for all 1 By setting = 0 when 0 we have constructed from ¯ an
element D Because of Eq. (3.6), (1 ) = ¯

Notation 3.13 From now on we will identify Q with (Q) R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form 10 for some Z and N) has a unique decimal expansion.

Corollary 3.14. The set (0 1) := { R : 0 1} is uncountable while
Q (0 1) is countable.

Proof. By Theorem 3.12, the set {0 1 2 8}N can be mapped injectively
into (0 1) and therefore it follows from Lemma 2.6 that (0 1) is uncountable.
For each N let :=

©
: N with

ª
Since Q (0 1) =

=1 and #( ) for all another application of Lemma 2.6 shows
Q (0 1) is countable.
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3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R2 equipped with multipli-
cation rule

( )( ) := ( + ) (3.7)

and the usual rule for vector addition. As is standard we will write 0 = (0 0)
1 = (1 0) and = (0 1) so that every element of C may be written as
= 1 + which in the future will be written simply as = + If
= + let Re = and Im =

Writing = + and = + the multiplication rule in Eq. (3.7)
becomes

( + )( + ) := ( ) + ( + ) (3.8)

and in particular 12 = 1 and 2 = 1

Proposition 3.16. The complex numbers C with the above multiplication
rule satisfies the usual definitions of a field. For example = and
( 1 + 2) = 1 + 2 etc. Moreover if 6= 0 has a multiplicative
inverse given by

1 =
2 + 2 2 + 2

(3.9)

Proof. The proof is a straightforward verification. Only the last assertion will
be verified here. Suppose = + 6= 0 we wish to find = + such that

= 1 and this happens by Eq. (3.8) i

= 1 and (3.10)

+ = 0 (3.11)

Solving these equations for and gives = 2+ 2 and = 2+ 2 as claimed.

Notation 3.17 (Conjugation and Modulus) If = + with R
let ¯ = and

| | := ¯ =
p

2 + 2 =

q
|Re |2 + |Im |2

See Exercise 3.8 for the existence of the square root as a positive real number.

Notice that

Re =
1

2
( + ¯) and Im =

1

2
( ¯) (3.12)

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1. ¯ =
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2. = ¯¯ and ¯+ ¯ = +
3. | |̄ = | |
4. | | = | | | | and in particular | | = | | for all N
5. |Re | | | and |Im | | |
6. | + | | |+ | |
7. = 0 i | | = 0
8. If 6= 0 then 1 := ¯

| |2 (also written as
1 ) is the inverse of

9.
¯̄

1
¯̄
= | | 1 and more generally | | = | | for all Z

Proof. All of these properties are direct computations except for possibly the
triangle inequality in item 6 which is verified by the following computation:

| + |2 = ( + ) ( + ) = | |2 + | |2 + ¯+ ¯

= | |2 + | |2 + ¯+ ¯

= | |2 + | |2 + 2Re ( ¯) | |2 + | |2 + 2 | | | |
= (| |+ | |)2

Definition 3.19. A sequence { } =1 C is Cauchy if | | 0 as
and is convergent to C if | | 0 as As usual

if { } =1 converges to we will write as or = lim

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if = + C then

1. { } =1 C is Cauchy i { } =1 R and { } =1 R are Cauchy
and

2. = + as i and as

3.3 Exercises

Exercise 3.8. Show to every R with 0 there exists a unique number
R such that 0 and 2 = Of course we will call = Also show

that is an increasing function on [0 ) Hint: To construct =
for 0 to each N let N0 be chosen so that

2

2

( + 1)2

2
i.e.

µ
2

2

¶ Ã
( + 1)2

2

!

and let := Then show = { } =1 R satisfies 0 and 2 =

4

Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R̄ := R {± } i.e. it
is R with two new points called and We use the following conventions,
± · 0 = 0 ± + = ± for any R + = and =
while is not defined. A sequence R̄ is said to converge to
( ) if for all R there exists N such that ( ) for
all

Lemma 4.2. Suppose { } =1 and { } =1 are convergent sequences in R̄
then:

1. If for a.a. then lim lim
2. If R̄ lim ( ) = lim
3. If { + } =1 is convergent and

lim ( + ) = lim + lim (4.1)

provided the right side is not of the form
4. { } =1 is convergent and

lim ( ) = lim · lim (4.2)

provided the right hand side is not of the for · 0
Before going to the proof consider the simple example where = and
= with 0 Then

lim ( + ) =
if 1

0 if = 1
if 1

while
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lim + lim “ = ”

This shows that the requirement that the right side of Eq. (4.1) is not of form
is necessary in Lemma 4.2. Similarly by considering the examples

= and = with 0 shows the necessity for assuming right hand
side of Eq. (4.2) is not of the form · 0
Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (4.1). Let := lim and = lim Case 1.,

suppose = in which case we must assume In this case, for every
0 there exists such that and 1 for all and

this implies
+ + 1 for all

Since is arbitrary it follows that + as = The cases
where = or = ± are handled similarly.
Case 2. If R then for every 0 there exists N such that

| | and | | for all

Therefore,

| + ( + )| = | + | | |+ | | 2

for all Since is arbitrary, it follows that lim ( + ) = +
Proof of Eq. (4.2). It will be left to the reader to prove the case

where lim and lim exist in R I will only consider the case where
= lim 6= 0 and lim = here. Let us also suppose that
0 (the case 0 is handled similarly) and let := min

¡
2 1
¢
Given any

there exists N such that and for all and
for this choice of for all Since 0 is fixed and is
arbitrary it follows that lim ( ) = as desired.
For any subset R̄ let sup and inf denote the least upper bound and

greatest lower bound of respectively. The convention being that sup =
if or is not bounded from above and inf = if or is
not bounded from below. We will also use the conventions that sup =
and inf = +

Notation 4.3 Suppose that { } =1 R̄ is a sequence of numbers. Then

lim inf = lim inf{ : } and (4.3)

lim sup = lim sup{ : } (4.4)

We will also write lim for lim inf and lim for lim sup

4.1 Limsups, Liminfs and Extended Limits 23

Remark 4.4. Notice that if := inf{ : } and := sup{ :
} then { } is an increasing sequence while { } is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R̄ and

lim inf = sup inf{ : } and
lim sup = inf sup{ : }

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 4.5. Let { } =1 and { } =1 be two sequences of real numbers.
Then

1. lim inf lim sup and lim exists in R̄ i lim inf
lim sup R̄

2. There is a subsequence { } =1 of { } =1 such that lim =
lim sup

3.
lim sup ( + ) lim sup + lim sup (4.5)

whenever the right side of this equation is not of the form
4. If 0 and 0 for all N then

lim sup ( ) lim sup · lim sup (4.6)

provided the right hand side of (4.6) is not of the form 0 · or · 0
Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ : } sup{ : }

lim inf lim sup

Now suppose that lim inf = lim sup = R Then for all
0 there is an integer such that

inf{ : } sup{ : } +

i.e.
+ for all

Hence by the definition of the limit, lim =
If lim inf = then we know for all (0 ) there is an integer
such that

inf{ : }
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and hence lim = The case where lim sup = is handled
similarly.
Conversely, suppose that lim = R̄ exists. If R then for

every 0 there exists ( ) N such that | | for all ( )
i.e.

+ for all ( )

From this we learn that

lim inf lim sup +

Since 0 is arbitrary, it follows that

lim inf lim sup

i.e. that = lim inf = lim sup
If = then for all 0 there exists ( ) such that for all
( ) This show that lim inf and since is arbitrary it

follows that
lim inf lim sup

The proof for the case = is analogous to the = case.

4.2 Sums of positive functions

In this and the next few sections, let and be two sets. We will write
to denote that is a finite subset of and write 2 for those

Definition 4.6. Suppose that : [0 ] is a function and is a
subset, then

X
=
X

( ) := sup

(X
( ) :

)

Remark 4.7. Suppose that = N = {1 2 3 } and : [0 ] then

X
N

=
X
=1

( ) := lim
X
=1

( )

Indeed for all
P

=1 ( )
P

N and thus passing to the limit we learn
that X

=1

( )
X
N

4.2 Sums of positive functions 25

Conversely, if N then for all large enough so that {1 2 }
we have

P P
=1 ( ) which upon passing to the limit implies that

X X
=1

( )

Taking the supremum over in the previous equation showsX
N

X
=1

( )

Remark 4.8. Suppose : [0 ] and
P

then { : ( ) 0}
is at most countable. To see this first notice that for any 0 the set
{ : ( ) } must be finite for otherwise P = Thus

{ : ( ) 0} =
[

=1{ : ( ) 1 }

which shows that { : ( ) 0} is a countable union of finite sets and
thus countable by Lemma 2.6.

Lemma 4.9. Suppose that : [0 ] are two functions, thenX
( + ) =

X
+
X

andX
=

X
for all 0

I will only prove the first assertion, the second being easy. Let be
a finite set, then X

( + ) =
X

+
X X

+
X

which after taking sups over shows thatX
( + )

X
+
X

Similarly, if thenX
+
X X

+
X

=
X
( + )

X
( + )

Taking sups over and then shows thatX
+
X X

( + )
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Lemma 4.10. Let and be sets, × and suppose that : R̄
is a function. Let := { : ( ) } and := { : ( ) }
Then

sup
( )

( ) = sup sup ( ) = sup sup ( ) and

inf
( )

( ) = inf inf ( ) = inf inf ( )

(Recall the conventions: sup = and inf = + )

Proof. Let = sup( ) ( ) := sup ( ) Then ( )
for all ( ) implies = sup ( ) and therefore that

sup sup ( ) = sup (4.7)

Similarly for any ( )

( ) sup = sup sup ( )

and therefore
sup

( )

( ) sup sup ( ) = (4.8)

Equations (4.7) and (4.8) show that

sup
( )

( ) = sup sup ( )

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function

Fig. 4.1. The and — slices of a set ×
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Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that : [0 ] is an increasing sequence of functions and

( ) := lim ( ) = sup ( )

Then
lim

X
=
X

Proof. We will give two proves. For the first proof, let

2 := { : }

Then

lim
X

= sup
X

= sup sup
2

X
= sup

2

sup
X

= sup
2

lim
X

= sup
2

X
lim

= sup
2

X
=
X

(Second Proof.) Let =
P

and =
P

Since for
all it follows that

which shows that lim exists and is less that i.e.

:= lim
X X

(4.9)

Noting that
P P

= for all and in particular,X
for all and

Letting tend to infinity in this equation shows thatX
for all

and then taking the sup over all givesX
= lim

X
(4.10)

which combined with Eq. (4.9) proves the theorem.
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Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that : [0 ]
is a sequence of functions, thenX

lim inf lim inf
X

Proof. Define := inf so that lim inf as Since

for all X X
for all

and therefore X
lim inf

X
for all

We may now use the monotone convergence theorem to let to findX
lim inf =

X
lim

MCT
= lim

X
lim inf

X

Remark 4.13. If =
P

then for all 0 there exists
such that X
for all containing or equivalently,¯̄̄̄

¯ X ¯̄̄̄
¯ (4.11)

for all containing . Indeed, choose so that
P

4.3 Sums of complex functions

Definition 4.14. Suppose that : C is a function, we say thatX
=
X

( )

exists and is equal to C if for all 0 there is a finite subset
such that for all containing we have¯̄̄̄

¯ X ¯̄̄̄
¯

4.3 Sums of complex functions 29

The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that : C are two functions such that
P

and
P

exist, then
P

( + ) exists for all C andX
( + ) =

X
+

X
Definition 4.16 (Summable). We call a function : C summable
if X

| |

Proposition 4.17. Let : C be a function, then
P

exists iP | | i.e. i is summable. Moreover if is summable, then¯̄̄̄
¯X

¯̄̄̄
¯ X

| |

Proof. If
P | | then

P
(Re )± and

P
(Im )± and

hence by Remark 4.13 these sums exists in the sense of Definition 4.14. There-
fore by Lemma 4.15,

P
exists and

X
=
X

(Re )
+

X
(Re ) +

ÃX
(Im )

+
X

(Im )

!

Conversely, if
P | | = then, because | | |Re | + |Im | we must

have X
|Re | = or

X
|Im | =

Thus it su ces to consider the case where : R is a real function. Write
= + where

+( ) = max( ( ) 0) and ( ) = max( ( ) 0) (4.12)

Then | | = + + and

=
X

| | =
X

+ +
X

which shows that either
P

+ = or
P

= Suppose, with out loss
of generality, that

P
+ = Let 0 := { : ( ) 0} then we know

that
P

0 = which means there are finite subsets 0 such
that

P
for all Thus if is any finite set, it follows that

lim
P

= and therefore
P

can not exist as a number in R
Finally if is summable, write

P
= with 0 and R then



30 4 Limits and Sums¯̄̄̄
¯X

¯̄̄̄
¯ = =

X
=
X

=
X

Re
£ ¤ X¡

Re
£ ¤¢+

X¯̄
Re
£ ¤¯̄ X¯̄ ¯̄ X

| |

Alternatively, this may be proved by approximating
P

by a finite sum and
then using the triangle inequality of |·|
Remark 4.18. Suppose that = N and : N C is a sequence, then it is
not necessarily true that

X
=1

( ) =
X
N

( ) (4.13)

This is because X
=1

( ) = lim
X
=1

( )

depends on the ordering of the sequence where as
P

N ( ) does not. For
example, take ( ) = ( 1) then

P
N | ( )| = i.e.

P
N ( ) does

not exist while
P

=1 ( ) does exist. On the other hand, if

X
N

| ( )| =
X
=1

| ( )|

then Eq. (4.13) is valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that : C is a sequence of functions on such that ( ) =
lim ( ) C exists for all Further assume there is a dominat-
ing function : [0 ) such that

| ( )| ( ) for all and N (4.14)

and that is summable. Then

lim
X

( ) =
X

( ) (4.15)

Proof. Notice that | | = lim | | so that is summable. By considering
the real and imaginary parts of separately, it su ces to prove the theorem
in the case where is real. By Fatou’s Lemma,

4.3 Sums of complex functions 31X
( ± ) =

X
lim inf ( ± ) lim inf

X
( ± )

=
X

+ lim inf

Ã
±
X !

Since lim inf ( ) = lim sup we have shown,X
±
X X

+

½
lim inf

P
lim sup

P
and therefore

lim sup
X X

lim inf
X

This shows that lim
P

exists and is equal to
P

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that | |
and in particular that is summable. Given 0 let such thatX

\

Then for such that¯̄̄̄
¯̄X X ¯̄̄̄

¯̄ =
¯̄̄̄
¯̄X ( )

¯̄̄̄
¯̄X

| | =
X

| |+
X
\
| |

X
| |+ 2

X
\X

| |+ 2

and hence that ¯̄̄̄
¯̄X X ¯̄̄̄

¯̄ X
| |+ 2

Since this last equation is true for all such we learn that¯̄̄̄
¯X X ¯̄̄̄

¯ X
| |+ 2

which then implies that
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lim sup

¯̄̄̄
¯X X ¯̄̄̄

¯ lim sup
X

| |+ 2

= 2

Because 0 is arbitrary we conclude that

lim sup

¯̄̄̄
¯X X ¯̄̄̄

¯ = 0
which is the same as Eq. (4.15).

Remark 4.20. Theorem 4.19 may easily be generalized as follows. Suppose
are summable functions on such that and pointwise,

| | and
P P

as Then is summable and Eq. (4.15)
still holds. For the proof we use Fatou’s Lemma to again concludeX

( ± ) =
X

lim inf ( ± ) lim inf
X

( ± )

=
X

+ lim inf

Ã
±
X !

and then proceed exactly as in the first proof of Theorem 4.19.

4.4 Iterated sums and the Fubini and Tonelli Theorems

Let and be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that : C is function and is a subset
such that ( ) = 0 for all Then

P
exists i

P
exists and when

the sums exists, X
=
X

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose that : ×
[0 ] then X

×
=
XX

=
XX

Proof. It su ces to show, by symmetry, thatX
×

=
XX

Let × The for any and such that × we
have

4.4 Iterated sums and the Fubini and Tonelli Theorems 33X X
×

=
XX XX XX

i.e.
P P P

Taking the sup over in this last equation showsX
×

XX
For the reverse inequality, for each choose such that

as and X
( ) = lim

X
( )

If is a given finite subset of thenX
( ) = lim

X
( ) for all

where := HenceXX
( ) =

X
lim

X
( ) = lim

X X
( )

= lim
X

( ) ×
( )

X
×

Since is arbitrary, it follows thatXX
( ) = sup

XX
( )

X
×

which completes the proof.

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that : ×
C is a summable function, i.e. by Theorem 4.22 any one of the following

equivalent conditions hold:

1.
P

× | |
2.
P P | | or

3.
P P | |
Then X

×
=
XX

=
XX

Proof. If : R is real valued the theorem follows by applying Theorem
4.22 to ± — the positive and negative parts of The general result holds for
complex valued functions by applying the real version just proved to the
real and imaginary parts of



34 4 Limits and Sums

4.5 Exercises

Exercise 4.1. Now suppose for each N := {1 2 } that : R is
a function. Let

:= { : lim ( ) = + }
show that

= =1 =1 { : ( ) } (4.16)

Exercise 4.2. Let : R be as in the last problem. Let

:= { : lim ( ) exists in R}

Find an expression for similar to the expression for in (4.16). (Hint: use
the Cauchy criteria for convergence.)

4.5.1 Limit Problems

Exercise 4.3. Prove Lemma 4.15. BRUCE: Move 4.3 and 4.4 after 4.8.

Exercise 4.4. Prove Lemma 4.21.

Let { } =1 and { } =1 be two sequences of real numbers.

Exercise 4.5. Show lim inf ( ) = lim sup

Exercise 4.6. Suppose that lim sup = R̄ show that there is a
subsequence { } =1 of { } =1 such that lim =

Exercise 4.7. Show that

lim sup( + ) lim sup + lim sup (4.17)

provided that the right side of Eq. (4.17) is well defined, i.e. no or
+ type expressions. (It is OK to have + = or =

etc.)

Exercise 4.8. Suppose that 0 and 0 for all N Show

lim sup( ) lim sup · lim sup (4.18)

provided the right hand side of (4.18) is not of the form 0 · or · 0
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4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 For 0 R and 0 let 0( ) := { R : | 0| }
be the ball in R centered at 0 with radius

Exercise 4.9. Suppose R is a set and 0 is a point such that
(

0
( ) \ { 0}) 6= for all 0 Let : \ { 0} C be a function

on \ { 0} Show that lim 0
( ) exists and is equal to C 1 i for all

sequences { } =1 \ { 0} which converge to 0 (i.e. lim = 0)
we have lim ( ) =

Exercise 4.10. Suppose that is a set, R is a set, and : × C
is a function satisfying:

1. For each the function ( ) is continuous on 2

2. There is a summable function : [0 ) such that

| ( )| ( ) for all and

Show that
( ) :=

X
( ) (4.19)

is a continuous function for

Exercise 4.11. Suppose that is a set, = ( ) R is an interval, and
: × C is a function satisfying:

1. For each the function ( ) is di erentiable on
2. There is a summable function : [0 ) such that¯̄̄̄

( )

¯̄̄̄
( ) for all and

3. There is a 0 such that
P | ( 0 )|

Show:

a) for all that
P | ( )|

1 More explicitly, lim 0 ( ) = means for every every 0 there exists a
0 such that

| ( ) | whenerver ( 0( ) \ { 0})

2 To say := (· ) is continuous on means that : C is continuous relative
to the metric on R restricted to
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b) Let ( ) :=
P

( ) show is di erentiable on and that

˙ ( ) =
X

( )

(Hint: Use the mean value theorem.)

Exercise 4.12 (Di erentiation of Power Series). Suppose 0 and
{ } =0 is a sequence of complex numbers such that

P
=0 | | for

all (0 ) Show, using Exercise 4.11, ( ) :=
P

=0 is continuously
di erentiable for ( ) and

0( ) =
X
=0

1 =
X
=1

1

Exercise 4.13. Show the functions

:=
X
=0

!
(4.20)

sin :=
X
=0

( 1)
2 +1

(2 + 1)!
and (4.21)

cos =
X
=0

( 1)
2

(2 )!
(4.22)

are infinitely di erentiable and they satisfy

= with 0 = 1

sin = cos with sin (0) = 0

cos = sin with cos (0) = 1

Exercise 4.14. Continue the notation of Exercise 4.13.

1. Use the product and the chain rule to show,h
( + )

i
= 0

and conclude from this, that ( + ) = for all R In particular
taking = 0 this implies that = 1 and hence that ( + ) =
Use this result to show as and 0 as

2. Use the product rule to show¡
cos2 + sin2

¢
= 0

and use this to conclude that cos2 + sin2 = 1 for all R
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Exercise 4.15. Let { } = be a summable sequence of complex numbers,
i.e.

P
= | | For 0 and R define

( ) =
X
=

2

where as usual = cos( ) + sin( ) this is motivated by replacing in Eq.
(4.20) by and comparing the result to Eqs. (4.21) and (4.22).

1. ( ) is continuous for ( ) [0 )×R Hint: Let = Z and = ( )
and use Exercise 4.10.

2. ( ) ( ) and 2 ( ) 2 exist for 0 and R
Hint: Let = Z and = for computing ( ) and = for
computing ( ) and 2 ( ) 2 See Exercise 4.11.

3. satisfies the heat equation, namely

( ) = 2 ( ) 2 for 0 and R
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`p — spaces, Minkowski and Holder Inequalities

In this chapter, let : (0 ) be a given function. Let F denote either
R or C For (0 ) and : F let

k k := (
X

| ( )| ( ))1

and for = let
k k = sup {| ( )| : }

Also, for 0 let

( ) = { : F : k k }

In the case where ( ) = 1 for all we will simply write ( ) for ( )

Definition 5.1. A norm on a vector space is a function k·k : [0 )
such that

1. (Homogeneity) k k = | | k k for all F and
2. (Triangle inequality) k + k k k+ k k for all
3. (Positive definite) k k = 0 implies = 0

A pair ( k·k) where is a vector space and k·k is a norm on is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.2. For [1 ] ( ( ) k · k ) is a normed vector space.
Proof. The only di culty is the proof of the triangle inequality which is the
content of Minkowski’s Inequality proved in Theorem 5.8 below.
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Proposition 5.3. Let : [0 ) [0 ) be a continuous strictly increasing
function such that (0) = 0 (for simplicity) and lim ( ) = Let = 1

and for 0 let

( ) =

Z
0

( 0) 0 and ( ) =

Z
0

( 0) 0

Then for all 0
( ) + ( )

and equality holds i = ( )

Proof. Let

:= {( ) : 0 ( ) for 0 } and
:= {( ) : 0 ( ) for 0 }

then as one sees from Figure 5.1, [0 ]× [0 ] (In the figure: = 3
= 1 3 is the region under = ( ) for 0 3 and 1 is the region to
the left of the curve = ( ) for 0 1 ) Hence if denotes the area of a
region in the plane, then

= ([0 ]× [0 ]) ( ) + ( ) = ( ) + ( )

As it stands, this proof is a bit on the intuitive side. However, it will
become rigorous if one takes to be Lebesgue measure on the plane which
will be introduced later.
We can also give a calculus proof of this theorem under the additional

assumption that is 1 (This restricted version of the theorem is all we need
in this section.) To do this fix 0 and let

( ) = ( ) =

Z
0

( ( ))

If ( ) = 1( ) then ( ) 0 and hence if ( ) we have

( ) =

Z
0

( ( )) =

Z ( )

0

( ( )) +

Z
( )

( ( ))Z ( )

0

( ( )) = ( ( ))

Combining this with (0) = 0 we see that ( ) takes its maximum at some
point (0 ] and hence at a point where 0 = 0( ) = ( ) The only
solution to this equation is = ( ) and we have thus shown

( ) = ( )

Z ( )

0

( ( )) = ( ( ))
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with equality when = ( ) To finish the proof we must show
R ( )

0
(

( )) = ( ) This is verified by making the change of variables = ( )
and then integrating by parts as follows:Z ( )

0

( ( )) =

Z
0

( ( ( ))) 0( ) =

Z
0

( ) 0( )

=

Z
0

( ) = ( )

43210

4

3

2

1

0

s

t

s

t

Fig. 5.1. A picture proof of Proposition 5.3.

Definition 5.4. The conjugate exponent [1 ] to [1 ] is := 1
with the conventions that = if = 1 and = 1 if = Notice that is
characterized by any of the following identities:

1
+
1
= 1 1 + = = 1 and ( 1) = (5.1)

Lemma 5.5. Let (1 ) and := 1 (1 ) be the conjugate exponent.
Then

+ for all 0

with equality if and only if =

Proof. Let ( ) = for 1 Then ( ) = 1 = and ( ) =
1
1 = 1

wherein we have used 1 = ( 1) 1 = 1 ( 1) Therefore ( ) =
and hence by Proposition 5.3,
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+

with equality i = 1 i.e. = ( 1) =
For those who do not want to use Proposition 5.3, here is a direct calculus

proof. Fix 0 and let

( ) :=

Then (0) = 0 lim ( ) = and 0 ( ) = 1 which equals zero
i =

1
1 Since³

1
1

´
=

1
1

1

= 1

1

=

µ
1

1
¶
=

it follows from the first derivative test that

max = max
n
(0)

³
1
1

´o
= max

½
0

¾
=

So we have shown

with equality i = 1

Theorem 5.6 (Hölder’s inequality). Let [1 ] be conjugate expo-
nents. For all : F

k k1 k k · k k (5.2)

If (1 ) and and are not identically zero, then equality holds in Eq.
(5.2) i µ | |

k k
¶
=

µ | |
k k

¶
(5.3)

Proof. The proof of Eq. (5.2) for {1 } is easy and will be left to the
reader. The cases where k k = 0 or or k k = 0 or are easily dealt
with and are also left to the reader. So we will assume that (1 ) and
0 k k k k Letting = | ( )| k k and = | | k k in Lemma 5.5
implies

| ( ) ( )|
k k k k

1 | ( )|
k k +

1 | ( )|
k k

with equality i
| ( )|
k k = = =

| ( )|
k k (5.4)

Multiplying this equation by ( ) and then summing on gives
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k k1
k k k k

1
+
1
= 1

with equality i Eq. (5.4) holds for all i.e. i Eq. (5.3) holds.

Definition 5.7. For a complex number C let

sgn( ) =

½
| | if 6= 0
0 if = 0

For C we will write sgn( ) $ sgn( ) if either = 0 or 6= 0 and
sgn( ) = sgn( )

Theorem 5.8 (Minkowski’s Inequality). If 1 and ( )
then

k + k k k + k k (5.5)

Moreover, assuming and are not identically zero, equality holds in Eq.
(5.5) i

sgn( ) $ sgn( ) when = 1 and

= for some 0 when (1 )

Proof. For = 1

k + k1 =
X

| + |
X

(| | + | | ) =
X

| | +
X

| |

with equality i

| |+ | | = | + | sgn( ) $ sgn( )

For =

k + k = sup | + | sup (| |+ | |)
sup | |+ sup | | = k k + k k

Now assume that (1 ) Since

| + | (2max (| | | |)) = 2 max (| | | | ) 2 (| | + | | )
it follows that

k + k 2
¡k k + k k ¢

Eq. (5.5) is easily verified if k + k = 0 so we may assume k + k 0
Multiplying the inequality,

| + | = | + || + | 1 (| |+ | |)| + | 1 (5.6)
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by then summing on and applying Holder’s inequality two times givesX
| + |

X
| | | + | 1 +

X
| | | + | 1

(k k + k k ) k | + | 1 k (5.7)

Since ( 1) = as in Eq. (5.1),

k| + | 1k =
X
(| + | 1) =

X
| + | = k + k (5.8)

Combining Eqs. (5.7) and (5.8) shows

k + k (k k + k k ) k + k (5.9)

and solving this equation for k + k (making use of Eq. (5.1)) implies Eq.
(5.5).
Now suppose that and are not identically zero and (1 ) Equality

holds in Eq. (5.5) i equality holds in Eq. (5.9) i equality holds in Eq. (5.7)
and Eq. (5.6). The latter happens i

sgn( ) $ sgn( ) andµ | |
k k

¶
=
| + |
k + k =

µ | |
k k

¶
(5.10)

wherein we have used µ | + | 1

k| + | 1k
¶
=
| + |
k + k

Finally Eq. (5.10) is equivalent | | = | | with = (k k k k ) 0 and this
equality along with sgn( ) $ sgn( ) implies =

5.1 Exercises

Exercise 5.1. Generalize Proposition 5.3 as follows. Let [ 0] and
: R [ ) [0 ) be a continuous strictly increasing function such that
lim ( ) = ( ) = 0 if or lim ( ) = 0 if = Also let

= 1 = (0) 0

( ) =

Z
0

( 0) 0 and ( ) =

Z
0

( 0) 0

Then for all 0

( ) + ( ) ( ) + ( )
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Fig. 5.2. Comparing areas when goes the same way as in the text.
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Fig. 5.3. When notice that ( ) 0 but ( ) 0 Also notice that ( ) is
no longer needed to estimate

and equality holds i = ( ) In particular, taking ( ) = prove Young’s
inequality stating

+ ( 1) ln ( 1) ( 1) + ln

Hint: Refer to the following pictures.


