Part I

Back Ground Material
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Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.
a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c¢) Integration relative to different weights or densities including singular
weights.
d) Characterization of dual spaces.
e) Completeness.
. Infinite dimensional Linear algebra.
. ODE and PDE.
. Harmonic and Fourier Analysis.
. Probability Theory

Tk W N

1.1 Topology beginnings
Recall the notion of a topology by extrapolating from the open sets on R2.

Also recall what it means to be continuous, namely f : X — R is continuous
at x if for all € > 0 there exists V' € 7, such that

FV)Cf(@)+(=ee).

1.2 A Better Integral and an Introduction to Measure
Theory

Let a,b € R with a < b and let

b
() :=/ F(t)dt for all f € C ((a,b])
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denote the Riemann integral. Also let H denote the smallest linear subspace
of bounded functions on [a, b] which is closed under bounded convergence and
contains C ([a,b]) . Such a space exists since we can take the intersection over
all such spaces of functions.

Theorem 1.1. There is an extension I of I° to H such that I is still linear
and limy, o0 I (fn) = I (f) for all fn, € H with f, — f boundedly. Moreover
this extension is unique and is positive in the sense that I (f) >0 if f € H
and f > 0.

Proof. We will only prove the uniqueness here. Suppose that J and I are two
such extensions and let

K:={feH:J(f)=1())}

Then K is a linear subspace closed under bounded convergence which contains
C ([a,b]) and hence K = H.

The existence of I is the hard part. The positivity of I can be seen from
the existence construction. m

Ezxample 1.2. Here are some examples of functions in H and their integrals:

1. Suppose [, 3] C [a,b], then 1j, 5 € H and [ (l[aﬁ]) = B — a.(Draw a
picture.)

2.1 (1(a}) = 0.

3. The space H is an algebra, i.e. if f,g € H then fg € H. To prove this,
first assume that f € C ([a,b]) and let

Hy={geH: fgeH}.

Then Hy is closed under bounded convergence and contains C' ([a, b]) and
hence Hy = H, i.e. the product of a continuous function and an element
in H is back in H.
Now suppose that f € H and again let H; be as above. By the same
reasoning we may show again that H; = H and this proves the assertion.
4.If f € H and ¢ € C(R), then ¢ o f € H. This a consequence of the
Weierstrass approximation Theorem 22.34. In particular |f| € H and
fe=HE e Hif feH.
5.1f f, € H, fn >0and f =3 "2, f, is a bounded function, then f € H
and

()= 1(f). (1.1)

n=1

To prove Eq. (1.1) we have

;I(fn) = lim 1 (Z fn> =1(f).
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6. As an example of item 4., 1gn(a,) = D opeq L{an} € H and I (1gagy) = 0.
Here {a,,},~, is an enumeration of the rational numbers in the interval
la, b].

7.Let M :={A Ca,b]:14 € H} and for A € M let m (A) :=1(14). Then
M and m have the following properties:

a) 0,[a,b] € M and m (§) = 0 and m ([a, b]) = b—a. Moreover m (A4) > 0
for all A € M.

b) If A € M then A° € M and m (A°) = b—a —m(A). This follows
from the fact that 14c =1 — 14.

c)If A,B € M, then ANB € M since if 1anp = 14 -1p and H is an
algebra.
Definition: a collection of sets M satisfying a) — c¢) is called an al-
gebra of subsets of [a,b].

d) More generally if A, € M then NA, € M since lna, =
limy o0 14, -+ 14, and the convergence is bounded.
Definition: a collection of sets M satisfying a) — d) is called an o —
algebra.

e) If A, € M, then UA,, € M. Indeed we know UA,, € M iff (UA,)° €
M. But

(UA,)  =NAS e M

by item d. above.
f) If A,, € M are pairwise disjoint, then

m(UA,) =Y m(Ay).

n=1

To prove this it suffices to observe that 14, =Y oo 1a,.

g) M is not 2[¥ ie. M is not all subset of [a,d]. This is not obvious
and it is not possible to really write down an “explicit” subset [a, b]
which is not in M. We will prove the existence of such sets later.

8. Fact: M is the smallest o — algebra on [a,b] which contains all sub-
intervals of [a, b].
9. Fact: A bounded function f : [a,b] — R is in H iff {f > a} € M for all
aeR.
10. Fact: The integral I may be recovered from the measure m by the formula

oo

I(f)= hlm Z am{z €la,b o < f(z) <ai}).
mesh—0 0<a;<ag<as<...
We will prove items 8. — 10. later in the course. The proof if Items 9. and
10. is not so hard and the energetic reader may wish to give them a try.

Notation 1.3 The collection of sets M is called the Borel o — algebra on
[a,b] and the function m : M — R is called Lebesgue measure. We will usually
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write I (f) as f[a ) fdm and I (f) will be called the Lebesgue integral of f. This
integral may be extended to all positive functions f such that f1,y<pr € H for
all M by

I(f) = Jim I(flj<m)-

Again, we will come back to all of this again later.

2

Set Operations

Let N denote the positive integers, Ng := NU{0} be the non-negative inte-
gers and Z = Ny U (—N) — the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter 3 below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in Y and often write f, for f(n) and express f as {fn}re; -
If X = {1,2,...,N}, we will write YN in place of Y{12N} and denote
FeYN by f=(f1,fa....[n) where fr, = f(n).

Notation 2.2 More generally if {X, : « € A} is a collection of non-empty

sets, let Xa = [[ Xo and 7y : X4 — Xo be the canonical projection map
acA
defined by 7o, () = x4

Recall that an element x € X 4 is a “choice function,” i.e. an assignment

Zq = z(a) € X, for each o € A. The axiom of choice (See Appendix B.)
states that X4 # ) provided that X, # 0 for each a € A. If X, = X for some
fixed space X, then [ X, = X*.

acA

Notation 2.3 Given a set X, let 2% denote the power set of X — the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={zeX:a(x)=1} C X.

In this way elements in {0, l}X are in one to one correspondence with subsets
of X.
For A € 2% let
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A =X\A={zecX :z¢ A}
and more generally if A, B C X let
B\A:={zeB:x¢ A} =ANB".
We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\ B).

As usual if {A},; is an indexed collection of subsets of X we define the
union and the intersection of this collection by

Uactda i ={z€eX:Fael 3 ze€A,} and
Nacrla ={zeX:xe€eAVael}.

Notation 2.4 We will also write Hael Ao for UgerAa in the case that
{Aa}oer are pairwise disjoint, i.e. Ag N Ag =0 if a # .

Notice that U is closely related to 3 and N is closely related to V. For
example let {A4,},7 ; be a sequence of subsets from X and define

{Apio}={zeX :#{n:zecA,} =00} and
{4, a.a.} :={z € X : x € A, for all n sufficiently large}.

(One should read {Aj,, i.0.} as A, infinitely often and {4, a.a.} as A, almost
always.) Then z € {4, i.0.} iff

YVNeN3In>N>z€A,
and this may be expressed as

{A, 1.0} =NF_y Unsn Ay
Similarly, = € {4,, a.a.} iff

dANeN>3VYn>N, z€ A,
which may be written as

{A, a.a.} =UF_; Nu>n Ay

Definition 2.5. A set X is said to be countable if is empty or there is an
ingective function f: X — N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).

1. If A C X is a subset of a countable set X then A is countable.
2. Any infinite subset A C N is in one to one correspondence with N.
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3. A non-empty set X is countable iff there exists a surjective map, g : N —
X.

4. If X and Y are countable then X X Y is countable.

5. Suppose for each m € N that A, is a countable subset of a set X, then
A =UR_ Ay, is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X
is uncountable. In particular 2% is uncountable for any infinite set X.

Proof. 1.If f : X — N is an injective map then so is the restriction, f|a, of f
to the subset A.
2. Let f (1) = min A and define f inductively by

f(n+1)=min A\ {f(1),...,f(n)}.

Since A is infinite the process continues indefinitely. The function f: N — A
defined this way is a bijection.
3. If g: N — X is a surjective map, let

f(z)=ming™' ({z}) =min{n e N: f(n) = z}.

Then f: X — N is injective which combined with item 2. (taking A = f(X))
shows X is countable. Conversely if f : X — N is injective let 2o € X be
a fixed point and define g : N — X by g(n) = f~(n) for n € f(X) and
g(n) = xy otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put
the elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...

and then “count” these elements by counting the sets {(¢,7) : i +j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1, 3), etc. etc.

If f: N—=X and g : N =Y are surjective functions, then the function
(f xg)oh:N—-X xY is surjective where (f x g) (m,n) := (f (m), g(n)) for
all (m,n) e NxN.

5. If A = () then A is countable by definition so we may assume A # .
With out loss of generality we may assume A; # () and by replacing A, by
Aj if necessary we may also assume A,, # @ for all m. For each m € N let
am : N — A, be a surjective function and then define f : NxN — U°_, A,, by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
foh:N— X xY, where h : N — N x N is the bijection defined above.

6. Let us begin by showing 2V = {O,I}N is uncountable. For sake of
contradiction suppose f : N — {0,1}N is a surjection and write f(n) as
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(fi(n), f2(n), f3(n),...). Now define a € {0,1}" by a, := 1 — f,(n). By
construction f, (n) # a, for all n and so a ¢ f(N). This contradicts the
assumption that f is surjective and shows 2% is uncountable.

For the general case, since Y5¥ C Y for any subset Y, C Y, if V¥ is
uncountable then so is YX. In this way we may assume Y is a two point set
which may as well be Yy = {0,1}. Moreover, since X is an infinite set we
may find an injective map x : N — X and use this to set up an injection,
i: 2N — 2% by setting i(a) (z,) = a, for all n € N and i(a)(z) = 0
if z ¢ {z,:n €N}. If 2X were countable we could find a surjective map
f:2% — Nin which case foi: 2N — N would be surjective as well. However
this is impossible since we have already seed that 2V is uncountable. m

We end this section with some notation which will be used frequently in
the sequel.

Notation 2.7 If f: X =Y is a function and £ C 2Y let
FE = ) = (BB €.

If G c 2%, let
f.G:={Ae2"|f1(4) e G}

Definition 2.8. Let £ C 2% be a collection of sets, A C X, iq: A — X be
the inclusion map (ia(z) =z for all z € A) and

Ea=i"(&)={ANE:Ec¢&}.

2.1 Exercises

Let f: X — Y be a function and {A;};c; be an indexed family of subsets of
Y, verify the following assertions.

Exercise 2.1. (N;er4;)¢ = Ujer AS.

Exercise 2.2. Suppose that B C Y, show that B\ (U;crA;) = Nier(B\ 4;).
Exercise 2.3. f~1(UierAi) = Uier f1H(Ay).

Exercise 2.4. f~1(NierA;) = Nier f7H(Ay).

Exercise 2.5. Find a counter example which shows that f(CND) = f(C)N
f(D) need not hold.

3

The Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R, nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q:{ﬂ:m,neZ:n#O}.
n
As usual, for ¢ € Q, we define

gl =4 1 if g>0
= —qifg<0.

Notice that if ¢ € Q and |¢| < % for all n, then ¢ = 0. Indeed ¢ # 0 then
lgl = 2 for some m,n € N and hence |g| > L. A similar argument shows
q>0iff g > —7—1L for all n € N. These trivial remarks will be used in the future
without further reference.

Definition 3.1. A sequence {q, },.., C Q converges toq € Q if |qg — g,| — 0
asn — oo, t.e. if for all N €N, |q— qn| < % for a.a. n. As usual if {g,}rey
converges to q we will write ¢, — q as n — 0o or ¢ = limy,_,~ qy.

o0

Definition 3.2. A sequence {¢,},.; C Q is Cauchy if |gn — gm| — 0 as
m,n — oo. More precisely we require for each N € N that |qm — ¢n| < % for
a.a. pairs (m,n).

Exercise 3.1. Show that all convergent sequences {g,},-; C Q are Cauchy
and that all Cauchy sequences {¢, }-, are bounded — i.e. there exists M € N
such that

lgn| < M for all n € N.

Exercise 3.2. Suppose {¢,},, and {r,},-, are Cauchy sequences in Q.
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1. Show {gn + rn}peq and {g, - 75} are Cauchy.
Now assume thaég {an}or, aricd {r,}2, are convergent sequences in Q.
2. Show {qn + 7 }oeq {qn - Tn}ow, are convergent in Q and

lim (¢, +7,) = lim ¢, + lim r, and
n—oo n—oo n—oo
lim (gnry) = lim ¢, - lim 7.
n—oo n— 00 n—00

3. If we further assume ¢, < r, for all n, show lim,, . ¢, < lim,— oo 7. (It
suffices to consider the case where g, = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
3.14 below, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{gn},~; C Q which is not convergent in Q.

1. Recall that there is no element ¢ € Q such that ¢ = 2'. To each n € N
let m,, € N be chosen so that

72;21 <2< (m”nitl)z (3.1)
and let g, := B,
2. Verify that g2 — 2 as n — oo and that {qn}ZO:1 is a Cauchy sequence in
3. gﬁow {gn}o>, does not have a limit in Q.
3.1 The Real Numbers
Let C denote the collection of Cauchy sequences a = {a,},., C Q and say

a,b € C are equivalent (write a ~ b) iff lim,, o |a, — b,| = 0. (The reader
should check that “ ~ 7 is an equivalence relation.)

Definition 3.3. A real number is an equivalence class, a:={becC:b~ a}
associated to some element a € C. The collection of real numbers will be
denoted by R. For q € Q, let i (q) = a where a is the constant sequence a,, = q
for all m € N. We will simply write O for i (0) and 1 fori(1).

Exercise 3.4. Given @, b € R show that the definitions

—a=(—a), a+b:=(a+b)anda-b:=a-b

! This fact also shows that the intermediate value theorem, (See Theorem 10.57
below.) fails when working with continuous functions defined over Q.
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are well defined. Here —a, a + b and a - b denote the sequences {—a,}oe; ,
{an +b,}oo; and {a,, - b, },-, respectively. Further verify that with these op-
erations, R becomes a field and the map 7 : Q — R is injective homomorphism
of fields. Hint: if a # 0 show that @ may be represented by a sequence a € C
with |ap| > % for all n and some N € N. For this representative show the

sequence a” ! 1= {a; 1}20:1 € C. The multiplicative inverse to a may now be

constructed as: % =g 1.= {a;l}zil.
Definition 3.4. Let a,b € R. Then

1. a > 0 if there exists an N € N such that a,, > % for a.a. n.
2.a > 0 iff either a > 0 or a = 0. Equivalently (as the reader should verify),
a >0 iff for all N €N, a, > f% for a.a. n.

3. Writea>borb<aifa—b>0
4. Writea>borb<aifa—b>0.

Exercise 3.5. Show “ > ” make R into a linearly ordered field and the map
i: Q — R preserves order. Namely if a,b € R then

1. exactly one of the following relations hold: a < bora>bora=b.
2.Ifa>0and b>0thena+b>0anda-b>0.
3.If ¢,r € Q then ¢ <riff i(q) <i(r).

The absolute value of a real number a is defined analogously to that of
a rational number by
al = { a ifa>0
—aifa<0’
Observe this definition is consistent with our previous definition of the ab-
solute value on Q, namely i (|q|) = |i (q)|. Also notice that @ = 0 (i.e. a ~ 0

where 0 denotes the constant sequence of all zeros) iff for all N € N, |a,| < &
for a.a. n. This is equivalent to saying |a| <14 (%) for all N e Niff a =0.

Exercise 3.6. Given a@,b € R show
|ab| = |a| |b] and |a+b| < |a|+ |b].
The latter inequality being referred to as the triangle inequality.
By exercise 3.6,

lal = |

l

—b+b| <|a—b|+|b

and hence ~ ~
al— o] <Ja— 1)

and by reversing the roles of @ and b we also have

~ (- o) = #] - lal < [p~a] = fa 5]
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Therefore ||a| — |b|| < |a — b| and in particular if {a, };—, C R converges to
a € R then
l|lan| — ||| <l|a, —al — 0 as n — oo.

Definition 3.5. A sequence {a,},.; C R converges toa € R if|a — a,| — 0
asn — oo, i.e. if for all N € N, |a—a,| < z(%) for a.a. n. As before if
{@n};2, converges to a we will write @, — @ asn — 0o or @ = lim,_,cc @p.

Remark 3.6. The field i (Q) is dense in R in the sense that if @ € R there
exists {gn}ne; C Q such that i(g,) — @ as n — oco. Indeed, simply let
qn = an where a represents a. Since a is a Cauchy sequence, to any N € N
there exits M € N such that

—%Sam—ang%foraﬂm,nzM
and therefore
() <itamy—a<i () foralm> M
iy ) Silam) —a<i{ ) forallm =M.
This shows
. _ . _ (1
i (gm) — a| = |i (am) — al Sl(ﬁ) for allm > M

and since N is arbitrary that ¢ (¢.,) — @ as m — oo.

Definition 3.7. A4 sequence {a,},., C R is Cauchy if |a, — am| — 0 as
m,n — 00. More precisely we require for each N € N that |Gy, — | < 4 (%)

for a.a. pairs (m,n).

Exercise 3.7. The analogues of the results in Exercises 3.1 and 3.2 hold with
Q replaced by R. (We now say a subset 4 C R is bounded if there exists
M € N such that |\| < (M) for all A € A.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Proof. Suppose that {a(m)}.._; is a Cauchy sequence in R. By Remark 3.6,
we may choose ¢,, € Q such that

a(m) —i(gm)| <i(m™") forallm e N.

Given N € N, choose M € N such that |a(m)—a(n)| < i(N~') for all
m,n > M. Then
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i (gm) — i (qn)| < |i (gm) —a(m)| + |a (m) —a(n)| + |a(n) —i(qn)|
<i(m™)+i(n ) +i(NT)
and therefore
lgm — @n] <m L +n7t 4+ N7L for all m,n > M.

It now follows that ¢ = {g,,.};»_; € C and therefore g represents a point 7 € R.
Using Remark 3.6 and the triangle inequality,

|a (m) — gl < |a(m) —i(gm)| + i (gm) — 4l
<i(m™) +1i(gm) —ql — 0as m — oo

and therefore lim,, oo @(m)=¢q. m

Definition 3.9. A number M € R is an upper bound for a set A C R if
A< M for all X\ € A and a number m € R is an lower bound for a set
A CRfXN>m for all X\ € A. Upper and lower bounds need not exist. If A
has upper (lower) bound, A is said to be bounded from above (below).

Theorem 3.10. To each non-empty set A C R which is bounded from above
(below) there is a unique least upper bound denoted by sup A € R (respec-
tively greatest lower bound denoted by inf A € R).

Proof. Suppose A is bounded from above and for each n € N, let m,, € Z be
the smallest integer such that 4 (%,1) is an upper bound for A. The sequence
My

Gn := %2 is Cauchy because ¢ € [gn — 27", ¢,) NQ for all m > n, i.e.

‘qm - Qn| <27 min(m.n) _, 0 as m,n — 0.

Passing to the limit, n — oo, in the inequality i (¢,) > A, which is valid for
all A € A implies
g= lim i(g,) > X for all X € A.

Thus G is an upper bound for A.

If there were another upper bound M € R for A such that M < g, it would
follow that M < i(g,) < g for some n. But this is a contradiction because
{gn},— is a decreasing sequence, % (g,) > i (g,) for all m > n and therefore
i (gn) > q for all n. Therefore ¢ is the unique least upper bound for A. The
existence of lower bounds is proved analogously. m

Proposition 3.11. If {a,},.; C R is an increasing (decreasing) sequence
which is bounded from above (below), then {an}o., is convergent and

lim a, =sup{a,:n €N} (lim a, =inf{a, : n € N}).
n—oo

n—oo

If A C R is a set bounded from above then there exists {\,} C A such that
A T M :=supA, asn — oo, i.e. {\,} is increasing and lim, o A, = M.
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Proof. Let M := sup{a, :n € N}, then for each N € N there must exist
m € N such that M —+ (Nfl) < am; < M. Since a, is increasing, it follows
that

]Wfi(Nfl) < ap, <M for all n > m.

From this we conclude that lim a,, exists and lima,, = M.
If M = sup 4, for each n € N we may choose \,, € A such that

M—i(n™") <Ay <M. (3.2)
By replacing A, by max {\q,..., A\, }? if necessary we may assume that \,, is
increasing in n. It now follows easily from Eq. (3.2) that lim,, oo Ay = M. =
3.1.1 The Decimal Representation of a Real Number

LetacRorae€Q, mmneZand S:=5,  « k Ifoz—lthenzznn
—n+ 1 while for o # 1,

aS—8§=amt —a"
and solving for S gives the important geometric summation formula,

m
a7n+1 _ A

Zakzilaifa;él. (3.3)

o —
Taking o = 107! in Eq. (3.3) implies

i’””: L0-F — 10-(m*+) —10» 1 1-10"(m
o 10t-1 10t 9

and in particular, for all M > n,

"}Enooz 107 - 9. 10n 9.1071 = Z 1075,

k=n k=n

Let D denote those sequences « € {0,1,2,.. ., Q}Z with the following prop-
erties:

1. there exists N € N such that a_,, =0 for all n > N and
2. a, # 0 for some n € Z.

2 The notation, max A, denotes sup A along with the assertion that supA € A.
Similarly, min A = inf A along with the assertion that inf A € A.
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Associated to each a € I is the sequence a = a (a) defined by

n
> axl07k

k=—o0

Since for m > n,

m
1

— — k _ =

lam —anl = | D oxl07| <9 Z 107 =957 10n = 10w
k=n+1 k=n+1
it follows that
L Q
lam an‘_WHOabm,nﬁoo.

Therefore a = a (a) € C and we may define a map D : {1} x D — R defined
by D (e,«) = ea («). As is customary we will denote D (g, @) = ea () as

€ Qm...0Q.00QY ... .0 ... (3.4)

where m is the largest integer in Z such that ap = 0 for all K < m. If m > 0
the expression in Eq. (3.4) should be interpreted as

€-0.0...0amamy1 ...

An element a € D has a tail of all 9’s starting at N € N if o, =9 and for
all n > N and ay_1 # 9. If « has a tail of 9’s starting at N € N, then for
n > N,

ap, (@) = Z al0”F 49 Z 107k

k=—oc0
9 1—10=(=M)
—k

Z 1077 + 10N-1° 9
k=—oc

N-1

— Z aklo_k +1070Y as n — .

k=—oc0

If o is the digits in the decimal expansion of Y5 ' az10~% 4 10~ (V-1
then
o' €D :={a € D: a does not have a tail of all 9’s}.

and we have just shown that D (¢,a) = D (g,a’) . In particular this implies

D({£1} x D) = D ({£1} x D). (3.5)
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Theorem 3.12 (Decimal Representation). The map
D:{£1} x D'— R\ {0}
is a bijection.

Proof. Suppose D (g,a) = D (6, 3) for some (e,) and (4,5) in {£1} x D.
Since D (¢,a) > 0ife =1 and D (¢,a) < 0 if ¢ = —1 it follows that € = J. Let
a = a(a) and b = a (8) be the sequences associated to « and [ respectively.
Suppose that o # B and let j € Z be the position where a and [ first
disagree, i.e. a, = 3, for all n < j while a; # ;. For sake of definiteness
suppose 3; > a;. Then for n > j we have

by —an = (B —a;) 1077 + Y (B —ay)107*
k=j+1

>1077 -9 Z 107 >1077 -9
k=j+1

9100

Therefore b, —a,, > 0 for all n and lim (b, — a,,) = 0iff B; = a;+1 and B, =9
and ay =0 for all k > j. In summary, D (¢,a) = D (8, 8) with a # 3 implies
either a or § has an infinite tail of nines which shows that D is injective when
restricted to {£1} x D'.

To see that D is surjective it suffices to show any b € R with 0 < b < 1 is
in the range of D. For each n € N, let a,, = .1 ... a0, with o; € {0,1,2,...,9}
such that

i(an) <b<i(an)+i(107"). (3.6)

Since apy1 = an + app110~ D for some a,qq € {0,1,2,...,9}, we see that
Gpt1 = .Q ...0p00 11, i.e. the first n digits in the decimal expansion of a1
are the same as in the decimal expansion of a,,. Hence this defines «,, uniquely
for all n > 1. By setting a;,, = 0 when n < 0, we have constructed from b an
element o € . Because of Eq. (3.6), D (1,0) =b. m

Notation 3.13 From now on we will identify Q with i (Q) C R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form m10~™ for some m € Z and n € N) has a unique decimal expansion.

Corollary 3.14. The set (0,1) := {a € R: 0 < a < 1} is uncountable while
QnN(0,1) is countable.

Proof. By Theorem 3.12, the set {0,1,2..., S}N can be mapped injectively
into (0, 1) and therefore it follows from Lemma 2.6 that (0,1) is uncountable.
For each m € N, let 4,, := {% :n € Nwithn < m}, Since QN (0,1) =
UX_1 Ay, and # (A,,) < oo for all m, another application of Lemma 2.6 shows
QnN(0,1) is countable. m
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3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R? equipped with multipli-
cation rule
(a,b)(c,d) :== (ac — bd, bc + ad) (3.7)

and the usual rule for vector addition. As is standard we will write 0 = (0,0),
1 = (1,0) and i = (0,1) so that every element z of C may be written as
z = xl + yi which in the future will be written simply as z = x + iy. If
z=x+1y, let Rez =z and Imz = y.

Writing 2 = a + ib and w = ¢ + id, the multiplication rule in Eq. (3.7)
becomes
(a+ib)(c+id) := (ac — bd) + i(bc + ad) (3.8)

and in particular 12 = 1 and %2 = —1.

Proposition 3.16. The complex numbers C with the above multiplication
rule satisfies the usual definitions of a field. For example wz = zw and
z (w1 +wy) = zwy + zws, etec. Moreover if z # 0, z has a multiplicative

inverse given by
—1 a b

= i (3.9)

Proof. The proof is a straightforward verification. Only the last assertion will
be verified here. Suppose z = a + b # 0, we wish to find w = ¢+ id such that
zw = 1 and this happens by Eq. (3.8) iff

ac—bd =1 and (3.10)
be + ad = 0. (3.11
Solving these equations for c and d gives ¢ = 737 and d = —# as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a + ib with a,b € R
let Z=a—1ib and

2] := VzZ = Va2 + b2 = \/|Re z|* + [Im 2.

See Exercise 3.8 for the existence of the square root as a positive real number.
Notice that
1 _ 1 _
Rez:i(z—l-z) and Imz:?(z—z), (3.12)
i

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1.

il

:Z’
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22zw=7zw and Z+ W =72 t w.

3.1z = |z

4. |2w| = |2| lw| and in particular |z"| = |z|" for allm € N.

5. [Rez| < |z| and [Im z| < |2|

6. |z +w| < |z|+ |w|.

7.2=0 iff |z| = 0.

8. If z# 0 then 27! := ﬁ (also written as %) is the inverse of z.
9. !zfl‘ = |z|71 and more generally |2"| = |2|" for all n € Z.

Proof. All of these properties are direct computations except for possibly the
triangle inequality in item 6 which is verified by the following computation:

lz 4w’ = (z4+w) ZFw) = |2 + |w|’ + wz + vz
= |z)* + |w]* + wz + wz
— |2 + [0l + 2Re (w2) < [+ + [wf’ + 22| ful
= (2l + [w])*.
|

-, o0 ) )
Definition 3.19. A sequence {z,},_, C C is Cauchy if |z, — zm| — 0 as
m,n — oo and is convergent to z € C if |z — z,| — 0 as n — co. As usual
if {zn}ro, converges to z we will write z, — z as n — 00 or z = limy, o0 2n.

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if z, = a, + ib, € C, then

L. {zn}p=; C C is Cauchy iff {a,},-, C R and {b,},-, C R are Cauchy
and
2. z, > z=a-+1ibasn — oo iff a,, — a and b,, — b as n — oo.

3.3 Exercises

Exercise 3.8. Show to every a € R with a > 0 there exists a unique number
b € R such that b > 0 and b2 = a. Of course we will call b = Va. Also show
that a — y/a is an increasing function on [0, c0). Hint: To construct b = \/a
for a > 0, to each n € N let m,, € Ny be chosen so that

2 2
m§<a<wm(z§)<m<m7gn)
n

n - n2 n

and let g, := ™= Then show b = {¢,,},. ; € R satisfies b > 0 and b = a.

n=1

4

Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R :== RU {£oc0} , i.e. it
is R with two new points called co and —oo. We use the following conventions,
+00-0=0, £oo+a = too for any a € R, 0o+ 00 = 00 and —00 — 00 = —00
while 0o — oo is not defined. A sequence a, € R is said to converge to oo
(—o0) if for all M € R there exists m € N such that a, > M (an, < M) for
allm > m.

Lemma 4.2. Suppose {an}or, and {b,}re, are convergent sequences in R,
then:

1. If an < by for a.a. n then limy o @y < limyp— o0 by
2. If c € R, lim,,_, (cay) = climy, o0 ap.
3. If {an + by Yoo, is convergent and

lim (a, +b,) = lim a, + lim b, (4.1)
n—o00 n—oo n—o00

provided the right side is not of the form oo — co.

4. {anbn}or, is convergent and

lim (an,bn) = lim a, - lim b, (4.2)

n—oo n—oo
provided the right hand side is not of the for oo - 0.

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o fa<l
lim (a,, + b,,) = 0 fa=1
—oifa>1

while



22 4 Limits and Sums
lim a, + lim b,“ ="00 — cc.
n—oo n—oo

This shows that the requirement that the right side of Eq. (4.1) is not of form
00 — o0 is necessary in Lemma 4.2. Similarly by considering the examples
a, =n and b, = n~“ with a > 0 shows the necessity for assuming right hand
side of Eq. (4.2) is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.

Proof of Eq. (4.1). Let a := lim,, o a, and b = lim,,_,« b,. Case 1.,
suppose b = oo in which case we must assume a > —oo. In this case, for every
M > 0, there exists N such that b, > M and a,, > a — 1 for all n > N and
this implies

ap +by,>M+a—1foralln>N.

Since M is arbitrary it follows that a,, + b, — 00 as n — b = oo. The cases
where b = —oo or a = +o0 are handled similarly.
Case 2. If a,b € R, then for every £ > 0 there exists N € N such that

la —a,| <eand |b—10b,| <eforalln>N.
Therefore,
la+b—(an+by)|=la—an+b—0y <l|a—ay|+|b—by| <2

for all n > N. Since n is arbitrary, it follows that lim,,_. (a, + b,) = a + b.

Proof of Eq. (4.2). It will be left to the reader to prove the case
where lima, and limb, exist in R. I will only consider the case where
a = lim,_a, # 0 and lim,_, b, = 0o here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let o := min (%, 1) . Given any
M < oo, there exists N € N such that a,, > « and b, > M for all n > N and
for this choice of N, a,b, > M« for all n > N. Since « > 0 is fixed and M is
arbitrary it follows that lim,,_ . (anby) = 00 as desired. ®

For any subset A C R, let sup 4 and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if co € A or A is not bounded from above and inf A = —co if —co € A or A is
not bounded from below. We will also use the conventions that sup ) = —oco
and inf ) = +oo0.

Notation 4.3 Suppose that {:L"n}zo:l C R is a sequence of numbers. Then

lim inf z, = lim inf{z; : k > n} and (4.3)

lim sup z,
n—oo

lim sup{zy : k > n}. (4.4)

We will also write lim for liminf and Tim for limsup.
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Remark 4.4. Notice that if ay := inf{zy : & > n} and b, := sup{xy : k >
n}, then {a;} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R and

lim inf z, =supinf{zy : £k > n} and
n—oo n

lim sup z, = infsup{zy : k > n}.
n—oo n
The following proposition contains some basic properties of liminfs and
limsups.

Proposition 4.5. Let {a,}5°; and {b,}°2 1 be two sequences of real numbers.
Then

1. liminf, o a, <limsup,, . a, andlim, . a, exists in R iffliminf, o a
limsup,,_, . an € R.

2. There is a subsequence {an, }7>, of {an}se, such that limg_.o apn, =
limsup,,_, . an.

3.

lim sup (a, + b,) <lim sup a, + lim sup b, (4.5)
n—0o0 n—oo n—0o0

whenever the right side of this equation is not of the form oo — co.

4. If ap, >0 and b, >0 for alln € N, then

lim sup (a,b,) <lim sup a, - lim sup by, (4.6)

n—oo n—o0 n—00
provided the right hand side of (4.6) is not of the form 0 - oo or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ay : k > n} <sup{ar : k >n} Vn,

lim inf a, <lim sup a,.
n—oo n—00

Now suppose that liminf,, . a, = limsup,,_,., a, = a € R. Then for all
€ > 0, there is an integer N such that

a—e<inf{ay: k> N} <sup{ap:k >N} <a+e,

a—ec<ap<a+eforall k> N.

Hence by the definition of the limit, limy_, . ax = a.
If liminf,, o a, = 00, then we know for all M € (0, c0) there is an integer
N such that
M <inf{ay : k> N}
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and hence lim,,_,~ @, = 00. The case where limsup,,_,  a, = —oo is handled
similarly.

Conversely, suppose that lim,_. a, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |[A — a,| < € for all n > N(e),
i.e.

A—e<a, <A+eforaln>N().

From this we learn that

A—¢<lim inf a, <lim sup a, < A+e.

n—oo n—00
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A4,

n— oo n—oo

i.e. that A = liminf,,_,o a, = limsup,,_,. an.
If A = o0, then for all M > 0 there exists N (M) such that a,, > M for all

n > N(M). This show that liminf,, o a, > M and since M is arbitrary it
follows that
oo < lim inf a, <lim sup a,.

n—oo n— o0

The proof for the case A = —co is analogous to the A = oo case. m

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
a CC X to denote that « is a finite subset of X and write 2;( for those
aCC X.

Definition 4.6. Suppose that a : X — [0,00] is a function and F C X is a
subset, then

Za—Za(m :—sup{Za(x):aCCF}.
TEF TEQ
Remark 4.7. Suppose that X =N ={1,2,3,...} and a : X — [0, 00|, then

Za—Za(n = hm Z

n=1

Indeed for all N, Z,ﬁ;l a(n) < Y ya, and thus passing to the limit we learn

that
Z a(n) < Z a.

n=1
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Conversely, if & CC N, then for all NV large enough so that o C {1,2,..., N},
we have )~ a < 25:1 a(n) which upon passing to the limit implies that

Za < Za(n).

Taking the supremum over « in the previous equation shows

Za< Za(n

n=1

Remark 4.8. Supposea : X — [0,00] and ) v a < oo, then {z € X : a(z) > 0}
is at most countable. To see this first notice that for any € > 0, the set
{z : a(x) > €} must be finite for otherwise Yy a = co. Thus

{reX:a(z) >0} = U?’:l{x ca(z) > 1/k}

which shows that {z € X : a(z) > 0} is a countable union of finite sets and
thus countable by Lemma 2.6.

Lemma 4.9. Suppose that a,b: X — [0,00] are two functions, then
Z(aer) = ZaJer and
X X X
Z Aa = A Z a
X X

for all A > 0.

I will only prove the first assertion, the second being easy. Let a CC X be
a finite set, then

PRIETED SIES WD A0 3
which after taking sups over o shows that
da+b) <> at+ b
X X X
Similarly, if «, 5 CC X, then

Za+Zb<Za+Zb—Z +0) <Y (a+D).

alps alp alps

Taking sups over a and [ then shows that

Doaty b<y (atb)
X X X
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Lemma 4.10. Let X and Y be sets, R C X xY and suppose that a : R — R
is a function. Let ;R :={y €Y : (z,y) € R} and R, :={z € X : (z,y) € R}.
Then

sup a(z,y) = sup sup a(z,y) = sup sup a(z,y) and

(z,y)ER zeX yExR yEY zER,
f = inf inf = inf f
ien® 0V = 2k e olow) = ol o aley).
(Recall the conventions: sup ) = —oco and inf ) = +c0.)

Proof. Let M = sup(, ,yeg (%, y), Ny = sup,e, pa(z,y). Then a(z,y) < M
for all (x,y) € R implies N, = sup, ¢, ga(z,y) < M and therefore that

sup sup a(x,y) = sup N, < M. (4.7
ze€X yEL R

Similarly for any (z,y) € R,

a(z,y) < N, < sup N, = sup sup a(z,y)

reX zeX yEL R
and therefore
sup a(x,y) < sup sup a(z,y) =M (4.8)
(z,y)ER reXyc. R

Equations (4.7) and (4.8) show that

sup a(z,y) = sup sup a(z,y).
(z,y)ER zeX yEx R

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function —a. m

Y

Fig. 4.1. The z and y — slices of a set R C X x Y.
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Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that f, : X — [0,00] is an increasing sequence of functions and

f(x) = RILH;O Jn(x) = sup fu(z).

Then
Y=Y
X X
Proof. We will give two proves. For the first proof, let

2F ={ACX:Acc X}

Then
lim an = Supzfn = sup sup an = Sup Supz.fn
n—oo X n n ac 2X QX n
= 02121% nlirrgo Z fn= 56112}:;( ; hm fn
=sup Y f= Zf
aEZX a

(Second Proof.) Let S, =Yy fn and S = Yy f. Since fr < frn < f for
all n < m, it follows that
Sp <8 <S8

which shows that lim,,_, ., .5, exists and is less that S, i.e.
A= lim  fo <Y . (4.9)
X X
Noting that Y fn <> x fn =S < A for all @ CC X and in particular,

anSAforallnandaCCX.

Letting n tend to infinity in this equation shows that

ngAforallaCCX

and then taking the sup over all « CC X gives

Sr<a= nlin;oz:fn (4.10)

X

which combined with Eq. (4.9) proves the theorem. m
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Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that f,, : X — [0, 0]
is a sequence of functions, then

th inf f, <lim inf Z fn.
X n—0o0 n—o0 X

Proof. Define g := II;fk fn so that g T liminf, . f, as & — oo. Since
n>

gk < fn for all k <mn,
ng < an for alln >k
X X

and therefore
;gk < lim nlilgc ; fn for all k.

We may now use the monotone convergence theorem to let £ — oo to find
L . MCT . N
= = < .
X X X X
|

Remark 4.13.1f A = )" a < oo, then for all € > 0 there exists a. CC X
such that
A=Y a>A-¢

for all @« CC X containing a. or equivalently,
A-— Z a

for all @« CC X containing a.. Indeed, choose a. so that Zas a>A—c¢.

<e (4.11)

4.3 Sums of complex functions

Definition 4.14. Suppose that a : X — C is a function, we say that
Sa= Y atw
X reX

exists and is equal to A € C, if for all € > 0 there is a finite subset a. C X
such that for all « CC X containing o we have

A—Z(L

<e.
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The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a,b: X — C are two functions such that Yy a
and Y+ b exist, then Y (a + Ab) exists for all A € C and

D@+ )= a+ ) b
X X X
Definition 4.16 (Summable). We call a function a : X — C summable
if

Z la| < oo.

X

Proposition 4.17. Let a : X — C be a function, then )y a exists iff
> x lal < oo, i.e. iff a is summable. Moreover if a is summable, then

Za SZ\OL\,

Proof. If 3" |a] < oo, then Y (Rea)® < oo and S (Ima)* < oo and
hence by Remark 4.13 these sums exists in the sense of Definition 4.14. There-
fore by Lemma 4.15, >"  a exists and

Za = Z(Rea)Jr — Z(Reaf +1 (Z (Ima)* — Z(Ima)) .

X

Conversely, if Yy |a] = oo then, because |a| < |[Rea| + [Ima|, we must

have

Z |Real = oo or Z Ima| = oco.

X X
Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where

at(x) = max(a(x),0) and a~ (z) = max(—a(z),0). (4.12)

Then |a| = a™ +a~ and
OO:Z\U,\ :ZaJr—i—Za*
X X X

which shows that either Yy at = oo or Yy a~ = co. Suppose, with out loss
of generality, that )y at =oco. Let X' := {& € X : a(x) > 0}, then we know
that >y, a = oo which means there are finite subsets a;,, C X’ C X such
that >°, a > n for all n. Thus if a CC X is any finite set, it follows that
limy, o0 2, U @ = 00, and therefore Yy a can not exist as a number in R.
Finally if a is summable, write "y a = pe?® with p > 0 and 6 € R, then
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;a =p=67"'92a=;67wa
*ZRE e a fZ(Re[*"" al)”
<Z|Re i ’<Z|e Z9a|<2:|a\

Alternatively, this may be proved by approximating ), a by a finite sum and
then using the triangle inequality of |-|. m

Remark 4.18. Suppose that X = N and a : N — C is a sequence, then it is
not necessarily true that

[}

Z a(n) = Z a(n). (4.13)
n=1 neN
This is because
o N
,; a(n) = ngnoo ngl a(n)

depends on the ordering of the sequence a where as ) . a(n) does not. For
example, take a(n) = (=1)"/n then } _yla(n)] = oo ie. Y cya(n) does
not exist while 77 ; a(n) does exist. On the other hand, if

Y lam)| =3 la(n)| < oo

neN
then Eq. (4.13) is valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that fp, : X — C is a sequence of functions on X such that f(x) =
limy, o0 fn(z) € C exists for all x € X. Further assume there is a dominat-
ing function g: X — [0,00) such that

|fn(@)] < g(z) for allz € X andn € N (4.14)

and that g is summable. Then
lim Y fu(@) =Y fl@). (4.15)
zeX zeX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem
in the case where f is real. By Fatou’s Lemma,
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Zgif th mf gifn)<hm 1nf Z g fn)
X

oot (35
Since liminf,, . (—a,) = —limsup,,_, ., a,, we have shown,
liminf, o0 D5 fn
TP S LT
20 2S00 g, S,
and therefore

lim sup Z fo <Y f<lm inf 3 fo.
X X

n—00

This shows that lim >, frexists and is equal to ), f. m
n—oo

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that |f| < ¢
and in particular that f is summable. Given € > 0, let « CC X such that

Zggs,

X\

Then for § CC X such that a C f3,

Zf_z.fn = Z(f_fn)
B B B
SZU—M—ZV Fal D 1F = £l

B\
<Z|f fal +2) g
B\ex
<D Nf = fal + 26

and hence that
SR SN fal 2
B B @

Since this last equation is true for all such 8 CC X, we learn that

| <STUF - ful 422

which then implies that
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Zf an

lim sup
n—oo

< lim bup Z|f Iul +2¢

= 2¢.

Because € > 0 is arbitrary we conclude that

Zf an

which is the same as Eq. (4.15). m

lim sup

n—oo

Remark 4.20. Theorem 4.19 may easily be generalized as follows. Suppose
fn» gn, g are summable functions on X such that f,, — f and g, — ¢ pointwise,
[fol < gnand d v gn — > g asn — co. Then f is summable and Eq. (4.15)
still holds. For the proof we use Fatou’s Lemma to again conclude

Z gt f)= th 1nf (gn + fn) <lim 1nf Z gn + fn)

X
=> g+lim inf (iZf,,)
X nee X

and then proceed exactly as in the first proof of Theorem 4.19.

4.4 Tterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that a : X — C is function and F C X is a subset
such that a(x) =0 for allx ¢ F. Then Y . a exists iff Yy a exists and when

the sums exists,
Sa=Ya
X F

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose thata : X xY —
[0, 0], then
2oa=2. 2 a=) )
XxY
Proof. It suffices to show, by symmetry, that
2 =22
XxXY

Let A CC X xY. The for any « CC X and § CC Y such that A C o X 3, we
have
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PRLE ZWZZ“ZZ“ZZ%
axf3

ie. Y ,a <>y >y a. Taking the sup over A in this last equation shows
Sy Y.
XxY X Y

For the reverse inequality, for each € X choose 8% CC X such that 5} 1

asn T and
Z a(z,y) = nlirrgo Z a(z,y).

yey yEBE

If @« CC X is a given finite subset of X, then

Z a(z,y) = lim Z a(z,y) for all z € a

yeY YELn

where 3, := Uzeafi CC X. Hence

ZZa(m,y) thz a:y)—hmzz (z,y)

rEayey TEQ YELn TEQ YESB,
= lim E a(z,y) < E a.
n—oo
(z,y)EaxBn XxXY

Since « is arbitrary, it follows that

ZZa(m,y) sup ZZ a(z,y) Za

rzeX yeY LEa yey XxXY
which completes the proof. m

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that a : X X
Y — C is a summable function, i.e. by Theorem 4.22 any one of the following
equivalent conditions hold:

1 ZXXY‘al < 00,
2.3 ¢ >y lal < oo or
3.3y Yoy lal < oo
Then
ILED D BLED ) DL

X XY

Proof. If a : X — R is real valued the theorem follows by applying Theorem
4.22 to a® — the positive and negative parts of a. The general result holds for
complex valued functions a by applying the real version just proved to the
real and imaginary parts of a. ®
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4.5 Exercises

Exercise 4.1. Now suppose for each n € N:= {1,2,...} that f,, : X — R is
a function. Let
D:={zecX: lim f,(z)=+oo}
n—oo

show that
D =N%7-1 UN=1 Nus>n{z € X @ fu(z) > M}. (4.16)

Exercise 4.2. Let f, : X — R be as in the last problem. Let
C:={zeX: lim f,(z) exists in R}.
n—co
Find an expression for C similar to the expression for D in (4.16). (Hint: use
the Cauchy criteria for convergence.)
4.5.1 Limit Problems
Exercise 4.3. Prove Lemma 4.15. BRUCE: Move 4.3 and 4.4 after 4.8.
Exercise 4.4. Prove Lemma 4.21.
Let {an}2; and {b,}2°; be two sequences of real numbers.
Exercise 4.5. Show liminf,, . (—a,) = —limsup,,_, . an.

Exercise 4.6. Suppose that limsup,,_,., a, = M € R, show that there is a
subsequence {a,, }7°; of {a,}52, such that limy_, an, = M.

Exercise 4.7. Show that

lim sup(ay + by) < limsup a,, + limsup by, (4.17)

n—oo n—0o0 n—oo

provided that the right side of Eq. (4.17) is well defined, i.e. no co — oo or
—00+ 00 type expressions. (It is OK to have 0o+ 00 = 00 or —00 — 00 = —00,
etc.)

Exercise 4.8. Suppose that a,, > 0 and b,, > 0 for all n € N. Show

lim sup(anby,) < limsup a,, - limsup by,, (4.18)

n—oo n—00 n—oo

provided the right hand side of (4.18) is not of the form 0 - oo or oo - 0.
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4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 Forug € R" andd > 0, let By, () := {z € R" : |z — up| < 6}
be the ball in R™ centered at ug with radius 6.

Exercise 4.9. Suppose U C R" is a set and ug € U is a point such that
U N (Byy(6) \{uo}) # 0 for all § > 0. Let G : U \ {up} — C be a function
on U\ {up}. Show that lim,_,,, G(u) exists and is equal to A € C,! iff for all
sequences {un}oo; C U\ {up} which converge to ug (i.e. limy oo un = up)
we have lim,, o G(u,) = .

Exercise 4.10. Suppose that Y isaset, U C R"isaset,and f: U XY — C
is a function satisfying:

1. For each y € Y, the function u € U — f(u,y) is continuous on U.2
2. There is a summable function g : ¥ — [0, 00) such that

[f(u,y)|] < g(y) forally € Y and u € U.

Show that
Fu):=>" f(u,y) (4.19)

yey

is a continuous function for u € U.

Exercise 4.11. Suppose that Y is a set, J = (a,b) C R is an interval, and
f:J xY — Cis a function satisfying:

1. For each y € Y, the function u — f(u,y) is differentiable on J,
2. There is a summable function g : Y — [0, 00) such that

‘aﬁuf(u,y)‘ <g(y) forally €Y and u € J.

3. There is a ug € J such that }° .y [f(uo,y)| < oo.
Show:

a) for all u € J that Zyey | f(u,y)| < oo.

! More explicitly, limy—u, G(u) = A means for every every e¢ > 0 there exists a

§ > 0 such that

|G(u) — A| < € whenerver u € U N (Buy(8) \ {uo}) -

2 To say g := f(-,¥) is continuous on U means that g : U — C is continuous relative
to the metric on R™ restricted to U.
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b) Let F(u) =3, cy f(u,y), show F is differentiable on J and that
-y 2
yey 8
(Hint: Use the mean value theorem.)

Exercise 4.12 (Differentiation of Power Series). Suppose R > 0 and
{an};7, is a sequence of complex numbers such that Y o |a,|r™ < oo for
all r € (0, R). Show, using Exercise 4.11, f(z) := > ~- a,z™ is continuously
differentiable for z € (—R, R) and

o0 oo
Fla) =Y napa" ' =Y naya""
n=0 n=1

Exercise 4.13. Show the functions

oo CL”"’
e =y 5 (4.20)
n=0
2n+1
sinz —Z( )" (2 — and (4.21)

(4.22)

cosx = ,;) (=n" (2n)'

are infinitely differentiable and they satisfy

d
Eez =e® with e® =1
e sinz = cosz with sin (0) =0
d
o CosT = —sinz with cos (0) = 1.

Exercise 4.14. Continue the notation of Exercise 4.13.

1. Use the product and the chain rule to show,
d —z (x+y)]
i =0
dx [6 ¢

and conclude from this, that e=7e(*+¥%) = ¢¥ for all z,y € R. In particular
taking 3 = 0 this implies that e=* = 1/e* and hence that e(®*¥%) = e%e¥,
Use this result to show e* T ocoasx Tooand e™ | 0 as x | —o0.
2. Use the product rule to show
d 2 .2
il -0
I (cos® z + sin® z)

and use this to conclude that cos? z + sin?z = 1 for all z € R.
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Exercise 4.15. Let {a,},._ . be a summable sequence of complex numbers,
ie. >0 lan| < oco. For t >0 and z € R, define

e}

F(t,z) = Z aneft"2em””,

n=—oo

where as usual e®® = cos(z) + i sin(z), this is motivated by replacing x in Eq.
(4.20) by iz and comparing the result to Egs. (4.21) and (4.22).

1. F(t,z) is continuous for (¢, z) € [0,00)xR. Hint: Let Y = Z and u = (¢, )
and use Exercise 4.10.

2. OF(t,z)/0t, OF(t,x)/0z and O?F(t,z)/0z” exist for t > 0 and = € R.
Hint: Let Y = Z and u = ¢ for computing dF(t,z)/0t and v = z for
computing OF(t,z)/0x and 9?F(t,x)/0x>. See Exercise 4.11.

3. F satisfies the heat equation, namely

F(t,x)/0t = O°F(t,x)/0x? for t > 0 and = € R.
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£P? — spaces, Minkowski and Holder Inequalities

In this chapter, let 4 : X — (0,00) be a given function. Let F denote either
R or C. For p € (0,00) and f: X — F, let

1£1lp = (D 1f @)Pu(a)”

zeX
and for p = oo let
[flloc = sup{[f(2)| : z € X}
Also, for p > 0, let
C(p)={f: X = F:|fll, < oo}
In the case where p(x) =1 for all € X we will simply write ¢7(X) for ¢7(p).

Definition 5.1. A norm on a vector space Z is a function ||-|| : Z — [0, 00)
such that

1. (Homogeneity) | Af|| = |A||f]| for all X € F and f € Z.
2. (Triangle inequality) |.f + gl < |.fl + gl for ali f,g € Z.
3. (Positive definite) ||f|| = 0 implies f = 0.

A pair (Z,|-||) where Z is a vector space and ||-|| is a norm on Z is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 5.2. For p € [1,00], (¢?(p), | - ||p) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is the
content of Minkowski’s Inequality proved in Theorem 5.8 below. m
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Proposition 5.3. Let f : [0,00) — [0,00) be a continuous strictly increasing

function such that f(0) =0 (for simplicity) and lim f(s) = oo. Let g = f~1
§— 00

and for s,t >0 let

s t
F(s) =/ f(s)ds' and G(t) =/ g(t)dt'.
0 0
Then for all s,t > 0,
st < F(s)+ G(t)
and equality holds iff t = f(s).
Proof. Let

As i ={(0,7): 0<7 < f(0) for 0 < o < s} and
By :={(o,7):0< o <g(r)for 0 <7 <t}

then as one sees from Figure 5.1, [0, s] x [0,¢] C A5 U B;. (In the figure: s = 3,
t =1, As is the region under ¢t = f(s) for 0 < s < 3 and B is the region to
the left of the curve s = g(t) for 0 < ¢ < 1.) Hence if m denotes the area of a
region in the plane, then

st =m ([0, s] x [0,¢]) < m(As) +m(B:) = F(s) + G(t).

As it stands, this proof is a bit on the intuitive side. However, it will
become rigorous if one takes m to be Lebesgue measure on the plane which
will be introduced later.

We can also give a calculus proof of this theorem under the additional
assumption that f is C'!. (This restricted version of the theorem is all we need
in this section.) To do this fix t > 0 and let

h(s) = st — F(s) = /Os(t ~ f(0))do.

If 0 > g(t) = f~1(t), then t — f(0) < 0 and hence if s > g(t), we have

s g(t)
h(s) = /0 (t— f(o))do = /0 (t - f(o))do + / (t - f(o))do

g(t)
g(t)
< [ (= rio)io = nigto)
Combining this with h(0) = 0 we see that h(s) takes its maximum at some

point s € (0,¢] and hence at a point where 0 = h/(s) = t — f(s). The only
solution to this equation is s = ¢g(¢) and we have thus shown

g(t)
st~ F(s) = h(s) < /0 (t — f(o))do = h(g(t))
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with equality when s = ¢(t). To finish the proof we must show jbg(t)(t —

f(o))do = G(t). This is verified by making the change of variables o = g(7)
and then integrating by parts as follows:

g(t) t ot
(A(FﬂﬂM=AM#MWMmW=AWJM@W
=/0 g(m)dr = G(t).

0 1 2 3 4

s

Fig. 5.1. A picture proof of Proposition 5.3.

Definition 5.4. The conjugate exponent g € [1,00] to p € [1,00] is q := %

with the conventions that ¢ = oo if p=1 and ¢ =1 if p = co. Notice that q is
characterized by any of the following identities:

11
o=+t p-L ot andgp-1)=p. (5.1)
P g P q

Lemma 5.5. Letp € (1,00) and q := ﬁ € (1,00) be the conjugate exponent.
Then

SP
st < — +— forall s,t >0
p

with equality if and only if 1 = sP.

Proof. Let F(s) = % forp > 1. Then f(s) = s~ =tand g(t) = 7T = a1
wherein we have used ¢—1 = p/ (p —1)—1 =1/ (p — 1) . Therefore G(t) = t?/q
and hence by Proposition 5.3,
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sP
st < — + —
p q
with equality iff t = sP~1, i.e. 7 = s9~1) = g7,
For those who do not want to use Proposition 5.3, here is a direct calculus
proof. Fix ¢t > 0 and let

sP
h(s):=st— —.
(s) »

Then h (0) = 0, lims—,00 h (s) = —00 and ' (s) = ¢t — sP~1 which equals zero
iff s = ¢7 7. Since

P _
tr—1

P

= q

h <t—p51> =7t — L, (l - 1) -2
P P

it follows from the first derivative test that
1 t? t?
maxh =max{h(0),h(tr—T ) =maxq0,—p=—.

{10 (77) } =m0 2

So we have shown

sP ot o L
st — — < — with equality iff t = sP7.
p q

Theorem 5.6 (Holder’s inequality). Let p,q € [1,00] be conjugate expo-
nents. For all f,g: X — F,

gl < 1£1lp - llgllq- (5.2)

If p € (1,00) and f and g are not identically zero, then equality holds in Eq.

(5.2) iff o o
(wm)zQ@J' (5.3)

Proof. The proof of Eq. (5.2) for p € {1,00} is easy and will be left to the
reader. The cases where ||f|l; = 0 or oo or ||g||, = 0 or oo are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and
0 <[[fllg: llgllp < oo. Letting s = [f ()| /[ f]l, and ¢ = |g|/l|gll in Lemma 5.5

implies
[f(@)g@)| 1 If@F 19
Ifllpllglle =2 Iflle a llgll?

|q

with equality iff
T@F _ sl )
[1£1l» llglle

Multiplying this equation by p (x) and then summing on z gives
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Il fgll: <1 1

IR 24 22
[flollglle =2«
with equality iff Eq. (5.4) holds for all z € X, i.e. iff Eq. (5.3) holds. m

Definition 5.7. For a complex number \ € C, let

) ={ T 170

For A\, i € C we will write sgn(\) = sgn(u) if either Ay =0 or A # 0 and
sgn(A) = sgn(u).

Theorem 5.8 (Minkowski’s Inequality). If 1 < p < oo and f,g € (P(u)
then

1+ gllo < 171l + llgllp- (5.5)

Moreover, assuming f and g are not identically zero, equality holds in Eq.

(5.5) iff

sgn(f) = sgn(g) when p =1 and
f =cg for some ¢ >0 when p € (1,00).

Proof. For p=1,
If+gll =D IF +aln <D (fle+lglw) =D 1fln+> lgln
X X X X
with equality iff
[fl+ gl =If+gl <= sgn(f) = sgn(g).
For p = oo,
I/ + 9lloc = sup[f + g| < sup (If]+ lg])
X X

<sup|f] +sup|g] = [[flloo + [|9]lco-
X X

Now assume that p € (1,00). Since

[f + 9" < 2max (| f], )" = 2" max (|f[", |g]") < 27 (If1" + |g|")

it follows that
I1f +gllp < 27 (ILF15 + llglh) < oo
Eq. (5.5) is easily verified if || f + g||, = 0, so we may assume || f +g||, > 0.
Multiplying the inequality,

[f+ 9" =If +gllf + 9P~ < (Ifl +1gDIf +gl”~ (5.6)
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by p, then summing on x and applying Holder’s inequality two times gives

DU +aPu <Y U+ n+ > 1ol If + gl
X X X

< (fllp + llgllo) 11+ g~ - (5.7)

Since q(p — 1) = p, as in Eq. (5.1),

If+glP Mg =D (f + 9P =D If +glPu=1f+glp  (58)
X

X

Combining Egs. (5.7) and (5.8) shows

1+ gl < (1 fllp + lgllo) 1 + gllE/? (5.9)
and solving this equation for || f + g||, (making use of Eq. (5.1)) implies Eq.
(5.5).

Now suppose that f and g are not identically zero and p € (1, 00) . Equality
holds in Eq. (5.5) iff equality holds in Eq. (5.9) iff equality holds in Eq. (5.7)
and Eq. (5.6). The latter happens iff

sgn(f) = sgn(g) and

£ )p: |f +gl? :<ﬂ>17
(Hf”p If+glle \lglln/ (5.10)

wherein we have used
( [f +gl* >q: [f +gl”
I+ glP=1lq If +gllb

Finally Eq. (5.10) is equivalent |f| = c|g| with ¢ = (|| f|l,/llg]l) > 0 and this
equality along with sgn(f) = sgn(g) implies f =cg. m

5.1 Exercises

Exercise 5.1. Generalize Proposition 5.3 as follows. Let a € [—00,0] and
f:RNJ[a,00) — [0,00) be a continuous strictly increasing function such that
lim f(s) = o0, f(a) =01if a > —oo or lim,_,_ f(s) =0 if a = —co. Also let
§—00

g:f717b:f(0)207

¢

F(s) = /0 " H(s)ds' and G(t) = /0 ()t

Then for all s,t > 0,

st < F(s)+G({tVb) < F(s)+ G(t)
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t 5T
375 T
25T
125 T
2 -1 0 1 2
s

Fig. 5.2. Comparing areas when ¢ > b goes the same way as in the text.

375 T

257

125 T

0 It Il
2 -1 0 1 2

s

Fig. 5.3. When ¢ < b, notice that g(¢) < 0 but G(¢t) > 0. Also notice that G(t) is
no longer needed to estimate st.

and equality holds iff ¢ = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e*+(tv1)In(tvl)—(tVv1l) <e’+tlnt—t.

Hint: Refer to the following pictures.




