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A

Multinomial Theorems and Calculus Results

Given a multi-index Z+ let | | = 1 + · · ·+ ! := 1! · · · !

:=
Y

=1

and =

µ ¶

:=
Y

=1

µ ¶

We also write

( ) := ( + )| =0

A.1 Multinomial Theorems and Product Rules

For = ( 1 2 ) C N and ( 1 ) {1 2 } let
ˆ ( 1 ) = # { : = } Then

Ã

X

=1

!

=
X

1 =1

1 =
X

| |=
( )

where

( ) = # {( 1 ) : ˆ ( 1 ) = for = 1 2 }

I claim that ( ) = !
! Indeed, one possibility for such a sequence

( 1 ) for a given is gotten by choosing

(

1
z }| {

1 1

2
z }| {

2 2
z }| {

)

Now there are ! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these ! permuta-
tions we must divide by the number of permutation which just rearrange the
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groups of ’s among themselves for each There are ! := 1! · · · ! such
permutations. Therefore, ( ) = ! ! as advertised. So we have proved

Ã

X

=1

!

=
X

| |=

!

!
(A.1)

Now suppose that R and is a multi-index, we have

( + ) =
X !

!( )!
=

X

+ =

!

! !
(A.2)

Indeed, by the standard Binomial formula,

( + ) =
X !

!( )!

from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

( 1 + · · ·+ ) =
X

1+···+ =

!

1! · · · !
1

1 (A.3)

where 1 2 R and Z+
Now let us consider the product rule for derivatives. Let us begin with the

one variable case (write for ( ) = ) where we will show by induction
that

( ) =
X

=0

µ ¶

· (A.4)

Indeed assuming Eq. (A.4) we find

+1( ) =
X

=0

µ ¶

+1 · +
X

=0

µ ¶

· +1

=
+1
X

=1

µ

1

¶

· +1 +
X

=0

µ ¶

· +1

=
+1
X

=1

·µ

1

¶

+

µ ¶¸

· +1 + +1 · + · +1

Since
µ

1

¶

+

µ ¶

=
!

( + 1)!( 1)!
+

!

( )! !

=
!

( 1)! ( )!

·

1

( + 1)
+
1
¸

=
!

( 1)! ( )!

+ 1

( + 1)
=

µ

+ 1
¶
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the result follows.
Now consider the multi-variable case

( ) =

Ã

Y

=1

!

( ) =
Y

=1

"

X

=0

µ ¶

·
#

=
1

X

1=0

· · ·
X

=0

Y

=1

µ ¶

· =
X

µ ¶

·

where = ( 1 2 ) and

µ ¶

:=
Y

=1

µ ¶

=
!

!( )!

So we have proved

( ) =
X

µ ¶

· (A.5)

A.2 Taylor’s Theorem

Theorem A.1. Suppose R is an open set, : [0 1] is a 1 —
path, and ( C) Let := (1) ( ) and = 1 = (1) (0) then

( (1)) =
1

X

=0

1

!
( ) ( (0)) + (A.6)

where

=
1

( 1)!

Z 1

0

¡

˙( )
1
¢

( ( )) =
1

!

Z 1

0

µ ¶

( ( ))

(A.7)
and 0! := 1

Proof. By the fundamental theorem of calculus and the chain rule,

( ( )) = ( (0)) +

Z

0

( ( )) = ( (0)) +

Z

0

¡

˙( )

¢

( ( )) (A.8)

and in particular,

( (1)) = ( (0)) +

Z 1

0

¡

˙( )

¢

( ( ))

This proves Eq. (A.6) when = 1 We will now complete the proof using
induction on
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Applying Eq. (A.8) with replaced by 1
( 1)!

¡

˙( )
1
¢

gives

1

( 1)!

¡

˙( )
1
¢

( ( )) =
1

( 1)!

¡

˙( )
1
¢

( (0))

+
1

( 1)!

Z

0

¡

˙( )
1

˙( )

¢

( ( ))

=
1

!

µ ¶

( (0))
1

!

Z

0

µ

˙( )

¶

( ( ))

wherein we have used the fact that mixed partial derivatives commute to show
= ˙( )

1 Integrating this equation on [0 1] shows, using
the fundamental theorem of calculus,

=
1

!

¡ ¢

( (0))
1

!

Z

0 1

µ

˙( )

¶

( ( ))

=
1

!

¡ ¢

( (0)) +
1

( + 1)!

Z

0 1

¡

˙( )

¢

( ( ))

=
1

!

¡ ¢

( (0)) + +1

which completes the inductive proof.

Remark A.2. Using Eq. (A.1) with replaced by (although { } =1 are
not complex numbers they are commuting symbols), we find

=

Ã

X

=1

!

=
X

| |=

!

!

Using this fact we may write Eqs. (A.6) and (A.7) as

( (1)) =
X

| | 1

1

!
( (0)) +

and

=
X

| |=

1

!

Z 1

0

µ ¶

( ( ))

Corollary A.3. Suppose R is an open set which contains ( ) = (1
) 0 + 1 for 0 1 and ( C) Then

( 1) =
1

X

=0

1

!
( ) ( 0) +

1

!

Z 1

0

¡ ¢

( ( )) ( ) (A.9)

=
X

| |

1

!
( (0))( 1 0) +

X

:| |=

1

!

·
Z 1

0

( ( )) ( )

¸

( 1 0)

(A.10)
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where := 1 0 and is the probability measure on [0 1] given by

( ) := (1 ) 1 (A.11)

If we let = 0 and = 1 0 (so + = 1) Eq. (A.10) may be written
as

( + ) =
X

| |

( )

!
+

X

:| |=

1

!

µ
Z 1

0

( + ) ( )

¶

(A.12)

Proof. This is a special case of Theorem A.1. Notice that

= (1) ( ) = (1 )( 1 0) = (1 )

and hence

=
1

!

Z 1

0

µ

(1 )

¶

( ( )) =
1

!

Z 1

0

¡ ¢

( ( )) (1 ) 1

Example A.4. Let = ( 1 1) R R and ( ) = (1 ) The reader
should verify

( )( ) = ( 1) ( 1) ( + 1)(1 )

and therefore by Taylor’s theorem (Eq. (100.75) with = 0 and = )

(1 ) = 1 +
1

X

=1

1

!
( 1) ( 1) ( + 1) + ( ) (A.13)

where

( ) =
!

Z 1

0

( 1) ( 1) ( + 1)(1 ) ( )

=
!
( 1) ( 1) ( + 1)

Z 1

0

(1 ) 1

(1 )

Now for ( 1 1) and

0

Z 1

0

(1 ) 1

(1 )

Z 1

0

(1 ) 1

(1 )
=

Z 1

0

(1 ) 1 =

and therefore,

| ( )| | |
( 1)!

|( 1) ( + 1)| =:
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Since

lim sup
+1
= | | · lim sup = | | 1

and so by the Ratio test, | ( )| 0 (exponentially fast) as
Therefore by passing to the limit in Eq. (A.13) we have proved

(1 ) = 1 +
X

=1

( 1)

!
( 1) ( + 1) (A.14)

which is valid for | | 1 and R An important special cases is = 1
in which case, Eq. (A.14) becomes 1

1 =
P

=0 the standard geometric
series formula. Another another useful special case is = 1 2 in which case
Eq. (A.14) becomes

1 = 1 +
X

=1

( 1)

!

1

2
(
1

2
1) (

1

2
+ 1)

= 1
X

=1

(2 3)!!

2 !
for all | | 1 (A.15)



B

Zorn’s Lemma and the Hausdor Maximal
Principle

Definition B.1. A partial order on is a relation with following properties

(i) If and then .
(ii)If and then = .
(iii) for all .

Example B.2. Let be a set and = 2 There are two natural partial
orders on

1. Ordered by inclusion, is and
2. Ordered by reverse inclusion, if

Definition B.3. Let ( ) be a partially ordered set we say is linearly a
totally ordered if for all either or The real numbers R
with the usual order is a typical example.

Definition B.4. Let ( ) be a partial ordered set. We say is a
maximal element if for all such that implies = i.e. there is
no element larger than An upper bound for a subset of is an element

such that for all

Example B.5. Let

=
©

= {1} = {1 2} = {3} = {2 4} = {2}ª

ordered by set inclusion. Then and are maximal elements despite that fact
that £ and £ We also have

• If = { } then has no upper bound.

Definition B.6. • If = { } then is an upper bound.
• = { } then and are upper bounds.

Theorem B.7. The following are equivalent.
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1. The axiom of choice: to each collection, { } of non-empty sets
there exists a “choice function,” :

`

such that ( ) for

all i.e.
Q 6=

2. The Hausdor Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If is partially ordered set such that every linearly
ordered subset of has an upper bound, then has a maximal element.1

Proof. (2 3) Let be a partially ordered subset as in 3 and let F = {
: is linearly ordered} which we equip with the inclusion partial ordering.

By 2. there exist a maximal element F By assumption, the linearly
ordered set has an upper bound The element is maximal, for if

and then { } is still an linearly ordered set containing
So by maximality of = { } i.e. and therefore showing
which combined with implies that = 2

(3 1) Let { } be a collection of non-empty sets, we must show
Q

is not empty. Let G denote the collection of functions : ( )
`

such that ( ) is a subset of and for all ( ) ( )
Notice that G is not empty, for we may let 0 and 0 and then
set ( ) = { 0} and ( 0) = 0 to construct an element of G We now put
a partial order on G as follows. We say that for G provided
that ( ) ( ) and = | ( ) If G is a linearly ordered set, let
( ) = ( ) and for ( ) let ( ) = ( ) Then G is an upper

bound for So by Zorn’s Lemma there exists a maximal element G To
finish the proof we need only show that ( ) = If this were not the case,
then let 0 \ ( ) and 0 0 We may now define (˜) = ( ) { 0}
and

˜( ) =

½

( ) if ( )

0 if = 0

1 If is a countable set we may prove Zorn’s Lemma by induction. Let { } =1

be an enumeration of and define inductively as follows. For = 1
let 1 = { 1} and if have been chosen, let +1 = { +1} if +1

is an upper bound for otherwise let +1 = The set = =1 is a
linearly ordered (you check) subset of and hence by assumption has an upper
bound, I claim that his element is maximal, for if there exists =
such that then would be an upper bound for 1 and therefore
= That is to say if then and hence so
= (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similarly one may show that 3 2 Let F = { : is linearly ordered}
and order F by inclusion. IfM F is linearly ordered, let = M =

S

M
If then and for some M. NowM is linearly ordered
by set inclusion so or i.e. or Since and are
linearly order we must have either or that is to say is linearly
ordered. Hence by 3. there exists a maximal element F which is the assertion
in 2.
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Then ˜ while 6= ˜ violating the fact that was a maximal element.
(1 2) Let ( ) be a partially ordered set. Let F be the collection of

linearly ordered subsets of which we order by set inclusion. Given 0

{ 0} F is linearly ordered set so that F 6=
Fix an element 0 F If 0 is not maximal there exists 1 F such

that 0 Ã 1 In particular we may choose 0 such that 0 { } F
The idea now is to keep repeating this process of adding points until
we construct a maximal element of F We now have to take care of some
details.
We may assume with out loss of generality that F̃ = { F : is not maximal}

is a non-empty set. For F̃ let = { : { } F} As the above
argument shows, 6= for all F̃ Using the axiom of choice, there exists

Q

F̃ We now define : F F by

( ) =

½

if is maximal
{ ( )} if is not maximal.

(B.1)

The proof is completed by Lemma B.8 below which shows that must have
a fixed point F This fixed point is maximal by construction of

Lemma B.8. The function : F F defined in Eq. (B.1) has a fixed point.3

Proof. The idea of the proof is as follows. Let 0 F be chosen arbitrarily.
Notice that =

©

( )( 0)
ª

=0
F is a linearly ordered set and it is therefore

easily verified that 1 =
S

=0

( )( 0) F Similarly we may repeat the process

to construct 2 =
S

=0

( )( 1) F and 3 =
S

=0

( )( 2) F etc. etc. Then

take = =0 and start again with 0 replaced by Then keep going
this way until eventually the sets stop increasing in size, in which case we
have found our fixed point. The problem with this strategy is that we may
never win. (This is very reminiscent of constructing measurable sets and the
way out is to use measure theoretic like arguments.)
Let us now start the formal proof. Again let 0 F and let F1 = {

F : 0 } Notice that F1 has the following properties:
1. 0 F1
2. If F1 is a totally ordered (by set inclusion) subset then F1
3. If F1 then ( ) F1
Let us call a general subset F 0 F satisfying these three conditions a

tower and let
3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set F with a maximal number of elements. In this case the
condition that ( ) would imply that = ( ) otherwise ( ) would have
more elements than
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F0 = {F 0 : F 0 is a tower}
Standard arguments show that F0 is still a tower and clearly is the smallest
tower containing 0 (Morally speaking F0 consists of all of the sets we were
trying to constructed in the “idea section” of the proof.)
We now claim that F0 is a linearly ordered subset of F To prove this let
F0 be the linearly ordered set

= { F0 : for all F0 either or }

Shortly we will show that F0 is a tower and hence that F0 = That is
to say F0 is linearly ordered. Assuming this for the moment let us finish the
proof. Let F0 which is in F0 by property 2 and is clearly the largest
element in F0 By 3. it now follows that ( ) F0 and by maximality of
we have ( ) = the desired fixed point. So to finish the proof, we must

show that is a tower.
First o it is clear that 0 so in particular is not empty. For each

let
:= { F0 : either or ( ) }

We will begin by showing that F0 is a tower and therefore that = F0
1. 0 since 0 for all F0 2. If F0 is totally

ordered by set inclusion, then := F0 We must show that
is that or Now if for all then and
hence On the other hand if there is some such that ( )
then clearly ( ) and again
3. Given we must show ( ) i.e. that

( ) or ( ) ( ) (B.2)

There are three cases to consider: either Ã = or ( ) In the
case = ( ) = ( ) ( ) and if ( ) then ( ) ( ) and
Eq. (B.2) holds in either of these cases. So assume that Ã Since
either ( ) (in which case we are done) or ( ) Hence we may
assume that

Ã ( )

Now if were a proper subset of ( ) it would then follow that ( )\ would
consist of at least two points which contradicts the definition of Hence we
must have ( ) = and again Eq. (B.2) holds, so is a tower.
It is now easy to show is a tower. It is again clear that 0 and

Property 2. may be checked for in the same way as it was done for
above. For Property 3., if we may use = F0 to conclude for all

F0 either ( ) or ( ) i.e. ( ) Thus is a tower
and we are done.



C

Nets

In this section (which may be skipped) we develop the notion of nets. Nets are
generalization of sequences. Here is an example which shows that for general
topological spaces, sequences are not always adequate.

Example C.1. Equip CR with the topology of pointwise convergence, i.e. the
product topology and consider (R C) CR If { } (R C) is a sequence
which converges such that CR pointwise then is a Borel measurable
function. Hence the sequential limits of elements in (R C) is necessarily
contained in the Borel measurable functions which is properly contained in
CR In short the sequential closure of (R C) is a proper subset of CR On
the other hand we have (R C) = CR Indeed a typical open neighborhood
of CR is of the form

= { CR : | ( ) ( )| for }

where 0 and is a finite subset of R Since (R C) 6= it follows
that (R C)

Definition C.2. A directed set ( ) is a set with a relation “ ” such that

1. for all
2. If and then
3. is cofinite, i.e. there exists such that and

A net is function : where is a directed set. We will often
denote a net by { }
Example C.3 (Directed sets).

1. = 2 ordered by inclusion, i.e. if If and then
and hence Similalry if 2 then =:

2. = 2 ordered by reverse inclusion, i.e. if If and
then and so and if then
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3. Let = N equipped with the usual ordering on N In this case nets are
simply sequences.

Definition C.4. Let { } be a net then:

1. converges to (written ) i for all
eventually, i.e. there exists = such that for all

2. is a cluster point of { } if for all frequently,
i.e. for all there exists such that

Proposition C.5. Let be a topological space and Then

1. is an accumulation point of (see Definition 8.28) i there exists net
{ } \ { } such that .

2. ¯ i there exists { } such that

Proof. 1. Suppose is an accumulation point of and let = be ordered
by reverse set inclusion. To each = choose ( \ { })
which is possible sine is an accumulation point of Then given
for all (i.e. and ) and hence .
Conversely if { } \ { } and then for all there
exists such that for all In particular ( \
{ }) 6= and so acc( ) — the accumulation points of .

2. If { } such that then for all there exists such
that for all In particular 6= for all and
this implies ¯

For the converse recall Proposition 8.30 implies = acc( ) If
acc( ) there exists a net { } such that by item 1. If
we may simply take = for all := N

Proposition C.6. Let and be two topological spaces and :
be a function. Then is continuous at i ( ) ( ) for all nets

.

Proof. If is continuous at and then for any ( ) there exists
such that ( ) Since eventually, ( ) eventually

and we have shown ( ) ( )
Conversely, if is not continuous at then there exists ( ) such

that ( ) * for all Let = be ordered by reverse set inclusion
and for choose (axiom of choice) such that ( ) Then

since for any if (i.e. ) On the over
hand ( ) for all showing ( )9 ( ).

Definition C.7 ( Subnet). A net h i is a subnet of a net h i if
there exists a map such that

1. = for all and
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2. for all 0 there exists 0 such that 0 whenever 0

i.e. 0 eventually.

Proposition C.8. A point is a cluster point of a net h i i
there exists a subnet h i such that

Proof. Suppose h i is a subnet of h i such that =
Then for and 0 there exists 0 such that =
for all 0 Choose 1 such that 0 for all 1 then choose
3 such that 3 1 and 3 2 then 0 and for all

3 which implies frequently.
Conversely assume is a cluster point of a net h i We mak := ×
into a directed set by defining ( ) ( 0 0) i 0 and 0 For

all ( ) = × choose ( ) in such that ( ) = ( )

Then if 0 for all ( 0 0) ( 0) i.e. 0
0 and 0

( 0 0)
0

0 Now if is given, then ( ) for all . Hence
fixing we see if ( ) ( ) then ( ) = ( )

showing
that ( ) .

Exercise C.1. [#34, p. 121] Let h i be a net in a topological space and
for each let { : }. Then is a cluster point of h i i

T

.

Proof. If is a cluster point, then given we know 6= for
all since frequently thus for all i.e.

T

Conversely if is not a cluster point of h i then there exists and
such that for all i.e. = But this shows
and hence

T

Theorem C.9. A topological space is compact i every net has a cluster
point i every net has a convergent subnet.

Proof. Suppose is compact, h i is a net and let :=
{ : } Then is closed for all 0 if 0 and

1
· · · whenever for = 1 (Such a always exists

since is a directed set.) Therefore
1 · · · 6= i.e. { } has the

finite intersection property and since is compact this implies there exists
T

By Eexrcise C.1, it follows that is a cluster point of h i
Conversely, if is not compact let { } be an infinite cover with no

finite subcover. Let be the directed set = { : # ( ) } with
i Define a net h i in by choosing

\
[

6= for all
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This net has no cluster point. To see this suppose and is chosen
so that Then for all { } (i.e. )

S

and

in particular This shows frequently and hence is not a
cluster point.
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