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5. MEASURES AND INTEGRATION

Definition 5.1. A set X equipped with a o — algebra M is called a measurable
space.

Definition 5.2. A measure p on a measurable space (X, M) is a function p : M —
[0, 00] such that

1. u(9) =0 and
2. (Finite Additivity) If {A;};"; C M are pairwise disjoint, i.e. A4; NA; =0
when ¢ # j, then

p(lJA)=> mA
i=1 i=1
3. (Continuity) If A,, € M and A,, T 4, then p(4,) T n(A).

Remark 5.3. Properties 2) and 3) in Definition 5.2 are equivalent to the following
condition. If {4;};~; C M are pairwise disjoint then

(5.1) u<U A;) = Zu(A

To prove this suppose that Properties 2) and 3) in Definition 5.2 and {4;};-, ¢ M
are pairwise disjoint. Let B, := |J A; T B := |J A, so that

=1 i=1

3 . 2 ) n o0
w(B) E tim p(B,) 2 tim Y p(A) =3 (4
=1 =1

Conversely, if Eq. (5.1) holds we may take A; = () for all j > n to see that Property
2) of Definition 5.2 holds. Also if 4, T A, let By, := A, \ Ap—1. Then {Bn}zo=1 are
pairwise disjoint, A, = U7_; Bj and A = U$2, B;. So if Eq. (5.1) holds we have

M(A) = ] lB Zﬂ
Jj=1
=l Y p(B,) = Jim (UL By) = lim p(4,)

Proposition 5.4 (Basic properties of measures). Suppose that (X, M, u) is a mea-
sure space and E, F € M and {Ej};il C M, then :

1. If ECF then u(E) < pu(F).

2. w(UE;) < 5 ().
3. If wW(Ey) < o0 and E; \  E, i.e. E1 D Ey D EgD ... and E = N;E;, then

1(E;) N\ u(E) as j — oc.
Proof. (1) Since F = EU(F \ E),
u(F) = w(E) + W(F\ E) > u(E).
(2) Let Ej = E;\ (F1U---UE;_1) so that the E; ’s are pair-wise disjoint and
E = UE}j. Since E; C Ej it follows from Remark 5.3 and part (1), that

= S uE) £ S E,
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)

F1GURE 12. Completing a o — algebra.

(3) Define D; = E; \ E; then D; T E; \ E which implies that
p(Er) = p(B) = lim p(D;) = p(Er) = lim p(E;)
which shows that lim; ,co p(F;) = p(E). m
Definition 5.5. A set E € M is a null set if (F) = 0.

Definition 5.6. A measure space (X, M, ) is complete if every subset of a null
set is in M, i.e. for all ' C X such that ' C E € M with u(E) = 0 implies that
FeM.

Proposition 5.7. Let (X, M, ) be a measure space. Set N = {N C X :there
exists F' € M such that N C F and p(F) = 0}.

M={AUN:Ac M,N € M},
see Fig. 12. Then M is a o-algebra. Define i(AUN) = pu(A), then fi is the unique

measure on M which extends p.

Proof. Clearly X, € M. Let A € M and N € N and choose F € M such
that N C F and p(F) =0. Since N¢ = (F'\ N) U F°,

(AUN)*=A°NN=AN(F\NUF) =[A°N(F\N)]U[A°N F°]

where [A°N(F\N)] € N and [A°NF¢] € M. Thus M is closed under complements.
If A, € M and N; C F; € M such that u(F;) = 0 then U(A4; UN;) = (UA;) U
(UN;) € M since UA; € M and UN; C UF; and pu(UF;) < 3 u(F;) = 0. Therefore,
M is a o-algebra.
Suppose AUN; = BUNy with A, B € M and Ny, Ny, € N. Then A C AUN; C
AU N; UF; = BU Fy which shows that

1(A) < p(B) + p(F2) = p(B).

Similarly, we show that p(B) < u(A) so that u(A) = p(B) and hence i(AUN) :=
1(A) is well defined. Tt is left as an exercise to show that f is a measure, i.e. that
it is countable additive. m



70 BRUCE K. DRIVERT

5.1. Example of Measures. Most o — algebras and ¢ -additive measures are
somewhat difficult to describe and define. However, one special case is fairly easy
to understand. Namely suppose that F C P(X) is a countable or finite partition of
X and M C P(X) is the o — algebra which consists of the collection of set A C X
such that

(5.2) A= |J o
aEFS3aCA

It is easily seen that M is a ¢ — algebra.
Any measure p : M — [0,00] is determined uniquely by its values on F. Con-
versely, if we are given any function A : F — [0, 0co] we may define, for A € M,

pA= Y AMa)= Y Ma)laca

aceFd5aCA aEF

where 1, 4 is one if & C A and zero otherwise. We may check that p is a measure
on M. Indeed, if A =[];2; A; and o € F, then o C A iff &« C A; for one and hence
exactly one A;. Therefore,

0o
1aCA - § 1aCA,L-
i=1

and hence

IJ'(A) = Z A(a)laCA = Z )‘(a) Z laCAi

acF aceF
— Z Z Ma)laca, = ZM(AZ')
i=1 a€F =1

as desired. Thus we have shown that there is a one to one correspondence between
measures p on M and functions A : F — [0, o0].

We will leave the issue of constructing measures until Sections 8 and 9. However,
let us point out that interesting measures do exist. The following theorem may be
found in Theorem 8.22 or Theorem 8.41 in Section 8.

Theorem 5.8. To every right continuous non-decreasing function F' : R — R there
exists a unique measure g on Bg such that

(5.3) ur((a,b])) =F(b)—Fla) V —oo<a<b< oo
Moreover, if A € By then

(5.4) pr(A) = inf {Z(F(bi) — F(a;)): A C U2, (ay, bi]}

(5.5) = inf {Z(F(bi) — F(a;)): AC H(ai, bi]} .

In fact the map F — pp is a one to one correspondence between right continuous
functions F with F(0) = 0 on one hand and measures p on Bg such that u(J) < oo
on any bounded set J € Bg on the other.

Example 5.9. The most important special case of Theorem 5.8 is when F(z) = z,
in which case we write m for pp. The measure m is called Lebesgue measure.
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Theorem 5.10. Lebesgue measure m is invariant under translations, i.e. for A €
Br and x € R,

(5.6) m(z + B) = m(B).

Moreover, m is the unique measure on Bg such that m((0,1]) = 1 and Eq. (5.6)
holds for A € Bg and x € R. Moreover, m has the scaling property

(5.7) m(AB) = |\ m(B)
where A € R, B € Bg and AB :={\zx : z € B}.

Proof. Let my(B) := m(x + B), then one easily shows that m, is a measure on
Bg such that my((a,b]) = b— a for all a < b. Therefore, m, = m by the uniqueness
assertion in Theorem 5.8.

For the converse, suppose that m is translation invariant and m((0,1]) = 1.
Given n € N, we have

k-1 k k—1 1
0.1 = U 8 = Ui (S 1 071),

n

Therefore,

L= m((0,1]) = gm (2 +0.0)

k=1
=3 m((0,2]) = n - m((0, 1))

That is to say

m((0, 1]) =1/n.

n

Similarly we show that m((0,%]) = I/n for all I,n € N. Using the translation

invariance of m, we then learn that

m((a,b])) =b—a
for all a,b € Q such that a < b. Finally for a,b € R such that a < b, choose
an, by, € Q such that b, | b and a,, T a, then (an,by] | (a,b] and thus

m((a,b]) = nh—)H;o m((an, by]) = nh—)H;o (b, —an) =b—a,

i.e. m is Lebesgue measure.

To prove Eq. (5.7) we may assume that A # 0 since this case is trivial to prove.
Now let m(B) :=|A| ' m(AB). It is easily checked that m, is again a measure on
Br which satisfies

ma((a,0]) = X m ((Aa, \b]) = A1 (Ab— Xa) = b —a
if A >0 and
ma((a,0]) = |\l Pm (b, Aa)) = — A P (Ab—Xa) =b—a

if A< 0. Hence my =m. m

We are now going to develope integration theory relative to a measure. The
integral defined in the case the measure is Lebesgue measure m will be an extension
of the standard Riemann integral on R.
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5.2. Integrals of Simple functions. Let (X, M, u) be a fixed measure space in
this section.

Definition 5.11. A function ¢ : X — F is a simple function if ¢ is M — By
measurable and ¢(X) is a finite set. Any such simple functions can be written as

(5.8) ¢ = Aila, with A; € M and \; € F.

i=1
Indeed, let i, \a, ..., A\, be an enumeration of the range of ¢ and A; = ¢~ ({\;}).
Also note that Eq. (5.8) may be written more intrinsically as

6= ¥lo= (-
y€EF
The next theorem shows that simple functions are “pointwise dense” in the space

of measurable functions.

Theorem 5.12 (Approximation Theorem). Let f: X — [0, co] be measurable and
define

92n_q
’ .
on@) = Y galpr (e, ki) (@) + 27 00 (@)
k=0

227 —1
k n
= D o lgraresi (0) 2" o0 (2)
k=0

then ¢n, < f for all n, ¢p(x) T f(z) for all x € X and ¢y, T f uniformly on the sets
Xy i={z € X: f(z) < M} with M < co. Moreover, if f : X — C is a measurable
function, then there exists simple functions ¢, such that lim, . ¢n(x) = f(x) for
all z and |pn| 1 1f| as n — oc.

Proof. It is clear by construction that ¢,(z) < f(z) for all  and that 0 <
f(x) —¢pp(x) <27™if x € Xyn. From this it follows that ¢,,(z) T f(z) forall zx € X
and ¢,, T f uniformly on bounded sets.

Also notice that

kE k+1 2k 2k+2 2k 2k +1 2k+1 2k+2

(Q_n’ omn ]:(2n+1’ on+1 ]:(2n+1’ on+1 ] ( on+l 7 9n+l1 }
and for ¢ € f~! ((2%1,%]), On(x) = Ppri(z) = % and for =z €

! ((%ﬁ—f, %]) , On(x) = % < % = ¢p41(x). Similarly since

for x € f71((2", ]) pn(x) = 2" < 2" = ¢, 11 (x) and for z € f1((27, 27 1)),
Pnr1(x) > 2" = ¢y (). Therefore ¢, < P11 for all n and we have completed the
proof of the first assertion.

For the second assertion, first assume that f : X — R is a measurable function
and choose ¢ to be simple functions such that ¢ T fi as n — oo and define

n = (257—"2_ - (;5; Then
|pn| = &) + br < Py + Py = Pl
and clearly [pn| = & + ¢, 1 f+ + f— = |fl and ¢ = ¢Y — by, — f1 — f- = f as

n — OQ.
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Now suppose that f : X — C is measurable. We may now choose simple
function w,, and v, such that |u,| T |Re f|, |vp| T [Im f|, w,, — Re f and v,, — Im f
as n — oo. Let ¢,, = u,, + iv,, then

|n|” = 12 + 02 7 [Re f° + |Im f|* = | f|?

and ¢, =u, +iv, > Ref+ilmf=fasn—o00. m
We are now ready to define the Lebesgue integral. We will start by integrating
simple functions and then proceed to general measurable functions.

Definition 5.13. Let F = C or [0,00] and suppose that ¢ : X — F is a simple
function. If F = C assume further that p(¢='({y})) < oo for all y # 0 in C. For
such functions ¢ we define [ ¢ = [ ¢ du by

X

/</> dp =Y "yp(d ({y})).

X yelF

Proposition 5.14. The integral has the following properties.
1. Suppose that A\ € F then

(5.9) X/ Mfdp =\ )[ fdp.

2. Suppose that ¢ and ¥ are two simple functions, then

Jo+vyn= [van+ [ oa

3. If ¢ and ¥ are non-negative simple functions such that ¢ < 1 then

/ pp < / .

4. If ¢ is a non-negative simple function then A — v(A) := [¢ dp = [1a¢ du
A s
1S a measure.

Proof. Let us write {¢ =y} for the set ¢~ *({y}) C X and u(¢ = y) for
n({¢ =y}) = u(@~" ({y})) so that

/¢ %yu

We will also write {¢ = a,v = b} for ¢~ *({a}) N~ 1({b}). This notation is more
intuitive for the purposes of this proof. Suppose that A € F then

/Aaﬁ dp ="y n(Ap =)

X yelF
=Y yu(d=y/N
yelF
:ZAZM(d)ZZ)ZA/d)dﬁL
z€F X

provided that A # 0. The case A = 0 is clear, so we have proved 1.
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Suppose that ¢ and v are two simple functions, then

/<¢+w) dp=>Y "z plp+ ¢ =2)

z€F

=Y s u(Ueer{p=w, ¥ =2—w})

z€F

=) 2) pb=w,v=2-w)
z€F weF

= Y Grwpp=w v =2)
z,w€lF

=S e n =2+ > w plp = w)
z€F welF

= /1/1 d,u+/(/> dp.
which proves 2.

For 3. if ¢ and ¢ are non-negative simple functions such that ¢ < 1

where in the third inequality we have used {¢ = a,p =b} = if a > b.
Finally for 4., write ¢ = >_ A\;1p, with A\; > 0 and B; € M, then

W) = [ Lad du = 300 AN B,

i=1
The latter expression for v is easily checked to be a measure. m

5.3. Integrals of positive functions.

Definition 5.15. Let LT = {f : X — [0,00] : f is measurable}. Define

/fd,u—sup{/ ¢du:(bissimpleand¢<f}.
X X

Because of item 3. of Proposition 5.14, this definition is consistent with our previous
definition of the integral on non-negative simple functions. We say the f € LT is

integrable if
/ fdp < oo.
X

Remark 5.16. Notice that we still have the monotonicity property: 0 < f < g then

IREIK
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Acf:c/Xf.

Also notice that if f is integrable, then pu ({f = 0o}) =0.

and for ¢ >0

Lemma 5.17. Let X be a set and p : X — [0,00] be a function, let u =
Y owex P(T)0z on M =P(X), i.e.

€A

If f: X — [0,00] is a function (which is necessarily measurable), then

/X fan =3 o

Proof. Suppose that ¢ : X — [0,00] is a simple function, then ¢ =
226[0,00] 214’71({2}) and

Dopp= ) D 2leap(@)
X

zeX z€[0,00]

= > 2> p@) sy (@)

z€[0,00] z€X

S au(emi({2)) = /X pd

z€[0,00]

So on simple function ¢ : X — [0, o0,

> pp= / pdp.
5% X
Suppose that ¢ : X — [0,00) is a simple function such that ¢ < f, then
[ =300 < Yot
X X X
Taking the sup over ¢ in this last equation then shows that
/ fdp <Y pf.
X X
For the reverse inequality, let A CC X be a finite set and N € (0,00). Set

fY(z) = min{N, f(z)} and let ¢y o be the simple function given by Py (x) :=
17 (z) fY (z). Because ¢y a(z) < f(z),

N _ —
;Pf ;Pd)N,A/Xd)NyAdpg/deu,

Since fN T f as N — oo, we may let N — oo in this last equation to concluded

that
;pf < /X fep
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and since A is arbitrary we learn that

;MSAWM

Theorem 5.18 (Monotone Convergence Theorem). Suppose f, € LT is a se-
quence of functions such that f, T f (necessarily in L") then

[t [fasn—oe

Proof. Since f, < f,, < f, for all n < m < oo,

[tz [fuz[1

from which if follows [ f,, is increasing in n and

lim ﬁs/ﬁ

For the opposite inequality, let ¢ be a simple function such that 0 < ¢ < f and
let o € (0,1). Notice that

En={fu>ad} 1 X asn — oo
and that, by Proposition 5.14,

(5.10) /fn > /1E,Lfn > /E acﬁ—a/E” .

Because E — « fE ¢ is a measure and E,, T X,

lim / ¢ = / Pdp.
n—oo n X
Hence we may pass to the limit in Eq. (5.10) to get
lim | f, >« / ¢.

Because this equation is valid for all simple functions 0 < ¢ < f, by the definition
of [ f we have

e fhnafs
Since a € (0, 1) is arbitrary we conclude that
lim [ f, > / f.
=

Corollary 5.19. If f,, € LT is a sequence of functions then

e



REAL ANALYSIS LECTURE NOTES 7

Proof. First off we show that

/(f1+f2):/f1+/f2

by choosing non-negative simple function ¢,, and 1, such that ¢,, T f1 and ¥,, T fa.
Then (¢, + 1y, is simple as well and (¢, +v,,) T (f1 + f2) so that by the monotone
convergence theorem,

/(f1+f2):n131go/(¢n+¢n):nliggo </¢n+/wn>
= lim ¢n+nlin;0/wn:/f1+/f2.

Now to the general case. Let gy = Z fnand g = an, then gy T g and so by

=1
monotone convergence theorem and the additivity Just proved,

;/fn.— lim Z/fnf lim /an

_]\;EHOO/QN_/Q_T;/JCW
||

The following Lemma is a simple application of this Corollary.

Lemma 5.20 (First Borell-Carnteli- Lemma.). Let (X, M, ) be a measure space,
A, € M, and set

{4, i.0.} ={z € X :x € A, for infinitely many n’s}

- U A

N=1n>N
If S 1(Ap) < oo then p({Ay i.0.}) =0.

Proof. (First Proof.) Let us first observe that

{A, i.0.} = {x eX: ilA”(x) = oo} .

n=1
Hence if > | 1(A,) < co then

o0

oo>Zu(An):Z/ 1And,u:/ ZlAnd,u
n=1 n=17X X n=1

implies that Z 14, (z) < oo for p - ae. z. That is to say p({A, i.0.}) =0.

(Second Proof ) Of course we may give a strictly measure theoretic proof of this
fact:
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and the last limit is zero since Y o | u(A,) < oco. m

Example 5.21. Suppose that f € C(]0,1]) and f > 0. Let m, = {0 =ap < a1 <
- < ap, = 1} be a sequence of refining partitions such that mesh(m;) — 0 as
k — oo. Let

fr(z) = f(O)l{O} + Zmin{f(x) tap <z < agyr} l(ak,akﬂ](x)
then fr T f as k — oo so that by the monotone convergence theorem,

/ fdm = hm fk dm

= kli)rgoZmin {f(@):ar <z <agyr}m((arriax])

_ /01 f(x)de

where the latter integral is the Riemann integral.

Example 5.22. Let m be Lebesgue measure on R, then

1 1 1
— dm(z) = lim [ 1 L e
/('0,1] P ( ) n—oo fqg (,11:1]( )Ip ( )
! xfp'*‘l 1
= lim —dz = lim
n—0o00 % xP N 00 7p+ 1 n
— — if p<1
oo if p>1

If p=1 we find

1 "1
/ — dm(z) = lim —dz = lim In(z )H/n = o0.
(0:1] xP n—oo ’1L X n—oo

Example 5.23. Let {r,}72; be an enumeration of the points in Q N [0, 1] and
define

\/ﬁ =5ifx=r,
and
I yr e ——
— Ve —
Then
1 1 1
; \/ﬁ de <4 ; fz)dr <4
and hence
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which shows that m(f = c0) = 0, i.e. that f < co for almost every = € [0,1] and
this implies that

o0
Z < oo for a.e. x.
= Vle—ral *Tn|

The following simple lemma will often be useful.

Lemma 5.24 (Chevbyshev’s Inequality). Suppose that f > 0 is a measurable
function, then for any e > 0,

(5.11) p({f > ep) < / fdp.

Proof. Since 1> < 1lyp>qif <1f,
1 1
ptsze) = [ tysadn< [ Agsazfan< [ ran
X X € € X

Proposition 5.25. Suppose that f > 0 is a measurable function. Then fx fdp =
04ff f =0 a.e. Also if f,g > 0 are measurable functions such that f < g a.e. then

[ fdu < [ gdp. In particular if f = g a.e. then [ fdu = [ gdp.
Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This implies
that (¢~ ({y})) = 0 for all y > 0 and hence [ ¢du = 0 and therefore [, fdu = 0.
Conversely, if [ fdu =0, let E, ={f > 1}. Then

0—/nf2/nldu—lu(En)

which shows that u(E,) = 0 for all n. Since {f > O} = UE,,, we have
p({f >01) <> u(E

ie. f=0a.e.
For the second assertion let E' € M be a set such that u(E°) =0and 1gf < 1gg
everywhere. Because g = 1gg + 1gcg and 1gcg =0 a.e.,

/gdu:/1Egdu+/1Ecgdu:/1Egdu

and similarly [ fdu = [1gfdu. Since 1gf < 1pg everywhere,

/fdu: /1Efdu < /1Egdu: /gdu-

Corollary 5.26. Suppose that {f,} is a sequence of non-negative functions and f
s a measurable function such that off a set of measure zero, f,, T f, then

/hT/fwnHm

Proof. Let E C X such that u(X \ E) = 0 and f,1g T flg. Then by the
monotone convergence theorem,

/fn:/fnlET/flE:/faS’rL—?OO.
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Lemma 5.27 (Fatou’s Lemma). If f,, : X — [0,00] is a sequence of measurable
functions then

/ liminf f,, <liminf / fn

n—00 n—0Q

Proof. Define g, = 1r>1fk fn so that g, T liminf,,_. o f,, as k — oo. Since g < f,,

/gkﬁ/fnforalank

/gk < lim inf /fn for all k.

We may now use the monotone convergence theorem to let & — oo to find

/lim inf f, = /klim Gk MCT klim /gk < lim inf /fn

for all £ < n we have

and therefore

5.3.1. Integrals of Complex Valued Functions.

Definition 5.28. A measurable function f : R — [—o00,00] is integrable if
I+ = flyys0y and f = —f 1ir<o) are integrable. We write L' for the space
of integrable functions. For f € L', let

[ fan= [ o= [ 1

Remark 5.29. Notice that if f is integrable, then
fe<|fI<fe+f-

t/mdu<m-
Proposition 5.30. The map
felt— / fdp eR
X

is linear. Also if f,g € L' are real valued functions such that f < g, the [ fdp <
J gdp.
Proof. If f,g € L' and a,b € R, then
laf +bg| < lallf]| + 0] |g] € L*.

so that f is integrable iff

For a € R, say a < 0,

(af)+ = —af_ and (af)- = —afs

Jar==a[rsaft=a[r~[r)=a[t

so that
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A similar calculation works for a > 0 and the case a = 0 is trivial so we have shown

that
/af:a/f.

Now set h = f +g. Since h=hy — h_,
hy —h_=fr—f +9+—9g-

or
hy+f-+g9-=h_+ fr +g+.
Therefore,
/h++/f—+/g—:/h—+/f++/g+
and hence

fim [ o= [ [ 1= o= [+

Finally if f, — f- = f<g=g4+ —g_ then fi +g_ < g4 + f_ which implies that

/f++/g—§/9++/f—
or equivalently that
/f:/f+—/f—§/g+—/g—:/g-

Definition 5.31. A measurable function f : X — C is integrable if fX |f] dp < o0,
again we write f € L'. One shows that [ |f] du < oo iff

[ e sl [ i < .

/fd,u:/Refd,qui/Imfd,u.

It is routine to show that the integral is still linear on the complex L! (prove!).

For f € L' define

Proposition 5.32. Suppose that f € L', then

M( fdu' SAIfldu-

Proof. Start by writing [, f dyu = Re®. Then

‘ /. fdu‘—R—e“’ [ san= [ esan

= / Re (e7 f) dp.
X
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Let g := Re (e*w f) = g4+ — g— then combining the previous equation with the
following estimate proves the theorem.

/g:/g+*/g§/g++/g—
X X X X X
:/g++g—:/ |gldp

X X

= [ Relepidn < [ \7ld.
X X

Proposition 5.33. f,g € L', then

1. The set {f # 0} is o-finite, i.e. there exists E, € M such that u(E,) < co
and E, T {f #0}.

2. The following are equivalent
(a) [pf=Jpg foral EcM
(b) [If—gl=0

X
(¢) f=g ae

Proof. 1. The sets E, := {|f| > 1} satisfy the conditions in item 1. since
clearly E,, T {f # 0} and by Chebyshev’s inequality (5.11),

1
p(En) < 3 [ 1l <o

2. (a) = (c)Notice that

/Ef:/Eg@/Eufg):o

for all E € M. Taking E = {Re(f —¢) > 0} and using 15 Re(f — g) > 0, we learn
that

OZRe/(f—g)d,u: /lERe(f—g) = 1gRe(f —g) =0 ae.
E
This implies that 15 = 0 a.e. which happens iff

1 ({Re(f = g) > 0}) = p(E) = 0.

Similar p(Re(f — g) < 0) = 0 so that Re(f — ¢g) = 0 a.e. Similarly, Im(f —g) =0
a.e and hence f —g=0a.e.,i.e. f =g a.e.
(¢c) = (b) is clear and so is (b) = (a) since

/Ef*[Eg S/\faq\:o.

Corollary 5.34. Suppose that (X, M, p) be a measure space and {A,} -, C M
is a collection of sets such that p(A; N A;) =0 for all i # j, then

o0

H (UZ°=1An) = Z N(An)-
n=1
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Proof. Since

w(Use Ay) = / luse 4, dp and
p's

Zu(An):/XZlA,,du

n=1

it suffices to show that
(5.12) > 14, =1ux 4, p—ae.
n=1

Now Y > 14, > luee 4, and Yoot 1a, (z) # luse A, () iff 2 € A;NAj for some
i # j, that is

o0
{117 DY 14, (@) # i 4, (117)} =UicjAi N A;
n=1
and the later set has measure 0 being the countable union of sets of measure zero.

This proves Eq. (5.12) and hence the corollary. m

Definition 5.35. Let (X, M, i) be a measure space and L'(u) = LY(X, M, p)
denote the set of L' functions modulo the equivalence relation f ~ g iff f = g a.e.
We make this into a normed space using the norm

15 =gl = [ 1 =aldn
and into a metric space using p1(f,g) = ||f — 9|l -

Remark 5.36. More generally we may define LP(u) = LP(X, M, u) for p € [1,00)
as the set of measurable functions f such that

Jurpan < o
X

modulo the equivalence relation f ~ g iff f =g a.e.

We will see in Section 7 that

1/p
1l = ( / f”du> for f € IP()

is a norm and (LP (), ||-||,») is a Banach space in this norm.

Theorem 5.37 (Dominated Convergence Theorem). Suppose f, — f a.e. |fun| <

g€ L'. Then f € L' and
/ fdp = hlim / frndp.
X - Jx

Proof. Notice that |f| = lim|f,| < g a.e. so that f € L'. By considering the
real and imaginary parts of f separately, it suffices to prove the theorem in the case
where f is real. By Fatou’s Lemma,

[ = [ timint g £,)dp < i [ (9% £,)
X X X

:/ gdp + liminf (:I:/ fndu>.
X X
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Since liminf(—a,) = — limsup a,,, we have shown,
liminf [, fndu
dp + du < dp + . X
Joons [ fom{ PR

and therefore
lim sup/ frdu < / fdu < liminf/ frndp.
X X X
This shows that lim [, f,du exists and is equal to [, fdu. m

Corollary 5.38 (Differentiation Under the Integral). Suppose that J C R is an
open interval and f: J x X — C is a function such that

1. f(to,-) € L* for some ty € J,
2. Bf +(t,x) exists for all (t,x)

3. There is a function g € L* such that )—[ (t x)) g(z) € Lt
Then f(t,-) € L* for somet € J and

G [ s = [ Fajduta)

Proof. (The proof is the same as for sums.) By considering the real and
imaginary parts of f separately, we may assume that f is real. By the mean value
theorem,

(5.13) |f(t, ) — f(to,x)| < g(x) |t —to| forallt e J
In particular,

[f(t,2)] < [f(t 2) = f(to, 2)| + | f(to, @) <9( ) [t —to| + £ (to, )|

which shows f(t,-) € L*(u ) for all t € J. Let G(t fX f(t, z)dp(z), then
0 0

By assumption,
t — f(&
i LGB0 = S0 0) OF oy e x
t—to t— to 8t
and by Eq. (5.13),
f(t,x) = flto,2) | _
t—to -
Therefore, we my apply the dominated convergence theorem to conclude

lim G(tn) 0 — lim / f tnvx tva)dM(x)_/X lim f(tn’x)_f(thx)dﬂ($)

n— o0 t — tO n—oo t — tO n—oo tn — tO

= /X E(to’ x)dp(z)

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =
G()=G(to)
t—to

g(x) forallt € J and z € X.

exists and

o) = | &L (10, a)u(z).

limt—nso



REAL ANALYSIS LECTURE NOTES 85

5.4. Measurability on Complete Measure Spaces. In this subsection we will
discuss a couple of measurability results concerning completions of measure spaces.

Proposition 5.39. Suppose that (X, M, p) is a complete measure space® and f :
X — R is measurable.

1. If g : X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2. If f, : X — R are measurable and f : X — R is a function such that
lim, oo fn = f, t - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(z) # g(x)} which is assumed to be in M and
w(E)=0. Then g = 1gcf + 1gg since f = g on E°. Now 1gcf is measurable so g
will be measurable if we show 1gg is measurable. For this consider,

(5.14) (1eg)~"(A) = { ﬁ;j)(}f&);lm\ op i 8 ;ﬁ

Since (1gg) *(B) C Eif 0 ¢ B and u(E) = 0, it follow by completeness of M that
(1gg) Y(B) € M if 0 € B Therefore Eq. (5.14) shows that 1zg is measurable.
2. Let E={z: lim f,(z)# f(x)} by assumption E € M and p(E) = 0. Since

g=1gf =lim, oo 1gcfn, g is measurable. Because f = g on E° and p(FE) = 0,
f =g a.e. so by part 1. f is also measurable. m

The above results are in general false if (X, M, p1) is not complete. For example,
let X = {0,1,2} M = {{0}, {1,2},X,¢} and p = &9 Take ¢g(0) = 0, g(1) =
1, ¢g(2) =2, then g = 0 a.e. yet g is not measurable.

Lemma 5.40. Suppose that (X, M, i) is a measure space and M is the completion
of M relative to p and [i is the extension of u to M. Then a function f: X — R
is (M, B = Bg) — measurable iff there exists a function g : X — R that is (M, B)
— measurable such E = {z: f(z) # g(x)} € M and i (E) =0, i.e. f(x) = g(x) for
i — a.e. .

Proof. Suppose first that such a function g exists so that i(E) = 0. Since
g is also (M, B) — measurable, we see from Proposition 5.39 that f is (M,B) —
measurable.

Conversely if f is (M, B) — measurable, by considering f1 we may assume that
f > 0. Choose (M, B) — measurable simple function ¢, > 0 such that ¢,, T f as

n — 0o. Writing
Pn = ZaklAk

with A, € M, we may choose By, € M such that B, C A; and (A \ Br) = 0.

Letting
qNSn = Z arlp,

we have produced a (M, B) — measurable simple function ¢y > 0 such that E, :=
{¢pn # ¢n} has zero fi — measure. Since i (U, E,) <> [ (FE,), there exists FF € M
such that U, E, C F and p(F) = 0. It now follows that

lpgn =1lppn 1 g:=1pf as n — co.

8Recall this means that if N C X is a set such that N C A € M and pu(A) =0, then N € M
as well.
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This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has i —
measure zero. W

5.5. Comparison of the Lebesgue and the Riemann Integral. In this sec-
tion, suppose —0o < a < b < oo and f : [a,b] — R be a bounded function. To each
partition

(5.15) P={a=ty<ti <--- <ty =0}
of [a,b] let
Spf =2 M(t; —t; 1)
spf = myt; —t; 1)
where

M; =sup{f(z):t; <x <tj_1}
m; = Hlf{f(.%‘) : tj <z < tjfl}

and define the upper and lower Riemann integrals by

b
/ f(z)dx = i%f Spf and

[ f@as =sup se
P

b

respectively.
Fact 5.41. Recall the following fact from the theory of Riemann integrals. There
exists a refining sequence of partitions Py, (i.e. the P ’s are increasing) such that
b
Spkf\/ f as k — oo and
b
stfT/ f as k — oc.

Definition 5.42. The function f is Riemann integrable iff [°f = [°f and

which case the Riemann integral f: f is defined to be the common value:

/abf(:zz)dx _Zf(x)da: _/Lbf(x)da:.

For a partition P as in Eq. (5.15) let

GP = ZMjl(tj—lytj] and agp = ijl(tj—l,tj]'
1 1

If Py is a sequence of refining partitions as in Fact 5.41, then Gp, is a decreasing
sequence, gp, Is an increasing sequence and g, < f < G p, for all k. Define

(5.16) G

lim Gp, and g = lim gp,.
k—o0

T k—oo
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and notice that g < f < G. By the dominated convergence theorem,

b
/ gdm = lim gp, = lim sp, f :/ f(z)dx
[a.b] k=00 Jla,b) koo Ja_

and

b
Gdm = lim Gp, = lim Sp, f :/ f(z)dx
[a,b] k—oo [a,b] k—oo a
Therefore f is Riemann integrable iff f[a nG = f[a p 9 ie iff f[a nG—9=0.
Since G > f > g this happens iff G = g a.e. Hence we have proved the following
theorem.

Theorem 5.43. A bounded function f : [a,b] — R is Riemann integrable iff the
Borel measurable functions 9,G : [a,b] — R defined in Eq. (5.16) satisfy g(z) =
G(z) form - a.e. x € [a,b]. Moreover if f is Riemann integrable, then

/ f(z dx—/ gdm = Gdm.
la,b] la,b]

The function f need not be Borel measurable but it is necessarily Lebesgue measur-
able, i.e. f is L/B — measurable where L is the Lebesgue o — algebra and B is the
Borel o — algebra on [a,b]. If we let m denote the completion of m, then we may

also write
b
/ f(x)dx = fdm.
a la,b]

Exercise 5.1. Let u be a measure on an algebra A C P(X), then u(A) + u(B) =
w(AUB)+ u(ANB) for all A, B € A.

Exercise 5.2. Problem 12 on p. 27. Let (X, M, ) be a finite measure space and
for A,B € M let p(A, B) = n(AAB) where AAB = (A\ B) U (B\ A). Define
A ~ B iff y(AAB) = 0. Show “~ ” is an equivalence relation, p is a metric on
M/ ~ and pu(A) = p(B) if A ~ B. Also show that g : (M/ ~) — [0,00) is a
continuous function relative to the metric p.

5.6. Exercises.

Exercise 5.3. Suppose that u, : M — [0, 0] are measures on M for n € N. Also
suppose that fi,,(A) is increasing in n for all A € M. Prove that p : M — [0, o0]
defined by p(A) := limp 0 fin(A) is also a measure.

Exercise 5.4. Now suppose that A is some index set and for each A € A, p, :
M — [0,00] is a measure on M. Define i : M — [0,00] by pu(A) = > cp 1a(A)
for each A € M. Show that p is also a measure.

Exercise 5.5. Let (X, M, ) be a measure space and p : X — [0, o] be a measur-
able function. For A € M, set v(A) := [, pdp.

1. Show v : M — [0, ] is a measure.
2. Let f: X — [0, 00] be a measurable function, show

(5.17) /X fdv = /X Fody.

Hint: first prove the relationship for characteristic functions, then for simple
functions, and then for general positive measurable functions.
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3. Show that f € L(v) iff fp € L*(n) and if f € L'(v) then Eq. (5.17) still
holds.

Notation 5.44. It is customary to informally describe v defined in Exercise 5.5
by writing dv = pdp.

Exercise 5.6. Let (X, M, 1) be a measure space, (Y,F) be a measurable space
and f : X — Y be a measurable map. Define a function v : F — [0,00] by
v(A) :=p(f1(A)) for all A€ F.

1. Show v is a measure. (We will write v = fopu or v =po f1)

2. Show

(5.18) [ o= [ oo rau

for all measurable functions g : Y — [0, 0c]. Hint: see the hint from Exercise
5.5.
3. Show g € L'(v) iff go f € L*(n) and that Eq. (5.18) holds for all g € L(v).

Exercise 5.7. Let f : R — R be a C'-function such that f’(z) > 0 for all z € R
and lim, 4., f(z) = +o00. Let m be Lebesgue measure and A\ = f,m = mo f=1.
Show dA = f'dm.

Exercise 5.8. Let (X, M, ;1) be a measure space and {4,},. , C M, show
p({Ay, a.a.}) <liminf u (4,)
and if gt (Um>nAm) < 0o for some n, then

w({Ay i.0.}) > limsup p (Ay) .

Exercise 5.9. Show
lim [ (1-2)"dm(z) =1.

n—oo [q n

Exercise 5.10 (Peano’s Existence Theorem). Suppose f : R x R? — R? is a
bounded continuous function. Then for each T < o0? there exists a solution to
the differential equation

(5.19) &(t) = f(t,x(t)) for 0 <t < T with z(0) = .
Do this by filling in the following outline for the proof.

1. Given € > 0, show there exists a unique function z. € C([—¢, 00) — R9) such
that z.(t) = x¢ for —e <t < 0 and

(5.20) z(t) = xo + /t f(r,ze(T —€))dr for all t > 0.
0
Here
/Ot f(r,ze(T —€))dr = </0t fi(r,z(T —€))dr, ..., /Ot fa(m,ze(T — e))d7’>

where f = (f1,..., fs) and the integrals are either the Lebesgue or the Rie-
mann integral since they are equal on continuous functions.

9Using Corollary 26.19 below, we may in fact allow T = oo.



REAL ANALYSIS LECTURE NOTES 89

2. Then use Exercise 3.38 to show there exists {ex},., C (0,00) such that
limg_—o € = 0 and z, converges to some x € C([0,T]) (relative to the
sup-norm: ||zf|, = supyepo 1) [2(¢)]) as k — oo.

3. Pass to the limit in Eq. (5.20) with € replaced by €, to show z satisfies

¢

x(t) = g +/ f(r,z(7))dr Vit € [0,T].
0
4. Conclude from this that &(¢) exists for ¢ € (0,7") and that x solves Eq. (5.19).

Exercise 5.11. Folland 2.10 on p.49.
Exercise 5.12. Folland 2.12 on p. 52.
Exercise 5.13. Folland 2.13 on p. 52.
Exercise 5.14. Folland 2.14 on p. 52.

Exercise 5.15. Give examples of measurable functions {f,} on R such that f,
decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example of a
sequence of measurable functions {g,, } on [0,1] such that g, — 0 while [ g,dm =1
for all n.

Exercise 5.16. Folland 2.19 on p. 59.
Exercise 5.17. Folland 2.20 on p. 59.
Exercise 5.18. Folland 2.23 on p. 59.
Exercise 5.19. Folland 2.26 on p. 59.
Exercise 5.20. Folland 2.28 on p. 59.
Exercise 5.21. Folland 2.31b on p. 60.



