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1. WHAT ARE MEASURES AND WHY “MEASURABLE” SETS

Definition 1.1 (Preliminary). Suppose that X is a set and P(X) denotes the
collection of all subsets of X. A measure p on X is a function p : P(X) — [0, o0]
such that

(1) u(@) =0
(2) It {Ai}i\;l is a finite (N < 00) or countable (N = co) collection of subsets
of X which are pair-wise disjoint (i.e. A; N A; =0 if i # j) then

p(UL Ay = ZM(Ai)~

Example 1.2. Suppose that X is any set and x € X is a point. For A C X, let
50(A) = { 1 if reA

0 otherwise.
Then p = 65 is a measure on X called the at x.

Example 1.3. Suppose that p is a measure on X and A > 0, then Ay is also a
measure on X. Moreover, if {y,, : o € J} are all measures on X, then pp =3 ; f1,,
ie.
w(A) = pa(A) forall AC X
acd
is a measure on X. (See Section 2 for the meaning of this sum.) We must show that
p is countably additive. Suppose that {4;};—, is a collection of pair-wise disjoint
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subsets of X, then

(U2 4i) = ZM(Ai) =D ) pa(A)

i=1 acJ
= Z Z,ua(Ai) = Z to (Ui21 4i)
acd i=1 aed
= (U2, 4;)

where in the third equality we used Theorem 2.20 below and in the fourth we used
that fact that p,, is a measure.

Example 1.4. Suppose that X is a set A: X — [0, o0] is a function. Then
W= Z A(x)6s
zeX

is a measure, explicitly

w(A) =" Ax)

z€EA
for all A C X.

1.1. The problem with Lebesgue “measure”.

Question 1. Does there exist a measure p : P(R) —[0, o] such that

(1) p(la,b)) = (b—a) for all a < b and
(2) p(A+z) = pu(A) for all z € R?

The unfortunate answer is no which we demonstrate now. In fact the answer is
no even if we replace 1. by the condition that 0 < u((0,1]) < cc.

Let us identify [0,1) with the unit circle S := {z € C : |z| = 1} by the map
B(t) = e € S for t € [0,1). Using this identification we may use u to define a
function v on P(S) by v(¢p(A)) = u(A) for all A C [0,1). This new function is a
measure on S with the property that 0 < v((0,1]) < co. For z € S and N C S let

(1.1) zN:={zmeS:ne N},

that is to say e N is N rotated counter clockwise by angle #. We now claim that
v is invariant under these rotations, i.e.

(1.2) v(zN) = v(N)

for all z € S and N C S. To verify this, write N = ¢(A4) and z = ¢(t) for some
t€]0,1) and A C [0,1). Then

d(t)Pp(A) = p(t + Amod 1)
where For N C [0,1) and o € [0, 1), let

t+Amodl={a+tmodl € [0,1):a€ N}
=(a+Anfa<l—thHUu(t-1)+An{a>1-1t}).
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Thus
V($(H)P(A)) = u(t + Amod 1)
=p((a+An{a<l—-tHu(t—-1)+ANn{a>1-t}))
=p(la+Anfa<i—t})+p(((t-1)+AN{a=1-1t}))
=pAn{a<l—thH)+pu(An{a>1-t})
—p(ANfa<1-t})UAn{a>1-1})
= j(A) = v($(A)).

Therefore it suffices to prove that no finite measure v on S such that Eq. (1.2)

holds. To do this we will “construct” a non-measurable set N = ¢( A) for some
AcC[0,1).
To do this let R be the countable set

R:={z=¢?":tc[0,1)NQ}.

As above R acts on S by rotations and divides S up into equivalence classes, where
z,w € S are equivalent if z = rw for some r € R. Choose (using the axiom of
choice) one representative point n from each of these equivalence classes and let
N C S be the set of these representative points. Then every point z € S may be
uniquely written as z = nr with n € N and r € R. That is to say

(1.3) s=T[ N

where [], Aq is used to denote the union of pair-wise disjoint sets {A,}. By Eqgs.
(1.2) and (1.3) we find that

v(S) = ZI/(TN) = ZV(N).
reR rcR
The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S) € (0,1). Thus we have reached the
desired contradiction.
Proof. (Second proof) For N C [0,1) and « € [0,1), let
N®=N+amodl
={a+amodl €[0,1):a € N}
=(a+Nn{a<l-—a})U((a=1)+Nn{a>1—-a}).
If u is a measure satisfying the properties of the Question we would have
p(N)=pla+Nn{a<l—a})+p((a—1)+Nn{a>1-a})
=p(Nnfa<l—-a})+pu(Nn{a>1-a})
=pu(Nn{a<l—alU(Nn{a>1-a}))
(1.4) = u(N).
We will now construct a bad set N which coupled with Eq. (1.4) will lead to a

contradiction.
Set

Qe={x+reR:reQ} =z+Q.
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Notice that Q, N Q, # 0 implies that Q, = Q,. Let O = {Q, : * € R} — the orbit
space of the Q action. For all A € O choose f(A) € [0,1/3)N A.! Define N = f(O).
Then observe:
(1) f(A) = f(B) implies that AN B # () which implies that A = B so that f
is injective.
(2) O={Qn:n e N}.
Let R be the countable set,

R=QnJ0,1).
We now claim that
(1.5) N'NN®=0(ifr # s and
(1.6) [0,1) =UrerN".

Indeed, if z € N" N N® # () then x = r + nmod 1 and z = s + n’mod 1, then
n—nl €Q,ie Qp= Q. Thatis to say, n = f(Qn) = f(Qn) = n’ and hence
that s = rmod 1, but s,r € [0,1) implies that s = r. Furthermore, if z € [0,1) and
n:=f(Q.), then z —n =7 € Q and v € N"™mod1,

Now that we have constructed N, we are ready for the contradiction. By Equa-
tions (1.4-1.6) we find

L= ([0, 1) = 32 p(N7) = 37 (V)

r€ER reR
oo if p(N)>0
o 0 if uw(N)=0

which is certainly inconsistent. Incidentally we have just produced an example of
so called “non — measurable” set. m

Because of this example and our desire to have a measure p on R satisfying the
properties in Question 1, we need to modify our definition of a measure. We will
give up on trying to measure all subsets A C R, i.e. we will only try to define p on a
smaller collection of “measurable” sets. Such collection will be called o — algebras.
These notion will be introduced in the nest section.

2. LIMITS, SUMS, AND OTHER BASICS
2.1. Set Operations. Suppose that X is a set. For A C X let
A=X\A={zeX:x¢ A}
and more generally if A, B C X let
B\A={xe€B:z ¢ A}.
We also define the symmetric difference of A and B by
AAB =(B\A)U(A\ B).

As usual if {Aq},c; is an indexed collection of subsets of X we define the union
and the intersection of this collection by

Uaerlo:={z€X:3ael 5 z € A,} and
Nacrdo ={r e X:x € AyVael}.

IWe have used the Axiom of choice here, i.e. [Tacr(AN0,1/3]) # 0
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Notice that U is closely related to 3 and N is closely related to V. For example let
{A,}>7 | be a sequence of subsets from X and define

{A,i0}={ze X :#{n:2€A,} =oc0} and
{A, aa.} :={z € X :z € A, for all n sufficiently large}.
Then x € {A,, i.0.} if YN € N3n > N 5 2 € A, which may be written as
{A, 10} =NF—q Un>n An

and similarly, © € {A,, a.a.} iff IN €e N>Vn > N, z € 4,, which may be written
as
{An a.a.} = U%:l MNn>N A,.

2.2. Limits, Limsups, and Liminfs.

Notation 2.1. The is the set R := RU{4oc}, i.e. it is R with two new points
called co and —oo. We use the following conventions, 400 -0 = 0, 00+ a = £o0
for any a € R, 0o 4+ 00 = 0o and —oo — 0o = —o0 while 0o — 0o is not defined.

If A C R we will let sup A and inf A denote the least upper bound and greatest
lower bound of A respectively. We will also use the following convention, if A = (),
then sup ) = —oo and inf ) = +oo.

Notation 2.2. Suppose that {z,},. , C R is a sequence of numbers. Then

(2.1) lim inf x, = lim inf{xy : k > n} =supinf{z, : &k > n}
and
(2.2) lim sup x, = lim sup{xy : &k > n} = infsup{z; : k > n}.

We will also write liminf for lim and lim sup for lim.

Remark 2.3. Notice that if ay := inf{xy : k > n} and by := sup{zy : k£ > n},then
{ar} is an increasing sequence while {b} is a decreasing sequence. Therefore the
limits in Eq. (2.1) and Eq. (2.2) always exist.

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.4. Let {a,}22; and {b,}52, be two sequences of real numbers.
Then

(1) Show liminf, o an < lim SUP,, 0 @ and the limy, oo an ezists in R iff
liminf,, o an = limsup,,_, ., an € R. ~
(2) Suppose that limsup,, ., an, = M € R, show that there is a subsequence
{an, }72, of {an}5Ly such that limyg_.o ay,, = M.
(3) Suppose that limsup,,_, ., a, < oo and limsup,, . b, > —oo, then prove
that
(2.3) lim sup (a, + b,) <lim sup a, + lim sup b,.
In other words, Eq. (2.3) holds provided the right side of the equation is
well defined.
(4) Suppose that a,, > 0 and b, > 0 for all n € N. Show
(2.4) lim sup (anby) <lim sup a, -lim sup by,

n—oo n—00 n—00

provided the right hand side of (2.4) is not of the form 0 - oo or oo - 0.
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Proof. We will only prove part 1. and leave the rest as an exercise to the reader.
We begin by noticing that

inf{a : k > n} <sup{ap:k>n}Vn

so that

lim inf a, <lim sup a,.
n—0o0 n— oo

Now suppose that liminf, ., a, = limsup,,_,., an = a € R. Then for all € > 0,
there is an integer N such that

a—e<inf{ay: k> N} <sup{ap: k> N} <a+e,

i.e. we have
a—e<ap<a+eforal k> N.
Hence by the definition of the limit, limg_,o ax = a.

If liminf,, o, a, = 00, then we know for all M € (0,00) there is an integer N
such that

M <inf{ay : k> N}
and hence lim,,_,oc an, = 00. The case where limsup,, ,.,a, = —oo is handled
similarly. ~
Conversely, suppose that lim,, .., a, = A € R exists. If A € R, then for every
€ > 0 there exists N(¢) € N such that |4 — a,| < € for all n > N(e), i.e.

A—e<a, <A+eforaln>N(.
From this we learn that

A—¢e<lim inf a, <lim sup a, < A+e.

n—0o0 n— oo
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A,
i.e. that A =liminf,,_ . a, = limsup,,_,., @n.
If A = oo, then for all M > 0 there exist N(M) such that a,, > M for all
n > N(M). This shows that

lim inf a,, > M

n—oo

and since M is arbitrary it follows that

oo < lim inf a, <lim sup a,.
n—0oo n— o0

The proof is similar if A = —oco as well. m

The following elementary lemma will often be useful.

Lemma 2.5. Let X and Y be sets, R C X xY and suppose that a : R — R is a
function. Let ;,R:={y €Y :(z,y) € R} and Ry :={x € X : (z,y) € R}. Then

sup a(z,y) = sup sup a(z,y) = sup sup a(z,y) and
(z,y)ER zeX yez R yeY TER,,
inf a(z,y) = inf inf a(z,y) = inf inf a(x,y).

(z,y)ER zeX yez R yeY TER,,
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Proof. Let M = sup(, ,)cr a(x,y), Ny 1= sup,c_pga(z,y), then a(z,y) < M for
all (v,y) € R. Suppose that € X, then implies that N, = sup,¢ g(z,y) < M and
hence

(2.5) sup sup a(z,y) = sup N, < M.
zeX yeL R rxeX

Similarly for any (x,y) € R,
a(z,y) < N, < sup N, = sup sup a(z,y)

zeX ze€X y€.R
and therefore
(2:6) sup a(z,y) < sup sup a(z,y) = M
(z,y)ER z€EX yEL R

Equations (2.5) and (2.6) show that

sup a(z,y) = sup sup a(z,y).
(z,y)ER re€X yEa R

All of the other assertions of the Lemma have a similar proof. m

2.3. Sums of positive functions. In this and the next few sections, let X and Y
be two sets. We will write o CC X to denote that « is a finite subset of X.

Definition 2.6. Suppose that a : X — [0, 00] is a function and F C X is a subset,

then
Za: Za(x) —sup{Za(x) taCC F}

zeF TrEa
Remark 2.7. Suppose that X =N ={1,2,3,...}, then

Za = Za(n) = ]\;Eana(n).

Indeed for all N, 2711\;1 a(n) < > ya, and thus passing to the limit we learn that

Za(n) < Za.
N

n=1
Conversely, if & CC N, then for all N large enough so that o« C {1,2,..., N}, we
have >~ a < Ziv=1 a(n) which upon passing to the limit implies that

Za < Za(n)

and hence by taking the supremum over « we learn that
oo
Z a< Z a(n).
N n=1

Remark 2.8. Suppose that >y a < oo, then {z € X : a(x) > 0} is at most count-
able. To see this first notice that for any € > 0, the set {z : a(z) > €} must be finite
for otherwise )" a = co. Thus

{r e X :a(z) >0} = UZO:1{$ ta(x) > 1/k}
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which shows that {z € X : a(xz) > 0} is a countable union of finite sets and thus
countable.

Lemma 2.9. Suppose that a,b: X — [0, 0] are two functions, then

Zaer ZaJerand
Z)\a—)\Za

for all X > 0.

I will only prove the first assertion, the second being easy. Let a CC X be a

finite set, then
Zaer Za+2b<2a+zb

which after taking sups over « shows that
da+b) <> a+d b
X X X
Similarly, if a, 6 CC X, then

Za+2b<2a+2b—z a+b) < (a+b).

aUpg aUg aUpg

Taking sups over a and 8 then shows that
> a+> b<> (atb).
X X X

Theorem 2.10 (Monotone Convergence Theorem). Suppose that f,, : X — [0, 0]
s an increasing sequence of functions and

fla) = Tim fo(r) = sup fn().
Then

fm =2 f
X X

Proof. Let S,, =) y fn and S = > f. Since f,, < f,, < f forall n < m, it
follows that

Sp <Sp <8

which shows that lim,,_. . 5, exists and is less that S, i.e.
(2.7) A= Tim Y f, <> f
Noting that " fr <> x fn =S, < Afor all « CC X and in particular,

angAforallnandaCCX.

Letting n tend to infinity in this equation shows that
ngAforallaCCX
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and then taking the sup over all @ CC X gives
(2.8) Y f<A=lim ) f,
X X

which combined with Eq. (2.8) shows proves the theorem. m

Lemma 2.11 (Fatou’s Lemma). Suppose that f, : X — [0,00] is a sequence of
functions, then

Y lim inf f, <lim inf Y f,.

x n—00 n—00 x

Proof. Define g = 1r>1fk fn so that g T liminf,,_, o, f,, as k — oo. Since g < f

for all £k < n we have
ngSanforallnzk
X X

and therefore

> gx <lim inf Y f, for all k.
X n—oo B

We may now use the monotone convergence theorem to let k£ — oo to find

.. . MCT . o
;hmnggofnf;khﬁrgogk = klggo;gkghmnlggo;fn.

Remark 2.12. If A =3\ a < 0o, then for all € > 0 there exists o« CC X such that
A> Za >A—¢

for all « CC X containing «, or equivalently,
A— Z a
«

for all « CC X containing c. Indeed, choose a, so that Za( a>A—e

(2.9) <e

2.4. Sums of complex functions.

Definition 2.13. Suppose that a : X — C is a function, we say that

Za: Z a(x)

zeX

exists and is equal to A € C, if for all € > 0 there is a finite subset a. C X such
that for all @« CC X containing o, we have

A— Z a
Definition 2.14 (Summable). We call a function a : X — C summable if
Z la| < oco.

X

Proposition 2.15. Leta : X — C be a function, then )\ a exists iff Yy |a| < oo,
i.e. iff a is summable.

<e.




MATH 240A LECTURE NOTES: MEASURE THEORY 11

Proof. If )", |a] < oo, using Remarks 2.12 we may choose an increasing se-
quence of finite subsets «,, of X, such that

Z\a|22|a|22|a\—1/nVn.

Qn X
Letting Sp, 1=

. @ we have for m > n,
n

|Sm_5n‘: Z a| < Z \a|
U \On o \ ot
= lal =) lal
<JA-Sfal|+]4 =S al
L
<— 4=
m n

which tends to 0 as m,n — oo. Thus {S,,} is a Cauchy sequence and we let
A :=1lim,, 00 Sn.2 Letting m — oo in the previous equation also shows that

n

If « is a finite subset containing «,,, then

A—%a = A—Za—i— Za

anp a\ay
< 'A > al+ > |l
anp a\ay,

<|A-=8,|+1/n<2/n.

This shows that ) a exists and is equal to A.
Conversely, if >  |a| = co then, because |a| < |Rea| + |Imal, we must have

Z\Rea| =00 or Z\Ima\ = o0.
X X

Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where
(2.10) at(z) = max(a(z),0) and a~ (z) = max(—a(x),0).

Then |a] =a™ +a~ and
oo:Z\a| :Za++2a7
X X X

which shows that either Y ya™ = oo or Y ya~ = oo. Suppose with out loss
of generality that >y a™ = oco. Let X’ := {z € X : a(z) > 0}, then we know

Q(Alternative construction of A.) Using Remarks 2.8 and 2.7 there is a countable set I’
{zn}o2 1 C X such that a(z) = 0ifz ¢ T and >, |a| = >°07; |a(xn)| < oo and hence A :
S0 | a(zn) exists.

n=1
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that } ., a = oo which means there are finite subsets a,, C X’ C X such that
-, @ > n for all n. This shows that )y a can not exist. m
If a : X — R is a summable function, let a*(z) be defined as in Eq. (2.10), then

YIRS D
X X X
and if ¢ : X — C is a summable function then

Za: ZRea—l—z’ZIma.
X X X

Using these two remarks, many theorems about summable functions a : X — C
may be reduced to theorems about summable functions a : X — [0, c0).

Remark 2.16. Suppose that X = N and a : N — C is a sequence, then it is not
necessarily true that

(2.11) > a(n) =" a(n).

n=1 neN
This is because
oo N
Z a(n) = lim a(n)
N—oo
n=1 n=1

depends on the ordering of the sequence a where as ) a(n) does not. For
example, take a(n) = (—1)"/n then ) _la(n)] = coie. > - a(n) does not
exist while "7 a(n) does exist. On the other hand, if

Z\a |—Z\a )| < o0

neN
then Eq. (2.11) is valid.

Exercise 2.17. Suppose that a,b: X — C are two summable functions and A € C.

Show
D (a+Ab) = ZaJr)\Zb
X

Theorem 2.18 (Dominated Convergence Theorem). Suppose that f, : X — C is
a sequence of functions on X such that f(z) = lim,— oo fn(x) € C exists for all
x € X. Further assume there is a dominating function g : X — [0,00) such that

(2.12) |[fr(2)] < g(z) for allz € X andn € N
and that g is summable. Then
(2.13) Jim Y fu(w) =) f(a)

zeX zeX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem in the
case where f is real. By Fatou’s Lemma,

Zgif th mf (9£ frn) <lim mfZgifn
X

= ZnglimniBgo (ian> .
X

X
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Since liminf, o (—a,) = —limsup,,_, ., @, we have shown,
liminf, oo Yy fn
MO WENWIS s

and therefore

lim sup > fn <> f< hmniEgton.
X X

n—oo
X

This shows that lim )" frexists and is equal to ), f. =

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that |f| < ¢
and in particular that f is summable. Given € > 0, let o CC X such that

Zgﬁe.

X\«

Then for 8 CC X such that o C 3, we have

SDTFEY ha| <D (F - 1)
B B

B

SN =Sl =D N = Fal +D1f = 1ol
B ] B\

<> U= fal+2) g
« B\

< | = fal + 26

and hence that
STF=D | DN~ fal + 26
B B «
Since this last equation is true for all such 8 CC X, we learn that

=Y tn

§Z|f_fn|+2€

which then implies that

lim sup
n—oo

N F=> fn

<lim sup » |f = ful + 2¢
= 2e.
Because € > 0 is arbitrary we conclude that
DI
X X

lim sup =0.

n— 00

which is the same as Eq. (2.13). =
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2.5. Iterated sums. Let X and Y be two sets.

Exercise 2.19. Suppose that a : X — C is function and F C X is a subset such
that a(x) = 0 for all z ¢ F. Show that . a exists iff )"  a exists, and if the sums

exist then
S
X F
Theorem 2.20. Suppose that a: X xY — [0, 00], then

2 a=d. 0 0=

XxY
Proof. It suffices to show, by symmetry, that
2 =20
XxY
Let ACC X x Y. The for any o« CC X and 3 CC Y such that A C a x 3, we have
ILE ZG—ZZ“ZZ“ZZG
ax3 o
ie. Y hna <> >y a. Taking the sup over A in this last equation shows
S sy e
XXY X v

We must now show the opposite inequality. If >y .y a = co we are done so
we now assume that a is summable. By Remark 2.8, there is a countable set
{(2],,yl)} ooy € X X Y off of which a is identically 0. Let A = {z/, : n € N} and
B ={y,, : n € N} and let {x,,} -, and {y,},., be an enumeration of A and B
respectively. With this notation we know that a(z,y) = 0 for all (z,y) ¢ A x B, so

that
da= Y al@m,yn)

XxXY (m,n)EN?
It is also easy to verify that

2.2 a=2 D alamyn)

meNneN

Hence we have now reduced the problem to the special case where X =Y =N, so
we need to prove: if a : N> — [0, 00) is summable, then

Yoz ¥ Yatnn)

meNneN
Let M, N € N, then
N
> 3 st < Yo
m=1n=1
M N
> Y atmn) = 3 Jim 3 a(mn)
m=1n=1 m=1 n=1
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Similarly

Z Za(m,n) = MliinOo Z Za(m,n) < Za

m=1n=1 m=1n=1
which was to be proved. m
Theorem 2.21. Now suppose that a : X XY — C is a summable function, i.e. by
Theorem 2.20 any one of the following equivalent conditions hold
(1) YXoxwy lal < oo,

(2) 2ox 2y lal <ooor

(3) 2y 2oxla < oo
Then

Proof. Working as in the proof of Theorem 2.20, we can reduce the proof to
the case where X =Y = N.2 Hence we need to show

Z Za(m,n) = %a.

m=1n=1

Let us first note that for all m € N

[e%S)
> latm,n)| < Ja| < oo
n=1 N2

so that Y7 | a(m,n) is well defined. Furthermore,

Z Za(m,n) < ZZ\a(m,n)|<oo

n=1 m=1n=1
so that 7 | 5™ a(m,n) is well defined.
Let € > 0, then by the definition of A := )", a, for all M, N € N sufficiently
large,

<e.

Z Za(m,n) —A

m=1n=1

Letting N — oo in this equation shows that

ZZa(m,n)—A

m=1n=1

<e

and then letting M — oo shows

Z Za(m,n)—A

m=1n=1

<e.

Since € > 0 is arbitrary, we are done. m

3The short proof of this theorem is to first prove the result for real valued functions a by
applying Theorem 2.20 to a* — the positive and negative parts of a. The theorem then follows
for complex valued functions a by applying the real version just proved to the real and imaginary
parts of a.
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Q:{

FI1GURE 1. Nested Sequence of cubes

2.6. Compact Sets in R"”.

Theorem 2.22. Suppose that K is a closed and bounded subset of R™ and thatV is
a collection of open subsets of R™ which covers K in the sense that K C Uy¢yV,
then there is finite subcover F C V, i.e. F is a finite subset of V such that K C
UverV.

Proof. Let us first assume that K = [-M, M]™ for some M € N. Let C, :=
[0,€]™ and for an integer k > 0, let

Q) = {z+Cyr:2x€ 27FN and r+ Cyi C K}.

Let Q; = Q5. Since K = Ugeo, @, there must be some @)1 € Q; for which no finite
subset of V covers Q. Let Qy = {Q € Q:QcC @1}, then since Q1 = Ugeg, @,
there must be some Q2 € Qs for which no finite subset of V covers J2. Then let
Q5 ={Q¢€ Oy : Q@ C @2} and choose Q3 € Q3 or which no finite subset of V covers
Q3. Continue this way by induction, we may construct cubes @Q; € Q; such that

KOoQ12Q20Q3D...

and no @; may be covered by a finite subcollection of V.
Now choose z; € Q; and notice that since the diameter of the @Q); ’s tends to 0
as ¢ — 00, it follows that {;};~; is a Cauchy sequence and hence z := lim;_,«, z;

exists. Since all of the @; ’s are closed we further know that
x € NQ;.

Since V is a cover, there is an open set V &€ V such that € V and since V is
open and lim;_, o, diam(Q;) = 0, it follows that @; C V for all large i. But this
contradicts the property that no (); may be covered by a finite collection of sets
from V. This proves the case where K is a cube.

For general K, choose M € N so large that K C [~M, M]™. Let V = VU {K°},
then V is an open cover of [—M, M]" and hence there is a finite subset F C V such
that FU{K°} covers [—-M, M|™ and therefore F is a finite cover of K. m
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Theorem 2.23. Suppose that K is a closed and bounded subset of R" and x =
{zn},2, C K is a sequence. Then x has a subsequence y = {xp, }re, which is
convergent and limy_, o yi € K.

Proof. Choose M € N so large that K C [—M, M]™. Continuing the notation
and the method of the proof of Theorem 2.22, we may find a cube Q)1 € Q; such
that {n:xz, € @1} is an infinite set. Similarly we may find Q2 € Qs such that
{n:z, € Q2} is an infinite set. Continuing inductively, we may construct cubes Q;
such that Q1 D Q2 D Q3 D ... and {n: z, € Q;} is an infinite set for all ;. Now
let ny :=min{n : z, € Q1}, no = min{n > ny : , € Q2} and so on, so that

Ngy1 = min{n > ng : Ty € Qpy1},

then y = {a,, };-, is a subsequence of z such that y; € Q; for all i. As in the
previous proof, we conclude that y is a Cauchy sequence and hence limy_, oo Yk
exists and is necessarily in K since K is closed. m

2.7. Basic metric space notions.

Definition 2.24. A function d : X x X — [0, 00) is called a metric if
(1) (Symmetry) d(z,y) = d(y, z) for all z,y € X
(2) (Non-degenerate) d(z,y) =0if and only if x =y € X
(3) (Triangle inequality) d(z, z) < d(z,y) + d(y, z) for all z,y,z € X.

Definition 2.25. Let (X, d) be a metric space. The open ball B(z, §) C X centered
at © € X with radius 6 > 0 is the set

B(z,6) :={y € X : d(z,y) < 6}.

Definition 2.26. A sequence {z,}, ., in a metric space (X,d) is said to be con-
vergent if there exists a point @ € X such that lim,,_,., d(x,2,) = 0. In this case
we write lim,, o, x,, = .

Exercise 2.27. Show that z in Definition 2.26 is necessarily unique.

Definition 2.28. A set F C X is closed iff every convergent sequence {x,}, .
which is contained in F' has its limit back in F. A set V' C X is open iff V¢ is closed.

Exercise 2.29. Show that V' C X is open iff for every « € V there is a § > 0 such
that B(z,6) C V.

Definition 2.30 (Cauchy sequences). A sequence {z,} -, in a metric space (X, d)
is said Cauchy provided that
lim d(zy,zm) =0.
m,n— 00

Exercise 2.31. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let X = Q be the set of rational numbers
and d(z,y) = |z — y|. Choose a sequence {x,,}>-, C Q which converges to v/2 € R,
then {z,} -, is (Q,d) — Cauchy but not (Q,d) — convergent. The sequence does
converge in R however.

Definition 2.32. A metric space (X, d) is complete if all Cauchy sequences are
convergent sequences..

Example 2.33. Here are a couple of examples of complete metric spaces.
(1) X =R and d(z,y) = |z — y|.
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(2) X =R" and d(z,y) = |z —y/|.
(3) X = C([0,1],R) — the space of continuous functions from [0, 1] to R and

d(f,g) := maxeio,) | f(t) — g(t)].
(4) Here is a typical example of a non-complete metric space. Let X =

C(]0,1],R) and

d(f,9) == /0 F(8) — g(t)] dt.

Let us verify Item 3. in the previous example. Suppose that {f,} C X is
a Cauchy sequence, then for each x € [0,1], {fn(z)} C R is Cauchy and hence
convergent. Define f(z) := lim, 0 fn(x) for each z € [0,1]. We will now shows
that f € X and that lim,,_, . d(f, f,) = 0. First off, given € > 0 we have

[f(@) = fu(@)| < [f(2) = fin(@)] + [fm(2) = fu ()]
< |f(@) = fm(2)| + €

provided that m,n > N for some N = N(e¢) sufficiently large (and not depending
on x). Letting m — oo in this last equation shows that

If(z) — fu(z)| <eforalln >N

so that f,(x) — f(x) uniformly in x as n — co. So to finish the argument, we need
only shows that f is continuous. For this let ¢ > 0 and N be as above, then for
z,y € [0,1],

(@) = f) < [f(x) — fn(@)| + [fn(z) = In@)] + [fn () — f(y)]
<2+ |fn(z) — fn(y)l-

Now for z fixed, by the continuity of fy, we may choose § > 0 so that |fny(x) —
fn(y)] < e provided that |z — y| < 8. For this § we then have

|f(2) — f(y)] <2+ €= 3¢

which shows that f is continuous as well.
Suppose that (X, d) and (Y, p) are two metric spaces and f : X — Y is a function.

Definition 2.34. A function f : X — Y is continuous at x € X if for all € > 0
there is a ¢ > 0 such that

p(f(z), f(z')) < € provided that d(z,2") < é.
The function f is said to be continuous if f is continuous at all points z € X.

Exercise 2.35. Show that f is continuous at z iff for all sequences {z,} ., C X
converging to z, the sequence { f(z,,)}, -, C Y should converge to f(z). Put briefly,

lim flzn) = f( lim Zy).

Exercise 2.36. Suppose that f : X — Y is a continuous function and that C' C Y
is closed set, show that f~1(C) is then closed in X.

The next lemma supplies some examples of continuous functions on metric
spaces.
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Lemma 2.37. For any non empty subset A C X, let da(z) = inf{d(z,a)la € A},
then

(2.14) [da(x) — da(y)| < d(z,y) Yo,y € X.

In particular, da is a continuous function on X. Moreover, by Exercise 2.36, for
all € > 0 the set F. = {x € X|da(x) > €} is closed in X. Further, if V is an open
set and A =V¢ then F. TV ase | 0.

Proof. Let a € A and =,y € X, then
d(z,a) < d(z,y) +d(y,a).
Take the inf over a in the above equation shows that
da(z) <d(z,y) +daly) Vo,ye X.

Therefore, d4(x) —da(y) < d(z,y) and by interchanging = and y we also have that
da(y) — da(z) < d(z,y) which implies Eq. (2.14) from which it follows that d4 is
continuous on X.

Now suppose that A = V¢ with V € 7. It is clear that d4(z) =0forx € A =V*
so that F, C V for each € > 0 and hence UsoF, C V. Now suppose that z € V,
then there exists an € > 0 such that B, (¢) C V, thatisit y € X such that d(x,y) < €
then y € V. Therefore d(x,y) > e for ally € V¢ and hence z € F,,i.e. V C UcsoFe.
Finally it is clear that F, C F.» whenever ¢ <e. m

Corollary 2.38. The function d satisfies,
d(z,y) — d(aj/v y/)‘ < d(y,y/) + d(z, x/)
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 2.37 for single point sets and the triangle inequality for the
absolute value of real numbers,

jd(z,y) —d(@,y)| < |d(z,y) — d(z,y")] + |d(z,y') — d(2",¢/)]
<d(y,y') +d(z,z").

3. TOPOLOGIES, ALGEBRAS AND 0 — ALGEBRAS

Definition 3.1. A collection of subsets 7 of X is a topology if

1) ,Xer
(2) 7 is closed under arbitrary unions, i.e. if V,, € 7, for o € I then |J V,, € 7.
acl
(3) 7 is closed under finite intersections, i.e. if Vq,...,V, € 7 then ViN---NV, €
T.

Notation 3.2. The subsets V' C X which are in 7 are called open sets and we will
abbreviate this by writing V' Cg X and the those sets F' C X such that F° € T are
called closed sets. We will write F' — X if F'is a closed subset of X.

Definition 3.3. A collection of subsets A of X is an Algebra if
1) 0, XeA
(2) A € Aimplies that A° € A
(3) Ais closed under finite unions, i.e. if Aq,..., A, € Athen A;N---NA, € A
(4) Ais closed under finite intersections.
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FIGURE 2. A topology

Definition 3.4. A collection of subsets M of X is a ¢ — algebra (o — field) if M
is an algebra which also closed under countable unions, i.e. if {4;};~, C M, then
U?ilAi e M.

Notice that since M is also closed under taking compliments, M is also closed
under taking countable intersections.

Example 3.5. Here are a number of examples.

(1) 7 = M =P(X) in which case all subsets of X are open, closed, and mea-

surable.
(2) Let X ={1,2,3}, then 7 = {}, X, {2,3}} is a topology on X which is not
an algebra.

3) 7= A = {{1},{2,3},0,X}. is a topology, an algebra, and a o — algebra
on X. The sets X, {1}, {2,3}, ¢ are open and closed. The sets {1,2} and
{1,3} are neither open nor closed and are not measurable..

Proposition 3.6. Let £ be any collection of subsets of X. Then there exists a
unique smallest topology 7(E), algebra A(E) and o-algebra M(E) which contains E.
I will also tend to write o(&) for M(E), i.e. o(E) = M(E). The notation M(E) is
used in Folland, but o(E) is the more standard notation.

Proof. Note P(X) is a topology and an algebra and a o-algebra and £ C P(X),
so that &£ is always a subset of a topology, algebra, and ¢ — algebra. One may now
easily check that

T(€) = m{T : T is a topology and £ C 7}

is a topology which is clearly the smallest topology containing £. The analogous
construction works for the other cases as well. =
We may give explicit descriptions of 7(€) and A(E).

Proposition 3.7. Let X and £ C P(X). For simplicity of notation, assume that
X, 0 € £ (otherwise adjoin them to £ if necessary) and let £¢ = {A°: A€ E} and
Ec=EU{X,0}UE® Then

(3.1) T(E) = {arbitrary unions of finite intersections of elements from £}
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and
(3.2) A(E) = {finite unions of finite intersections of elements from E.}.

Proof. From the definition of a topology and an algebra, it is clear that 7(&)
and A(€) contain those sets in the right side of Egs. (3.1) and (3.2) respectively.
Hence it suffices to show that the right members of Egs. (3.1) and (3.2) form a
topology and an algebra respectively. The proof of these assertions are routine
except for possibly showing that

A := {finite unions of finite intersections of element from &}

is closed under complementation. To check this, we notice that the typical element

Z € A is of the form
N K
z=U4

i=1j=1

where A;; € .. Therefore, writing B;; = Afj € &, we find that

N K K
ZC:mUBU: U (B1j, N Baj, N---N Bnjy) € A(€)
=1 j=1 J1ye-dn=1

wherein we have used the fact that By;, N Byj, N---N Byj, is a finite intersection
of sets from £.. m

Remark 3.8. One might think that in general M(£) may be described as the count-
able unions of countable intersections of sets in £¢ However this is false, since if

z=U4
i=1j=1
with Aij € &, then

w9 (0

Ji=1,j2=1,..58=1,...

which is now an uncountable union. Thus the above description is not correct.
In general it is fairly complicated to explicitly describe M(E), see Proposition 1.23
on page 39 for details.

The following notion will be useful in the sequel.

Definition 3.9. A set £ C P(X) is said to be an elementary family or ele-
mentary class provided that

e )e&
e £ is closed under finite intersections
o if £ €&, then E° is a finite disjoint union of sets from &.

Proposition 3.10. Suppose £ C P(X) is an elementary family, then A = A(E)
consists of sets which may be written as finite disjoint unions of sets from &.

Proof. (First Proof.) By Proposition 3.7

A(E) = {finite unions of finite intersections of elements from &.},
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where £¢ = {A°: A e £} and & = E U{X,0} UE®. Using the definition of an
elementary family we see that A(€) may be described more simply as

A(E) = {finite unions of elements from £}.

Let A = Ul E; € A(E) with E; € £. To finish the proof we need to show that A
may be written disjoint union of elements from £. We prove this by induction on
n. For n =1 and A = E; there is nothing to prove. If n =2 and A = E; U E», let
ES =11, F; with F; € £&. Then

k
B\E = BN E; =[[E2NF,
=1

so that
k
A=EU (]_[E.2 ﬂFi>
i=1
is the desired decomposition. Now for the induction step, suppose that

A=U',E;=BUE, =(B\E,)UE,

where B = Hj\;l E’ where {E;} C & are pairwise disjoint. Write ES = Hle F;
with F; € £, then

k kE N
B\En:BﬂEg:HBﬂE:HHE;ﬂFi
1=1

i=1j=1
and hence
kN
A= HHE;ﬂFi HEn
i=1j=1

is the desired decomposition.

(Second more direct proof.) Let A denote the collection of sets which may
be written as finite disjoint unions of sets from £. Clearly A C A(E) so it suffices to
show that A is an algebra. By the properties of £, we know that (), X € A. Further,
if A=TJ,_, E; with E; € A, then

A =" E°.

Since £ is an elementary class, for each ¢ there exists a collection of disjoint sets
{£3;}; C € such that Ef = []; F;;. Therefore,

A=, (UFy) = | Ry nFy,n--nFy)

J15J25-05dn

and this is a disjoint union. Hence A¢ € A, i.e. A is closed under complementation.
Now suppose that A; = ]_[j Fije Afori=1,2,...,n, then

ndi= |J (P nFy,n---NF,)

J15J255dn

which is again a disjoint unison of sets from &£ so that A is closed under finite
intersections. M
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F1GUrE 3. Fitting balls in the intersection.

Exercise 3.11. Let A C P(X) and B C P(Y) be elementary families. Show the
collection

E=AxB={AxB:A€cAand B € B}

is also an elementary family.

Definition 3.12. Let (X, p) be a metric space. We associate a topology, 7,, to p
by setting 7, := 7(€) where £ = {B(z,6) : * € X and § > 0}.

Proposition 3.13. A set V C X is in 7,, i.e. V is open, iff V is a union of open
balls. So T, may also be described as

(3.3) T, ={VCX:V 2eV 3Ir>0>3B(xr) CVUD

Proof. Let us first notice that B(z,§) and B(y,€) are two open ball in X and
z € B(z,6) N B(y,€), then

(3.4) B(z,a) C B(z,6) N B(y,¢)

where o = min{6 — d(x, 2),e — d(y, 2) }, see Figure 3. This is a formal consequence
of the triangle inequality. For example let us show that B(z,«) C B(z, ). By the
definition of «, we have that o« < § — d(x,2) or that d(z,z) < § — a. Hence if
w € B(z,a), then

dz,w) <d(z,z) +d(z,w) <6 —a+dz,w) < —at+a=2F6

which shows that w € B(z, ). Similarly we show that w € B(y, ¢) as well.
Equation (3.4) may be generalized to finite intersection of balls, namely if z; € X,

6; >0 and z € N ; B(x;,6;), then

(3.5) B(z, &) C Ni—1 B(x4,6;)

where now « := min{6; —d(z;,2): i =1,2,...,n}. By Eq. (3.5) it follows that

any finite intersection of open balls may be written as a union of open balls, thus

we see by Proposition 3.7 that 7, := 7(&) is given as the right hand side of Eq.
(3.3). m
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S

FIGURE 4. A collection of subsets.

Proposition 3.14. If £ C P(X) is countable then 7(E) C M(E) = o(&). In
particular o(7(£)) = o(£).

Proof. Let £ denote the collection of subsets of X which are finite intersection
of elements from &£ along with X and ). Notice that &; is still countable (you prove).

A set Z isin 7(€) iff Z is an arbitrary union of sets from £;. Therefore Z = (J A
AeF
for some subset F C & which is necessarily countable. Since £ C M(E) and

M(E) is closed under countable unions it follows that Z € M(E) and hence that
TE)CM(E). m

Example 3.15. Suppose that &€ = {(}, X, {1,2},{1,3}},
Then

(&) = {0, X, {1},{1,2},{1,3}}

A(E) = M(€) = P(X).
Example 3.16. Let X be a set and £ = {A;,..., A, } U{X,0} where 4,,..., A,
is a partition of X, i.e. X =U7_;A; and A; N Aj =0 if 7 # j. In this case

AE) =M(E) =7(€) ={Uiead; : AC {1,2,...,n}}
where U;ep A; := () when A = (). Notice that
#AE) =#(P({1,2,...,n})) =2".

Proposition 3.17. Suppose that M C P(X) is a 0 — algebra and M is at most a
countable set. Then there exists a unique finite partition F of X such that F C M
and every element A € M is of the form
(36) A= UaefgacAO[.

In particular M is actually a finite set.
Proof. For each x € X let
Ay = (meAEAA) €A

That is, A, is the smallest set in A which contains z. Suppose that C = A, N 4,
is non-empty. If x ¢ C then z € A, \ C € A and hence A, C A, \ C which shows
that A, N C = () which is a contradiction. Hence x € C and similarly y € C,
therefore A, C C = A, N Ay and A, C C = A, N A, which shows that A, = A,.
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Therefore, 7 = {A, : © € X} is a partition of X (which is necessarily countable)
and Eq. (3.6) holds for all A € M. Let F = {P,}Y, where for the moment we

allow N = co. If N = oo, then M is one to one correspondence with {0, 1}N . Indeed
to each a € {0, 1}N, let A, € M be defined by
A, =U{P, :a, =1}

This shows that M is uncountable since {0, 1}N is uncountable, think of the base
two expansion of numbers in [0, 1] for example. Thus any countable o — algebra is
necessarily finite. This finishes the proof modulo the uniqueness assertion which is
left as an exercise to the reader. m

Unfortunately, as already mentioned the structure of general o — algebras is not
so simple.

Example 3.18. Let X = R and £ = {(a,0) : a € R} U{R,0} C P(R).
Notice that £ = & and that £ is closed under unions, which shows that
T(€) = &, i.e. & is already a topology. Since (a,0)¢ = (—o0,a] we find that
Ee = {(a,00),(—00,a],—00 < a < oo} U{R,}. Noting that

(a,00) N (=00, b] = (a,b]

it is easy to verify that the algebra A(E) generated by £ may be described as being
those sets which are finite disjoint unions of sets from the following list

{(a,), (—00,al,(a,b] : a,b € R} U{(,R}.

The o — algebra, o(&), generated by £ is very complicated. Here are some sets

in o(&).
() (a,b) = Gl(a,b— 1 € 0(€).
(

(e) Any countable subset of R is in o(&).
Exercise 3.19. Show that the following o — algebras on R are all the same:

o(standard open sets) — the Borel o — algebra

o({(a,0) :a € R})
oc({(a,) :a €Q})
o({[a,) : a € Q}).

4. MEASURES

Definition 4.1. A set X equipped with a o — algebra M is called a measurable
space.

Definition 4.2. A measure p on a measurable space (X, M) is a function p : M —
[0, 00] such that

a: p() =0 and
b: p(JA;) => u(4;) if A, € M and A; N A; =) when i # j.
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Proposition 4.3 (Basic properties of measures). Suppose that (X, M, u) is a mea-
sure space and E,F € M and {Ej};i1 C M, then :
(1) If E C F then u(E) < pu(F).
(2) p(UE;) <37 u(E;).
(3) IfE; T E, i.ee. By CEyC E5C ... and E =U,Ej, then u(E;) T (E) as
Jj — oc.
(4) If W(Ey) < 00 and E; \(E, i.e. E1 D E; D E3 D ... and E = N;Ej, then
1(Ej) N\ p(E) as j — oc.
Proof. (1) Define F = EU (F \ E), then u(F) = p(E) + u(F\ E) > p(E).
(2) Let Ej = E;\ (E1U---UE; 1) so that the E; ’s are pair-wise disjoint and
E = UEj. Since E; C Ej it follows from Definition 4.2 and part (1), that

WE) =" u(Ey) <> u(Ey).

(3) Again let E; = E;\ (EyU---UE;_,) = E;\ Ej_1, then E = UE; = UE; and

thus
N

wE) =3 p(E;) = lim > p(E) = lim p(Ew).

(4) Define D; = E; \ E; then D; T E; \ E which implies that
p(Er) — p(B) = lim p(D;) = p(Er) — lim pu(E;)
which shows that lim;_,co p(E;) = p(E). m
Definition 4.4. A set E € M is a null set if y(E) = 0.

Definition 4.5. A measure space (X, M, ) is complete if every subset of a null
set is in M, i.e. VF C X such that F C E € M with p(F) = 0 implies that
FeM.

Proposition 4.6. Let (X, M, u) be a measure space. Set N = {N C X :there
exists F € M such that N C F and u(F) = 0}.
M={AUN:Aec M,N € M},

see Fig. 5. Then M is a o-algebra. Define i(AUN) = u(A), then i is the unique
measure on M which extends p.

Proof. Clearly X,() € M. Let A € M and N € N and choose F € M such

that N C F and u(F) = 0. Since N¢ = (F \ N) U F*,
(AUN)*=ANN=AN(F\NUF) =[A°N(F\ N)]U[A° N F°]

where [A°N(F\ N)] € N and [A°NF¢] € M. Thus M is closed under compliments.

If A; € M and N; C F; € M such that pu(F;) = 0 then U(A; U N;) = (UA;) U
(UN;) € M since UA; € M and UN; C UF; and p(UF;) < 37 u(F;) = 0. Therefore,
M is a o-algebra.

Suppose AUN; = BUN, with A, B € M and Ny, N, € N. Then A C AUN; C
AU N; UF, = BU F; which shows that

1(A) < w(B) + u(Fz) = u(B).
Similarly, we show that p(B) < u(A) so that u(A) = p(B) and hence (AU N) :=
t

1(A) is well defined. Tt is left as an exercise to show that fi is a measure, i.e. that
it is countable additive. m
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)

Fi1GURE 5. Completing a o — algebra.

4.1. Regularity Results. The question now is how do we describe measures on
general o — algebras. This is tricky because there tends to be no “explicit” de-
scription of the general element of they typical o — algebras. On the other hand,
we do know how to explicitly describe algebras which are generated by some class
of set £ C P(X). Therefore, we might try to define measures on o(£) by there
restrictions to A(£). The next theorem shows that this is a plausible method in
many situations.

Theorem 4.7 (Uniquness). Suppose that A C P(X) is an algebra of sets and
M = o(A) is the o — algebra generated by A. If p and v are two finite measures
on M such that u(A) = v(A) for all A € A, then pn = v on M. More generally,
the theorem holds when p and v are o — finite measures on A, that is there are set
Xn € A such that p(X,) = v(X,) < c and UX,, = X.

The following definition and technical lemma will be useful in the proof.

Definition 4.8 (Monotone Class). C € P(X) is a monotone class if it is closed
under increasing unions and decreasing intersections.

Example 4.9. Let u, v be two measure on (X, M). Let
C={ACX:puA)=v(4)}.
Assume X € C and p(X) = v(X) < co. Then C is a monotone class.

Lemma 4.10. Suppose A C P(X) is an algebra and C is the smallest monotone
class containing A. Then C = o(A).

Proof. For A € Clet C(A) ={B €C|[ANB,ANB°, BN A° are in C}. Then
C(A) is a monotone class contained in C.

Moreover if A € A then A C C(A) implies C(A) = C for all A € A. Now
Be(C(A) < AeC(B). Since C(A) =C for all Ae A, A e C(B) for all B € C and
A € C. Thus C(B) =C for all B € C. So we have shown, if A, B € C then AN B,
AN B¢ A°N B are back in C. In particular, C is closed under compliments and
finite intersections. So C is an algebra which is also closed under increasing unions
and hence it is a o-algebra. m

Proof. (Proof of Theorem 4.7.) Assume that p(X) = v(X) < co. Let

D={AecM:u(A) =v(A)}
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The reader may easily check that D is a monotone class. Since A C D, the monotone
class lemma asserts that M = o(A) C D C M showing that D = M and hence
that © = v on M.

For the o — finite case, by replacing X,, by U7_; X if necessary, we may assume
that X,, T X. For n € N, let p,(4) := p(ANX,) and v,,(4) = v(ANX,) for all
A € M. Then one easily checks that y,, and v,, are finite measure on M such that
ty, = Vn on A. Therefore, by what we have just proved, u,, = v, on M. Hence we
have

p(A) = lim p(ANX,)= lim v(ANX,)=rv(A)
foralAe M. m

Definition 4.11. Suppose that £ is a collection of subsets of X, let &, denote
the collection of subsets of X which are finite or countable unions of sets from &.
Similarly let & denote the collection of subsets of X which are finite or countable
intersections of sets from £. We also write £,5 = (£5)s and Eso = (Es), , etc

Remark 4.12. Notice that if C = UC; and D = UD; with C;, D; € A, then
CQD:ULJ'(OZ'QDJ‘) €A,
so that A, is closed under finite intersections.

The following theorem shows how recover a measure p on o(A) from its values

on A.

Theorem 4.13 (Regularity Theorem). Let A C P(X) be an algebra of sets, M =
o(A) and p: M — [0,00] be a measure on M which is 0 — finite on A. Then for
all A € M,

(4.1) w(A) =inf{p(B): AC Be A,}.

Moreover, if A € M and e > 0 are given, then there exists B € A, such that A C B
and p(B\ A) <e.

Proof. For A C X, define
p(A) =inf{u(B): ACBeB,}.

We are trying to show that p* = p on M. We will begin by first assuming that p
is a finite measure, i.e. p(X) < co.
Let

F={BeM:u (B)=pu(B)} = {BeM:pu (B) < u(B)}.
It is clear that A C F, so the finite case will be finished by showing the F is a
monotone class. Suppose that B,, € F and B,, T Basn — oo and let ¢ > 0
be given. Since p*(B,) = w(B,) there exists A, € A, such that B, C 4, and
w(Ay) < u(Bp)+ €27 ie.
(A \ Bn) < €277
Let A =U,A, € A,, then B C A and

H(A\ B) = p(Un(An \ B)) < 3~ ((An\ B)

n=1
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Therefore,
p(B) < p(A) < p(B) + e
and since € > 0 was arbitrary it follows that B € F.
Now suppose that B, € F and B,, | B as n — 0o so that

w(By) | 1w(B) as n — .
As above choose A,, € A, such that B,, C A,, and
0 < pu(An) = p(Bn) = p(An \ Bn) <277

Combining the previous two equations shows that lim,, . u(A,) = u(B). Since
p*(B) < p(A4,) for all n, we conclude that p*(B) < u(B), i.e. that B € F.

Since F is a monotone class containing the algebra A, the monotone class theo-

rem asserts that
M=c(A)Cc FCM
showing the F = M and hence that p* = on M.

For the o — finite case, by replacing X, by U7_; X; if necessary, we may assume
that X,, T X. Let p,, be the finite measure on /\/l defined by p,,(A) :== p(ANX,)
for all A € M. Suppose that € > 0 and A € M are given. By what we have just
proved, for all A € M, there exists B,, € A, such that A C B,, and

p((Bn N Xn) \ (AN X)) = p, (Bn \ A) < €277
Notice that since X,, € A,, B, N X,, € A, and
B:=Up2, (B,NX,) € A,.
Moreover, A C B and

w(B\ A) gi (Bn N X))\ A) gi (Bu N X,)\ (AN X,.))

Since this implies that

IN

u(4) < u(B) < p(4) +e
and € > 0 is arbitrary, this equation shows that Eq. (4.1) holds. m

Corollary 4.14. Let A C P(X) be an algebra of sets, M = o(A) and p : M —
[0, 00] be a measure on M which is o - finite on A. Then for all A € M and e >0
there exists B € As such that B C A and

w(A\ B) <.
Furthermore, for any B € M there exists A € As, and C € Ays such that A C
B cC C and u(C\ A) =0.

Proof. By Theorem 4.13, there exist C' € A, such that A° C C and p(C'\ A¢) <
€. Let B = C*° C A and notice that B € A5 and that C'\ A°=B°NA=A\B, so
that

W(A\ B) = p(C\ 4%) < e
Finally, given B € M, we may choose A,, € As and C,, € A, such that A,, C B C
Cp and p(Cp,\ B) < 1/n and pu(B\ 4,) < 1/n. By replacing Ay by UY_; A, and Cy
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by NA_, C,,, we may assume that A,, T and C,, | as n increases. Let A = UA,, € Aso
and C =NCy, € Ass, then A C B C C and

p(C\A) =p(C\B)+ B\ A) < p(Cn\ B) + u(B\ An)
<2/n—0asn— oo.

Corollary 4.15. Let A C P(X) be an algebra of sets, M = o(A) and p : M —
[0,00] be a measure on M which is o — finite on A. Then for every B € M such
that 1(B) < 0o and € > 0 there exists D € A such that u(BAD) < e.

Proof. By Corollary 4.14, there exists C' € A, such B C C and u(C \ B) < e.
Now write C' = U2, C,, with C,, € A for each n. By replacing C,, by Up_,Cr, € A
if necessary, we may assume that C,, T C' as n — oo. Since C,, \ B T C' \ B and
B\C, | B\C=0asn—ocoand pu(B\ Cy) < p(B) < 0o, we know that

lim pu(C, \ B) =p(C\ B) <eand lim u(B\C,)=pu(B\C)=0
Hence for n sufficiently large,

Hence we are done by taking D = C,, € A for an n sufficiently large. m
For Exercises 4.17 — 4.20 let 7 C P(X) be a topology, M = o(7) and p : M —
[0, 00) be a finite measure (u(X) < 00).

Remark 4.16. We have to assume that u(B) < oo as the following example shows.
Let X =R, M = B, u=m, A be the algebra generated by half open intervals of
the form (a, b], and B = US2; (2n, 2n+1]. It is easily checked that for every D € A,
that m(BAD) = .

Exercise 4.17. Let
(4.2) F={AeM:pu(A)=inf{u(V): ACV er}}.
Show F is a monotone class.

Exercise 4.18. Give an example of a topology 7 on X = {1,2,3} and a measure
pon M = o(r) such that F defined in Eq. (4.2) is not M.

Exercise 4.19. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written as
finite union of sets of the form F NV where F is closed and V is open.

Exercise 4.20. Suppose now 7 C P(X) is a topology with the property that to
every closed set C' C X, there exists V,, € 7 such that V,, | C as n — oo. Let
A = A(7) be the algebra generated by 7. With the aid of Exercise 4.19, show that
A C F and use this along with exercise 4.17 to conclude that

w(A) =inf {pu(V): ACV e}
for all A € M.

The next exercise is the generalization of Exercise 4.20 to case where p is o —
finite.
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Exercise 4.21 (Generalization to the o — finite case). Let 7 C P(X) be a topology
with the property that to every closed set C' C X, there exists V,, € 7 such that
Vp | Casn — oo. Also let M = o(7) and p : M — [0,00) be a measure which is
o — finite on 7.

(1) Show that for all e > 0 and A € M there exists an open set V € 7 and a
closed set F' such that F C A CV and pu(V\ F) <.

(2) Let F, denote the collection of subsets of X which may be written as a
countable union of closed sets. Use item 1. to show for all B € M, there
exists C' € 75 (75 is customarily written as Gs) and A € F, such that
ACBCCandpu(C\A)=0.

Exercise 4.22 (Metric Space Examples). Suppose that (X,d) is a metric space.
A set V C X is said to be open if for all € V' there exists an € = e(z) > 0 such
that the ball

(4.3) B(z,e) ={y € X : d(z,y) < ¢}

is contained in V. Let 74 denote the collection of open sets. Given a set F' C X and
€ > 0 let F, be the open set

F. = UgerB(z,e€).

Show that if F is closed, then F, | F as e | 0. Therefore the results of Exercises 4.20
and 4.21 apply to measures on metric spaces with the Borel o — algebra, B = o(74).

Corollary 4.23. Let B be the Borel 0 — algebra on R" equipped with the standard
topology induced by open balls with respect to the Euclidean distance. Suppose that
p:B—[0,00] is a measure such that p(A) < co whenever A is a bounded set.

(1) Then for all A € B and € > 0 there exist a closed set F' and an open set V
such that FC ACV and w(V\ F) <.
) If u(A) < oo, the set F in item 1. may be chosen to be compact.
) For all A € B we may compute (A) using

(2
(3
(4.4) w(A) = inf{u(V): ACV and V is open}
(4.5) = sup{u(K): K C A and K is compact}.

Proof. Item 1. follows from Exercises 4.21 and 4.22. If u(A) < oo and F C
A CV asinitem 1. Let

(4.6) K, :={z € F:|z| <n}.

Then K, is closed and bounded in R™ and hence compact and K,, T F as n — oc.
Since p(A) < oo and p(V'\ A) < € we know that p(V) < oco. Using this fact and
the fact that V' \ K,, | V' \ F, we conclude that p(V \ K,,) | w(V\ F) < € as
n — o0o. Thus for sufficiently large n we have K = K,, is a compact set such that
KcAcVand p(V\K)<e.

Item 1. easily implies that Eq. (4.4) holds and item 2. implies Eq. (4.5)
holds when p(A) < oo. So we need only check Eq. (4.5) when u(A4) = oo. By
Item 1. there is a closed set F' C A such that u(A\ F) < 1 and in particular
w(F) = oo. Letting K, C F C A be the compact set as in Eq. (4.6), we have
w(EKy) T w(F) = oo = u(A) which shows that Eq. (4.5) also holds when p(A) = oo.
L]
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5. CONSTRUCTING EXAMPLES OF MEASURES

Most o — algebras and o -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely suppose
that F C P(X) is a countable or finite partition of X and M C P(X) is the o —
algebra which consists of the collection of set A C X such that

(5.1) A= U a.
acF3aCA

It is easily seen that M is a ¢ — algebra.
Any measure p : M — [0, 00] is determined uniquely by its values on F. Con-
versely, if we are given any function A : F — [0, co] we may define, for A € M,

pA) = 3 M@ =Y M@)laca
aEF3aCA acF

where 1,4 is one if @« C A and zero otherwise. We may check that p is a measure
on M. Indeed, if A =[];2; A; and o € F, then o C A iff & C A, for one and hence
exactly one A;. Therefore,

o0
]-aCA = § 1aCAi,
=1

and hence

p(A) = Ma)laca =Y M) Z laca, = > > Ma)laca,

acF acF =1 acF
[e%S)

= u(A)
i=1

as desired. Thus we have shown that there is a one to one correspondence between
measures p on M and functions A : F — [0, o0].

The construction of measures on more general o — algebras will be motivated by
the regularity results in Section 4.1 above.

5.1. Constructing Measures from Premeasures.

Definition 5.1. An additive function p, on an algebra A of subsets of X is called
a premeasure when i is also countably additive on .A. This means that if A € A
and A; € A such that A =[]°, A;, then

fo(A) = Z to(Aq).

The premeasure is said to o — finite if there exists X,, € A such that X,, T X as
n T oo and po(X,,) < 0o.

Definition 5.2. e that £ is a collection of subsets of X, let £, denote the collection
of subsets of X which are finite or countable unions of sets from &£. Similarly let &
denote the collection of subsets of X which are finite or countable intersections of
sets from €. We also write £,5 = (£5)s and Eso = (Es),, , ete.
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Proposition 5.3. Let pg be a premeasure on an algebra A. For A € A, such that

A= ]O_O[ A, with A, € A, define

n=1

to(A) = ZMO(An)~
n=1
Then py : As — [0, 00] is well defined.

oo
Proof. Suppose that A may also be written as A = [] By, then

n=1
A = [J(An N Bi) = po(An) = pto(An N By).
k=1 k=1

Similarly one shows that " py(A, N Byk) = po(Bk) and thus hence
n=1

D o(An) = g(An 1 By)
n=1k=1
= Z ZMO(ATL N Bi) = ZMO(Bk)
k=1n=1 k=1

L]
The key to constructing measures is the following theorem which will be proved
in Section 6.

Theorem 5.4 (Key Construction Theorem). Let A C P(X) be an algebra, M =
o(A) and py be a o — finite premeasure on A which we extend to A, using the
previous Proposition 5.3. Then there exists a unique measure p on M such that
|4 = po. Moreover, p is given by the formula we have

w(A) =inf{py(B): AC Be€ Ay}
(5.2) =inf{py(Up1A4n) : A C U2, Ay, with Ay, € A}
By replacing Ay, by Ap \ (A1 U---U A, 1) if necessary, Eq. (5.2) is equivalent to
writing

(5.3) w(A) = inf{i po(An): AC ]O_OI A, with A,, € A}.

n=1
This theorem is a consequence of Theorem 6.7 of Section 6 below.

Remark 5.5. we drop the o — finite assumption on j, we may loose uniqueness in
the above theorem. We will give some examples of this phenomena in the subsection
5.4

In order to use this theorem it is necessary to first construct premeasures on
algebras. The main result that we are heading for is contained in Theorem 5.7
below.

Definition 5.6. Suppose that £ C P(X) is an elementary family.
(1) A function p : & — [0,00] is additive if pu(E) = Y7, p(E;) whenever
E = H?:l E; € £ with E; € €.
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(2) A function p: & — [0, 00| is subadditive if u(E) < >, p(E;) whenever
E:HjilEzEngthEzeg
(3) A function p: & — [0, 00] is o — finite on £ if there exist E,, € & such that
X =UpE, and u(E,) < oo,
Theorem 5.7. Suppose that £ C P(X) is an elementary family and p° : € — [0, 00
18 a function.

(1) If 10 is additive on &, then u° has a unique extension to a finitely additive
measure g on A= A(E).

(2) If we further assume that u° is countably subadditive on &, then pg is a
preameasure on A.

(3) If we further assume that u° is o — finite on £, then there exists a unique
measure pu on o(E) such that plg = u°. Moreover, for A € o(€),

w(A) = inf{uy(B): AC Be Ay}

= inf{> p’(E,): AC [] En with E, € &}
n=1 n=1
This theorem is proved in the next subsection. Item 1. is proved in Proposition
5.8, Item 2. in Proposition 5.10 and Item 3. is a consequence of Items 1. and 2.
and Theorem 5.4 above.

5.2. Proof of Theorem 5.7.

Proposition 5.8. Suppose & C P(X) is an elementary family and A = A(E) is
the algebra generated by £. Then every additive function p : € — [0,00] extends
uniquely to an additive measure (which we still denote by p) on A.

Proof. Since by Proposition 3.10, every element A € A is of the form A =[], E;
with E; € &, it is clear that if y extends to a measure the extension is unique and
must be given by

(5.4) plA) = " u(Ey).

To prove the existence of the extension, the main point is to show that defining
1(A) by Eq. (5.4) is well defined. That is to say if we also have A = [[; F; with
F; € €, we must show that

(5.5) > nlB) = ulF).

To prove this, we make use of the fact that
E; =U; (E; N Fj)
and the property that p is additive on £ to conclude that
p(E:;) =Y p(E; N Fy) and hence

J
S () = Y S BN E) = Y HEE)
i i g 4,3
Similarly, we show that

ZM(FJ’) = Z”(Ei nFy)
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which combined with the previous equation shows that Eq. (5.5) holds. It is now
easy to verify that p extended to A as in Eq. (5.4) is an additive measure on .A. m
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Proposition 5.9. Suppose that A C P(X) is an algebra of sets and p : A — [0, 0]

o0

is a finitely additive measure on A. Then if A € A and A = ] A; with each

=1
A; € A, we have

(5.6) S u(4) < u(A).

A- (fp) g (MQAJ

we find using the finite additivity of p that

n(A) = ZM(Ai) +H (A\ U Ai) > ZN(Ai)'

i=1

Proof. Since

Letting N — oo in this last expression shows that > u(4;) < pu(A4). =
i=1

So in order to prove that p is a premeasure on A, it suffices to show
oo
(5.7) p(A) <Y p(A)
i=1

whenever A = J] A; with A € A and each A4; € A.
i=1

Proposition 5.10. Suppose that £ C P(X) is an elementary family, A = A(E)

and p: A — [0,00] is an additive measure. Then the following are equivalent:

(1) w is a premeasure on A.

(2) w has the subadditivity property: whenever E € & is of the form E

112, E; € € with E; € £ then

(5.8) u(E) < Z“(Ei)'

Proof. It is clear that 1. implies 2. since if u is a premeasure, then p(E)

S oo, w(E;). For the converse, it suffices to show by Proposition 5.9 that if A =

oo

1T A, with A € A and each A,, € A then Eq. (5.7) holds. To prove this, write

n=1

A=]I}_, E; with E; € £ and A, = [, E,; with E, ; € £. Then

o oo Ny
Ej:AﬂEj = HAnﬂEj = HHEWQEJ’
n=1 n=11=1

which is a countable union and hence by assumption,

oo Ny

WE) <D n(EniNE)).

n=1 i=1
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Summing this equation on j and using the additivity of u shows that

n n oo N, oo N, n

wA) =D p(E) <3 Y m(BniVE;) =D > > i (Eni N Ey)

7j=1 n=1i=1 j=1
oo N, oo

= Z p(Enyi) = ZU(AH)
n=1 i=1 n=1

as desired. ®
5.3. Examples of finitely additive measures.

Example 5.11. Let X = R and £ be the elementary class
E={(a,b]NR: =00 < a <b< 0},

and A = A(E) be the algebra of disjoint union of elements from €. Suppose that
p: A — [0,00] is an additive measure such that p((a,b]) < oo for all a < b. Then
there is a unique increasing function F : R — R such that F(0) =0, F~1({—o00}) C
{00}, F7({oo}) C {00} and

(5.9) w((a, b)) NR) = F(b) — F(a) Va<binR.

Conversely, given an increasing function F : R — R such that F~1({—o00}) C
{—o00}, F7'({cc}) C {oo} there is a unique measure p on A such that the re-
lation in Eq. (5.9) holds. (So the finitely additive measures p on A which are

finite on bounded sets are in one to one correspondence with increasing functions

F:R — R such that F(0) =0, F*({—o00}) C {—o0}, F71({c0}) C {00} .)
Proof. If F is going to exist, we must have
w((0,0) NR) = F(b) — F(0) = F(b) if b € [0, 0],
1((a,0]) = F(0) — F(a) = —F(a) if a € [—00,0]
from which we learn

—p((z,0]) if 2 <0
F(z) = { w((0,2]NR) if x> 0.
Moreover, one easily checks using the additivity of p that Eq. (5.9) holds for this
F.
Conversely, suppose F : R — R is an increasing function such that F~({—oc0}) C
{—o0}, F1({oo}) C {oo}. Define p on & using the formula in Eq. (5.9). I claim
that p is additive on £ and hence has a unique extension to .4 which will finish the

argument. Suppose that
mn

(a, b] = H(ai, bz]
i=1
By reordering (a;, b;] if necessary, we may assume that

a=a;>by=ay<by=a3<---<a,<b, =0.

Therefore,
pl(a,b]) = F(b) = F(a) = Y [F(b) = Flag) = 3 pl(as, bi)

as desired. m
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Theorem 5.12. Let A C P(X) and B C P(Y) be algebras. Suppose that
w:AxB—C
18 a function such that for each A € A, the function
BeB—uAxB)eC
is an additive measure on B and for each B € B, the function
Ac A— u(AxB)eC

is an additive measure on A. Then u extends uniquely to a measure on the product
algebra C generated by A x B.

Proof. The collection
E=AxB={AxB:A€c€Aand B € B}

is an elementary family (you check). Therefore, it suffices to shows that u is additive
on £. To check this suppose that A x B € £ and

AXB:H(AkXBk)
k

with A X B € £. We wish to shows

(A x B) = u(Ax x By).
k

For this consider the finite algebras A" C P(A) and B’ C P(B) generated by
{Ar} and {By} respectively. Let 7 C A" and G C B’ be partition of A and B
respectively as found Proposition 3.17. Then for each k we may write

Ay = ]_[ aand By, = ]_[ 8.

aEF,aCAg BEG,BC By
Therefore,
Ak x By) = p(Ar x | B) = D n(Ax x B)
BC Bk BC By
=y u(( U a) xB) = > paxp)
BCBg aCAg aCAg,BCBgk
so that

DA x B =3 >, plaxf= > plaxp)

k k aCAk,BCByg aCA,BCB

— 3" WA x B) = (A x B)

BCB

as desired. m
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5.4. “Radon” measures on (R, B). Let us continue with Example 5.11. So X =
R and £ be the elementary class

E={(a,b]NR: —00 <a<b< oo},

and A = A(E) be the algebra of disjoint union of elements from &. Alsolet B = o (&)
be the Borel o -algebra and suppose p: B — [0, 00] is a o — additive measure such
that 1((a,b]) < oo for all —oo < a < b < co. Then as in Example 5.11, let F be the
increasing function defined for z € R by

—u((z,0]) if <0
(5.10) F(x)—{u((g,(x]m]R) if >0

Since for 0 < a < 0o and —o0 < b < 0,
lim () = lim (0, 2]) = p((0, a]) = F(a) and
lim F(z) = —lim u((,0]) = u((0,0]) = F(b)

(where this is checked using sequences) we see that F is necessarily right continuous
on R. Moreover, since

lim F(z) = xlg{)lo 1((0,2]) = p((0,00)) = F(o0) and

Jim F(@) = = lim_p((a.0]) = ~p((00,0)) = F(~o0)

we learn that F' is continuous at +oo as well. Conversely we have the following
Theorem.

Notation 5.13. If F : R— R is an increasing function, let F(+o0) :=
lim, 400 F(2).

Theorem 5.14. To every right continuous non-decreasing function F : R - R
there exists a unique measure pp on B such that

(5.11) pp((a, ) NR) =F(b) —Fla) V —c0o<a<b< oo
Moreover, if A € B then
(5.12) pp(A) = inf {Z(F(bz) — F(a;)): AC U‘Z?fl(ai,bi]}

=1

8

(5.13) = inf {Z(F(bi) — F(a;)): AC | (ai, bi]} .

=1 =1

In fact the relations (5.10) and (5.11) give a one to one correspondence between
right continuous functions F with F(0) = 0 on one hand and radon measure (& on
B on the other.

Proof. Extend F to a function from R — R by defining F(+o0) :=
lim,— 1o F(2). As above let
E={(a,b]NR: -0 <a<b< o}

and use Example 5.11 to show there is a unique additive measure y, on A(E) such
that 1 ((a,b]) = F(b) — F(a) for all a,b € R with a < b. The proof will be finished
by Theorem 5.7 if we can show that p, is sub-additive on £.
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First suppose that —o00 < a < b < o0, J = (a,b], J, = (an,by,] such that
J =[] Jn. We wish to shows that
n=1

(5.14) po(J) < ZMO(Ji)-

To do this choose numbers a > a, l;n > b, and set

I = (ab]CJ,
J, = (an, Bn] O J, and
JO = (an,by).
Since I is compact and I C J C |J JO there exists N < oo such that

n=1

T

=

IC.TCLAJ~0C
n=1

n=1

Hence finite sub-additivity of py,

N oo
F(b) = F(@) = uo(1) <> g (Jn) <> g (Jn) :
n=1 n=1
Using the right continuity of F’ and letting a | a in the above inequality shows that

po(a,b)) = F(b) — Fla) < 3 po ()

(5.15) = Z tio (Jn) + Z Mo(jn \ Jn)

Given € > 0 we may use the right continuity of F' to choose b,, so that
tio(Jn \ Jn) = F(by,) — F(b,) < €27 Vn.
Using this in Eq. (5.15) shows that

to(J) = po((a,b]) < ZMO (Jn) +€

and since € > 0 we have verified Eq. (5.14).
‘We have now done the hard work. We still have to check the cases where a = —o0
or b = oo or both. For example, suppose that b = oo so that

J = (a,00) = H Jn
n=1
with J,, = (an, b,] NR. Then let I, := (a, M], and notice that

Iy=JNIy= HJnﬂIM
n=1
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So by what we have already proved,
FOM) = Fl@) = pollar) < 3 ol 1 1) < 3 i)
Now let M — oo in this last inequality :0_ }ind that "
pol(@,00)) = Floe) — F(@) < 3 o).
n=1

The other cases where ¢« = —oo and b € R and a = —oco and b = oo are handled
similarly. m

Remark 5.15. It is definitely not true that all measures p on (R, B) may be described
uniquely by their restriction to A. For example, let D C R be a countable dense
set and define pp(A) := #(D N A). Then pup(A) = oo for all A € A which are not
empty. On the other hand it is clear that the measures pup with D a countable
dense set in R are different for different D ’s. Also notice that up, is o — finite on
B but not on A.

Example 5.16. The most important special case of Theorem 5.14 is when F(z) =
x, in which case we write m for p. The measure m is called Lebesgue measure.

Theorem 5.17. Lebesque measure m is invariant under translations, i.e. for A €
B and x € R,
(5.16) m(z + B) = m(B).
Moreover, m is the unique measure on B such that m((0,1]) = 1 and Eq. (5.16)
holds for A € B and x € R. Moreover, m has the scaling property
(5.17) m(AB) = |\ m(B)
where A € R, B € B and \B :={\x: x € B}.

Proof. Let my(B) := m(x+ B), then one easily shows that m, is a measure on
B such that m,((a,b]) = b—a for all a < b. Therefore, m, = m by the uniqueness
assertion in Theorem 5.14.

For the converse, suppose that m is translation invariant and m((0,1]) = 1.
Given n € N, we have

Lok—14k, ., (k-1 1
0.1 = it 2 = i (S 01

n

Therefore,

,_.
I

m(o1) = Yom (=4 0.d))

n n
k=1

" 1 1
= Ym0 =) =0 m((0, 2.
k=1
That is to say
m((0,
Similarly we show that m((0,%]) =1
invariance of m, we then learn that

m((a,b]) =b—a

) =1/n.

n for all [,n € N. Using the translation

S

~
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for all a,b € Q such that a < b. Finally for a,b € R such that a < b, choose
an, by, € Q such that b, | b and a,, 1 a, then (an,by] | (a,b] and thus

m((a,b]) = lim m((an,by)) = lim (b, —a,) =b—a,
i.e. m is Lebesgue measure.

To prove Eq. (5.17) we may assume that A # 0 since this case is trivial to prove.

Now let m(B) := |A|”" m(AB). It is easily checked that m, is again a measure on
B which satisfies

mx((a,b]) = X m (Aa, \b)) = X1\ — Xa) =b—a
if A > 0 and
ma((a,b]) = A7 m ([Ab, Xa)) = — [N 7' (Ab—Xa) =b—a
if A< 0. Hence my =m. m
6. APPENDIX: CONSTRUCTION OF MEASURES

6.1. Outer Measures.

Definition 6.1. A function p* : P(X) — [0, oc] is an outer measure if

(1) p*@) =0
(2) pr(UA;) <> p"(A)
(3) u*(A) < p*(B)if AC B.

Proposition 6.2 (Example of an outer measure.). Let £ C P(X) be arbitrary
collection of subsets of X which contains both ), X € €. Let p: £ — [0,00] be a
function such that p()) = 0. For any A C X, define

(6.1) pr(A) =inf{> p(E:): AC UE;, E; € £}.

Then p* is an outer measure.

Proof. It is clear that p*() = 0 and p*(A) < p*(B) for A C B. Suppose that
A; € P(X) and p*(A;) < oo for all ¢, otherwise there will be nothing to prove. Let

€ > 0 and choose E;; € £ such that A; C |J E;; and
=1

pH(A) > p(Eiyj) =27
j=1

Then

M2

pr(UA;) < Z p(Eij)

(0" (As) +27%€) = ZM*(Ai) +e

i=1

o

.
—

Since € > 0 is arbitrary, we have shown property 2. in Definition 6.1. m

Definition 6.3. Let p* : P(X) — [0,00] be an outer measure. Define the p*-
measurable sets to be

M) ={AC X : p"(E) > (BN A) + u* (BN A9)VE C X},



42 BRUCE K. DRIVER

Because of the subadditivity of u*, we may equivalently define M(u*) by
Mp*) ={AC X : p*(E) = p*(ENA) +p*(ENAY)VE C X}.

The next Proposition helps to motivate this definition and the Carathéodory’s
construction Theorem 6.5.

Proposition 6.4. Suppose £ = M is a 0 — algebra, p = p : M — [0,00] is a
measure and p* is defined as in Eq. (6.1). Then
(1) For ACX
p*(A) =inf{u(B): Be M and A C B}.
In particular, p* = p on M.
(2) The o — algebra M C M(p*), i.e. if A€ M and E C X then
(6.2) p(E) = p(ENA)+ p*(ENA%).
(3) Assume further that p is o — finite on M, then M(u*) = M = M* and
W pmur) = B where (M = M*, i) is the completion of (M, ).

Proof. Item 1. If E; € M such that A C UE; = Band E; = E;\(E,U---UE;_)
then B
> wE) =Y uE:) = u(B)

p(A) < u(E) = w(B) <> u(Ey).
Therefore, p*(A) = inf{u(B): B € M and A C B}.

Item 2. If pu*(E) = oo Eq. (6.2) holds trivially. So assume that p*(E) < oo.
Let € > 0 be given and choose, by Item 1., B € M such that E C B and p(B) <
w*(E) + €. Then

W*(E) + € > u(B) = u(B 1 A) + u(B 1 4°)
>p (ENA)+ p*(EnA°).
Since € > 0 is arbitrary we are done.

Item 3. Let us begin by assuming the u(X) < co. We have already seen that

M C M(u*). Suppose that A € P(X) satisfies,

(6.3) p(E)y=p (ENA)+p (ENA°)VE € P(X).

By Item 1., there exists By, € M such that A C B,, and p*(B,) < u*(4) +% for all
n € N. Therefore B =NB,, D A and p(B) < p*(A) + 1 for all n which implies that
w(B) < p*(A) which implies that p(B) = p*(A). Similarly there exists C € M
such that A° C C and p*(A°) = u(C). Taking F' = X in Eq. (6.3) shows

p(X) = p*(A) + p*(A°) = w(B) + u(C)

SO

SO
w(C¢) = p(X) = p(C) = u(B).
Thus letting D = C°, we have

D C AC B and u(D) = p"(A) = u(B)
so u(B\ D) =0 and hence
A= DU[B\ D)nA4]
where D € M and (B\ D)N A€ N showing that A € Mand p*(A) = fi(A).
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Now if p is o — finite, choose X,, € M such that pu(X,,) < oo and X,, T X. Given
A e M(p*) set A, = X, N A. Therefore
P (E)=p (ENA)+p* (ENAVE € P(X).
Replace E by X,, to learn,
0 (Xn) = 1 (An) + (X \ A) = 15 (An) + 42" (X0 \ Ap).

The same argument as above produce sets D, C A,, C B, such that u(D,) =
w*(An) = p(By). Hence A, = D, UN,, and N,, = (B, \ D,,) N 4,, € N. So we
learn that

A=DUN :=(UD,)U(UN,) € MUN = M.

We also see that p*(A) = u(D) since D C A C DU F where F' € M such that
N C F and

w(D) = p* (D) < p*(A) < (DU F) = u(D).
|

6.2. Carathéodory’s Construction Theorem.

Theorem 6.5 (Carathéodory’s Construction Theorem). Let p* be an outer mea-
sure on X. Let M = M(u*) then M is a o-algebra and p = p*|pm is a complete
measure.

Proof. Clearly #,X € M and if A € M then A° € M. So to show that M is
an algebra we must show that M is closed under finite unions, i.e if A, B € M and
E € P(X) then

p(E) = p(EN(AUB)) +u(E\ (AU B)).
Using the definition of M we have
(6.4)
p'(E) =p (ENA)+p"(E\ A)
(6.5) =p(ENANB)+up"(ENA\B)+p* (E\A) NB)+u*(E\ (AUB)).
We will now make use of the identity:

EN(AUB)=(ENA)U(ENB)=[(ENA)\BJU[(E\A)NBJU(ENANB)

which in words states that ENANBU(ENA\B)U((E\ A)NB) is equal to
the points common to E, A and B union the points in (E and A but not B) union
the points in (E and B but not A) which is equal to those points in E which are
also in either A or B. Using this identity in Eq. (6.5) along with the subadditivity
of p* shows

(6.6) w(E) > p*(EN(AUB)) + p*(E\ (AU B))

which implies that AU B € M and therefore shows that M is an algebra.
Now suppose A, B € M are disjoint, then taking E = AUB in Eq. (6.4) implies

p (AU B) = p(A) + p*(B).

So M is an algebra and p = p*| ¢ is finitely additive. We now must show that M
is a 0 — algebra and the u is o — additive.
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FIGURE 6. A useful set identity.

Let A; € M (without loss of generality assume A; N 4; = 0 if ¢ # j) B, =

Ui, Ai, and B = J A;, then for E C X we have
j=1

w(ENB,) =p* (ENB,NA,) + p*(EN B, N AS)
=p (ENA,)+p (ENBp_)
= (ENA,)+p (ENA,_1)+p*(ENBy_2)

(6.7) = w(EnAg).

1

n

Therefore we find that
W (E) = (BN By) + (B (1 BS)

(BN A+ (BN BS)

I
M=

B
Il
-

M=

>N p(ENAg)+p"(ENB°).

=~
Il
—

Letting n — oo in this equation shows that

p(E) > iu*(E NAg) + p*(ENB°)
k=1
> (Ue(E N Ag)) + p*(E'\ B) (subadditivity)
p(EUB) + " (E\ B)
w*(E). (subadditivity)

v

This shows that M is a o — algebra.
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Since p*(E) > p*(E N B,,) we may let n — oo in Eq. (6.7) to find

pH(E) > p*(EN Ag).
k=1

118

Letting £ = B = UA}, in this last expression then shows p*(B) > w*(Ag) and

=~
Il
—

hence by the subadditivity of u*,
pr(A) = i (Ap).
k=1

Therefore, @ = p*| o is countably additive on M.

Finally we show p is complete. If N C F € M and u(F) = 0 = p*(F), then
p*(N) =0 and

P (E) < p*(ENN)+p*(ENN®) = p*(ENN) < p*(E).

which shows that N € M. m
Proposition 6.6. Let iy be a premeasure on an algebra A and p* be the associated
outer measure as defined in Eq. (6.1) with p = pg. Then A C M(p*) and p*|4 =
Ho-

Proof. Let Ac A, AC fjAj with A; € A and set
1
A= ANA;\ (A U---UA;,) C A

Then A = UA; C |JA; and hence
1

to(A) = ZNO(AJ‘) < ZNO(AJ')

which shows that p*(A) = pg(A) for all A € A.

Now let A € A and E C X such that p*(E) < co. Given € > 0 choose B; € A
(which we may and do assume to satisfy B; N B, = () if k # j) such that £ C UB;
and

> tolBj) < (B) +e.

Since ANE CU(B;jNA) and ENA° CU(B; \ 4),
WE) + €= po(Bj) =Y [1o(Bj N A) + o(Bj N A°)]
j=1 j=1
> P (ENA)+ p*(EN A%
where in the second line we used the subadditivity of p*. Since € > 0 is arbitrary
this shows that
W () = 1" (E N A) + (B 1 A%
and therefore that A € M(p*). =

Theorem 6.7. Let A C P(X) be an algebra 1y be a premeasure on A and M =
o(A). Then pu = p*|pm is a measure on M which extends py. Moreover if v :
M — [0,00] is another measure such that v = py on A then v(A) < u(A) and
v(A) = p(A) if n(A) < oo. If g is o-finite then in fact v = p.
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Proof. We already know A C M(p*) and that M(u*) is a o — algebra, hence
ACo(A) =M C M(p*). Most of this theorem has already been proved, we need
only shows the assertions regarding the measure v. Let £ € M and E C UA; with
Aj € A, then

V(E) <> w(d4;) =) pu(4))
implies
(6.8) V(E) < i (E) = i(E).
If A= UA; then

v(A) = lim v (U Aj) = lim p (UA;-) = u(A)

sov=ponA,.
Suppose p(E) < oo and choose A; € A such that E C A = UA; € A, such that

and
o0

u(A) < Zu(Aj) < u(E)+eie p(A\E) <e

Then
uw(E) < p(A) =v(A)
= v(E)+v(A\E)
< v(E)+u(A\E)
< v(E)+e

Since € > 0 is arbitrary, p(E) < v(E) which combined with Eq. (6.8) shows that
H(E) = v(E).
For the o — finite case, choose X; € M such that X; T X and p(X;) < oo then
w(E) = lim p(ENX;) = lim v(ENX,) =v(E).
Jj—o0 Jj—o0
|

Example 6.8. For examples of lack of uniqueness of measures p extending a pre-
measure f, on an Algebra in the non-o-finite case. see Problem #23 in Chapter
1. of Folland. There one considers the measures: p; = 0o except on the empty set,
Ho is counting measure, and ps(A) = p3(A N D) where D C Q is any dense set.

6.3. Regularity results revisited.

Lemma 6.9. Suppose that 1y is a premeasure on an algebra A of subsets of X.
Also suppose that iy is o-finite on A. Let u* be the associated outer measure, M =
M(p*) and i = p*|M. Then for any B € M = M(u*) there exists AC BC C
such that A € Asy, C € Ays and p(C \ A) = 0.

Proof. Choose X,,, € A increasing to X such that ug(X,,) < oo for all m and
set B,, = X,, N B. Choose C,, so that B,, € C,, € A,, and C,, C X,, and
2(Cy \ By) is small. Let C = UC,,, then

i(C\ B) < (U (Cin \ B))
< Zﬁ(cm\B) < Zﬂ(cm\BM) <€
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Since A, N A, = A, we may choose C}, € A such that B C Cy, Cy is decreasing in
k and limy o, fi(Cr \ B) = 0. Define C' = ﬂ Ck. Then i(C\ B) = 0and C € Ags.

Now: Choose A¢ C B¢ € A,s such that ,u(BC \A°) =0,ie. 0=pa(B°NA) =
#(A\ B). Then A € As, and i(A\ B) = 0 and hence we have A C B C C and

(C\A) =p(C\B)+ B\ A)=0.
We now show that A C M*. Suppose that £ C X and p*(F) < co. Choose
B, € Asuch that E C |J B, and

n=1

2
Since p(By,) = (B NA) + u(B, NA°),
+6>Zu = u(Bn N A) + 2u(B, N A°)
> (BN A) + p*(E N A%)

which implies that
pH(E) = p*(ENA) + p*(ENA°).
[

Theorem 6.10. Suppose that pg is a o— finite premeasure on an algebra A C

PX),
w* is the associated outer measure,
M = M(p"),
o= p"|M and
1= filo(a)

Then M = o(A) = a(A)" — the completion of o (A) with respect to .
Proof. For B € M there exists A € As, and C € Ays such that A C B C C and
p(C\A) =p(C\A) =0
This implies B € 0(A) and hence that M C o(A).

For the reverse inclusion, suppose N € o(A), ie. N C F € o(A) such that
0= u(F)=p*(F). Then p*(N) =0 and

W (E) < (BN N) + (BN N) = 0+ (BN NY) < o*(E)
which shows that N € M. m
6.4. Construction of measures on a simple product space.

Exercise 6.11. Let Y = {0,1}" (the set of sequences y = (y1,¥s,...) with y; €
X ={0,1}, Y, ={0,1}" for all n € N, and 7, : Y — Y,, be defined by m,(y) =
(y1,Y25---,Yn). A denote the collection of “cylinder sets” in Y, i.e. sets of the form
(6.9) A =m,1(C) where n € N and C C Y,,.

In words a cylinder set is a subset of Y which is determined by restricting the values
of only a finite number of coordinates of y € Y. For example A = {y € Y : yo; =
0 for i € N} is not a cylinder set.
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a) Show that A is an algebra.

Show that if A, € A and A, | ) then A,, = () for all n sufficiently large.
Conclude that any finitely additive measure p, on A is a premeasure.

(1) Solution a) Let A,, =, }(P(Y,)) then A, is the pull-back of an algebra

48
b
C
(6.10)

and hence an algebra. Next notice that A,, C A, for each n. To see this,
let C CY, and set A =n,!(C). Then A =7, (C x X) where X ={0,1}.
This shows that A € A,1 and hence that A, C A,yi. Now it is not
hard to check an increasing union of algebras is still an algebra and hence
A =U,A, is an algebra.

b) We will prove the contrapositive of part b). Namely, suppose that
Ay € A with Ay decreasing as k increases and Ay = ﬂ{cvzlAk 2 () for each
N € N, then N2, Ar # 0. Using the ideas in the proof of part a) above,
we may choose an increasing sequence {n;} and sets Dy C Y, such that

Ap = W;A_l(Dk) for all £ € N. To simplify notation replace the sequence
{A;, Ag, A3, ...} by the sequence of sets
ny — 1 no —11 n3—"n2
—— —— ——
{Bl,BQ,Bg,...} = {K...,Y,Al,...Al,AQ,...,AQ,...}.

Then B; is also decreasing, NY,;B; # () for all N € N, and N, B; =
NS 1 Ay Moreover, the B; may be written in the form B; = w;l(Ci) where
C; CY; for all i € N.

We will now finish the proof by of part b) by showing that N$2, B; # (.
To do this, notice that B; = W;I(Ci) D Biy1 = 7Ti_+11 (Cit1) implies Ciy1 C
C; x X for each i € N. So by induction,

Cj C Cy x XY™ for all j > 1.

Since no B; is empty by assumption, no C; is empty either. In particular
this implies that {z;|z € C;} is not empty for each i. Choose €1 so the that
for infinitely many i’s, €; € {z1|z € C;}. Then by (6.10) it must happen
that €; € {z1|z € C;} for all i. By similar logic {x2|z € C; with z1 =€}
is non empty for all ¢ > 2. Hence we may choose ea€ {0,1} such that
(e1,€2) € {(z1,22)|z € C;} for all i > 2. By induction, one may show there
exists €1,€2,€3,... € {0,1} such that (e1,...,¢;) € {(z1,22,...,2j)|x €
C;} for all i > j and in particular (e1,...,¢;) € C; for all j € N. Set
€ = (€1,€2,...) €Y, then we have shown that

mj(e) = (e1,...,¢) € C; for all j € N.

This shows that € € B; for all j, i.e. € € NB; = NA,, and hence N, A4,, # 0.

¢) It follows, by Homework 3.1.1 and what we have just proved, that any
finitely additive measure py on A is actually countably additive on A, i.e.
fto 1s a premeasure on A.

Exercise 6.12. Show there is a unique finitely additive measure py on A such
that po(A) =27 if A is a set of the form

(6.11)

A={yeY|ys=¢ fori=1,2,...,n},

where each ¢; € {0,1}. Use the above problems to conclude there exists unique
measure g on M = o(A) such that p(A) =27 if Ais as in (6.11).
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(1) Solution: For A € P(Y,,) let p,,(A) = 27"#(A), where #(A) denotes the
number of elements in A. Then p,, is a measure on P(Y,). f A€ A, C A
is of the form A = 7,1(C) with C C Y, set py(A) = p,(C). We must
show that p, is well defined. For this suppose that A = 7;.1(D) for some
D C Y,,. Without loss of generality assume that m > n, then D must be
given by D = C x X (™= Therefore

[ (D) = 27 H(C x X (M) = 27m(M= g (0) = 27 H(C) = 1, (O),

which shows that p is well defined. Now it is easily checked that p is a
measure on A since p,,, is a measure on A,, for each m. Therefore by the
last problem, i is in fact a premeasure on A. By Theorem 1.14 of Folland,
it follows that p extends to a measure on M = o(A).

Remark 6.13 (A Cryptic Remark). The measure p is essentially Lebesgue measure
on the unit interval [0, 1].

7. CONTINUOUS AND MEASURABLE FUNCTIONS

We are mostly interested in measurable functions, nevertheless it is instructive
to first reformulate the notion of a continuous function between two metric spaces.

Lemma 7.1. Suppose that (X, p) and (Y,d) are two metric spaces and f: X —Y
s a function. Then following are equivalent:

(1) f is continuous.

(2) fYUV) erT, forallV € 7q, ice. f7H(V) is open in X if V is open in'Y.
(3) f~YC) is closed in X if C is closed in'Y.

(4) For all convergent sequences {x,} C X, {f(zn)} is convergent in' Y and

lim f(xz,)=f (nh_)rrgo xn) .

n—00

Proof. 1. = 2. For all z € X and € > 0 there exists 6§ > 0 such that
d(f(z), f(a") < eif p(z,2") < 6. ie.

By (8) € fH (B (e))
Soif V. CoY and x € f~!(V) we may choose € > 0 such that Bj(,)(e) € V then

Bo(6) € fH(By()(€) € f7H(V)

showing that f=!(V) is open.

2. <= 3. If C is closed in Y, then C¢ C, Y and hence f~(C¢) C, X. Since
7o) = (f_l(C'))c, this shows that f=!(C) is the compliment of an open set
and hence closed. Similarly one shows that 3. = 2.

2. = 1. Let e > 0 and z € X, then, since f~(Bj(,)(€)) Co X there exists § > 0
such that B, (6) C f~! (B (€)) ie. if p(z,2') < & then d(f(z'), f(z)) <e.

1. = 4. If f is continuous and z,, — z in X, let ¢ > 0 and choose § > 0
such that d(f(z), f(2')) < € when p(x,2’) < §. There exists an N > 0 such that
p(z,zy,) < 6 for all n > N and therefore d(f(x), f(z,)) < € for all n > N. That is
to say limy, o f(2,) = f(z) as n — oc.

4. = 1.We will show that not 1. = not 4. not 1 implies there exists € > 0,
a point z € X and a sequence {xz,} ., C X such that d(f(z), f(z,)) > € while
p(z,x,) < . Clearly this sequence {z,,} violates 4. m
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Notation 7.2. For a general topological space (X, 7), the Borel ¢ — algebra is
the o — algebra, Bx = o(7). We will use Bg to denote the Borel ¢ - algebra on R
and recall that Bg = o({(a,0) : @ € R}).

Our notion of a “measurable” function will be similar to conditions 2. and 3.
above for continuity. For motivational purposes, suppose (X, M, p) is a measure
space f : X — R,. Roughly speaking, in the next section we are going to define

[ fdp by
X

mesh—0
0<a<az<asz<...

/fd,u: lim Z a;p(f~ ag, aiyq]).
b'e

For this to make sense we will need to require f~!((a,b]) € M for all a < b. Because
of Lemma 7.7 below, this last condition is equivalent to the condition

f7H(Br) EM,
where we are using the following notation.
Notation 7.3. If f: X — Y is a function and £ C P(Y) let
e @) = BB ).
If G C P(X), let
LG={AcP)|f (A eg}.

It is easily checked that f~1€ and f.G are o — algebras (topologies) provided £ and
G are o — algebras (topologies). (You should check these statements.)

Definition 7.4. Let (X, M) and (Y, F) be measurable (topological) spaces. A
function f: X — Y is measurable (continuous) if f~1(F) C M. We will also
say that f is M/JF — measurable (continuous) or (M, F) — measurable (continuous).

Remark 7.5. Let f : X — Y be a function. Given a o — algebra (topology)
F C P(Y), the o — algebra (topology) M := f~1(F) is the smallest o — algebra
(topology) on X such that f is (M, F) - measurable (continuous). Similarly, if M
is a 0 - algebra (topology) on X then F = f,. M is the largest o — algebra (topology)
on Y such that f is (M, F) - measurable (continuous).

Lemma 7.6. Suppose that (X, M), (Y,F) and (Z,G) are measurable (topological)
spaces. If f : (X, M) — (Y, F) and g : (Y, F) — (Z,G) are measurable (continuous)
functions then go f: (X, M) — (Z,G) is measurable (continuous) as well.

Proof. This is easy since by assumption ¢g=!(G) C F and f~! (F) C M so that
(9o /)G =11 (g (@) cfHF) M.

L]

Lemma 7.7. Suppose that f: X — Y is a function and € C P(Y), then
(1) c(FUE) = FHo(E)) and

(7.2) T(fHE) = fHE(E).

Moreover, if F = o(&) (or F = 7(€)) and M is a o — algebra (topology) on X,
then f is (M,F) — measurable (continuous) iff f~(£) C M.
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Proof. We will prove Eq. (7.1), the proof of Eq. (7.2) being analogous. If
E C F, then f71(€) C f~Y(c(€)) and therefore, (because f~1(c(£)) is a o —
algebra)
G:=0o(f7(&)) C f7H(a(£))
which proves half of Eq. (7.1). For the reverse inclusion notice that
fG={BCY:f Y (B)eg}.
is a o — algebra which contains £ and thus ¢(€) C f.G. Hence if B € ¢(&) we know
that f=%(B) € G, i.e.
~He(&) cg.

The last assertion of the Lemma is an easy consequence of Egs. (7.1) and (7.2). =

Corollary 7.8. Suppose that (X, M) is a measurable space. Then f : X — R
is (M, Bgr) - measurable iff f='((a,00)) € M for all a € R iff f~((a,0)) € M
for all a € Q iff f1((—o0,a]) € M for all a € R, etc. Similarly, if (X, M) is a
topological space, then f: X — R is (M, Tgr) - continuous iff f~*((a,b)) € M for
all —0o < a < b < oo iff f((a,)) € M and f~1((—00,b)) € M for all a,b € Q.
Proof. An exercise in using Lemma 7.7. =
We will often deal with function f: X — R =RU{+oco}. Let
(7.3) Bg =0 ({[a,0] : a € R}).
The following Corollary of Lemma 7.7 is a direct analogue of Corollary 7.8.

Corollary 7.9. f: X — R is (M, Bg) - measurable iff f~'((a, o0]) € M for all
a € R iff f1((—o0,a]) € M for all a € R, ete.

Proposition 7.10. A subset A C R is in By iff ANR €Bg. In particular {£oo},
{o0} and {—oo} are in Bg.

Proof. Let i : R — R be the inclusion map. Since i=*(([a, o0])) = [a, 00) R €Bg
for all a € R, i is (Bg, Bg)— measurable. In particular if A € Bg, then i~1(A) =
ANR eBg.

For the converse, we begin with the observations:

{-oo} = MpLil—00, —n) = ML, [—n,o0]® € By,
{oo} = [o0,00] € B and
R = R\{+oo} € Bg.
Using these facts you may easily shows that

M={ACR:AcBg}

is a 0 — algebra on R which contains (a,c0) for all a € R. Hence Bg C M, i.e.
Br C Bg. Using these observations, if A C R and A NR €Bg, then

A=(ANR)U (AN {+xc}) € Bz.
]

Proposition 7.11 (Closure under sups, infs and limits). Suppose that (X, M) is
a measurable space and f; : (X, M) — R is a sequence of M/Bg — measurable
functions. Then

sup, fj, inf;fj, ]ll)rgo sup f; and ]ll)rgo inf f;
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are all M /By — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in the
statement. )

Proof. Define g4 (x) :=sup;f;j(z), then
{05 04(x) < a} = (o f(2) <a V)
=Nj{z: fj(z) <a} e M
so that g is measurable. Similarly if g_(x) = inf; f;(x) then
a5 9 (@) > a} = Ny{ws f3(2) = a} € M.
Since

limsup f; =infsup{f;:j > n} and
lim f; =supinf{f; : j > n}
we are done by what we have already proved. m

Lemma 7.12. Suppose that (X, M) is a measurable space, (Y, T) be a topological

space and f; + X — Y is (M,By) — measurable for all j. Also assume that for

each x € X, f(z) = limy,— oo fru(x) exists. Then f: X — Y is also (M,By) -

measurable.

Proof. Suppose that V' C Y is an open set, then
V) = {z:f(x) eV} ={x: fu(x) €V for almost all n}

= URoimzn fi (V) eM

since f;1(V) € M because each f,, is measurable. Therefore f~1(7) C M and thus
fHBy) = f(o(r) = o (f71(r)) c M.

]

Definition 7.13. A function f : X — Y between to topological spaces is Borel
measurable if f~1(By) C By.

Proposition 7.14. Let X and Y be two topological spaces and f : X — Y be a
continuous function. Then f is Borel measurable.

Proof. Using Lemma 7.7 it suffices to recall By = o(7y) and to notice that
Y V)erx CBx forall VopeninY. m

Definition 7.15. A function f : R — R is Lebesgue measurable if f~(Bg) C
L:=Bg - the completion of By relative to Lebesgue measure m.

7.1. Relative Topologies and o — Algebras.

Definition 7.16. Let £ C P(X) be a collection of sets, A C X, i4 : A — X be
the inclusion map (i4(z) = z) for all x € A, and

Ea=i,"() ={ANE:E€&}.
Proposition 7.17. Suppose that A C X, M C P(X) is a 0 — algebra and T C
P(X) is a topology, then My C P(A) is a o — algebra and 74 C P(A) is a topology.

(The topology T4 is called the relative topology on A.) Moreover if £ C P(X) is
such that M =oc(E) (1="71(&)) then Ma =0(Ea) (Ta =7(Ea)).
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Proof. The first assertion os easy to check as remarked after Notation 7.3. The
second assertion is a consequence of Lemma 7.7. Indeed,

Ma = i3' (M) = i3"(0(€)) = 0(i31(€)) = o(Ea)
and similarly
Ta=iy (1) = i3 (1(E)) = 7(i5 (£)) = T(Ea).
[

Definition 7.18. Let A C X, f : A — C be a function, M C P(X) be a o0 — algebra
and 7 C P(X) be a topology, then we say that f|4 is measurable (continuous) if
fla is M4 — measurable (74 continuous).

Proposition 7.19. Let A C X, f: X — C be a function, M C P(X) be a 0 —
algebra and T C P(X) be a topology. If f is M — measurable (T continuous) then
fla is M4 measurable (T4 continuous). Moreover if A, € M (A, € T) such that
X =U2 A, and f|A, is My, measurable (T, continuous) for all n, then f is
M — measurable (T continuous).

Proof. Notice that i4 is (Ma, M) — measurable (74,7) — continuous) hence
fla = foiais My measurable (74 — continuous). Let B C C be a Borel set and
consider

F7UB) =ty (fTH(B) N AL) = UpZy flan (B).
If Ae M (A € 7), then it is easy to check that

My = {BeM:BC A} C M and
Ta = {Ber:BCA}CT.

The second assertion is now an easy consequence of the previous three equations.
L]

7.2. Product Spaces. The reader who finds this section a little too heavy may
wish to first read Appendix 7.4 below where the most important special cases are
covered. The material in this subsection before Corollary 7.28 may then be skipped
on the first reading.

Definition 7.20. Let X and A be sets, and suppose for & € A we are give a
measurable (topological) space (Y, F,) and a function f, : X — Y,,. We will write
0(fa:a € A) (7(fo : @ € A)) for the smallest o-algebra (topology) on X such that
each f, is measurable (continuous), i.e.

0(fa:a€A) =0(Usf, (Fa)) and
T(fara€A) = T(Uafa_l(fa))'

Proposition 7.21. Assuming the notation in Definition 7.20 and additionally let
(Z, M) be a measurable (topological) space and g : Z — X be a function. Then g
is (M,0(fo: o € A)) — measurable (M, T(fo: o € A)) — continuous) iff fo 0 g is
(M, Fo)—-measurable (continuous) for all o € A.

Proof. (=) If gis (M,0(fa : @ € A)) — measurable, then the composition f,0g
is (M, F,) — measurable by Lemma 7.6.
(<) Let
G=0(fa:a€A) =0 (Uacafs (Fa)).
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If foo0gis (M,F,) — measurable for all «, then
9 o (Fa) S MVa € A
and therefore
-1 1 _ 11
g (UaeAfa (*7:&)) = Uqcag fa (]:a) - M.
Hence
gil (g) = gil (0 (UaEAfojl(fa))) = U(gil (UaeAf(,;l(fa)) cM

which shows that ¢ is (M, G) — measurable.
The topological case is proved in the same way. =

Definition 7.22. Suppose(XaMa),c 4 is a collection of measurable spaces and let
X be the product space
X = H X,

acA
and 7, : X — X, be the canonical projection maps. Then the product o — algebra,
@ Mg, is defined by
«

®Ma =o(mg:a€A)=0 (Uﬂ-al(MQ)> .
acA @

Similarly if (XoMa ), 4 is a collection of topological, the product topology &) M.,
is defined by :
®/\/la =7(Tq:acA)=r <U7T;1(/\/la)> :
acA o

Remark 7.23. Let (Z, M) be a measurable (topological) space and

(X =[] X ®Ma>

acA acA
be as in Definition 7.22. By Proposition 7.21, a function f : Z — X is measurable
(continuous) iff T4 o f is (M, M, ) — measurable (continuous) for all a € A.

Proposition 7.24. Suppose that (XoMa),e 4 98 @ collection of measurable (topo-
logical) spaces and E, C M, generates M, for each o € A, then

(7.4) WaeaMa =0 (UaeaTy (Ea)) (T (Uaeamy'(€a)))

Moreover, suppose that A is either finite or countably infinite, X, € &4 for each
a € A and M, = 0(&,) is a o — algebra for all « € A. Then the product o —
algebra satisfies

(7.5) ®Ma—a<{HEa:Ea€€a for auaeA}>.

acA acA

Similarly if A is finite and My = 7(E,), then the product topology satisfies

(7.6) ®Ma—r<{HEa:Ea€€a fm‘allaeA}).

acA a€A
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Proof. We will prove Eq. (7.4) in the measure theoretic case since a similar
proof works in the topological category. Since |75 (Ea) C Uam;t(M,), it follows

«
that

F:i=0 (Uﬂj(ﬁ@) Co (Uﬂ';l(/\/la)) = ®Ma.

FDo(rg (Ea) = 5 (0(Ea)) = moH (Ma)
holds for all o implies that

Conversely,

Uﬂ';l(/\/la) CcF
and hence that @ M, C F.

We now prove Eq. (7.5). Since we are assuming that X, € &, for each o € A,

we see that
Uma'(Ea) C { [] Bo: Bacéaforallac A}

acA
and therefore by Eq. (7.4)

®Ma =0 (Uwal(ga)> Co ({ H E,:E,€&, foral ac A}) .

a€A « acA
This last statement is true independent as to whether A is countable or not. For
the reverse inclusion it suffices to notice that since A is countable,

H Ea - ﬂaeAﬂ-(_yl(Ea) € ® Ma

acA acA
and hence
0<{HEQ:EQGEQ forallaeA}) C®MQ.
acA acA

Let us record the following special case of Proposition 7.24. m

Corollary 7.25. Suppose (X;, M;) are measurable (topological) spaces, & C
P(X;) such that X; € & fori=1,2 and M; = (&) (M; =7(&;)). Then

My (X)MQ:O'(gl ng) (7’(51 ng)).

Proposition 7.26. Let {Xa},c4 be a sequence of sets where A is at most count-
able. Suppose for each o € A we are given a countable set £, C P(Xy). Let
Ta = T(Ea) be the topology on X, generated by &, and X be the product space
[loca Xo with equipped with the product topology T := XacaT(Ex). Then the Borel
o — algebra Bx = o(T) is the same as the product o — algebra:

Bx = ®acaBx,:
where Bx, = 0(7(&y)) = 0(Ea) for all a € A.
Proof. By Proposition 7.24, the topology 7 may be described as the smallest
topology containing € = Uaeam, *(£a). Now £ is the countable union of countable

sets so is still countable. Therefore by Proposition 3.14 and Proposition 7.24 we
have

Bx =o(1) =0(17(€)) =0(€) = ®acat(€a) = ®aca0(Ta) = ®acaBx,, .
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Proposition 7.27. If (X;,p;) fori=1,...,n be metric spaces such that for each
i there a countable dense subset D; C X;, then

®BX,L- = B(X1><~~~><X,,,)

where Bx, is the Borel 0 — algebra on X; and B(x, x...xx,) i the Borel 0 — algebra
on X1 X --- x X, equipped with the topology coming from the product metric

n
P((iﬂla T2y e 7:571)7 (ylay27 cee 7yn)) - sz(x’wyz)
i=1
Proof. Let (z1,22,...,2,) € X7 X---x X, and € > 0 be given. It is easily seen

that
HB(%,G/TL) C B((z1,22,...,2p),€) C HB(xi,e).

Because of this equation, it is easily seen that 7, =7, ®7,, - - ® 7, is just the
product topology on X7 X - - - X X;. Proof is now complete by applying Proposition
7.26 with

& ={B(z,e) C X;:z € D; and e € QN(0,00)}.
[

Corollary 7.28. Let Bgn denote the Borel o —algebra on R™, then Brn = Br ®
Bg - - ® Bg. Moreover if (X, M) is a measurable space, then

fz(flaf??"'?fn):X_’Rn

is (M, Bgn) — measurable iff f; : X — R is (M, Br) — measurable for each i. In
particular, a function f : X — C is (M, Bc) — measurable iff Re f and Im f are
(M, Bgr) — measurable.

Corollary 7.29. Let (X, M) be a measurable space and f,g: X — C be (M, Bc)
— measurable functions. Then f +g and f - g are also (M, Bg) — measurable.

Proof. Define F: X - CxC, AL :CxC - Cand M : Cx C — C by
F(z) = (f(z),9(x)), Ax(w,2) = w £ z and M(w,z) = wz. Then Ay and M are
continuous and hence (Bgz, Be) — measurable. Also F' is (M, Bc ® Be) = (M, Bez2)
— measurable since 11 o F = f and mao F = g are (M, Bc) — measurable measurable.
Therefore AL o F = f+¢gand Mo F = f - g being the composition of measurable
functions are also measurable. m

Lemma 7.30. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

18 measurable.

Proof. Definei: C — C by

if 2z#£0
if z=0.

S
~—
N
S~—
|
—N
O nf~

For any open set V C C we have
N V) =i (VAo itV n{o})
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Because i is continuous except at z = 0, i=*(V \ {0}) is an open set and hence
in Bc. Moreover, i=1(V N {0}) € Be since i~ (V N {0}) is either the empty set or
the one point set {a} . Therefore i (7¢) C Bc and hence i 1(Bc) =i (o(1¢)) =
o(i~(r¢)) € Bc which shows that i is Borel measurable. Since F =i o f is the
composition of measurable functions, F' is also measurable. m

7.3. Measurability on Complete Measure Spaces. In this subsection we will
discuss a couple of measurability results concerning completions of measure spaces.
We will first need to introduce the notion of simple functions.

Definition 7.31. A function f : (X, M) — C is a simple function if f is mea-
surable and the range of f is finite, i.e. #(f(X)) < co.

A function f : (X, M) — C is a characteristic function if f is measurable
and f(X) ={0,1}. If we let A := f=1({1}), we will write

f(x)—lA(x)—{ 1 if reA

0 otherwise.
If f is simple function then f may be written as a finite linear combination of
characteristic functions:
F= 2l

zeC
where the above sum is really a finite since the range of f is a finite set.

Theorem 7.32 (Approximation Theorem). Let f: X — [0, 00] be measurable and
define

221
k n
¢, (x) = Z 271f*1((%7%])($)+2 L1 ((2n,00)) (7)
k=0
221 —1 L
= . o e <r<igt } (2) 271520y ()
k=0

then ¢, < f for all n, ¢, (z) T f(z) for allz € X and ¢,, T f uniformly on the sets
Xy ={x e X : f(x) <M} for all M € (0,00) . Moreover, if f: X — C is a mea-
surable function, then there exists simple functions ¢,, such that lim,_ . ¢, (z) =
f(x) for all x and |p,,| T |f| as n — .

Proof. It is clear by construction that ¢,(z) < f(z) for all z and that 0 <
f(x) —¢,(x) <27™if x € Xon. From this it follows that ¢, (z) T f(z) forall z € X
and ¢,, T f uniformly on bounded sets.

Also notice that

kE k+1 2k 2k+2 2k 2k +1 2k+1 2k+2

(Q_n’ omn ]:(2n+1’ on+1 ]:(2n+1’ on+1 ] ( on+l 7 9n+l1 }
and for v € f7'((F,ZEH]), ¢,(@) = d,q(x) = 725 and for @ €

FH((3 22) , 6,(2) = 525 < 25 = ¢, 4 (). Similarly since
(2'”’ OO} = (2”7 2n+1] U (2”‘*‘1, OO]’

for z € f71((2"!, c]) ¢, () = 2" < 2"t = ¢, () and for z € f~1((2",2"1]),
Gpy1(x) > 2" = ¢, (2). Therefore ¢,, < ¢, for all n and we have completed the
proof of the first assertion.
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For the second assertion, first assume that f : X — R is a measurable function
and choose qﬁf to be simple functions such that qﬁf T f+ as n — oo and define

bl = b + b < Brbis + Prps = ||
and clearly |¢,| = ¢ + ¢, 1 f1 + f— = |f] and ¢, = ¢ — b, — f — f— = f as

n — 00.

Now suppose that f : X — C is measurable. We may now choose simple
function w,, and v, such that |u,| T |Re f|, |vp| T [Im f|, w,, — Re f and v,, — Im f
as n — oo. Let ¢,, = u,, + iv,, then

6> = w2 + 02 T [Re fI* + [Im f” = | £
and ¢, =u, +tv, 2 Ref+ilmf=fasn—oco m

Proposition 7.33. Suppose that (X, M, ) is a complete measure space and f :
X — R is measurable.

(1) If g : X — R is a function such that f(x) = g(x) for p — a.e. xz, then g is
measurable.

(2) If fn : X — R are measurable and f : X — R is a function such that
lim, o frn = f, 1 - a.e., then f is measurable as well.

Proof. 1. Let £ = {x : f(z) # g(z)} which is assumed to be in M and
#(E)=0. Then g = 1gc f + 1gg since f = g on E°. Now 1gef is measurable so g
will be measurable if we show 1gg is measurable. For this consider,

(7.7) (12g)~'(4) = { ﬁ;gj)(_lﬁ%_ Ao ; 0 ;ﬁ

Since (1gg) 1(B) C Eif 0 ¢ B and u(E) = 0, it follow by completeness of M that
(1gg)~"(B) € M if 0 € B Therefore Eq. (7.7) shows that 1g is measurable.
2. Let E={z: lim f,(x) # f(x)} by assumption E € M and p(F) = 0. Since

g =1gf =lim,—oo 1gefn, g is measurable. Because f = g on E° and u(FE) = 0,
f =g a.e. so by part 1. f is also measurable. m

The above results are in general false if (X, M, p1) is not complete. For example,
let X = {0,1,2} M = {{0}, {1,2},X,¢} and u = 8 Take g(0) = 0, g(1) =
1, g(2) =2, then g = 0 a.e. yet g is not measurable.

Lemma 7.34. Suppose that (X, M, i) is a measure space and M is the completion
of M relative to p and i is the extension of u to M. Then a function f : X — R
is (M, B = Bg) — measurable iff there exists a function g : X — R that is (M, B)
— measurable such E = {z: f(z) # g(x)} € M and i (E) =0, i.e. f(x) = g(x) for
I —a.e. x.

Proof. Suppose first that such a function g exists so that n(E) = 0. Since
g is also (M, B) — measurable, we see from Proposition 7.33 that f is (M,B) —
measurable.

Conversely if f is (M, B) — measurable, by considering fi we may assume that
f > 0. Choose (M, B) — measurable simple function ¢,, > 0 such that ¢, T f as

n — oco. Writing
Py, = Z agla,
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with Ap € M, we may choose By, € M such that By C Ay, and fi(Ax \ Br) = 0.

Letting
¢n = Za’kilBk

we have produced a (M, B) — measurable simple function ¢,, > 0 such that E, :=
{¢,, # &, } has zero i — measure. Since i (U, E,) <Y [i(E,), there exists F € M
such that U, E,, C F and p(F) = 0. It now follows that

1F§7’n:1F¢nT91: 1pf asn — oo.

This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has & —
measure zero. M

7.4. Appendix: Special cases of the Product Theorems.

Theorem 7.35. Suppose that X1 and Xy are sets, 71 C P(X1) and 79 C P(X2) are
topologies, My C P(X1) and My C P(X2) are o — algebras and & C P(X1) and
&y C P(X3) are such that X1 € &1, Xo € Eo, 71 = T(&1), T2 = 7(E2), My = 0(&1),
and My = 0(E;). Then
(1) My My =0(&E X&), ie. a(a(&) X a(E)) = (& X &).
(2) T1 ® Tg = T((c/'l X 52), i.€. T((T(gl) X 7(52)) = T(gl X 52)
(3) If we further assume that & and & are countable and let By = o(11) and
By = o(72) then
(a) 81 = (T(gl) = M1 and BQ = U(gg) = ./\/12.
(b) o(T1 ® T2) = (&1 X E2) = My ® Mo = By ® Ba. That is the Borel o
— algebra on X7 x Xo with the product topology is the product of the
Borel o — algebras on X, and Xs.

Proof. Since M; ® My = a(Mjy x Ma) D My x My D & x & it follows that
My ® Ms D (€ x E). For the reverse inclusion, let

M::{AEMliAXXQE(T(nggQ)}.

It is routine to check that M C P(X7) is 0 — algebra on X; and that & C M.
Therefore My = 0(€1) C M, i.e. we have shown that A x X € 0(&; x &) for all
A € Mj. By symmetry, we may show that X; x B € (& x &) for all B € M,
and therefore

AXxB=(AxX3)N (X1 xB)eo(& x&)VAe M; and B € My.

Therefore M; ® Ma C 0(€1 x E2) and we have proved item 1. Item 2. is proved in
exactly the same way.

Item 3a. was already proved in Proposition 3.14. Similarly, by Item 2. 71 ® 75 =
T(E1xE2) by item 1. and because &1 X &y is still countable, we may apply Proposition
3.14 to shows that o(71 ® 72) = (&1 X &2). The other assertions in Item 3b. now
follow from the previous assertions in the Theorem. m

Corollary 7.36. Brm+n = Bgrn ® Bgm.

Proof. Let & denote the collection of open balls in R™ with centers in Q™ and
rational or infinite radii and let & denote the collection of open balls in R™ with
centers in Q™ and rational or infinite radii. It is easy to check that 7(&;) and
T(&2) are the standard topologies on R™ and R™ respectively. We may now finish
the proof using Theorem 7.35 provided that we show 7(&; X &) is the standard
topology on R™™. This is a consequence of the following assertions:
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(1) Every set Fy x Ey € & x & may be written as a union of open balls in
R™™ je. every set Every set Ey x Eo € £ x &3 is open in R™™ with the
standard topology, Tgn+m. (From this we conclude that 7(E; X E2) C Tntm.

(2) Every open ball B((z,y),8) C R*™™ may be written as a union of elements
in & x &;. This shows that B((z,y),6) € 7(£1 X E2) and hence that Tgatm C
7'(51 X 52)

The proof of these assertions are left to the reader who may find the following
observations useful. If B(x,6) € & and B(y,€) € & and (a,b) € B(x,§) x B(y,¢)
then

lz—al® + |y — b|* < 6%+ €
and hence
(7.8) B(x,8) x B(y,€) C B((x,y), V& + €2).
Moreover we have
(7.9) B((x,y), min(é,€)) C B(x,6) x B(y,e).
]

Lemma 7.37. Suppose (X1, M), (Xa, M3) and (X, M) are measurable spaces. A
function F(z) = (Fi(z), F2(z)) from X — X1 x Xg is (M, M1 ® Ma) measurable
iff Fi 2 X — X; is (M, M;) — measurable fori =1, 2.

Proof. Let m; : X1 x Xo — X; be the projection maps, i.e. m(x1,22) = x1
and mo(x1,29) = xo. Since Wfl(A) =Ax Xy € My ® Ms for all A € My, m
is measurable and a similar argument shows that 7o is measurable. Therefore if
F: X — X; x Xy is (M, M; ® M) measurable then F; = m; o F is (M, M;)
— measurable for ¢ = 1,2. Conversely if F; = m; o F is (M, M;) — measurable for
i =1,2, then

1AxXy) = F7'(A) € Mand
FY(X,xB) = FYB)eM
for all A € M; and B € Ms. Since
{Ax X9,X1 xB:Ae M; and B e My}
generate M ® My, it follows that F' is (M, M; ® Msy) — measurable. ®

8. INTEGRATION THEORY

8.1. Integral of Simple functions. Let (X, M, u) be a fixed measure space in
this section.

Definition 8.1. Let F =C or [0,00] and suppose that ¢ : X — F is a simple
function. If F = C assume further that u(¢*({y})) < oo for all y # 0 in C. For
such functions ¢ we define [ ¢ = f ¢ du by

/</> dp =Y "yp(6~ ({y}))-

yelF

Proposition 8.2. The integral has the following properties.
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(1) Suppose that X € C then

(8.1) X/)\fdu - )\)Zfdu.

(2) Suppose that ¢ and ¢ are two simple functions, then

Jo+vyn= [van+ [ oap.

(3) If ¢ and ¢ are non-negative simple functions such that ¢ < ) then

/ by < / .

(4) If ¢ is a non-negative simple function then A — v(A) := [¢dp = [1a¢d dp
A X
18 a measure.

Proof. Let us write {¢p =y} for the set d)_l({y}) C X and p(¢ = y) for
u({o =y}) = u(@ " ({y})) so that

/¢ = yu(d=y).
yeC

We will also write {¢ = a,v = b} for ¢~ ({a}) N~ "({b}). This notation is more
intuitive for the purposes of this proof. Suppose that A € F then

/N/) dp="> "y p(ré =)

X yelF
=Y yu(d=y/N
yeF
= YoAzulo=2) = [ 6y
z€F X

provided that A # 0. The case A = 0 is clear, so we have proved 1.
Suppose that ¢ and ¢ are two simple functions, then

Jorv) dn=3z uo+v =2

zelF
:Zz,u(Uwe]F{QS:W, Y =z—w})
zelF
::Ez:zjzjﬁd¢;:(u7#}::ZA*W)
z€F weF
=) rwpd=w ¢ =2)
z,w€eF
:Zzu(¢zz)+zwﬂ(¢:w)
z€F welF

:/wdu+/¢du.

which proves 2.
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For 3. if ¢ and ¢ are non-negative simple functions such that ¢ <1

/¢ S ap(p =

a>0

= > apl¢p=a,9=1)

a,b>0

< ) bulé=a, 9 =1)

a,b>0

= Zbu(wzb):/w,

b>0

where in the third inequality we have used {¢ = a,p =b} =0 if a > b.
Finally for 4., write ¢ = >_ A\;1p, with A; > 0 and B; € M, then

N
v(4) = / Lad dpi= "N p(ANBy).

i=1

The latter expression for v is easily checked to be a measure. m

8.2. Integrals of positive functions.

Definition 8.3. Let LT = {f : X — [0,00] : f is measurable}. Define

/fd,u—sup{/ ¢du:(bissimpleand¢<f}.
X X

Because of item 3. of Proposition 8.2, this definition is consistent with our previous
definition of the integral on non-negative simple functions. We say the f € LT is

integrable if
/ fdp < oco.
X

Remark 8.4. Notice that we still have the monotonicity property: 0 < f < g then

IREY
o)

Also notice that if f is integrable, then p ({f = oco}) = 0.

and for ¢ >0

Lemma 8.5. Let X be a set and p : X — [0,00] be a function, let pp =" 5 p(x)0,
on M =P(X), te.

pA) =" pla).

zeA

If f: X —[0,00] is a function (which is necessarily measurable), then

/X fas =S ot
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Proof. Suppose that ¢ : X — [0,00] is a simple function, then ¢ =
ZZG[0,00] erf)*l({z}) and

s => plx) Y 2y (@)
X

zeX z€[0,00]

= D 2> p@) (@)

z€[0,00] zEX

= 3 o (=) = [ o

z€[0,00] X

So on simple function ¢ : X — [0, oo,

;pgb = /X pdp.

Suppose that ¢ : X — [0, 00) is a simple function such that ¢ < f, then

/ ¢pdu=> pp <> pf.
X X X

Taking the sup over ¢ in this last equation then shows that

/X fdp < ;pf-

For the reverse inequality, let A CC X be a finite set and N € (0,00). Set
fN(x) = min {N, f(x)} and let ¢ , be the simple function given by ¢y ,(z) :=
15 (2) fN (). Because d)N’A(x) < f(=),

YN =Y pbna = /X dadit < /X fdp.

A X

Since fN T f as N — oo, we may let N — oo in this last equation to concluded

that
;pf < /X fep

and since A is arbitrary we learn that

;MSAWM

Theorem 8.6 (Monotone Convergence Theorem). Suppose f,, € LT is a sequence
of functions such that f, 1 f (necessarily in LT) then

[t [rasn—c

Proof. Since f, < f,, < f, for all n < m < oo,

[tz [tnz[s

from which if follows [ f, is increasing in n and

lim ﬁs/ﬁ
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For the opposite inequality, let ¢ be a simple function such that 0 < ¢ < f and
let a € (0,1). Notice that
E,={fn>ap} 1 X asn— oo
and that, by Proposition 8.2,

(8.2) /nz/mﬁz/xw—am¢

Because E — « fE ¢ is a measure and E,, T X,

Hence we may pass to the limit in Eq (8.2) to get

lim fn2a/¢.

n— 00

Because this equation is valid for all simple functions 0 < ¢ < f, by the definition
of [ f we have
lim | f, >« / I

Since a € (0, 1) is arbitrary we conclude that

b [ 1= [
]

Corollary 8.7. If f, € LTt is a sequence of functions then

fes-xfe

Proof. First off we show that

Jtriem=[n+[r

by choosing non-negative simple function ¢,, and v,, such that ¢,, T f1 and ¢,, T fa.
Then (¢,, +1,,) is simple as well and (¢,, +1,,) T (f1 + f2) so that by the monotone
convergence theorem,

(fr+fo) = lim [ (d, + ) = lim ([ d,+ [,
/ / (fouefon)
:nlingo/¢n+nlingo/¢n:/f1+/f2~

Now to the general case. Let gy = Z fnand g = an, then gn T g and so by

monotone convergence theorem and the additivity Just proved,

;/fn:—;@m;/fn—ﬂnm/;fn
= Jlim gN—/g—g:l/fn-
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The following Lemma is a simple application of this Corollary.

Lemma 8.8 (First Borell-Carnteli- Lemma.). Let (X, M, ) be a measure space,
A, € M, and set

{A, i.0.} = {xeX:xzeA, forinfinitely many n’s}
= N U 4.
N=1n>N
If S 1(Ap) < oo then p({Ay i.0.}) =0.

Proof. (First Proof.) Let us first observe that

{4, i0.} = {:EEX:ilAn(x) —oo}.

Hence if > | 1(A,) < co then

oo

oo>Z,u(An):Z/ 1A”d,u:/ ZlA”d,u
n=1 n=17X X n=1

implies that >~ 14, (z) < oo for p - a.e. z. That is to say u({4, i.0.}) =0.
n=1

(Second Proof.) Of course we may give a strictly measure theoretic proof of this
fact:

w(Ay, i0.) = A}i_r}noou U A,
n>N

< lim > pu(An)
N—)oonZN

and the last limit is zero since Y - | u(A,) < co. m

Example 8.9. Suppose that f € C([0,1]) and f > 0. Let m, = {0 = ap < a1 <
- < apn, = 1} be a sequence of refining partitions such that mesh(wy) — 0 as
k — oo. Let

fe(x) = fO) 1oy + Y min {f(2) : ax < & < ars1} Laya,,] (@)
Tk
then fi T f as k — oo so that by the monotone convergence theorem,
1 1
/ fdm = lim fr dm
0 k— o0 0
= klgIOlome{f(a:) sakp <z < agertm((agsrak))
Tk

/0 1 f(x)dz

where the latter integral is the Riemann integral.
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Example 8.10. Let m be Lebesgue measure on R, then

1 1 1
— dm(x lim 1,1 1(2)—dm(x
[, 5 e (2 (&) ()

xP n—oo [q no
1 o—p+1 !
= lim —dz = lim
n—oo [1 xP n—oo —p + 1 1/n
1 .
oo if p>1

If p=1 we find

1 |
/ — dm(z) = lim —dx = lim ln(x)H/n = o0.
(0’1] xP n—00 7_11 X n—00

Example 8.11. Let {r,}32; be an enumeration of the points in Q N [0, 1] and
define

1
=b5ifx=r,
| — 7y
and
b 1
flz) = LR ——
T; Ve —r
Then
1 1 1
R — dx§4/ flz)dx <4
/0 0z =1 0 )
and hence

fz)dm(z) <4 < o0
[0,1]

which shows that m(f = c0) = 0, i.e. that f < oo for almost every z € [0,1] and
this implies that

1
Z 27— < oo for a.e. w.

= Ve =1l
The following simple lemma will often be useful.

Lemma 8.12 (Chevbyshev’s linequality). Suppose that f > 0 is a measurable
function, then for any € > 0,

(8.3) u({f>e)) < - A fp.

Proof. Since 1>y <1yt f < 1f,

1 1
u(5 2 e = [ tmadn< [ varsan<? [ g
X X € € Jx
||

Proposition 8.13. Suppose that f > 0 is a measurable function. Then fX fdu=0
iff f =0 ae Alsoif f,g > 0 are measurable functions such that f < g a.e. then

[ fdp < [ gdp. In particular if f = g a.e. then [ fdu = [ gdpu.
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Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This implies
that (¢~ " ({y})) = 0 for all y > 0 and hence [, ¢du = 0 and therefore [, fdu = 0.
Conversely, if [ fdu =0, let E, = {f > 1}. Then

1 1
0:/ fz/ —dp = —p(Ey)
71 ’Iln n

which shows that p(E,,) =0 for all n. Since {f > 0} = UE,,, we have
n{f>0h <> n(E
ie. f=0a.e.

For the second assertion let E € M be a set such that u(E°) =0and 1gf < 1gg
everywhere. Because g = 1gg + 1gcg and 1gcg = 0 a.e.,

/gdu:/1Egdu+/1Ecgdu:/1Egdu

and similarly [ fdu = [1gfdp. Since 1gf < 1pg everywhere,
/fdu: /1Efdu < /1Egdu: /gdu-

Corollary 8.14. Suppose that {f,} is a sequence of non-negative functions and f
is a measurable function such that off a set of measure zero, f, 1 f, then

/hT/fwnHm

Proof. Let E C X such that u(X \ E) = 0 and f,1g T flg. Then by the
monotone convergence theorem,

/fn:/fnlET/flE:/faS’rL—?OO.

Lemma 8.15 (Fatou’s Lemma). If f, : X — [0,00] is a sequence of measurable

functions then
/ limf, <lim / In

Proof. Define g, = H;fk fn so that g T liminf,_, . f, as k — oo. Since g < f,

/gkﬁ/fnforalank

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let £ — oo to find

/Hm inf fn:/ hm gk = hm /gkglim inf /fn

for all £ <n we have

and therefore
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8.2.1. Integrals of Complex Valued Functions.

Definition 8.16. A measurable function f : R — [—oc0,00] is integrable if
I+ = flyys0y and f_ = —f 1ir<0) are integrable. We write L' for the space
of integrable functions. For f € L!, let

[ ran= [ siin= [ -

Remark 8.17. Notice that if f is integrable, then
fe<|fI<fe+f-

t/mdu<m-

felL'— / fdpeR
X
is linear. Also if f,g € L' are real valued functions such that f < g, the J fdu <
J gdp.
Proof. If f,g € L' and a,b € R, then
laf +bg| < [allf] +[b]|g] € L*.

so that f is integrable iff

Proposition 8.18. The map

For a € R, say a < 0,
(af)y = —af- and (af)_ = —afy

Jar==a[r+aft=a[r-[r)=at

A similar calculation works for a > 0 and the case a = 0 is trivial so we have shown

that
/af:a/f.

Now set h = f 4+ g. Since h =hy — h_,
hy —h_ =fr—f-+9+—9g-

so that

or
hy+f-+9-=h_+ fr + 9+
Therefore,
/h++/f—+/g—:/h—+/f++/g+
and hence

fim [ o= [ [~ o= [+

Finally if f, — f- = f <g=g4 —g_ then fi +¢g_ < gy + f— which implies that

/ﬁ+/w§/m+/ﬂ
or equivalently that
/f:/ﬁ—/ﬂé/w—/m:/g
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Definition 8.19. A measurable function f: X — C is integrable if fX |f| dp < o0,
again we write f € L'. One shows that [ |f| du < oo iff

[ e sl [ il < .

/fd,u:/Refd,u—l—z’/Imfd,u.

It is routine to show that the integral is still linear on the complex L' (prove!).

For f € L' define

Proposition 8.20. Suppose that f € L', then

'/X fdu' S/leldu-

Proof. Start by writing [, f dyu = Re®. Then

‘ /X fdu‘zR:e‘w /X fdp = /X e~ fdy
:/XRe (e*wf) dp.

Let g := Re (e‘w f) = g+ — g— then combining the previous equation with the
following estimate proves the theorem.

/g:/g+—/g§/g++/g—
X X X X X
:/g++gf:/ lg|dp

X X

- / | Re(e ™ f)|du < / \Fldu
X X

Proposition 8.21. Let f,g € L', then
(1) The set {f # 0} is o-finite, i.e. there exists E,, € M such that u(E,) < 0o

and E, T {f # 0}.
(2) The following are equivalent

(a) fEf:ngforallEEM
(b) Xflffg\ZO

(¢) f=g ae

Proof. 1. The sets E, := {|f| > 1} satisfy the conditions in item 1. since
clearly E,, T {f # 0} and by Chevbyshev’s inequality (8.3),

1
p(Bn) < 1 [ \rldn < .

2. (a) = (c)Notice that

/Ef:/Eg@/Eu—g):o
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for all E € M. Taking E = {Re(f —¢g) > 0} and using 15 Re(f — g) > 0, we learn
that

OZRe/(f—g)d,u: /lERe(f—g) = 1gRe(f —g) =0 ae.
E
This implies that 15 = 0 a.e. which happens iff

pn({Re(f = g) > 0}) = p(E) = 0.
Similar p(Re(f —g) < 0) = 0 so that Re(f — ¢g) = 0 a.e. Similarly, Im(f —g) =0
a.e and hence f —g=0a.e,ie f=ga.e.
(¢c) = (b) is clear and so is (b) = (a) since
<

'/Ef‘/Eg' f—gl=0.

Corollary 8.22. Suppose that (X, M, p) be a measure space and {A,},, C M
is a collection of sets such that (A; N A;) =0 for all i # j, then

oo

1 (Unii4n) = ZN(AH)'
n=1
Proof. Since

(Ui An) = /1u,°;::lAnduand
X

WA = /ZlAndu
Xn=1

n=1

it suffices to show that
(8.4) > la, =lux,a, p-ae.
n=1

Now > 1 14, > 1uee 4, and 307 14, () # 1o 4, () iff £ € A;NA; for some

n —

i # j, that is
{x : Z 1An (x) 76 1U‘,’L°:1A,L (HC)} = Ui<in n Aj
n=1

and the later set has measure 0 being the countable union of sets of measure zero.
This proves Eq. (8.4) and hence the corollary. m

Definition 8.23. Let (X, M, 1) be a measure space and L'(n) = L'(X, M, p)
denote the set of L' functions modulo the equivalence relation f ~ g iff f = g a.e.
We make this into a normed space using the norm

15 =gl = [ 1 = aldn
and into a metric space using p(f,9) = |[f — 9l| .. -

Remark 8.24. More generally we may define LP(u) = LP(X, M, u) for p € [1,00)
as the set of measurable functions f such that

Jurpan < o
X

modulo the equivalence relation f ~ g iff f = g a.e.
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We make LP(u) = LP(X, M, ) into a normed space using the norm

1/p
1l = ( / fpdu> .

We will see next quarter that [|-||,, has the following properties:

IAflle =[Sl and
(8.5) 1f+allee < Wfllee + gl e

for all f,g € LP. In particular p,(f,g) = [|f — g

L 1S a metric on LP.

Theorem 8.25 (Dominated Convergence Theorem). Suppose fp, — f a.e. |fn| <
g€ L'. Then f € L' and

/fdu: lim / frdp.
X h—oo [x

Proof. Notice that |f| = lim|f,| < g a.e. so that f € L'. By considering the
real and imaginary parts of f separately, it suffices to prove the theorem in the case
where f is real. By Fatou’s Lemma,

/ (9£ f)du :/ liminf (g + fp,) dp < liminf/ (9£ fn)du
X X X

:/ gdp + liminf (:I:/ fndu>.
X X

Since liminf(—a,) = — limsup a,,, we have shown,
liminf [, f,du
dp + dp < dp + . X
Joee [z [om { S b

1imsup/ fnd,ug/ fdu < liminf/ frndp.
X X X

This shows that lim [, f,du exists and is equal to [, fdu. m

and therefore

Corollary 8.26 (Differentiation Under the Integral). Suppose that J C R is an
open interval and f: J x X — C is a function such that
(1) f(t,-) € L* for allt € J,
(2) %(t,x) exists for all (t,x)
(3) There is a function g € L such that
Then

%(t,x)‘ < g(z) € L',

5 [ feadute) = [ G adute).

Proof. The proof is the same as that case for sums that you did in one of your
homework problems. m

Exercise 8.27. Show
lim [ (1-2)"dm(z) = 1.

n— 00 0 n
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Solution. Let f,(v) = (1 — £)"1jg,(2) and notice that lim,, . f,.(z) = e™7.
We will now show

0< fno(z) <e *forall z>0.
It suffices to consider x € [0,n]. Let g(x) = e” f,,(x), then for = € (0, n),

d 1 1 1
%lng(x)zlJrn(lf%)(*E):l*@SO

which shows that In g(z) and hence g(z) is decreasing on [0, n]. Therefore g(z) <
g(0) =1, i.e

0< fu(z) <e™™.
Now by the Monotone convergence theorem,

oo M
—x o . —x o . M —
/0 e ®dm(z) = Mhinoo ; e “dm(z) = Mhinoo(l e ) =1< o0,

so that e~ is an integrable function on [0, c0). Therefore we may now apply the
dominated convergence theorem to learn

Tim_ (p%)ndm(x) = dim [ fu(2)dm(a)
0 0
= / lim f,(x)dm(z) :/ e “dm(z) = 1.
0 n—oo 0

[

8.3. Comparison to the Riemann Integral. In this section, suppose —oco <
a<b<ooand f:[a,b] — R be a bounded function. To each partition

(8.6) P={a=ty<ty1 <---<t, =10}

of [a,b] let

Spf =2 Mj(t; —t; 1)
spf = myt; —t; 1)
where
M; =sup{f(z):t; <z <tj_1}
mj =inf{f(x): t; <z <t;j_1}

and define the upper and lower Riemann integrals by

b
/ f(z)dx = i%f Spf and

[ f@as =sup se
P

b

respectively.
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Fact 8.28. Recall the following fact from the theory of Riemann integrals. There
exists a refining sequence of partitions Py (i.e. the Pj ’s are increasing) such that

e
Spk,f\_,/fask:—>ooand
b
st_fT/fask:—>oo.

Definition 8.29. The function f is Riemann integrable iff ['f = [°f and

which case the Riemann integral f: f is defined to be the common value:

lb f(z)dx = Zf(x)dx = /Lbf(ac)dx.

For a partition P as in Eq. (8.6) let

GP = Z]\/[jl(tj—htj] and ap = ijl(tjfl,tj]-
1 1

If P, is a sequence of refining partitions as in Fact 8.28, then Gp, is a decreasing
sequence, gp, is an increasing sequence and g, < f < Gp, for all k. Define

(8.7) G= lengo Gp, and g = klggo gp, -

and notice that g < f < G. By the dominated convergence theorem,
b
/ gdm = lim gp, = lim sp, f :/ f(z)dx
[a,b] k=00 Jlab] koo Ja_

and

ey
Gdm = lim Gp, = lim Sp, f :/ f(z)dz.
[@,b] k—oo [a,b] k—oo a
Therefore f is Riemann integrable iff f[a nG = f[a 59 ie. iff f[a . G-g=0.
Since G > f > g this happens iff G = g a.e. Hence we have proved the following
theorem.

Theorem 8.30. A bounded function f : [a,b] — R is Riemann integrable iff the
Borel measurable functions g, G : [a,b] — R defined in Eq. (8.7) satisfy g(xz) = G(z)
for m — a.e. x[a,b]. Moreover if f is Riemann integrable, then

b
/ f(z)dx :/ gdm = Gdm.
a [‘lyb] [a,b]

The function f need not be Borel measurable but it is necessarily Lebesque measur-
able, i.e. f is L/B — measurable where L is the Lebesgue o — algebra and B is the
Borel o — algebra on [a,b]. If we let m denote the completion of m, then we may

also write
b
/ f(x)dac:/ fdm.
a la,b]
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9. MobDES oF CONVERGENCE

As usual let (X, M, pu) be a fixed measure space and let {f,} be a sequence of
measurable functions on X. Also let f: X — C be a measurable function.

Definition 9.1. We have the following notions of convergence.
(1) f,, — f a.e. if there is a set E € M such that p(E°) = 0 and
(2) fn — fin g — measure if limy,—oo p(|frn — f| > €) =0 for all € > 0. We will
abbreviate this by saying f,, — f in L° or by f, & f
(3) fn— fin LPiff f € LP and f,, € L? for all n, and lim,, .o [ | frn— f|Pdp = 0.

Definition 9.2. We have the following notions of Cauchy sequences.

(1) {fn}is a.e. Cauchy if there is a set E € M such that 4(E°) = 0and{1g f,}
is a pointwise Cauchy sequences

(2) {fn} is Cauchy in p — measure if lim,, p—oo (| fn — fin] > €) = 0 for all
e>0.

(3) {fn}is Cauchy in LP if lim,, oo [ |fro — frn|Pdp = 0.

oo
Lemma 9.3. Suppose a,, € R or C and |an4+1 —an| < €, and Y €, < co. Then

n=1

o0
lim a, =a € R or C ezists and |a — an| < 6p = Y €.

n—00 k=n

Proof. Let m > n then

m—1 m—1 00
(9-1) | —an| =] 3 (a1 —ar)| < 3 lappr —ap[ < 37 € =6n
k=n k=nj k=n

S0 |am — an| < Omin(m,n) — 0 @as ,m,n — o0, i.e. {a,} is Cauchy. Let m — oo in
(9.1) to find |a — a,| < 6,. m

Theorem 9.4. Suppose {f,} is L°-Cauchy. Then there exists a subsequence g; =

fn; of {fn} such thatlimg; = f ewists a.e. and f, — f as n — oo. Moreover if g

is a measurable function such that f, 5 g asn — oo, then f =g a.e.

Proof. Let €, > 0 such that > €, < 0o (€, = 27" would do) and set 6,, =

n=1
> €k Choose g; = fp, such that (n; T) and
k=n

p({lgj+1 — g5 > €}) < €.

Let Ej = {lgj41 — 9| > ¢}, Fn = U Ej and

j=N
E=()Fv=() | E ={Eio}.
N=1 N=1j=N

Then p(E) = 0 since

w(E) < Zu(Ej)g ZejzéNHOasNﬂoo.
j=N j=N
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FIGURE 7. Modes of convergence examples.

For @ ¢ Fn, |gj+1(x) — gj(z

)

| < ¢ forall j > N and by Lemma 9.3, f(z) =

lim g;(x) exists and | f(x) —g;(x)| <, for all j > N. Therefore, lim g;(z) = f(x)
j—o0 Jj=o
exists for all ¢ E. Moreover, {z : |f(z) — fj(z)] > 6;} C Fj for all j > N and

hence

(| f — g5 > 65) < u(Fj) <65 — 0as j — oo.

Therefore g; £ fas j — .
Since

Ufn = fI> et =11f =95 +95 = fal > ¢}
CAIf =9l > /2y Uklgs — ful > €/2},
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ptlfn = fI> €}) < u(lf — 950 > €/2}) + ullgs — ful > €/2)

and
p(llfn = f1 > €}) < lim sup pi(lg; — ful > €/2) = 0 as n — oo.

Finally we show that the limiting function is unique up to measure zero. If also

o .
fn — g as n — oo, then arguing as above

w(lf =gl > €) <p(lf = ful > €/2}) + ullg = ful > €/2) = 0 as n — oo
That is to say u(|f —g| > €) =0 for all e > 0 and hence

u1f =0l >0) = iz {I£ —ol > T < X ulf —al > 1) 0.
n=1

ie. f=gae m

Theorem 9.5 (Completeness of LP(u)). Suppose that {f,} C LP(u) is Cauchy,

then there exists f € LP(u) such that fn N f. Moreover f is unique modulo the
equivalence relation of being equal off sets of measure zero.

Proof. Write
1/p
|f||—</ flpdu> .
X

By Chebyschev’s inequality (8.3),
w(lfo—fml =€) = w(fu— fm‘p > €?)
1 1
= [ Vo= fl? i = 1 = P = 05 o
P Jx €P

for all € > 0. This shows that {f,,} is L%-Cauchy (i.e. Cauchy in measure) so there
exists {g;} C {fn} such that g; — f a.e. Now by Fatou’s Lemma,

oy = 71 = [ Jim intlg; — guP? < Jim it [ Io; ~ aulPd
—00 k—oo

= lim inf ||g; — gx||” — 0 as j — oo.
k—o0

IN

In particular, ||f]| < |lg; — fIl + |lg;|| < oo so the f € L and g; , f- The proof
is finished because,

[frn = £ < N fn = g5l + llgs = fll = 0 as jin — oo
]

Theorem 9.6 (Egoroft’s Theorem). Suppose p(X) < oo and f, — f a.e. Then
for all e > 0 there exists E C X such that u(E) < € and f, — f uniformly on E°.

In particular f, > f as n — .

Proof. Let f, — f a.e. Then p({|f, — f| > £ i.0. n}) =0 for all k > 0, i.e.

(A Uth-r1>31) -0

N=1n>N

1
Jim g | ({1 f1> 23] =0

n>N
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Choose and increasing sequence {Ny}ro; such that p(E})) < e27% where

1
E) = U {1 fn — f] >E}
TLZNk-
Thus E := UE}, satisfies u(EF) < eandif x € E, |f, — f] < % for all n > N and all
k,. i.e. f, — f uniformly on E¢. m

10. DENSITY THEOREMS

Let (X, M, n) be a measure space and let Sy denote the collection of simple
functions ¢ with additional property that p(¢ = z) < oo for all z # 0. Notice that
for ¢ € Sy and p € [1,00), that |p|" = 2.0 |2|P1{p=-} and hence

[0 dn =3 Pt = 2) < .
2#0
That is Sy C LP(u).

Lemma 10.1 (Simple Functions are Dense). Let simple functions Sy form a dense
subspace of LP(u) for all 1 < p < oo.

Proof. Since f = u + v with w,v € LP(u) and for f real valued f = f, — f_
with fi € LP we may assume without loss of generality that f € LP N L*. Choose
simple functions ¢,, T f as in Theorem 7.32. Since

|f = bal?” < (1 +1en)” <27 |fP € LT

we may apply the dominated convergence theorem to find

lim /|f—¢n|pd,u:/ lim |f — ¢, [Pdu = 0.
]

Definition 10.2. Let (X,d) be a metric space. We say that a set A C X is
bounded provided that A C B(z, R) for some € X and R € (0,00). (By the
triangle inequality A is bounded iff for all x € X, there exists R < oo such that
A C B(z,R).) Also let BC,(X) denote the set of bounded continuous functions
f: X — C such that f is identically zero off a bounded subset of X.

Theorem 10.3 (Continuous Functions are Dense). Let (X, d) be a metric space,
Ta be the topology on X generated by d and Bx = o(74) be the Borel o — algebra.

(1) Suppose p: Bx — [0,00] is a measure such that p is finite on bounded sets,
then BCy(X) C LP(p) is a dense subspace.

(2) Suppose that there is a sequence of compact set K, C X such that K2 C
K, C K3y foralln, X = Us2 Ky, and u(kK,) < oo for all n, where for
E C X, E° =Uyer,vciV is the interior of E. Then C.(X) (the collection
of continuous functions with compact support) is dense in LP(u).

Proof. Part 1. Since Sy is dense in LP(yu) it suffices to shows that any ¢ € S
may be well approximated by f € BCy(X). Moreover, to prove this it suffices to
show that for A € M with p(A) < oo that 14 may be well approximated by an
f € BCy(X). Let 9 € X and n € N and set A,, := AN B(zg,n) so that A, T A as
n — 00. Therefore

/\1A — 14,

Pdu=u(A\ A,) — 0 as n — cc.
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This shows that we may further assume that A is bounded, i.e. A C B(zg, N) for
some large N.

By Exercises 4.21 and 4.22, for any € > 0 there exists F' C A C V where F is
closed, V is open and u(V \ F) < e. Since F C A, F is automatically bounded.
By replacing V' by the bounded open set V' N B(xzg, N) if necessary, we may also
assume that V' is bounded.

Define

ch (117)
(101 0= rm e
where dp(z) = inf{d(x,y) : y € F}. By Lemma 2.37, dp and dy. are continuous
functions on X. Since F' and V¢ are closed, dp(z) > 0if v ¢ F and dy<(z) > 0
if 2 € V. Since FNV® = 0, dp(x) + dye(z) > 0 for all 2 and (dp 4 dy<) ' is
continuous as well. Therefore, f : X — [0, 1] is continuous and f(z) =1 for x € F
and f(z) =0if z ¢ V and since V' is bounded we have shown that f € BCy(X).

Since [14 — f| < L\ p,

(10.2) Jia-srdns [1npde=uv\py <

or equivalently
[1a = fIl < €7,
Since € > 0 is arbitrary, we have shown that 14 can be approximated in L ()
arbitrarily well by a continuous function f € BCy(X).
Part 2. The proof of the second assertion is similar. Again it suffices to show that
for A € M with u(A) < oo that 14 may be well approximated by an f € C.(X).
Now let A,, := AN Kg so that A, T A as n — oco. Therefore

/\1A — 14,

This shows that we may further assume that A C K3, for some N.

By Exercises 4.21 and 4.22, for any € > 0 there exists F C A C V where F is
closed, V is open and pu(V'\ F') < €. Since F' is a closed subset of K a compact set,
F' is also compact. By replacing V' by the open set V N K§; if necessary, we may
also assume that V' C Ky as well. Again define f to be the continuous function
in Eq. (10.1) and as before Eq. (10.2) still holds. Moreover f has support in the
compact set Ky which shows that f € C.(X). m

Pdu=u(A\ A,) — 0 as n — cc.

Corollary 10.4. Suppose V. C R"™ is an open set, By is the Borel o — algebra on
V and p is a measure on (V,By) which is finite on compact sets. Then C.(V) is
dense in LP(u) for all p € [1,00).

Proof. It suffices to shows that there exists compact subset K,, C V such
K, C K, CK; 1V asn — oo. This is essentially done in the proof of Theorem
12.2 below, also see Figure 8 below. m

Later on we will show that the space C°(R) of infinitely differentiable functions
with compact support is also dense in LP(m) for all p € [1,00). A key point in
proving this fact is the following lemma.

Lemma 10.5. Suppose f € L*(dm) and ¢ € C(R) then

h(z) = f * ) = / )bl — y)dy
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is a smooth function, i.e. h(x) is infinitely differentiable.

Proof. Let F(z,y) := f(y)p(x —y), then if C' < oo is a bound on the derivative

of ¢,
)| = [0 @~ )| < ClFw)] € L),

Therefore by Corollary 8.26,

(e g)(a) = / Fo)é(x — y)dy = (f % &) (@).

dx
Working inductively one may now shows that (f % ¢)(z) = f % ¢™ (z). =

Theorem 10.6. Suppose that M is a 0 — algebra on X and A C M is an algebra
such that

(1) o(A) =M
(2) A is countable
(3) w is o-finite on A.
Then LP(X, M, i) is separable for all 1 < p < co. Moreover
D= {Zaja:AJ ta; € Q+1iQ, Aj € A and p(A;j) < oo}
18 a countable dense subspace.
Proof. Given € > 0, by Corollary 4.15, for all E € M such that u(E) < oo,
there exists A € A such thatpu(EAA) < € and therefore
(10.3) /\1E —14|Pdp = p(EAA) < e.
This equation shows that any simple function in Sy may be approximated arbitrary
well by an element from D and hence D is also dense in LP(y). m

Corollary 10.7 (Riemann Lebesgue Lemma). Suppose that f € L*(R,m), then

lim Af(x)ei)‘mdm(x):&

A—to0

Proof. Let A denote the algebra on R generated by the half open intervals, i.e.
A consists of sets of the form

H (ak, bk] NR
k=1

where ay, b, € R. By Theorem 10.6, given € > 0 there exists ¢ = Sy k1 (ay,bp)
with ag, b € R such that

/ |f — pldm < e.
R
Notice that

/Rqﬁ(x)ei)‘“"dm(x) = /RZckl(ak,bk](x)ei)‘mdm(x)

k=1
n b n
= E ck/ eZ)‘zdm(x) = E ck)flel)‘z\[;’;_
k=1 Ak k=1

n
At ch (e0r — ) — 0 as || — oc.
k=1
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Combining these two equations with

eam(@)| < | [ (1) = (@) P dm(a ) dm(z)
< 1= dlam+ | [ s> dmo
< e+ x)e ™ dm(x)
we learn that
lim sup z)e™dm(z)| < e+ lim sup x)e ™ dm(z)| =
|A] =00 | A]—o0

Since € > 0 is arbitrary, we have proven the lemma. =

11. FUBINI’S THEOREM

This next example gives a “real world” example of the fact that it is not always
possible to interchange order of integration.

Example 11.1. Consider

1 oo 1 —y —2zy o
/ dy/ dax(e™™Y —2e72) = / dy {e _9f }
0 1 0 —y —2y
1 1—e Y
= / dy eV < ° ) € (0, 00).
0 Y

Note well that (17—571> has not singularity at 0. On the other hand
o0 1 o0 —2,1::1/
/ dx/ dy(e™™ — 2e2%) / dx { _9f }
1 0 1 —2x
= / dx { —° }
1

:—/ e’ [1_6 ]dxe(—oo,O).
1 X
Moral [dx [dy f(x,y) # [dy [ dz f(z,y) is not always true.

11.1. Product Measure. Let (X, M, u) and (Y, N, v) be measure spaces.

Notation 11.2. Suppose that f: X — C and g : Y — C are functions, let f ® g
denote the function on X x Y given by

fwg(z,y) = f(z)g(y).

Notice that if f, g are measurable, then f ® g is (M ® N, B¢) — measurable. To
prove this, first suppose that f = 14 and g = 15 with A € M and B € N. Then
f®g=14®1p = 1445 which is measurable since A x B €¢ M ® N. Now if f and
g are simple functions then

fwg= Z W2l fmw)x {g=2}

w,zeC

1

y=0
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which is again measurable. For general f and ¢ choose simple function ¢,, and v,,
converging to f and g respectively, then since f ® g = lim,_ o ¢,, ® 9,, we learn
that f ® g is measurable as well.

Let £ C P(X xY) be given by

E=MxN={AxB:Aec M,BeN}

and recall from Exercise 3.11 that £ is an elementary family. Hence the algebra
A = A(E) generated by & consists of sets which may be written as disjoint unions
of sets from &.

Definition 11.3. Define 7% : £ — [0, 00| by
(A x B) = p(A)v(B)
for A€ M and B € N. Notice that

AleB(x,y)dl/(y) = /YlA(x)lB(y)dV(y)
= 1la(x)v(B)

and hence
(11.1) /X </Y 1A><B(x7y)dl/(y)> dp(x) = p(A)v(B) = n°(A x B)

and similarly,

(112) i ( / 1AxB<x,y>du<x>> dv(y) = 7(A x B).

Theorem 11.4. Suppose (X, M, 1) and (Y,N,v) are o-finite measure space, then
there exists a unique measure m on M QN such that (A x B) = pu(A)v(B) for all
A e M and B € N. We will denote this “product” measure by pu x v.

Proof. 1. 70 is o — finite on &. Indeed, if X,, € M and Y,, € A/ are such that
X, X and Y, 1Y and pu(X,) < oo and v(Y,,) < oo for all n, then X,, x Y, € &,
X, XY, T X xY and 7°(X,, x Yy,) = u(X,,)v(Yy,) < oo for all n.

2. The function 7° is ¢ — additive on & = M x N. To prove this suppose that
Ee M®N and E, = Aj, x By, € € are such that E = [, (Ax X By), then

1g = Z 14, ®1p,
k=1

so that
y — 1g(z,y) ZlAA z)1p, (y

is measurable for all z € X and

[ i = [ S L ()15, (0 i) =3 L0 [t

k=1

Z La, (2)v(Br)
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The latter expression is measurable and

[ () retevae) aue = [ S La, (@)v(Bu)du(z)

(11.3) = iu(Ak)l/(Bk) = iWO(Ak x By).
k=1 k=1

Similarly one shows that

(11.4) /Y(/XlE(:zz y)du(x ) Zw (Ag x By).

Taking E = A x B € £, Egs. (11.4) and (11.2) shows that

AXB ZTF AkXBk

that is to say 7¥ is o — additive on &.

By items 1. and 2. just proved and Theorem 5.7, there exists a unique measure
Ton MRN =c(A) =0(€) such 71(Ax B) = p(A)v(B) for all A € M and B € N.
[

The proof gives a bit more than stated. Namely

w = [ / 1E<x,y>du<y>] e

(11.5) = [ ([ 1ot o)

for all E € A,. This follows by writing E = [[;~ (A x By) with Ay x By, € £ and
using the identity,

ﬂ(E):i AkXBk Zﬂ' AkXBk
k=1

along with Egs. (11.3) and (11.4).

Theorem 11.5 (Tonelli’s Theorem). Suppose (X, M, pn) and (Y,N,v) are o-finite
measure spaces and ™ = p X v be the product measure on M @ N. If f € LT (X x
Y, MN), then f(-,y) € LT (X, M) forally €Y, f(z,-) € LY(Y,N) forallz € X,

x— g(x /fxydy()€L+(X/\/l)
y— h(y /facydu()ELJr(Y./\/)

and

(11.6) | rin= [ ante) [ avts)
(11.7) = [ avw [ dpt@)s)



MATH 240A LECTURE NOTES: MEASURE THEORY 83

Proof. By linearity and the monotone convergence limiting arguments it suffices
to prove the assertion in the theorem when f = 15 with E € M ®N . First assume
pu(X) < oo and v(Y) < co. Let C be the collection of all E € M « N such that
theorem holds when f = 1g. The collection C satisfies:

(1) By the proof of Theorem 11.4 and Eq. (11.5) A(£) CC.
(2) C is a monotone class. (We will check this shortly.)

By the monotone class lemma we may conclude that C = o(A(£)) = M N
which proves the theorem in the finite measure case.

To check item 2., suppose that E,, € C and E,, T E. Then then 15, T 1g as
n — oo so that 1g, (z,-) T 1g(z,-) so that 1g(z,-) € LT(Y,N) for all z € X and
by the monotone convergence theorem

g, (z,y)dv(y) T [ 1p(z,y)dv(y)
/ /

Y
so that z — [1g(z,y)dv(y) € LT(X, M). Again by the monotone convergence
Y

theorem we may take limits of the identity

/1En dm = /du(x)/dV(y)lEn(x,y)

to prove Eq. (11.6). One shows in the same way that the analogous statements
holds for the opposite order of integration, i.e. F € C.

If E, € C and E,, | E, we again shows that £ € C by the same techniques
using the dominated convergence theorem instead of the monotone convergence
theorem. Therefore C is a monotone class and hence by the monotone class theorem
C = M ®N and Tonelli’s theorem is proved when p and v are finite measures.

For the o — finite case, choose X,, € M, Y, € N such that X,, T X, Y, 1Y,
w(X,) < oo and v(Y,) < oo for all n. Then define p,(4) = (X, N A) and
vn(B) =v(Y, N B) for all A€ M and B € N and let m,, = p,, X v,,. Since

(A X B) = p,,(A)v,(B) = w(X,, N A)v(Y, NB) =7 ((X, xY,)N(A X B))

for all A, B € M x N. Since ¢ — finite measure on M ® N are determined by their
values on M x N, we see that

Tn(E) =71 (X, xY,)NE) forall E€ MoN.

/ gdv, = / gdv
Y n

for all measurable functions g € L™ (Y, ). This is proved first for simple functions
and then for general functions by passing to the limit.
With this notation, we may apply the finite version of the theorem to conclude

z > galz) = / F (e y)dvn(y) = / y, (1) (x,y)du(y) € L* (X, M),

Let us also observe that

y = h(y) = | f(z.y)du,(x) = [ 1x,(2)f(z,y)du(z) € LT (Y, N)
[ o]
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and

[
~ [ @ [ i) = [ o) [ avlo) () )
= [ ) [ dma@rse) = [ ) [ au@) (x0) 0)

Passing to the limit in these identities with the aid of the monotone convergence
theorem concludes the proof of the theorem. m

Theorem 11.6 (Fubini’s Theorem). Suppose (X, M, u) and (Y,N,v) are o-finite
measure spaces and ™ = pu X v be the product measm’e on M@N. If f € L} (x) then
for w a.e. x, f(x,) € L*(v) and for v a.e. y, f(-,y) € L (u). The functions

/fxydv( ) and h(y /f:z:ydu
are in LY (w) and L' (v) respectively and Eq. (11.7) holds.
Proof. If f € LY(X x Y)N L* then by Eq. (11.6),

/x </y f(x’y)d’/(y)> dp(z) < o0

so [y f(z,y)dv(y) < oo for pa.e. z,ie. for pae. z, f(z,-) € L*(v). Similarly for
vae.y f(-,y) € L'(n). Let f be a real valued function in f € L*(X x Y) and let
f = f+ — f—. Apply the results just proved to fi to conclude, fi(z, ) € L*(v) for
w a.e. z and that

/Y fa (o w)du(y) € L ().

Therefore for p a.e. .x

7

f(aja) = f+($7') - f,(:l?,') € Ll(y)

aH/fa:ydy /f+ Ndv(y /f

is a pu — almost everywhere defined function such that

/ fop)dv(y) € LM (p).

[ tetemiatosn) = [ ([ fama)ine)
[ raexn) = [ edtexo) = [ g
() f(frs)o
:/du </f+dz/—/fd1/>
— [an fanite =)= [an [avr,

and

Because
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The proof that
[rawsw = [avw [au@ )
is analogous. m
Notation 11.7. Given E C X xY and z € X, let
+E:={yeY:(x,y) € E}.
Similarly if y € Y is given let
E,:={zeX:(z,y) € E}.

If f: X xY — C is a function let f, = f(z,-) and f¥ := f(-,y) so that f,: Y — C
and fY: X — C.

Theorem 11.8. Suppose (X, M, u), (Y,N,v) are complete o-finite measure space.
Let (X XY, L, \) be the completion of (X x Y, M N, uxv). If f is L-measurable
and (a) f >0 or (b) f € LY()\) then f, is N-measurable for p a.e. x and fY is
M-measurable for v a.e. y and in case (b) f, € L'(v) and f¥ € L'(u) for u a.e.
x and v a.e. y respectively. Moreover,

.Z‘—>/fmdl/ andyﬁ/fydu

are measurable and

fre (1) = ([ )

Proof. If E € M®N is a u x v null set ((u x v)(E) =0), then

0= (ux )(E) = [ vaE)uta) = [ p(B)av(y).
This shows that

u({ V(. E) # 0F) = 0 and w({y : u(E,) # 0}) =0,
ie. v(;E) =0 for pa.e. xand u(E,) =0 for v a.e. y.

If h is £ measurable and h = 0 for \- a.e., then there exists £ € M@ N >
{(z,y) : h(z,y) # 0} C E and (p x v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and
(u x v)(E) =0. Since

{he #0} = {ye€Y :h(z,y) #0} C ,E and

{hy #0} = {xeX:h(z,y)#0} CE,
we learn that for p a.e. x and v ae. y that {h, 20} € M, {hy #0} € N,
v({hy #0}) =0 and a.e. and u({hy, # 0}) = 0. This implies

for v a.e. v, /h(x,y)dv(y) exists and equals 0

and

for p a.e. z, /h(x,y)du(y) exists and equals 0.

o= o= () = (f )

Therefore
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For general f € L'(\), we may choose g € L'(M ® N, u x v) such that f(z,y) =
g(x,y) for A— a.e. (x,y). Define h = f —g. Then h = 0, A— a.e. Hence by what
we have just proved and Theorem 11.5 f = g + h has the following properties:

(1) For pae. z,y — f(z,y) = g(z,y) + h(z,y) is in L}(v) and

/f(w,y)dV(y) = /g(w,y)dV(y)-

(2) For v ae. y, x — f(z,y) = g(z,y) + h(z,y) is in L'(n) and

[ t@aduta) = [ ate.anto).

From these assertions and Theorem 11.5, it follows that

[an@ [avwse = [ [awoe.y

- / dv(y) / dv(z)g(z,y)

/ o, 9)d(u x v)(z,)
= /f(x, y)d\(z,y)

and similarly we shows

[avto) [ au@rste.n = [ iz,

[
Exercise 11.9. For M, A € (0, 00), show

M .
sinx
/ e Ady — 7/2
0

(11.8) -

< arctan(A) + 6(M)

where limp; o, 6(M) = 0. As special cases of this expression we learn that

M .
(11.9) lim PR g = /2
M—o0 0 x
and
(11.10) lim [ ol Ay = /2.

A—0 [y T

Solution. Define

M :
f]\,{()\) = / e A Slnxdx
0

T

and notice that
M ef)\:(;
i) = —/ e Msinzdr = ——— (cosz + Asinz) [£=)!
0 A +1

e MXcos M+ e MAgin M — 1
P | '
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By the fundamental theorem of calculus,

A
fu®) = £ = [ Fuay
0
_ /A e_M)‘cosMJr)\e_M)‘sianld)\
N 0 22 +1
(11.11) = €(M,A) — arctan(A)
where

A M —MA
e(M,A):/ e cos M + Xe sde)\'
0

A 4+1
Using [sinz| < |z|4, we have the estimates:

A _—MA —MA
M) < / e COSM2—|— e SmM'd)\
0 A +1

A
< / 1A
0

M4
o Al
< / e M2 L 4N 0 as M — 0o (DCT)
0 A +1
and M M MA
. .
| (D) S/ e e_deS/ el = —
0 0 A

Using these estimates, we may let M — oo in Eq. (11.11) to find
lim sup |far(0) —arctan(A)| < 1/A

M—o0

and then letting A — oo we find
i u(0) =2
Hence 61(M) := |7/2 — far(0)] — 0 as M — oo and 63(M) := supy>q |e(M, A)| —
0 as M — oo. Therefore by Eq. (11.11),
|[fiu(A) —7/2] = |e(M,A)+ fm(0) — /2 — arctan(A)]

< 69(M) + 61(M) + arctan(A)

= (M) + arctan(A)
where §(M) = 61(M) + 62(M) — 0 as M — oo, which proves Eq. (11.8). =

12. LEBESGUE MEASURE ON R?

In this section let

d times
—_—~—
mii=mx---xm
d
and (Lgq,m) := Bra = ,m®) denote the completion of (B]Rd, md) . The measure A

is called Lebesgue measure on the Lebesgue measurable set L.

4By the fundamental theorem of calculus,

x x x
/ cos ydy / Icosy\dy‘ < ‘/ ldy‘ = [=|.|
0 0 0

<

[sinz| =
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Theorem 12.1. Lebesgue measure \ is translation invariant.
Proof. Let A =J; X --- x Jy with J; € Bg and « € R%. Then
v+ A= (r1+J1) X (2 + J2) X - X (g + Ja)
and therefore by translation invariance of m on Br we find that
m(x+ A) =m(xy +J1)...m(zqg + Jg) = m(J1) ... m(Jy) = mi(A)

and hence m¢(x + A) = m?(A) for all A € By« by Theorem 4.7. From this fact we
see that the measure m?(z + -) and m?(-) have the same null sets. Using this it is
easily seen that m(z + A) =m(A) forall A€ L, m

In the remainder of this section, let T : Q — T(Q) C, R? be a C* — diffeomor-
phism.

Theorem 12.2 (Change of Variables Theorem). Let Q C, R? be an open set and
T:Q—T(Q) Cp R be a C' — diffeomorphism. Then for any Borel measurable
f:T(Q) — [0, 00] we have
(12.1) /f oT|detT’|dm = / f dm.

Q T(Q)

Proof. We will carry out the proof in a number of steps.
Step 1. Suppose that

QL 1) 3 5(T)
are two C! — diffeomorphisms and Theorem 12.2 holds for T and separately, then
it holds for S o T Indeed

/fOSOT\det(SOT)/\dm = /fOSOT\det(S’OT)T’\dm
) o)

= /(|detS’\foS)oT|T’\dm
Q

/ |det S’| f o Sdm = / fdm.
() S(T(2))

Step 2. Eq. (12.1) holds when © = R™ and T is linear and invertible. This
will be proved in Theorem 12.3 below. The proof is a simple application of Fu-
bini’s theorem, the scaling and translation invariance properties of one dimensional
Lebesgue measure and the fact that by row reduction arguments 7' may be written
as a product of “elementary” transformations. It is here that we use the result in
Step 1.

Step 3. For all A € Bg,

(12.2) m(T(A)) < /A (et T"| dim.

This will be proved in Theorem 12.6 below.
Step 4. Step 3. implies the general case. To see this, let B € By and
A=T7YB) in Eq. (12.2) to learn that

/1Adm:m(A)§/ \detT'|dm:/1AoT\detT’\dm.
Q T-1(4) Q
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Using linearity we may conclude from this equation that

(12.3) fdm < / foT|detT'|dm
() Q

for all non-negative simple functions f on T'(€2). Using Theorem 7.32 and the mono-
tone convergence theorem one easily extends this equation to hold for all nonnega-
tive measurable functions f on T'(€2).

Applying Eq. (12.3) with Q replaced by T(Q2), T replaced by T—! and f by
g:Q — [0, 00], we see that

(12.4) / gdm = / gdm < / goT ! )det (T_l)/‘ dm
Q T=1(T(2) (%)

for all Borel measurable g. Taking g = (f o T') |det T”| in this equation shows,

/foT\detT’\dm < / fldetT' o T |det (T-1) | dm
Q ()

/ fdm
()

wherein the last equality we used the fact that T o T-! = 4id so that
(T" o T=1) (T")' = id and hence det T" o T~ det (1) = 1.

Combining Egs. (12.3) and (12.5) proves Eq. (12.1). =

We now fill in the missing details in the proof.

(12.5)

Theorem 12.3. Suppose T € GL(d,R).
(1) f:RY— R is (Lyq, B) measurable then so is foT if f >0 on f € L* then
(12.6) /f(y)dy | det T| /f o T(x)da

(2) fE€ Ly and E C Q then T(E) € Lg and m(T(E)) = |detT| m(E).

Proof. Since f is Borel measurable and 7 : R — R? is continuous and hence
Borel measurable, f oT is also Borel measurable. We now break the proof of Eq.
(12.6) into a number of cases. In each case we make use Tonelli’s theorem and the
basic properties of one dimensional Lebesgue measure.

(1) Suppose that i < k and
T(x1,22...,%4) = (T1, o, T 1y Thy Tig 1 -+« Th1, Tiy Th 1, - - - Td)

then by Tonelli’s theorem,
/foT(ml,...,md):/f(acl,...,xk,...xi,...xd)dxl...da:d
:/f(xl,...,xd)da:l...dxd

which prove Eq. (12.6) in this case since |det T'| = 1.
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) Suppose that ¢ € R and T'(z1,...2k,...,2q) = (T1,...,Tg, ... Tq), then

/foT xl,...,xd)dm:/f(acl,...,cxk,...xi,...xd)dacl...da:k...da:d
= |c|” 1/f T1,...,2q)dxy ... dxg

— | det 7| /f dm
which again proves Eq. (12.6) in this case.
(3) Suppose that
T(x1,22...,2q) = (T1, .., i + CTE, ... Thy . .. Tq)-
Then

/foT(xl,...,xd)dm:/f(:z:l,...,xi+cxk,...xk,...xd)dxl...dxi...dxk...dxd

/f T1,...,2Tq)dry ... dxg

where in the second inequality we did the z; integral first and used trans-
lation invariance of Lebesgue measure. Again this proves Eq. (12.6) in this
case since det(T") = 1.

Since every invertible matrix is a product of matrices of the type occurring in
steps 1. — 3. above, it follows that Eq. (12.6) holds in general. For the second
assertion, let E € Bra and take f = 1 in Eq. (12.6) to learn that

| det T|m(T~(E)) = \detT\/lel(E)dm: |detT|/1Eonm: /1Edm:m(E).

Replacing T by T~! in this equation shows that

m(T(E)) = |det T| m(E)
for all E € Bga. In particular this shows that m o1 and m have the same null sets
and therefore the completion of Bra is L4 for both measures. It is also clear that

m(T(E)) = |det T| m(E)
forall E€ Ly =
Notation 12.4. For a,b € R¢ we will write ¢ < bis a; < b; for all i and @ < b
if a; < b; for all i. Given a < b let [a,b] = [0, [a:, bi] and (a,b] = [T, (as, bi].
(Notice that the closure of (a,b] is [a,b].) We will say that Q = (a,b] is a cube
provided that b; — a; = 26 > 0 is a constant independent of ;. When (@ is a cube,
let

zg:=a+(6,6,...,9)
be the center of the cube.
Notice that with this notation, if @ is a cube of side length 26,
(12.7) Q={xecR: |z —xg| <6}
and the interior (Q°) of @ may be written as
Q° = {r € R : [ — g < 6}.
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Notation 12.5. For a € R%, let |a] = max;|a;| and if T is a d x d matrix let
1T = maxi 3 [T -

A key point of this notation is that

Ta| = max ZTijaj Smfxzijaﬂ
J J

(12.8) 1T |al .

Theorem 12.6. Let Q C, RY be an open set and T : Q@ — T(Q) C, R be a C* -
diffeomorphism. Then for any A € Bq,

IN

(12.9) m(T(A)) < / | det ' (z)|da.
A

Proof. Step 1. We will first assume that A = Q = (a,b] is a cube such that

Q = [a,b] C Q. Let § = (b; —a;)/2 be half the side length of Q). By the fundamental
theorem of calculus (for Riemann integrals) for z € Q,

T(z) =T (zq) + /0 T'(zg +t(z —zg))(x — zg)dt
=T(wq) +T'(2q)S(x)
where
S(z) = [/0 T'(20) T (wo + t(x — xQ))dt] (& — 20).
Therefore T(Q) = T'(zq) + T"(xg)S(Q) and hence

m(T(Q)) = m(T(zq)+T'(x9)S(Q)) =m(T"(zq)S(Q))
(12.10) |det T"(zq)| m (S(Q)) -
Now for z € Q, i.e. |z —xg| <6,

1
S@I < | [ T@e) T wg + iz — )it o ~ xq)
< h(vax)é
where
1
(12.11) h(zo, o) = /0 T (20) T (xg + t(x — 20))]| dt.
Hence
S(Q) C r;leac)gih(xQ,x){x eR: x| < 61;1€ac)2(hd($Q,x)}
and
(12.12) m(S(Q)) < max h(zq, )4 (26)" = max h(zq, )m(Q).

Combining Egs. (12.10) and (12.12) shows that
(12.13) m(T(Q)) < |detT'(zq)| m(Q) - maéc ht(xg, ).
ze

To refine this estimate, we will subdivide @) into smaller cubes, i.e. for n € N let

- 2 26 ] d
Qn—{(a,a+;(6,6,...,6)]Jrzf.fe{0,1,2,...,n} }
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Notice that Q = [[ 4co, 4 By Eq. (12.13),
m(T(A)) < |det T (z.4)| m(A) - max hd(xA, x)
xE
and summing the equation on A gives
nT@) = 3 m(T(A) < 3 T o) md) - maeh(oa,),

Since h¥(x,2) =1 for all z € Q and h? : Q x Q — [0, 00) is continuous function on
a compact set, for any € > 0 there exists n such that if z,y € Q and |z —y| < §/n
then h¢(x,y) < 1+ e. Using this in the previously displayed equation, we find that

mT(Q) < (1+e) Y |detT (wa)l m(4)

A€Q,
(12.14) = (1+€)/ﬁ D |det T' ()| La(z)dm(x).
Q AeQ,
Since |det T'(x)]| is continuous on the compact set @, it easily follows by uniform
continuity that
Z |det T"(x4)| 14(z) — |det T'(z)| as n — oo
A€Qn

and the convergence in uniform on Q. Therefore the dominated convergence theorem
enables us to pass to the limit, n — oo, in Eq. (12.14) to find

m(T(Q)) < (1+€) /Q (et T' ()| dim(z).

Since € > 0 is arbitrary we are done we have shown that
m(T(Q)) < / |det T"(x)| dm(z).
Q

Step 2. We will now show that Eq. (12.9) is valid when A = U is an open

subset of ). For n € N, let
Qn = {(0,(6,6,...,0)]+27 "¢ £ e}
so that Q,, is a partition of R, Let F; := {A €0, AC U} and define F,, C
Up_, 9k inductively as follows. Assuming F,,_1 has been defined, let
Fn = J-‘,Hu{Ae Qn:ACUandAﬂB:(Z)forallBE}—n,l}
= .7-"”_1U{A€Qn:ACUandA;(_BforanyBefn_l}

Now set F = UF, (see Figure 8) and notice that U = [],.» A. Indeed by con-
struction, the sets in J are pairwise disjoint subset of U so that [[,.-A4 C U.
If 2 € U, there exists an n and A € Q,, such that + € A and A C U. Then by

construction of F, either A € F or there is a set B € F such that A C B. In either
case ¥ € [ [ 4o A which shows that U =[], » A. Therefore by step 1.,

m(T(U)) = m(T(UacrA)) =m((UaerT(A)))
= Y @)<Y / (det T’ ()| dm(x)
AeF AcFA

- /U (et T’ (2) | dm(z)
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i

F1Gcure 8. Filling out an open set with almost disjoint cubes. We
have drawn Fs.

which proves step 2.
Step 3. For general A € Bq let u be the measure,

w(A) ::/A\detT’(a:ﬂdm(x).

Then m o T and p are (o — finite measures as you should check) on Bg such that

moT < p on open sets. By regularity of these measures, we may conclude that
moT < p. Indeed, if A € Bq,

m(T(4) = jinf m(TU)) < inf uw(U)=p(4)= /A |det T" ()| dm(x).

12.1. Polar Coordinates and Surface Measure. Let
d
St ={zeRY: o =) af=1}
i=1

be the unit sphere in R?. Let @ : R%\ (0) — (0,00) x S9! and ®~! be the inverse
map given by
x

(12.15) O(x) := (Jz|, ‘?) and @' (r,w) = rw

respectively. Since ® and ®~' are continuous, they are Borel measurable.
Consider the measure ®,m on B(g o) ® Bga—1 given by

®,m(A) :=m (¢ '(A))
for all A € B(g,o0) ® Bga—1. For E € Bga—1 and a > 0, let
E,:={rw:r€(0,a] and w € E} = ®'((0,a] x E) € Bga.

Noting that F, = aFy, we have for 0 < a < b, E € Bga—1,E and A = (a,b] X E
that

(12.16) o 1A = {rw:re(a,bandwe E}
(12.17) = bE; \aFE;.
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Therefore,
(®.m) ((a,b] x E) = m(bE; \ aE1) = m(bEy) — m(aFE)
= Vv'm(E;) — a®m(E))
b
(12.18) = d- m(El)/ rd=Lldr.

Let p denote the unique measure on Bg ) such that

(12.19) p(J) = /er—ldr

for all J € B(g,00). Symbolically, we will abbreviate this by writing p(dr) = rd=1ldpr.

Definition 12.7. For E € Bga-1, let 0(E) := d- m(E71). We call o the surface
measure on S.

It is easy to check that o is a measure. Indeed if E € Bga-1, then E; =
@1 ((0,1] x E) € Bga so that m(E,) is defined. Moreover if E = [[°, E;, then
Ey =]1;Z, (Ei), and

o(E) = d-m(E) = Y m((E)y) = Y o(E).

The intuition behind this definition is as follows. If E C S9! is a set and € > 0 is
a small number, then the volume of

(L1+¢-E={rw:re(l,1+¢ andw e E}
should be approximately given by m ((1,1+ €| - E) = o(E)e. On the other hand
m ((1,14 €| E) =m (B \ E1) = {(1+¢)? — 1} m(Ey).
Therefore we expect the area of E should be given by

o(E) = lim {91} mE)
) €

According to these definitions and Eq. (12.18) we have shown that
(12.20) D,.m((a,b] x E) = p((a,b]) -o(E).
Let
E={(a,b] x E:0<a<bFE€Bga},

then £ is an elementary class. Since 0(&) = B(g,00) % Bga-1, we conclude from Eq.
(12.20) that

dPm=pxo

and this implies the following theorem.
Theorem 12.8. If f : R? — [0, 0] is a (Bga, B)-measurable function then
(12.21) / F(@)dm(z) = / £(r w) do(w)ri=ldr.

[0,00)x S

Let us now work out some integrals using Eq. (12.21).
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Lemma 12.9. Let a > 0 and

Ii(a) := /e*‘llz‘zdm(m).

Then Iy(a) = (7/a)?/?.

Proof. By Tonelli’s theorem and induction,

Ii(a) :/ efalylze*“tzmd,l(dy) dt
RA—1I xR
(12.22) = Iy(a)1(a) = I%(a).
So it suffices to compute:
Ir(a) = /e*‘ll””‘zdm(m) = / e~ o=+ da) doy.
R2 Rr2\{0}

We now make the change of variables, .

x1 =rcosf and xo = rsinf for 0 < r < oo and 0 < 6 < 2.

In vector form this transform is

10— (7o)

rsin 6

and the differential is given by

) -
and the Jacobian determinant is
det T'(r,©) = rcos? 0 + rsin® 0 = r.

Hence by the change of variables formula,

oo 2m .
I(a) = / dr r/ do e~
0 0

o0 2
= 271'/ re " dr
0

cosf —rsinf
sinf rcos@

M 2
=27 lim re 4 dr
M—o0 0
2
. e M on
=27 lim =— =7/a.
M—oo —2a [y 2a

This shows that Ip(a) = m/a and the result now follows from Eq. (12.22). m
Corollary 12.10. The surface area o(S4™1) of the unit sphere S~ C R? is

27T'd/2
d—1y _
(12.23) o(S7) = (d/2)
where I' is the gamma function given by
(12.24) I(x):= / r* e Tdr
0

Moreover, T'(1/2) = /7 and T'(1) = 1.
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Proof. We may alternatively compute I;(1) = 7%?2 using Theorem 12.8;

Id(l):/ dr ri=1e=" /d(r
0

Sd*l
o0 2
:U(Sdfl)/ rd=te="" dr.
0

We simplify this last integral by making the change of variables u = 72 so that
r=u'? and dr = 1u='/2du. The result is

o0 2 o0 d—1 ].
/ rd=le™"dr = / WT e w2 du
0 0 2

1 [ 4
= —/ ut"le=vdy
2 0

1
(12.25) = §F(d/2).
Collecting these observations implies that
1
712 = (1) = 3o(ST0/2)

which proves Eq. (12.23).
The computation of I'(1) is easy and is left to the reader. By Eq. (12.25),

r'(1/2) = 2/Oooe—7"2dr_/oo e dr
- nm=vE

13. SIGNED MEASURES

Definition 13.1. A signed measure v on a measurable space (X, M) is a function
v : M — R such that

(1) Either v(M) C (—o0, 0] or v(M) C [—o0, 0).
(2) v is countably additive, this is to say if £ = [[;Z; E; with E; € M, then

V(E) = 2 W(E;)
(3) v(0) =0

Example 13.2. Suppose that p, and p_ are two positive measures on M such
that either p, (X) < oo or u_(X) < oo, then v = p, — pu_ is a signed measure.

Example 13.3. Suppose that f : X — R measurable and either fE ftdu or
Jp f7dp < 0o, then

W(E) = [ fdu

is a signed measure. This is actually a special case of the last example with 1, (E) =
f gl *du. Notice that the measure {4 in this example have the property that they

o0
51f v(E) € R then the series ) v(Ej) is absolutely convergent since it is independent of
Jj=1

rearrangements.
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are concentrated on disjoint sets, namely p, “lives” on {f > 0} and p_ “lives” on
the set {f < 0}.

The main theorems of this section assert that these are the only examples of
signed measures.

13.1. Hahn Decomposition Theorem.

Definition 13.4. Let v be a signed measure on (X, M) and E € M, then
(1) E is positive if for all A € M such that A C E, v(A) >0, i.e. v|n,, > 0.
(2) E is negative if for all A € M such that A C E, v(A) <0, i.e. v|p, <0.
(3) E is null if for all A € M such that A C E, i.e. v|p, =0.

Here Mg ={ANE:A¢c M} = trace of M on E.

Lemma 13.5. Suppose that v is a signed measure on (X, M). Then
(1) Any subset of a positive set is positive.
(2) The countable union of positive (negative or null) sets is still positive (neg-
ative or null).
(3) Let us now further assume that v(M) C [—00,00) and E € M is a set
such that v (E) € (0,00). Then there exists a positive set P C E such that
v(P) > v(E).

Proof. The first assertion is obvious. If P; € M are positive sets, let P =

e} n—1
P,. By replacing P, by the positive set P, \ ( U Pj) we may assume that
=1 j=1

n=

the { P, } - are pairwise disjoint so that P = [ P,. Now if E C P and E € M,

n=1
E = ]O_O[ (ENP,) so
n=1
v(E) =Y v(ENP,)>0.
n=1

which shows that P is positive. The proof for the negative and the null case is
analogous.

The idea for proving the third assertion is to keep removing “big” sets of negative
measure from E. The set remaining from this procedure will be P. We now begin
the formal proof.

For all A € M let n(A) =1 Asup{—v(B): B C A}. Since v()) =0, n(4) >0
and n(A) = 0 iff A is positive. Choose Ay C E such that —v(Ag) > 3n(E) and
set By = E\ Ag, then choose A; C FEj such that —v(4;) > %n(El) and set
E; = E\ (AgU A4y). Continue this procedure inductively so that if Ag,..., Ax_1

have been chosen let
k—1
E,=E\ ( I1 Ai)
i=0

and choose Ay C Ej such that —v(Ag) > %n(Ek) We will now show that

P:=E\[[Ax=()Ex
k=0 k=0

is a positive set such that v(P) > v(E).
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Since -
E:PUHAk,
k=0
oo 100
13.1 E)—v(P)=uv(E\ P) = (Ap) < —=
(13.1) VE) —v(P) = ME\P) = 3 v < =5 3 n(Ey

and hence v(E) < v(P). Moreover, v(E) —v(P) > —oo since v(E) > 0 and v(P) #

oo by the assumption v(M) C [—o0,0). Therefore we may conclude from Eq.

(13.1) that Y, n(Ex) < oo and in particular limy_.oo n(E)) = 0. Now if A C P

then A C Ej, for all k£ and this implies that v(A4) > 0 since by definition of n(Ej),
—v(A) <n(Ey) — 0 as k — oo.

|

Definition 13.6. Suppose that v is a signed measure on (X, M). A Hahn de-

composition for v is a partition {P, N} of X such that P is positive and N is
negative.

Theorem 13.7 (Hahn Decomposition Theorem). Every sz’gned measure space
(X, M,v) has a Hahn decomposition, { P, N'}. Moreover, if {P, N} is another Hahn
decomposition, then PAP = NAN s a null set, so the decomposition is unique
modulo null sets.

Proof. With out loss of generality we may assume that v(M) C [—o0,0). If
not just consider —v instead. Let us begin with the uniqueness assertion. Suppose
that A € M, then

v(A)=v(ANP)+v(ANN) <v(ANP)<v(P)

and similarly 5
v(A) <v(P) for all A € M.

and in particular we have

which shows that

Since
s = v(PUP)=v(P)+v(P)—v(PNP)=2s—v(PNP)
s = v(PUP)=v(P)+v(P)
we see that ¥(P N P) = s and since
s =v(PUP)=v(PnNP)+v(PAP)

it follows that v(PAP) = 0. Thus NAN = PAP is a positive set with zero measure,
i,e. NAN = PAP is a null set and this proves the uniqueness assertion.
Let

s =sup{v(4): Ae M}
which is non-negative since v()) = 0. If s = 0, we are done since P = () and
N = X is the desired decomposition. So assume s > 0 and choose A,, € M such
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that v(A,) > 0 and lim,,—,o, ¥(4,,) = s. By Lemma 13.5, there exists positive sets
P, C A, such that v(P,) > v(Ay). Then clearly s > v(P,) > v(4,) — s as
n — oo implies that s = lim,_ o, v(P,). The set P = UP, is a positive set being
the union of positive sets and since P, C P for all n,

v(P) > v(P,) — sasn — o0.

This shows that v(P) > s and hence by the definition of s, s = v(P). In particular
this shows that s < oo.

We now claim that N = P¢ is a negative set and therefore, { P, N'} is the desired
Hahn decomposition. If N were not negative, we could find E C N = P¢ such that
v(E) > 0. We then would have

v(PUE)=v(P)+v(E)=s+4+v(E)>s
which contradicts the definition of s. =
13.2. Jordan Decomposition.

Definition 13.8. Let p and v be two signed measures on (X, M). We say u and
v are mutually singular and write p | v if there exists A € M such that A is
v-null and A€ is p-null. i.e. v and p “live” on disjoint sets.

Remark 13.9. If uy, py and v are signed measures on (X, M) such that p; L v and
po L v and gy + po is well defined, then (py + py) L v If {1 }oo, is a sequence of
positive measures such that p; 1 v for all ¢ then p =Y 2, p; L v as well.

Proof. In both cases, choose A; € M such that A; is v-null and Af is p,;-null
for all 7. Then by Lemma 13.5, A := U; 4; is still a v —null set. Since

A° =N;A C A7, for all m

we see that A is a g, - null set for all ¢ and is therefore a null set for pn =7, ;.
This shows that ¢ 1L v. m

Definition 13.10. Let X = PU N be a Hahn Decomposition of v and define
vi(E)=v(PNE)
v_(E)=—-v(NNE)
Suppose X = PUN is an~0ther Iiahn Decomposition and 74 are define as above
with P and N replaced by P and N respectively. Then
7.(E) = v(ENP)=v(ENPNP)+v(ENPNN)
= vw(ENPNP)

since N N P is both positive and negative and hence null. Similarly vi(E) =
v(E N PN P) showing that v, = 7 and therefore also that v_ =V _.

Theorem 13.11. Jordan Decomposition: There exists unique positive measure
vy such thatvy Lv_ andv=vy —v_.

Proof. Existence has been proved. For uniqueness. Suppose v = v —v_ is
a Jordan Decomposition. Since vy 1 v_ there exists P, N = P¢ € M such that
vi+(N)=0and v_(P) = 0. Then clearly P is positive for v and N is negative for
v. Now v(ENP) =vy(E) and v(ENN) = v_(E). The uniqueness now follows
from the remarks after Definition 13.10. m



100 BRUCE K. DRIVER

Definition 13.12. |v|(E) = v (E) + v_(E) is called the total variation of v. A
signed measure is called ¢ — finite provided that |v| := vy 4+ v_ is a o finite
measure.

Lemma 13.13. Let v be a signed measure on (X, M) and A € M. Then |v| (A) <
o0 iff [v(A)| < oo so that v is o finite iff there exists X,, € M such that |v(X,,)| < co
and X = U2, X,,. Also suppose that P, N € M is a Hahn decomposition for v and
let g=1p — 1y, then dv = gd|v|, i.e.

v(A) = / gd|v| for all A e M.
A

Proof. Let P, N € M be a Hahn decomposition for v, then
(13.2) v(A) = v(ANnP)+v(ANN)
V(AN P)| —|v(ANN)| and
v(ANP)—v(ANN)
= [wWANP)+v(ANN)|.
Therefore [v(A)| < oo iff [v(A N P)| and |v(A N N)| are finite iff || (4) < oo proving
the first assertion. The second assertion is a consequence of the following identity,
v(A)=v(ANP)+v(ANN)
=[v[(ANP) - v[(ANN)

:/A(lP —1n)dlv/.

v](A)

Remark 13.14. Suppose that p is a positive measure on (X, M) and g : X — R
is an extended integrable function. If v is the signed measure dv = gdu, then
dvy = gydp, dv_ = g_dp and d|v| = |g| dp.

Proof. The pair, P = {g > 0} and N = {g < 0} = P¢ is a Hahn decomposition
for v. Therefore

vi(A) :V(AOP):/A Pgdu:A1{9>0}gdu:Ag+du,
N

v—(A) =-v(ANN) = —/ gdp = —/ L{g<oygdp = —/ g-dp.
ANN A A

and
v (4) = vi(A)+v_(4)
= /Ag+du*/Agfdu:/(g+*97)du
= /\QIdu-
A
]

Definition 13.15. Let v be a signed measure on (X, M), let
M) = ) N LA ) = LA ()
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and for f € L'(v) we define

/dez/:/deijf/dez/_.

Lemma 13.16. Let i1 be a positive measure on (X, M), g be an extended integrable
function on (X, M, ) and dv = gdp. Then L*(v) = L*(|g|dp) and for f € L*(v),

/X fdv = /X fod.

Proof. We have already seen that dvy = gydu, dv_ = g_du, and d|v| = |g| du
so that L!(v) = LY(|v|) = L'(|g| dp) and for f € L (v),

/X fdv = /X fdvy — /X fdv_
/ng+du*/ngfdu
/X flgy —g-)du

/X fadp.

Remark 13.17. Let v be a signed measure on (X, M), then |v|(E) = sup{ [, f dv :
[fl <1}

Proof. If F € M and |f| <1, then

éfdu ‘/]Efdu+—/]5fdyg‘/]5fdu+
[f(;l)dV++[Ede—[Ef dlv|
14

e

IN

IN

which shows that
sup{/ fdv:lfl <1} < Wl(E).
E

For the reverse inequality, let X = PU N be a Hahn decomposition of v and define
f =1 P — 1 N then

/fdy = v(ENP)—v(ENN)
E

= VHE)+ v (E) = [v|(E).

14. RADON-NIKODYM THEOREM

Definition 14.1. Let v be a signed measure and p be a positive measure on
(X, M). We say the v is absolutely continuous relative to p and write v < p
provided that v(A) = 0 whenever p(A) = 0. That is to say if A is a null set for p
then A is also a null set for v.
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Remark 14.2. Since |v(A)| < |v|(A) for all A € M, if |v] <« p then v < p. The
converse is true as well. To see this let P € M be chosen so that {P, N = P°}
is a Hahn decomposition for v. If A € M and u(A) = 0 then v(AN P) = 0 and
V(AN N) =0 since u(ANP) =0 and u(AN N) = 0. Therefore

v|(A) = v(AN P) — v(ANN) = 0.

Lemma 14.3. 1) Let v be a signed measure and p be a positive measure on (X, M)
such that v < p and v L p, then v =0. 2) Suppose that v = Zfil v; where v; are
positive measures on (X, M) such that v; < p, then v < u. Also if v and vo are
two signed measure such that v; < p fori = 1,2 and v = vy + va is well defined,
then v < p.

Proof. (1) Because v L pu, there exists A € M such that A is a v-null set and
B = A°is a u - null set. Since B is p — null and v < p, B is also v — null. This
shows by Lemma 13.5 that X = A U B is also v — null, i.e. v is the zero measure.
The proof of (2) is easy and is left to the reader. m

Theorem 14.4. Let v be a finite signed measure and p be a positive measure on
(X, M). Then v < p iff for all € > 0 there exists a 6 > 0 such that |V(A)] < €
whenever A € M and p(A) < 6.

Proof. (=) If u(4) = 0 then |v(A)] < € for all € > 0 which shows that
v(A) =0, ie v < p.

(«<=)Since |v(A)| < |v|(A) it suffices to assume v > 0 and v(X) < co. Suppose
for the sake of contradiction there exists € > 0 and A,, € M such that v(A,) > € >0

while u(A4,) < 5. Let
A={4,io} =) U 4x
N=1n>N
so that
:u(A) = J\}EHOOIJ'(UTLZNAH) < ZNM(AH) < 2_(N_1)

for all N and hence p(A) = 0. On the other hand,
v(A) = lim v (Up>nAp)

N—oo

> lim infv(4,)>e>0

n— 00

showing that v is not absolutely continuous relative to p (v & ). ®
Corollary 14.5. Let pu be a positive measure on (X, M) and f € L'(du). Then

I d,u‘ < € for all A € M such that
A

for all € > O there exists 6 > 0 such that
pn(A4) < 6.

Proof. Apply theorem 14.4 to the signed measure

v(A) :/f dp for all A e M.
A
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Lemma 14.6. Let u and ) be positive finite measures. Then either 1\ or there
exists € > 0 and E € M such that u(E) >0 and X > e on E, i.e. X\—epu >0 on
MEg.

Proof. Let X = P, UN,, be the Hahn decomposition of A\, = A — %,u soA, >0
on P, and A\, <0 on N,, ie. )\Z%uonPn and)\S%uonNn.LetNE N Nn

n=1

then A < 0 on N which implies that A =0 on N. Set P = N° = |J P,. Either
n=1

#(P) = 0 in which case p L X or u(P) > 0 then p(P,) > 0 for some n. Now

)\—%uZOon P, and u(P,) >0. m

Theorem 14.7 (Lebesque-Radon-Nikodym Theorem). Let v be a o-finite signed
measure and p be a o-finite positive measure on (X, M). Then there exists unique
o-finite signed measures X\ and § such that 1) v =X +6, 2) A L p and 3) 6§ < p.
Moreover there exists an extended p — integrable function f : X — R such that
0 = py where duy := fdu and this function is unique up to p-null sets. In short

dv = fdp+dX
with A L .

Proof. We will first prove the existence assertions of the theorem. The unique-
ness assertions will be proved at the end.
Case 1. Assume that u, v are finite positive measures. Set

F=1{f:X = 0.0lluy < v}
and notice that if f,g € F then h = f Vg € F. Indeed, if A € M,

Mf(A)

[rau= [ gaus [ o
A An{f>g} An{f<g}
WAN{S > g})+ V(AN {f < g)
= v(A) forall Ae M.

IN

The idea now is to take f € F to be a maximal element. Heuristically we would

like to define f(z) = sup{h(z) : h € F}. However, since F is not a countable set in

general, we must find another way to construct f. We do this in the next paragraph.
Choose h,, € F such that

po,, (X) T M :=sup{u,(X):he F}asn— oo

and define f,, = hy V---V h, € F. Clearly f,, is an increasing sequence and
[ = limp_ fpn is a measurable function. Since p (X) > pp,, (X), we must have
by the monotone convergence theorem that

(X) = lim iy (X) > M
and
py(A) = lim pg (A) <v(A) for all A € M.

v(X) < oo from which it follows that
[0, 00] has range [0, 00).

This shows that f € F and M = puz(X)
n({f = o0}) =0 so we may assume f: X

<
R
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To finish the existence proof in Case 1. we will show that A = v — pu, is singular
relative to p. If not, by Lemma 14.6 there exists € > 0 and E € M such that
w(E) > 0and A > e on E. In this case we would have

v=pp+ Ayt ey, = Mg,
and therefore f + elg € F. But this contradicts the definition of M since now
tper,(X) = pp(X) + eu(E) = M + ep(E) > M.

This finishes the proof of Case 1.

Case 2. Assume p and v are o-finite positive measures on (X, M). Choose
X/, X/ € M such that X = [[>2, X}, = [0, XV, u(X]) < oo and v(X)) <
oo. Let {X,},—, be an enumeration of {X;, N X, } " _ . Then X = [[[7, X,
w(X,) < oo and v(X,) < oo. Define finite measures p,, and v, on (X, M) by
tn(A) = p(X, NA) and vy, (A) = v(X,, N A) for all A € M and notice that

oo oo
M:ZUn aHdV:len.
n=1 n=1

By the finite case already proved, there exists measurable functions f,, : X — [0, 00)
and measures A, such that v, = iy + A, with A, L ,,. Define f:=3"" f, and
A= A\, so that

n=1 n=1 n=1
To finish the proof of this case it suffices to show that A L p which will follow by
Remark 13.9 if we show A,, L u for all n. Because
we see that A\, (X<) = 0. Since A, L p,, there exists A € M such that
tn(A) = u(X,, NA) =0 and A, (A°) = 0.
Let B = X,, N A, then pu(B) = 0 while
An(B¢) = Ay (X5 U A <A (X5) 4+ Mu(A°) = 0.

This shows that p lives on B¢ and A, lives on B so that p L A, finishing the proof
of case 2.

Case 3. The general case where now v = v —v_ is a signed ¢ finite measure p
is a positive o - finite measure. Assume without loss of generality that v, (X) < oo,
i.e v(A) < oo for all A € M. By Case 2, there exist functions fi : X — [0,00) and
measure Ay such that vy = pp, + Ay with Ay L . Since

00> 1 (X) = g, (X) + A4 (X),

f+ € L'(u) and A (X) < oo so that f = f, — f_ is an extended integrable function
and A = Ay — A_ is a signed measure. This finishes the existence proof since

v=vy—vo=pp A — (uﬂ —I—)\,) =pptA
and A = (A — A_) L p by Remark 13.9.
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Uniqueness. Suppose that v = 6 + A and v = =64 X with A L w, 6 < p,
AL jiand & < fi. Since A L g and X L p_there exists A, A € M such that
1(A) = u(A) =0 and A°is A — null and A°is A\ — null. Let B = AU A, then

W(B) < u(A) + u(A) = 0

so that B is g — null. Also B¢ = A¢ N A¢ which is A and A - null set. Therefore if
C € M then

v(C'N B°) 5(CNB%) +ANCNB°) =6(CnB°
(14.1) = $((CNB)U(CNB))=46C)
where we have used § < p and A(C'N B€) = 0. Similarly 6(C) = v(C N B®) which

shows that § = & and hence A = \.
Let X = PU N be the Hahn decomposition of § and C' € M, then

16/ (C) = 6(CnNP)—6(CNN)

= v(CNPNB°)—v(CNNNB°)
< w(CNPNB°+|v|(CNNNB°
= [(CnB) <[r(C).

This shows that |§] < |v| and in particular that é is o finite since v is o finite.
Suppose that f and g are extended integrable functions such that 6 = uy = pu,,
ie.

(14.2) / fdu = / gdp for all A € M.
A A
Choose X,, T X such that |§| (X,,) < co. Since

/ Wl = 6] () = / ol

we have 1x, f and 1x, g are in L' (u) for all n. Applying Eq. (14.2) to X,, N A we

learn that
/ lx, fdp = / fdp = / gdp = / lx, gdp
A ANX,, ANX,, A

for all A € M which implies that 1x, f = 1x,g, ¢ — a.e. Letting n — oo then
shows that f =g, u —a.e. m

Remark 14.8. Suppose that f and g are two positive measurable functions on
(X, M, p) such that

(14.3) /Afdu:/Agdu

for all A € M. It is not in general true that f = g, p — a.e. A trivial counter
example is to take M = P(X), p(A) = oo for all non-empty A € M, f = 1x and
g=2-1x. Then Eq. (14.3) holds yet f # g.

Corollary 14.9. Let v be a o-finite signed measure and p be a o-finite positive
measure on (X, M). If v < p then dv = fdu (that is v = ;) for some extended
integrable function f: X — R which is unique modulo sets of measure zero.

Notation 14.10. The function f is called the Radon-Nikodym derivative of v
relative to p and we will denote this function by %



106 BRUCE K. DRIVER

Proof. By Theorem 14.7, there exists an extended integrable function f: X —
R; and a signed measure A such that v = puy + A and A L p. From Lemma 14.3,
A =v—pup < pand again by Lemma 14.3, A = 0. Alternatively, choose B € M
such that u(B¢) =0 and B is a A — null set. Since v < p, B¢ is also a v — null set
so that

v(A) = v(ANB)=pu(ANDB)+ANANDB)
(A0 B) = py(4)

foralAe M. m

15. COMPLEX MEASURES

Definition 15.1. A complex measure v on a measurable space (X, M) is a count-
ably additive set function v : M — C such that v(§)) = 0.

Given a complex measure v, let v,, = Rev and v; = Imv so that v, and v; are
finite signed measures such that

v(A) =v,(A) +iv;(A) for all A e M.
Definition 15.2. Let L!'(v) := L'(v,.) N L' (v;) and for f € L*(v) define

/fdy _/ fdurJrz/ fdv;.

Example 15.3. Suppose that p is a positive measure on (X, M) and g € L' (),
then

(15.1) V(A) = / gdpvA € M
A

p is a complex measure on (X, M). Moreover, L*(v) = L*(|g| du) and for f € L' (v)

(15.2) /X fdv = /X fadyu.

To check Eq. (15.2), notice that dv,, = Re gdp and dv; = Im gdp so that (using
Lemma 13.16)

L'(v) = L*(Regdp) N L' (Im gdu) = L'(|Re g| dp) N L' ([Im g| dp) = L*(|g| dpe).
If f € L'(v), then

/deu ::/XfRegdqui/XfImgdu:/ngdu.

We will now show that any complex measure v may be represented as in Eq. (15.1).
To do this let p be the finite positive measure on M defined by

= [vp| + |vil.

Then v, < p and v; < p and hence by the Radon-Nikodym theorem, there exists
real functions h, k € L'(u) such that

dv, = h dp and dv; =k dp.
Therefore if g := h + ik € L* () then dv = (h + ik)du = gdpu.
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Lemma 15.4. Suppose that v is a complex measure on (X, M), u,; is a finite
positive measure on (X, M) and g; € L'(u;) such that dv = g;dp; for i = 1,2.
Then

[ torldiy = [ gl di for it A€ M.
A A

In particular, we may define a positive measure |v| on (X, M) by

1(A) = [ lanldys for il 4 € p
A

The finite positive measure |v| is the total variation measure of v.

Proof. Let A = p; + py so that p; < A Let p; = dp;/dX > 0 and h; = p;9;.
Since

v(A) = / gidp; = / gip;d\ = / hid\ for all A € M,
A A A
hy = hg, X —a.e. Therefore

[l = [ 1aloix = [ mlar= [ nafax= [ foalpar = [ Jooldps
A A A A A A
|

Remark 15.5. Suppose that v is a complex measure on (X, M) such that dv = gdu
and as above d |v| = |g| dp. Letting

_ [ g i gl #0
p=2 ldl
1 if Jg/|=0
we see that
dv = gdp = p|g| dp = pd|v|
and |p| =1 and p is uniquely defined modulo |v| — null sets. We will denote p by
dv/dlv|.

With this notation and Example 15.3 we have L!(v) := L' (|v|) and for f €

Li(v), .
v

Proposition 15.6. Suppose A C P(X) is an algebra, M = o(A), v is a complex
measure on (X, M) and for E € M let

wo(E) = sup{i|l/(Ej)|:Ej€AE BEiﬂEj_éijEi,n_1,2,...}
1

w(E) = sup{i|l/(Ej)|:Ej€ME BEiﬂEj_(SijEi,n_].,2,...}
1

ue(E) = sup{i|y(Ej)|:Ej€ME BEiﬁEj—éijEi}
1

) = swd| [ gl i1}

then py = g = pg = pg3 = |v].



108 BRUCE K. DRIVER

Proof. Let p = dv/d|v| and recall that |p| = 1 for |v| — a.e. We will start by

showing |v| = pug. If | f] < 1,
< / £l dly| < / 1d|y| = [v](E)
E E

/Efdv /Efpd\V\

which shows that pg < |v|. By taking f = p,

[raf=[poavi= [ vav =@

which shows that |v| < 5 and hence |v| = ps.
We will now show py = py = pg = |v|. Clearly py < gy < pty. Suppose E; € Mg
such that EZ N Ej = 6ijEi7 then

> lv(E)l = Z\/E pdlv] < IWI(E)) = WI(VE;) < [v] (E)

which shows that p, < |v|. So to finish the proof it suffices to show that |v]| < p,.
By Theorem 10.6, there exists simple functions p,, on X such that p,, — p in
L*(Jv|) and each p,, may be written in the form

N

(15.3) pn=Y_ zla,

k=1
where 2z, € C and Ay € Aand Ay, NA; =0 if k # j. I claim that we may assume
that |z;| < 1in Eq. (15.3) for if |z;| > 1 and = € A,

Ip() = 2l = [pl@) — |20 " 2
This is obvious from a picture and formally follows from the fact that
d
dt |”
when ¢ > 1. Therefore if we define

-1 .
Wy = ET 1'f |zi] > 1
2k if |z <1

(@) —t 2] zkf —2 [t ~ Re(|z| ! sz)} >0

and

N
o=y wila,
k=1

then

p(x) = pp(@)| 2 |p(2) = Pn(2)]
and therefore p,, — p in L(|v|).
So we now assume that p,, is as in Eq. (15.3) with |z;| < 1. Because Ej, =
A.NE e Ag andEkﬂEj:wifj#k‘,

/Epn ar| =[S aAenB)| < Xl (4w B)
S Ak B)| < ol B).

(15.4)

IN

Since

/f)ndl/f/ﬁdy
E E

=| [ @u-ppa

< [ 1pa=rldlrl =0 asn— o0
E
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[
E

15.1. Absolute Continuity on an Algebra.

we may let n — oo in Eq. (15.4) to conclude

\1/|(E)://_)d1/: lim
E

n—oo

< po(E).

Definition 15.7. Suppose that v is a complex measure and p is a positive measure
on (X, M). We say the v is absolutely continuous relative to y and write v < g iff
v(A) =0 for all A € M such that u(A) = 0.

The following theorems will be useful in Section 17 below.

Lemma 15.8. Let v be a complex measure and u be a positive measure on (X, M).
Then v < p iff [v] < p.

Proof. Since |v(A4)| < |v|(A) it is clear that |v| < p implies v < p. For the
opposite direction, let p = %. If A e M and pu(A) =0 then by assumption

0=v(B)= /de\v|

for all B € M 4. This shows that pl4 = 0 for |v| — a.e. and hence

|u\<A>:/ \p\d\v\:/ Lalpl d|v] = 0,
A X
0

i.e. p(A) =0 implies |v|(A) =

Alternatively one may prove this lemma by arguing that v < p implies that
v, < pand v; < p which implies that |v,| < pand |v;] < p. Since |v| < |v,|+|vq],
this shows that [v| < . m

Theorem 15.9. Let v be a complex measure and (v be a positive measure on
(X, M). Suppose that A C M is an algebra such that o(A) = M and that p
is o-finite on A. Then v < p iff for all € > 0 there exists a 6 > 0 such that
[V(A)| < € for all A € A with p(A) < 6.

Proof. By Remark 14.2, Lemma 13.13 and Lemma 15.8, it suffices to prove
the theorem in the case that v is a positive measure. The implication (=) is a
consequence of Theorem 14.4.

(<) Let € > 0 and § > 0 be such that v(A) < € for all A € A with p(A) < 6.
Suppose that B € M with pu(B) < 6. Use the regularity Theorem 4.13 to find
A € Ay such that B C A and p(B) < p(A4) < é. Write A = U, A, with 4,, € A.
By replacing A, by U}_; A; if necessary we may assume that A, is increasing in
n. Then p(A,) < p(A) < 6 for each n and hence by assumption v(4,,) < e. Since
B C A =U,A, it follows that v(B) < v(A) = lim,,—. ¥(A,) < €. Thus we have
shown that v(B) < ¢ for all B € M such that u(B) < 4. m

16. MEASURE DIFFERENTIATION THEOREMS ON R"

In this chapter, let B = Bgrn denote the Borel ¢ — algebra on R™ and m be
Lebesgue measure on B.

Definition 16.1. A collection of measurable sets {E,},~o C B is said to shrink

nicely to x € R" if (i) E, C B,(z) for all » > 0 and (ii) there exists « > 0 such that
m(E,) > am(B,(z)). We will abbreviate this by writing E, | {z} nicely.
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The main result of this chapter is the following theorem.

Theorem 16.2. Suppose that v is a complex measure on (R™, B), then there exists
g € L*(R™,m) and a complex measure \ such that A\ L m, dv = gdm + d\, and for
m - a.e. T,

. v(E)

for any collection of {E;},~, C B which shrink nicely to {x} .

Proof. The existence of g and A such that A L m and dv = gdm + d\ is a
consequence of the Radon-Nikodym theorem. Since

v(E,) 1 Adm(z) - MED)
m(E,)  m(E,) /E,,.g< Jmie)

Eq. (16.1) is a consequence of Theorem 16.12 and Corollary 16.14 below. m
The rest of this chapter will be devoted to filling in the details of the proof of
this theorem.

16.1. A Covering Lemma and Averaging Operators.

Lemma 16.3 (Covering Lemma). Let £ be a collection of open balls in R™ and
U =UpeceB. If c <m(U), then there exists disjoint balls By, ..., By € € such that

k
> m(Bj) >3 "c.
j=1

Proof. Choose a compact set K C U such that m(K) > ¢ and then let & :=
{Ai}iil C & be a finite subcover of K. Choose By € &; to be a ball with largest
diameter in £;. Let &, = {A € & : ANBy = (}}. If & is not empty, choose By € & to
be a ball with largest diameter in £. Similarly Let &5 = {A € & : AN Bz = 0} and
if £5 is not empty, choose Bs € £3 to be a ball with largest diameter in £3. Continue
choosing B; € € for i = 1,2, ...,k this way until &1 is empty.

If B = B(zg,r) C R", let B* = B(x,3r) C R”, that is B* is the ball concentric
with B which has three times the radius of B. We will now show K C U¥_, By. For
each j there exists a first ¢ such that B;NA; # ). In this case diam(A;) <diam (B;)
and A; C By. Therefore A; C Uf_, B} for all j and hence K C U_,; A; C Uj_, B;.
Hence by subadditivity,

k
c<m(K) <Y m(By) <3" Y m(By)
||

Definition 16.4. Let V C R” be an open set and f : V — C be a measurable
function. We say that f is locally integrable on V if

/|f\dac<oo

K

for all compact sets K C V. Let L} (V,m) denote the space of locally integrable

loc
functions f on V and write L}, for L} (R"™,m).
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Definition 16.5. For f € L} , x € R™ and r > 0 let

loc?

(16.2) (Arf)(ﬂﬁ)—% | sam
B, (z)

where B,(z) = B(z,r) C R", and |A| := m(4).
Lemma 16.6. Let f € L}, then for each x € R", (0,00) > 7 — (A.f)(x) is

loc?
continuous and for each v >0 R" 3 x — (A, f) (z) is measurable.

Proof. Recall that |B,.(z)] = m(E7)r™ which is continuous in r. Also
lim, ., 15, (2)(y) = 1Br0(x)(y) if Jy| # ro and since m ({y : |y| #ro}) = 0 (you
prove!), lim,—,, 15, (z)(¥) = 18, (z)(y) for m -a.e. y. So by the dominated conver-
gence theorem,

lim fdm = / fdm
r—7ro

B,.(z) By (x)

and therefore
1
(Arf)(x) = (B / fdm
B, (z)

is continuous in r. Let g,(z,y) := 1B, (2)(y) = lja—y|<r- Then g, is B® B — mea-
surable (for example write it as a limit of continuous functions) so that by Fubini’s
theorem

v / fdm = / o () F () dm(y)
B,.(z) B,.(z)

is B — measurable and hence so is z — (A, f) (). =

16.2. Maximal Functions.

Definition 16.7. For f € L'(m), the Hardy - Littlewood maximal function H f is
defined by

(H f)(x) = sup A, | f|(z)

r>0

Lemma 16.6 allows us to write

(Hf)(x) = sup OArlf\(x)

reQ, r>

and then to concluded that H f is measurable.

Theorem 16.8 (Maximal Inequality). If f € L'(m) and a > 0, then
3"7/
m(HF > ) < | 1|

This should be compared with Chebyshcev’s inequality which states that

Proof. Let E, = {Hf > a}. For all x € E, there exists r, such that
Ay |fl(z) > a. Hence Ey C Uzep, By(rz). By Lemma 16.3, if ¢ < m(E,) <
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m(Uze g, By (1)) then there exists x1, ...,z € E, and disjoint balls B; = By, (rz,)
for i =1,2,...,k such that > |B;| > 37"c. Since

fldm
T - ATT»‘fK‘TZ) > a,

| B;] <a_1/ | fldm
B;

vy X0 [ iflam< L [ iflam = Zisl

This shows that ¢ < 3"a~!||f||z: for all ¢ < m(E,) which proves m(E,) <
gra”tf] m

Theorem 16.9. If f € L, then liﬁ)l(Arf)(x) = f(z) form — a.e. z € R™.

and hence

Proof. With out loss of generality we may assume f € L!'(m). We now begin
with the special case where f =g € Ll( ) is also continuous. In this case we find:

(Arg)() - ‘*|B ‘/ 9(9) ~ 9(@)ldm(y)
sup ) g(z)| = 0asr —0.
yeB (1)
In fact we have shown that (A,g)(z) — g(x) as r — 0 uniformly for z in compact
subsets of R".
For general f € L!(m),
[Arf() = F(@)] < [Af(2) = Arg(@)| + |Arg (@) — g(2)| + [g(2) — f(2)]

[Ar(f = 9)(@)] + [Arg(2) — g(2)[ +|g(2) — f()]
H(f = 9)(x) +[Arg(z) — g(2)] + |g(2) — f(2)]

A

IN

and therefore,
lim|A, f(w) = f(@)] < H(f = g)(x) + |g(x) = f(x)!

So if a > 0, then

E.= {%Arf(x) — f(a)] > a} c {H(f -9 > g} u{lg— 1> %}
and thus
m(E.) <m(H<f—g> > %) +m(lg=f1>3)

< 57 =gl + 2751 ~olls

<203" + Da I f gl

where in the second inequality we have used the Maximal inequality and
Chebyshcev’s inequality. Since this is true for all continuous g € C(R™) N L(m)
and this set is dense in L!(m), we may make ||f — g||;: as small as we please. This
shows that

o ({ < Tl ) = £@)] > 0} ) = m(U ) < im(El/n) 0.
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16.3. Lebesque Set.
Definition 16.10. For f € L}, .(m), the Lebesgue set of f is

Li= R™ - li )| dy =
f z € T%I|B /\f x)|dy =0

BT(J:
Theorem 16.11. For all f € L}, (m), 0 =m(L) = m(R™\ Ly).

Proof. For w € C define g,,(z) = | f(x)—w| and E,, = {x : lim, ¢ (A,gw) () # guw(2)}.
Then by Theorem 16.9 m(E,,) = 0 for all w € C and therefore m(E) = 0 where

E= U Ey.

weQ+iQ
By definition of E, if z ¢ E then.

lin (4, 1) — w)(@) = |7(2) v
for all w € Q+ iQ. Since
1O = f@) < [f() —w] +|w = f(=)],
(ArlfC) = f@(@) < (A [f() = w]) (@) + (4w — f(2)]) (2)
= (A [f() = w]) (z) + |w = f(=)]

and hence for z ¢ F,

%(Ar\f(') — f(@))(@) < |f(2) = w| + [w— f(z)]

< 2|f(x) —wl.
Since this is true for all w € Q +iQ, we see that
%(ATU’(-) — f(@)])(x) =0for all z ¢ E,

i.e. E° C Ly or equivalently L C E. So m(L?) <m(E)=0. m

Theorem 16.12 (Lebesque Differentiation Theorem). Suppose f € L} . for all
x € Ly (so in particular for m — a.e. x)

z)|dy =0

1077’7,

and

i /f (@)

when E, | {x} nicely.
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Proof. For all x € Ly,

fy)dy — f(x)

e .

<

W / F@) — f()ldy

< / () — f(2)ldy

which tends to zero as r | 0 by Theorem 16.11. In the second inequality we have
used the fact that m(B,(z) \ B,(z)) =0. m

Lemma 16.13. Suppose X\ > 0 is a o-finite measure on B = Bgn such that A\ L m.
Then for m — a.e. x,

o AB )
710 m(B,(z))

Proof. Let A € B such that A\(4) = 0 and m(A¢) = 0. By the regularity theorem
(Exercise 4.21), for all € > 0 there exists an open set V. C R™ such that A C V,

and A\(Ve) < e. Let
_ A(Br(z)) _ 1
Fp={ze€ A:lim > —
k
{ (z }

=0.

rlom(By(z))
the for « € Fy, choose 7, > 0 such that B, (z) C V. and m((%:,((?))) > ,16, ie.
m(B, (z)) <k (B, (2)).

Let £ ={B,, (z)}ser, and U = |J B, (x). Heuristically if all the balls in £ were
z€Fy,
disjoint and £ were countable, then

m(F) < Y m(B,, (z)) <k > B

x€Fy x€Fy
= EAU) < k MV,) < ke.

Since € > 0 is arbitrary this would imply that m(Fy) = 0.
To fix the above argument, suppose that ¢ < m(U) and use the covering lemma
to find disjoint balls By, ..., By € £ such that

¢ < 3"Zm ) < k3"ZA
< k3”)\(U) < k3”)\(VE) g k3"e.

Since ¢ < m(U) is arbitrary we learn that m(Fy) < m(U) < k3"¢ and in particular
that m(Fy) < k3"e. Since € > 0 is arbitrary, this shows that m(Fj) = 0. This

implies, letting
Fo={z€A: im————"r A(Br () >0;,
rlom(B,(z))
¢) =0, this shows that

that m(Foo) = limg—.oo m(Fx) = 0. Since m(A
n . = MBr(2)) _
m({r € R lv"iO m(B ())>0})—0.
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Corollary 16.14. Let )\ be a complex or a o-finite signed measure such that A L m.
Then for m — a.e. x,
AE,
lim () =0

710 m(E;)

whenever E,. | {x} nicely.

Proof. Recalling the A | m implies |A| L. m, Lemma 16.13 and the inequalities,

m(E,) = am(B,(z)) = am(B,(z)) = a2 "m(Bay(2))

proves the result. m

17. THE FUNDAMENTAL THEOREM OF CALCULUS

Notation 17.1. Given a function F : R—=R or F : R—C, let F(z—) =
limy, F(y), F(x+) = limy, F(y) and F(£o0) = lim,_ 4o F(x) whenever the
limits exist. Notice that if F' is a monotone functions then F(+o0) and F(x+)
exist for all x.

Theorem 17.2. Let F': R — R be increasing and define G(x) = F(x+). Then
(a) {x e R: F(z+) > F(z—)} is countable.
(b) F'(z) and G'(x) exists form — a.e. x and F' =G m - a.e.
Proof. (a) Suppose z,y € (—N, N) and z < y. Then F(z+) < F(y—) so that
(F(z=), F(z+)) N (F(y—), Fy+)) = 0.

Therefore, {(F(z—), F(2+))},cr are disjoint possible empty intervals in R. Let
a C (=N, N) be a finite set then

[T (F(z=), F(+)) € [F(~N), F(N)]

i ASYe

and therefore,

Y [Flat)— F(z—)] = Zm(F(éE),F(+))—m<H(F($),F(+)))

TEQ TEQ TEQ
< m([F(=N), F(N)]) = F(N) = F(=N)
Since this is true for all « CC (=N, N),
(17.1) > [F(a+) = F(z—)] < F(N) = F(—=N) < o0
z€(—N,N)

and in particular,
Iy :={z € (—=N,N)|F(z+) — F(z—) >0}
is countable and therefore
I:={z eR|F(z+) — F(z—) >0} =UJ=I'n

is also countable.
(b) The function G is increasing since if < y then

F(x+) < F(y) < F(y+).

If 2z >y > x then
F(az+) < F(y+) < F(z)
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and therefore

Flat) <lm F(y+) < ().

Hence
G(x) = F(z+) < Lim F(y+) < lzifrxlF(Z) = F(a+) = G(z)

which shows that G is right continuous.

Let pe denote the unique measure on B such that pg((a,d]) = G(b) — G(a)
for all @ < b. By Theorem 16.2, for m - a.e. x, for all sequences {E, }, ., which
shrink nicely to {z}, 131101(,“0 (E.)/m(E;)) exists and is independent of the choice

of sequence {E,}, ., shrinking to {x}. Since (z,x + 7| | {z} and (z — 7,2 | {z}
nicely,
pel@wztr]) . Glatr) —Gl) _ d

rl0 m((z,x + 1)) o r T dat (@)
and
g folz=ra) G -Gle-n) | Gor)-CE) _ d g
r10 m((z —r,z)) 10 r 10 —r dx—
exist and are equal for m - a.e. z, i.e. G'(z) exists for m -a.e. x. Alternatively we
have
Gz +r)—G)| [ ezt 5 559
r petedndl it r <
so that
Glatr)-G@)| _ pel—|rl,z+|r[)
r N 7]
po(@ — |,z + |rf])
—Qasr—0
m(By(x))

by Theorem 16.2.
For x € R, let

H(z)=G(z) — F(z) = F(z+) — F(z) > 0.
The proof will be completed by showing that H'(z) = 0 for m — a.e. x. Let
A={zeR: F(z+)> F(z)} CT.

Then A C R is a countable set and H(z) = 0 if z ¢ A. Let A be the measure on
(R, B) defined by

A=Y H(z)s, = > H(w)b,.

z€R zeEA
Since
MENN) = Y H@= Y (F+)-F2)
z€(—N,N) zeAN(—N,N)
< ) (Flat) = Fla—)) < oo
z€(—N,N)

by Eq. (17.1), A is finite on bounded sets. Since A(A°) =0 and m(A) =0, A L m
and so by Corollary 16.14 for m - a.e. =z,

H(z+r) - H(@)| ,H(z+|r]) + H(zx — |r]) + H(z)
r - 7]

Az —[rl, @ +|r[])

<2
7]
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and the last term goes to zero as r — 0 because {[z — 7,z + 7]}, shrinks nicely
to {z} . Hence we conclude for m — a.e. = that H'(z) =0. m

Definition 17.3. For —oo < a < b < o0, a partition P of (a,b] is a finite subset
of [a,b] N R such that {a,b} NR C P. For € P\ {b}, let zy =min{y € P:y > x}
and if x =0blet zy =b.

Proposition 17.4. Let u be a complex measure on B and set F(x) = p((—o0, z]).
Then F(—o0) =0, F is right continuous and for —oo < a < b < 00,

(17.2) l(art] = sup 3 e, a4 ]| = sup 3 | F(ay) — (@)

P xEP zeP
where supremum is over all partitions P of (a,b]. Moreover u < m iff for alle >0
there exists 6 > 0 such that

(17.3) S IF(bi) — Flai)| < e
i=1
whenever {(a;, b;) }i_, are disjoint open intervals in (a,b] such that Y (b; —a;) < 6.
i=1
Proof. Eq. (17.2) follows from Proposition 15.6 and the fact that B = o(A)
where A is the algebra generated by (a, b]NR with a, b € R. Suppose that Eq. (17.3)
holds under the stronger condition that {(a;,b;]};_, are disjoint intervals in (a, b].

If {(a;,b;)};_, are disjoint open intervals in (a,b] such that > (b; —a;) < 8, then
=1

for all p > 0, {(a; + p,b;]};_, are disjoint intervals in (a,b] and >~ (b; —(a; +p)) < 6
=1
so that by assumption,

Z |F(b;) — F(a; + p)| < e.

Since p > 0 is arbitrary in this equation and F' is right continuous, we conclude
that

> IF(b:) — Flai)| < e
i=1
whenever {(a;,b;)};_, are disjoint open intervals in (a,b] such that > (b; —a;) < 6.
i=1
So it suffices to prove Eq. (17.3) under the stronger condition that {(a;,b;]};_; are
disjoint intervals in (a, b]. But this last assertion follows directly from Theorem 15.9
and the fact that B=0(A). =

Definition 17.5. Given a function F : R — C and a € R define

Tr(a) = sup 3 |F(ay) — F(@)
P xzeP
where the supremum is taken over all partitions of (—oo, a]. More generally if —oo <
a <b,let
Ti(a,b) = sup 3 (e, o4 = sup 3 | Flas) — F(a)
P zeP P zeP
where supremum is over all partitions P of (a,b]. A function F' : R — C is said to

be of bounded variation if Tr(c0) < oo and we write F' € BV. More generally we
will let BV ((a,b]) denote the function F : [a,b] "R — C such that Tr(a,b] < cc.
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Definition 17.6. A function F' : R — C is absolutely continuous if for all € > 0
there exists § > 0 such that

n

D IF(b) = F(ag)| < e

i=1

whenever {(a;,b;)}._, are disjoint open intervals in (a, b] such that > (b; —a;) < 8.
i=1

Lemma 17.7. Let F: R — C and —co < a < b < ¢, then 1)

(17.4) Tr(a,c] = Tr(a,b] + Tp(b, .
2) Letting a = —oco in this expression implies
(17.5) TF(C) = TF(b) + TF(b, C]

and in particular Tr is monotone increasing. 3) If Tp(b) < oo for some b € R then
Tr(—o0) =0 and

(17.6) Ti(a+) — Tp(a) < limsup |F(y) — F(a)|

yla

for all a € (=00, b). In particular T is right continuous if F is right continuous.

Proof. By the triangle inequality, if P and P’ are partition of (a,c] such that
P C I, then

Y |F(zy) = F(x)| < Y |F(ay) — F()].
zelP zelP’
So if P is a partition of (a,c|, then P C P’ := PU{b} implies

Y |F(ay) = F@)| < ) |F(zy) — F(o)]

zelP zelP’
= Y [|Flay)-F@)|+ Y |F(ay)~F(x)
z€P'N[a,b] zeP'Nb,c]
< Tp (CL, b] + TF(b, C].

Thus we see that Tr(a,c] < Tg(a,b]+Tp (b, c|. Similarly if Py is a partition of (a, b]
and Py is a partition of (b, ¢], then P =P; UPy is a partition of (a,c] and
> |F(xy) = F@)|+ Y |F(zy) = F(z)] = Y |F(zy) - F(a)|
xzelPy zelPs xzelP
< Tp(a,c.
From this we conclude Tr(a,b] + Tr (b, ¢] < Tr(a, c] which finishes the proof of Egs.
(17.4) and (17.5).

Suppose that T (b) < co and given € > 0 let P be a partition of (—oo, b] such
that

D,

Tp(d) < 3 1Flas) - F(a)| +e.
xEP
Let 9 = minP then Tr(b) = Tr(xo) + Tr(xo,b] and by the previous equation
Tp(x0) + Tr(w0,0) < Y _|F(xy) — F(x)| + € < Tr(o,b] + €
xEP

which shows that Tp(xo) < e. Since TF is monotone increasing and € > 0, we
conclude that Tr(—o00) = 0.
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Finally let a € (—o0,b) and given € > 0 let P be a partition of (a, b] such that

(17.7) Tp(b) — Tr(a) = Tr(a,b] < > |F(z4) — F(z)| + .
Let y € (a,a4 ), then

D IF(ay) ~Fla)+e< Y [Flzy) — F(a)| +e

zeP 2€PU{y}
=|F(y) ~ F(a)l + ) [F(ey) ~ Fla)| +e
zeP\{y}
(173) < |F(y) - F(a)| + Te(y, ] + .
Combining Egs. (17.7) and (17.8) shows
Tr(y) —Tp(a) + Tp(y,b] = Tr®)—Tr(a)

< |F(y) - F(@)| + Tr(y,b] +
Since y € (a,a4 ) is arbitrary we conclude that
Tp(a+) — Tr(a) = limsup T(y) — Tr(a) < limsup|F(y) — F(a)] + ¢
yla yla

which proves Eq. (17.6) since € > 0 is arbitrary. m

Lemma 17.8. 1) Monotone functions F' : R — R are in BV (a,b] for all —oco <
a < b < 0. 2) Linear combinations of functions in BV are in BV, i.e. BV is
a vector space. 3) If F : R — C is absolutely continuous then F is continuous
and F € BV (a,b] for all —co < a <b < o00. 4) If F: R— R is a differentiable

function such that sup,cp |[F'(x)| = M < oo, then F is absolutely continuous and
Tr(a,b] < M(b—a) for all —0o < a <b<oo. 5) Let f € L'((a,b],m) and set

(17.9) Fla) = /( S

for x € (a,b]. Then F is absolutely continuous.

Proof. 1) If F is monotone increasing and PP is a partition of (a, b] then

SOIF ()~ F@)| = 32 (Fles) — F(a)) = F®) ~ Fla)

P zeP
so that T (a,b] = F (b) — F(a). Also note that F € BV iff F(c0) — F(—0) < 0.
Ttem 2) follows from the triangle inequality. 3) Since F' is absolutely continuous,
there exists § > 0 such that whenever a < b < a + ¢ and PP is a partition of (a, b],

S IF(s) - o) <1
z€elP
This shows that Tp(a,b] <1 for all @ < b with b — a < §. Thus using Eq. (17.4), it
follows that Tp(a,b] < N < oo if b—a < N§ for an N € N.
4) Suppose that {(a;,b;)}.—, C (a,b] are disjoint intervals, then by the mean
value theorem,

Z\F(bi)*F(ai)\ < Z\F'(Ciﬂ(bi*ai)SMm( i1(ai, b))
S Mi(bz—az)SM(b—a)

i=1
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form which it clearly follows that F' is absolutely continuous. Moreover we may
conclude that Tr(a,b] < M(b— a).
5) Let p be the positive measure du = |f|dm on (a,b]. Let {(a;,b;)};_, C (a,b]
be disjoint intervals as above, then
SOIF(b) - Fla)] = /( S
i=1 = @i,0i

=1
3 / \fldm
= Jan

(17.10) - / (fldm = (U (as, ).
Ui (@i,bi]

Since p is absolutely continuous relative to m for all € > 0 there exist 6 > 0 such
that p(A) < e if m(A) < 6. Taking A = U, (a;,b;] in Eq. (17.10) shows that F
is absolutely continuous. It is also easy to see from Eq. (17.10) that T (a,d] <
Jiap | f1dm. =

Theorem 17.9. Let F : R — C be a function, then

(1) Fe BV iff ReF € BV and Im F € BV.

(2) If F : R — R is in BV then the functions Fy := (Tp + F) /2 are bounded
and increasing functions.

(3) F:R—Risin BV iff F = F, — F_ where Fy are bounded increasing
functions.

(4) If F € BV then F(x+) exist for all x € R. Let G(x) := F(x+).

(5) F € BV then {x:lim,_,, F(y) # F(z)} is a countable set and in particular
G(z) = F(x+) for all but a countable number of x € R.

(6) If F € BV, then for m — a.e. x, F'(x) and G'(x) exist and F'(x) = G'(x).

IN

Proof. Item 1. is a consequence of the inequalities
|F'(b) — F(a)] <|Re F(b) —Re F(a)| + Im F(b) — Im F(a)| < 2|F(b) — F(a)]|.
2. By Lemma 17.7, for all a < b,
(17.11) Tr(b) — Tr(a) = Tr(a,b] = [F(b) — F(a)]
and therefore
Tp(b) = F(b) > Tr(a) + Fla)
which shows that Fy are increasing. Moreover from Eq. (17.11), for b > 0 and

a <0,
|F(b)] |[F(b) — F(0)| + [F(0)] < Tr(0,b] + [F(0)|

Tr(0,00) + [F(0)|

IN A

and similarly
[F(a)] < [F(0)] + Tr(—00,0)
which shows that F' is bounded by |F(0)| + Tr(0c0). Therefore Fy is bounded as
well.
3. By Lemma 178 if F = F, — F_, then
Tr(a,b] < Tr (a,b] + Tr_(a,0] = [Fy(b) = Fy(a)| + [F-(b) — F(a))

which is bounded showing that F' € BV. Conversely if F' is bounded variation, then
F =F, — F_ where F are defined as in Item 2.
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Items 4. — 6. follow from Items 1. — 3. and Theorem 17.2. =
Theorem 17.10. Suppose that F : R — C is in BV, then
(17.12) Tp(z+) — Tp(x)| < |F(a+) — F(2)]

for all x € R. If we further assume that F' is right continuous then there exists a
unique measure . on B = Bgr. such that

(17.13) wu((=o0,z]) = F(z) — F(—00) for all x € R.

Proof. Since F' € BV, F(x+) exists for all € R and hence Eq. (17.12) is a
consequence of Eq. (17.6). Now assume that F' is right continuous. In this case
Eq. (17.12) shows that T (z) is also right continuous. By considering the real
and imaginary parts of F' separately it suffices to prove there exists a unique finite
signed measure p satisfying Eq. (17.13) in the case that F is real valued. Now
let Fy = (Tp + F) /2, then Fy are increasing right continuous bounded functions.
Hence there exists unique measure p on B such that

1((~00,2]) = Fi(a) — Fi(—00) Vo € R.

The finite signed measure p = p, — pu_ satisfies Eq. (17.13). So it only remains to
prove that p is unique.

Suppose that fi is another such measure such that (17.13) holds with p replaced
by fi. Then for (a, b,

lul (a,b] = sup Yy " |F(z) — F(z)| = |l (a,0]

where the supremum is over all partition of (a,b]. This shows that |u| = |fz] on
A C B — the algebra generated by half open intervals and hence || = || . It now
follows that |u| + p and || 4+ & are finite positive measure on B such that

(Il + ) ((a,0]) = [ul((a,b]) + (F(b) — F(a))
|l ((a,0]) + (F(b) — F(a))
= (Al + ) ((a,0])
from which we infer that |u| + p = || + 2 = |u| + 2 on B. Thus p = fi.

Alternatively, one may prove the uniqueness by showing that C := {A € B :
1(A) = i(A)} is a monotone class which contains A. ®

Definition 17.11. A function F' : R — C is said to be of normalized bounded
variation if F' € BV, F is right continuous and F'(—oco) = 0. We will abbreviate this
by saying F' € NBV. (The condition: F(—o0) = 0 is not essential and plays no role
in the discussion below.)

Theorem 17.12. Suppose that F € NBV and pp is the measure defined by Eq.
(17.13), then

(17.14) dpiy = F'dm + dX

where X\ L m and in particular for —oo < a < b < oo,

b
(17.15) F(b) - Fla) = / Fldm + A((a,0]).

a
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Proof. By Theorem 16.2, there exists f € L'(m) and a complex measure \ such
that for m -a.e. x,

- p(Ey)
S (B,

(17.16) flx) =

for any collection of {E,}, ., C B which shrink nicely to {x}, A L m and
dpp = fdm + dA.

From Eq. (17.16) it follows that

CF@am) - FE) (e h)

11%10 h Al h = f(x) and
. Flx—h) - F(z) _pp((x—h,a])
e - It e

for m — a.e. z, i.e. 79 F(z) = 72 F(z) = f(z) for m —a.e. x. This implies that F

is m — a.e. differentiable and F’'(z) = f(x) for m —a.e. z. m

Corollary 17.13. Let F: R — C be in NBV, then
1) ppLmiff F=0 m ae
(2) pp<miff x\=0 iff

(17.17) jp((a, b)) = / F'(x)dm(x) for all a < b.
(a,b]

Proof. 1. If F/ =0 m ae., then by Eq. (17.14), pp = A L m. If pp L m,
then by Eq. (17.14), F'dm = duy — d\ L dm and by Remark 13.9 F'dm = 0, i.e.
F' =0m-a.e.

2. If up < m, then d\ = dup — F'dm < dm which implies by Lemma 14.3 that
A = 0. Therefore Eq. (17.15) becomes (17.17). Now let

p(A) := [ F'(z)dm(z) for all A € B.
/

Recall by the Radon - Nikodym theorem that [ |F’(z)|dm(x) < oo so that p is
a complex measure on B. So if Eq. (17.17) holds, then p = uy on the algebra
generated by half open intervals. Therefore p = p as in the uniqueness part of
the proof of Theorem 17.10. Therefore dup = F'dm and hence A=0. m

Theorem 17.14. Suppose that F : [a,b] — C is a measurable function. Then the
following are equivalent:

(1) F is absolutely continuous on [a,b].
(2) There exists f € L'([a,b]),dm) such that

(17.18) F(z) — Fla) = / " fdm va € ab]

a

(3) F' exists a.e., F' € L*([a,b],dm) and

(17.19) F(z) — F(a) = /1 F'dmVz € [a,].

a
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Proof. In order to apply the previous results, extend F' to R by F(x) = F(b) if
x >band F(z) = F(a) if z < a.

1. = 3. If F is absolutely continuous then F' is continuous on [a,b] and
F — F(a) = F — F(—o0) € NBV by Lemma 17.8. By Proposition 17.4, up < m
and hence Item 3. is now a consequence of Item 2. of Corollary 17.13. The assertion
3. = 2. is trivial.

2. = 1. If 2. holds then F is absolutely continuous on [a, b] by Lemma 17.8. m

18. APPENDIX: COMPACTNESS ON METRIC SPACES

Definition 18.1. Let (X, 7) be a topological space and A C X. An open cover
of Ais a collection of open sets {V,},; such that A C Uae V.

Definition 18.2. A set K C X is compact if every open cover of K has a fi-
nite subcover, That is to say if K C UuesV, with the V,, € 7, then there exists
{a; €I:i=1,2,...,n} such that “open covers” {V,}aer of K there exists finite
subcover K C V,,,,UV,, U...V,, . We will write K CC X to indicate that K is a
compact subset of X.

Example 18.3. Any finite subset K C X is compact.

Proposition 18.4. Let (X, p) be a metric space. If K C X is compact then K is
closed.

Proof. We must show that K¢ is open which is equivalent to showing for all
x ¢ K there is a 6 > 0 such that B(x,6) N K = (). To construct &, choose for all
k € K, ri > 0 such that d(z, k) > r,/2. Then V}, := B(k,ry) for k € K forms an
open cover of K, hence there exists k1, ..., k, € K such that

KC O B(kn,74,).

i=1

Let 6 = min{rg,,...,7,) > 0, then B(z,r) N B(k;,r,) = () for all . Thus

B(z,r) C (U B(k;,ry,))¢ C K¢
i=1
which shows that K¢ is open hence that K is closed. m

Definition 18.5. Let (X, p) be a metric space. A subset K C X is
(1) complete if (K, p|k) is a complete metric space.
(2) totally bounded if for all € > O there exists a finite subset F' C K such that
K C UperB(k,e).
(3) sequentially compact if every sequence {z,} -, C K has a convergent
subsequence in K. That is there should be y, = z,, and xz € K such that
limg oo Y = .

Remark 18.6. If K C X is a totally bounded subset and F' C K, then F is also
totally bounded. Indeed, any cover K by € — balls is also a cover of F.

Theorem 18.7. Let (X, p) be a metric space and K C X. The following are
equivalent

(a) K is compact.
(b) K is sequentially compact.
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(c) K is complete and totally bounded.

Proof. By replacing X by K if necessary we may assume that K = X.

(a = b) We will show that not b = not a. Suppose that X is not sequentially
compact, then there exists {z,} -, C X with no convergent subsequence.’ This
implies for all z € X, there exists 6, > 0 such that {n: z, € B(z,,)} is finite.
Now {B(x,6z)},cx is an open cover of X which we claim has not finite subcover.
For if there was a finite set F' C X such that X = U,cpB(x,§,), then at least for
one x € F we would have to have that {n : z,, € B(x,6,)} is infinite, contradicting
the definition of 6.

(b=>c) Let {x,,},-, C X be a Cauchy sequence, then assuming b there is an
z € X and a subsequence {y,},-, of {z,} -, such that lim,, oy, = x. By the
triangle inequality we have

d(x, xn) < d(:l?, ym) + d(yma an)
and therefore

lim sup d(z,2,) <lim sup d(z,yn,)+lim sup d(Ym,z,) =0+0,
n—oo m—0Q0 m,n—o0

since lim, ..o ¥n = 2 and {xn}ff:l is Cauchy. This shows that K is complete.
If K were not totally bounded then there exists ¢ > 0 such that the open cover
{B(z,€) : x € X} has no finite subcover. We now choose a sequence {z,} -, C X
inductively as follows. Let x1 € X be chosen arbitrarily. Assume that 1,2, ...,z
have already been chosen. Since X # UF_ ; B(z;,€) we may choose zp41 € X \
UY_, B(w;, €). This defines a sequence {z,,} -, with the property that d(zy,z;) > €
for all 7 and k. It is clear that this sequence is not convergent, in fact it is not even
Cauchy. Hence if K is not totally bounded then K is not sequentially compact.

(c=>a) Let V := {V4},c 4 be an open cover of X. Since X is totally bounded,

there exist a finite set Fy C X such that X = Uyep, B(z,1) = Uyep, B(x, 1) where
B(z,e) = {y € X : d(z,y) < €} which you should check is a closed set. For sake of
contradiction, suppose that X is not covered by a finite subset of V. In this case, it
follows that there is and y € Fj such that X; := B(y;,1) is not covered by a finite
subset of V. Working in the same with X replaced by X; we may find a closed
subset X5 = B(y2,1/2) N X; which is not covered by a finite subset of V. Working

inductively, we may construct closed subsets {X;} of X such that

XiD0XoDX3D...X,D ...,

(18.1) diam(X;) :=sup{d(z,y) : z,y € X;} <2/i,

and no X; may be covered by a finite subset of V. Let {x,,},-; C X be a sequence
such that z,, € X,, for all n. It is clear by Eq. (18.1) that {z,} -, is Cauchy and
therefore convergent, by assumption ¢, to some z € NX;. We have use the fact that
the X; ’s are closed here. Because V is a cover of X, there is a V' € V such that
x € V. Since V contains B(z, §) for some § > 0, it is easily seen that by Eq. (18.1)

6(An alternative argument.) By passing to a subsequence of E := {x,}o° ; if necessary we
may assume that &, # &m if m # n. Choose €1 > 0 such that B(z1,€e1) N {xn}tre; = {z1} and
then choose, inductively, €; > 0 so that B(z;,€) N B(xj,¢;) = 0 if © # j. It is now easily checked
that E is closed and that V = {E°}U{B(x;,€;) : i = 1,2, ...} is an open cover of X with no finite
subcover.
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and the triangle inequality that X,, C V for all large enough n. But this contradicts
the assertion that no X; could be covered by a finite subset of V. m

Corollary 18.8. Compact subsets of R"™ are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [—M, M]™ for some positive integer M.
For ¢ > 0, let

As =0Z" N [-M,M]|" :={éx:x € Z" and §|z;| < M for i =1,2,...,n}.
We will shows that by choosing 6 > 0 sufficiently small, that
(18.2) K C[-M,M]" C Ugzen, B(z,€)

which shows that K is totally bounded. Hence by Theorem 18.7, K will be compact.
Suppose that y € [-M, M]™, then there exists x € As such that |y; — z;| < 6 for

i=1,2,...,n. Hence
mn

P(zy) =Y (vi - z;)? < né®
i=1
which shows that d(z,y) < \/né. Hence if choose § < €/y/n we have shows that
d(z,y) <€, ie. Eq. (18.2) holds. m

19. APPENDIX: DYNKIN’S m — A\ THEOREM

Definition 19.1 (Lambda Class). As collection D of subsets of X is a A—class if
D satisfies the following properties:
(1) XeD
(2) If A,B € Dand ANB = ¢, then AUB € D. (Closed under disjoint unions.)
(3) f A,B e Dand AD B, then A\ B € D. (Closed under proper differences.)
(4) If A, € D and A, T A, then A € D. (Closed under countable increasing
unions.)

Definition 19.2 (7 — class). A family of sets C C P(X) is called a 7 — class if it
is closed under finite intersections.

Theorem 19.3 (7 — A Theorem). If D is a A class which contains a family C of
subsets of X which is closed under intersections (i.e. a m-class) then o(C) C D.

Proof. (Taken from Billingsley, pp. 33-34.) Let F be the intersection of all
A—classes which contains C. Then F is a A—class and C C F C D.
Let
Fi={ACX:ANnBeFV BeC(}.

Then F; is also a A—class (you check) and since C C Fy, we know that F C Fj.
(Recall that F is the smallest A—class which contains C.) From this we conclude
that if A€ F and B € C then AN B € F.
Let
Fo={BCX:ANnBeFVAecF}

Then F, is a A—class which, by the above paragraph, contains C. As above this
implies that F C F3, i.e. we have shown that F is closed under intersections.

If A,Be F,then ANBeF,ANANB e F,and AUB=AU(A\ANB) € F.
Therefore, F is closed under finite unions. Since F is a A—lass (in particular closed
under countable increasing unions) and closed under finite unions, F is closed under
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arbitrary countable unions. Thus, F is a o-algebra and since C C F, ¢(C) C F C D.
L]

As an application, let us give another proof of Theorem 4.7 in the case that
w(X) =v(X) < cc.

Proof. (Proof of Theorem 4.7)Let

D={AeM:ulA) =v(A)}.

The reader may easily check that D is a A class. For example for item 4. we have
if A,, € D then

1(An) = v(4n).
If A, T A, then by passing to the limit in the previous equation we learn that
w(A) = v(A), ie. that A € D. In checking item 3. we make use of the fact that

w(X) = v(X) < 00.) The proof of the finite case now follows from Dynkin’s 7 — A
Theorem 19.3. =

20. APPENDIX: MULTIPLICATIVE SYSTEM THEOREM

Definition 20.1 (Bounded Convergence). Let © be a set. We say that a se-
quence of functions X,, from 2 to R or C converges boundedly to a function X if
lim,, 00 X (w) = X (w) for all w € Q and

sup{| X, (w)| :w e Qandn=1,2,...} < oo.

Definition 20.2 (Multiplicative System). A collection of real valued functions (Q)
on () is a multiplicative system provided fg € Q whenever f,g € Q.

Theorem 20.3 (Dynkin’s Multiplicative System Theorem). Let H be a linear space
of functions which contains the constant functions and is closed under bounded
convergence. If Q C H is multiplicative family of bounded functions, then H
contains all bounded o(Q)-measurable functions.

Theorem 20.4 (Complex Multiplicative System Theorem). Let H be a complex
vector space of complex functions on € such that: 1 € H, H is closed under complex
conjugation, and H is closed under bounded convergence. Suppose Q is a multi-
plicative family of bounded functions contained in H which is also closed under
congugation. Then H contains all of the bounded o(Q) measurable functions.

The proof of these Theorems is based on Dynkin’s 7—A Theorem 19.3.
Proof. (of the Multiplicative System Theorems.) Put A € D if 14 € H and
denote by C the family of all sets of the form:

(20.1) B:={weQ: X (w)€Ru,..., Xp(w) € Ron}

where m = 1,2,..., X, € Q and Ry are open intervals in the real case and Ry
are rectangles in C in the complex case. One may check that D is a A—system, C
is closed under intersections, and that o(Q) = ¢(C). The 7\ Theorem 19.3 will
imply that 0(Q) = 0(C) C D once we show that C C D. This is our next task.

It is easy to construct, for each k£ a uniformly bounded sequence of continu-
ous functions f¥ converging to the characteristic function 1g,. By Weierstrass’
theorem, there exists polynomials p% (x) such that |pfl(:1:) - f,’f(:z:)’ < 1/n for
|| < || Xk|loo in the real case and polynomials polynomials pf,(z,%) in z and z
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such that |pf(z,2) — f¥(2)| < 1/n for |z| < || Xi|le in the complex case. The
functions

F=pL(X)p2(X2)...p7(X,n) (real case)

F =pp (X1.X1)p5 (X2, X2) .. 9 (Xim, Xin)  (complex case)
on §2 are uniformly bounded, belong to H and converge pointwise to 1g as n — oo,
where B is the set in Eq. (20.1). Hence this set is an element of D and therefore
ccD.
Since 0(Q) C D, if X is an arbitrary bounded o(Q)-measurable function then
{£ < X < £} € 0(Q) C D in the real case and

/ /
{E <Rex <FPLF _pox < EEL
n

n n n

}ea(Q)cD

in the complex case. Therefore

=k
X, = Z ;1%<X§% €H (real case)

k=—o0

and

k+ ik’
X, = Z - 1{%<ReX§ﬁn”—l,%<ImX§k/%}Xn € H. (complex case)
koK

Because X,, € ‘H converges to X boundedly and H is closed under bounded con-
vergence, X isin H. m




