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6. ELLIPTIC ORDINARY DIFFERENTIAL OPERATORS

Let Q C, R™ be a bounded connected open region. A function u € C?(1) is said
to satisfy Laplace’s equation if

Au =0 in Q.
More generally if f € C(Q) is given we say u solves the Poisson equation if
—Au = fin Q.

In order to get a unique solution to either of these equations it is necessary to
impose “boundary" conditions on u.

Example 6.1. For Dirichlet boundary conditions we impose u = g on 02 and
for Neumann boundary conditions we impose % = gon 0f), where g : 90 — R
is a given function.

0
Lemma 6.2. Suppose f : ) <, R, 09 is C? and g : 000 — R is continuous. Then
if there exists a solution to —Au = f withu = g on O such that u € C*(Q)NC*(Q)
then the solution is unique.

Definition 6.3. Given an open set Q C R™ we say u € C*(Q) if u € CH(Q)NC(Q)
and Vu extends to a continuous function on Q.

Proof. If w is another solution then v = uw — u solves Av = 0,v = 0 on 0. By
the divergence theorem,

Oz/Av-vdm: —/\Vu|2dm+/ vVv~ndU:—/|Vv|2dm,
o0
Q ) Q

where the boundary terms are zero since v = 0 on 0f). This identity implies
J|Vu|?*dz = 0 which then shows Vv = 0 and since Q is connected we learn v
Q

is constant on 2. Because v is zero on 9f) we conclude v = 0, that is u = 4. =
For the rest of this section we will now restrict to n = 1. However we will allow
for more general operators than A in this case.

6.1. Symmetric Elliptic ODE. Let a € C! ([0, 1], (0, 00)) and
(6.1) Lf=—(af") = —af’ —d'f for f € C*(]0,1]).

In the following theorem we will impose Dirichlet boundary conditions on L by
restricting the domain of L to

D(L) = {f € C*([0,1],R) : f(0) = f(1) = 0}.

Theorem 6.4. The linear operator L : D(L) — C([0,1],R) is invertible and L~" :
C([0,1],R) — D(L) c C?*([0,1],R) is a bounded operator.

Proof.
(1) (Uniqueness) If f,g € D(L) then by integration by parts

1 1
(6.2) (Lf.g) = / (Lf)()g(a)de = / o) f' (@) (z) da.
Therefore if Lf = 0 then

0=(Lf,f) = / ale) f'(x)? de
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and hence f’ =0 and since f(0) =0, f = 0. This shows L is injective.
(2) (Existence) Given g € C([0,1],R) we are looking for f € D(L) such that
Lf =g, ie (af') =g. Integrating this equation implies

~a(o)f @) =~C+ [ty
Therefore
fTZ)==—El-—l/ﬁy<zgé39@0dy

which upon integration and using f(0) = 0 gives

rC 1
f(x) :/0 Wz) dz 7/1y§z§x @ 9(y) dz dy.

If we let
(6.3) ofz) = /0 ’ a(lz) i
the last equation may be written as
(6.4) f(z) = Ca(z) — /OI(OZ(SC) —a(y)g(y) dy.

It is a simple matter to work backwards to show the function f defined in
Eq. (6.4) satisfies Lf = g and f(0) = 0 for any constant C. So it only
remains to choose C' so that

0=f(1) = Ca(l) - / (a(1) - a(y))g()dy.

Solving for C gives C' = fol (1 — %) g(y) dy and the resulting function f
may be written as

)= [ 1 (1= 28 (o) = 1, la(e) —atu)| a(s) d

1
=A<%%wmw@

where

a(y) :
alx — == if <
(6.5) Glz,y) = { W= ath -7

aly) (11— 323 it y<ua.

For example when a =1,

z(1l— if z<
ﬂ%w—{y&_g ﬁy;z'

Definition 6.5. The function G defined in Eq. (6.5) is called the Green’s func-
tion for the operator L : D(L) — C([0,1],R).
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Remarks 6.6. The proof of Theorem 6.4 shows

(6.6) (L71g) (2) = / G, y)9(y)dy

where G is defined in Eq. (6.5). The Green’s function G has the following proper-
ties:
(1) Since L is invertible and Gis a right inverse, G is also a left inverse, i.e.
GLf = f for all f € D(L).
(2) G is continuous.
(3) G is symmetric, G(y,z) = G(zx,y). (This reflects the symmetry in L,
(Lf,g) = (f,Lg) for all f,g € D(L), which follows from Eq. (6.2).)
(4) G may be written as
_J u@ly) it z<y
Glz,y) = { u(y)v(z) if y<a.
where u and v are L — harmonic functions (i.e. and Lu = Lv = 0) with
uw(0) = 0 and v(1) = 0. In particular L,G(z,y) = 0 = L,G(z,y) for all
Y # .
(5) The first order derivatives of the Green’s function have a jump discontinuity
on the diagonal. Explicitly,
Gy(z,z+) — Gy(z,2—) = 0
which follows directly from
a(x) :
1 - it z<y
(6.7 Gylwy) = o { a) i
a(y) (l—m> i y<uw
By symmetry we also have
1
Go(y+,y) = Gu(y—,y) = ———.
(4:9) = Galy=1) =~
(6) By Items 4. and 5. and Lemma 5.11 it follows that

L,G(z,y) = LyToey) = dily (@(y)Gy(.9)) = 8(y — )

and similarly that

As a consequence of the above remarks we have the following representation
theorem for function f € C?([0,1]).

Theorem 6.7 (Representation Theorem). For any f € C*([0,1]),

(6.8) f(2) = (GLf)(@) - Gy(w, m)a(w) f )|

y=0

Moreover if we are given h : 9[0,1] — R and g € C ([0, 1]), then the unique solution
to
Lf =g with f = h on 9[0,1]

y=1

(6.9) f(@) = (Gg)(x) = Gy(z,y)a(y)h(y)

y:0'
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Proof. By repeated use of Lemma 5.11,
1
d
(GL) =~ [ Glaw)7-a)f W)y
0

= /1 Gy(z,y)a(y)f' (y)dy (no boundary terms since G(z,0) = G(z,1) = 0)
0

y=1

= Gy(z,y)a(y)f(y) + /0 L,G(z,y)f(y)dy

-
=Gyl n)a)s )]+ [ o =iy

=Gy y)aW)f(y)| _ + /()

which proves Eq. (6.8).
Now suppose that f is defined as in Eq. (6.9). Observe from Eq. (6.7) that

li%xlla(l)Gy(x, 1) =—1and li?ola(())Gy(ZE,O) =1

and also notice that Gy(z,1) and Gy(x,0) are L, — harmonic functions. Therefore
by these remarks and Eq. (6.6), f = h on 9]0, 1] and

Lf(z) = g(x) — L.Gy(z,y)a(y)h(y)

y=1
Yoo~ 9@)

as desired. m

6.2. General Regular 2nd order elliptic ODE. Let J = [r,s] be a closed
bounded interval in R.

Definition 6.8. A second order linear operator of the form
(6.10) Lf=—af" +bf +cf
with a € C?(J), b€ C!(J) and ¢ € C?(J) is said to be elliptic if a > 0, (more

generally if a is invertible if we are allowing for vector valued functions).

For this section L will denote an elliptic ordinary differential operator. We will
now consider the Dirichlet boundary valued problem for f € C?([r, s]),

(6.11) Lf =—af" +bf' +cf =0with f =0 on 9J.

Lemma 6.9. Let u,v € C?(J) be two L — harmonic functions, i.e. Lu =0 = Lv
and let
U v

o ] =uv’ —vu’
be the Wronskian of w and v. Then W satisfies

by 41 _ b1

a deW  aW

W (z) = W(r)els a®dt,

W :=det {
W' =

Proof. By direct computation

aW' = a (" —vu") = u (bv' + cv) — v (bu' + cu) = bW.
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Definition 6.10. Let H*(.J) denote those f € C*~'(J) such that (=1 is ab-
solutely continuous and f*) € L2(.J). We also let H3(J) = {f € H*(J) : flas =0} .
We make H*(J) into a Hilbert space using the following inner product
k
(u, ) i = (Du, Djv)L2 .
§=0

Theorem 6.11. As above, let D(L) = {f € C*(J) : f =0 on 8J} . If the Nul(L)N
D(L) = {0}, d.e. if the only solution f € D(L) to Lf = 0is f = 0, then L :
D(L) — C(J) is an invertible. Moreover there exists a continuous function G on
J x J (called the Dirichlet Green’s function for L) such that

(6.12) (Lflg) () = /]G(w,y)g(y)dy forallge C(J).

Moreover if g € L*(J) then Gg € H3(J) and L(G g) = g a.e. and more generally
if g € H*(J) then Gg € H¥2(J)

Proof. To prove the surjectivity of L : D(L) — C (J), (i.e. existence of solutions
feD(L) to Lf =g with g € C(J)) we are going to construct the Green’s function
G.

(1) Formal requirements on the Greens function. Assuming Eq. (6.12)
holds and working formally we should have

(613) (@) = Lo [ Glonatody = [ LGy
for all g € C(J). Hence, again formally, this implies
(6.14) L,G(z,y) =6(y — z) with G(r,y) = G(s,y) = 0.

This can be made more convincing by as follows. Let ¢ € D := D(r,s),
then multiplying

g(2) = L, / Gz, y)g()dy

by ¢, integrating the result and then using integration by parts and Fubini’s
theorem gives

| s = [ aota)r. | @)
~ [ doL.ota) [ ayGie. o)
J J
= / dyg(y) / dx L,¢(x)G(x,y) for all g € C(J).
J J

From this we conclude
/J Lod(2)Glz, y)dz = 6(y).

ie. LxTG(:v,y) = (5(.’13 — y)

(2) Constructing G. In order to construct a solution to Eq. (6.14), let u,v be
two non-zero L — harmonic functions chosen so that u(r) = 0 = v(s) and
u/(r) =1=1'(s) and let W be the Wronskian of v and v. By Lemma 6.9,
either W is never zero or is identically zero. If W = 0, then (u(r),u/(r)) =



(6.15)

(6.16)

(6.17)

(6.18)
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A(v(r),v'(r)) for some A € R and by uniqueness of solutions to ODE it
would follow that w = Av. In this case u(r) = 0 and u(s) = Av(s) =0, and
hence v € D(L) with Lu = 0. However by assumption, this implies u = 0
which is impossible since «'(0) = 1. Thus W is never 0.

By Eq. (6.14) we should require L,G(x,y) = 0 for z # y and G(r,y) =
G(s,y) = 0 which implies that

_ [ u@)oly) if z<y
aen={ 100 i 23
for some functions ¢ and 1. We now want to choose ¢ and 1 so that G is
continuous and L,G(z,y) = §(z — y). Using

[ W(@)dly) i z<y
Gol@,y) = { Sayply) i x>y

Lemma 6.9, we are led to require
0=_Gly+,y) — Gly—y) = uy)o(y) —v(y)(y)
1= —[a(@)Ga(z,y)] 52y L = —aly) [V (W)¥(y) — v’ (1)$()] -

Solving these equations for ¢ and v gives

o \N__L (v
v )T aW\ u
and hence

1 [ ufp) i z<y
Glory) = a<y>w<y>{ vlnly) i z>y.

With this G, Eq. (6.12) holds. Given g € C(J), then f in Eq. (6.12)
may be written as

f(a) = /J G, y)9(y)dy

o) [ ’ %g@)dy ~ule) [ S %g@m

Differentiating this equation twice gives

@ =-v@ [ ’ %g@)d.@ @) [ S a(”ig@)dy

y)W Y)W (y)
and
1" — ! u(y) — " (x ° v(y)
f(z) ( )/T a(y)w(y)g(y)dy ( )/x a(y)W(y)g(y)dy
, u(x) ) v(z) o
(w)a(l,)w(z) (z) +u (w)—a(x)w(x)g( )

Using Lv = 0 = Lu, the definition of W and the last two equations we find

~a(o)f" (@) = [be)e (@) + clo)o(o)] [ %g@)dy

+be)u (@) +elo)u(o)] [ S (i (v)dy + g(z)

x
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ie. Lf=g.

Hence we have proved L : D(L) — C(J) is surjective and L~! : C(J) — D(L) is
given by Eq. (6.12).

Now suppose g € L*(J), we will show that f € C*(J) and Eq. (6.17) is still
valid. The difficulty here is that it is clear that f is differentiable almost everywhere
and Eq. (6.17) holds for almost every z. However this is not good enough, we need
Eq. (6.17) to hold for all . To remedy this, choose g, € C(J) such that g, — ¢ in
L?(J) and let f,, := Gg,. Then by what we have just proved,

_ / G (2, 9)gn (y)dy
J

Now by the Cauchy-Schwarz inequality,

/J Gl ) [9(y) — 9n ()] dy

<llg =l [ 1Gate Py < Clg = gulleg

where C':= sup,¢; [, |G.(, y)|2 dy < co. From this inequality it follows that f,(z)
converges uniformly to [, G.(x,y)g(y)dy as n — oo and hence f € C'(J) and

/G x,y)g9(y)dy for all x € J,

i.e. Eq. (6.17) is valid for all z € J. It now follows from Eq. (6.17) that f € H?(J)
and Eq. (6.18) holds for almost every . Working as before we may conclude Lf = g
a.e. Finally if g € H*(J) for k > 1, the reader may easily show f € Hy™(J) by
examining Eqs. (6.17) and (6.18). m

Remark 6.12. When L is given as in Eq. (6.1), b= —a’ and by Lemma 6.9
W(z) = W(0)e~ Js &0t — yy ()= n(al@)/a(0)) —

So in this case
_ u(z)u(y) if z<y
R e OO { vauly) if z>y

where we may take

(@) = alz) = /: ﬁdz and v(z) = (1 - Z<—”i§) .

Finally for this choice of v and v we have
W(0) = u(0)v'(0) — v/ (0)v(0) = ——

giving
_Jula(y) if z<y
G ={ ohin) it 2s
which agrees with Eq. (6.5) above.

Lemma 6.13. Let L*f := —(af)” — (bf) +cf be the formal adjoint of L. Then

(6.19) (Lf g)=(f,L*g) for all f,g € D(L)
where (f,g) == [, f(x)g(z)dx. Moreover if nul(L) = {0} then nul(L*) = {0} and

the Greens functwn for L* is G* defined by G*(z,y) = G(y,x), where G is the
Green’s function in Eq. (6.15). Consequently L;G(z,y) = 6(x — y).



PDE LECTURE NOTES, MATH 237A-B 69

Proof. First observe that G* has been defined so that (G*g, f) = (g, Gf) for
all f € L*(J).Eq. (6.19) follows by two integration by parts after observing the
boundary terms are zero because f = g =0 on 9J. If g € nul(L*) and f € D(L),
we find

0= (L"g,f)=(g,Lf) for all f e D(L).
By Theorem 6.11, if nul(L) = {0} then L : D(L) — C(J) is invertible so the above
equation implies nul(L*) = {0} . Another application of Theorem 6.11 then shows
L*: D(L) — C(J) is invertible and has a Green’s function which we call G(z,y).
We will now complete the proof by showing G = G*. To do this observe that
(f.9)=(L*Gf.9) = (Gf,Lg) = (f,G"Lyg) for all f,g € D(L)

and this then implies G*L = Idpy = GL. Cancelling the L from this equation,
show G* = G or equivalently that G = G*. The remaining assertions of the Lemma
follows from this observation.

Here is an alternate proof that L;G(z,y) = d(x — y), also see Using GL =
Ip(r), we learn for v € D(L) and v € C (J) that

(v,u) = (v,GLu) = (L*G"v,u)
which then implies L*G*v = v for all v € C(J). This implies

@) = | G LAy = Ty L) = (1 Toge. ) for all | € DI1)
from which it follows that LT,y =d(z —y). ®

Definition 6.14. A Green’s function for L is a function G(z,y) as defined
as in Eq. (6.15) where u and v are any two linearly independent L — harmonic
functions.?

The following theorem in is a generalization of Theorem 6.7.
Theorem 6.15 (Representation Theorem). Suppose and G is a Green’s function
for L then
(1) LoTG(ay) = 6(x —y) and LG =TI on L*(J). (However Gg and G*g may
no longer satisfy the given Dirichlet boundary conditions.)

(2) LyTe(e,y) = 0(x — y). More precisely we have the following representation
formula. For any f € H*(J),

(6200 f(2) = (CLA@) + {G@.)aW)f W) ~ laW)C.)], (W)} |

(3) Let us now assume nul(L) = {0} and G is the Dirichlet Green’s function
for L. The Eq. (6.20) specializes to

f(@) = (GL)(@) - law)G ()], /)]

y=r

Yy=s

=S

Moreover if we are given h : J — R and g € L?(J), then the unique
solution f € H%(J) to

Lf =g ae. with f=hondJ
(6.21) f(z) = (Gg)(z) + H(x)

2For example choose u,v so that Lu = 0 = Lv and u(a) = v'(a) = 0 and v/(a) = v(e) = 1.
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where, for x € J°,
(6.22) H(z) := —[a(y)G(z, )], h(y)

and H(r) := H(r+) and H(s) := H(s—).

Proof. 1. The first item follows from the proof of Theorem 6.11 with out any
modification.
2. Using Lemma 6.9,

e (W M buy o cw
L (aW)_ (W) (aW)+aW

w1, bu ., cu
e aw G
oo, ew U bl cu
=t = aw taw
1

Similarly L*(f) = 0 and therefore L; G(z,y) = 0 for y # z. Since

y
(i# {U(w)v(y) if z<y

o) =G ) | vlwuty) it = >y

1 fu(a)p(y) if z<y
(62 TG slontty) i 5y
we find

1 , , 1
Gy(z,z+) — Gy(z,2—) = W {v(z)u'(z) — u(z)v'(x)} = —m.
Finally since
L; = d 22 + lower order terms

we may conclude form Lemma 5.11 that LyG(x,y) = 6(z — y).Using integration by
parts for absolutely continuous functions and Lemma 6.13, for f € H?(J),

(GLf)(z /Gwny

[ w.9) (~atn 3 T o)L+ o)) Sy
dy? dy

_ [, G0+ (5 BGE)] £ +cw)) 16)] do

— G(z,y)a(y) ' W)]}=
= —G(z,y)a(y) f'(y ) +[a(y)G(z,y)l, FWI=r + (LG (z,y), f(y))
= [a(y)G(z,9)], f(y) Z:? = Gz, y)ay) f' WII= + f(z).

This proves Eq. (6.20).
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3. Now suppose G is the Dirichlet Green’s function for L. By Eq. (6.15),

[—a(y)G(z,y)], = (dyW >{ Z( z i iiz

1 Ju(@)p(y) if z<y

T W) { vlap/(y) i z>y

and hence the function H defined in Eq. (6.22) is more explicitly given by
1 / 1 /

(6.24) H(zx) = W) (u(z)v'(s)) h(s) — W (v(@)u'(r)) h(r).

From this equation or the fact that L,G(z,r) = 0 = L,G(x, s), H is is L — harmonic
on J°. Moreover, from Eq. (6.24),

Therefore if f is defined by Eq. (6.21),
Lf=LGg—LH =g a.e. on J°
because LG = I on L*(J) and

flor = (Gg)las + Hlos = Hlos = h
since Gg € HZ(J). m

Corollary 6.16 (Elliptic Regularity I). Suppose —oco < 1o < sg < 00, Jo := (79, So)
and L is as in Eq. (6.11) with the further assumption that a,b,c € C®(R). If
f € C%(Jy) is a function such that g := Lf € C*(Jy) for some k > 0, then
fe k2 ().

Proof. Let r < s be chosen so that J := [r, s] is a bounded subinterval of .Jy
and let G be a Green’s function as in Definition 6.14. Since a, b, c are smooth,
it follows from our general theory of ODE that G(z,y) € C*° (J x J\ A) where
A ={(z,z) : x € J} is the diagonal in J x J. Now by Theorem 6.15,

1(@) = (Gg)(@) + {G@v)aw) f' ) - leW)Gla)l, fw) } [ forae .

y=r

Since
y=s
v~ {G@ )W) () ~ ow)C )], W)} | € ()
it suffices to show Gg € C**2(J°). But this follows by examining the formula for
(Gg)" given on the right side of Eq. (6.18). m
In fact we have the following rather striking version of this result.

Theorem 6.17 (Hypoellipticity). Suppose —oo < rg < so < 00, Jy := (19, o) and
L is asin Eq. (6.11) with the further assumption that a,b,c € C>°(R). Ifu € D’ (Jp)
is a generalized function such that v := Lu € C*(Jy), then u € C*(Jy).
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Proof. As in the proof of Corollary 6.16 let » < s be chosen so that J := [r, 5] is
a bounded subinterval of J, and let G be the Green’s function constructed above.?
Further suppose & € J°, 0 € C°(J°,[0,1]) such that § =1 in a neighborhood U of
¢ and a € C(V,[0,1]) such that @ = 1 in a neighborhood V of &, see Figure 15.

/\'Af
a”// b

FicURE 15. Constructing the cutoff functions, 8 and «.

i
{
]
{
A

Finally suppose that ¢ € C°(V), then
d=00=0L"G*"d=0L" (M, + My_o)G*¢
=L"M,G*¢p+0L*M1_,G"¢
and hence
(u, ) = (u, L"M,G*¢ + OL* M1_,G* )
= (Lu, M, G ¢) + (u,0L* M7_,G" ¢).

Now

(Lu, Mo G* @) = (v, Mo, G* ) = (GMyv, @)
and writing v = D"T}, for some continuous function h (which is always possible
locally) we find

(u, 0L* My_ o G*¢) = (—1)" (u, D" MyL* My _oG* )
= (*1)"/ W) Dy [0(x) Ly (1 — (@) Gy, )] o (y)dyda
JIxJ

= [ vt

bly) = /J B()D? (0(2) L (1 — o(x)) Gy, 2)] da

which is smooth for y € V because 1 — a(z) =0 on V and so (1 — a(z)) G(y, z) is
smooth for (x,y) € J x V. Putting this altogether shows

(u, p) = (GMyv + 1, @) for all p € C(V).

where

3Actuadly we can simply define G* to be a Green’s function for L*. It is not necessary to know
G*(z,y) = G(y,z) where G is a Green’s function for L.
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That is to say u = GM,v + 1 on V which proves the theorem since GMyv + ¥ €
C®V). m

Example 6.18. Let L = 88_;2 — aa_; be the wave operator on R? which is not elliptic.

Given f € C?*(R) we have already seen that Lf(y—xz) =0 € C*(R?). Clearly since
[ was arbitrary, it does not follow that F(z,y) := f(y — x) € C*°(R?). Moreover,
if f is merely continuous and F(z,y) := f(y — z), then LTr = 0 with F ¢ C?(R?).
To check LTr = 0 we first observe

(0, +0,)Tr.0) = (Tr. (0 +0,)6) = | (=) (0, +0,) dla)dady
= [ 1@ octoy+2)+ 6, o,y + )] dody
— [ 1w [ble.y+ o)) dedy =o.
R2 T

Therefore LTy = (0 — 0y) (0x + 0y) Tr = 0 as well.

Corollary 6.19. Suppose a,b,c are smooth and u € D'(J°) is an eigenvector for
L, i.e. Lu= Au for some A € C. Then v € C>(J).

Proof. Since L — X is an elliptic ordinary differential operator and (L — A\) u =
0 € C>°(J?), it follows by Theorem 6.17 that u € C*°(J°). m

6.3. Elementary Sobolev Inequalities.

Notation 6.20. Let f_dem = ﬁ [; fdm denote the average of f over J = [r, s].

Proposition 6.21. For f € H'(J),
@1 <| [ gam| 4181

_ 1/2
S‘/dem‘+ 7 </J|f’(y)l2dy) < CUIN Il

where C (|.J]) = max <\/;7 \/|7) .

Proof. By the fundamental theorem of calculus for absolutely continuous func-
tions

fl@) = @+ [ o

for any a,z € J. Integrating this equation on a and then dividing by |J| := s —r
implies
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and hence o o /
(@)l < éfdm + faa| [Cirwia
< éfdm + [ 1rwlay
<| [ram|+ v ([ f’(y)Qdy)m
< (f |f|2dm)1/2 =V ( If’(y)IZdy>1/2-
.

Notation 6.22. For the remainder of this section, suppose Lf = —%D (paf’)+cf.

is an elliptic ordinary differential operator on J = [r,s], p € C?(J,(0,00)) is a
positive weight and

(f,9)p = /J f(@)g(x)p(x)da.

We will also take D(L) = HZ(J), so that we are imposing Dirichlet boundary
conditions on L. Finally let

(f.9) = [ af's' +cfol pdm for 1.9 € H'(2).

Lemma 6.23. For f,g € D(L),
(6.25) (Lf,9)p,=E(f,9) = (f; Lg),-

Moreover ) )
Ef, f) Z aollf'll; +co | flly for all f e H'(J)
where ¢g := miny ¢ and ag = minya. If Ag € R with Ao 4+ co > 0 then

(6.26) 1130 < K [EC0)+ 2o 13
where K = [min(ag, ¢o + Ao)] .

Proof. Eq. (6.25) is a simple consequence of integration by parts. By elementary
estimates

EL 1) = a0 |f' I3+ co |l FI2

and
ECLD) + 20 1113 = ao If'll5 + (co + Xo) I £13 = min(ao, co + Xo) £ 1771
which proves Eq. (6.26). m
Corollary 6.24. Suppose Ao+ co > 0 then Nul(L + X\o) N D(L) = 0 and hence
(L4 Xo): H3(J) — L*(J)

is invertible and the resolvent (L + )\0)_1 has a continuous integral kernel G(x,y),
i.€.

(L4307 ule) = [ Glepuiwiy.
Moreover if we define D(LF) inductively by

D(L*):={ue D(L* ") : L* 'ue D(L)}
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we have D(LF) = HZ*(J).
Proof. By Lemma 6.23, for all u € D(L),
s gy < K (L) + o lully) = K (L + Ao} w,w)

so that if (L + Ao)u = 0, then ||u|\§11(J) = 0 and hence u = 0. The remaining
assertions except for D(LF) = HE(.J) now follow directly from Theorem 6.11 applied
with L replaced by L+ Ag. Finally if u € D(L) then (L 4+ \g) u = Lu+ Agu € L?(J)
and therefore
w=(L+ X))~ ' (Lu+ \ou) € H3(J).
Now suppose we have shown, D(LF) = H3*(J) and uw € D (L*1) | then
(L4 Xo)u = Lu+ \u € D(LF) + D(L*') ¢ D(L*) = HZ*(J)

and so by Theorem 6.11, u € (L + Xo) " HZ*(J) c H*2(J). m
Corollary 6.25. There ezists an orthonormal basis {¢y,},r for L*(J, pdm) of
eigenfunctions of L with eigenvalues A, € R such that —co < Ao < A1 < Ao <.....

Proof. Let \g > —co and let G := (L+Xo)~' : L2(J) — HZ(J) = D(L) C
L?(J). From the theory of compact operators to be developed later, G is a compact
symmetric positive definite operator on L?(J) and hence there exists an orthonor-
mal basis {¢,}ro, for L(J, pdm) of eigenfunctions of G' with eigenvalues i, > 0
such that pg > s > pe > ... — 0. Since

fn$n = G = (L+X0) ™" én,

it follows that p, (L + \g) ¢n = ¢y, for all n and therefore Lo, = A\, ¢, with A, =
(1,1 —Ag) T oo. Finally since L is a second order ordinary differential equation

there can be at most one linearly independent eigenvector for a given eigenvalue A,
and hence A\, < A\, + 1 for all n. =

Example 6.26. Let J = [0,7], p = 1 and L = —D? on HZ(J). Then L¢ = \¢
implies ¢” + ¢ = 0. Since L is positive, we need only consider the case where A > 0

in which case ¢(z) = acos (\/XQ?) + bsin (\/XJ}) . The boundary conditions for f
imply a = 0 and 0 = sin (\/Xw) Jle Ve N, . Therefore in this example

or(z) = \/gsin (kx) with \x = k%
The collection of functions {¢ },-, is an orthonormal basis for L?(.J).
Theorem 6.27. Let J = [r, s] and p,a € C*(J,(0,00)), c € C?(J) and L be defined
by
Lf= f%D (paf') +cf.
and for A € R let
EN = {qb € HZ(J): Lo = ag for some o < )\}.

41 fact G is “Hilbert Schmidt” which then implies

)
Z 1%21 < oo.
n=0
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Then there are constants dy,dy > 0 such that
(6.27) dim(E?) < di)\ + do.

Proof. For A € R let E) := {¢ € H3(J): Lo = )\gb}. By Corollary 6.24, E\ =
{0} if A < ¢o and since (Lf,g), = (f,Lg), for all f,g € HZ(J) it follows that
Ey L Eg for all A # . Indeed, if f € E) and g € Ej3, then

(67>‘) (f’g)p:(faLg)pf(Lf;g)p:O.

Thus it follow that any finite dimensional subspace W C E* has an orthonormal
basis (relative to (-,-), — inner product) of eigenvectors {dr}p_y C E* of L, say
Lok = M. Let u = ZZ:1 ur¢r where ux € R. By Proposition 6.21 and Lemma
6.23,

k=1

lull}; < Cllullz gy < C (L +Xo)u,u), = C (Zw (A + Ao) ¢k,U>
p

(where C is a constant varying from place to place but independent of u) and hence
for any = € J,

2 n
<lully < CA+20) D Juxl*.
k=1

Z urdr(x)
k=1

Now choose ug, = ¢ (x) in this equation to find

> k(@)
k=1

2

<CA+20) Y o)
k=1

or equivalently that

n

S lor@) < C(A+Ao).

k=1
Multiplying this equation by p and then integrating shows

dim(W) =n = Z(¢kv¢)k)p < C(A+ o) / pdm = C" (A+ Xo) .
k=1 J
Since W C E* is arbitrary, it follows that
dim(EM) < C" (A + \o) .
]

Remarks 6.28. Notice that for all A € R, dim(E)) < 1 because if u,v € E) then
by uniqueness of solutions to ODE, u = [u/(r)/v/(r)]v. Let {¢x}ry C HZ(J) N
C*°(J) be the eigenvectors of L ordered so that the corresponding eigenvalues are
increasing. With this ordering we have k = dim(EA’“) < dj A + do and therefore,

(6.28) e > dyH(k — da).

The estimates in Eqgs. (6.27) and (6.28) are not particularly good as Example 6.26
illustrates.
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6.4. Application to Heat and Wave Equations.

Lemma 6.29. L is a closed operator, i.e. if s, € D(L) and s, — s and Ls, — g
in L?, then s € D(L) and Ls = g. In particular if fr € D(L) and Y ;- fr and
v, Lfx exists in L%, then Y o | fx € D(L) and

LY fr=) Ll
k=1 k=1

Proof. Let Ag+co > 0and G = (L + A\g) " . Then by assumption (L + Xo) s, —
g+ Aos and so

s— 8, =G(L+ X)) sn, — G(g+ Aos) asn — o0
showing s = Gg € D(L + A\g) = D(L) and
(L+Xo)s=(L+ )G (g4 Aos) =g+ Aos

and hence Ls = g as desired. The assertions about the sums follow by applying the
sequence results to s, =Y p_; fr. W

Theorem 6.30. Given f € L2, let

(6.29) u(t) = e f =Y (frdn)e” M

n=0

Then for t > 0, u(t,z) is smooth in (t,x) and solves the heat equation

(6.30) ug(t,z) = —Lu(t,x), u(t,z) =0 for x € 9J
(6.31) and f = L? — ltil%l u(t)
Moreover, u(t,z) = [} pi(z,y)f(y)p(y)dy where
(6.32) pe(my) =Y e PG (2)dn(y)
n=0

is a smooth function int > 0 and x,y € J. The function p; is called the Diurichlet
Heat Kernel for L.

Proof. (Sketch.) For any ¢ > 0 and k € N, sup, (e 7 \F) < oo and so by
Lemma 6.29, for ¢ > 0, u(t) € D (L*) = Hg*(J)? (Corollary 6.24) and

Lru(t) = (f,6n)e " Ao
n=0
Also we have LFu(™(t) exists in L? for all k,m € N and
LR () = (=1)™ > (f, dn)e” M AT .
n=0

By Sobolev inequalities and elliptic estimates such as Proposition 6.21 and Lemma
6.23, one concludes that u € C™((0,00), Hf(J)) for all k and then that u €

SBasically, if L¥u = g € L?(J) then u = G¥g € H3*(J).
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C>((0,00) x J,R). Eq. (6.30) is now relatively easy to prove and Eq. (6.31)
follows from the following computation

If = w@)3 =S du)? |1 — e

n=1
which goes to 0 as ¢t | 0 by the D.C.T. for sums.
Finally from Eq. (6.29)

u(t, z) Z/f (y)dye " dp () /Ze_“ On(@)0(y) f (y)p(y)dy

where the interchange of the sum and the integral is permissible since
oo

[ ot wlowar < | Ze P (o + M) 1w plu)dy < o
n=0

since Y7, et (Ao + )\n) < 00 because A, grows linearly in n. Moreover one
similarly shows

N con_1 o = - _ _
() o o) = 3 (A M2 0, @020t
n=0

where the above operations are permissible since
|20 < Clldalge sy < C|L+20)* 6

and therefore

Z ’ J —t>\n82k 1¢n( )8§l—1¢(y)‘ < Cz |)\n‘J ()\n + /\O)k-‘rl e—t/\n, < 00.

n=0

2 = C(/\” +>‘O)k

Again we use \,, grows linearly with n. From this one may conclude that p;(z,y)
is smooth for ¢ > 0 and z,y € J. (We will do this in more detail when we work out
the higher dimensional analogue.) =

Remark 6.31 (Wave Equation). Suppose f € D(L*), then

|(fa¢n)‘ = (f Lk¢n) -

and therefore -
cos (t\/Z) f= Zcos (t\/x) (f, én)d
n=0

will be convergent in L? but moreover
LF cos (t\/Z) f= Z cos (t\//\n) (f, o) NED, = Z cos (t\/)\n) (L*f, )0
n=0 n=0
will also be convergent. Therefore if we let
sin (t\/Z)
N
where f, g € D(L¥) for all k. Then we will get a solution to the wave equation

e (t, ) + Lu(t, z) = 0 with w(0) = f and 4(0) = g.

u(t) = cos (t\/f) f+
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More on all of this later.

6.5. Extensions to Other Boundary Conditions. In this section, we will as-
sume p € C%(J,(0,00)),

(6.33) Lu = —p Ypau') 4 bu’ + cu
is an elliptic ODE on L?(J) with smooth coefficients and
(6.34) (u,v) = (u,v), = / u(x)v(x)p(x)dx.

J
Theorem 6.32. For v € H?(J) let
(6.35) L*v=—p ' (pav') = ' + [c — p~ ' (pb)'] v.
Then for u,v € H*(J),
(6.36) (Lu,v) = (u, L*v) + B(u,v)|as
where

b

(6.37) B(u,v) = pa {(u’,u) (—v,v + av)} :

Proof. This is an exercise in integration by parts,

(Lu,v) = / (7 (pa') + pbu’ + pcu) vdm
J
= / (pau/v' — (pbv) u + peu) dm + [pbuv — pau'v] o,
J
= / (—u (pav’)" — (pbv) u + pcvu) dm + [pbuv + pauv’ — pau'v]|ay
J

b
= / (—up—l (an')' _ p—1 (pbv)’u + cvu) pdm + [pa (—uv +ur — vul)} o
! a

= (u, L*v) + [pa(u',u) (=v,v + Sv)] lo.g-
]
Notation 6.33. Given (o, 8) : 8J — R?\ {0} and u,v € H%(J) let
Bu=au' + pu = (a,3) - (v',u) on &J
and
B*v =av + (ﬁ—&-%a)v:av’—i—/;’v on 0J
where 3 := (B+ goz) )
Remarks 6.34. The function («, B) : 8J — R? also takes values in R?\ {0} because
(o, B) = 0 iff (v, B) = 0. Furthermore if « = 0 then 5 = §.
Proposition 6.35. Let B and B* be as defined in Notation 6.33 and define
D(L)={ue H*(J): Bu=0 on dJ}.
D(L*)={ue H*(J): B'u=0 on dJ},
Then v € H?(J) satisfies
(6.38) (Lu,v) = (u, L™v) for all w € D(L)
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iffv e D(L*).

Proof. We have to check that B(u,v) appearing in Eq. (6.36) is 0. (Actually
we must check that B(u, v)|g; = 0 which we might arrange by using something like
“periodic boundary conditions.” I am not considering this type of condition at the

moment. Since u may be chosen to be zero near r or s we must require B(u,v) =0
on dJ.) Now B(u,v) =0 iff

(6.39) (u',u) - (—v,w' + év) =0

a

which happens iff (u/, u) is parallel to (v/ + %v, v) . The boundary condition Bu = 0
may be rewritten as saying (v/,u) - (o, ) = 0 or equivalently that (u',u) is parallel
to (=B, a) on dJ. Therefore the condition in Eq. (6.39) is equivalent to (—f, ) is
parallel to (v' + gv, U) or equivalently that

0=(c,5)" (v’ + gv,v) = B*v.
]
Corollary 6.36. The formulas for L and L* agree iff b = 0 in which case
Lu=—p~'D (apu’) + cu,
B =B* D(L) = D(L*) and
(6.40) (Lu,v) = (u, Lv) for all u,v € D(L).

(In fact L is a “self-adjoint operator,” as we will see later by showing (L + )\0)_1
exists for Ao sufficiently large. Eq. (6.40) then may be used to deduce (L + )\0)_1
is a bounded self-adjoint operator with a symmetric Green’s functions G.)

4

6.5.1. Dirichlet Forms Associated to (L,D(L)). For the rest of this section let
a,by, b, co,p € C?(J), with a >0 and p > 0 on J and for u,v € H(J), let

(6.41) E(u,v) := / (au'v" + byuv’ + bau'v + couv) pdm and
J

oy 2= (0P o+ l?) ™
where ||[u||® = (u,u), as defined in Eq. (6.34).
Lemma 6.37 (A Coercive inequality for £). There is a constant K < oo such that
(6.42) 1€ (w,0)| < K |[ull ga gy 10l gr1 gy for v € HY(J).

Let ag = miny a, ¢ = miny ¢y and B := maxy |by + ba|, then for u € H(J),
B2
(649 ) > P I + (o= 5o ) Il
Proof. Let A = max;a, B; = maxy |b;| and Cy := max |co|, then
€ (u, v)] g/(a|u’||v’|+|b1|\u| [V’ 4 [ba| ['[ [v] + [eo| [u] |[v]) pdm
J
< AN+ Bu lJull V'] + Be [[u' |o]] + Co [Jul| [[v]|

9 1/2 9 1/2
<K (/1P + ) ('l + Jlo)?)
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Let ap = miny a, ¢ = miny ¢ and B := maxy |b; + bz, then for any ¢ > 0,

E(u,u) = / (a |u'|2 + (b1 + b)) uu’ + co |u\2) pdm
J
zammw?+mmﬁfB/WMWWMm
J

2 .2 B 2 12
> ao lo/|* + & ful® = 5 (31> + 67 lul®)

B) B
— (0= 5 ) I+ (o= 50 ) bl

Taking 0 = ag/B in this equation proves Eq. (6.43). m
Theorem 6.38. Let
(6.44) b= (by—b1), c:=co—p ' (ph)",
Lu=—p~ ' (apu') + bu/ + cu and
Bu = (pau’ + pbiu) |, -
Then for w € H?(J) and v € H'(J)
E(u,v) = (Lu,v) + [(Bu) v]y,
and for w € H'(J) and v € H?(J),
E(u,v) = (u, L*v) + [(B*v) uly, -
Here (as in Eq. (6.35)

1

Lo =—=p~ " (apu') = p~ " [pbu] + cu

and (as in Notation 6.33)
b
B*v = pav’ + (pb1 + apa) v = pav’ + pbav.

Proof. Let u € H?(J) and v € H'(J) and integrating Eq. (6.41) by parts to
find

E(u,v) = /J (—pfl (apu’) v —p~t (pbyu) v + bou'v + couv) pdm + [pau'v + pbiuv],,

(6.45)
= (Lu,v) + [Bu - v]y,

where
Lu=—p~ Y (apu/) — pt (pbru) + bott’ + cou
= —p~ " (apu') + (by = b1) W + [co = p" (pb1) ] w
= —p(apu’) 4+ bu' + cu
and
Bu = pau’ + pbyu.
Similarly

E(u,v) = / (—upf1 (apv’) + byuv’ —up~t (pbav) + couv) pdm + [(pauv’ + pbouv)],
J

= (u, LT’U) + [Biv- ul,,
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where
Ltv=—p~ ! (apv”) + b1v' — p~* (pbav)’ + cou
=—p " (apv)) + (b1 — ba) V' + [co — p~" (pb2) ] v
= —p" (ap) — b0/ + [c+p (oo b)) v
=—p " (apv)) = b + [c—pt (pb)'] v = L*v.
and
BYv = (pav’ + pbav) = B*v.
|

Remark 6.39. As a consequence of Theorem 6.38, the mapping
(a,b1,ba,c0) — |(u,v) — E(u,v) == / (au'v" + byuv’ + bau'v + couv) pdm
J
is highly non-injective. In fact £ depends only on a, b = bs — by and ¢ := ¢y —
p~ (pb1)" on J and by on d.J.
Corollary 6.40. As above let (o, ) : 0J — R?\ {0} and let
D(L)={ue H*(J): Bu=au' +Bu=0ondJ} and
Lu=—p~ ' (apu’) + b/ + cu.

Given o > 0 sufficiently large, (L + \o) : D(L) — L2(J) is invertible and there is
a continuous Green’s function G(x,y) such that

(L4307 @) = [ Gl
Proof. Let us normalize « so that o = a whenever a # 0. The boundary term
in Eq. (6.45) will be zero whenever
aw’ 4+ byu = 0 when v # 0 on OJ.
This suggests that we define a subspace y of H!(J) by
X = {uEHl(J):u:OonaJWherea:Oon&]}
Hence x is either H} (J), H*(J), {u € H'(J) : u(r) =0} or {u € H*(J s)=0}.

Now choose a function b; € C?(.J) such that b1 B on 0J, then set b2 =b+ b
and co = c+ p~ ' (pb1)’, then
D(L)=xN{ue H*(J): Bu=au' +bu=0ondJ}
and
(Lu,v) = E(u,v) for all w € D(L) and v € y.
Using this observation, it follows from Eq. (6.43) of Lemma 6.37, for A\ sufficiently
large and any u € D(L), that

(L + Xo) u,u) = E(u,u) + Ao(u,u)

ag 2 B2 2 Qo 2
> P17+ (o= g+ 30 ) Bl > Bl

As usual this equation shows Nul(L + \g) = {0} . The remaining assertions are now
proved as in the proof of Corollary 6.24.



