6. Elliptic Ordinary Differential Operators

Let $\Omega \subset_o \mathbb{R}^n$ be a bounded connected open region. A function $u \in C^2(\Omega)$ is said to satisfy Laplace's equation if

$$\triangle u = 0 \text{ in } \Omega.$$

More generally if $f \in C(\Omega)$ is given we say u solves the **Poisson equation** if

$$-\triangle u = f \text{ in } \Omega.$$

In order to get a unique solution to either of these equations it is necessary to impose "boundary" conditions on u.

Example 6.1. For **Dirichlet boundary conditions** we impose u = g on $\partial\Omega$ and for **Neumann boundary conditions** we impose $\frac{\partial u}{\partial \nu} = g$ on $\partial\Omega$, where $g : \partial\Omega \to \mathbb{R}$ is a given function.

Lemma 6.2. Suppose $f: \Omega \xrightarrow{C^0} \mathbb{R}$, $\partial \Omega$ is C^2 and $g: \partial \Omega \to \mathbb{R}$ is continuous. Then if there exists a solution to $-\Delta u = f$ with u = g on $\partial \Omega$ such that $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ then the solution is unique.

Definition 6.3. Given an open set $\Omega \subset \mathbb{R}^n$ we say $u \in C^1(\overline{\Omega})$ if $u \in C^1(\Omega) \cap C(\overline{\Omega})$ and ∇u extends to a continuous function on $\overline{\Omega}$.

Proof. If \widetilde{u} is another solution then $v = \widetilde{u} - u$ solves $\Delta v = 0, v = 0$ on $\partial \Omega$. By the divergence theorem,

$$0 = \int_{\Omega} \triangle v \cdot v dm = -\int_{\Omega} |\nabla v|^2 dm + \int_{\partial \Omega} v \nabla v \cdot n d\sigma = -\int_{\Omega} |\nabla v|^2 dm,$$

where the boundary terms are zero since v=0 on $\partial\Omega$. This identity implies $\int_{\Omega} |\nabla u|^2 dx = 0$ which then shows $\nabla v \equiv 0$ and since Ω is connected we learn v is constant on Ω . Because v is zero on $\partial\Omega$ we conclude $v \equiv 0$, that is $u = \tilde{u}$.

For the rest of this section we will now restrict to n=1. However we will allow for more general operators than Δ in this case.

6.1. Symmetric Elliptic ODE. Let $a \in C^1([0,1],(0,\infty))$ and

(6.1)
$$Lf = -(af')' = -af'' - a'f' \text{ for } f \in C^2([0,1]).$$

In the following theorem we will impose Dirichlet boundary conditions on L by restricting the domain of L to

$$D(L) := \{ f \in C^2([0,1], \mathbb{R}) : f(0) = f(1) = 0 \}.$$

Theorem 6.4. The linear operator $L: D(L) \to C([0,1],\mathbb{R})$ is invertible and $L^{-1}: C([0,1],\mathbb{R}) \to D(L) \subset C^2([0,1],\mathbb{R})$ is a bounded operator.

Proof

(1) (Uniqueness) If $f, g \in D(L)$ then by integration by parts

(6.2)
$$(Lf,g) := \int_0^1 (Lf)(x)g(x)dx = \int_0^1 a(x)f'(x)g'(x) \ dx.$$

Therefore if Lf = 0 then

$$0 = (Lf, f) = \int_0^1 a(x)f'(x)^2 dx$$

and hence $f' \equiv 0$ and since f(0) = 0, $f \equiv 0$. This shows L is injective.

(2) (Existence) Given $g \in C([0,1],\mathbb{R})$ we are looking for $f \in D(L)$ such that Lf = g, i.e. (af')' = g. Integrating this equation implies

$$-a(x)f'(x) = -C + \int_0^x g(y)dy.$$

Therefore

$$f'(z) = \frac{C}{a(z)} - \int 1_{y \le z} \frac{1}{a(z)} g(y) dy$$

which upon integration and using f(0) = 0 gives

$$f(x) = \int_0^x \frac{C}{a(z)} dz - \int 1_{y \le z \le x} \frac{1}{a(z)} g(y) dz dy.$$

If we let

(6.3)
$$\alpha(x) := \int_0^x \frac{1}{a(z)} dz$$

the last equation may be written as

(6.4)
$$f(x) = C\alpha(x) - \int_0^x (\alpha(x) - \alpha(y))g(y) \ dy.$$

It is a simple matter to work backwards to show the function f defined in Eq. (6.4) satisfies Lf = g and f(0) = 0 for any constant C. So it only remains to choose C so that

$$0 = f(1) = C \alpha(1) - \int_0^1 (\alpha(1) - \alpha(y))g(y)dy.$$

Solving for C gives $C = \int_0^1 \left(1 - \frac{\alpha(y)}{\alpha(1)}\right) g(y) dy$ and the resulting function f may be written as

$$f(x) = \int_0^1 \left[\left(1 - \frac{\alpha(y)}{\alpha(1)} \right) \alpha(x) - 1_{y \le x} (\alpha(x) - \alpha(y)) \right] g(y) \ dy$$
$$= \int_0^1 G(x, y) g(y) dy$$

where

(6.5)
$$G(x,y) = \begin{cases} \alpha(x) \left(1 - \frac{\alpha(y)}{\alpha(1)}\right) & \text{if } x \leq y \\ \alpha(y) \left(1 - \frac{\alpha(x)}{\alpha(1)}\right) & \text{if } y \leq x. \end{cases}$$

For example when $a \equiv 1$,

$$G(x,y) = \begin{cases} x(1-y) & \text{if } x \leq y \\ y(1-x) & \text{if } y \leq x \end{cases}.$$

Definition 6.5. The function G defined in Eq. (6.5) is called the **Green's function** for the operator $L: D(L) \to C([0,1], \mathbb{R})$.

Remarks 6.6. The proof of Theorem 6.4 shows

(6.6)
$$(L^{-1}g)(x) := \int_0^1 G(x, y)g(y)dy$$

where G is defined in Eq. (6.5). The Green's function G has the following properties:

- (1) Since L is invertible and G is a right inverse, G is also a left inverse, i.e. GLf = f for all $f \in D(L)$.
- (2) G is continuous.
- (3) G is symmetric, G(y,x) = G(x,y). (This reflects the symmetry in L, (Lf,g) = (f,Lg) for all $f,g \in D(L)$, which follows from Eq. (6.2).)
- (4) G may be written as

$$G(x,y) = \begin{cases} u(x)v(y) & \text{if } x \le y \\ u(y)v(x) & \text{if } y \le x. \end{cases}$$

where u and v are L – harmonic functions (i.e. and Lu = Lv = 0) with u(0) = 0 and v(1) = 0. In particular $L_xG(x,y) = 0 = L_yG(x,y)$ for all $y \neq x$.

(5) The first order derivatives of the Green's function have a jump discontinuity on the diagonal. Explicitly,

$$G_y(x, x+) - G_y(x, x-) = -\frac{1}{a(x)}$$

which follows directly from

(6.7)
$$G_y(x,y) = \frac{1}{a(y)} \begin{cases} -\frac{\alpha(x)}{\alpha(1)} & \text{if } x < y \\ \left(1 - \frac{\alpha(x)}{\alpha(1)}\right) & \text{if } y < x. \end{cases}$$

By symmetry we also have

$$G_x(y+,y) - G_x(y-,y) = -\frac{1}{a(y)}.$$

(6) By Items 4. and 5. and Lemma 5.11 it follows that

$$L_y G(x, y) := L_y T_{G(x,y)} = \frac{d}{dy} (a(y)G_y(x, y)) = \delta(y - x)$$

and similarly that

$$L_x T_{G(x,y)} = L_x G(x,y) = \delta(x-y).$$

As a consequence of the above remarks we have the following representation theorem for function $f \in C^2([0,1])$.

Theorem 6.7 (Representation Theorem). For any $f \in C^2([0,1])$,

(6.8)
$$f(x) = (GLf)(x) - G_y(x,y)a(y)f(y)\Big|_{y=0}^{y=1}.$$

Moreover if we are given $h: \partial [0,1] \to \mathbb{R}$ and $g \in C([0,1])$, then the unique solution to

$$Lf = q$$
 with $f = h$ on $\partial[0,1]$

is

(6.9)
$$f(x) = (Gg)(x) - G_y(x, y)a(y)h(y)\Big|_{y=0}^{y=1}.$$

Proof. By repeated use of Lemma 5.11,

$$(GLf)(x) = -\int_0^1 G(x,y) \frac{d}{dy} (a(y)f'(y)) dy$$

$$= \int_0^1 G_y(x,y) a(y) f'(y) dy \text{ (no boundary terms since } G(x,0) = G(x,1) = 0)$$

$$= G_y(x,y) a(y) f(y) \Big|_{y=0}^{y=1} + \int_0^1 L_y G(x,y) f(y) dy$$

$$= G_y(x,y) a(y) f(y) \Big|_{y=0}^{y=1} + \int_0^1 \delta(x-y) f(y) dy$$

$$= G_y(x,y) a(y) f(y) \Big|_{y=0}^{y=1} + f(x)$$

which proves Eq. (6.8).

Now suppose that f is defined as in Eq. (6.9). Observe from Eq. (6.7) that

$$\lim_{x \uparrow 1} a(1)G_y(x, 1) = -1$$
 and $\lim_{x \downarrow 0} a(0)G_y(x, 0) = 1$

and also notice that $G_y(x, 1)$ and $G_y(x, 0)$ are L_x – harmonic functions. Therefore by these remarks and Eq. (6.6), f = h on $\partial[0, 1]$ and

$$Lf(x) = g(x) - L_x G_y(x, y) a(y) h(y) \Big|_{y=0}^{y=1} = g(x)$$

as desired.

6.2. General Regular 2nd order elliptic ODE. Let J = [r, s] be a closed bounded interval in \mathbb{R} .

Definition 6.8. A second order linear operator of the form

(6.10)
$$Lf = -af'' + bf' + cf$$

with $a \in C^2(J)$, $b \in C^1(J)$ and $c \in C^2(J)$ is said to be **elliptic** if a > 0, (more generally if a is invertible if we are allowing for vector valued functions).

For this section L will denote an elliptic ordinary differential operator. We will now consider the Dirichlet boundary valued problem for $f \in C^2([r, s])$,

(6.11)
$$Lf = -af'' + bf' + cf = 0 \text{ with } f = 0 \text{ on } \partial J.$$

Lemma 6.9. Let $u, v \in C^2(J)$ be two L – harmonic functions, i.e. Lu = 0 = Lv and let

$$W := \det \left[\begin{array}{cc} u & v \\ u' & v' \end{array} \right] = uv' - vu'$$

be the Wronskian of u and v. Then W satisfies

$$W' = \frac{b}{a}W, \ \frac{d}{dx}\frac{1}{W} = -\frac{b}{a}\frac{1}{W} \ and$$
$$W(x) = W(r)e^{\int_r^x \frac{b}{a}(t)dt}.$$

Proof. By direct computation

$$aW' = a(uv'' - vu'') = u(bv' + cv) - v(bu' + cu) = bW.$$

Definition 6.10. Let $H^k(J)$ denote those $f \in C^{k-1}(J)$ such that $f^{(k-1)}$ is absolutely continuous and $f^{(k)} \in L^2(J)$. We also let $H^2_0(J) = \{f \in H^2(J) : f|_{\partial J} = 0\}$. We make $H^k(J)$ into a Hilbert space using the following inner product

$$(u,v)_{H^k} := \sum_{j=0}^k (D^j u, D^j v)_{L^2}.$$

Theorem 6.11. As above, let $D(L) = \{ f \in C^2(J) : f = 0 \text{ on } \partial J \}$. If the $\operatorname{Nul}(L) \cap D(L) = \{ 0 \}$, i.e. if the only solution $f \in D(L)$ to Lf = 0 is f = 0, then $L : D(L) \to C(J)$ is an invertible. Moreover there exists a continuous function G on $J \times J$ (called the Dirichlet Green's function for L) such that

(6.12)
$$\left(L^{-1}g\right)(x) = \int_{I} G(x,y)g(y)dy \text{ for all } g \in C(J).$$

Moreover if $g \in L^2(J)$ then $Gg \in H_0^2(J)$ and L(G g) = g a.e. and more generally if $g \in H^k(J)$ then $Gg \in H_0^{k+2}(J)$

Proof. To prove the surjectivity of $L:D(L)\to C(J)$, (i.e. existence of solutions $f\in D(L)$ to Lf=g with $g\in C(J)$) we are going to construct the Green's function G.

(1) Formal requirements on the Greens function. Assuming Eq. (6.12) holds and working formally we should have

(6.13)
$$g(x) = L_x \int_I G(x, y)g(y)dy = \int_I L_x G(x, y)g(y)dy$$

for all $q \in C(J)$. Hence, again formally, this implies

(6.14)
$$L_x G(x, y) = \delta(y - x) \text{ with } G(r, y) = G(s, y) = 0.$$

This can be made more convincing by as follows. Let $\phi \in \mathcal{D} := \mathcal{D}(r, s)$, then multiplying

$$g(x) = L_x \int_J G(x, y)g(y)dy$$

by ϕ , integrating the result and then using integration by parts and Fubini's theorem gives

$$\int_{J} g(x)\phi(x)dx = \int_{J} dx\phi(x)L_{x} \int_{J} dyG(x,y)g(y)$$

$$= \int_{J} dxL_{x}\phi(x) \int_{J} dyG(x,y)g(y)$$

$$= \int_{J} dyg(y) \int_{J} dx L_{x}\phi(x)G(x,y) \text{ for all } g \in C(J).$$

From this we conclude

$$\int_{J} L_{x}\phi(x)G(x,y)dx = \phi(y),$$

i.e. $L_x T_{G(x,y)} = \delta(x - y)$.

(2) Constructing G. In order to construct a solution to Eq. (6.14), let u, v be two non-zero L – harmonic functions chosen so that u(r) = 0 = v(s) and u'(r) = 1 = v'(s) and let W be the Wronskian of u and v. By Lemma 6.9, either W is never zero or is identically zero. If W = 0, then (u(r), u'(r)) = 0

 $\lambda(v(r), v'(r))$ for some $\lambda \in \mathbb{R}$ and by uniqueness of solutions to ODE it would follow that $u \equiv \lambda v$. In this case u(r) = 0 and $u(s) = \lambda v(s) = 0$, and hence $u \in D(L)$ with Lu = 0. However by assumption, this implies u = 0 which is impossible since u'(0) = 1. Thus W is never 0.

By Eq. (6.14) we should require $L_xG(x,y)=0$ for $x \neq y$ and G(r,y)=G(s,y)=0 which implies that

$$G(x,y) = \begin{cases} u(x)\phi(y) & \text{if } x < y \\ v(x)\psi(y) & \text{if } x > y \end{cases}$$

for some functions ϕ and ψ . We now want to choose ϕ and ψ so that G is continuous and $L_xG(x,y)=\delta(x-y)$. Using

$$G_x(x,y) = \begin{cases} u'(x)\phi(y) & \text{if } x < y \\ v'(x)\psi(y) & \text{if } x > y \end{cases}$$

Lemma 6.9, we are led to require

$$0 = G(y+,y) - G(y-,y) = u(y)\phi(y) - v(y)\psi(y)$$

$$1 = -\left[a(x)G_x(x,y)\right]\Big|_{x=y-}^{x=y+} = -a(y)\left[v'(y)\psi(y) - u'(y)\phi(y)\right].$$

Solving these equations for ϕ and ψ gives

$$\left(\begin{array}{c} \phi \\ \psi \end{array}\right) = -\frac{1}{aW} \left(\begin{array}{c} v \\ u \end{array}\right)$$

and hence

(6.15)
$$G(x,y) = -\frac{1}{a(y)W(y)} \begin{cases} u(x)v(y) & \text{if } x \le y \\ v(x)u(y) & \text{if } x \ge y. \end{cases}$$

(3) With this G, Eq. (6.12) holds. Given $g \in C(J)$, then f in Eq. (6.12) may be written as

$$f(x) = \int_{J} G(x, y)g(y)dy$$

$$= -v(x) \int_{x}^{x} \frac{u(y)}{a(y)W(y)}g(y)dy - u(x) \int_{x}^{s} \frac{v(y)}{a(y)W(y)}g(y)dy.$$
(6.16)

Differentiating this equation twice gives

(6.17)
$$f'(x) = -v'(x) \int_{r}^{x} \frac{u(y)}{a(y)W(y)} g(y) dy - u'(x) \int_{x}^{s} \frac{v(y)}{a(y)W(y)} g(y) dy$$

and

$$f''(x) = -v''(x) \int_{r}^{x} \frac{u(y)}{a(y)W(y)} g(y) dy - u''(x) \int_{x}^{s} \frac{v(y)}{a(y)W(y)} g(y) dy - v'(x) \frac{u(x)}{a(x)W(x)} g(x) + u'(x) \frac{v(x)}{a(x)W(x)} g(x).$$
(6.18)

Using Lv = 0 = Lu, the definition of W and the last two equations we find

$$-a(x)f''(x) = [b(x)v'(x) + c(x)v(x)] \int_{r}^{x} \frac{u(y)}{a(y)W(y)} g(y)dy$$
$$+ [b(x)u'(x) + c(x)u(x)] \int_{x}^{s} \frac{v(y)}{a(y)W(y)} g(y)dy + g(x)$$
$$= -b(x)f'(x) - c(x)f(x) + g(x),$$

i.e.
$$Lf = g$$
.

Hence we have proved $L: D(L) \to C(J)$ is surjective and $L^{-1}: C(J) \to D(L)$ is given by Eq. (6.12).

Now suppose $g \in L^2(J)$, we will show that $f \in C^1(J)$ and Eq. (6.17) is still valid. The difficulty here is that it is clear that f is differentiable almost everywhere and Eq. (6.17) holds for almost every x. However this is not good enough, we need Eq. (6.17) to hold for all x. To remedy this, choose $g_n \in C(J)$ such that $g_n \to g$ in $L^2(J)$ and let $f_n := Gg_n$. Then by what we have just proved,

$$f'_n(x) = \int_J G_x(x, y) g_n(y) dy$$

Now by the Cauchy-Schwarz inequality,

$$\left| \int_{J} G_{x}(x,y) \left[g(y) - g_{n}(y) \right] dy \right|^{2} \leq \|g - g_{n}\|_{L^{2}(J)}^{2} \int_{J} |G_{x}(x,y)|^{2} dy \leq C \|g - g_{n}\|_{L^{2}(J)}^{2}$$

where $C := \sup_{x \in J} \int_J |G_x(x,y)|^2 dy < \infty$. From this inequality it follows that $f'_n(x)$ converges uniformly to $\int_J G_x(x,y)g(y)dy$ as $n \to \infty$ and hence $f \in C^1(J)$ and

$$f'(x) = \int_I G_x(x, y)g(y)dy$$
 for all $x \in J$,

i.e. Eq. (6.17) is valid for all $x \in J$. It now follows from Eq. (6.17) that $f \in H^2(J)$ and Eq. (6.18) holds for almost every x. Working as before we may conclude Lf = g a.e. Finally if $g \in H^k(J)$ for $k \ge 1$, the reader may easily show $f \in H_0^{k+2}(J)$ by examining Eqs. (6.17) and (6.18).

Remark 6.12. When L is given as in Eq. (6.1), b = -a' and by Lemma 6.9

$$W(x) = W(0)e^{-\int_0^x \frac{a'}{a}(t)dt} = W(0)e^{-\ln(a(x)/a(0))} = \frac{W(0)a(0)}{a(x)}.$$

So in this case

$$G(x,y) = -\frac{1}{W(0)a(0)} \left\{ \begin{array}{ll} u(x)v(y) & \text{if} \quad x \leq y \\ v(x)u(y) & \text{if} \quad x \geq y \end{array} \right.$$

where we may take

$$u(x) = \alpha(x) := \int_0^x \frac{1}{a(z)} dz$$
 and $v(x) = \left(1 - \frac{\alpha(x)}{\alpha(1)}\right)$.

Finally for this choice of u and v we have

$$W(0) = u(0)v'(0) - u'(0)v(0) = -\frac{1}{a(0)}$$

giving

$$G(x,y) = \left\{ \begin{array}{ll} u(x)v(y) & \text{if} & x \leq y \\ v(x)u(y) & \text{if} & x \geq y \end{array} \right.$$

which agrees with Eq. (6.5) above.

Lemma 6.13. Let $L^*f := -(af)'' - (bf)' + cf$ be the **formal adjoint** of L. Then (6.19) $(Lf,g) = (f,L^*g) \text{ for all } f,g \in D(L)$

where $(f,g) := \int_J f(x)g(x)dx$. Moreover if $\operatorname{nul}(L) = \{0\}$ then $\operatorname{nul}(L^*) = \{0\}$ and the Greens function for L^* is G^* defined by $G^*(x,y) = G(y,x)$, where G is the Green's function in Eq. (6.15). Consequently $L^*_{\eta}G(x,y) = \delta(x-y)$.

Proof. First observe that G^* has been defined so that $(G^*g, f) = (g, Gf)$ for all $f \in L^2(J)$. Eq. (6.19) follows by two integration by parts after observing the boundary terms are zero because f = g = 0 on ∂J . If $g \in \operatorname{nul}(L^*)$ and $f \in D(L)$, we find

$$0 = (L^*g, f) = (g, Lf)$$
 for all $f \in D(L)$.

By Theorem 6.11, if $\operatorname{nul}(L) = \{0\}$ then $L : D(L) \to C(J)$ is invertible so the above equation implies $\operatorname{nul}(L^*) = \{0\}$. Another application of Theorem 6.11 then shows $L^* : D(L) \to C(J)$ is invertible and has a Green's function which we call $\tilde{G}(x, y)$. We will now complete the proof by showing $\tilde{G} = G^*$. To do this observe that

$$(f,g)=(L^*\tilde{G}f,g)=(\tilde{G}f,Lg)=(f,\tilde{G}^*Lg)$$
 for all $f,g\in D(L)$

and this then implies $\tilde{G}^*L = Id_{D(L)} = GL$. Cancelling the L from this equation, show $\tilde{G}^* = G$ or equivalently that $\tilde{G} = G^*$. The remaining assertions of the Lemma follows from this observation.

Here is an alternate proof that $L_y^*G(x,y) = \delta(x-y)$, also see Using $GL = I_{D(L)}$, we learn for $u \in D(L)$ and $v \in C(J)$ that

$$(v, u) = (v, GLu) = (L^*G^*v, u)$$

which then implies $L^*G^*v = v$ for all $v \in C(J)$. This implies

$$f(x) = \int_J G(x, y) Lf(y) dy = \langle T_{G(x, \cdot)}, Lf \rangle = \langle L^* T_{G(x, \cdot)}, f \rangle \text{ for all } f \in D(L)$$

from which it follows that $L_y^*T_{G(x,y)} = \delta(x-y)$.

Definition 6.14. A Green's function for L is a function G(x,y) as defined as in Eq. (6.15) where u and v are any two linearly independent L – harmonic functions.²

The following theorem in is a generalization of Theorem 6.7.

Theorem 6.15 (Representation Theorem). Suppose and G is a Green's function for L then

- (1) $L_x T_{G(x,y)} = \delta(x-y)$ and LG = I on $L^2(J)$. (However Gg and G^*g may no longer satisfy the given Dirichlet boundary conditions.)
- (2) $L_y^*T_{G(x,y)} = \delta(x-y)$. More precisely we have the following representation formula. For any $f \in H^2(J)$,

(6.20)
$$f(x) = (GLf)(x) + \left\{ G(x,y)a(y)f'(y) - \left[a(y)G(x,y) \right]_y f(y) \right\} \Big|_{y=x}^{y=s}.$$

(3) Let us now assume $nul(L) = \{0\}$ and G is the Dirichlet Green's function for L. The Eq. (6.20) specializes to

$$f(x) = (GLf)(x) - [a(y)G(x,y)]_y f(y)\Big|_{y=x}^{y=s}$$

Moreover if we are given $h: \partial J \to \mathbb{R}$ and $g \in L^2(J)$, then the unique solution $f \in H^2(J)$ to

$$Lf = q$$
 a.e. with $f = h$ on ∂J

is

(6.21)
$$f(x) = (Gg)(x) + H(x)$$

²For example choose u, v so that Lu = 0 = Lv and $u(\alpha) = v'(\alpha) = 0$ and $u'(\alpha) = v(\alpha) = 1$.

where, for $x \in J^0$,

(6.22)
$$H(x) := -\left[a(y)G(x,y)\right]_{y}h(y)\Big|_{y=r}^{y=s}$$

and H(r) := H(r+) and H(s) := H(s-).

Proof. 1. The first item follows from the proof of Theorem 6.11 with out any modification.

2. Using Lemma 6.9,

$$L^* \left(\frac{u}{aW}\right) = -\left(\frac{u}{W}\right)'' - \left(\frac{bu}{aW}\right)' + \frac{cu}{aW}$$

$$= -\left(\frac{u'}{W} - \frac{b}{a}\frac{1}{W}u\right)' - \left(\frac{bu}{aW}\right)' + \frac{cu}{aW}$$

$$= -\left(\frac{u'}{W}\right)' + \frac{cu}{aW} = -\left(\frac{u''}{W} - \frac{b}{a}\frac{1}{W}u\right) + \frac{cu}{aW}$$

$$= \frac{1}{a}Lu = 0.$$

Similarly $L^*(\frac{v}{aW}) = 0$ and therefore $L_y^*G(x,y) = 0$ for $y \neq x$. Since

$$G_{y}(x,y) = -\left(\frac{d}{dy} \frac{1}{a(y)W(y)}\right) \begin{cases} u(x)v(y) & \text{if } x \leq y \\ v(x)u(y) & \text{if } x \geq y \end{cases}$$

$$-\frac{1}{a(y)W(y)} \begin{cases} u(x)v'(y) & \text{if } x \leq y \\ v(x)u'(y) & \text{if } x \geq y \end{cases}$$
(6.23)

we find

$$G_y(x,x+) - G_y(x,x-) = \frac{1}{a(x)W(x)} \left\{ v(x)u'(x) - u(x)v'(x) \right\} = -\frac{1}{a(x)}.$$

Finally since

$$L_y^* = -a \frac{d^2}{dy^2} + \text{lower order terms}$$

we may conclude form Lemma 5.11 that $L_y^*G(x,y) = \delta(x-y)$. Using integration by parts for absolutely continuous functions and Lemma 6.13, for $f \in H^2(J)$,

$$(GLf)(x) = \int_{J} G(x,y)Lf(y)dy$$

$$= \int_{J} G(x,y) \left(-a(y)\frac{d^{2}}{dy^{2}} + b(y)\frac{d}{dy} + c(y)\right) f(y)dy$$

$$= \int_{J} \left[\frac{d}{dy} \left[a(y)G(x,y)\right] f'(y) + \left(-\frac{d}{dy} \left[b(y)G(x,y)\right] f + c(y)\right) f(y)\right] dy$$

$$-G(x,y)a(y)f'(y)|_{y=r}^{y=s}$$

$$= -G(x,y)a(y)f'(y)|_{y=r}^{y=s} + \left[a(y)G(x,y)\right]_{y} f(y)|_{y=r}^{y=s} + \langle L_{y}^{*}G(x,y), f(y)\rangle$$

$$= \left[a(y)G(x,y)\right]_{y} f(y)|_{y=r}^{y=s} - G(x,y)a(y)f'(y)|_{y=r}^{y=s} + f(x).$$

This proves Eq. (6.20).

3. Now suppose G is the Dirichlet Green's function for L. By Eq. (6.15),

$$[-a(y)G(x,y)]_y = \left(\frac{d}{dy}\frac{1}{W(y)}\right) \begin{cases} u(x)v(y) & \text{if } x \le y \\ v(x)u(y) & \text{if } x \ge y \end{cases}$$
$$+ \frac{1}{W(y)} \begin{cases} u(x)v'(y) & \text{if } x \le y \\ v(x)u'(y) & \text{if } x \ge y \end{cases}$$

and hence the function H defined in Eq. (6.22) is more explicitly given by

(6.24)
$$H(x) = \frac{1}{W(s)} (u(x)v'(s)) h(s) - \frac{1}{W(r)} (v(x)u'(r)) h(r).$$

From this equation or the fact that $L_xG(x,r) = 0 = L_xG(x,s)$, H is is L – harmonic on J^0 . Moreover, from Eq. (6.24),

$$H(r) = -\frac{1}{W(r)} (v(r)u'(r)) h(r) = \frac{1}{W(r)} (u(r)v'(r) - v(r)u'(r)) h(r) = h(r)$$

and

$$H(s) = \frac{1}{W(s)} (u(s)v'(s)) h(s) = \frac{1}{W(s)} (u(s)v'(s) - v(s)u'(s)) h(s) = h(s).$$

Therefore if f is defined by Eq. (6.21),

$$Lf = LGg - LH = g$$
 a.e. on J^0

because LG = I on $L^2(J)$ and

$$f|_{\partial J} = (Gg)|_{\partial J} + H|_{\partial J} = H|_{\partial J} = h$$

since $Gg \in H_0^2(J)$.

Corollary 6.16 (Elliptic Regularity I). Suppose $-\infty \le r_0 < s_0 \le \infty$, $J_0 := (r_0, s_0)$ and L is as in Eq. (6.11) with the further assumption that $a, b, c \in C^{\infty}(\mathbb{R})$. If $f \in C^2(J_0)$ is a function such that $g := Lf \in C^k(J_0)$ for some $k \ge 0$, then $f \in C^{k+2}(J_0)$.

Proof. Let r < s be chosen so that J := [r, s] is a bounded subinterval of J_0 and let G be a Green's function as in Definition 6.14. Since a, b, c are smooth, it follows from our general theory of ODE that $G(x, y) \in C^{\infty}(J \times J \setminus \Delta)$ where $\Delta = \{(x, x) : x \in J\}$ is the diagonal in $J \times J$. Now by Theorem 6.15,

$$f(x) = (Gg)(x) + \left\{ G(x,y)a(y)f'(y) - [a(y)G(x,y)]_y f(y) \right\} \Big|_{y=r}^{y=s} \text{ for } x \in J^0.$$

Since

$$x \to \left\{ G(x,y)a(y)f'(y) - [a(y)G(x,y)]_y f(y) \right\} \Big|_{y=r}^{y=s} \in C^{\infty}(J^0)$$

it suffices to show $Gg \in C^{k+2}(J^0)$. But this follows by examining the formula for (Gg)'' given on the right side of Eq. (6.18).

In fact we have the following rather striking version of this result.

Theorem 6.17 (Hypoellipticity). Suppose $-\infty \le r_0 < s_0 \le \infty$, $J_0 := (r_0, s_0)$ and L is as in Eq. (6.11) with the further assumption that $a, b, c \in C^{\infty}(\mathbb{R})$. If $u \in \mathcal{D}'(J_0)$ is a generalized function such that $v := Lu \in C^{\infty}(J_0)$, then $u \in C^{\infty}(J_0)$.

Proof. As in the proof of Corollary 6.16 let r < s be chosen so that J := [r, s] is a bounded subinterval of J_0 and let G be the Green's function constructed above.³ Further suppose $\xi \in J^0$, $\theta \in C_c^{\infty}(J^0, [0, 1])$ such that $\theta = 1$ in a neighborhood U of ξ and $\alpha \in C_c^{\infty}(V, [0, 1])$ such that $\alpha = 1$ in a neighborhood V of ξ , see Figure 15.

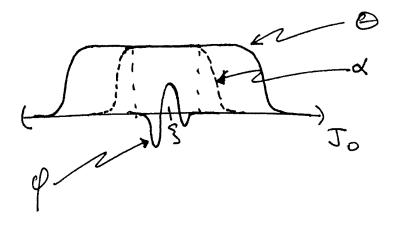


FIGURE 15. Constructing the cutoff functions, θ and α .

Finally suppose that $\phi \in C_c^{\infty}(V)$, then

$$\phi = \theta \phi = \theta L^* G^* \phi = \theta L^* (M_{\alpha} + M_{1-\alpha}) G^* \phi$$
$$= L^* M_{\alpha} G^* \phi + \theta L^* M_{1-\alpha} G^* \phi$$

and hence

$$\langle u, \phi \rangle = \langle u, L^* M_{\alpha} G^* \phi + \theta L^* M_{1-\alpha} G^* \phi \rangle$$
$$= \langle Lu, M_{\alpha} G^* \phi \rangle + \langle u, \theta L^* M_{1-\alpha} G^* \phi \rangle.$$

Now

$$\langle Lu, M_{\alpha}G^*\phi \rangle = \langle v, M_{\alpha}G^*\phi \rangle = \langle GM_{\alpha}v, \phi \rangle$$

and writing $u = D^n T_h$ for some continuous function h (which is always possible locally) we find

$$\langle u, \theta L^* M_{1-\alpha} G^* \phi \rangle = (-1)^n \langle u, D^n M_{\theta} L^* M_{1-\alpha} G^* \phi \rangle$$

$$= (-1)^n \int_{J \times J} h(x) D_x^n \left[\theta(x) L_x^* (1 - \alpha(x)) G(y, x) \right] \phi(y) dy dx$$

$$= \int_J \psi(y) \phi(y) dy$$

where

$$\psi(y) := \int_{J} h(x) D_x^n \left[\theta(x) L_x^* (1 - \alpha(x)) G(y, x) \right] dx$$

which is smooth for $y \in V$ because $1 - \alpha(x) = 0$ on V and so $(1 - \alpha(x)) G(y, x)$ is smooth for $(x, y) \in J \times V$. Putting this altogether shows

$$\langle u, \phi \rangle = \langle GM_{\alpha}v + \psi, \phi \rangle$$
 for all $\phi \in C_c^{\infty}(V)$.

³Actually we can simply define G^* to be a Green's function for L^* . It is not necessary to know $G^*(x,y) = G(y,x)$ where G is a Green's function for L.

That is to say $u = GM_{\alpha}v + \psi$ on V which proves the theorem since $GM_{\alpha}v + \psi \in C^{\infty}(V)$.

Example 6.18. Let $L = \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial x^2}$ be the wave operator on \mathbb{R}^2 which is not elliptic. Given $f \in C^2(\mathbb{R})$ we have already seen that $Lf(y-x) = 0 \in C^{\infty}(\mathbb{R}^2)$. Clearly since f was arbitrary, it does not follow that $F(x,y) := f(y-x) \in C^{\infty}(\mathbb{R}^2)$. Moreover, if f is merely continuous and F(x,y) := f(y-x), then $LT_F = 0$ with $F \notin C^2(\mathbb{R}^2)$. To check $LT_F = 0$ we first observe

$$-\langle (\partial_x + \partial_y) T_F, \phi \rangle = \langle T_F, (\partial_x + \partial_y) \phi \rangle = \int_{\mathbb{R}^2} f(y - x) (\partial_x + \partial_y) \phi(x, y) dx dy$$
$$= \int_{\mathbb{R}^2} f(y) \left[\phi_x(x, y + x) + \phi_y(x, y + x) \right] dx dy$$
$$= \int_{\mathbb{R}^2} f(y) \frac{\partial}{\partial x} \left[\phi(x, y + x) \right] dx dy = 0.$$

Therefore $LT_F = (\partial_x - \partial_y) (\partial_x + \partial_y) T_F = 0$ as well.

Corollary 6.19. Suppose a, b, c are smooth and $u \in \mathcal{D}'(J^0)$ is an eigenvector for L, i.e. $Lu = \lambda u$ for some $\lambda \in \mathbb{C}$. Then $u \in C^{\infty}(J)$.

Proof. Since $L - \lambda$ is an elliptic ordinary differential operator and $(L - \lambda) u = 0 \in C^{\infty}(J^0)$, it follows by Theorem 6.17 that $u \in C^{\infty}(J^0)$.

6.3. Elementary Sobolev Inequalities.

Notation 6.20. Let $\overline{\int_J} f dm := \frac{1}{|J|} \int_J f dm$ denote the average of f over J = [r, s].

Proposition 6.21. For $f \in H^1(J)$,

$$\begin{split} |f(x)| & \leq \left| \overline{\int_{J}} f dm \right| + \left\| f' \right\|_{L^{1}(J)} \\ & \leq \left| \overline{\int_{J}} f dm \right| + \sqrt{|J|} \left(\int_{J} \left| f'(y) \right|^{2} dy \right)^{1/2} \leq C \left(|J| \right) \left\| f \right\|_{H^{1}(J)}. \end{split}$$

where
$$C(|J|) = \max\left(\frac{1}{\sqrt{|J|}}, \sqrt{|J|}\right)$$
.

Proof. By the fundamental theorem of calculus for absolutely continuous functions

$$f(x) = f(a) + \int_{a}^{x} f'(y)dy$$

for any $a, x \in J$. Integrating this equation on a and then dividing by |J| := s - r implies

$$f(x) = \overline{\int_J} f dm + \overline{\int_J} da \int_a^x f'(y) dy$$

and hence

$$\begin{split} |f(x)| &\leq \left| \overline{\int_{J}} f dm \right| + \overline{\int_{J}} da \left| \int_{a}^{x} |f'(y)| \, dy \right| \\ &\leq \left| \overline{\int_{J}} f dm \right| + \int_{J} |f'(y)| \, dy \\ &\leq \left| \overline{\int_{J}} f dm \right| + \sqrt{|J|} \left(\int_{J} |f'(y)|^{2} \, dy \right)^{1/2} \\ &\leq \frac{1}{\sqrt{|J|}} \left(\int_{J} |f|^{2} \, dm \right)^{1/2} + \sqrt{|J|} \left(\int_{J} |f'(y)|^{2} \, dy \right)^{1/2}. \end{split}$$

Notation 6.22. For the remainder of this section, suppose $Lf = -\frac{1}{\rho}D\left(\rho af'\right) + cf$. is an elliptic ordinary differential operator on $J = [r, s], \ \rho \in C^2(J, (0, \infty))$ is a positive weight and

$$(f,g)_{\rho} := \int_{I} f(x)g(x)\rho(x)dx.$$

We will also take $D(L) = H_0^2(J)$, so that we are imposing Dirichlet boundary conditions on L. Finally let

$$\mathcal{E}(f,g) := \int_J \left[af'g' + cfg \right] \rho dm \text{ for } f,g \in H^1(J).$$

Lemma 6.23. For $f, g \in D(L)$,

$$(6.25) (Lf,g)_{\rho} = \mathcal{E}(f,g) = (f,Lg)_{\rho}.$$

Moreover

$$\mathcal{E}(f,f) \ge a_0 \|f'\|_2^2 + c_0 \|f\|_2^2 \text{ for all } f \in H^1(J)$$

where $c_0 := \min_J c$ and $a_0 = \min_J a$. If $\lambda_0 \in \mathbb{R}$ with $\lambda_0 + c_0 > 0$ then

(6.26)
$$||f||_{H^{1}(J)}^{2} \leq K \left[\mathcal{E}(f, f) + \lambda_{0} ||f||_{2}^{2} \right]$$

where $K = [\min(a_0, c_0 + \lambda_0)]^{-1}$.

Proof. Eq. (6.25) is a simple consequence of integration by parts. By elementary estimates

$$\mathcal{E}(f, f) \ge a_0 \|f'\|_2^2 + c_0 \|f\|_2^2$$

and

$$\mathcal{E}(f,f) + \lambda_0 \|f\|_2^2 \ge a_0 \|f'\|_2^2 + (c_0 + \lambda_0) \|f\|_2^2 \ge \min(a_0, c_0 + \lambda_0) \|f\|_{H^1(J)}^2$$
 which proves Eq. (6.26). \blacksquare

Corollary 6.24. Suppose $\lambda_0 + c_0 > 0$ then $\operatorname{Nul}(L + \lambda_0) \cap D(L) = 0$ and hence $(L + \lambda_0) : H_0^2(J) \to L^2(J)$

is invertible and the **resolvent** $(L + \lambda_0)^{-1}$ has a continuous integral kernel G(x, y), i.e.

$$(L + \lambda_0)^{-1} u(x) = \int_I G(x, y) u(y) dy.$$

Moreover if we define $D(L^k)$ inductively by

$$D(L^k) := \left\{ u \in D(L^{k-1}) : L^{k-1}u \in D(L) \right\}$$

we have $D(L^k) = H_0^{2k}(J)$.

Proof. By Lemma 6.23, for all $u \in D(L)$,

$$\|u\|_{H^{1}(J)}^{2} \le K\left((Lu, u) + \lambda_{0} \|u\|_{2}^{2}\right) = K\left(((L + \lambda_{0}) u, u)\right)$$

so that if $(L + \lambda_0) u = 0$, then $||u||_{H^1(J)}^2 = 0$ and hence u = 0. The remaining assertions except for $D(L^k) = H_0^k(J)$ now follow directly from Theorem 6.11 applied with L replaced by $L + \lambda_0$. Finally if $u \in D(L)$ then $(L + \lambda_0) u = Lu + \lambda_0 u \in L^2(J)$ and therefore

$$u = (L + \lambda_0)^{-1} (Lu + \lambda_0 u) \in H_0^2(J).$$

Now suppose we have shown, $D(L^k) = H_0^{2k}(J)$ and $u \in D(L^{k+1})$, then

$$(L + \lambda_0) u = Lu + \lambda_0 u \in D(L^k) + D(L^{k+1}) \subset D(L^k) = H_0^{2k}(J)$$

and so by Theorem 6.11, $u \in (L + \lambda_0)^{-1} H_0^{2k}(J) \subset H_0^{2k+2}(J)$.

Corollary 6.25. There exists an orthonormal basis $\{\phi_n\}_{n=0}^{\infty}$ for $L^2(J, \rho dm)$ of eigenfunctions of L with eigenvalues $\lambda_n \in \mathbb{R}$ such that $-c_0 \leq \lambda_0 < \lambda_1 < \lambda_2 < \ldots$

Proof. Let $\lambda_0 > -c_0$ and let $G := (L + \lambda_0)^{-1} : L^2(J) \to H_0^2(J) = D(L) \subset L^2(J)$. From the theory of compact operators to be developed later, G is a compact symmetric positive definite operator on $L^2(J)$ and hence there exists an orthonormal basis $\{\phi_n\}_{n=0}^{\infty}$ for $L^2(J, \rho dm)$ of eigenfunctions of G with eigenvalues $\mu_n > 0$ such that $\mu_0 \geq \mu_1 \geq \mu_2 \geq \ldots \to 0$. Since

$$\mu_n \phi_n = G\phi_n = (L + \lambda_0)^{-1} \phi_n,$$

it follows that $\mu_n (L + \lambda_0) \phi_n = \phi_n$ for all n and therefore $L\phi_n = \lambda_n \phi_n$ with $\lambda_n = (\mu_n^- 1 - \lambda_0) \uparrow \infty$. Finally since L is a second order ordinary differential equation there can be at most one linearly independent eigenvector for a given eigenvalue λ_n and hence $\lambda_n < \lambda_n + 1$ for all n.

Example 6.26. Let $J = [0, \pi]$, $\rho = 1$ and $L = -D^2$ on $H_0^2(J)$. Then $L\phi = \lambda\phi$ implies $\phi'' + \lambda\phi = 0$. Since L is positive, we need only consider the case where $\lambda \geq 0$ in which case $\phi(x) = a\cos\left(\sqrt{\lambda}x\right) + b\sin\left(\sqrt{\lambda}x\right)$. The boundary conditions for f imply a = 0 and $0 = \sin\left(\sqrt{\lambda}\pi\right)$, i.e. $\sqrt{\lambda} \in \mathbb{N}_+$. Therefore in this example

$$\phi_k(x) = \sqrt{\frac{2}{\pi}} \sin(kx)$$
 with $\lambda_k = k^2$.

The collection of functions $\{\phi_k\}_{k=1}^{\infty}$ is an orthonormal basis for $L^2(J)$.

Theorem 6.27. Let J = [r, s] and $\rho, a \in C^2(J, (0, \infty)), c \in C^2(J)$ and L be defined by

$$Lf = -\frac{1}{\rho}D\left(\rho af'\right) + cf.$$

and for $\lambda \in \mathbb{R}$ let

$$E^{\lambda}:=\left\{\phi\in H^2_0(J): L\phi=\alpha\phi \ for \ some \ \alpha<\lambda\right\}.$$

$$\sum_{n=0}^{\infty} \mu_n^2 < \infty.$$

⁴In fact G is "Hilbert Schmidt" which then implies

Then there are constants $d_1, d_2 > 0$ such that

Proof. For $\lambda \in \mathbb{R}$ let $E_{\lambda} := \left\{ \phi \in H_0^2(J) : L\phi = \lambda \phi \right\}$. By Corollary 6.24, $E_{\lambda} = \{0\}$ if $\lambda < c_0$ and since $(Lf,g)_{\rho} = (f,Lg)_{\rho}$ for all $f,g \in H_0^2(J)$ it follows that $E_{\lambda} \perp E_{\beta}$ for all $\lambda \neq \beta$. Indeed, if $f \in E_{\lambda}$ and $g \in E_{\beta}$, then

$$(\beta - \lambda) (f, g)_{\rho} = (f, Lg)_{\rho} - (Lf, g)_{\rho} = 0.$$

Thus it follow that any finite dimensional subspace $W \subset E^{\lambda}$ has an orthonormal basis (relative to $(\cdot, \cdot)_{\rho}$ – inner product) of eigenvectors $\{\phi_k\}_{k=1}^n \subset E^{\lambda}$ of L, say $L\phi_k = \lambda_k\phi_k$. Let $u = \sum_{k=1}^n u_k\phi_k$ where $u_k \in \mathbb{R}$. By Proposition 6.21 and Lemma 6.23.

$$\|u\|_{u}^{2} \le C \|u\|_{H^{1}(J)}^{2} \le C ((L + \lambda_{0}) u, u)_{\rho} = C \left(\sum_{k=1}^{n} u_{k} (\lambda_{k} + \lambda_{0}) \phi_{k}, u \right)_{\rho}$$

(where C is a constant varying from place to place but independent of u) and hence for any $x \in J$,

$$\left| \sum_{k=1}^{n} u_k \phi_k(x) \right|^2 \le \|u\|_u^2 \le C (\lambda + \lambda_0) \sum_{k=1}^{n} |u_k|^2.$$

Now choose $u_k = \phi_k(x)$ in this equation to find

$$\left| \sum_{k=1}^{n} |\phi_k(x)|^2 \right|^2 \le C (\lambda + \lambda_0) \sum_{k=1}^{n} |\phi_k(x)|^2$$

or equivalently that

$$\sum_{k=1}^{n} |\phi_k(x)|^2 \le C \left(\lambda + \lambda_0\right).$$

Multiplying this equation by ρ and then integrating shows

$$\dim(W) = n = \sum_{k=1}^{n} (\phi_k, \phi_k)_{\rho} \le C(\lambda + \lambda_0) \int_{J} \rho dm = C'(\lambda + \lambda_0).$$

Since $W \subset E^{\lambda}$ is arbitrary, it follows that

$$\dim(E^{\lambda}) \le C'(\lambda + \lambda_0).$$

Remarks 6.28. Notice that for all $\lambda \in \mathbb{R}$, $\dim(E_{\lambda}) \leq 1$ because if $u, v \in E_{\lambda}$ then by uniqueness of solutions to ODE, u = [u'(r)/v'(r)]v. Let $\{\phi_k\}_{k=1}^{\infty} \subset H_0^2(J) \cap C^{\infty}(J)$ be the eigenvectors of L ordered so that the corresponding eigenvalues are increasing. With this ordering we have $k = \dim(E^{\lambda_k}) \leq d_1 \lambda_k + d_2$ and therefore,

$$(6.28) \lambda_k \ge d_1^{-1}(k - d_2).$$

The estimates in Eqs. (6.27) and (6.28) are not particularly good as Example 6.26 illustrates.

6.4. Application to Heat and Wave Equations.

Lemma 6.29. L is a closed operator, i.e. if $s_n \in D(L)$ and $s_n \to s$ and $Ls_n \to g$ in L^2 , then $s \in D(L)$ and Ls = g. In particular if $f_k \in D(L)$ and $\sum_{k=1}^{\infty} f_k$ and $\sum_{k=1}^{\infty} Lf_k$ exists in L^2 , then $\sum_{k=1}^{\infty} f_k \in D(L)$ and

$$L\sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} Lf_k.$$

Proof. Let $\lambda_0 + c_0 > 0$ and $G = (L + \lambda_0)^{-1}$. Then by assumption $(L + \lambda_0) s_n \to g + \lambda_0 s$ and so

$$s \leftarrow s_n = G(L + \lambda_0) s_n \rightarrow G(q + \lambda_0 s)$$
 as $n \rightarrow \infty$

showing $s = Gg \in D(L + \lambda_0) = D(L)$ and

$$(L + \lambda_0) s = (L + \lambda_0) G(q + \lambda_0 s) = q + \lambda_0 s$$

and hence Ls = g as desired. The assertions about the sums follow by applying the sequence results to $s_n = \sum_{k=1}^n f_k$.

Theorem 6.30. Given $f \in L^2$, let

(6.29)
$$u(t) = e^{-tL} f = \sum_{n=0}^{\infty} (f, \phi_n) e^{-t\lambda_n} \phi_n.$$

Then for t > 0, u(t, x) is smooth in (t, x) and solves the heat equation

$$(6.30) u_t(t,x) = -Lu(t,x), \ u(t,x) = 0 \text{ for } x \in \partial J$$

(6.31) and
$$f = L^2 - \lim_{t \to 0} u(t)$$

Moreover, $u(t,x) = \int_{J} p_t(x,y) f(y) \rho(y) dy$ where

(6.32)
$$p_t(x,y) := \sum_{n=0}^{\infty} e^{-t\lambda_n} \phi_n(x) \phi_n(y)$$

is a smooth function in t > 0 and $x, y \in J$. The function p_t is called the **Diurichlet** Heat Kernel for L.

Proof. (Sketch.) For any t > 0 and $k \in \mathbb{N}$, $\sup_n \left(e^{-t\lambda_n}\lambda_n^k\right) < \infty$ and so by Lemma 6.29, for t > 0, $u(t) \in D\left(L^k\right) = H_0^{2k}(J)^5$ (Corollary 6.24) and

$$L^{k}u(t) = \sum_{n=0}^{\infty} (f, \phi_{n})e^{-t\lambda_{n}}\lambda_{n}^{k}\phi_{n}.$$

Also we have $L^k u^{(m)}(t)$ exists in L^2 for all $k, m \in \mathbb{N}$ and

$$L^{k}u^{(m)}(t) = (-1)^{m} \sum_{n=0}^{\infty} (f, \phi_{n})e^{-t\lambda_{n}}\lambda_{n}^{k+m}\phi_{n}.$$

By Sobolev inequalities and elliptic estimates such as Proposition 6.21 and Lemma 6.23, one concludes that $u \in C^{\infty}((0,\infty), H_0^k(J))$ for all k and then that $u \in$

⁵Basically, if $L^k u = g \in L^2(J)$ then $u = G^k g \in H_0^{2k}(J)$.

 $C^{\infty}((0,\infty)\times J,\mathbb{R})$. Eq. (6.30) is now relatively easy to prove and Eq. (6.31) follows from the following computation

$$||f - u(t)||_2^2 = \sum_{n=1}^{\infty} |(f, \phi_n)|^2 |1 - e^{-t\lambda_n}|^2$$

which goes to 0 as $t \downarrow 0$ by the D.C.T. for sums.

Finally from Eq. (6.29)

$$u(t,x) = \sum_{n=0}^{\infty} \int_{J} f(y)\phi(y)\rho(y)dye^{-t\lambda_n}\phi_n(x) = \int_{J} \sum_{n=0}^{\infty} e^{-t\lambda_n}\phi_n(x)\phi(y)f(y)\rho(y)dy$$

where the interchange of the sum and the integral is permissible since

$$\int_{J} \sum_{n=0}^{\infty} e^{-t\lambda_{n}} \left| \phi_{n}(x)\phi(y)f(y) \right| \rho(y)dy \leq C \int_{J} \sum_{n=0}^{\infty} e^{-t\lambda_{n}} \left(\lambda_{0} + \lambda_{n} \right)^{2} \left| f(y) \right| \rho(y)dy < \infty$$

since $\sum_{n=0}^{\infty} e^{-t\lambda_n} (\lambda_0 + \lambda_n)^2 < \infty$ because λ_n grows linearly in n. Moreover one similarly shows

$$\left(\frac{\partial}{\partial t}\right)^{j} \partial_{x}^{2k-1} \partial_{y}^{2l-1} p_{t}(x,y) = \sum_{n=0}^{\infty} \left(-\lambda_{n}\right)^{j} e^{-t\lambda_{n}} \partial_{x}^{2k-1} \phi_{n}(x) \partial_{y}^{2l-1} \phi(y)$$

where the above operations are permissible since

$$\left\|\phi_n^{(2k-1)}\right\|_{u} \le C \left\|\phi_n\right\|_{H_0^{2k}(J)} \le C \left\|\left(L + \lambda_0\right)^k \phi_n\right\|_{2} = C \left(\lambda_n + \lambda_0\right)^k$$

and therefore

$$\sum_{n=0}^{\infty} \left| \left(-\lambda_n \right)^j e^{-t\lambda_n} \partial_x^{2k-1} \phi_n(x) \partial_y^{2l-1} \phi(y) \right| \le C \sum_{n=0}^{\infty} \left| \lambda_n \right|^j \left(\lambda_n + \lambda_0 \right)^{k+l} e^{-t\lambda_n} < \infty.$$

Again we use λ_n grows linearly with n. From this one may conclude that $p_t(x, y)$ is smooth for t > 0 and $x, y \in J$. (We will do this in more detail when we work out the higher dimensional analogue.)

Remark 6.31 (Wave Equation). Suppose $f \in D(L^k)$, then

$$|(f,\phi_n)| = \left| \frac{1}{\lambda_n^k} (f, L^k \phi_n) \right| = \left| \frac{1}{\lambda_n^k} (L^k f, \phi_n) \right| \le \frac{1}{|\lambda_n^k|}$$

and therefore

$$\cos\left(t\sqrt{L}\right)f := \sum_{n=0}^{\infty} \cos\left(t\sqrt{\lambda_n}\right)(f,\phi_n)\phi_n$$

will be convergent in L^2 but moreover

$$L^k \cos\left(t\sqrt{L}\right) f := \sum_{n=0}^{\infty} \cos\left(t\sqrt{\lambda_n}\right) (f,\phi_n) \lambda_n^k \phi_n = \sum_{n=0}^{\infty} \cos\left(t\sqrt{\lambda_n}\right) (L^k f,\phi_n) \phi_n$$

will also be convergent. Therefore if we let

$$u(t) = \cos\left(t\sqrt{L}\right)f + \frac{\sin\left(t\sqrt{L}\right)}{\sqrt{L}}g$$

where $f,g\in D(L^k)$ for all k. Then we will get a solution to the wave equation

$$u_{tt}(t,x) + Lu(t,x) = 0$$
 with $u(0) = f$ and $\dot{u}(0) = g$.

More on all of this later.

6.5. Extensions to Other Boundary Conditions. In this section, we will assume $\rho \in C^2(J,(0,\infty))$,

(6.33)
$$Lu = -\rho^{-1}(\rho au')' + bu' + cu$$

is an elliptic ODE on $L^2(J)$ with smooth coefficients and

(6.34)
$$(u, v) = (u, v)_{\rho} = \int_{J} u(x)v(x)\rho(x)dx.$$

Theorem 6.32. For $v \in H^2(J)$ let

(6.35)
$$L^*v = -\rho^{-1}(\rho a v')' - b v' + \left[c - \rho^{-1}(\rho b)'\right]v.$$

Then for $u, v \in H^2(J)$,

(6.36)
$$(Lu, v) = (u, L^*v) + \mathcal{B}(u, v)|_{\partial J}$$

where

(6.37)
$$\mathcal{B}(u,v) = \rho a \left\{ (u',u) \cdot (-v,v' + \frac{b}{a}v) \right\}.$$

Proof. This is an exercise in integration by parts,

$$\begin{split} (Lu,v) &= \int_{J} \left(-\left(\rho a u'\right)' + \rho b u' + \rho c u \right) v dm \\ &= \int_{J} \left(\rho a u' v' - \left(\rho b v\right)' u + \rho c u \right) dm + \left[\rho b u v - \rho a u' v \right] |_{\partial J} \\ &= \int_{J} \left(-u \left(\rho a v'\right)' - \left(\rho b v\right)' u + \rho c v u \right) dm + \left[\rho b u v + \rho a u v' - \rho a u' v \right] |_{\partial J} \\ &= \int_{J} \left(-u \rho^{-1} \left(\rho a v'\right)' - \rho^{-1} \left(\rho b v\right)' u + c v u \right) \rho dm + \left[\rho a \left(\frac{b}{a} u v + u v' - v u' \right) \right] |_{\partial J} \\ &= (u, L^* v) + \left[\rho a (u', u) \cdot \left(-v, v' + \frac{b}{a} v \right) \right] |_{\partial J}. \end{split}$$

Notation 6.33. Given $(\alpha, \beta) : \partial J \to \mathbb{R}^2 \setminus \{0\}$ and $u, v \in H^2(J)$ let

$$Bu = \alpha u' + \beta u = (\alpha, \beta) \cdot (u', u)$$
 on ∂J

and

$$B^*v = \alpha v' + \left(\beta + \frac{b}{a}\alpha\right)v = \alpha v' + \tilde{\beta}v \text{ on } \partial J$$

where $\tilde{\beta} := (\beta + \frac{b}{a}\alpha)$.

Remarks 6.34. The function $(\alpha, \tilde{\beta}) : \partial J \to \mathbb{R}^2$ also takes values in $\mathbb{R}^2 \setminus \{0\}$ because $(\alpha, \tilde{\beta}) = 0$ iff $(\alpha, \beta) = 0$. Furthermore if $\alpha = 0$ then $\tilde{\beta} = \beta$.

Proposition 6.35. Let B and B^* be as defined in Notation 6.33 and define

$$D(L) = \{ u \in H^2(J) : Bu = 0 \text{ on } \partial J \}.$$

$$D(L^*) = \{ u \in H^2(J) : B^*u = 0 \text{ on } \partial J \}.$$

Then $v \in H^2(J)$ satisfies

$$(6.38) (Lu, v) = (u, L^*v) for all u \in D(L)$$

iff $v \in D(L^*)$.

Proof. We have to check that $\mathcal{B}(u,v)$ appearing in Eq. (6.36) is 0. (Actually we must check that $\mathcal{B}(u,v)|_{\partial J}=0$ which we might arrange by using something like "periodic boundary conditions." I am not considering this type of condition at the moment. Since u may be chosen to be zero near r or s we must require $\mathcal{B}(u,v)=0$ on ∂J .) Now $\mathcal{B}(u,v)=0$ iff

$$(6.39) \qquad \qquad (u',u)\cdot\left(-v,v'+\frac{b}{a}v\right)=0$$

which happens iff (u', u) is parallel to $(v' + \frac{b}{a}v, v)$. The boundary condition Bu = 0 may be rewritten as saying $(u', u) \cdot (\alpha, \beta) = 0$ or equivalently that (u', u) is parallel to $(-\beta, \alpha)$ on ∂J . Therefore the condition in Eq. (6.39) is equivalent to $(-\beta, \alpha)$ is parallel to $(v' + \frac{b}{a}v, v)$ or equivalently that

$$0 = (\alpha, \beta) \cdot \left(v' + \frac{b}{a}v, v\right) = B^*v.$$

Corollary 6.36. The formulas for L and L* agree iff b = 0 in which case

$$Lu = -\rho^{-1}D\left(a\rho u'\right) + cu,$$

$$B = B^*, D(L) = D(L^*) \text{ and }$$

$$(6.40) (Lu, v) = (u, Lv) for all u, v \in D(L).$$

(In fact L is a "self-adjoint operator," as we will see later by showing $(L + \lambda_0)^{-1}$ exists for λ_0 sufficiently large. Eq. (6.40) then may be used to deduce $(L + \lambda_0)^{-1}$ is a bounded self-adjoint operator with a symmetric Green's functions G.)

6.5.1. Dirichlet Forms Associated to (L, D(L)). For the rest of this section let $a, b_1, b_2, c_0, \rho \in C^2(J)$, with a > 0 and $\rho > 0$ on J and for $u, v \in H^1(J)$, let

(6.41)
$$\mathcal{E}(u,v) := \int_{J} (au'v' + b_1uv' + b_2u'v + c_0uv) \rho dm \text{ and}$$

$$||u||_{H^1(J)} := (||u'||^2 + ||u||^2)^{1/2}$$

where $||u||^2 = (u, u)_{\rho}$ as defined in Eq. (6.34).

Lemma 6.37 (A Coercive inequality for \mathcal{E}). There is a constant $K < \infty$ such that

$$(6.42) |\mathcal{E}(u,v)| \le K \|u\|_{H^1(J)} \|v\|_{H^1(J)} \text{ for } u,v \in H^1(J).$$

Let $a_0 = \min_J a$, $\bar{c} = \min_J c_0$ and $B := \max_J |b_1 + b_2|$, then for $u \in H^1(J)$,

(6.43)
$$\mathcal{E}(u,u) \ge \frac{a_0}{2} \|u'\|^2 + \left(\bar{c} - \frac{B^2}{2a_0}\right) \|u\|^2.$$

Proof. Let $A = \max_{J} a$, $B_i = \max_{J} |b_i|$ and $C_0 := \max_{J} |c_0|$, then

$$|\mathcal{E}(u,v)| \leq \int_{J} (a|u'||v'| + |b_{1}||u||v'| + |b_{2}||u'||v| + |c_{0}||u||v|) \rho dm$$

$$\leq A ||u'|| ||v'|| + B_{1} ||u|| ||v'|| + B_{2} ||u'|| ||v|| + C_{0} ||u|| ||v||$$

$$\leq K (||u'||^{2} + ||u||^{2})^{1/2} (||v'||^{2} + ||v||^{2})^{1/2}.$$

Let $a_0 = \min_J a$, $\bar{c} = \min_J c$ and $B := \max_J |b_1 + b_2|$, then for any $\delta > 0$,

$$\mathcal{E}(u, u) = \int_{J} \left(a |u'|^{2} + (b_{1} + b_{2}) uu' + c_{0} |u|^{2} \right) \rho dm$$

$$\geq a_{0} ||u'||^{2} + \bar{c} ||u||^{2} - B \int_{J} |u| |u'| \rho dm$$

$$\geq a_{0} ||u'||^{2} + \bar{c} ||u||^{2} - \frac{B}{2} \left(\delta ||u'||^{2} + \delta^{-1} ||u||^{2} \right)$$

$$= \left(a_{0} - \frac{B\delta}{2} \right) ||u'||^{2} + \left(\bar{c} - \frac{B}{2} \delta^{-1} \right) ||u||^{2}.$$

Taking $\delta = a_0/B$ in this equation proves Eq. (6.43).

Theorem 6.38. Let

(6.44)
$$b = (b_2 - b_1), \ c := c_0 - \rho^{-1} (\rho b_1)',$$

$$Lu = -\rho^{-1} (a\rho u')' + bu' + cu \ and$$

$$Bu = (\rho au' + \rho b_1 u)|_{\partial J}.$$

Then for $u \in H^2(J)$ and $v \in H^1(J)$

$$\mathcal{E}(u, v) = (Lu, v) + [(Bu) v]_{\partial J}$$

and for $u \in H^1(J)$ and $v \in H^2(J)$,

$$\mathcal{E}(u,v) = (u, L^*v) + [(B^*v)u]_{\partial J}.$$

Here (as in Eq. (6.35)

$$L^*v = -\rho^{-1} (a\rho u')' - \rho^{-1} [\rho b u]' + cu$$

and (as in Notation 6.33)

$$B^*v = \rho av' + \left(\rho b_1 + \frac{b}{a}\rho a\right)v = \rho av' + \rho b_2v.$$

Proof. Let $u \in H^2(J)$ and $v \in H^1(J)$ and integrating Eq. (6.41) by parts to find

$$\mathcal{E}(u,v) = \int_{J} \left(-\rho^{-1} (a\rho u')' v - \rho^{-1} (\rho b_{1} u)' v + b_{2} u' v + c_{0} u v \right) \rho dm + \left[\rho a u' v + \rho b_{1} u v \right]_{\partial J}$$

$$(6.45)$$

$$= (Lu,v) + [Bu \cdot v]_{\partial J}$$

where

$$Lu = -\rho^{-1} (a\rho u')' - \rho^{-1} (\rho b_1 u)' + b_2 u' + c_0 u$$

= $-\rho^{-1} (a\rho u')' + (b_2 - b_1) u' + [c_0 - \rho^{-1} (\rho b_1)'] u$
= $-\rho^{-1} (a\rho u')' + bu' + cu$

and

$$Bu = \rho au' + \rho b_1 u.$$

Similarly

$$\mathcal{E}(u,v) = \int_{J} \left(-u\rho^{-1} (a\rho v')' + b_{1}uv' - u\rho^{-1} (\rho b_{2}v)' + c_{0}uv \right) \rho dm + \left[(\rho auv' + \rho b_{2}uv) \right]_{\partial J}$$
$$= (u, L^{\dagger}v) + \left[B^{\dagger}v \cdot u \right]_{\partial J}$$

where

$$L^{\dagger}v = -\rho^{-1} (a\rho v')' + b_1 v' - \rho^{-1} (\rho b_2 v)' + c_0 v$$

$$= -\rho^{-1} (a\rho v')' + (b_1 - b_2) v' + [c_0 - \rho^{-1} (\rho b_2)'] v$$

$$= -\rho^{-1} (a\rho v')' - bv' + [c + \rho^{-1} (\rho (b_1 - b_2))^{-1}] v$$

$$= -\rho^{-1} (a\rho v')' - bv' + [c - \rho^{-1} (\rho b)'] v = L^* v.$$

and

$$B^{\dagger}v = (\rho av' + \rho b_2 v) = B^*v.$$

Remark 6.39. As a consequence of Theorem 6.38, the mapping

$$(a, b_1, b_2, c_0) \to \left[(u, v) \to \mathcal{E}(u, v) := \int_J \left(au'v' + b_1uv' + b_2u'v + c_0uv \right) \rho dm \right]$$

is highly **non-**injective. In fact \mathcal{E} depends only on a, $b = b_2 - b_1$ and $c := c_0 - \rho^{-1} (\rho b_1)'$ on J and b_1 on ∂J .

Corollary 6.40. As above let (α, β) : $\partial J \to \mathbb{R}^2 \setminus \{0\}$ and let

$$D(L) = \{ u \in H^2(J) : Bu = \alpha u' + \beta u = 0 \text{ on } \partial J \} \text{ and } Lu = -\rho^{-1} (a\rho u')' + bu' + cu.$$

Given $\lambda_0 > 0$ sufficiently large, $(L + \lambda_0) : D(L) \to L^2(J)$ is invertible and there is a continuous Green's function G(x, y) such that

$$(L+\lambda_0)^{-1}f(x) = \int_J G(x,y)f(y)dy.$$

Proof. Let us normalize α so that $\alpha = a$ whenever $\alpha \neq 0$. The boundary term in Eq. (6.45) will be zero whenever

$$au' + b_1 u = 0$$
 when $v \neq 0$ on ∂J .

This suggests that we define a subspace γ of $H^1(J)$ by

$$\chi := \{ u \in H^1(J) : u = 0 \text{ on } \partial J \text{ where } \alpha = 0 \text{ on } \partial J \}.$$

Hence χ is either $H_0^1(J)$, $H^1(J)$, $\{u \in H^1(J) : u(r) = 0\}$ or $\{u \in H^1(J) : u(s) = 0\}$. Now choose a function $b_1 \in C^2(J)$ such that $b_1 = \beta$ on ∂J , then set $b_2 := b + b_1$ and $c_0 = c + \rho^{-1} (\rho b_1)'$, then

$$D(L) = \chi \cap \{u \in H^2(J) : Bu = au' + b_1 u = 0 \text{ on } \partial J\}$$

and

$$(Lu, v) = \mathcal{E}(u, v)$$
 for all $u \in D(L)$ and $v \in \chi$.

Using this observation, it follows from Eq. (6.43) of Lemma 6.37, for λ_0 sufficiently large and any $u \in D(L)$, that

$$((L + \lambda_0) u, u) = \mathcal{E}(u, u) + \lambda_0(u, u)$$

$$\geq \frac{a_0}{2} \|u'\|^2 + \left(\bar{c} - \frac{B^2}{2a_0} + \lambda_0\right) \|u\|^2 \geq \frac{a_0}{2} \|u\|_{H^1(J)}^2.$$

As usual this equation shows $\text{Nul}(L + \lambda_0) = \{0\}$. The remaining assertions are now proved as in the proof of Corollary 6.24.