Math 21D (Driver) Midterm I (Practice Test and Key)

Compute or explain why the limits in Problems 1. and 2. do not exist.
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Determine if the series in problems 3—6 converge or diverge. Explain your answers.
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7. Write down the Taylor polynomial about zero of degree 5 which best approximates the function e®.
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8. Use the remainder theorem to give an estimate of the error between the value of e and the value

given by evaluating the Taylor polynomial above at x = —0.1. Please show your work.
9. Find the Maclaurin series for %

10. Explain how to use Taylor’s theorem with remainder to show that f(z) = /1 + « has a Maclaurin
series centered at a = 0 which is convergent for |z| < 1/2. (In fact the series is valid for |z| < 1, but this is
harder to show.) (Note well: This problems is too hard. You should replace it by the following problem.)

10b. Explain how to use Taylor’s theorem with remainder to show that f(z) = cosh(z) has a Taylor
series centered at a = 7 which is convergent for all z.

1 Here are some additional series problems.
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11. Consider the series % Is this series absolutely convergent, divergent, conditionally convergent?
n=2

Justify your answers.

12. The numbers a,, are given by the inductive relation:

a; =1 Apt1 = §an
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Consider b, = (—1)"a,, andc, = %‘f. Are the series 21 brs Zl ¢, divergent, conditionally, convergent,
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absolutely convergent? Justify your answers.

13. Give the Maclaurin series of the function

f(z) = cos® x — sin? .

Deduce the Maclaurin series of cos? z and sin® .

Hint: Use cos 2z = cos? x — sin® z and
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2 Solution Key

For many of the problems below, I have only given the answer. To get credit on the test you must do more

by showing your work and explaining your answer.
1. lim (-1)"e ™ =0

n—00

2. lim & = oo, i.e. diverges to oo by ’'Hopital’s rule.
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Determine if the series in problems 3-6 converge or diverge. Explain your answers.
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Set f(z) = In(x)/2?, then f'(z )_;7%39 M < 0 for > e. So f is decreasing for x > e and
goes to zero, by problem 2. We may use the integral test to find
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Let y = In(z), dy = 27 'dz and x = ¥, we find that

oo N
Z Inn 1nn /°° In(z
_2_
n
n=1 n=1 N

> _lN+1
Yy = ———.
=

l’l

5. Z (2k)' converges by the ratio test.

6. > (—1)" 122 converges by the alternating series test. One should show that f(z) = In(z)/z is

decreasir:g for large x.

7. Write down the Taylor polynomial about zero of degree 5 which best approximates the function e*.
Ts(z) = 1+ 2+ 22/2! + 23/30 + 2* /4! 4 25 /5!

8. Use the remainder theorem to give an estimate of the error between the value of the function at

x = —0.1 and the value given by evaluating the Taylor polynomial above at x = —0.1. Please show your
work.
26
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10. Explain how to use Taylor’s theorem with remainder to show that f(z) = /1 + « has a Maclaurin
series centered at a = 0 which is convergent for |z| < 1/2. (In fact the series is valid for |z| < 1, but this is
harder to show.) (Note well: This problems is too hard. You should replace it by the following problem.)

10b. Explain how to use Taylor’s theorem with remainder to show that f(z) = cosh(z) has a Taylor

series centered at a = 7 which is convergent for all z.
Ans for 10b.
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Now [cosh®™ Y (2)| is equal to either
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Since z is between x and a, |z| < a + |x|. Putting this altogether shows that
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We know this limit is zero since, by the ratio test
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is convergent for all M, and in particular this implies that lim, ., M™/n! = 0. This shows that

|Rn ()] < —0as N — oo.
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which is valid for all z.

3 Here are some additional series problems.

I will leave problems 11. and 12. to you.

13. Give the Maclaurin series of the function
f(z) = cos® x — sin? z.

Deduce the Maclaurin series of cos? z and sin® .

Hint: Use cos 2z = cos? x — sin® z and
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The formula for




