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Math 180C Homework Problems

The problems from Karlin and Taylor are referred to using the conventions.
1) II.1: E1 refers to Exercise 1 of section 1 of Chapter II. While II.3: P4 refers
to Problem 4 of section 3 of Chapter II.

0.1 Homework #1 (Due Monday, April 7)

Exercise 0.1 (2nd order recurrence relations). Let a, b, c be real numbers
with a 6= 0 6= c and suppose that {yn}∞n=−∞ solves the second order homoge-
neous recurrence relation:

ayn+1 + byn + cyn−1 = 0. (0.1)

Show:

1. for any λ ∈ C,
aλn+1 + bλn + cλn−1 = λn−1p (λ) (0.2)

where p (λ) = aλ2 + bλ+ c.

2. Let λ± = −b±
√
b2−4ac
2a be the roots of p and suppose for the moment that

b2 − 4ac 6= 0. Show
yn := A+λ

n
+ +A−λ

n
−

solves Eq. (0.1) for any choice of A+ and A−.
3. Now suppose that b2 = 4ac and λ0 := −b/ (2a) is the double root of p (λ) .

Show that
yn := (A0 +A1n)λn0

solves Eq. (0.1) for any choice of A0 and A1. Hint: Differentiate Eq. (0.2)
with respect to λ and then set λ = λ0.

4. Show that every solution to Eq. (0.1) is of the form found in parts 2. and 3.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {Xn}∞n=0 be
the Markov chain with values in Z with transition probabilities given by

P (Xn+1 = j ± 1|Xn = j) = 1/2 for all n ∈ N0 and j ∈ Z.

Further let a, b ∈ Z with a < 0 < b and

Ta,b := min {n : Xn ∈ {a, b}} and Tb := inf {n : Xn = b} .

We know by Proposition 3.15 that E0 [Ta,b] < ∞ from which it follows that
P (Ta,b <∞) = 1 for all a < 0 < b.

Exercise 0.2. Let wj := Pj
(
XTa,b = b

)
:= P

(
XTa,b = b|X0 = j

)
.

1. Use first step analysis to show for a < j < b that

wj =
1
2

(wj+1 + wj−1) (0.3)

provided we define wa = 0 and wb = 1.
2. Use the results of Exercise 0.1 to show

Pj
(
XTa,b = b

)
= wj =

1
b− a

(j − a) . (0.4)

3. Let

Tb :=
{

min {n : Xn = b} if {Xn} hits b
∞ otherwise

be the first time {Xn} hits b. Explain why,
{
XTa,b = b

}
⊂ {Tb <∞} and

use this along with Eq. (0.4) to conclude that Pj (Tb <∞) = 1 for all j < b.
(By symmetry this result holds true for all j ∈ Z.)

Exercise 0.3. The goal of this exercise is to give a second proof of the fact that
Pj (Tb <∞) = 1. Here is the outline:

1. Let wj := Pj (Tb <∞) . Again use first step analysis to show that wj satis-
fies Eq. (0.3) for all j with wb = 1.

2. Use Exercise 0.1 to show that there is a constant, c, such that

wj = c (j − b) + 1 for all j ∈ Z.

3. Explain why c must be zero to again show that Pj (Tb <∞) = 1 for all
j ∈ Z.

Exercise 0.4. Let T = Ta,b and uj := EjT := E [T |X0 = j] .
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1. Use first step analysis to show for a < j < b that

uj =
1
2

(uj+1 + uj−1) + 1 (0.5)

with the convention that ua = 0 = ub.
2. Show that

uj = A0 +A1j − j2 (0.6)

solves Eq. (0.5) for any choice of constants A0 and A1.
3. Choose A0 and A1 so that uj satisfies the boundary conditions, ua = 0 = ub.

Use this to conclude that

EjTa,b = −ab+ (b+ a) j − j2 = −a (b− j) + bj − j2. (0.7)

Remark 0.1. Notice that Ta,b ↑ Tb = inf {n : Xn = b} as a ↓ −∞, and so passing
to the limit as a ↓ −∞ in Eq. (0.7) shows

EjTb =∞ for all j < b.

Combining the last couple of exercises together shows that {Xn} is null - re-
current.

Exercise 0.5. Let T = Tb. The goal of this exercise is to give a second proof of
the fact and uj := EjT =∞ for all j 6= b. Here is the outline. Let uj := EjT ∈
[0,∞] = [0,∞) ∪ {∞} .

1. Note that ub = 0 and, by a first step analysis, that uj satisfies Eq. (0.5) for
all j 6= b – allowing for the possibility that some of the uj may be infinite.

2. Argue, using Eq. (0.5), that if uj < ∞ for some j < b then ui < ∞ for all
i < b. Similarly, if uj <∞ for some j > b then ui <∞ for all i > b.

3. If uj <∞ for all j > b then uj must be of the form in Eq. (0.6) for some A0

and A1 in R such that ub = 0. However, this would imply, uj = EjT → −∞
as j → ∞ which is impossible since EjT ≥ 0 for all j. Thus we must
conclude that EjT = uj =∞ for all j > b. (A similar argument works if we
assume that uj <∞ for all j < b.)

0.2 Homework #2 (Due Monday, April 14)

• IV.1 (p. 208 –): E5, E8, P1, P5
• IV.3 (p. 243 –): E1, E2, E3,
• IV.4 (p.254 – ): E2

0.3 Homework #3 (Due Monday, April 21)

Exercises 0.6 – 0.9 refer to the following Markov matrix:

P :=

1 2 3 4 5 6
0 1 0 0 0 0

1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0
0 0 1 0 0 0
0 1/2 0 0 0 1/2
0 0 0 1/4 3/4 0


1
2
3
4
5
6

(0.8)

We will let {Xn}∞n=0 denote the Markov chain associated to P.

Exercise 0.6. Make a jump diagram for this matrix and identify the recurrent
and transient classes. Also find the invariant destitutions for the chain restricted
to each of the recurrent classes.

Exercise 0.7. Find all of the invariant distributions for P.

Exercise 0.8. Compute the hitting probabilities, h5 = P5 (Xn hits {3, 4}) and
h6 = P6 (Xn hits {3, 4}) .

Exercise 0.9. Find limn→∞ P6 (Xn = j) for j = 1, 2, 3, 4, 5, 6.

Exercise 0.10. Suppose that {Tk}nk=1 are independent exponential random
variables with parameters {qk}nk=1 , i.e. P (Tk > t) = e−qkt for all t ≥ 0. Show
that T := min (T1, T2, . . . , Tn) is again an exponential random variable with
parameter q =

∑n
k=1 qk.

Exercise 0.11. Let {Tk}nk=1 be as in Exercise 0.11. Since these are continuous
random variables, P (Tk = Tj) = 0 for all k 6= j, i.e. there is no chance that any
two of the {Tk}nk=1 are the same.

Find
P (T1 < min (T2, . . . , Tn)) .

Hints: 1. Let S := min (T2, . . . , Tn) , 2. write P (T1 < min (T2, . . . , Tn)) =
E [1T1<S ] , 3. use Proposition 1.16 above.

Exercise 0.12. Consider the “pure birth” process with constant rates, λ > 0.
In this case S = {0, 1, 2, . . . } and if π = (π0, π1, π2, . . . ) is a given initial distri-
bution. In this case one may show that π (t) , satisfies the system of differential
equations:
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0.8 Homework #8 (Due Monday, June 2) iii

π̇0 (t) = −λπ0 (t)
π̇1 (t) = λπ0 (t)− λπ1 (t)
π̇2 (t) = λπ1 (t)− λπ2 (t)

...
π̇n (t) = λπn−1 (t)− λπn (t)

...

Show that the solution to these equations are given by

π0 (t) = π0e
−λt

π1 (t) = e−λt (π0λt+ π1)

π2 (t) = e−λt

(
π0

(λt)2

2!
+ π1λt+ π2

)
...

πn (t) = e−λt

(
n∑
k=0

πn−k
(λt)k

k!

)
...

Note: There are two ways to do this problem. The first and more interesting
way is to derive the solutions using Lemma 6.14. The second is to check that
the given functions satisfy the differential equations.

0.4 Homework #4 (Due Monday, April 28)

• VI.1 (p. 342 –): E1, E2, E5, P3, P5*, P8**
• VI.2 (p. 353 –): E1, P2***

* Please show that W1 and W2 - W1 are independent exponentially dis-
tributed random variables by computing P(W1 > t and W2 - W1 > s) for all
s,t>0.

**Hint: you can save some work using what we already have seen about two
state Markov chains, see the notes or sections VI.3 or VI.6 of the book.

*** Depending on how you choose to do this problem you may find Lemma
2.7 in the lecture notes useful.

0.5 Homework #5 (Due Monday, May 5)

• VI.2 (p. 353 –): P2.3 (Hint: look at the picture on page 345 to find an
expression for the area in terms of the {Sk}Nk=1 .)

• VI.3 (p. 365 –): E3.1, E3.3, P3.3, P3.4
• VI.4 (p. 377 –):E4.2, P4.1

Test #1 is on Friday May 9

0.6 Homework #6 (Due Monday, May 12)

• VI.4 (p. 377 –): P4.3
• VI.5 (p. 392 –): P5.2
• VI.6 (p. 405-): P6.2

0.7 Homework #7 (Due Monday, May 19)

• VII.1 (p. 424-426): Ex. 1.2, 1.3; Pr. 1.1, 1.3
• VII.2 (p. 431-432): Ex. 2.1
• VII.3 (p. 435-437): Ex. 3.1*, 3.3*; Pr. 3.2

* Hint. Write the event
{
N (t) = n and WN(t)+1 > t+ s

}
purely in terms

of the Poisson process, N. Then use your knowledge of N in order to do the
computations. Use facts you know about Poisson processes and make use of Ex.
3.1.

0.8 Homework #8 (Due Monday, June 2)

• VII.3 (p. 435-437): Pr. 3.4
• VII.4 (p. 445-447): Ex. 4.2, 4.3, 4.5; Pr. 4.1, 4.5
• VII.5 (p. 455-457): Ex. 5.1; Pr. 5.1, 5.4
• [VIII.1 (p. 487-491): Ex. 1.1, 1.4, 1.5; Pr. 1.1: These have been removed

from the assignment.]
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1

Independence and Conditioning

Definition 1.1. We say that an event, A, is independent of an event, B, iff
P (A|B) = P (A) or equivalently that

P (A ∩B) = P (A)P (B) .

We further say a collection of events {Aj}j∈J are independent iff

P (∩j∈J0Aj) =
∏
j∈J0

P (Aj)

for any finite subset, J0, of J.

Lemma 1.2. If {Aj}j∈J is an independent collection of events then so is{
Aj , A

c
j

}
j∈J .

Proof. First consider the case of two independent events, A and B. By
assumption, P (A ∩B) = P (A)P (B) . Since

A ∩Bc = A \B = A \ (B ∩A) ,

it follows that

P (A ∩Bc) = P (A)− P (B ∩A) = P (A)− P (A)P (B)
= P (A) (1− P (B)) = P (A)P (Bc) .

Thus if {A,B} are independent then so is {A,Bc} . Similarly we may show
{Ac, B} are independent and then that {Ac, Bc} are independent. That is
P
(
Aε ∩Bδ

)
= P (Aε)P

(
Bδ
)

where ε, δ is either “nothing” or “c.”
The general case now easily follows similarly. Indeed, if {A1, . . . , An} ⊂

{Aj}j∈J we must show that

P (Aε11 ∩ · · · ∩Aεnn ) = P (Aε11 ) . . . P (Aεnn )

where εj = c or εj = “ ”. But this follows from above. For example,
{A1 ∩ · · · ∩An−1, An} are independent implies that {A1 ∩ · · · ∩An−1, A

c
n} are

independent and hence

P (A1 ∩ · · · ∩An−1 ∩Acn) = P (A1 ∩ · · · ∩An−1)P (Acn)
= P (A1) . . . P (An−1)P (Acn) .

Thus we have shown it is permissible to add Acj to the list for any j ∈ J.

Lemma 1.3. If {An}∞n=1 is a sequence of independent events, then

P (∩∞n=1An) =
∞∏
n=1

P (An) := lim
N→∞

N∏
n=1

P (An) .

Proof. Since ∩Nn=1An ↓ ∩∞n=1An, it follows that

P (∩∞n=1An) = lim
N→∞

P
(
∩Nn=1An

)
= lim
N→∞

N∏
n=1

P (An) ,

where we have used the independence assumption for the last equality.

1.1 Borel Cantelli Lemmas

Definition 1.4. Suppose that {An}∞n=1 is a sequence of events. Let

{An i.o.} :=

{ ∞∑
n=1

1An =∞

}

denote the event where infinitely many of the events, An, occur. The abbrevia-
tion, “i.o.” stands for infinitely often.

For example if Xn is H or T depending on weather a heads or tails is flipped
at the nth step, then {Xn = H i.o.} is the event where an infinite number of
heads was flipped.

Lemma 1.5 (The First Borell – Cantelli Lemma). If {An} is a sequence
of events such that

∑∞
n=0 P (An) <∞, then

P ({An i.o.}) = 0.

Proof. Since

∞ >

∞∑
n=0

P (An) =
∞∑
n=0

E1An = E

[ ∞∑
n=0

1An

]
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it follows that
∑∞
n=0 1An <∞ almost surely (a.s.), i.e. with probability 1 only

finitely many of the {An} can occur.
Under the additional assumption of independence we have the following

strong converse of the first Borel-Cantelli Lemma.

Lemma 1.6 (Second Borel-Cantelli Lemma). If {An}∞n=1 are independent
events, then

∞∑
n=1

P (An) =∞ =⇒ P ({An i.o.}) = 1. (1.1)

Proof. We are going to show P ({An i.o.}c) = 0. Since,

{An i.o.}c =

{ ∞∑
n=1

1An =∞

}c
=

{ ∞∑
n=1

1An <∞

}

we see that ω ∈ {An i.o.}c iff there exists n ∈ N such that ω /∈ Am for all
m ≥ n. Thus we have shown, if ω ∈ {An i.o.}c then ω ∈ Bn := ∩m≥nAcm for
some n and therefore, {An i.o.}c = ∪∞n=1Bn. As Bn ↑ {An i.o.}c we have

P ({An i.o.}c) = lim
n→∞

P (Bn) .

But making use of the independence (see Lemmas 1.2 and 1.3) and the estimate,
1− x ≤ e−x, see Figure 1.1 below, we find

P (Bn) = P (∩m≥nAcm) =
∏
m≥n

P (Acm) =
∏
m≥n

[1− P (Am)]

≤
∏
m≥n

e−P (Am) = exp

−∑
m≥n

P (Am)

 = e−∞ = 0.

Combining the two Borel Cantelli Lemmas gives the following Zero-One
Law.

Corollary 1.7 (Borel’s Zero-One law). If {An}∞n=1 are independent events,
then

P (An i.o.) =
{

0 if
∑∞
n=1 P (An) <∞

1 if
∑∞
n=1 P (An) =∞ .

Example 1.8. If {Xn}∞n=1 denotes the outcomes of the toss of a coin such that
P (Xn = H) = p > 0, then P (Xn = H i.o.) = 1.

Fig. 1.1. Comparing e−x and 1− x.

Example 1.9. If a monkey types on a keyboard with each stroke being indepen-
dent and identically distributed with each key being hit with positive prob-
ability. Then eventually the monkey will type the text of the bible if she
lives long enough. Indeed, let S be the set of possible key strokes and let
(s1, . . . , sN ) be the strokes necessary to type the bible. Further let {Xn}∞n=1

be the strokes that the monkey types at time n. Then group the monkey’s
strokes as Yk :=

(
XkN+1, . . . , X(k+1)N

)
. We then have

P (Yk = (s1, . . . , sN )) =
N∏
j=1

P (Xj = sj) =: p > 0.

Therefore,
∞∑
k=1

P (Yk = (s1, . . . , sN )) =∞

and so by the second Borel-Cantelli lemma,

P ({Yk = (s1, . . . , sN )} i.o. k) = 1.

1.2 Independent Random Variables

Definition 1.10. We say a collection of discrete random variables, {Xj}j∈J ,
are independent if

P (Xj1 = x1, . . . , Xjn = xn) = P (Xj1 = x1) · · ·P (Xjn = xn) (1.2)

for all possible choices of {j1, . . . , jn} ⊂ J and all possible values xk of Xjk .
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Proposition 1.11. A sequence of discrete random variables, {Xj}j∈J , is in-
dependent iff

E [f1 (Xj1) . . . fn (Xjn)] = E [f1 (Xj1)] . . .E [fn (Xjn)] (1.3)

for all choices of {j1, . . . , jn} ⊂ J and all choice of bounded (or non-negative)
functions, f1, . . . , fn. Here n is arbitrary.

Proof. ( =⇒ ) If {Xj}j∈J , are independent then

E [f (Xj1 , . . . , Xjn)] =
∑

x1,...,xn

f (x1, . . . , xn)P (Xj1 = x1, . . . , Xjn = xn)

=
∑

x1,...,xn

f (x1, . . . , xn)P (Xj1 = x1) · · ·P (Xjn = xn) .

Therefore,

E [f1 (Xj1) . . . fn (Xjn)] =
∑

x1,...,xn

f1 (x1) . . . fn (xn)P (Xj1 = x1) · · ·P (Xjn = xn)

=

(∑
x1

f1 (x1)P (Xj1 = x1)

)
· · ·

(∑
xn

f (xn)P (Xjn = xn)

)
= E [f1 (Xj1)] . . .E [fn (Xjn)] .

(⇐=) Now suppose that Eq. (1.3) holds. If fj := δxj for all j, then

E [f1 (Xj1) . . . fn (Xjn)] = E [δx1 (Xj1) . . . δxn (Xjn)] = P (Xj1 = x1, . . . , Xjn = xn)

while
E [fk (Xjk)] = E [δxk (Xjk)] = P (Xjk = xk) .

Therefore it follows from Eq. (1.3) that Eq. (1.2) holds, i.e. {Xj}j∈J is an
independent collection of random variables.

Using this as motivation we make the following definition.

Definition 1.12. A collection of arbitrary random variables, {Xj}j∈J , are in-
dependent iff

E [f1 (Xj1) . . . fn (Xjn)] = E [f1 (Xj1)] . . .E [fn (Xjn)]

for all choices of {j1, . . . , jn} ⊂ J and all choice of bounded (or non-negative)
functions, f1, . . . , fn.

Fact 1.13 To check independence of a collection of real valued random vari-
ables, {Xj}j∈J , it suffices to show

P (Xj1 ≤ t1, . . . , Xjn ≤ tn) = P (Xj1 ≤ t1) . . . P (Xjn ≤ tn)

for all possible choices of {j1, . . . , jn} ⊂ J and all possible tk ∈ R. Moreover,
one can replace ≤ by < or reverse these inequalities in the the above expression.

One of the key theorems involving independent random variables is the
strong law of large numbers. The other is the central limit theorem.

Theorem 1.14 (Kolmogorov’s Strong Law of Large Numbers). Suppose
that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · · + Xn. Then
there exists µ ∈ R such that 1

nSn → µ a.s. iff Xn is integrable and in which
case EXn = µ.

Remark 1.15. If E |X1| =∞ but EX−1 <∞, then 1
nSn →∞ a.s. To prove this,

for M > 0 let

XM
n := min (Xn,M) =

{
Xn if Xn ≤M
M if Xn ≥M

and SMn :=
∑n
i=1X

M
i . It follows from Theorem 1.14 that 1

nS
M
n → µM := EXM

1

a.s.. Since Sn ≥ SMn , we may conclude that

lim inf
n→∞

Sn
n
≥ lim inf

n→∞

1
n
SMn = µM a.s.

Since µM → ∞ as M → ∞, it follows that lim infn→∞ Sn
n = ∞ a.s. and hence

that limn→∞
Sn
n =∞ a.s.

1.3 Conditioning

Suppose that X and Y are continuous random variables which have a joint
density, ρ(X,Y ) (x, y) . Then by definition of ρ(X,Y ), we have, for all bounded or
non-negative, f, that

E [f (X,Y )] =
∫ ∫

f (x, y) ρ(X,Y ) (x, y) dxdy. (1.4)

The marginal density associated to Y is then given by

ρY (y) :=
∫
ρ(X,Y ) (x, y) dx. (1.5)

Using this notation, we may rewrite Eq. (1.4) as:

E [f (X,Y )] =
∫ [∫

f (x, y)
ρ(X,Y ) (x, y)
ρY (y)

dx

]
ρY (y) dy. (1.6)

The term in the bracket is formally the conditional expectation of f (X,Y )
given Y = y. (The technical difficulty here is the P (Y = y) = 0 in this contin-
uous setting. All of this can be made precise, but we will not do this here.) At
any rate, we define,
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E [f (X,Y ) |Y = y] = E [f (X, y) |Y = y] :=
∫
f (x, y)

ρ(X,Y ) (x, y)
ρY (y)

dx

in which case Eq. (1.6) may be written as

E [f (X,Y )] =
∫

E [f (X,Y ) |Y = y] ρY (y) dy. (1.7)

This formula has obvious generalization to the case where X and Y are random
vectors such that (X,Y ) has a joint distribution, ρ(X,Y ). For the purposes of
Math 180C we need the following special case of Eq. (1.7).

Proposition 1.16. Suppose that X and Y are independent random vectors with
densities, ρX (x) and ρY (y) respectively. Then

E [f (X,Y )] =
∫

E [f (X, y)] · ρY (y) dy. (1.8)

Proof. The independence assumption is equivalent of ρ(X,Y ) (x, y) =
ρX (x) ρY (y) . Therefore Eq. (1.4) becomes

E [f (X,Y )] =
∫ ∫

f (x, y) ρX (x) ρY (y) dxdy

=
∫ [∫

f (x, y) ρX (x) dx
]
ρY (y) dy

=
∫

E [f (X, y)] · ρY (y) dy.

Remark 1.17. Proposition 1.16 should not be surprising based on our discussion
leading up to Eq. (1.8). Indeed, because of the assumed independence of X and
Y , we should have

E [f (X,Y ) |Y = y] = E [f (X, y) |Y = y] = E [f (X, y)] .

Using this identity in Eq. (1.7) gives Eq. (1.8).



2

Some Distributions

2.1 Geometric Random Variables

Definition 2.1. A integer valued random variable, N, is said to have a geo-
metric distribution with parameter, p ∈ (0, 1) provided,

P (N = k) = p (1− p)k−1 for k ∈ N.

If |s| < 1
1−p , we find

E
[
sN
]

=
∞∑
k=1

p (1− p)k−1
sk = ps

∞∑
k=1

(1− p)k−1
sk−1

=
ps

1− s (1− p)
.

Differentiating this equation in s implies,

E
[
NsN−1

]
=

d

ds

ps

1− s (1− p)
and

E
[
N (N − 1) sN−2

]
=
(
d

ds

)2
ps

1− s (1− p)
.

For s = 1 + ε, we have

ps

1− s (1− p)
=

p (1 + ε)
1− (1 + ε) (1− p)

=
p (1 + ε)

p (1 + ε)− ε
=

1
1− ε

p(1+ε)

=
∞∑
k=0

εk

pk (1 + ε)k
= 1 +

ε

p (1 + ε)
+

ε2

p2 (1 + ε)2
+O

(
ε3
)

= 1 +
ε (1− ε+ . . . )

p
+
ε2

p2
+O

(
ε3
)

= 1 +
ε

p
+ ε2

(
1
p2
− 1
p

)
+O

(
ε3
)
.

Therefore,

d

ds
|s=1

ps

1− s (1− p)
=

1
p

and(
d

ds

)2

|s=1
ps

1− s (1− p)
= 2

(
1
p2
− 1
p

)
.

Hence it follows that

EN = 1/p and

EN2 − 1/p = E [N (N − 1)] = 2
(

1
p2
− 1
p

)
which shows,

EN2 =
2
p2
− 1
p

and therefore ,

Var (N) = EN2 − (EN)2 =
2
p2
− 1
p
− 1
p2

=
1
p2
− 1
p

=
1− p
p2

.

2.2 Exponential Times

Much of what follows is taken from [5].

Definition 2.2. A random variable T ≥ 0 has the exponential distribution
of parameter λ ∈ [0,∞) provided, P (T > t) = e−λt for all t ≥ 0. We will
write T ∼ E (λ) for short.

If λ > 0, we have

P (T > t) = e−λt =
∫ ∞
t

λe−λτdτ

from which it follows that P (T ∈ (t, t+ dt)) = λ1t≥0e
−λtdt. Let us further

observe that

ET =
∫ ∞

0

tλe−λτdτ = λ

(
− d

dλ

)∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)
λ−1 = λ−1 (2.1)

and similarly,
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ET k =
∫ ∞

0

tkλe−λτdτ = λ

(
− d

dλ

)k ∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)k
λ−1 = k!λ−k.

In particular we see that

Var (T ) = 2λ−2 − λ−2 = λ−2. (2.2)

For later purposes, let us also compute,

E
[
e−T

]
=
∫ ∞

0

e−τλe−λτdτ =
λ

1 + λ
=

1
1 + λ−1

. (2.3)

Theorem 2.3 (Memoryless property). A random variable, T ∈ (0,∞] has
an exponential distribution iff it satisfies the memoryless property:

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0.

(Note that T ∼ E (0) means that P (T > t) = e0t = 1 for all t > 0 and therefore
that T =∞ a.s.)

Proof. Suppose first that T = E (λ) for some λ > 0. Then

P (T > s+ t|T > s) =
P (T > s+ t)
P (T > s)

=
e−λ(s+t)

e−λs
= e−λt = P (T > t) .

For the converse, let g (t) := P (T > t) , then by assumption,

g (t+ s)
g (s)

= P (T > s+ t|T > s) = P (T > t) = g (t)

whenever g (s) 6= 0 and g (t) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (t) = 0 for all t > s. Thus it follows that

g (t+ s) = g (t) g (s) for all s, t ≥ 0.

Since T > 0, we know that g (1/n) = P (T > 1/n) > 0 for some n and
therefore, g (1) = g (1/n)n > 0 and we may write g (1) = e−λ for some 0 ≤ λ <
∞.

Observe for p, q ∈ N, g (p/q) = g (1/q)p and taking p = q then shows,
e−λ = g (1) = g (1/q)q . Therefore, g (p/q) = e−λp/q so that g (t) = e−λt for all
t ∈ Q+. Given r, s ∈ Q+ and t ∈ R such that r ≤ t ≤ s we have since g is
decreasing that

e−λr = g (r) ≥ g (t) ≥ g (s) = e−λs.

Hence letting s ↑ t and r ↓ t in the above equations shows that g (t) = e−λt for
all t ∈ R+ and therefore T ∼ E (λ) .

Theorem 2.4. Let I be a countable set and let {Tk}k∈I be independent random
variables such that Tk ∼ E (qk) with q :=

∑
k∈I qk ∈ (0,∞) . Let T := infk Tk

and let K = k on the set where Tj > Tk for all j 6= k. On the complement of all
these sets, define K = ∗ where ∗ is some point not in I. Then P (K = ∗) = 0,
K and T are independent, T ∼ E (q) , and P (K = k) = qk/q.

Proof. Let k ∈ I and t ∈ R+ and Λn ⊂f I such that Λn ↑ I \ {k} , then

P (K = k, T > t) = P (∩j 6=k {Tj > Tk} , Tk > t) = lim
n→∞

P (∩j∈Λn {Tj > Tk} , Tk > t)

= lim
n→∞

∫
[0,∞)Λn∪{k}

∏
j∈Λn

1tj>tk · 1tk>tdµn
(
{tj}j∈Λn

)
qke
−qktkdtk

where µn is the joint distribution of {Tj}j∈Λn . So by Fubini’s theorem,

P (K = k, T > t) = lim
n→∞

∫ ∞
t

qke
−qktkdtk

∫
[0,∞)Λn

∏
j∈Λn

1tj>tk · 1tk>tdµn
(
{tj}j∈Λn

)
= lim
n→∞

∫ ∞
t

P (∩j∈Λn {Tj > tk}) qke−qktkdtk

=
∫ ∞
t

P (∩j 6=k {Tj > τ}) qke−qkτdτ

=
∫ ∞
t

∏
j 6=k

e−qjτqke
−qkτdτ =

∫ ∞
t

∏
j∈I

e−qjτqkdτ

=
∫ ∞
t

e−
∑∞
j=1 qjτqkdτ =

∫ ∞
t

e−qτqkdτ =
qk
q
e−qt. (2.4)

Taking t = 0 shows that P (K = k) = qk
q and summing this on k shows

P (K ∈ I) = 1 so that P (K = ∗) = 0. Moreover summing Eq. (2.4) on k now
shows that P (T > t) = e−qt so that T is exponential. Moreover we have shown
that

P (K = k, T > t) = P (K = k)P (T > t)

proving the desired independence.

Theorem 2.5. Suppose that S ∼ E (λ) and R ∼ E (µ) are independent. Then
for t ≥ 0 we have

µP (S ≤ t < S +R) = λP (R ≤ t < R+ S) .

Proof. We have
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µP (S ≤ t < S +R) = µ

∫ t

0

λe−λsP (t < s+R) ds

= µλ

∫ t

0

e−λse−µ(t−s)ds

= µλe−µt
∫ t

0

e−(λ−µ)sds = µλe−µt · 1− e−(λ−µ)t

λ− µ

= µλ · e
−µt − e−λt

λ− µ

which is symmetric in the interchanged of µ and λ.

Example 2.6. Suppose T is a positive random variable such that
P (T ≥ t+ s|T ≥ s) = P (T ≥ t) for all s, t ≥ 0, or equivalently

P (T ≥ t+ s) = P (T ≥ t)P (T ≥ s) for all s, t ≥ 0,

then P (T ≥ t) = e−at for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
FT (t) := P (T ≤ t) = 1 − e−a(t∨0). Since FT (t) is piecewise differentiable, the
law of T, µ := P ◦ T−1, has a density,

dµ (t) = F ′T (t) dt = ae−at1t≥0dt.

Therefore,

E
[
eiaT

]
=
∫ ∞

0

ae−ateiλtdt =
a

a− iλ
= µ̂ (λ) .

Since
µ̂′ (λ) = i

a

(a− iλ)2
and µ̂′′ (λ) = −2

a

(a− iλ)3

it follows that

ET =
µ̂′ (0)
i

= a−1 and ET 2 =
µ̂′′ (0)
i2

=
2
a2

and hence Var (T ) = 2
a2 −

(
1
a

)2 = a−2.

2.3 Gamma Distributions

Lemma 2.7. Suppose that {Sj}nj=1 are independent exponential random vari-
ables with parameter, θ. and Wn = S1 + · · ·+ Sn. Then

P (Wn ≤ t) = 1− e−θt
n−1∑
j=0

(θt)j

j!

 (2.5)

= e−θt
∞∑
j=n

(θt)j

j!
(2.6)

and the distribution function for Wn is

fWn
(t) = θe−θt

(θt)n−1

(n− 1)!
. (2.7)

Proof. Let Wk := S1 + · · ·+ Sk. We then have,

P (Wn ≤ t) = P (Wn−1 + Sn ≤ t)

=
∫ t

0

P (Wn−1 + Sn ≤ t|Sn = s) θe−θsds

=
∫ t

0

P (Wn−1 + s ≤ t) θe−θsds

=
∫ t

0

P (Wn−1 ≤ t− s) θe−θsds.

We may now use this expression to compute P (Wn ≤ t) inductively starting
with

P (W1 ≤ t) = P (S1 ≤ t) = 1− e−θt.

For n = 2 we have,

P (W2 ≤ t) =
∫ t

0

(
1− e−θ(t−s)

)
θe−θsds = θ

∫ t

0

(
e−θs − e−θt

)
ds

= 1− e−θt − θte−θt

= 1− e−θt (1 + θt) (2.8)

= e−θt
(
eθt − (1 + θt)

)
= e−θt

(
(θt)2

2!
+

(θt)3

3!
+ . . .

)

= e−θt
∞∑
n=2

(θt)n

n!
. (2.9)

Differentiating Eq. (2.8) shows,

fW2 (t) =
d

dt
P (W2 ≤ t) =

d

dt

[
1− e−θt (1 + θt)

]
= θe−θt (1 + θt)− e−θtθ = θte−θt.
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8 2 Some Distributions

For the general case, we find, assuming that Eq. (2.5) is correct,

P (Wn+1 ≤ t) = θ

∫ t

0

1− e−θ(t−s)
n−1∑
j=0

(θ (t− s))j

j!

 e−θsds
= θ

∫ t

0

e−θs − e−θt
n−1∑
j=0

(θ (t− s))j

j!

 ds
= 1− e−θt − θe−θt

n−1∑
j=0

∫ t

0

θj (t− s)j

j!
ds

= 1− e−θt − θe−θt
n−1∑
j=0

θjtj+1

(j + 1)!

= 1− e−θt − e−θt
n−1∑
j=0

θj+1tj+1

(j + 1)!
= 1− e−θt

n∑
j=0

(θt)j

j!

which completes the induction argument and proves Eq. (2.5). Since,

1 = e−θteθt = e−θt
∞∑
j=0

(θt)j

j!

we also have,

P (Wn ≤ t) = e−θt
∞∑
j=0

(θt)j

j!
− e−θt

n−1∑
j=0

(θt)j

j!


= e−θt

∞∑
j=n

(θt)j

j!

which proves Eq. (2.6). The distribution function for Wn now be computed by,

fWn (t) =
d

dt
P (Wn ≤ t) =

d

dt

1− e−θt
n−1∑
j=0

(θt)j

j!


= θe−θt

n−1∑
j=0

(θt)j

j!

− e−θt n−1∑
j=1

θjtj−1

(j − 1)!

= θe−θt

n−1∑
j=0

(θt)j

j!
−
n−1∑
j=1

θj−1tj−1

(j − 1)!

 = θe−θt
(θt)n−1

(n− 1)!
.

2.4 Beta Distribution

Lemma 2.8. Let

B (x, y) :=
∫ 1

0

tx−1 (1− t)y−1
dt for Rex,Re y > 0. (2.10)

Then

B (x, y) =
Γ (x)Γ (y)
Γ (x+ y)

.

Proof. Let u = t
1−t so that t = u (1− t) or equivalently, t = u

1+u and
1− t = 1

1+u and dt = (1 + u)−2
du.

B (x, y) =
∫ ∞

0

(
u

1 + u

)x−1( 1
1 + u

)y−1( 1
1 + u

)2

du

=
∫ ∞

0

ux−1

(
1

1 + u

)x+y
du.

Recalling that

Γ (z) :=
∫ ∞

0

e−ttz
dt

t
.

We find ∫ ∞
0

e−λttz
dt

t
=
∫ ∞

0

e−t
(
t

λ

)z
dt

t
=

1
λz
Γ (z) ,

i.e.
1
λz

=
1

Γ (z)

∫ ∞
0

e−λttz
dt

t
.

Taking λ = (1 + u) and z = x+ y shows

B (x, y) =
∫ ∞

0

ux−1 1
Γ (x+ y)

∫ ∞
0

e−(1+u)ttx+y
dt

t
du

=
1

Γ (x+ y)

∫ ∞
0

dt

t

x

e−ttx+y
∫ ∞

0

du

u
uxe−ut

=
1

Γ (x+ y)

∫ ∞
0

dt

t

x

e−ttx+y
Γ (x)
tx

=
Γ (x)

Γ (x+ y)

∫ ∞
0

dt

t

x

e−tty =
Γ (x)Γ (y)
Γ (x+ y)

.
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Fig. 2.1. Plot of t/ (1− t) .

Definition 2.9. The β – distribution is

dµx,y (t) =
tx−1 (1− t)y−1

dt

B (x, y)
.

Observe that∫ 1

0

tdµx,y (t) =
B (x+ 1, y)
B (x, y)

=
Γ (x+1)Γ (y)
Γ (x+y+1)

Γ (x)Γ (y)
Γ (x+y)

=
x

x+ y

and ∫ 1

0

t2dµx,y (t) =
B (x+ 2, y)
B (x, y)

=
Γ (x+2)Γ (y)
Γ (x+y+2)

Γ (x)Γ (y)
Γ (x+y)

=
(x+ 1)x

(x+ y + 1) (x+ y)
.





3

Markov Chains Basics

For this chapter, let S be a finite or at most countable state space and
p : S × S → [0, 1] be a Markov kernel, i.e.∑

y∈S
p (x, y) = 1 for all i ∈ S. (3.1)

A probability on S is a function, π : S → [0, 1] such that
∑
x∈S π (x) = 1.

Further, let N0 = N∪{0} ,

Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S} ,

and for each n ∈ N0, let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn.

Definition 3.1. A Markov probability1, P, on Ω with transition kernel, p,
is probability on Ω such that

P (Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn)
= P (Xn+1 = xn+1|Xn = xn) = p (xn, xn+1) (3.2)

where {xj}n+1
j=1 are allowed to range over S and n over N0. The iden-

tity in Eq. (3.2) is only to be checked on for those xj ∈ S such that
P (X0 = x0, X1 = x1, . . . , Xn = xn) > 0.

If a Markov probability P is given we will often refer to {Xn}∞n=0 as a
Markov chain. The condition in Eq. (3.2) may also be written as,

1 The set Ω is sufficiently big that it is no longer so easy to give a rigorous definition
of a probability on Ω. For the purposes of this class, a probability on Ω should
be taken to mean an assignment, P (A) ∈ [0, 1] for all subsets, A ⊂ Ω, such that
P (∅) = 0, P (Ω) = 1, and

P (A) =

∞∑
n=1

P (An)

whenever A = ∪∞n=1An with An ∩ Am = ∅ for all m 6= n. (There are technical
problems with this definition which are addressed in a course on “measure theory.”
We may safely ignore these problems here.)

E[f(Xn+1) | X0, X1, . . . , Xn] = E[f(Xn+1) | Xn] =
∑
y∈S

p (Xn, y) f (y) (3.3)

for all n ∈ N0 and any bounded function, f : S → R.

Proposition 3.2. If P is a Markov probability as in Definition 3.1 and π (x) :=
P (X0 = x) , then for all n ∈ N0 and {xj} ⊂ S,

P (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn) . (3.4)

Conversely if π : S → [0, 1] is a probability and {Xn}∞n=0 is a sequence of
random variables satisfying Eq. (3.4) for all n and {xj} ⊂ S, then ({Xn} , P, p)
satisfies Definition 3.1.

Proof. ( =⇒ )We do the case n = 2 for simplicity. Here we have

P (X0 = x0, X1 = x1, X2 = x2) = P (X2 = x2|X0 = x0, X1 = x1, ) · P (X0 = x0, X1 = x1)
= P (X2 = x2|X1 = x1, ) · P (X0 = x0, X1 = x1)
= p (x1, x2) · P (X1 = x1|X0 = x0)P (X0 = x0)
= p (x1, x2) · p (x0, x1)π (x0) .

(⇐=) By assumption we have

P (Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn)

=
π (x0) p (x0, x1) . . . p (xn−1, xn) p (xn, xn+1)

π (x0) p (x0, x1) . . . p (xn−1, xn)
= p (xn, xn+1)

provided the denominator is not zero.

Fact 3.3 To each probability π on S there is a unique Markov probability, Pπ,
on Ω such that Pπ (X0 = x) = π (x) for all x ∈ X. Moreover, Pπ is uniquely
determined by Eq. (3.4).

Notation 3.4 If

π (y) = δx (y) :=
{

1 if x = y
0 if x 6= y

, (3.5)

we will write Px for Pπ. For a general probability, π, on S we have

Pπ =
∑
x∈S

π (x)Px. (3.6)
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Notation 3.5 Associated to a transition kernel, p, is a jump graph (or jump
diagram) gotten by taking S as the set of vertices and then for x, y ∈ S, draw
an arrow from x to y if p (x, y) > 0 and label this arrow by the value p (x, y) .

Example 3.6. Suppose that S = {1, 2, 3} , then

P =

1 2 3 0 1 0
1/2 0 1/2
1 0 0

1
2
3

has the jump graph given by 3.1.

Fig. 3.1. A simple jump diagram.

Example 3.7. The transition matrix,

P =

1 2 31/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

1
2
3

is represented by the jump diagram in Figure 3.2.

If q : S × S → [0, 1] is another probability kernel we let p · q : S × S → [0, 1]
be defined by

(p · q) (x, y) :=
∑
z∈S

p (x, z) q (z, y) . (Matrix Multiplication!) (3.7)

We also let pn :=
n - times︷ ︸︸ ︷

p · p · · · · · p. If π : S → [0, 1] is a probability we let (π · q) :
S → [0, 1] be defined by

Fig. 3.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

(π · q) (y) :=
∑
x∈S

π (x) q (x, y)

which again is matrix multiplication if we view π to be a row vector. It is easy
to check that π · q is still a probability and p · q and pn are Markov kernels.

A key point to keep in mind is that a Markov process is completely specified
by its transition kernel, p : S × S → [0, 1] . For example we have the following
method for computing Px (Xn = y) .

Lemma 3.8. Keeping the above notation, Px (Xn = y) = pn (x, y) and more
generally,

Pπ (Xn = y) =
∑
x∈S

π (x) pn (x, y) = (π · pn) (y) .

Proof. We have from Eq. (3.4) that

Px (Xn = y) =
∑

x0,...,xn−1∈S
Px (X0 = x0, X1 = x1, . . . , Xn−1 = xn−1, Xn = y)

=
∑

x0,...,xn−1∈S
δx (x0) p (x0, x1) . . . p (xn−2, xn−1) p (xn−1, y)

=
∑

x1,...,xn−1∈S
p (x, x1) . . . p (xn−2, xn−1) p (xn−1, y) = pn (x, y) .

The formula for Pπ (Xn = y) easily follows from this formula.

Definition 3.9. We say that π : S → [0, 1] is a stationary distribution for p,
if

Pπ (Xn = x) = π (x) for all x ∈ S and n ∈ N.
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3 Markov Chains Basics 13

Since Pπ (Xn = x) = (π · pn) (x) , we see that π is a stationary distribution
for p iff πpn = p for all n ∈ N iff πp = p by induction.

Example 3.10. Consider the following example,

P =

1 2 31/2 1/2 0
0 1/2 1/2

1/2 1/2 0

1
2
3

with jump diagram given in Figure 3.10. We have

P 2 =

1/2 1/2 0
0 1/2 1/2

1/2 1/2 0

2

=

 1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4


and

P 3 =

1/2 1/2 0
0 1/2 1/2

1/2 1/2 0

3

=

 1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4

 .
To have a picture what is going on here, imaging that π = (π1, π2, π3)

represents the amount of sand at the sites, 1, 2, and 3 respectively. During
each time step we move the sand on the sites around according to the following
rule. The sand at site j after one step is

∑
i πipij , namely site i contributes pij

fraction its sand, πi, to site j. Everyone does this to arrive at a new distribution.
Hence π is an invariant distribution if each πi remains unchanged, i.e. π = πP.
(Keep in mind the sand is still moving around it is just that the size of the piles
remains unchanged.)

As a specific example, suppose π = (1, 0, 0) so that all of the sand starts at
1. After the first step, the pile at 1 is split into two and 1/2 is sent to 2 to get
π1 = (1/2, 1/2, 0) which is the first row of P. At the next step the site 1 keeps
1/2 of its sand (= 1/4) and still receives nothing, while site 2 again receives
the other 1/2 and keeps half of what it had (= 1/4 + 1/4) and site 3 then gets
(1/2 · 1/2 = 1/4) so that π2 =

[
1
4

1
2

1
4

]
which is the first row of P 2. It turns

out in this case that this is the invariant distribution. Formally,

[
1
4

1
2

1
4

] 1/2 1/2 0
0 1/2 1/2

1/2 1/2 0

 =
[

1
4

1
2

1
4

]
.

In general we expect to reach the invariant distribution only in the limit as
n→∞.

Notice that if π is any stationary distribution, then πPn = π for all n and
in particular,

π = πP 2 =
[
π1 π2 π3

]  1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4

 =
[

1
4

1
2

1
4

]
.

Hence
[

1
4

1
2

1
4

]
is the unique stationary distribution for P in this case.

Example 3.11 (§3.2. p108 Ehrenfest Urn Model). Let a beaker filled with a par-
ticle fluid mixture be divided into two parts A and B by a semipermeable
membrane. Let Xn = (# of particles in A) which we assume evolves by choos-
ing a particle at random from A ∪ B and then replacing this particle in the
opposite bin from which it was found. Suppose there are N total number of
particles in the flask, then the transition probabilities are given by,

pij = P (Xn+1 = j | Xn = i) =


0 if j /∈ {i− 1, i+ 1}
i
N if j = i− 1
N−i
N if j = i+ 1.

For example, if N = 2 we have

(pij) =

0 1 2 0 1 0
1/2 0 1/2
0 1 0

 0
1
2

and if N = 3, then we have in matrix form,

(pij) =

0 1 2 3
0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


0
1
2
3

.
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14 3 Markov Chains Basics

In the case N = 2,  0 1 0
1/2 0 1/2
0 1 0

2

=

 1
2 0 1

2
0 1 0
1
2 0 1

2


 0 1 0

1/2 0 1/2
0 1 0

3

=

 0 1 0
1
2 0 1

2
0 1 0


and when N = 3,

0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


2

=


1
3 0 2

3 0
0 7

9 0 2
9

2
9 0 7

9 0
0 2

3 0 1
3




0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


3

=


0 7

9 0 2
9

7
27 0 20

27 0
0 20

27 0 7
27

2
9 0 7

9 0




0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


25

∼=


0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0




0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


26

∼=


0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25


: 

0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


100

∼=


0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25


We also have

(P − I)tr =


−1 1 0 0
1
3 −1 2

3 0
0 2

3 −1 1
3

0 0 1 −1


tr

=


−1 1

3 0 0
1 −1 2

3 0
0 2

3 −1 1
0 0 1

3 −1


and

Nul
(

(P − I)tr
)

=


1
3
3
1

 .
Hence if we take, π = 1

8

[
1 3 3 1

]
then

πP =
1
8
[

1 3 3 1
] 

0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0

 =
1
8
[

1 3 3 1
]

= π

is the stationary distribution. Notice that

1
2
(
P 25 + P 26

) ∼= 1
2


0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0

+
1
2


0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25



=


0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125

 =


π
π
π
π

 .

3.1 First Step Analysis

We will need the following observation in the proof of Lemma 3.14 below. If T
is a N0 ∪ {∞} – valued random variable, then

ExT = Ex
∞∑
n=0

1n<T =
∞∑
n=0

Ex1n<T =
∞∑
n=0

Px (T > n) . (3.8)

Now suppose that S is a state space and assume that S is divided into two
disjoint events, A and B. Let

T := inf{n ≥ 0 : Xn ∈ B}

be the hitting time of B. Let Q := (p (x, y))x,y∈A and R := (p (x, y))x∈A, y∈B
so that the transition “matrix,” P = (p (x, y))x,y∈S may be written in the
following block diagonal form;

P =
[
Q R
∗ ∗

]
=

A B[
Q R
∗ ∗

]
A
B
.
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3.1 First Step Analysis 15

Remark 3.12. To construct the matrix Q and R from P, let P ′ be P with the
rows corresponding to B omitted. To form Q from P ′, remove the columns
of P ′ corresponding to B and to form R from P ′, remove the columns of P ′

corresponding to A.

Example 3.13. Suppose that S = {1, 2, . . . , 7} , A = {1, 2, 4, 5, 6} , B = {3, 7} ,
and

P =

1 2 3 4 5 6 7

0 1/2 0 1/2 0 0 0
1/3 0 1/3 0 1/3 0 0
0 1/2 0 0 0 1/2 0

1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
0 0 0 1 0 0 0



1
2
3
4
5
6
7

.

Following the algorithm in Remark 3.12 leads to:

P ′ =

1 2 3 4 5 6 7
0 1/2 0 1/2 0 0 0

1/3 0 1/3 0 1/3 0 0
1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0


1
2
4
5
6

,

Q =

1 2 4 5 6
0 1/2 1/2 0 0

1/3 0 0 1/3 0
1/3 0 0 1/3 0
0 1/3 1/3 0 1/3
0 0 0 1/2 0


1
2
4
5
6

, and R =

3 7
0 0

1/3 0
0 1/3
0 0

1/2 0


1
2
4
5
6

.

Lemma 3.14. Keeping the notation above we have

ExT =
∞∑
n=0

∑
y∈A

Qn (x, y) for all x ∈ A, (3.9)

where ExT =∞ is possible.

Proof. By definition of T we have for x ∈ A and n ∈ N0 that,

Px (T > n) = Px (X1, . . . , Xn ∈ A)

=
∑

x1,...,xn∈A
p (x, x1) p (x1, x2) . . . p (xn−1, xn)

=
∑
y∈A

Qn (x, y) . (3.10)

Therefore Eq. (3.9) now follows from Eqs. (3.8) and (3.10).

Proposition 3.15. Let us continue the notation above and let us further as-
sume that A is a finite set and

Px (T <∞) = P (Xn ∈ B for some n) > 0 ∀ x ∈ A. (3.11)

Under these assumptions, ExT < ∞ for all x ∈ A and in particular
Px (T <∞) = 1 for all x ∈ A. In this case we may may write Eq. (3.9) as

(ExT )x∈A = (I −Q)−1 1 (3.12)

where 1 (x) = 1 for all x ∈ A.

Proof. Since {T > n} ↓ {T =∞} and Px (T =∞) < 1 for all x ∈ A it
follows that there exists an m ∈ N and 0 ≤ α < 1 such that Px (T > m) ≤ α
for all x ∈ A. Since Px (T > m) =

∑
y∈AQ

m (x, y) it follows that the row sums
of Qm are all less than α < 1. Further observe that∑

y∈A
Q2m (x, y) =

∑
y,z∈A

Qm (x, z)Qm (z, y) =
∑
z∈A

Qm (x, z)
∑
y∈A

Qm (z, y)

≤
∑
z∈A

Qm (x, z)α ≤ α2.

Similarly one may show that
∑
y∈AQ

km (x, y) ≤ αk for all k ∈ N. Therefore
from Eq. (3.10) with m replaced by km, we learn that Px (T > km) ≤ αk for
all k ∈ N which then implies that∑

y∈A
Qn (x, y) = Px (T > n) ≤ αb

n
k c for all n ∈ N,

where btc = m ∈ N0 if m ≤ t < m+ 1, i.e. btc is the nearest integer to t which
is smaller than t. Therefore, we have

ExT =
∞∑
n=0

∑
y∈A

Qn (x, y) ≤
∞∑
n=0

αb
n
mc ≤ m ·

∞∑
l=0

αl = m
1

1− α
<∞.

So it only remains to prove Eq. (3.12). From the above computations we see
that

∑∞
n=0Q

n is convergent. Moreover,

(I −Q)
∞∑
n=0

Qn =
∞∑
n=0

Qn −
∞∑
n=0

Qn+1 = I

and therefore (I −Q) is invertible and
∑∞
n=0Q

n = (I −Q)−1
. Finally,
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16 3 Markov Chains Basics

(I −Q)−1 1 =
∞∑
n=0

Qn1 =

 ∞∑
n=0

∑
y∈A

Qn (x, y)


x∈A

= (ExT )x∈A

as claimed.

Remark 3.16. Let {Xn}∞n=0 denote the fair random walk on {0, 1, 2, . . . } with 0
being an absorbing state. Using the first homework problems, see Remark 0.1,
we learn that EiT = ∞ for all i > 0. This shows that we can not in general
drop the assumption that A (A = {1, 2, . . . } in this example) is a finite set the
statement of Proposition 3.15.

For our next result we will make use of the following important version of
the Markov property.

Theorem 3.17 (Markov Property II). If f (x0, x1, . . . ) is a bounded random
function of {xn}∞n=0 ⊂ S and g (x0, . . . , xn) is a function on Sn+1, then

Eπ [f (Xn, Xn+1, . . . ) g (X0, . . . , Xn)] = Eπ [(EXn [f (X0, X1, . . . )]) g (X0, . . . , Xn)]
(3.13)

Eπ [f (Xn, Xn+1, . . . ) |X0 = x0, . . . , Xn = xn] = Exnf (X0, X1, . . . ) (3.14)

for all x0, . . . , xn ∈ S such that Pπ (X0 = x0, . . . , Xn = xn) > 0. These results
also hold when f and g are non-negative functions.

Proof. In proving this theorem, we will have to take for granted that it
suffices to assume that f is a function of only finitely many {xn} . In practice,
any function, f, of the {xn}∞n=0 that we are going to deal with in this course
may be written as a limit of functions depending on only finitely many of
the {xn} . With this as justification, we now suppose that f is a function of
(x0, . . . , xm) for some m ∈ N. To simplify notation, let F = f (X0, X1, . . . Xm) ,
θnF := f (Xn, Xn+1, . . . Xn+m) , and G = g (X0, . . . , Xn) .

We then have,

Eπ [θnF ·G]

=
∑

{xj}m+n
j=0 ⊂S

π (x0) p (x0, x1) . . . p (xn+m−1, xm+n) f (xn, xn+1, . . . xn+m) g (x0, . . . , xn)

and∑
{xj}m+n

j=n+1⊂S

p (xn, xn+1) . . . p (xn+m−1, xm+n) f (xn, xn+1, . . . xn+m) g (x0, . . . , xn)

= g (x0, . . . , xn)
∑

{xj}m+n
j=n+1⊂S

[
p (xn, xn+1) . . . p (xn+m−1, xm+n) ·

·f (xn, xn+1, . . . xn+m)

]
= g (x0, . . . , xn) Exnf (X0, . . . , Xm) = g (x0, . . . , xn) ExnF.

Combining the last two equations implies,

Eπ [θnF ·G]

=
∑

{xj}mj=0⊂S

π (x0) p (x0, x1) . . . p (xn−1, xn) g (x0, . . . , xn) ExnF

= Eπ [g (X0, . . . , Xn) · EXnF ]

as was to be proved.
Taking g (y0, . . . , yn) = δx0,y0 . . . δxn,yn is Eq. (3.13) implies that

Eπ [f (Xn, Xn+1, . . . ) : X0 = x0, . . . , Xn = xn]
= ExnF · Pπ (X0 = x0, . . . , Xn = xn)

which implies Eq. (3.14). The proofs of the remaining equivalence of the state-
ments in the Theorem are left to the reader.

Here is a useful alternate statement of the Markov property. In words it
states, if you know Xn = x then the remainder of the chain Xn, Xn+1, Xn+2, . . .
forgets how it got to x and behave exactly like the original chain started at x.

Corollary 3.18. Let n ∈ N0, x ∈ S and π be any probability on S. Then relative
to Pπ (·|Xn = x) , {Xn+k}k≥0 is independent of {X0, . . . , Xn} and {Xn+k}k≥0

has the same distribution as {Xk}∞k=0 under Px.

Proof. According to Eq. (3.13),

Eπ [g (X0, . . . , Xn) f (Xn, Xn+1, . . . ) : Xn = x]
= Eπ [g (X0, . . . , Xn) δx (Xn) f (Xn, Xn+1, . . . )]
= Eπ [g (X0, . . . , Xn) δx (Xn) EXn [f (X0, X1, . . . )]]
= Eπ [g (X0, . . . , Xn) δx (Xn) Ex [f (X0, X1, . . . )]]
= Eπ [g (X0, . . . , Xn) : Xn = x] Ex [f (X0, X1, . . . )] .

Dividing this equation by P (Xn = x) shows,

Eπ [g (X0, . . . , Xn) f (Xn, Xn+1, . . . ) |Xn = x]
= Eπ [g (X0, . . . , Xn) |Xn = x] Ex [f (X0, X1, . . . )] . (3.15)

Taking g = 1 in this equation then shows,

Eπ [f (Xn, Xn+1, . . . ) |Xn = x] = Ex [f (X0, X1, . . . )] . (3.16)

This shows that {Xn+k}k≥0 under Pπ (·|Xn = x) has the same distribution
as {Xk}∞k=0 under Px and, in combination, Eqs. (3.15) and (3.16) shows
{Xn+k}k≥0 and {X0, . . . , Xn} are conditionally independent on {Xn = x} .
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3.1 First Step Analysis 17

Theorem 3.19. Let us continue the notation and assumption in Proposition
3.15 and further let g : A → R and h : B → R be two functions. Let g :=
(g (x))x∈A and h := (h (y))y∈B to be thought of as column vectors. Then for all
x ∈ A,

Ex

[∑
n<T

g(Xn)

]
= xth component of (I −Q)−1g (3.17)

and for all x ∈ A and y ∈ B,

Px (XT = y) =
[
(I −Q)−1R

]
x,y

. (3.18)

Taking g ≡ 1 (where 1 (x) = 1 for all x ∈ A) in Eq. (3.17) shows that

ExT = the xth component of (I −Q)−11 (3.19)

in agreement with Eq. (3.12). If we take g (x′) = δy (x′) for some x ∈ A, then

Ex

[∑
n<T

g(Xn)

]
= Ex

[∑
n<T

δy(Xn)

]
= Ex [number of visits to y before T ]

and by Eq. (3.17) it follows that

Ex [number of visits to y before hitting B] = (I −Q)−1
xy . (3.20)

Proof. Let

u (x) := Ex

 ∑
0≤n<T

g(Xn)

 = ExG

for x ∈ A where G :=
∑

0≤n<T g(Xn). Then

u (x) = Ex [Ex [G|X1]] =
∑
y∈S

p (x, y) Ex [G|X1 = y] .

For y ∈ A, by the Markov property2 in Theorem 3.17 we have,
2 In applying Theorem 3.17 we note that when X0 = x, T (X0, X1, . . . ) ≥ 1,
T (X1, X2, . . . ) = T (X0, X1, . . . )− 1, and hence

θ1

 ∑
0≤n<T (X0,X1,... )

g(Xn)


=

∑
0≤n<T (X1,X2... )

g(Xn+1) =
∑

0≤n<T (X0,X1,... )−1

g(Xn+1)

=
∑

1≤n+1<T (X0,X1,... )

g(Xn+1) =
∑

1≤n<T (X0,X1,... )

g(Xn) =
∑

1≤n<T

g(Xn).

Ex [G|X1 = y] = g (x) + Ex

 ∑
1≤n<T

g(Xn)|X1 = y


= g (x) + Ey

 ∑
0≤n<T

g(Xn)

 = g (x) + u (y)

and for y ∈ B, Ex [G|X1 = y] = g (x) . Therefore

u (x) =
∑
y∈A

p (x, y) [g (x) + u (y)] +
∑
y∈B

p (x, y) g (x)

= g (x) +
∑
y∈A

p (x, y)u (y) .

In matrix language this becomes, u = Qu+g and hence we have u = (I−Q)−1g
which is precisely Eq. (3.17).

To prove Eq. (3.18), let w (x) := Ex [h (XT )] . Since XT is the location of
where {Xn}∞n=0 first hits B if we are given X0 ∈ A, then XT is also the location
where the sequence, {Xn}∞n=1 , first hits B and therefore XT ◦ θ1 = XT when
X0 ∈ A. Therefore, working as before and noting now that,

w (x) =
∑
y∈A

Ex(h(XT )|X1 = y)p (x, y) +
∑
y∈B

Ex(h(XT )|X1 = y)p (x, y)

=
∑
y∈A

p (x, y) Ex(h(XT ) ◦ θ1|X1 = y) +
∑
y∈B

p (x, y) Ex(h(XT )|X1 = y)

=
∑
y∈A

p (x, y) Ey(h(XT )) +
∑
y∈B

p (x, y)h(y)

=
∑
y∈A

p (x, y)w (y) +
∑
y∈B

p (x, y)h(y) = (Qw +Rh)x.

Writing this in matrix form gives, w =Qw + Rh which we solve for w to find
that w = (I −Q)−1Rh and therefore,

(Ex [h (XT )])x∈A = xth – component of (I −Q)−1R (h (y))y∈B

Given y0 ∈ B, the taking h (y) = δy0,y in the above formula implies that

Px (XT = y0) = xth – component of (I −Q)−1R (δy0,y)y∈B
=
[
(I −Q)−1R

]
x,y

.
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18 3 Markov Chains Basics

Remark 3.20. Here is a story to go along with the above scenario. Suppose
that g (x) is the toll you have to pay for visiting a site x ∈ A while h (y)
is the amount of prize money you get when landing on a point in B. Then
Ex
[∑

0≤n<T g(Xn)
]

is the expected toll you have to pay before your first exit
from A while Ex [h (XT )] is your expected winnings upon exiting B.

The next two results follow the development in Theorem 1.3.2 of Norris [5].

Theorem 3.21 (Hitting Probabilities). Suppose that A ⊂ S as above and
now let H := inf {n : Xn ∈ A} be the first time that {Xn}∞n=0 hits A with the
convention that H = ∞ if Xn does not hit A. Let hi := Pi (H <∞) be the
hitting probability of A given X0 = i, vi :=

∑
j /∈A p (i, j) for all i /∈ A, and

{Qij := p (i, j)}i,j /∈A . Then

hi = Pi (H <∞) = 1i∈A + 1i/∈A
∞∑
n=0

[Qnv]i (3.21)

and hi may also be characterized as the minimal non-negative solution to the
following linear equations;

hi = 1 if i ∈ A and

hi =
∑
j∈S

p (i, j)hj =
∑
j∈Ac

Q (i, j)hj + vi for all i ∈ Ac. (3.22)

Proof. Let us first observe that Pi (H = 0) = Pi (X0 ∈ A) = 1i∈A. Also for
any n ∈ N

{H = n} = {X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}

and therefore,

Pi (H = n) = 1i/∈A
∑

j1,...,jn−1∈Ac

∑
jn∈A

p (i, j1) p (j1, j2) . . . p (jn−2, jn−1) p (jn−1, jn)

= 1i/∈A
[
Qn−1v

]
i
.

Since {H <∞} = ∪∞n=0 {H = n} , it follows that

Pi (H <∞) = 1i∈A +
∞∑
n=1

1i/∈A
[
Qn−1v

]
i

which is the same as Eq. (3.21). The remainder of the proof now follows from
Lemma 3.22 below. Nevertheless, it is instructive to use the Markov property
to show that Eq. (3.22) is valid. For this we have by the first step analysis; if
i /∈ A, then

hi = Pi (H <∞) =
∑
j∈S

p (i, j)Pi (H <∞|X1 = j)

=
∑
j∈S

p (i, j)Pj (H <∞) =
∑
j∈S

p (i, j)hj

as claimed.

Lemma 3.22. Suppose that Qij and vi be as above. Then h :=
∑∞
n=0Q

nv is
the unique non-negative minimal solution to the linear equations, x = Qx+ v.

Proof. Let us start with a heuristic proof that h satisfies, h = Qh + v.
Formally we have

∑∞
n=0Q

n = (1−Q)−1 so that h = (1−Q)−1
v and therefore,

(1−Q)h = v, i.e. h = Qh + v. The problem with this proof is that (1−Q)
may not be invertible.

Rigorous proof. We simply have

h−Qh =
∞∑
n=0

Qnv −
∞∑
n=1

Qnv = v.

Now suppose that x = v + Qx with xi ≥ 0 for all i. Iterating this equation
shows,

x = v +Q (Qx+ v) = v +Qv +Q2x

x = v +Qv +Q2 (Qx+ v) = v +Qv +Q2v +Q3x

...

x =
N∑
n=0

Qnv +QN+1x ≥
N∑
n=0

Qnv,

where for the last inequality we have used
[
QN+1x

]
i
≥ 0 for all N and i ∈ Ac.

Letting N →∞ in this last equation then shows that

x ≥ lim
N→∞

N∑
n=0

Qnv =
∞∑
n=0

Qnv = h

so that hi ≤ xi for all i.

3.2 First Step Analysis Examples

To simulate chains with at most 4 states, you might want to go to:

http://people.hofstra.edu/Stefan Waner/markov/markov.html
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3.2 First Step Analysis Examples 19

Example 3.23. Consider the Markov chain determined by

1 2 3 4

P =


0 1/3 1/3 1/3

3/4 1/8 1/8 0
0 0 1 0
0 0 0 1


1
2
3
4

Notice that 3 and 4 are absorbing states. Let hi = Pi (Xn hits 3) for i = 1, 2, 3, 4.
Clearly h3 = 1 while h4 = 0 and by the first step analysis we have

h1 =
1
3
h2 +

1
3
h3 +

1
3
h4 =

1
3
h2 +

1
3

h2 =
3
4
h1 +

1
8
h2 +

1
8
h3 =

3
4
h1 +

1
8
h2 +

1
8

i.e.

h1 =
1
3
h2 +

1
3

h2 =
3
4
h1 +

1
8
h2 +

1
8

which have solutions,

P1 (Xn hits 3) = h1 =
8
15
∼= 0.533 33

P2 (Xn hits 3) = h2 =
3
5
.

Similarly if we let hi = Pi (Xn hits 4) instead, from the above equations with
h3 = 0 and h4 = 1, we find

h1 =
1
3
h2 +

1
3

h2 =
3
4
h1 +

1
8
h2

which has solutions,

P1 (Xn hits 4) = h1 =
7
15

and

P2 (Xn hits 4) = h2 =
2
5
.

Of course we did not really need to compute these, since

P1 (Xn hits 3) + P1 (Xn hits 4) = 1 and
P2 (Xn hits 3) + P2 (Xn hits 4) = 1.

The output of one simulation is in Figure 3.3 below.

Fig. 3.3. In this run, rather than making sites 3 and 4 absorbing, we have made
them transition back to 1. I claim now to get an approximate value for P1 (Xn hits 3)
we should compute: (State 3 Hits)/(State 3 Hits + State 4 Hits). In this example we
will get 171/(171 + 154) = 0.526 15 which is a little lower than the predicted value of
0.533 . You can try your own runs of this simulator.

3.2.1 A rat in a maze example Problem 5 on p.131.

Here is the maze  1 2 3(food)
4 5 6

7(Shock)


in which the rat moves from nearest neighbor locations probability being 1/D
where D is the number of doors in the room that the rat is currently in. The
transition matrix is therefore,
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20 3 Markov Chains Basics

Fig. 3.4. Rat in a maze.

P =

1 2 3 4 5 6 7

0 1/2 0 1/2 0 0 0
1/3 0 1/3 0 1/3 0 0
0 1/2 0 0 0 1/2 0

1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
0 0 0 1 0 0 0



1
2
3
4
5
6
7

.

and the corresponding jump diagram is given in Figure 3.4
Given we want to stop when the rat is either shocked or gets the food, we

first delete rows 3 and 7 from P and form Q and R from this matrix by taking
columns 1, 2, 4, 5, 6 and 3, 7 respectively as in Remark 3.12. This gives,

Q =

1 2 4 5 6
0 1/2 1/2 0 0

1/3 0 0 1/3 0
1/3 0 0 1/3 0
0 1/3 1/3 0 1/3
0 0 0 1/2 0


1
2
4
5
6

and

R =

3 7
0 0

1/3 0
0 1/3
0 0

1/2 0


1
2
4
5
6

.

Therefore,

I −Q =


1 − 1

2 −
1
2 0 0

− 1
3 1 0 − 1

3 0
− 1

3 0 1 − 1
3 0

0 − 1
3 −

1
3 1 − 1

3
0 0 0 − 1

2 1

 ,

(I −Q)−1 =

1 2 4 5 6
11
6

5
4

5
4 1 1

3
5
6

7
4

3
4 1 1

3
5
6

3
4

7
4 1 1

3
2
3 1 1 2 2

3
1
3

1
2

1
2 1 4

3


1
2
4
5
6

,

(I −Q)−1 1 =


11
6

5
4

5
4 1 1

3
5
6

7
4

3
4 1 1

3
5
6

3
4

7
4 1 1

3
2
3 1 1 2 2

3
1
3

1
2

1
2 1 4

3




1
1
1
1
1

 =


17
3
14
3
14
3
16
3
11
3


1
2
4
5
6

,

and

(I −Q)−1
R =


11
6

5
4

5
4 1 1

3
5
6

7
4

3
4 1 1

3
5
6

3
4

7
4 1 1

3
2
3 1 1 2 2

3
1
3

1
2

1
2 1 4

3




0 0
1/3 0
0 1/3
0 0

1/2 0



=

3 7
7
12

5
12

3
4

1
4

5
12

7
12

2
3

1
3

5
6

1
6


1
2
4
5
6

.

Hence we conclude, for example, that E4T = 14
3 and P4 (XT = 3) = 5/12 and

the expected number of visits to site 5 starting at 4 is 1.
Let us now also work out the hitting probabilities,

hi = Pi (Xn hits 3 = food before 7 = shock) ,

in this example. To do this we make both 3 and 7 absorbing states so the jump
diagram is in Figure 3.2.1. Therefore,
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3.2 First Step Analysis Examples 21

h6 =
1
2

(1 + h5)

h5 =
1
3

(h2 + h4 + h6)

h4 =
1
2
h1

h2 =
1
3

(1 + h1 + h5)

h1 =
1
2

(h2 + h4) .

The solutions to these equations are,

h1 =
4
9
, h2 =

2
3
, h4 =

2
9
, h5 =

5
9
, h6 =

7
9
. (3.23)

Similarly if hi = Pi (Xn hits 7 before 3) we have h7 = 1, h3 = 0 and

h6 =
1
2
h5

h5 =
1
3

(h2 + h4 + h6)

h4 =
1
2

(h1 + 1)

h2 =
1
3

(h1 + h5)

h1 =
1
2

(h2 + h4)

whose solutions are

h1 =
5
9
, h2 =

1
3
, h4 =

7
9
, h5 =

4
9
, h6 =

2
9
. (3.24)

Notice that the sum of the hitting probabilities in Eqs. (3.23) and (3.24) add
up to 1 as they should.

3.2.2 A modification of the previous maze

Here is the modified maze, 1 2 3(food)
4 5

6(Shock)

 .
The transition matrix with 3 and 6 made into absorbing states3 is:

P =

1 2 3 4 5 6
0 1/2 0 1/2 0 0

1/3 0 1/3 0 1/3 0
0 0 1 0 0 0

1/3 0 0 0 1/3 1/3
0 1/2 0 1/2 0 0
0 0 0 0 0 1


1
2
3
4
5
6

,

Q =

1 2 4 5
0 1/2 1/2 0

1/3 0 0 1/3
1/3 0 0 1/3
0 1/2 1/2 0


1
2
4
5

, R =

3 6
0 0

1/3 0
0 1/3
0 0


1
2
4
5

(I4 −Q)−1 =

1 2 4 5
2 3

2
3
2 1

1 2 1 1
1 1 2 1
1 3

2
3
2 2


1
2
4
5

,

(I4 −Q)−1
R =

3 6
1
2

1
2

2
3

1
3

1
3

2
3

1
2

1
2


1
2
4
5

,

3 It is not necessary to make states 3 and 6 absorbing. In fact it does matter at all
what the transition probabilites are for the chain for leaving either of the states 3
or 6 since we are going to stop when we hit these states. This is reflected in the
fact that the first thing we will do in the first step analysis is to delete rows 3 and
6 from P. Making 3 and 6 absorbing simply saves a little ink.
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(I4 −Q)−1


1
1
1
1

 =


6
5
5
6


1
2
4
5

.

So for example, P4(XT = 3(food)) = 1/3, E4(Number of visits to 1) = 1,
E5(Number of visits to 2) = 3/2 and E1T = E5T = 6 and E2T = E4T = 5.



4

Long Run Behavior of Discrete Markov Chains

For this chapter, Xn will be a Markov chain with a finite or countable state
space, S. To each state i ∈ S, let

Ri := min{n ≥ 1 : Xn = i} (4.1)

be the first passage time of the chain to site i, and

Mi :=
∑
n≥1

1Xn=i (4.2)

be number of visits of {Xn}n≥1 to site i.

Definition 4.1. A state j is accessible from i (written i → j) iff Pi(Rj <
∞) > 0 and i ←→ j (i communicates with j) iff i → j and j → i. No-
tice that i → j iff there is a path, i = x0, x1, . . . , xn = j ∈ S such that
p (x0, x1) p (x1, x2) . . . p (xn−1, xn) > 0.

Definition 4.2. For each i ∈ S, let Ci := {j ∈ S : i←→ j} be the communi-
cating class of i. The state space, S, is partitioned into a disjoint union of its
communicating classes.

Definition 4.3. A communicating class C ⊂ S is closed provided the proba-
bility that Xn leaves C given that it started in C is zero. In other words Pij = 0
for all i ∈ C and j /∈ C. (Notice that if C is closed, then Xn restricted to C is
a Markov chain.)

Definition 4.4. A state i ∈ S is:

1. transient if Pi(Ri <∞) < 1,
2. recurrent if Pi(Ri <∞) = 1,

a) positive recurrent if 1/ (EiRi) > 0, i.e. EiRi <∞,
b) null recurrent if it is recurrent (Pi(Ri <∞) = 1) and 1/ (EiRi) = 0,

i.e. ERi =∞.

We let St, Sr, Spr, and Snr be the transient, recurrent, positive recurrent,
and null recurrent states respectively.

The next two sections give the main results of this chapter along with some
illustrative examples. The remaining sections are devoted to some of the more
technical aspects of the proofs.

4.1 The Main Results

Proposition 4.5 (Class properties). The notions of being recurrent, positive
recurrent, null recurrent, or transient are all class properties. Namely if C ⊂ S
is a communicating class then either all i ∈ C are recurrent, positive recurrent,
null recurrent, or transient. Hence it makes sense to refer to C as being either
recurrent, positive recurrent, null recurrent, or transient.

Proof. See Proposition 4.13 for the assertion that being recurrent or tran-
sient is a class property. For the fact that positive and null recurrence is a class
property, see Proposition 4.46 below.

Lemma 4.6. Let C ⊂ S be a communicating class. Then

C not closed =⇒ C is transient

or equivalently put,

C is recurrent =⇒ C is closed.

Proof. If C is not closed and i ∈ C, there is a j /∈ C such that i → j, i.e.
there is a path i = x0, x1, . . . , xn = j with all of the {xj}nj=0 being distinct such
that

Pi (X0 = i,X1 = x1, . . . , Xn−1 = xn−1, Xn = xn = j) > 0.

Since j /∈ C we must have j 9 C and therefore on the event,

A := {X0 = i,X1 = x1, . . . , Xn−1 = xn−1, Xn = xn = j} ,

Xm /∈ C for all m ≥ n and therefore Ri =∞ on the event A which has positive
probability.

Proposition 4.7. Suppose that C ⊂ S is a finite communicating class and
T = inf {n ≥ 0 : Xn /∈ C} be the first exit time from C. If C is not closed, then
not only is C transient but EiT <∞ for all i ∈ C. We also have the equivalence
of the following statements:

1. C is closed.
2. C is positive recurrent.
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3. C is recurrent.

In particular if # (S) <∞, then the recurrent (= positively recurrent) states
are precisely the union of the closed communication classes and the transient
states are what is left over.

Proof. These results follow fairly easily from Proposition 3.15. Also see
Corollary 4.20 for another proof.

Remark 4.8. Let {Xn}∞n=0 denote the fair random walk on {0, 1, 2, . . . } with 0
being an absorbing state. The communication classes are {0} and {1, 2, . . . }
with the latter class not being closed and hence transient. Using Remark 0.1, it
follows that EiT =∞ for all i > 0 which shows we can not drop the assumption
that # (C) < ∞ in the first statement in Proposition 4.7. Similarly, using the
fair random walk example, we see that it is not possible to drop the condition
that # (C) <∞ for the equivalence statements as well.

Example 4.9. Let P be the Markov matrix with jump diagram given in Figure
4.9. In this case the communication classes are {{1, 2} , {3, 4} , {5}} . The latter
two are closed and hence positively recurrent while {1, 2} is transient.

Warning: if C ⊂ S is closed and # (C) = ∞, C could be recurrent or it
could be transient. Transient in this case means the walk goes off to “infinity.”
The following proposition is a consequence of the strong Markov property in
Corollary 4.42.

Proposition 4.10. If j ∈ S, k ∈ N, and ν : S → [0, 1] is any probability on S,
then

Pν (Mj ≥ k) = Pν (Rj <∞) · Pj (Rj <∞)k−1
. (4.3)

Proof. Intuitively, Mj ≥ k happens iff the chain first visits j with proba-
bility Pν (Rj <∞) and then revisits j again k − 1 times which the probability
of each revisit being Pj (Rj <∞) . Since Markov chains are forgetful, these
probabilities are all independent and hence we arrive at Eq. (4.3). See Propo-
sition 4.43 below for the formal proof based on the strong Markov property in
Corollary 4.42.

Corollary 4.11. If j ∈ S and ν : S → [0, 1] is any probability on S, then

Pν (Mj =∞) = Pν (Xn = j i.o.) = Pν (Rj <∞) 1j∈Sr , (4.4)
Pj (Mj =∞) = Pj (Xn = j i.o.) = 1j∈Sr , (4.5)

EνMj =
∞∑
n=1

∑
i∈S

ν (i)Pnij =
Pν (Rj <∞)

1− Pj (Rj <∞)
, (4.6)

and

EiMj =
∞∑
n=1

Pnij =
Pi (Rj <∞)

1− Pj (Rj <∞)
(4.7)

where the following conventions are used in interpreting the right hand side of
Eqs. (4.6) and (4.7): a/0 :=∞ if a > 0 while 0/0 := 0.

Proof. Since

{Mj ≥ k} ↓ {Mj =∞} = {Xn = j i.o. n} as k ↑ ∞,

it follows, using Eq. (4.3), that

Pν (Xn = j i.o. n) = lim
k→∞

Pν(Mj ≥ k) = Pν(Rj <∞) · lim
k→∞

Pj(Rj <∞)k−1

(4.8)
which gives Eq. (4.4). Equation (4.5) follows by taking ν = δj in Eq. (4.4) and
recalling that j ∈ Sr iff Pj (Rj <∞) = 1. Similarly Eq. (4.7) is a special case
of Eq. (4.6) with ν = δi. We now prove Eq. (4.6).

Using the definition of Mj in Eq. (4.2),

EνMj = Eν
∑
n≥1

1Xn=j =
∑
n≥1

Eν1Xn=j

=
∑
n≥1

Pν(Xn = j) =
∞∑
n=1

∑
j∈S

ν (j)Pnjj
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which is the first equality in Eq. (4.6). For the second, observe that

∞∑
k=1

Pν(Mj ≥ k) =
∞∑
k=1

Eν1Mj≥k = Eν
∞∑
k=1

1k≤Mj
= EνMj .

On the other hand using Eq. (4.3) we have

∞∑
k=1

Pν(Mj ≥ k) =
∞∑
k=1

Pν(Rj <∞)Pj(Rj <∞)k−1 =
Pν(Rj <∞)

1− Pj(Rj <∞)

provided a/0 :=∞ if a > 0 while 0/0 := 0.
It is worth remarking that if j ∈ St, then Eq. (4.6) asserts that

EνMj = (the expected number of visits to j) <∞

which then implies that Mj is a finite valued random variable almost surely.
Hence, for almost all sample paths, Xn can visit j at most a finite number of
times.

Theorem 4.12 (Recurrent States). Let j ∈ S. Then the following are equiv-
alent;

1. j is recurrent, i.e. Pj (Rj <∞) = 1,
2. Pj (Xn = j i.o. n) = 1,
3. EjMj =

∑∞
n=1 P

n
jj =∞.

Proof. The equivalence of the first two items follows directly from Eq. (4.5)
and the equivalent of items 1. and 3. follows directly from Eq. (4.7) with i = j.

Proposition 4.13. If i ←→ j, then i is recurrent iff j is recurrent, i.e. the
property of being recurrent or transient is a class property.

Proof. Since i and j communicate, there exists α and β in N such that
Pαij > 0 and P βji > 0. Therefore∑

n≥1

Pn+α+β
ii ≥

∑
n≥1

PαijP
n
j jP

β
ji

which shows that
∑
n≥1 P

n
j j = ∞ =⇒

∑
n≥1 P

n
ii = ∞. Similarly

∑
n≥1 P

n
ii =

∞ =⇒
∑
n≥1 P

n
j j =∞. Thus using item 3. of Theorem 4.12, it follows that i is

recurrent iff j is recurrent.

Corollary 4.14. If C ⊂ Sr is a recurrent communication class, then

Pi(Rj <∞) = 1 for all i, j ∈ C (4.9)

and in fact
Pi(∩j∈C{Xn = j i.o. n}) = 1 for all i ∈ C. (4.10)

More generally if ν : S → [0, 1] is a probability such that ν (i) = 0 for i /∈ C,
then

Pν(∩j∈C{Xn = j i.o. n}) = 1 for all i ∈ C. (4.11)

In words, if we start in C then every state in C is visited an infinite number of
times. (Notice that Pi (Rj <∞) = Pi({Xn}n≥1 hits j).)

Proof. Let i, j ∈ C ⊂ Sr and choose m ∈ N such that Pmji > 0. Since
Pj(Mj =∞) = 1 and

{Xm = i and Xn = j for some n > m}

=
∑
n>m

{Xm = i,Xm+1 6= j, . . . , Xn−1 6= j,Xn = j} ,

we have

Pmji = Pj(Xm = i) = Pj(Mj =∞, Xm = i)

≤ Pj(Xm = i and Xn = j for some n > m)

=
∑
n>m

Pj(Xm = i,Xm+1 6= j, . . . , Xn−1 6= j,Xn = j)

=
∑
n>m

Pmji Pi(X1 6= j, . . . , Xn−m−1 6= j,Xn−m = j)

=
∑
n>m

Pmji Pi(Rj = n−m) = Pmji

∞∑
k=1

Pi(Rj = k)

= Pmji Pi(Rj <∞). (4.12)

Because Pmji > 0, we may conclude from Eq. (4.12) that 1 ≤ Pi(Rj < ∞), i.e.
that Pi(Rj < ∞) = 1 and Eq. (4.9) is proved. Feeding this result back into
Eq. (4.4) with ν = δi shows Pi(Mj = ∞) = 1 for all i, j ∈ C and therefore,
Pi(∩j∈C {Mj =∞}) = 1 for all i ∈ C which is Eq. (4.10). Equation (4.11)
follows by multiplying Eq. (4.10) by ν (i) and then summing on i ∈ C.

Theorem 4.15 (Transient States). Let j ∈ S. Then the following are equiv-
alent;

1. j is transient, i.e. Pj (Rj <∞) < 1,
2. Pj (Xn = j i.o. n) = 0, and
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26 4 Long Run Behavior of Discrete Markov Chains

3. EjMj =
∑∞
n=1 P

n
jj <∞.

Moreover, if i ∈ S and j ∈ St, then

∞∑
n=1

Pnij = EiMj <∞ =⇒
{

limn→∞ Pnij = 0
Pi (Xn = j i.o. n) = 0. (4.13)

and more generally if ν : S → [0, 1] is any probability, then

∞∑
n=1

Pν (Xn = j) = EνMj <∞ =⇒
{

limn→∞ Pν (Xn = j) = 0
Pν (Xn = j i.o. n) = 0. (4.14)

Proof. The equivalence of the first two items follows directly from Eq. (4.5)
and the equivalent of items 1. and 3. follows directly from Eq. (4.7) with i = j.
The fact that EiMj <∞ and EνMj <∞ for all j ∈ St are consequences of Eqs.
(4.7) and (4.6) respectively. The remaining implication in Eqs. (4.13) and (4.6)
follow from the first Borel Cantelli Lemma 1.5 and the fact that nth – term in
a convergent series tends to zero as n→∞.

Corollary 4.16. 1) If the state space, S, is a finite set, then Sr 6= ∅. 2) Any
finite and closed communicating class C ⊂ S is a recurrent.

Proof. First suppose that # (S) < ∞ and for the sake of contradic-
tion, suppose Sr = ∅ or equivalently that S = St. Then by Theorem 4.15,
limn→∞ Pnij = 0 for all i, j ∈ S. On the other hand,

∑
j∈S P

n
ij = 1 so that

1 = lim
n→∞

∑
j∈S

Pnij =
∑
j∈S

lim
n→∞

Pnij =
∑
j∈S

0 = 0,

which is a contradiction. (Notice that if S were infinite, we could not interchange
the limit and the above sum without some extra conditions.)

To prove the first statement, restrict Xn to C to get a Markov chain on a
finite state space C. By what we have just proved, there is a recurrent state
i ∈ C. Since recurrence is a class property, it follows that all states in C are
recurrent.

Definition 4.17. A function, π : S → [0, 1] is a sub-probability if∑
j∈S π (j) ≤ 1. We call

∑
j∈S π (j) the mass of π. So a probability is a sub-

probability with mass one.

Definition 4.18. We say a sub-probability, π : S → [0, 1] , is invariant if
πP = π, i.e. ∑

i∈S
π (i) pij = π (j) for all j ∈ S. (4.15)

An invariant probability, π : S → [0, 1] , is called an invariant distribution.

Theorem 4.19. Suppose that P = (pij) is an irreducible Markov kernel and
πj := 1

EjRj for all j ∈ S. Then:

1. For all i, j ∈ S, we have

lim
N→∞

1
N

N∑
n=0

1Xn=j = πj Pi − a.s. (4.16)

and

lim
N→∞

1
N

N∑
n=1

Pi (Xn = j) = lim
N→∞

1
N

N∑
n=0

Pnij = πj . (4.17)

2. If µ : S → [0, 1] is an invariant sub-probability, then either µ (i) > 0 for all
i or µ (i) = 0 for all i.

3. P has at most one invariant distribution.
4. P has a (necessarily unique) invariant distribution, µ : S → [0, 1] , iff P is

positive recurrent in which case µ (i) = π (i) = 1
EiRi > 0 for all i ∈ S.

(These results may of course be applied to the restriction of a general non-
irreducible Markov chain to any one of its communication classes.)

Proof. These results are the contents of Theorem 4.45 and Propositions
4.46 and 4.47 below.

Using this result we can give another proof of Proposition 4.7.

Corollary 4.20. If C is a closed finite communicating class then C is positive
recurrent. (Recall that we already know that C is recurrent by Corollary 4.16.)

Proof. For i, j ∈ C, let

πj := lim
N→∞

1
N

N∑
n=1

Pi (Xn = j) =
1

EjRj

as in Theorem 4.21. Since C is closed,∑
j∈C

Pi (Xn = j) = 1

1and therefore,

∑
j∈C

πj = lim
N→∞

1
N

∑
j∈C

N∑
n=1

Pi (Xn = j) = lim
N→∞

1
N

N∑
n=1

∑
j∈C

Pi (Xn = j) = 1.

Therefore πj > 0 for some j ∈ C and hence all j ∈ C by Theorem 4.19 with S
replaced by C. Hence we have EjRj <∞, i.e. every j ∈ C is a positive recurrent
state.
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Theorem 4.21 (General Convergence Theorem). Let ν : S → [0, 1] be
any probability, i ∈ S, C be the communicating class containing i,

{Xn hits C} := {Xn ∈ C for some n} ,

and

πi := πi (ν) =
Pν (Xn hits C)

EiRi
, (4.18)

where 1/∞ := 0. Then:

1. Pν – a.s.,

lim
N→∞

1
N

N∑
n=1

1Xn=i =
1

EiRi
1{Xn hits C}, (4.19)

2.

lim
N→∞

1
N

N∑
n=1

∑
j∈S

ν (j)Pnji = lim
N→∞

1
N

N∑
n=1

Pν (Xn = i) = πi, (4.20)

3. π is an invariant sub-probability for P, and
4. the mass of π is∑

i∈S
πi =

∑
C: pos. recurrent

Pν (Xn hits C) ≤ 1. (4.21)

Proof. If i ∈ S is a transient site, then according to Eq. (4.14),
Pν (Mi <∞) = 1 and therefore limN→∞

1
N

∑N
n=1 1Xn=i = 0 which agrees with

Eq. (4.19) for i ∈ St.
So now suppose that i ∈ Sr and let C be the communication class containing

i and
T = inf {n ≥ 0 : Xn ∈ C}

be the first time when Xn enters C. It is clear that {Ri <∞} ⊂ {T <∞} .
On the other hand, for any j ∈ C, it follows by the strong Markov property
(Corollary 4.42) and Corollary 4.14 that, conditioned on {T <∞, XT = j} ,
{Xn} hits i i.o. and hence P (Ri <∞|T <∞, XT = j) = 1. Equivalently put,

P (Ri <∞, T <∞, XT = j) = P (T <∞, XT = j) for all j ∈ C.

Summing this last equation on j ∈ C then shows

P (Ri <∞) = P (Ri <∞, T <∞) = P (T <∞)

and therefore {Ri <∞} = {T <∞} modulo an event with Pν – probability
zero.

Another application of the strong Markov property (in Corollary 4.42),
observing that XRi = i on {Ri <∞} , allows us to conclude that the

Pν (·|Ri <∞) = Pν (·|T <∞) – law of (XRi , XRi+1, XRi+2, . . . ) is the same
as the Pi – law of (X0, X1, X2, . . . ) . Therefore, we may apply Theorem 4.19 to
conclude that

lim
N→∞

1
N

N∑
n=1

1Xn=i = lim
N→∞

1
N

N∑
n=1

1XRi+n=i =
1

EiRi
Pν (·|Ri <∞) – a.s.

On the other hand, on the event {Ri =∞} we have limN→∞
1
N

∑N
n=1 1Xn=i =

0. Thus we have shown Pν – a.s. that

lim
N→∞

1
N

N∑
n=1

1Xn=i =
1

EiRi
1Ri<∞ =

1
EiRi

1T<∞ =
1

EiRi
1{Xn hits C}

which is Eq. (4.19). Taking expectations of this equation, using the dominated
convergence theorem, gives Eq. (4.20).

Since 1/EiRi =∞ unless i is a positive recurrent site, it follows that∑
i∈S

πiPij =
∑
i∈Spr

πiPij =
∑

C: pos-rec.

Pν (Xn hits C)
∑
i∈C

1
EiRi

Pij . (4.22)

As each positive recurrent class, C, is closed; if i ∈ C and j /∈ C, then Pij = 0.
Therefore

∑
i∈C

1
EiRiPij is zero unless j ∈ C. So if j /∈ Spr we have

∑
i∈S πiPij =

0 = πj and if j ∈ Spr, then by Theorem 4.19,∑
i∈C

1
EiRi

Pij = 1j∈C ·
1

EjRj
.

Using this result in Eq. (4.22) shows that∑
i∈S

πiPij =
∑

C: pos-rec.

Pν (Xn hits C) 1j∈C ·
1

EjRj
= πj

so that π is an invariant distribution. Similarly, using Theorem 4.19 again,∑
i∈S

πi =
∑

C: pos-rec.

Pν (Xn hits C)
∑
i∈C

1
EiRi

=
∑

C: pos-rec.

Pν (Xn hits C) .

Definition 4.22. A state i ∈ S is aperiodic if Pnii > 0 for all n sufficiently
large.

Lemma 4.23. If i ∈ S is aperiodic and j ←→ i, then j is aperiodic. So being
aperiodic is a class property.
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Proof. We have

Pn+m+k
jj =

∑
w,z∈S

Pnj,wP
m
w,zP

k
z,j ≥ Pnj,iPmi,iP ki,j .

Since j ←→ i, there exists n, k ∈ N such that Pnj,i > 0 and P ki,j > 0. Since
Pmi,i > 0 for all large m, it follows that Pn+m+k

jj > 0 for all large m and
therefore, j is aperiodic as well.

Lemma 4.24. A state i ∈ S is aperiodic iff 1 is the greatest common divisor
of the set,

{n ∈ N : Pi (Xn = i) = Pnii > 0} .

Proof. Use the number theory Lemma 4.48 below.

Theorem 4.25. If P is an irreducible, aperiodic, and recurrent Markov chain,
then

lim
n→∞

Pnij = πj =
1

Ej(Rj)
. (4.23)

More generally, if C is an aperiodic communication class, then

lim
n→∞

Pν (Xn = i) := lim
n→∞

∑
j∈S

ν (j)Pnji = Pν (Ri <∞)
1

Ej(Rj)
for all i ∈ C.

Proof. I will not prove this theorem here but refer the reader to Norris [5,
Theorem 1.8.3] or Kallenberg [3, Chapter 8]. The proof given there is by a
“coupling argument” is given.

4.1.1 Finite State Space Remarks

For this subsection suppose that S = {1, 2, . . . , n} and Pij is a Markov matrix.
Some of the previous results have fairly easy proofs in this setting.

Proposition 4.26. The Markov matrix P has an invariant distribution.

Proof. If 1 :=
[
1 1 . . . 1

]tr
, then P1 = 1 from which it follows that

0 = det (P − I) = det
(
P tr − I

)
.

Therefore there exists a non-zero row vector ν such that P trνtr = νtr or equiv-
alently that νP = ν. At this point we would be done if we knew that νi ≥ 0 for
all i – but we don’t. So let πi := |νi| and observe that

πi = |νi| =

∣∣∣∣∣
n∑
k=1

νkPki

∣∣∣∣∣ ≤
n∑
k=1

|νk|Pki ≤
n∑
k=1

πkPki.

We now claim that in fact π = πP. If this were not the case we would have
πi <

∑n
k=1 πkPki for some i and therefore

0 <
n∑
i=1

πi <

n∑
i=1

n∑
k=1

πkPki =
n∑
k=1

n∑
i=1

πkPki =
n∑
k=1

πk

which is a contradiction. So all that is left to do is normalize πi so
∑n
i=1 πi = 1

and we are done.

Proposition 4.27. Suppose that P is irreducible. (In this case we may use
Proposition 3.15 to show that Ei [Rj ] < ∞ for all i, j.) Then there is precisely
one invariant distribution, π, which is given by πi = 1/EiRi > 0 for all i ∈ S.

Proof. We begin by using the first step analysis to write equations for
Ei [Rj ] as follows:

Ei [Rj ] =
n∑
k=1

Ei [Rj |X1 = k]Pik =
∑
k 6=j

Ei [Rj |X1 = k]Pik + Pij1

=
∑
k 6=j

(Ek [Rj ] + 1)Pik + Pij1 =
∑
k 6=j

Ek [Rj ]Pik + 1.

and therefore,
Ei [Rj ] =

∑
k 6=j

PikEk [Rj ] + 1. (4.24)

Now suppose that π is any invariant distribution for P, then multiplying Eq.
(4.24) by πi and summing on i shows

n∑
i=1

πiEi [Rj ] =
n∑
i=1

πi
∑
k 6=j

PikEk [Rj ] +
n∑
i=1

πi1

=
∑
k 6=j

πkEk [Rj ] + 1

from which it follows that πjEj [Rj ] = 1.
We may use Eq. (4.24) to compute Ei [Rj ] in examples. To do this, fix j and

set vi := EiRj . Then Eq. (4.24) states that v = P (j)v + 1 where P (j) denotes
P with the jth – column replaced by all zeros. Thus we have

(EiRj)ni=1 =
(
I − P (j)

)−1

1, (4.25)

i.e. E1Rj
...

EnRj

 =
(
I − P (j)

)−1

1
...
1

 . (4.26)
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4.2 Examples

Example 4.28. Let S = {1, 2} and P =
[

0 1
1 0

]
with jump diagram in Figure

4.28. In this case P 2n = I while P 2n+1 = P and therefore limn→∞ Pn does not

have a limit. On the other hand it is easy to see that the invariant distribution,
π, for P is π =

[
1/2 1/2

]
. Moreover it is easy to see that

P + P 2 + · · ·+ PN

N
→ 1

2

[
1 1
1 1

]
=
[
π
π

]
.

Let us compute [
E1R1

E2R1

]
=
([

1 0
0 1

]
−
[

0 1
0 0

])−1 [ 1
1

]
=
[

2
1

]
and [

E1R2

E2R2

]
=
([

1 0
0 1

]
−
[

0 0
1 0

])−1 [ 1
1

]
=
[

1
2

]
so that indeed, π1 = 1/E1R1 and π2 = 1/E2R2.

Example 4.29. Again let S = {1, 2} and P =
[

1
0

0
1

]
with jump diagram in

Figure 4.29. In this case the chain is not irreducible and every π = [a b] with
a+ b = 1 and a, b ≥ 0 is an invariant distribution.

Example 4.30. Suppose that S = {1, 2, 3} , and

P =

1 2 3 0 1 0
1/2 0 1/2
1 0 0

1
2
3

Fig. 4.1. A simple jump diagram.

has the jump graph given by 4.1. Notice that P 2
11 > 0 and P 3

11 > 0 that P is
“aperiodic.” We now find the invariant distribution,

Nul (P − I)tr = Nul

−1 1
2 1

1 −1 0
0 1

2 −1

 = R

2
2
1

 .
Therefore the invariant distribution is given by

π =
1
5
[

2 2 1
]
.

Let us now observe that

P 2 =

 1
2 0 1

2
1
2

1
2 0

0 1 0


P 3 =

 0 1 0
1/2 0 1/2
1 0 0

3

=

 1
2

1
2 0

1
4

1
2

1
4

1
2 0 1

2


P 20 =

 409
1024

205
512

205
1024

205
512

409
1024

205
1024

205
512

205
512

51
256

 =

0.399 41 0.400 39 0.200 20
0.400 39 0.399 41 0.200 20
0.400 39 0.400 39 0.199 22

 .
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Let us also compute E2R3 via,E1R3

E2R3

E3R3

 =

1 0 0
0 1 0
0 0 1

−
 0 1 0

1/2 0 0
1 0 0

−1 1
1
1

 =

4
3
5


so that

1
E3R3

=
1
5

= π3.

Example 4.31. The transition matrix,

P =

1 2 31/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

1
2
3

is represented by the jump diagram in Figure 4.2. This chain is aperiodic. We

Fig. 4.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

find the invariant distribution as,

Nul (P − I)tr = Nul

1/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

−
1 0 0

0 1 0
0 0 1

tr

= Nul

− 3
4

1
2

1
3

1
2 −1 1

3
1
4

1
2 −

2
3

 = R

 1
5
6
1

 = R

6
5
6



π =
1
17
[

6 5 6
]

=
[

0.352 94 0.294 12 0.352 94
]
.

In this case

P 10 =

 1/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

10

=

 0.352 98 0.294 04 0.352 98
0.352 89 0.294 23 0.352 89
0.352 95 0.294 1 0.352 95

 .
Let us also computeE1R2

E2R2

E3R2

 =

1 0 0
0 1 0
0 0 1

−
1/4 0 1/4

1/2 0 1/2
1/3 0 1/3

−1 1
1
1

 =

 11
5
17
5
13
5


so that

1/E2R2 = 5/17 = π2.

Example 4.32. Consider the following Markov matrix,

P =

1 2 3 4
1/4 1/4 1/4 1/4
1/4 0 0 3/4
1/2 1/2 0 0
0 1/4 3/4 0


1
2
3
4

with jump diagram in Figure 4.3. Since this matrix is doubly stochastic, we
know that π = 1

4

[
1 1 1 1

]
. Let us compute E3R3 as follows

E1R3

E2R3

E3R3

E4R3

 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1/4 1/4 0 1/4
1/4 0 0 3/4
1/2 1/2 0 0
0 1/4 0 0



−1 

1
1
1
1



=


50
17
52
17
4
30
17


so that E3R3 = 4 = 1/π4 as it should. Similarly,

E1R2

E2R2

E3R2

E4R2

 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1/4 0 1/4 1/4
1/4 0 0 3/4
1/2 0 0 0
0 0 3/4 0



−1 

1
1
1
1



=


54
17
4
44
17
50
17


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4.2 Examples 31

Fig. 4.3. The jump diagram for P.

and again E2R2 = 4 = 1/π2.

Example 4.33 (Analyzing a non-irreducible Markov chain). In this example we
are going to analyze the limiting behavior of the non-irreducible Markov chain
determined by the Markov matrix,

P =

1 2 3 4 5
0 1/2 0 0 1/2

1/2 0 0 1/2 0
0 0 1/2 1/2 0
0 0 1/3 2/3 0
0 0 0 0 1


1
2
3
4
5

.

Here are the steps to follow.

1. Find the jump diagram for P. In our case it is given in Figure 4.4.
2. Identify the communication classes. In our example they are {1, 2} ,
{5} , and {3, 4} . The first is not closed and hence transient while the second
two are closed and finite sets and hence recurrent.

3. Find the invariant distributions for the recurrent classes. For {5}
it is simply π′{5} = [1] and for {3, 4} we must find the invariant distribution
for the 2× 2 Markov matrix,

Fig. 4.4. The jump diagram for P above.

Q =

3 4[
1/2 1/2
1/3 2/3

]
3
4 .

We do this in the usual way, namely

Nul
(
I −Qtr

)
= Nul

([
1 0
0 1

]
−
[

1
2

1
3

1
2

2
3

])
= R

[
2
3

]
so that π′{3,4} = 1

5

[
2 3
]
.

4. We can turn π′{3,4} and π′{5} into invariant distributions for P by padding
the row vectors with zeros to get

π{3,4} =
[

0 0 2/5 3/5 0
]

π{5} =
[

0 0 0 0 1
]
.

The general invariant distribution may then be written as;

π = απ{5} + βπ{3,4} with α, β ≥ 0 and α+ β = 1.

5. We can now work out the limn→∞ Pn. If we start at site i we are considering
the ith – row of limn→∞ Pn. If we start in the recurrent class {3, 4} we will
simply get π{3,4} for these rows and we start in the recurrent class {5} we
will get π{5}. However if start in the non-closed transient class, {1, 2} we
have
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32 4 Long Run Behavior of Discrete Markov Chains

first row of lim
n→∞

Pn = P1 (Xn hits 5)π{5} + P1 (Xn hits {3, 4})π{3,4}
(4.27)

and
second row of lim

n→∞
Pn = P2 (Xn hits 5)π{5} + P2 (Xn hits {3, 4})π{3,4}.

(4.28)

6. Compute the required hitting probabilities. Let us begin by comput-
ing the fraction of one pound of sand put at site 1 will end up at site 5, i.e.
we want to find h1 := P1 (Xn hits 5) . To do this let hi = Pi (Xn hits 5) for
i = 1, 2, . . . , 5. It is clear that h5 = 1, and h3 = h4 = 0. A first step analysis
then shows

h1 =
1
2
· P2 (Xn hits 5) +

1
2
P5 (Xn hits 5)

h2 =
1
2
· P1 (Xn hits 5) +

1
2
P4 (Xn hits 5)

which leads to1

h1 =
1
2
h2 +

1
2

h2 =
1
2
h1 +

1
2

0.

The solutions to these equations are

P1 (Xn hits 5) = h1 =
2
3

and P2 (Xn hits 5) = h2 =
1
3
.

Since the process is either going to end up in {5} or in {3, 4} , we may also
conclude that

1

Example 4.34. Note: If we were to make use of Theorem 3.21 we would have not
set h3 = h4 = 0 and we would have added the equations,

h3 =
1

2
h3 +

1

2
h4

h4 =
1

3
h3 +

2

3
h4,

to those above. The general solution to these equations is c (1, 1) for some c ∈ R and
the non-negative minimal solution is the special case where c = 0, i.e. h3 = h4 = 0.
The point is, since {3, 4} is a closed communication class there is no way to hit 5
starting in {3, 4} and therefore clearly h3 = h4 = 0.

P1 (Xn hits {3, 4}) =
1
3

and P2 (Xn hits {3, 4}) =
2
3
.

7. Using these results in Eqs. (4.27) and (4.28) shows,

first row of lim
n→∞

Pn =
2
3
π{5} +

1
3
π{3,4}

=
[

0 0 2
15

1
5 2/3

]
=
[

0.0 0.0 0.133 33 0.2 0.666 67
]

and

second row of lim
n→∞

Pn =
1
3
π{5} +

2
3
π{3,4}

=
1
3
[

0 0 0 0 1
]

+
2
3
[

0 0 2/5 3/5 0
]

=
[

0 0 4
15

2
5

1
3

]
=
[

0.0 0.0 0.266 67 0.4 0.333 33
]
.

These answers already compare well with

P 10 =


9.7656× 10−4 0.0 0.132 76 0.200 24 0.666 02

0.0 9.7656× 10−4 0.266 26 0.399 76 0.333 01
0.0 0.0 0.4 0.600 00 0.0
0.0 0.0 0.400 00 0.6 0.0
0.0 0.0 0.0 0.0 1.0

 .

4.3 The Strong Markov Property

In proving the results above, we are going to make essential use of a strong form
of the Markov property which asserts that Theorem 3.17 continues to hold even
when n is replaced by a random “stopping time.”

Definition 4.35 (Stopping times). Let τ be an N0 ∪ {∞} - valued random
variable which is a functional of a sequence of random variables, {Xn}∞n=0 which
we write by abuse of notation as, τ = τ (X0, X1, . . . ) . We say that τ is a stop-
ping time if for all n ∈ N0, the indicator random variable, 1τ=n is a functional of
(X0, . . . , Xn) . Thus for each n ∈ N0 there should exist a function, σn such that
1τ=n = σn (X0, . . . , Xn) . In other words, the event {τ = n} may be described
using only (X0, . . . , Xn) for all n ∈ N.

Example 4.36. Here are some example of random times which are which are not
stopping times. In these examples we will always use the convention that the
minimum of the empty set is +∞.
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4.3 The Strong Markov Property 33

1. The random time, τ = min {k : |Xk| ≥ 5} (the first time, k, such that |Xk| ≥
5) is a stopping time since

{τ = k} = {|X1| < 5, . . . , |Xk−1| < 5, |Xk| ≥ 5}.

2. Let Wk := X1 + · · ·+Xk, then the random time,

τ = min{k : Wk ≥ π}

is a stopping time since,

{τ = k} =
{
Wj = X1 + · · ·+Xj < π for j = 1, 2, . . . , k − 1,

& X1 + · · ·+Xk−1 +Xk ≥ π

}
.

3. For t ≥ 0, let N(t) = #{k : Wk ≤ t}. Then

{N(t) = k} = {X1 + · · ·+Xk ≤ t, X1 + · · ·+Xk+1 > t}

which shows that N (t) is not a stopping time. On the other hand, since

{N(t) + 1 = k} = {N(t) = k − 1}
= {X1 + · · ·+Xk−1 ≤ t, X1 + · · ·+Xk > t},

we see that N(t) + 1 is a stopping time!
4. If τ is a stopping time then so is τ + 1 because,

1{τ+1=k} = 1{τ=k−1} = σk−1 (X0, . . . , Xk−1)

which is also a function of (X0, . . . , Xk) which happens not to depend on
Xk.

5. On the other hand, if τ is a stopping time it is not necessarily true that
τ − 1 is still a stopping time.

6. One can also see that the last time, k, such that |Xk| ≥ π is typically not
a stopping time. (Think about this.)

Remark 4.37. If τ is an {Xn}∞n=0 - stopping time then

1τ≥n = 1− 1τ<n = 1−
∑
k<n

σk (X0, . . . , Xk) =: un (X0, . . . , Xn−1) .

That is for a stopping time τ, 1τ≥n is a function of (X0, . . . , Xn−1) only for all
n ∈ N0.

The following presentation of Wald’s equation is taken from Ross [6, p.
59-60].

Theorem 4.38 (Wald’s Equation). Suppose that {Xn}∞n=0 is a sequence of
i.i.d. random variables, f (x) is a non-negative function of x ∈ R, and τ is a
stopping time. Then

E

[
τ∑
n=0

f (Xn)

]
= Ef (X0) · Eτ. (4.29)

This identity also holds if f (Xn) are real valued but integrable and τ is a stop-
ping time such that Eτ <∞. (See Resnick for more identities along these lines.)

Proof. If f (Xn) ≥ 0 for all n, then the the following computations need no
justification,

E

[
τ∑
n=0

f (Xn)

]
= E

[ ∞∑
n=0

f (Xn) 1n≤τ

]
=
∞∑
n=0

E [f (Xn) 1n≤τ ]

=
∞∑
n=0

E [f (Xn)un (X0, . . . , Xn−1)]

=
∞∑
n=0

E [f (Xn)] · E [un (X0, . . . , Xn−1)]

=
∞∑
n=0

E [f (Xn)] · E [1n≤τ ] = Ef (X0)
∞∑
n=0

E [1n≤τ ]

= Ef (X0) · E

[ ∞∑
n=0

1n≤τ

]
= Ef (X0) · Eτ.

If E |f (Xn)| <∞ and Eτ <∞, the above computation with f replaced by
|f | shows all sums appearing above are equal E |f (X0)| · Eτ < ∞. Hence we
may remove the absolute values to again arrive at Eq. (4.29).

Example 4.39. Let {Xn}∞n=1 be i.i.d. such that P (Xn = 0) = P (Xn = 1) = 1/2
and let

τ := min {n : X1 + · · ·+Xn = 10} .

For example τ is the first time we have flipped 10 heads of a fair coin. By Wald’s
equation (valid because Xn ≥ 0 for all n) we find

10 = E

[
τ∑
n=1

Xn

]
= EX1 · Eτ =

1
2

Eτ

and therefore Eτ = 20 <∞.
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34 4 Long Run Behavior of Discrete Markov Chains

Example 4.40 (Gambler’s ruin). Let {Xn}∞n=1 be i.i.d. such that P (Xn = −1) =
P (Xn = 1) = 1/2 and let

τ := min {n : X1 + · · ·+Xn = 1} .

So τ may represent the first time that a gambler is ahead by 1. Notice that
EX1 = 0. If Eτ < ∞, then we would have τ < ∞ a.s. and by Wald’s equation
would give,

1 = E

[
τ∑
n=1

Xn

]
= EX1 · Eτ = 0 · Eτ

which can not hold. Hence it must be that

Eτ = E [first time that a gambler is ahead by 1] =∞.

Here is the analogue of

Theorem 4.41 (Strong Markov Property). Let
(
{Xn}∞n=0 , {Px}x∈S , p

)
be

Markov chain as above and τ : Ω → [0,∞] be a stopping time as in Definition
4.35. Then

Eπ [f (Xτ , Xτ+1, . . . ) gτ (X0, . . . , Xτ ) 1τ<∞]
= Eπ [[EXτ f (X0, X1, . . . )] gτ (X0, . . . , Xτ ) 1τ<∞] . (4.30)

for all f, g = {gn} ≥ 0 or f and g bounded.

Proof. The proof of this deep result is now rather easy to reduce to Theorem
3.17. Indeed,

Eπ [f (Xτ , Xτ+1, . . . ) gτ (X0, . . . , Xτ ) 1τ<∞]

=
∞∑
n=0

Eπ [f (Xn, Xn+1, . . . ) gn (X0, . . . , Xn) 1τ=n]

=
∞∑
n=0

Eπ [f (Xn, Xn+1, . . . ) gn (X0, . . . , Xn)σn (X0, . . . , Xn)]

=
∞∑
n=0

Eπ [[EXnf (X0, X1, . . . )] gn (X0, . . . , Xn)σn (X0, . . . , Xn)]

=
∞∑
n=0

Eπ [[EXτ f (X0, X1, . . . )] gτ (X0, . . . , Xn) 1τ=n]

= Eπ [[EXτ f (X0, X1, . . . )] gτ (X0, . . . , Xτ ) 1τ<∞]

wherein we have used Theorem 3.17 in the third equality.
The analogue of Corollary 3.18 in this more general setting states; condi-

tioned on τ <∞ and Xτ = x, Xτ , Xτ+1, Xτ+2, . . . is independent of X0, . . . , Xτ

and is distributed as X0, X1, . . . under Px.

Corollary 4.42. Let τ be a stopping time, x ∈ S and π be any probability
on S. Then relative to Pπ (·|τ <∞, Xτ = x) , {Xτ+k}k≥0 is independent of
{X0, . . . , Xτ} and {Xτ+k}k≥0 has the same distribution as {Xk}∞k=0 under Px.

Proof. According to Eq. (4.30),

Eπ [g (X0, . . . , Xτ ) f (Xτ , Xτ+1, . . . ) : τ <∞, Xτ = x]
= Eπ [g (X0, . . . , Xτ ) 1τ<∞δx (Xτ ) f (Xτ , Xτ+1, . . . )]
= Eπ [g (X0, . . . , Xτ ) 1τ<∞δx (Xτ ) EXτ [f (X0, X1, . . . )]]
= Eπ [g (X0, . . . , Xτ ) 1τ<∞δx (Xτ ) Ex [f (X0, X1, . . . )]]
= Eπ [g (X0, . . . , Xτ ) : τ <∞, Xτ = x] Ex [f (X0, X1, . . . )] .

Dividing this equation by P (τ <∞, Xτ = x) shows,

Eπ [g (X0, . . . , Xτ ) f (Xτ , Xτ+1, . . . ) |τ <∞, Xτ = x]
= Eπ [g (X0, . . . , Xτ ) |τ <∞, Xτ = x] Ex [f (X0, X1, . . . )] . (4.31)

Taking g = 1 in this equation then shows,

Eπ [f (Xτ , Xτ+1, . . . ) |τ <∞, Xτ = x] = Ex [f (X0, X1, . . . )] . (4.32)

This shows that {Xτ+k}k≥0 under Pπ (·|τ <∞, Xτ = x) has the same distri-
bution as {Xk}∞k=0 under Px and, in combination, Eqs. (4.31) and (4.32) shows
{Xτ+k}k≥0 and {X0, . . . , Xτ} are conditionally, on {τ <∞, Xτ = x} , inde-
pendent.

To match notation in the book, let

f
(n)
ii = Pi(Ri = n) = Pi(X1 6= i, . . . ,Xn−1 6= i,Xn = i)

and mij := Ei(Mj) – the expected number of visits to j after n = 0.

Proposition 4.43. Let i ∈ S and n ≥ 1. Then Pnii satisfies the “renewal equa-
tion,”

Pnii =
n∑
k=1

P (Ri = k)Pn−kii . (4.33)

Also if j ∈ S, k ∈ N, and ν : S → [0, 1] is any probability on S, then Eq. (4.3)
holds, i.e.

Pν (Mj ≥ k) = Pν (Rj <∞) · Pj (Rj <∞)k−1
. (4.34)

Proof. To prove Eq. (4.33) we first observe for n ≥ 1 that {Xn = i} is the
disjoint union of {Xn = i, Ri = k} for 1 ≤ k ≤ n and therefore2,

2 Alternatively, we could use the Markov property to show,

Page: 34 job: 180Notes macro: svmonob.cls date/time: 4-Jun-2008/13:17



4.4 Irreducible Recurrent Chains 35

Pnii = Pi(Xn = i) =
n∑
k=1

Pi(Ri = k,Xn = i)

=
n∑
k=1

Pi(X1 6= i, . . . ,Xk−1 6= i,Xk = i,Xn = i)

=
n∑
k=1

Pi(X1 6= i, . . . ,Xk−1 6= i,Xk = i)Pn−kii

=
n∑
k=1

Pn−kii P (Ri = k).

For Eq. (4.34) we have {Mj ≥ 1} = {Rj <∞} so that Pi (Mj ≥ 1) =
Pi (Rj <∞) . For k ≥ 2, since Rj <∞ if Mj ≥ 1, we have

Pi (Mj ≥ k) = Pi (Mj ≥ k|Rj <∞)Pi (Rj <∞) .

Since, on Rj <∞, XRj = j, it follows by the strong Markov property (Corollary
4.42) that;

Pi (Mj ≥ k|Rj <∞) = Pi
(
Mj ≥ k|Rj <∞, XRj = j

)
= Pi

1 +
∑
n≥1

1XRj+n=j ≥ k|Rj <∞, XRj = j


= Pj

1 +
∑
n≥1

1Xn=j ≥ k

 = Pj (Mj ≥ k − 1) .

By the last two displayed equations,

Pi (Mj ≥ k) = Pj (Mj ≥ k − 1)Pi (Rj <∞) (4.35)

Taking i = j in this equation shows,

Pj (Mj ≥ k) = Pj (Mj ≥ k − 1)Pj (Rj <∞)

Pnii = Pi(Xn = i) =

n∑
k=1

Ei(1Ri=k · 1Xn=i) =

n∑
k=1

Ei(1Ri=k · Ei1Xn−k=i)

=

n∑
k=1

Ei(1Ri=k)Ei
(
1Xn−k=i

)
=

n∑
k=1

Pi(Ri = k)Pi(Xn−k = i)

=

n∑
k=1

Pn−kii P (Ri = k).

and so by induction,

Pj (Mj ≥ k) = Pj (Rj <∞)k . (4.36)

Equation (4.34) now follows from Eqs. (4.35) and (4.36).

4.4 Irreducible Recurrent Chains

For this section we are going to assume that Xn is a irreducible recurrent
Markov chain. Let us now fix a state, j ∈ S and define,

τ1 = Rj = min{n ≥ 1 : Xn = j},
τ2 = min{n ≥ 1 : Xn+τ1 = j},

...
τn = min{n ≥ 1 : Xn+τn−1 = j},

so that τn is the time it takes for the chain to visit j after the (n − 1)’st visit
to j. By Corollary 4.14 we know that Pi (τn <∞) = 1 for all i ∈ S and n ∈ N.
We will use strong Markov property to prove the following key lemma in our
development.

Lemma 4.44. We continue to use the notation above and in particular assume
that Xn is an irreducible recurrent Markov chain. Then relative to any Pi with
i ∈ S, {τn}∞n=1 is a sequence of independent random variables, {τn}∞n=2 are
identically distributed, and Pi (τn = k) = Pj (τ1 = k) for all k ∈ N0 and n ≥ 2.

Proof. Let T0 = 0 and then define Tk inductively by, Tk+1 =
inf {n > Tk : Xn = j} so that Tn is the time of the n’th visit of {Xn}∞n=1 to
site j. Observe that T1 = τ1,

τn+1 (X0, X1, . . . ) = τ1
(
XTn , XTn+1, XTn+2 , . . .

)
,

and (τ1, . . . , τn) is a function of (X0, . . . , XTn) . Since Pi (Tn <∞) = 1 (Corol-
lary 4.14) and XTn = j, we may apply the strong Markov property in the form
of Corollary 4.42 to learn:

1. τn+1 is independent of (X0, . . . , XTn) and hence τn+1 is independent of
(τ1, . . . , τn) , and

2. the distribution of τn+1 under Pi is the same as the distribution of τ1 under
Pj .

The result now follows from these two observations and induction.
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36 4 Long Run Behavior of Discrete Markov Chains

Theorem 4.45. Suppose that Xn is a irreducible recurrent Markov chain, and
let j ∈ S be a fixed state. Define

πj :=
1

Ej(Rj)
, (4.37)

with the understanding that πj = 0 if Ej(Rj) =∞. Then

lim
N→∞

1
N

N∑
n=0

1Xn=j = πj Pi − a.s. (4.38)

for all i ∈ S and

lim
N→∞

1
N

N∑
n=0

Pnij = πj . (4.39)

Proof. Let us first note that Eq. (4.39) follows by taking expectations of
Eq. (4.38). So we must prove Eq. (4.38).

By Lemma 4.44, the sequence {τn}n≥2 is i.i.d. relative to Pi and Eiτn =
Ejτj = EjRj for all i ∈ S. We may now use the strong law of large numbers
(Theorem 1.14) to conclude that

lim
N→∞

τ1 + τ2 + · · ·+ τN
N

= Eiτ2 = Ejτ1 = EjRj (Pi– a.s.). (4.40)

This may be expressed as follows, let R(N)
j = τ1 + τ2 + · · · + τN , be the time

when the chain first visits j for the N th time, then

lim
N→∞

R
(N)
j

N
= EjRj (Pi– a.s.) (4.41)

Let

νN =
N∑
n=0

1Xn = j

be the number of time Xn visits j up to time N. Since j is visited infinitely
often, νN →∞ as N →∞ and therefore, limN→∞

νN+1
νN

= 1. Since there were
νN visits to j in the first N steps, the of the νN th time j was hit is less than or
equal to N, i.e. R(νN )

j ≤ N. Similarly, the time, R(νN+1)
j , of the (νN + 1)st visit

to j must be larger than N, so we have R(νN )
j ≤ N ≤ R

(νN+1)
j . Putting these

facts together along with Eq. (4.41) shows that

R
(νN )
j

νN
≤ N

νN
≤ R

(νN+1)
j

νN+1 ·
νN+1
νN

↓ ↓ ↓ N →∞,
EjRj ≤ limN→∞

N
νN
≤ EjRj · 1

i.e. limN→∞
N
νN

= EjRj for Pi – almost every sample path. Taking reciprocals
of this last set of inequalities implies Eq. (4.38).

Proposition 4.46. Suppose that Xn is a irreducible, recurrent Markov chain
and let πj = 1

Ej(Rj) for all j ∈ S as in Eq. (4.37). Then either πi = 0 for all
i ∈ S (in which case Xn is null recurrent) or πi > 0 for all i ∈ S (in which case
Xn is positive recurrent). Moreover if πi > 0 then∑

i∈S
πi = 1 and (4.42)

∑
i∈S

πiPij = πj for all j ∈ S. (4.43)

That is π = (πi)i∈S is the unique stationary distribution for P.

Proof. Let us define

Tnki :=
1
n

n∑
l=1

P lki (4.44)

which, according to Theorem 4.45, satisfies,

lim
n→∞

Tnki = πi for all i, k ∈ S.

Observe that,

(TnP )ki =
1
n

n∑
l=1

P l+1
ki =

1
n

n∑
l=1

P lki +
1
n

[
Pn+1
ki − Pki

]
→ πi as n→∞.

Let α :=
∑
i∈S πi. Since πi = limn→∞ Tnki, Fatou’s lemma implies for all

i, j ∈ S that

α =
∑
i∈S

πi =
∑
i∈S

lim inf
n→∞

Tnki ≤ lim inf
n→∞

∑
i∈S

Tnki = 1

and∑
i∈S

πiPij =
∑
i∈S

lim
n→∞

TnliPij ≤ lim inf
n→∞

∑
i∈S

TnliPij = lim inf
n→∞

Tn+1
lj = πj

where l ∈ S is arbitrary. Thus∑
i∈S

πi =: α ≤ 1 and
∑
i∈S

πiPij ≤ πj for all j ∈ S. (4.45)

By induction it also follows that
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i∈S

πiP
k
ij ≤ πj for all j ∈ S. (4.46)

So if πj = 0 for some j ∈ S, then given any i ∈ S, there is a integer k such that
P kij > 0, and by Eq. (4.46) we learn that πi = 0. This shows that either πi = 0
for all i ∈ S or πi > 0 for all i ∈ S.

For the rest of the proof we assume that πi > 0 for all i ∈ S. If there were
some j ∈ S such that

∑
i∈S πiPij < πj , we would have from Eq. (4.45) that

α =
∑
i∈S

πi =
∑
i∈S

∑
j∈S

πiPij =
∑
j∈S

∑
i∈S

πiPij <
∑
j∈S

πj = α,

which is a contradiction and Eq. (4.43) is proved.
From Eq. (4.43) and induction we also have∑

i∈S
πiP

k
ij = πj for all j ∈ S

for all k ∈ N and therefore,∑
i∈S

πiT
k
ij = πj for all j ∈ S. (4.47)

Since 0 ≤ Tij ≤ 1 and
∑
i∈S πi = α ≤ 1, we may use the dominated convergence

theorem to pass to the limit as k →∞ in Eq. (4.47) to find

πj = lim
k→∞

∑
i∈S

πiT
k
ij =

∑
i∈S

lim
k→∞

πiT
k
ij =

∑
i∈S

πiπj = απj .

Since πj > 0, this implies that α = 1 and hence Eq. (4.42) is now verified.

Proposition 4.47. Suppose that P is an irreducible Markov kernel which ad-
mits a stationary distribution µ. Then P is positive recurrent and µj = πj =

1
Ej(Rj) for all j ∈ S. In particular, an irreducible Markov kernel has at most
one invariant distribution and it has exactly one iff P is positive recurrent.

Proof. Suppose that µ = (µi) is a stationary distribution for P, i.e.∑
i∈S µi = 1 and µj =

∑
i∈S µiPij for all j ∈ S. Then we also have

µj =
∑
i∈S

µiT
k
ij for all k ∈ N (4.48)

where T kij is defined above in Eq. (4.44). As in the proof of Proposition 4.46,
we may use the dominated convergence theorem to find,

µj = lim
k→∞

∑
i∈S

µiT
k
ij =

∑
i∈S

lim
k→∞

µiT
k
ij =

∑
i∈S

µiπj = πj .

Alternative Proof. If P were not positive recurrent then P is either tran-
sient or null-recurrent in which case limn→∞ Tnij = 1

Ej(Rj) = 0 for all i, j. So
letting k →∞, using the dominated convergence theorem, in Eq. (4.48) allows
us to conclude that µj = 0 for all j which contradicts the fact that µ was
assumed to be a distribution.

Lemma 4.48 (A number theory lemma). Suppose that 1 is the greatest
common denominator of a set of positive integers, Γ := {n1, . . . , nk} . Then
there exists N ∈ N such that the set,

A = {m1n1 + · · ·+mknk : mi ≥ 0 for all i} ,

contains all n ∈ N with n ≥ N.

Proof. (The following proof is from Durrett [2].) We first will show that A
contains two consecutive positive integers, a and a+ 1. To prove this let,

k := min {|b− a| : a, b ∈ A with a 6= b}

and choose a, b ∈ A with b = a+ k. If k > 1, there exists n ∈ Γ ⊂ A such that
k does not divide n. Let us write n = mk + r with m ≥ 0 and 1 ≤ r < k. It
then follows that (m+ 1) b and (m+ 1) a+ n are in A,

(m+ 1) b = (m+ 1) (a+ k) > (m+ 1) a+mk + r = (m+ 1) a+ n,

and
(m+ 1) b− (m+ 1) a+ n = k − r < k.

This contradicts the definition of k and therefore, k = 1.
Let N = a2. If n ≥ N, then n− a2 = ma+ r for some m ≥ 0 and 0 ≤ r < a.

Therefore,

n = a2 +ma+ r = (a+m) a+ r = (a+m− r) a+ r (a+ 1) ∈ A.
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5

Continuous Time Markov Chain Notions

In this chapter we are going to begin out study continuous time homogeneous
Markov chains on discrete state spaces S. In more detail we will assume that
{Xt}t≥0 is a stochastic process whose sample paths are right continuous and
have left hand limits, see Figures 5.1 and 5.2.

Fig. 5.1. Typical sample paths of a continuous time Markov chain in a discrete state
space.

As in the discrete time Markov chain setting, to each i ∈ S, we will write
Pi (A) := P (A|X0 = i) . That is Pi is the probability associated to the scenario
where the chain is forced to start at site i. We now define, for i, j ∈ S,

Pij (t) := Pi (X (t) = j) (5.1)

which is the probability of finding the chain at time t at site j given the chain
starts at i.

Fig. 5.2. A sample path of a birth process. Here the state space is {0, 1, 2, . . . } to be
thought of the possible population size.

Definition 5.1. The time homogeneous Markov property states for every
0 ≤ s < t < ∞ and any choices of 0 = t0 < t1 < · · · < tn = s < t and
i1, . . . , in ∈ S that

Pi (X (t) = j|X (t1) = i1, . . . , X (tn) = in) = Pin,j (t− s) , (5.2)

and consequently,

Pi (X (t) = j|X (s) = in) = Pin,j (t− s) . (5.3)

Roughly speaking the Markov property may be stated as follows; the
probability that X (t) = j given knowledge of the process up to time s is
PX(s),j (t− s) . In symbols we might express this last sentence as
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Pi

(
X (t) = j| {X (τ)}τ≤s

)
= Pi (X (t) = j|X (s)) = PX(s),j (t− s) .

So again a continuous time Markov process is forgetful in the sense what the
chain does for t ≥ s depend only on where the chain is located, X (s) , at time
s and not how it got there. See Fact 5.3 below for a more general statement of
this property.

Definition 5.2 (Informal). A stopping time, T, for {X (t)} , is a random vari-
able with the property that the event {T ≤ t} is determined from the knowledge
of {X (s) : 0 ≤ s ≤ t} . Alternatively put, for each t ≥ 0, there is a functional,
ft, such that

1T≤t = ft ({X (s) : 0 ≤ s ≤ t}) .

As in the discrete state space setting, the first time the chain hits some subset
of states, A ⊂ S, is a typical example of a stopping time whereas the last time
the chain hits a set A ⊂ S is typically not a stopping time. Similar the discrete
time setting, the Markov property leads to a strong form of forgetfulness of the
chain. This property is again called the strong Markov property which we
take for granted here.

Fact 5.3 (Strong Markov Property) If {X (t)}t≥0 is a Markov chain, T is
a stopping time, and j ∈ S, then, conditioned on {T <∞ and XT = j} ,

{X (s) : 0 ≤ s ≤ T} and {X (t+ T ) : t ≥ 0}

are {X (t+ T ) : t ≥ 0} has the same distribution as {X (t)}t≥0 under Pj .

We will use the above fact later in our discussions. For the moment, let us
go back to more elementary considerations.

Theorem 5.4 (Finite dimensional distributions). Let 0 < t1 < t2 < · · · <
tn and i0, i1, i2, . . . , in ∈ S. Then

Pi0(Xt1 = i1, Xt2 = i2, . . . , Xtn = in)
= Pi0,i1(t1)Pi1,i2(t2 − t1) . . . Pin−1,in(tn − tn−1). (5.4)

Proof. The proof is similar to that of Proposition 3.2. For notational sim-
plicity let us suppose that n = 3. We then have

Pi0(Xt1 = i1, Xt2 = i2, Xt3 = i3) = Pi0(Xt3 = i3|Xt1 = i1, Xt2 = i2)Pi0 (Xt1 = i1, Xt2 = i2)
= Pi2,i3 (t3 − t2)Pi0 (Xt1 = i1, Xt2 = i2)
= Pi2,i3 (t3 − t2)Pi0 (Xt2 = i2|Xt1 = i1)Pi0 (Xt1 = i1)
= Pi2,i3 (t3 − t2)Pi1,i2 (t2 − t1)Pi0,i1 (t1)

wherein we have used the Markov property once in line 2 and twice in line 4.

Proposition 5.5 (Properties of P ). Let Pij (t) := Pi (X (t) = j) be as above.
Then:

1. For each t ≥ 0, P (t) is a Markov matrix, i.e.∑
j∈S

Pij (t) = 1 for all i ∈ S and

Pij (t) ≥ 0 for all i, j ∈ S.
.

2. limt↓0 Pij (t) = δij for all i, j ∈ S.
3. The Chapman – Kolmogorov equation holds:

P (t+ s) = P (t)P (s) for all s, t ≥ 0, (5.5)

i.e.
Pij (t+ s) =

∑
k∈S

Pik (s)Pkj (t) for all s, t ≥ 0. (5.6)

We will call a matrix {P (t)}t≥0 satisfying items 1. – 3. a continuous time
Markov semigroup.

Proof. Most of the assertions follow from the basic properties of conditional
probabilities. The assumed right continuity of Xt implies that limt↓0 P (t) =
P (0) = I. From Equation (5.4) with n = 2 we learn that

Pi0,i2(t2) =
∑
i1∈S

Pi0(Xt1 = i1, Xt2 = i2)

=
∑
i1∈S

Pi0,i1(t1)Pi1,i2(t2 − t1)

= [P (t1)P (t2 − t1)]i0,i2 .

At this point it is not so clear how to find a non-trivial (i.e. P (t) 6= I for all
t) example of a continuous time Markov semi-group. It turns out the Poisson
process provides such an example.

Example 5.6. In this example we will take S = {0, 1, 2, . . . } and then define, for
λ > 0,

P (t) = e−λt

0 1 2 3 4 5 6 . . .

1 λt (λt)2

2!
(λt)3

3!
(λt)4

4!
(λt)5

5! . . .

0 1 λt (λt)2

2!
(λt)3

3!
(λt)4

4! . . .

0 0 1 λt (λt)2

2!
(λt)3

3! . . .

0 0 0 1 λt (λt)2

2! . . .
...

...
...

. . . . . . . . . . . .


0
1
2
3
...

.
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In components this may be expressed as,

Pij (t) = e−λt
(λt)j−i

(j − i)!
1i≤j

with the convention that 0! = 1. (See Exercise 0.12 of this weeks homework
assignment to see where this example is coming from.)

If i, j ∈ S, then Pik (t)Pkj (s) will be zero unless i ≤ k ≤ j, therefore we
have ∑

k∈S

Pik (t)Pkj (s) = 1i≤j
∑
i≤k≤j

Pik (t)Pkj (s)

= 1i≤je−λ(t+s)
∑
i≤k≤j

(λt)k−i

(k − i)!
(λs)j−k

(j − k)!
. (5.7)

Let k = i+m with 0 ≤ m ≤ j − i, then the above sum may be written as

j−i∑
m=0

(λt)m

m!
(λs)j−i−m

(j − i−m)!
=

1
(j − i)!

j−i∑
m=0

(
j − i
m

)
(λt)m (λs)j−i−m

and hence by the Binomial formula we find,

∑
i≤k≤j

(λt)k−i

(k − i)!
(λs)j−k

(j − k)!
=

1
(j − i)!

(λt+ λs)j−i .

Combining this with Eq. (5.7) shows that∑
k∈S

Pik (t)Pkj (s) = Pij (s+ t) .

Proposition 5.7. Let {Xt}t≥0 is the Markov chain determined by P (t) of Ex-
ample 5.6. Then relative to P0, {Xt}t≥0 is precisely the Poisson process on
[0,∞) with intensity λ.

Proof. Let 0 ≤ s < t. Since P0 (Xt = n|Xs = k) = Pkn (t− s) = 0 if n < k,
{Xt}t≥0 is a non-decreasing integer value process. Suppose that 0 = s0 < s1 <
s2 < · · · < sn = s and ik ∈ S for k = 0, 1, 2, . . . , n, then

P0

(
Xt −Xs = i0|Xsj = ij for 1 ≤ j ≤ n

)
= P0

(
Xt = in + i0|Xsj = ij for 1 ≤ j ≤ n

)
= P0 (Xt = in + i0|Xsn = in)

= e−λ(t−s) (λt)i0

i0!
.

Since this answer is independent of i1, . . . , in we also have

P0 (Xt −Xs = i0)

=
∑

i1,...,in∈S
P0

(
Xt −Xs = i0|Xsj = ij for 1 ≤ j ≤ n

)
P0

(
Xsj = ij for 1 ≤ j ≤ n

)
=

∑
i1,...,in∈S

e−λ(t−s) (λt)i0

i0!
P0

(
Xsj = ij for 1 ≤ j ≤ n

)
= e−λ(t−s) (λt)i0

i0!
.

Thus we may conclude that Xt −Xs is Poisson random variable with intensity
λ which is independent of {Xr}r≤s . That is {Xt}t≥0 is a Poisson process with
rate λ.

The next example is generalization of the Poisson process example above.
You will be asked to work this example out on a future homework set.

Example 5.8. In problems VI.6.P1 on p. 406, you will be asked to consider a
discrete time Markov matrix, ρij , on some discrete state space, S,with associate
Markov chain {Yn} . It is claimed in this problem that if {N (t)}t≥0 is Poisson
process which is independent of {Yn} , then Xt := YN(t) is a continuous time
Markov chain. More precisely the claim is that Eq. (5.2) holds with

P (t) = e−t
∞∑
m=0

tm

m!
ρm =: et(ρ−I),

i.e.

Pij (t) = e−t
∞∑
m=0

tm

m!
(ρm)ij .

(We will see a little later, that this example can be used to construct all finite
state continuous time Markov chains.)

Notice that in each of these examples, P (t) = I + Qt + O
(
t2
)

for some
matrix Q. In the first example,

Qij = −λδij + λδi,i+1

while in the second example, Q = ρ− I.
For a general Markov semigroup, P (t) , we are going to show (at least when

# (S) < ∞) that P (t) = I + Qt + O
(
t2
)

for some matrix Q which we call
the infinitesimal generator (or Markov generator) of P. We will see that
every infinitesimal generator must satisfy:

Qij ≤ 0 for all i 6= j, and (5.8)∑
j

Qij = 0, i.e. −Qii =
∑
j 6=i

Qij for all i. (5.9)
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Moreover, to any such Q, the matrix

P (t) = etQ :=
∞∑
n=0

tn

n!
Qn = I + tQ+

t2

2!
Q2 +

t3

3!
Q3 + . . .

will be a Markov semigroup.
One useful way to understand what is going on here is to choose an initial

distribution, π on S and then define π (t) := πP (t) . We are going to interpret
πj as the amount of sand we have placed at each of the sites, j ∈ S. We are going
to interpret πj (t) as the mass at site j at a later time t under the assumption
that π satisfies, π̇ (t) = π (t)Q, i.e.

π̇j (t) =
∑
i6=j

πi (t)Qij − qjπj (t) , (5.10)

where qj = −Qj j . (See Example 6.19 below.) Here is how to interpret each
term in this equation:

π̇j (t) = rate of change of the amount of sand at j at time t,
πi (t)Qij = rate at which sand is shoveled from site i to j,
qjπj (t) = rate at which sand is shoveled out of site i to all other sites.

With this interpretation Eq. 5.10 has the clear meaning: namely the rate of
change of the mass of sand at j at time t should be equal to the rate at which
sand is shoveled into site j form all other sites minus the rate at which sand is
shoveled out of site i. With this interpretation, the condition,

−Qj j := qj =
∑
k 6=j

Qj,k,

just states the total sand in the system should be conserved, i.e. this guarantees
the rate of sand leaving j should equal the total rate of sand being sent to all
of the other sites from j.

Warning: the book denotes Q by A but then denotes the entries of A by
qij . I have just decided to write A = Q and identify, Qij and qij . To avoid some
technical details, in the next chapter we are mostly going to restrict ourselves
to the case where # (S) < ∞. Later we will consider examples in more detail
where # (S) =∞.



6

Continuous Time M.C. Finite State Space Theory

For simplicity we will begin our study in the case where the state space is
finite, say S = {1, 2, 3, . . . , N} for some N <∞. It will be convenient to define,

1 :=


1
1
...
1


be the column vector with all entries being 1.

Definition 6.1. An N ×N matrix function P (t) for t ≥ 0 is Markov semi-
group if

1. P (t) is Markov matrix for all t ≥ 0, i.e. Pij (t) ≥ 0 for all i, j and∑
j∈S

Pij (t) = 1 for all i ∈ S. (6.1)

The condition in Eq. (6.1) may be written in matrix notation as,

P (t) 1 = 1 for all t ≥ 0. (6.2)

2. P (0) = IN×N ,
3. P (t+ s) = P (t)P (s) for all s, t ≥ 0 (Chapman - Kolmogorov),
4. limt↓0 P (t) = I, i.e. P is continuous at t = 0.

Definition 6.2. An N×N matrix, Q, is an infinitesimal generator if Qij ≥
0 for all i 6= j and ∑

j∈S
Qij = 0 for all i ∈ S. (6.3)

The condition in Eq. (6.3) may be written in matrix notation as,

Q1 = 0. (6.4)

6.1 Matrix Exponentials

In this section we are going to make use of the following facts from the theory
of linear ordinary differential equations.

Theorem 6.3. Let A and B be any N × N (real) matrices. Then there exists
a unique N ×N matrix function P (t) solving the differential equation,

Ṗ (t) = AP (t) with P (0) = B (6.5)

which is in fact given by
P (t) = etAB (6.6)

where

etA =
∞∑
n=0

tn

n!
An = I + tA+

t2

2!
A2 +

t3

3!
A3 + . . . (6.7)

The matrix function etA may be characterized as the unique solution Eq. (6.5)
with B = I and it is also the unique solution to

Ṗ (t) = AP (t) with P (0) = I.

Moreover, etA satisfies the semi-group property (Chapman Kolmogorov equa-
tion),

e(t+s)A = etAesA for all s, t ≥ 0. (6.8)

Proof. We will only prove Eq. (6.8) here assuming the first part of the
theorem. Fix s > 0 and let R (t) := e(t+s)A, then

Ṙ (t) = Ae(t+s)A = AR (t) with R (0) = P (s) .

Therefore by the first part of the theorem

e(t+s)A = R (t) = etAR (0) = etAesA.
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Example 6.4 (Thanks to Mike Gao!). If A =
[

0 1
0 0

]
, then An = 0 for n ≥ 2, so

that

etA = I + tA =
[

1 0
0 1

]
+ t

[
0 1
0 0

]
=
[

1 t
0 1

]
.

Similarly if B =
[

0 0
−1 0

]
, then Bn = 0 for n ≥ 2 and

etB = I + tB =
[

1 0
0 1

]
+ t

[
0 0
−1 0

]
=
[

1 0
−t 1

]
.

Now let C = A + B =
[

0 1
−1 0

]
. In this case C2 = −I, C3 = −C, C4 = I,

C5 = C etc., so that

C2n = (−1)n I and C2n+1 = (−1)n C.

Therefore,

etC =
∞∑
n=0

t2n

(2n)!
C2n +

∞∑
n=0

t2n+1

(2n+ 1)!
C2n+1

=
∞∑
n=0

t2n

(2n)!
(−1)n I +

∞∑
n=0

t2n+1

(2n+ 1)!
(−1)n C

= cos (t) I + sin (t)C =
[

cos t sin t
− sin t cos t

]
which is the matrix representing rotation in the plan by t degrees.

Here is another way to compute etC in this example. Since C2 = −I, we
find

d2

dt2
etC = C2etC = −etC with

e0C = I and
d

dt
etC |t=0 = C.

It is now easy to verify the solution to this second order equation is given by,

etC = cos t · I + sin t · C

which agrees with our previous answer.

Remark 6.5. Warning: if A and B are two N ×N matrices it is not generally
true that

e(A+B) = eAeB (6.9)

as can be seen from Example 6.4.

However we have the following lemma.

Lemma 6.6. If A and B commute, i.e. AB = BA, then Eq. (6.9) holds. In
particular, taking B = −A, shows that e−A =

[
eA
]−1

.

Proof. First proof. Simply verify Eq. (6.9) using explicit manipulations
with the infinite series expansion. The point is, because A and B compute, we
may use the binomial formula to find;

(A+B)n =
n∑
k=0

(
n

k

)
AkBn−k.

(Notice that if A and B do not compute we will have

(A+B) = A2 +AB +BA+B2 6= A2 + 2AB +B2.)

Therefore,

e(A+B) =
∞∑
n=0

1
n!

(A+B)n =
∞∑
n=0

1
n!

n∑
k=0

(
n

k

)
AkBn−k

=
∑

0≤k≤n<∞

1
k!

1
(n− k)!

AkBn−k (let n− k = l)

=
∞∑
k=0

∞∑
l=0

1
k!

1
l!
AkBl =

∞∑
k=0

1
k!
Ak ·

∞∑
l=0

1
l!
Bl = eAeB .

Second proof. Here is another proof which uses the ODE interpretation
of etA. We will carry it out in a number of steps.

1. By Theorem 6.3 and the product rule

d

dt
e−tABetA = e−tA (−A)BetA + e−tABAetA = e−tA (BA−AB) etA = 0

since A and B commute. This shows that e−tABetA = B for all t ∈ R.
2. Taking B = I in 1. then shows e−tAetA = I for all t ,i.e. e−tA =

[
etA
]−1

.
Hence we now conclude from Item 1. that e−tAB = Be−tA for all t.

3. Using Theorem 6.3, Item 2., and the product rule implies

d

dt

[
e−tBe−tAet(A+B)

]
=e−tB (−B) e−tAet(A+B) + e−tBe−tA (−A) et(A+B)

+ e−tBe−tA (A+B) et(A+B)

=e−tBe−tA (−B) et(A+B) + e−tBe−tA (−A) et(A+B)

+ e−tBe−tA (A+B) et(A+B) = 0.
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Therefore,

e−tBe−tAet(A+B) = e−tBe−tAet(A+B)|t=0 = I for all t,

and hence taking t = 1, shows

e−Be−Ae(A+B) = I. (6.10)

Multiplying Eq. (6.10) on the left by eAeB gives Eq. (6.9).

The next two results gives a practical method for computing etQ in many
situations.

Proposition 6.7. If Λ is a diagonal matrix,

Λ :=


λ1

λ2

. . .
λm


then

etΛ =


etλ1

etλ2

. . .
etλn

 .
Proof. One easily shows that

Λn :=


λn1

λn2
. . .

λnm


for all n and therefore,

etΛ =
∞∑
n=0

tn

n!
Λn =


∑∞
n=0

tn

n!λ
n
1 ∑∞

n=0
tn

n!λ
n
2

. . . ∑∞
n=0

tn

n!λ
n
m



=


etλ1

etλ2

. . .
etλn

 .

Theorem 6.8. Suppose that Q is a diagonalizable matrix, i.e. there exists an
invertible matrix, S, such that S−1QS = Λ with Λ being a diagonal matrix. In
this case we have,

etQ = SetΛS−1 (6.11)

Proof. We begin by observing that(
S−1QS

)2
= S−1QSS−1QS = S−1Q2S,(

S−1QS
)3

= S−1Q2SS−1QS = S−1Q3S

...(
S−1QS

)n
= S−1QnS for all n ≥ 0.

Therefore we find that

S−1etQS = S−1IS +
∞∑
n=0

tn

n!
S−1QnS

= I +
∞∑
n=0

tn

n!
(
S−1QS

)n
= I +

∞∑
n=0

tn

n!
Λn = etΛ.

Solving this equation for etQ gives the desired result.

6.2 Characterizing Markov Semi-Groups

We now come to the main theorem of this chapter.

Theorem 6.9. The collection of Markov semi-groups is in one to one cor-
respondence with the collection of infinitesimal generators. More precisely we
have;

1. P (t) = etQ is Markov semi-group iff Q is an infinitesimal generator.
2. If P (t) is a Markov semi-group, then Q := d

dt |0+P (t) exists, Q is an in-
finitesimal generator, and P (t) = etQ.

Proof. The proof is completed by Propositions 6.10 – 6.13 below. (You
might look at Example 6.4 to see what goes wrong if Q does not satisfy the
properties of a Markov generator.)

We are now going to prove a number of results which in total will complete
the proof of Theorem 6.9. The first result is technical and you may safely skip
its proof.
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Proposition 6.10 (Techinical proposition). Every Markov semi-group,
{P (t)}t≥0 is continuously differentiable.

Proof. First we want to show that P (t) is continuous. For t, h ≥ 0, we have

P (t+ h)− P (t) = P (t)P (h)− P (t) = P (t) (P (h)− I)→ 0 as h ↓ 0.

Similarly if t > 0 and 0 ≤ h < t, we have

P (t)− P (t− h) = P (t− h+ h)− P (t− h) = P (t− h)P (h)− P (t− h)
= P (t− h) [P (h)− I]→ 0 as h ↓ 0

where we use the fact that P (t− h) has entries all bounded by 1 and therefore∣∣∣(P (t− h) [P (h)− I])ij
∣∣∣ ≤∑

k

Pik (t− h)
∣∣∣(P (h)− I)kj

∣∣∣
≤
∑
k

∣∣∣(P (h)− I)kj
∣∣∣→ 0 as h ↓ 0.

Thus we have shown that P (t) is continuous.
To prove the differentiability of P (t) we use a trick due to Gärding. Choose

ε > 0 such that

Π :=
1
ε

∫ ε

0

P (s) ds

is invertible. To see this is possible, observe that by the continuity of P,
1
ε

∫ ε
0
P (s) ds → I as ε ↓ 0. Therefore, by the continuity of the determinant

function,

det
(

1
ε

∫ ε

0

P (s) ds
)
→ det (I) = 1 as ε ↓ 0.

With this definition of Π, we have

P (t)Π =
1
ε

∫ ε

0

P (t)P (s) ds =
1
ε

∫ ε

0

P (t+ s) ds =
1
ε

∫ t+ε

t

P (s) ds.

So by the fundamental theorem of calculus, P (t)Π is differentiable and

d

dt
[P (t)Π] =

1
ε

(P (t+ ε)− P (t)) .

As Π is invertible, we may conclude that P (t) is differentiable and that

Ṗ (t) :=
1
ε

(P (t+ ε)− P (t))Π−1.

Since the right hand side of this equation is continuous in t it follows that Ṗ (t)
is continuous as well.

Proposition 6.11. If {P (t)}t≥0 is a Markov semi-group and Q := d
dt |0+P (t) ,

then

1. P (t) satisfies P (0) = I and both,

Ṗ (t) = P (t)Q (Kolmogorov’s forward Eq.)

and
Ṗ (t) = QP (t) (Kolmogorov’s backwards Eq.)

hold.
2. P (t) = etQ.
3. Q is an infinitesimal generator.

Proof. 1.-2. We may compute Ṗ (t) using

Ṗ (t) =
d

ds
|0P (t+ s) .

We then may write P (t+ s) as P (t)P (s) or as P (s)P (t) and hence

Ṗ (t) =
d

ds
|0 [P (t)P (s)] = P (t)Q and

Ṗ (t) =
d

ds
|0 [P (s)P (t)] = QP (t) .

This proves Item 1. and Item 2. now follows from Theorem 6.3.
3. Since P (t) is continuously differentiable, P (t) = I + tQ+O

(
t2
)
, and so

for i 6= j,
0 ≤ Pij (t) = δij + tQij +O

(
t2
)

= tQij +O
(
t2
)
.

Dividing this inequality by t and then letting t ↓ 0 showsQij ≥ 0.Differentiating
the Eq. (6.2), P (t) 1 = 1, at t = 0+ to show Q1 =0.

Proposition 6.12. Let Q be any matrix such that Qij ≥ 0 for all i 6= j. Then(
etQ
)
ij
≥ 0 for all t ≥ 0 and i, j ∈ S.

Proof. Choose λ ∈ R such that λ ≥ −Qii for all i ∈ S. Then λI + Q has
all non-negative entries and therefore et(λI+Q) has non-negative entries for all
t ≥ 0. (Think about the power series expansion for et(λI+Q).) By Lemma 6.6
we know that et(λI+Q) = etλIetQ and since etλI = etλI (you verify), we have1

et(λI+Q) = etλetQ.

Therefore, etQ = e−tλet(λI+Q) again has all non-negative entries and the proof
is complete.
1 Actually if you do not want to use Lemma 6.6, you may check that et(λI+Q) = etλetQ

by simply showing both sides of this equation satisfy the same ordinary differential
equation.
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Proposition 6.13. Suppose that Q is any matrix such that
∑
j∈S Qij = 0 for

all i ∈ S, i.e. Q1 = 0. Then etQ1 = 1.

Proof. Since
d

dt
etQ1 =etQQ1 =0,

it follows that etQ1 = etQ1|t=0 = 1.

Lemma 6.14 (ODE Lemma). If h (t) is a given function and λ ∈ R, then
the solution to the differential equation,

π̇ (t) = λπ (t) + h (t) (6.12)

is

π (t) = eλt
(
π (0) +

∫ t

0

e−λsh (s) ds
)

(6.13)

= eλtπ (0) +
∫ t

0

eλ(t−s)h (s) ds. (6.14)

Proof. If π (t) satisfies Eq. (6.12), then

d

dt

(
e−λtπ (t)

)
= e−λt (−λπ (t) + π̇ (t)) = e−λth (t) .

Integrating this equation implies,

e−λtπ (t)− π (0) =
∫ t

0

e−λsh (s) ds.

Solving this equation for π (t) gives

π (t) = eλtπ (0) + eλt
∫ t

0

e−λsh (s) ds (6.15)

which is the same as Eq. (6.13). A direct check shows that π (t) so defined solves
Eq. (6.12). Indeed using Eq. (6.15) and the fundamental theorem of calculus
shows,

π̇ (t) = λeλtπ (0) + λeλt
∫ t

0

e−λsh (s) ds+ eλte−λth (t)

= λπ (t) + h (t) .

Corollary 6.15. Suppose λ ∈ R and π (t) is a function which satisfies, π̇ (t) ≥
λπ (t) , then

π (t) ≥ eλtπ (0) for all t ≥ 0. (6.16)

In particular if π (0) ≥ 0 then π (t) ≥ 0 for all t. In particular if Q is a Markov
generator and P (t) = etQ, then

Pii (t) ≥ e−qit for all t > 0

where qi := −Qii. (If we put all of the sand at site i at time 0, e−qit represents
the amount of sand at a later time t in the worst case scenario where no one
else shovels sand back to site i.)

Proof. Let h (t) := π̇ (t)−λπ (t) ≥ 0 and then apply Lemma 6.14 to conclude
that

π (t) = eλtπ (0) +
∫ t

0

eλ(t−s)h (s) ds. (6.17)

Since eλ(t−s)h (s) ≥ 0, it follows that
∫ t
0
eλ(t−s)h (s) ds ≥ 0 and therefore if we

ignore this term in Eq. (6.17) leads to the estimate in Eq. (6.16).

6.3 Examples

Example 6.16 (2 × 2 case I). The most general 2 × 2 rate matrix Q is of the
form

Q =

0 1[
−α α
β −β

]
0
1

with rate diagram being given in Figure 6.1. We now find etQ using Theorem

Fig. 6.1. Two state Markov chain rate diagram.

6.8. To do this we start by observing that
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48 6 Continuous Time M.C. Finite State Space Theory

det (Q− λI) = det
([
−α− λ α

β −β − λ

])
= (α+ λ) (β + λ)− αβ

= λ2 + τλ = λ (λ+ τ) .

Thus the eigenvalues of Q are {0,−τ} . The eigenvector for 0 is
[

1 1
]tr
. More-

over,

Q− (−τ) I =
[
β α
β α

]
which has

[
α −β

]tr and therefore we let

S =
[

1 α
1 −β

]
and S−1 =

1
τ

[
β α
1 −1

]
.

We then have

S−1QS =
[

0 0
0 −τ

]
=: Λ.

So in our case

S−1etQS = etΛ =
[
e0t 0
0 e−τt

]
=
[

1 0
0 e−τt

]
.

Hence we must have,

etQ = S

[
1 0
0 e−τt

]
S−1

=
1
τ

[
1 α
1 −β

] [
1 0
0 e−τt

] [
β α
1 −1

]
=

1
τ

[
β + αe−τt α− αe−τt
β − βe−τt α+ βe−τt

]
=

1
τ

[
β + αe−τt α (1− e−τt)
β (1− e−τt) α+ βe−τt

]
.

Example 6.17 (2× 2 case II). If P (t) = etQ and π (t) = π (0)P (t) , then

π̇ (t) = π (t)Q = [π0 (t) , π1 (t)]
[
−α α
β −β

]
[
−απ0 (t) + βπ1 (t) απ0 (t)− βπ1 (t)

]
,

i.e

π̇0 (t) = −απ0 (t) + βπ1 (t) (6.18)
π̇1 (t) = απ0 (t)− βπ1 (t) . (6.19)

The latter pair of equations is easy to write down using the jump diagram and
the movement of sand interpretation. If we assume that π0 (0)+π1 (0) = 1 then
we know π0 (t) + π1 (t) = 1 for all later times and therefore we may rewrite Eq.
(6.18) as

π̇0 (t) = −απ0 (t) + β (1− π0 (t))
= −τπ0 (t) + β

where τ := α+ β. We may use Lemma 6.14 below to find

π0 (t) = e−τtπ0 (0) +
∫ t

0

e−τ(t−s)βds

= e−τtπ0 (0) +
β

τ

(
1− e−τt

)
.

We may also conclude that

π1 (t) = 1− π0 (t) = 1− e−τtπ0 (0)− β

τ

(
1− e−τt

)
= 1− e−τt (1− π1 (0))− β

τ

(
1− e−τt

)
= e−τtπ1 (0) +

(
1− e−τt

)
− β

τ

(
1− e−τt

)
= e−τtπ1 (0) +

α

τ

(
1− e−τt

)
.

By taking π0 (0) = 1 and π1 (0) = 0 we get the first row of P (t) is equal to[
e−τt1 + β

τ (1− e−τt) α
τ (1− e−τt)

]
=

1
τ

[
e−τtα+ β α (1− e−τt)

]
and similarly the second row of P (t) is found by taking π0 (0) = 0 and π1 (0) = 1
to find[

β
τ (1− e−τt) e−τt + α

τ (1− e−τt)
]

=
1
τ

[
β (1− e−τt) βe−τt + α

]
.

Hence we have found

P (t) =
1
τ

[
e−τtα+ β α (1− e−τt)
β (1− e−τt) βe−τt + α

]
=

1
τ

[
(e−τt − 1)α+ β + α α (1− e−τt)

β (1− e−τt) β (e−τt − 1) + α+ β

]
= I +

1
τ

(
1− e−τt

) [−α α
β −β

]
= I +

1
τ

(
1− e−τt

)
Q.
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Let us verify that this is indeed the correct solution. It is clear that P (0) = I,

Ṗ (t) = e−τt
[
−α α
β −β

]
while on the other hand,

Q2 =
[
αβ + α2 −αβ − α2

−αβ − β2 αβ + β2

]
= τ

[
α −α
−β β

]
= −τQ

and therefore,
P (t)Q = Q−

(
1− e−τt

)
Q = e−τtQ

as desired.
We also have

P (s)P (t) =
(
I +

1
τ

(
1− e−τs

)
Q

)(
I +

1
τ

(
1− e−τt

)
Q

)
= I +

1
τ

(
2− e−τs − e−τt

)
Q+

1
τ

(
1− e−τs

) 1
τ

(
1− e−τt

)
(−τ)Q

= I +
1
τ

[(
2− e−τs − e−τt

)
−
(
1− e−τs

) (
1− e−τt

)]
Q

= I +
1
τ

[
1− e−τ(s+t)

]
Q = P (s+ t)

as it should be. Lastly let us observe that

lim
t→∞

P (t) = I +
1
τ

lim
t→∞

(
1− e−τt

) [−α α
β −β

]
= I − 1

τ

[
−α α
β −β

]
=

1
τ

[
β α
β α

]
.

Moreover we have

lim
t→∞

Ṗ (t) = lim
t→∞

e−τt
[
−α α
β −β

]
= 0.

Suppose that π is any distribution, then

lim
t→∞

πP (t) =
1
τ

[
π0 π1

] [β α
β α

]
=

1
τ

[
β α

]
independent of π. Moreover, since

1
τ

[
β α

]
P (s) = lim

t→∞
πP (t)P (s) = lim

t→∞
πP (t+ s)

= lim
t→∞

πP (t) =
1
τ

[
β α

]

which shows that the limiting distribution is also an invariant distribution. If
π is any invariant distribution for P, we must have

π = lim
t→∞

πP (t) =
1
τ

[
β α

]
=
[

β
α+β

α
α+β

]
(6.20)

and moreover,

0 =
d

dt
|0π =

d

dt
|0πP (t) = πQ.

The solutions of πQ = 0 correspond to the null space of Qtr which implies

NulQtr = Nul
[
−α β
α −β

]
= R ·

[
β
α

]
and hence we have again recovered π = 1

τ

[
β α

]
.

Example 6.18 (2×2 case III). We now compute etQ by the power series method
as follows. A simple computation shows that

Q2 =
[
αβ + α2 −αβ − α2

−αβ − β2 αβ + β2

]
= τ

[
α −α
−β β

]
= −τQ.

Hence it follows by induction that Qn = (−τ)n−1
Q and therefore,

P (t) = etQ = I +
∞∑
n=1

tn

n!
(−τ)n−1

Q

= I − 1
τ

∞∑
n=1

tn

n!
(−τ)nQ = I − 1

τ

(
e−τt − 1

)
Q

=
[

1 0
0 1

]
− 1
τ

(
e−τt − 1

) [−α α
β −β

]
=
[
α
τ (e−tτ − 1) + 1 −ατ (e−tτ − 1)
−βτ (e−tτ − 1) β

τ (e−tτ − 1) + 1

]
=

1
τ

[
αe−tτ + β α (1− e−tτ )
β (1− e−tτ ) βe−tτ + α

]
: Let us again verify that this answer is correct;

Ṗ (t) = e−τtQ while

P (t)Q = Q− 1
τ

(
e−τt − 1

)
(−τ)Q = Q+

(
e−τt − 1

)
Q = Ṗ (t) .

Example 6.19. Let S = {1, 2, 3} and
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Q =

1 2 3−3 1 2
0 −1 1
0 0 0

1
2
3

which we represent by Figure 6.19. Let π = (π1, π2, π3) be a given initial ( at

t = 0) distribution (of sand say) on S and let π (t) := πetQ be the distribution
at time t. Then

π̇ (t) = πetQQ = π (t)Q.

In this particular example this gives,

[
π̇1 π̇2 π̇3

]
=
[
π1 π2 π3

] −3 1 2
0 −1 1
0 0 0


=
[
−3π1 π1 − π2 2π1 + π2

]
,

or equivalently,

π̇1 = −3π1 (6.21)
π̇2 = π1 − π2 (6.22)
π̇3 = 2π1 + π2. (6.23)

Notice that these equations are easy to read off from Figure 6.19. For example,
the second equation represents the fact that rate of change of sand at site 2 is
equal to the rate which sand is entering site 2 (in this case from 1 with rate
1π1) minus the rate at which sand is leaving site 2 (in this case 1π2 is the rate
that sand is being transported to 3). Similarly, site 3 is greedy and never gives

up any of its sand while happily receiving sand from site 1 at rate 2π1 and from
site 2 are rate 1π2. Solving Eq. (6.21) gives,

π1 (t) = e−3tπ1 (0)

and therefore Eq. (6.22) becomes

π̇2 = e−3tπ1 (0)− π2

which, by Lemma 6.14 below, has solution,

π2 (t) = e−tπ2 (0) + e−t
∫ t

0

eτe−3τπ1 (0) dτ

=
1
2
(
e−t − e−3t

)
π1 (0) + e−tπ2 (0) .

Using this back in Eq. (6.23) then shows

π̇3 = 2e−3tπ1 (0) +
1
2
(
e−t − e−3t

)
π1 (0) + e−tπ2 (0)

=
(

1
2
e−t +

3
2
e−3t

)
π1 (0) + e−tπ2 (0)

which integrates to

π3 (t) =
(

1
2
[
1− e−t

]
+

1
2
(
1− e−3t

))
π1 (0) +

(
1− e−t

)
π2 (0) + π3 (0)

=
(

1− 1
2
[
e−t + e−3t

])
π1 (0) +

(
1− e−t

)
π2 (0) + π3 (0) .

Thus we haveπ1 (t)
π2 (t)
π3 (t)

 =

 e−3tπ1 (0)
1
2

(
e−t − e−3t

)
π1 (0) + e−tπ2 (0)(

1− 1
2

[
e−t + e−3t

])
π1 (0) + (1− e−t)π2 (0) + π3 (0)



=

 e−3t 0 0
1
2

(
e−t − e−3t

)
e−t 0

1− 1
2

[
e−t + e−3t

]
1− e−t 1

π1 (0)
π2 (0)
π3 (0)

 .
From this we may conclude that
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P (t) = etQ =

 e−3t 0 0
1
2

(
e−t − e−3t

)
e−t 0

1− 1
2

[
e−t + e−3t

]
1− e−t 1

tr

=

 e−3t
(

1
2e
−t − 1

2e
−3t
) (

1− 1
2e
−t − 1

2e
−3t
)

0 e−t −e−t + 1
0 0 1

 .

6.4 Construction of continuous time Markov processes

Theorem 6.20. Let {ρij}i,j∈S be a discrete time Markov matrix over a discrete
state space, S and {Yn}∞n=0 be the corresponding Markov chain. Also let {Nt}t≥0

be a Poisson process with rate λ > 0 which is independent of {Yn} . Then
Xt := YNt is a continuous time Markov chain with transition semi-group given
by,

P (t) = etλ(ρ−I) = e−λtetλρ.

Proof. (To be supplied later.) STOP

6.5 Jump and Hold Description

We would now like to make a direct connection between Q and the Markov
process Xt. To this end, let τ denote the first time the process makes a jump
between two states. In this section we are going to write x and y for typical
element in the state space, S.

Theorem 6.21. Let Qx := −Qx,x ≥ 0. Then Px(S > t) = e−Qxt, which shows
that relative Px, S is exponentially distributed with parameter Qx. Moreover,
XS is independent of S and

Px(XS = y) = Qx,y/Qx.

Proof. For the first assertion we let

An :=
{
X

(
i

2n
t

)
= x for i = 1, 2, . . . , 2n − 1, 2n

}
.

Then
An ↓ {X (s) = x for s ≤ t} = {S > t}

and therefore, Px (An) ↓ Px (S > t) . Since,

P (An) = [Px,x(t/2n)]2
n

=
[
1− tQx

2n
+O

(
(1/2n)2

)]2n
→ e−tQx as n→∞,

we have shown Px (S > t) = e−tQx .
First proof of the second assertion. Let T be the time between the second

and first jump of the process. Then by the strong Markov property, for any
t ≥ 0 and ∆ > 0 small, we have,

Px (t < S ≤ t+∆, T ≤ ∆) =
∑
y∈S

Px (t < S ≤ t+∆, T ≤ ∆, XS = y)

=
∑
y∈S

Px (t < S ≤ t+∆, XS = y) · Py (T ≤ ∆)

=
∑
y∈S

Px (t < S ≤ t+∆, XS = y) ·
(
1− e−Qy∆

)
≤ min

y∈S

(
1− e−Qy∆

)∑
y∈S

Px (t < S ≤ t+∆, XS = y)

= min
y∈S

(
1− e−Qy∆

)
Px (t < S ≤ t+∆)

= min
y∈S

(
1− e−Qy∆

) ∫ t+∆

t

Qxe
−Qxτdτ = O

(
∆2
)
.

(Here we have used that the rates, {Qy}y∈S are bounded which is certainly the
case when # (S) <∞.) Therefore the probability of two jumps occurring in the
time interval, [t, t+∆] , may be ignored and we have,

Px(XS = y, t < S ≤ t+∆) = Px(Xt+∆ = y, S > t) + o(∆)
= Px(Xt+∆ = y,Xt = x, S > t) + o(∆)

= lim
n→∞

[
1− tQx

n
+O(n−2)

]n
Px,y(∆) + o(∆)

= e−tQxPx,y(∆) + o(∆).

Also

Px(t < S ≤ t+∆) =
∫ t+∆

t

Qxe
−Qxsds = e−Qxt−e−Qx(t+∆) = Qxe

−Qxt∆+o(∆).

Therefore,

Px(XS = y|S = t) = lim
∆↓0

Px(XS = y, t < S ≤ t+∆)
Px(t < S ≤ t+∆)

= lim
∆↓0

e−tQxPx,y(∆) + o(∆)
Qxe−Qxt∆+ o(∆)

=
1
Qx

lim
∆↓0

Px,y(∆)
∆

= Qx,y/Qx.
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52 6 Continuous Time M.C. Finite State Space Theory

This shows that S and XS are independent and that Px(XS = y) = Qx,y/Qx.
Second Proof. For t > 0 and δ > 0, we have that

Px(S > t,Xt+δ = y) = lim
n→∞

Px(Xt+δ = y and X

(
i

2n
t

)
= x for i = 1, 2, . . . , 2n)

= lim
n→∞

[Px,x(t/2n)]2
n

Pxy(δ)

= Pxy(δ) lim
n→∞

[
1− tQx

2n
+O

(
2−2n

)]2n
= Pxy(δ)e−tQx .

With this computation in hand, we may now compute Px(XS = y, t < S ≤
t+∆) using the Figure 6.5 as our guide

So according Figure 6.5, we must have XS = y & t < S ≤ t + ∆ iff for all
large n there exists 0 ≤ k < n such that S > t+ k∆/n & Xt+(k+1)∆/n = y and
therefore

Px(XS = y & t < S ≤ t+∆)

= lim
n→∞

Px

(
S > t+ k∆/n & Xt+(k+1)∆/n = y

for some 0 ≤ k < n

)
= lim
n→∞

n−1∑
k=0

Px(S > t+ k∆/n & Xt+(k+1)∆/n = y)

= lim
n→∞

n−1∑
k=0

Pxy(∆/n)e−(t+k∆/n)Qx

= lim
n→∞

n−1∑
k=0

e−(t+k∆/n)Qx(
∆

n
Qxy + o(n−1))

= Qxy

∫ t+∆

t

e−Qxsds =
Qx,y
Qx

∫ t+∆

t

Qxe
−Qxsds

=
Qx,y
Qx

Px(t < S ≤ t+∆).

Letting t ↓ 0 and ∆ ↑ ∞ in this equation we learn that

Px(XS = y) =
Qx,y
Qx

and hence

Px(XS = y, t < S ≤ t+∆) = Px(XS = y) · Px(t < S ≤ t+∆).

This proves also that XS and S are independent random variables.

Remark 6.22. Technically in the proof above, we have used the identity,

{XS = y & t < S ≤ t+∆}
= ∪∞N=1 ∩n≥N ∪0≤m<n

{
S > t+ k∆/n & Xt+(k+1)∆/n = y

}
.

Using Theorem 6.21 along with Fact 5.3 leads to the following description
of the Markov process associated to Q. Define a Markov matrix, P̃ , by

P̃xy :=

{
Qx,y
−Qx,x if x 6= y

0 if x = y
for all x, y ∈ S. (6.24)

The process X starting at x may be described as follows: 1) stay at x for an
exp(Qx) – amount of time, S1, then jump to x1 with probability P̃x,x1 . Stay
at x1 for an exp(Qx1) amount of time, S2, independent of S1 and then jump
to x2 with probability P̃x1,x2 . Stay at x2 for an exp(Qx2) amount of time, S3,

independent of S1 and S2 and then jump to x3 with probability P̃x2,x3 , etc. etc.
etc. etc. The next corollary formalizes these rules.
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Corollary 6.23. Let Q be the infinitesimal generator of a Markov semigroup
P (t) . Then the Markov chain, {Xt} , associated to P (t) may be described
as follows. Let {Yk}∞k=0 denote the discrete time Markov chain with Markov
matrix P̃ as in Eq. (6.24). Let {Sj}∞j=1 be random times such that given

{Yj = xj : j ≤ n} , Sj
d= exp

(
Qxj−1

)
and the {Sj}nj=1 are independent for

1 ≤ j ≤ n.2 Now let Nt = max {j : S1 + · · ·+ Sj ≤ t} (see Figure 6.2) and
Xt := YNt. Then {Xt}t ≥ 0 is the Markov process starting at x with Markov
semi-group, P (t) = etQ.

Fig. 6.2. Defining Nt.

In a manner somewhat similar to the proof of Example 5.8 one shows the
description in Corollary 6.23 is defines a Markov process with the correct semi-
group, P (t) . For the much more on the details the reader is referred to Norris [5,
See Theorems 2.8.2 and 2.8.4].

2 A concrete way to chose the {Sj}∞j=1 is as follows. Given a sequence, {Tj}∞j=1 ,
of i.i.d. exp (1) – random variables which are independent of {Y } , define Sj :=
Tj/QYj−1 .





7

Continuous Time M.C. Examples

7.1 Birth and Death Process basics

A birth and death process is a continuous time Markov chain with state
space being S = {0, 1, 2, . . . } and transitions rates of the form;

0
λ0

�
µ1

1
λ1

�
µ2

2
λ2

�
µ3

3 . . .
λn−2

�
µn−1

(n− 1)
λn−1

�
µn

n
λn
�
µn+1

(n+ 1) . . .

The associated Q matrix for this chain is given by

Q =

0
1
2
3
4
...



0 1 2 3 4 . . .

−λ0 λ0

µ1 − (λ1 + µ1) λ1

µ2 − (λ2 + µ2) λ2

µ3 − (λ3 + µ3) λ3

. . . . . . . . .

.

If πn (t) = P (X (t) = n) , then π (t) = (πn (t))n≥0 satisfies, π̇ (t) = π (t)Q
which written out in components is the system of differential equations;

π̇0 (t) = −λ0π0 (t) + µ1π1 (t)
π̇1 (t) = λ0π0 (t)− (λ1 + µ1)π1 (t) + µ2π2 (t)

...
π̇n (t) = λn−1πn−1 (t)− (λn + µn)πn (t) + µn+1πn+1 (t) .

...

The associated discrete time chain is described by the jump diagram,

0
1

�
µ1

λ1+µ1

1

λ1
λ1+µ1

�
µ2

λ2+µ2

2

λ2
λ2+µ2

�
µ3

λ3+µ3

3 · · ·� (n− 1)

λn−1
λn−1+µn−1

�
µn

λn+µn

n

λn
λn+µn

�
µn+1

λn+1+µn+1

. . .

In the jump hold description, a particle follows this discrete time chain. When
it arrives at a site, say n, it stays there for an exp (λn + µν) – time and then

jumps to either n−1 or n with probability µn
λn+µn

or λn
λn+µn

respectively. Given
your homework problem we may also describe these transitions by assuming at
each site we have a death clock Dn = exp (µn) and a Birth clock Bn = exp (λn)
with Bn and Dn being independent. We then stay at site n until either Bn or
Dn rings, i.e. for min (Bn, Dn) = exp (λn + µn) – amount of time. If Bn rings
first we go to n+ 1 while if Dn rings first we go to n− 1. When we are at 0 we
go to 1 after waiting exp (λ0) – amount of time.

7.2 Pure Birth Process:

The infinitesimal generator for a pure Birth process is described by the following
rate diagram

0 λ0−→ 1 λ1−→ 2 λ2−→ . . .
λn−1−→ (n− 1)

λn−1−→ n
λn−→ . . . .

For simplicity we are going to assume that we start at state 0. We will examine
this model is both the sojourn description and the infinitesimal description. The
typical sample path is shown in Figure 7.2.

7.2.1 Infinitesimal description

The matrix Q is this case is given by
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Qi,i+1 = λi and Qii = −λi for all i = 0, 1, 2, . . .

with all other entries being zero. Thus we have

Q =

0
1
2
3
...

0 1 2 3 . . .

−λ0 λ0

−λ1 λ1

−λ2 λ2

−λ3 λ3

. . . . . .

.

If we now let
πj (t) = P0 (X (t) = j) =

[
π (0) etQ

]
j

then πj (t) satisfies the system of differential equations;

π̇0 (t) = −λ0π0 (t)
π̇1 (t) = λ0π0 (t)− λ1π1 (t)

...
π̇n (t) = λn−1πn−1 (t)− λnπn (t)

...

The solution to the first equation is given by

π0 (t) = e−λ0tπ (0) = e−λ0t

and the remaining may now be obtained inductively, see the ODE Lemma 6.14,
using

πn (t) = λn−1e
−λnt

∫ t

0

eλnτπn−1 (τ) dτ. (7.1)

So for example

π1 (t) = λ0e
−λ1t

∫ t

0

eλ1τπ0 (τ) dτ = λ0e
−λ1t

∫ t

0

eλ1τe−λ0τdτ

=
λ0

λ1 − λ0
e−λ1te(λ1−λ0)τ |τ=tτ=0 =

λ0

λ1 − λ0

[
e−λ1te(λ1−λ0)t − e−λ1t

]
=

λ0

λ1 − λ0

[
e−λ0t − e−λ1t

]
.

If λ1 = λ0, this becomes, π1 (t) = (λ0t) e−λ0t instead. In principle one can
compute all of these integrals (you have already done the case where λj = λ for
all j) to find all of the πn (t) . The formula for the solution is given as

πn (t) = P (X (t) = n|X (0) = 0) = λ0 . . . λn−1

[
n∑
k=0

Bk,ne
−λkt

]

where the Bk,n are given on p. 338 of the book.
To see that this form of the answer is reasonable, if we look at the equations

for n = 0, 1, 2, 3, we have

π̇0 (t) = −λ0π0 (t)
π̇1 (t) = λ0π0 (t)− λ1π1 (t)
π̇2 (t) = λ1π1 (t)− λ2π2 (t)
π̇3 (t) = λ2π2 (t)− λ3π3 (t)

and the matrix associated to this system is

Q′ =


−λ0 λ0

−λ1 λ1

−λ2 λ2

−λ3


so that (π0 (t) , . . . , π3 (t)) = (1, 0, 0, 0) etQ

′
. If all of the λj are distinct, then Q′

has {λj}3j=0 as its distinct eigenvalues and hence is diagonalizable. Therefore
we will have

(π0 (t) , . . . , π3 (t)) = (1, 0, 0, 0)S


e−tλ0

e−tλ1

e−tλ2

e−tλ3

S−1

for some invertible matrix S. In particular it follows that π3 (t) must be a linear
combination of

{
e−tλj

}3

j=0
. Generalizing this argument shows that there must

be constants, {Ck,n}nk=0 such that

πn (t) =
n∑
k=0

Ckne
−tλk .

We may now plug these expressions into the differential equations,

π̇n (t) = λn−1πn−1 (t)− λnπn (t) ,

to learn

−
n∑
k=0

λkCkne
−tλk = λn−1

n−1∑
k=0

Ck,n−1e
−tλk − λn

n∑
k=0

Ckne
−tλk .
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7.2 Pure Birth Process: 57

Since one may show
{
e−tλk

}n
k=0

are linearly independent, we conclude that

−λkCkn = λn−1Ck,n−1 · 1k≤n−1 − λnCkn for k = 0, 1, 2, . . . , n.

This equation gives no information for k = n, but for k < n it implies,

Ck,n =
λn−1

λn − λk
Ck,n−1 for k ≤ n− 1.

To discover the value of Cn,n we use the fact that
∑n
k=0 Ckn = πn (0) = 0 for

n ≥ 1 to learn,

Cn,n = −
n−1∑
k=0

Ck,n = −
n−1∑
k=0

λn−1

λn − λk
Ck,n−1.

One may determine all of the coefficients from these equations. For example,
we know that C00 = 1 and therefore,

C0,1 =
λ0

λ1 − λ0
and C1,1 = −C0,1 = − λ0

λ1 − λ0
.

Thus we learn that

π1 (t) =
λ0

λ1 − λ0

(
e−λ0t − e−λ1t

)
as we have seen from above.

Remark 7.1. It is interesting to observe that

d

dt
(π0 (t) , . . . , π3 (t))


1
1
1
1

 =
d

dt
(1, 0, 0, 0) etQ

′


1
1
1
1



= (1, 0, 0, 0) etQ
′
Q′


1
1
1
1


where

Q′


1
1
1
1

 =


−λ0 λ0

−λ1 λ1

−λ2 λ2

−λ3




1
1
1
1

 =


0
0
0
−λ3


and therefore,

d

dt
(π0 (t) , . . . , π3 (t))


1
1
1
1

 ≤ 0.

This shows that
∑3
j=0 πj (t) ≤

∑3
j=0 πj (0) = 1. Similarly one shows that

n∑
j=0

πj (t) ≤ 1 for all t ≥ 0 and n.

Letting n→∞ in this estimate then implies

∞∑
j=0

πj (t) ≤ 1.

It is possible that we have a strict inequality here! We will discuss this below.

Remark 7.2. We may iterate Eq. (7.1) to find,

π1 (t) = λ0e
−λ1t

∫ t

0

eλ1τπ0 (τ) dτ = λ0e
−λ1t

∫ t

0

eλ1τe−λ0τdτ

π2 (t) = λ1e
−λ2t

∫ t

0

eλ2σπ1 (σ) dσ

= λ1e
−λ2t

∫ t

0

eλ2σ

[
λ0e
−λ1σ

∫ σ

0

eλ1τe−λ0τdτ

]
dσ

= λ0λ1e
−λ2t

∫ t

0

dσe(λ2−λ1)σ

∫ σ

0

e(λ1−λ0)τdτ

= λ0λ1e
−λ2t

∫
0≤τ≤σ≤t

e(λ2−λ1)σ+(λ1−λ0)τdσdτ

and continuing on this way we find,

πn (t) = λ0λ1 . . . λn−1e
−λnt

∫
0≤s1≤s2≤···≤sn≤t

e
∑n
j=1(λj−λj−1)sjds1 . . . dsn.

(7.2)
In the special case where λj = λ for all j, this gives, by Lemma 7.3 below with
f (s) = 1,

πn (t) = λne−λt
∫

0≤s1≤s2≤···≤sn≤t
ds1 . . . dsn =

(λt)n

n!
e−λt. (7.3)

Another special case of interest is when λj = β (j + 1) for all j ≥ 0. This will
be the Yule process discussed below. In this case,
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πn (t) = n!βne−(n+1)βt

∫
0≤s1≤s2≤···≤sn≤t

eβ
∑n
j=1 sjds1 . . . dsn

= n!βne−(n+1)βt 1
n!

(∫ t

0

eβsds

)n
= βne−(n+1)βt

(
eβt − 1
β

)n
= e−βt

(
1− e−βt

)n
, (7.4)

wherein we have used Lemma 7.3 below for the the second equality.

Lemma 7.3. Let f (t) be a continuous function, then for all n ∈ N we have∫
0≤s1≤s2≤···≤sn≤t

f (s1) . . . f (sn) ds1 . . . dsn =
1
n!

(∫ t

0

f (s) ds
)n

.

Proof. Let F (t) :=
∫ t
0
f (s) ds. The proof goes by induction on n. The

statement is clearly true when n = 1 and if it holds at level n, then∫
0≤s1≤s2≤···≤sn≤sn+1≤t

f (s1) . . . f (sn) f (sn+1) ds1 . . . dsndsn+1

=
∫ t

0

(∫
0≤s1≤s2≤···≤sn≤sn+1

f (s1) . . . f (sn) ds1 . . . dsn

)
f (sn+1) dsn+1

=
∫ t

0

(
1
n!

(F (sn+1))n
)
F ′ (sn+1) dsn+1 =

∫ F (t)

0

(
1
n!
un
)
du

=
F (t)n+1

(n+ 1)!

as required.

7.2.2 Yule Process

Suppose that each member of a population gives birth independently to one
offspring at an exponential time with rate β. If there are k members of the
population with birth times, T1, . . . , Tk, then the time of the birth for this
population is min (T1, . . . , Tk) = Sk where Sk is now an exponential random
variable with parameter, βk. This description gives rise to a pure Birth process
with parameters λk = βk. In this case we start with initial distribution, πj (0) =
δj,1. We have already solved for πk (t) in this case. Indeed from from Eq. (7.4)
after a shift of the index by 1, we find,

πn (t) = e−βt
(
1− e−βt

)n−1
for n ≥ 1.

7.2.3 Sojourn description

Let {Sn}∞n=0 be independent exponential random variables with P (Sn > t) =
e−λnt for all n and let

Wk := S0 + · · ·+ Sk−1

be the time of the kth – birth, see Figure 7.2 where the graph of X (t) is shown
as determined by the sequence {Sn}∞n=0 . With this notation we have

P (X (t) = 0) = P (S0 > t) = e−λ0t

P (X (t) = 1) = P (S0 ≤ t < S0 + S1) = P (W1 ≤ t < W2)
P (X (t) = 2) = P (W2 ≤ t < W3)

...
P (X (t) = j) = P (Wj ≤ t < Wj+1)

where {Wj ≤ t < Wj+1} represents the event where the jth – birth has occurred
by time t but the jth – birth as not. Consider,

P (W1 ≤ t < W2) = λ0λ1

∫
0≤x0≤t<x0+x1

e−λ0x0e−λ1x1dx0dx1.

Doing the x1 -integral first gives,

P (X (t) = 1) = P (W1 ≤ t < W2)

= λ0

∫
0≤x0≤t<x0+x1

e−λ0x0
[
−e−λ1x1

]∞
x1=t−x0

dx0

= λ0

∫
0≤x0≤t

e−λ0x0e−λ1(t−x0)dx0

= λ0e
−λ1t

∫
0≤x0≤t

e(λ1−λ0)x0dx0

=
λ0

λ1 − λ0
e−λ1t

[
e(λ1−λ0)t − 1

]
=

λ0

λ1 − λ0

[
e−λ0t − e−λ1t

]
.

There is one point which we have not yet addressed in this model, namely
does it make sense without further information. In terms of the Sojourn de-
scription this comes down to the issue as to whether P

(∑∞
j=1 Sj =∞

)
= 1.

Indeed, if this is not the case, we will only have X (t) defined for t <
∑∞
j=1 Sj

which may be less than infinity. The next theorem tells us precisely when this
phenomenon can happen.
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7.3 Pure Death Process 59

Theorem 7.4. Let {Sj}∞j=1 be independent random variables such that Sj
d=

exp (λj) with 0 < λj <∞ for all j. Then:

1. If
∑∞
n=1 λ

−1
n <∞ then P (

∑∞
n=1 Sn <∞) = 1.

2. If
∑∞
n=1 λ

−1
n =∞ then P (

∑∞
n=1 Sn =∞) = 1.

Proof. 1. Since

E

[ ∞∑
n=1

Sn

]
=
∞∑
n=1

E [Sn] =
∞∑
n=1

λ−1
n <∞

it follows that
∑∞
n=1 Sn <∞ a.s.

2. By the DCT, independence, and Eq. (2.3),

E
[
e−

∑∞
n=1 Sn

]
= lim
N→∞

E
[
e−

∑N
n=1 Sn

]
= lim
N→∞

N∏
n=1

E
[
e−Sn

]
= lim
N→∞

N∏
n=1

(
1

1 + λ−1
n

)
= lim
N→∞

exp

(
−

N∑
n=1

ln
(
1 + λ−1

n

))

= exp

(
−
∞∑
n=1

ln
(
1 + λ−1

n

))
.

If λn does not go to infinity, then the latter sum is infinite and λn → ∞ and∑∞
n=1 λ

−1
n = ∞ then

∑∞
n=1 ln

(
1 + λ−1

n

)
= ∞ as ln

(
1 + λ−1

n

) ∼= λ−1
n for large

n. In any case we have shown that E
[
e−

∑∞
n=1 Sn

]
= 0 which can happen iff

e−
∑∞
n=1 Sn = 0 a.s. or equivalently

∑∞
n=1 Sn =∞ a.s.

Remark 7.5. If
∑∞
k=1 1/λk < ∞ so that P (

∑∞
n=1 Sn <∞) = 1, one may

define X (t) = ∞ on {t ≥
∑∞
n=1 Sn} . With this definition, {X (t)}t≥0 is

again a Markov process. However, most of the examples we study will satisfy∑∞
k=1 1/λk =∞.

7.3 Pure Death Process

A pure death process is described by the following rate diagram,

0←−
µ1

1←−
µ2

2←−
µ3

3 . . . ←−
µN−1

(N − 1)←−
µN

N.

If πj (t) = P (X (t) = j|X (0) = πj (0)) , we have that

π̇N (t) = −µNπN (t)
π̇N−1 (t) = µNπN (t)− µN−1πN−1 (t)

...
π̇n (t) = µn+1πn+1 (t)− µnπn (t)

...
π̇1 (t) = µ2π2 (t)− µ1π1 (t)
π̇0 (t) = −µ1π1 (t) .

Let us now suppose that πj (t) = P (X (t) = j|X (0) = N) . A little thought
shows that we may find πj (t) for j = 1, 2, . . . , N by using the solutions for
the pure Birth process with 0 → N, 1 → (N − 1) , 2 → (N − 2) , . . . , and
(N − 1)→ 1. We may then compute

π0 (t) := 1−
N∑
j=1

πj (t) .

The explicit formula for these solutions may be found in the book on p. 346 in
the special case where all of the death parameters are distinct.

7.3.1 Cable Failure Model

Suppose that a cable is made up of N individual strands with the life time
of each strand being a exp (K (l)) – random variable where K (l) > 0 is some
function of the load, l, on the strand. We suppose that the cable starts with N
– fibers and is put under a total load of NL that L is the load applied per fiber
when all N fibers are unbroken. If there are k – fibers in tact, the load per fiber is
NL/k and the exponential life time of each fiber is now K (NL/k) . Thus when
k - fibers are in tact the time to the next fiber breaking is exp (kK (NL/k)) .
So if {Sj}1j=N are the Sojourn times at state j, the time to failure of the cable

is T =
∑N
j=1 Sj and the expected time to failure is

ET =
N∑
j=1

ESj =
N∑
j=1

1
kK (NL/k)

=
1
N

N∑
j=1

1
k
NK

(
N
k L
) ∼= ∫ 1

0

1
xK (L/x)

dx

if K is a nice enough function and N is large. For example, if K (l) = lβ/A for
some β > 0 and A > 0, we find

ET =
∫ 1

0

A

x (L/x)β
dx =

A

Lβ

∫ 1

0

xβ−1dx =
A

Lββ
.
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60 7 Continuous Time M.C. Examples

Where as the expected life, at the start, of any one strand is 1/K (L) = A/Lβ .
Thus the cable last only 1

β times the average strand life. It is actually better
to let L0 be the total load applied so that L = L0/N, then the above formula
becomes,

ET =
A

Lβ0

Nβ

β
.

7.3.2 Linear Death Process basics

Similar to the Yule process, suppose that each individual in a population has a
life expectancy, T d= exp (α) . Thus if there are k members in the population at
time t, using the memoryless property of the exponential distribution, we the
time of the next death is has distribution, exp (kα) . Thus the µk = αk in this
case. Using the formula in the book on p. 346, we then learn that if we start
with an population of size N, then

πn (t) = P (X (t) = n|X (0) = N)

=
(
N

n

)
e−nαt

(
1− e−αt

)N−n for n = 0, 1, 2, . . . , N. (7.5)

So {πn (t)}Nn=0 is the binomial distribution with parameter e−αt. This may be
understood as follows. We have {X (t) = n} iff there are exactly n members out
of the original N still alive. Let ξj be the life time of the jth member of the
population, so that {ξj}Nj=1 are i.i.d. exp (µ) – distributed random variables.
We then have the probability that a particular choice, A ⊂ {1, 2, . . . , N} of n -
members are alive with the others being dead is given by

P
(
(∩j∈A {ξj > t}) ∩

(
∩j /∈A {ξj ≤ t}

))
=
(
e−αt

)n (1− e−αt)N−n .
As there are

(
N
n

)
– ways to choose such subsets, A ⊂ {1, 2, . . . , N} , with n –

members, we arrive at Eq. (7.5).

7.3.3 Linear death process in more detail

(You may safely skip this subsection.) In this subsection, we suppose
that we start with a population of size N with ξj being the life time of the
jth member of the population. We assume that {ξj}Nj=1 are i.i.d. exp (µ) –
distributed random variables and let X (t) denote the number of people alive
at time t, i.e.

X (t) = # {j : ξj > t} .

Theorem 7.6. The process, {X (t)}t≥0 is the linear death Markov process with
parameter, α.

We will begin with the following lemma.

Lemma 7.7. Suppose that B and {Aj}nj=1 are events such that: 1) {Aj}nj=1 are
pairwise disjoint, 2) P (Aj) = P (A1) for all j, and 3) P (B ∩Aj) = P (B ∩A1)
for all j. Then

P
(
B| ∪Nj=1 Aj

)
= P (B|A1) . (7.6)

We also use the identity, that

P (B|A ∩ C) = P (B|A) (7.7)

whenever C is independent of {A,B} .

Proof. The proof is the following simple computation,

P
(
B| ∪nj=1 Aj

)
=
P
(
B ∩

(
∪nj=1Aj

))
P
(
∪nj=1Aj

) =
P
(
∪nj=1B ∩Aj

)
P
(
∪nj=1Aj

)
=

∑
n
j=1P (B ∩Aj)∑
n
j=1P (Aj)

=
nP (B ∩A1)
nP (A1)

= P (B|A1) .

For the second assertion, we have

P (B|A ∩ C) =
P (B ∩A ∩ C)
P (A ∩ C)

=
P (B ∩A) · P (C)
P (A) · P (C)

=
P (B ∩A)
P (A)

= P (B|A) .

Proof. Sketch of the proof of Theorem 7.6. Let 0 < u < v < t and k ≥ l ≥ m
as in Figure 7.3.3. Given V ⊂ U ⊂ {1, 2, . . . , N} with #V = l and #U = k, let

AU,V = ∩j∈U {ξj > u} ∩ ∩j /∈U {ξj ≤ u} ∩ ∩j∈V {ξj > v} ∩ ∩j /∈V {ξj ≤ v}
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7.3 Pure Death Process 61

so that {Xu = k,Xv = l} is the disjoint union of {AU,V } over all such choices
of V ⊂ U as above. Notice that P (AU,V ) is independent of how U ⊂ V
as is P ({Xt = m} ∩AU,V ) . Therefore by Lemma 7.7, we have, with V =
{1, 2, . . . , l} ⊂ U = {1, 2, . . . , k} , that

P (Xt = m|Xu = k,Xv = l) = P (Xt = m|AU,V )
= P (Exactly m of ξ1, . . . , ξl > t|ξ1 > v, . . . , ξl > v, v ≥ ξl+1 > u, . . . , v ≥ ξk > u)
= P (Exactly m of ξ1, . . . , ξl > t|ξ1 > v, . . . , ξl > v)

=
(
l

m

)
P (ξ1 > t, . . . , ξm > t, ξm+1 ≤ t, . . . ξl ≤ t|ξ1 > v, . . . , ξl > v)

=
(
l

m

)
P (ξ1 > t)m · P (v < ξ1 ≤ t)l−m

P (v < ξ1)l

=
(
l

m

)
(e−αt)m · (e−vt − e−αt)l−m

e−αvl
=
(
l

m

)
e−αm(t−v)

(
1− e−α(t−v)

)l−m
.

Similar considerations show that Xt has the Markov property and we have just
found the transition matrix for this process to be,

P (Xt = m|Xv = l) = 1l≥m

(
l

m

)
e−αm(t−v)

(
1− e−α(t−v)

)l−m
.

So

Plm (t) := P (Xt = m|X0 = l) = 1≥m

(
l

m

)
e−αmt

(
1− e−αt

)l−m
.

Differentiating this equation at t = 0 implies d
dt |0+Plm (t) = 0 unless m = l or

m = l − 1 and

d

dt
|0+Pl l (t) = −αl and

d

dt
|0+Pl ,l−1 (t) =

(
l

l − 1

)
α = αl.

These are precisely the transition rate of the linear death process with parameter
α.

Let us now also work out the Sojourn description in this model.

Theorem 7.8. Suppose that {ξj}Nj=1 are independent exponential random vari-
ables with parameter, α as in the above model for the life times of a popu-
lation. Let W1 < W2 < · · · < WN be the order statistics of {ξj}Nj=1 , i.e.

{W1 < W2 < · · · < WN} = {ξj}Nj=1 . Hence Wj is the time of the jth – death.
Further let S1 = W1, S2 = W2 − W1, . . . , SN = WN − WN−1 are times be-
tween successive deaths. Then {Sj}Nj=1 are exponential random variables with

Sj
d= exp ((N − j)α) .

Proof. Since W1 = S1 = min (ξ1, . . . , ξN ) , by a homework problem, S1
d=

exp (Nα) . Let
Aj :=

{
ξj < min (ξk)k 6=j

}
∩ {ξj = t} .

We then have
{W1 = t} = ∪Nj=1Aj

and
Aj ∩ {W2 > s+ t} =

{
s+ t < min (ξk)k 6=j

}
∩ {ξj = t} .

By symmetry we have (this is the informal part)

P (Aj) = P (A1) and
P (Aj ∩ {W2 > s+ t}) = P (A1 ∩ {W2 > s+ t}) ,

and hence by Lemma 7.7,

P (W2 > s+ t|W1 = t) = P

Now consider

W2 = P (A1 ∩ {W2 > s+ t} |A1)

= P
(
{ξ1 = t} ∩

{
min (ξk)k 6=1 > s+ t

}
|min (ξk)k 6=1 > ξ1 = t

)
=
P
(

min (ξk)k 6=1 > s+ t, ξ1 = t
)

P
(

min (ξk)k 6=1 > t, ξ1 = t
)

=
P
(

min (ξk)k 6=1 > s+ t
)

P
(

min (ξk)k 6=1 > t
) = e−(N−1)αs

since min (ξk)k 6=1
d= exp ((N − 1)α) and the memoryless property of exponen-

tial random variables. This shows that S2 := W2 −W1
d= exp ((N − 1)α) .

Let us consider the next case, namely P (W3 −W2 > t|W1 = a,W2 = a+ b) .
In this case we argue as above that

P (W3 −W2 > t|W1 = a,W2 = a+ b)
= P (min (ξ3, . . . , ξN )− ξ2 > t|ξ1 = a, ξ2 = a+ b, min (ξ3, . . . , ξN ) > ξ2)

=
P (min (ξ3, . . . , ξN ) > t+ a+ b, ξ1 = a, ξ2 = a+ b, min (ξ3, . . . , ξN ) > ξ2)

P (ξ1 = a, ξ2 = a+ b, min (ξ3, . . . , ξN ) > a+ b)

=
P (min (ξ3, . . . , ξN ) > t+ a+ b)
P (min (ξ3, . . . , ξN ) > a+ b)

= e−(N−2)αt.
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We continue on this way to get the result. This proof is not rigorous, since
P (ξj = t) = 0 but the spirit is correct.

Rigorous Proof. (Probably should be skipped.) In this proof, let g
be a bounded function and Tk := min (ξl : l 6= k) . We then have that Tk and ξk
are independent, Tk

d= exp ((N − 1)α) , and hence

E [1W2−W1>t g (W1)] =
∑
k

E [1W2−W1>t g (W1) : ξk < Tk]

=
∑
k

E [1Tk−ξk>t g (ξk) : ξk < Tk]

=
∑
k

E [1Tk−ξk>t g (ξk)]

=
∑
k

E [exp (− (N − 1)α (t+ ξk)) g (ξk)]

= exp (− (N − 1)αt)
∑
k

E [exp (− (N − 1)αξk) g (ξk)]

= exp (− (N − 1)αt)
∑
k

E [1Tk−ξk>0 g (ξk)]

= exp (− (N − 1)αt)
∑
k

E [1Tk−ξk>0 g (W1)]

= exp (− (N − 1)αt) · E [g (W1)] .

It follows from this calculation that W2 −W1 and W1 are independent, W2 −
W1 = exp (α (N − 1)) .

The general case may be done similarly. To see how this goes, let us show
that W3−W2

d= exp ((N − 2)α) and is independent of W1 and W2. To this end,
let Tjk := min {ξl : l 6= j or k} for j 6= k in which case Tjk

d= exp ((N − 2)α)
and is independent of {ξj , ξk} . We then have

E [1W3−W2>t g (W1,W2)] =
∑
j 6=k

E [1W3−W2>t g (W1,W2) : ξj < ξk < Tjk]

=
∑
j 6=k

E
[
1Tjk−ξk>t g (ξj , ξk) : ξj < ξk < Tjk

]
=
∑
j 6=k

E
[
1Tjk−ξk>t g (ξj , ξk) : ξj < ξk

]
=
∑
j 6=k

E [exp (− (N − 2)α (t+ ξk)) g (ξj , ξk) : ξj < ξk]

= exp (− (N − 2)αt)
∑
j 6=k

E [exp (− (N − 2)αξk) g (ξj , ξk) : ξj < ξk]

= exp (− (N − 2)αt)
∑
j 6=k

E
[
1Tjk−ξk>0 g (ξj , ξk) : ξj < ξk

]
= exp (− (N − 2)αt)

∑
j 6=k

E [g (W1,W2) : ξj < ξk < Tjk]

= exp (− (N − 2)αt) · E [g (W1,W2)] .

This again shows that W3 −W2 is independent of {W1,W2} and W3 −W2
d=

exp ((N − 2)α) . We leave the general argument to the reader.
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Long time behavior

In this section, suppose that {X (t)}t≥0 is a continuous time Markov chain
with infinitesimal generator, Q, so that

P (X (t+ h) = j|X (t) = i) = δij +Qijh+ o (h) .

We further assume that Q completely determines the chain.

Definition 8.1. {X (t)} is irreducible iff the underlying discrete time jump
chain, {Yn} , determined by the Markov matrix, P̃ij := Qij

qi
1i6=j , is irreducible,

where
qi := −Qii =

∑
j 6=i

Qij .

Remark 8.2. Using the Sojourn time description of X (t) it is easy to see that
Pij (t) =

(
etQ
)
ij
> 0 for all t > 0 and i, j ∈ S if X (t) is irreducible. Moreover,

if for all i, j ∈ S, Pij (t) > 0 for some t > 0 then, for the chain {Yn} , i→ j and
hence X (t) is irreducible. In short the following are equivalent:

1. {X (t)} is irreducible,
2. or all i, j ∈ S, Pij (t) > 0 for some t > 0, and
3. Pij (t) > 0 for all t > 0 and i, j ∈ S.

In particular, in continuous time all chains are “aperiodic.”

The next theorem gives the basic limiting behavior of irreducible Markov
chains. Before stating the theorem we need to introduce a little more notation.

Notation 8.3 Let S1 be the time of the first jump of X (t) , and

Ri := min {t ≥ S1 : X (t) = i} ,

is the first time hitting the site i after the first jump, and set

πi =
1

qi · EiRi
where qi := −Qii.

Theorem 8.4 (Limiting behavior). Let {X (t)} be an irreducible Markov
chain. Then

1. for all initial staring distributions, ν (j) := P (X (0) = j) for all j ∈ S, and
all j ∈ S,

Pν

(
lim
T→∞

1
T

∫ T

0

1X(t)=jdt = πj

)
= 1. (8.1)

2. limt→∞ Pij (t) = πj independent of i.
3. π = (πj)j∈S is stationary, i.e. 0 = πQ, i.e.∑

i∈S
πiQij = 0 for all j ∈ S,

which is equivalent to πP (t) = π for all t and to Pπ (X (t) = j) = π (j) for
all t > 0 and j ∈ S.

4. If πi > 0 for some i ∈ S, then πi > 0 for all i ∈ S and
∑
i∈S πi = 1.

5. The πi are all positive iff there exists a solution, νi ≥ 0 to∑
i∈S

νiQij = 0 for all j ∈ S with
∑
i∈S

νi = 1.

If such a solution exists it is unique and ν = π.

Proof. We refer the reader to [5, Theorems 3.8.1.] for the full proof. Let us
make a few comments on the proof taking for granted that limt→∞ Pij (t) =: πj
exists.

1. Suppose we assume that and that ν is a stationary distribution, i.e.
νP (t) = ν, then (by dominated convergence theorem),

νj = lim
t→∞

∑
i

νiPij (t) =
∑
i

lim
t→∞

νiPij (t) =

(∑
i

νi

)
πj = πj .

Thus νj = πj . If πj = 0 for all j we must conclude there is not stationary
distribution.

2. If we are in the finite state setting, the following computation is justified:∑
j∈S

πjPjk (s) =
∑
j∈S

lim
t→∞

Pij (t)Pjk (s) = lim
t→∞

∑
j∈S

Pij (t)Pjk (s)

= lim
t→∞

Pik (t+ s) = πk.
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This show that πP (s) = π for all s and differentiating this equation at s = 0
then shows, πQ = 0.

3. Let us now explain why

1
T

∫ T

0

1X(t)=jdt→
1

qj · EjRj
.

The idea is that, because the chain is irreducible, no matter how we start the
chain we will eventually hit the site j. Once we hit j, the (strong) Markov
property implies the chain forgets how it got there and behaves as if it started
at j. Since what happens for the initial time interval of hitting j in computing
the average time spent at j, namely limT→∞

1
T

∫ T
0

1X(t)=jdt, we may as well
have started our chain at j in the first place.

Now consider one typical cycle in the chain staring at j jumping away at
time S1 and then returning to j at time Rj . The average first jump time is
ES1 = 1/qj while the average length of such as cycle is ERj . As the chain
repeats this procedure over and over again with the same statistics, we expect
(by a law of large numbers) that the average time spent at site j is given by

ES1

ERj
=

1/qj
EjRj

=
1

qj · EjRj
.

8.1 Birth and Death Processes

We have already discussed the basics of the Birth and death processes. To have
the existence of the process requires some restrictions on the Birth and Death
parameters which are discussed on p. 359 of the book. In general, we are not able
to find solve for the transition semi-group, etQ, in this case. We will therefore
have to ask more limited questions about more limited models. This is what we
will consider in the rest of this section. We will also consider some interesting
situations which one might model by a Birth and Death process.

Recall that the functions, πj (t) = P (X (t) = j) , satisfy the differential
equations

π̇0 (t) = −λ0π0 (t) + µ1π1 (t)
π̇1 (t) = λ0π0 (t)− (λ1 + µ1)π1 (t) + µ2π2 (t)
π̇2 (t) = λ1π1 (t)− (λ2 + µ2)π2 (t) + µ3π3 (t)

...
π̇n (t) = λn−1πn−1 (t)− (λn + µn)πn (t) + µn+1πn+1 (t) .

...

Hence if are going to look for a stationary distribution, we must set π̇j (t) = 0
for all t and solve the system of algebraic equations:

0 = −λ0π0 + µ1π1

0 = λ0π0 − (λ1 + µ1)π1 + µ2π2

0 = λ1π1 − (λ2 + µ2)π2 + µ3π3

...
0 = λn−1πn−1 − (λn + µn)πn + µn+1πn+1.

...

We solve these equations in order to find,

π1 =
λ0

µ1
π0,

π2 =
λ1 + µ1

µ2
π1 −

λ0

µ2
π0 =

λ1 + µ1

µ2

λ0

µ1
π0 −

λ0

µ2
π0

=
λ0λ1

µ1µ2
π0

π3 =
λ2 + µ2

µ3
π2 −

λ1

µ3
π1 =

λ2 + µ2

µ3

λ0λ1

µ1µ2
π0 −

λ1

µ3

λ0

µ1
π0

=
λ0λ1λ2

µ1µ2µ3
π0

...

πn =
λ0λ1λ2 . . . λn−1

µ1µ2µ3 . . . µn
π0.

This leads to the following proposition.

Proposition 8.5. Let θn := λ0λ1λ2...λn−1
µ1µ2µ3...µn

for n = 1, 2, . . . . and θ0 := 1. Then
the birth and death process, {X (t)} with birth rates {λj}∞j=0 and death rates
{µj}∞j=1 has a stationary distribution, π, iff Θ :=

∑∞
n=0 θn <∞ in which case,

πn =
θn
Θ

for all n.

Lemma 8.6 (Detail balance). In general, if we can find a distribution, π,
satisfying the detail balance equation,

πiQij = πjQji for all i 6= j, (8.2)

then π is a stationary distribution, i.e. πQ = 0.
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8.1 Birth and Death Processes 65

Proof. First proof. Intuitively, Eq. (8.2) states that sites i and j are always
exchanging sand back and forth at equal rates. Hence if all sites are doing this
the size of the piles of sand at each site must remain unchanged.

Second Proof. Summing Eq. (8.2) on i making use of the fact that∑
iQji = 0 for all j implies,

∑
i πiQij = 0.

We could have used this result on our birth death processes to find the
stationary distribution as well. Indeed, looking at the rate diagram,

0
λ0

�
µ1

1
λ1

�
µ2

2
λ2

�
µ3

3 . . .
λn−2

�
µn−1

(n− 1)
λn−1

�
µn

n
λn
�
µn+1

(n+ 1) ,

we see the conditions for detail balance between n and n = 1 are,

πnλn = πn+1µn+1

which implies πn+1
πn

= λn
µn+1

. Therefore it follows that,

π1

π0
=
λ0

µ1
,

π2

π0
=
π2

π1

π1

π0
=
λ1

µ2

λ0

µ1
,

...
πn
π0

=
πn
πn−1

πn−1

πn−2
. . .

π1

π0
=
λn−1

µn
. . .

λ1

µ2

λ0

µ1

=
λ0λ1 . . . λn−1

µ1µ2 . . . µn
= θn

as before.

Lemma 8.7. For |x| < 1 and α ∈ R we have,

(1− x)−α =
∞∑
k=0

α (α+ 1) . . . (α+ k − 1)
k!

xk, (8.3)

where α(α+1)...(α+k−1)
k! := 1 when k = 0.

Proof. This is a consequence of Taylor’s theorem with integral remainder.
The main point is to observe that

d

dx
(1− x)−α = α (1− x)−(α+1)(

d

dx

)2

(1− x)−α = α (α+ 1) (1− x)−(α+2)

...(
d

dx

)k
(1− x)−α = α (α+ 1) . . . (α+ k − 1) (1− x)−(α+k)

...

and hence, (
d

dx

)k
(1− x)−α |x=0 = α (α+ 1) . . . (α+ k − 1) . (8.4)

Therefore by Taylor’s theorem,

(1− x)−α =
∞∑
k=0

1
k!

(
d

dx

)k
(1− x)−α |x=0 · xk

which combined with Eq. (8.4) gives Eq. (8.3).

Example 8.8 (Exercise 4.5 on p. 377). Suppose that λn = θ < 1 and µn = n
n+1 .

In this case,

θn =
θn

1
2

2
3 · · ·

n
n+1

= (n+ 1) θn

and we must have,

πn =
(n+ 1) θn∑∞
n=0 (n+ 1) θn

.

We can simplify this answer a bit by noticing that

∞∑
n=0

(n+ 1) θn =
d

dθ

∞∑
n=0

θn+1 =
d

dθ

θ

1− θ
=

(1− θ) + θ

(1− θ)2
=

1
(1− θ)2

.

(Alternatively, apply Lemma 8.7 with α = 2 and x = θ. )Thus we have,

πn = (1− θ)2 (n+ 1) θn.

Example 8.9 (Exercise 4.4 on p. 377). Two machines operate with failure rate
µ and there is a repair facility which can repair one machine at a time with rate
λ. Let X (t) be the number of operational machines at time t. The state space
is thus, {0, 1, 2} with the transition diagram,
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66 8 Long time behavior

0
λ0

�
µ1

1
λ1

�
µ2

2

where λ0 = λ, λ1 = λ, µ2 = 2µ and µ1 = µ. Thus we find,

π1 =
λ0

µ1
π0 =

λ

µ
π0

π2 =
λ2

2µ2
π0 =

1
2
λ2

µ2
π0.

so that

1 = π0 + π1 + π2 =
(

1 +
λ

µ
+

1
2
λ2

µ2

)
π0.

So the long run probability that all machines are broken is given by

π0 =
(

1 +
λ

µ
+

1
2
λ2

µ2

)−1

.

If we now suppose that only one machine can be in operation at a time
(perhaps there is only one plug), the new rates become, λ0 = λ, λ1 = λ, µ2 = µ
and µ1 = µ and working as above we have:

π1 =
λ0

µ1
π0 =

λ

µ
π0

π2 =
λ2

µ2
π0 =

λ2

µ2
π0.

so that

1 = π0 + π1 + π2 =
(

1 +
λ

µ
+
λ2

µ2

)
π0.

So the long run probability that all machines are broken is given by

π0 =
(

1 +
λ

µ
+
λ2

µ2

)−1

.

Example 8.10 (Problem VI.4.7, p. 379). A system consists of 3 machines and
2 repairmen. At most 2 machines can operate at any time. The amount of
time that an operating machine works before breaking down is exponentially
distributed with mean 5 hours. The amount of time that it takes a single re-
pairman to fix a machine is exponentially distributed with mean 4 hours. Only
one repairman can work on a failed machine at any given time. Let X (t) be
the number of machines in operating condition at time t.

a) Calculate the long run probability distribution of X (t) .

b) If an operating machine produces 100 units of output per hour, what is the
long run output per hour from the factory.

Solution to Exercise (Problem VI.4.7, p. 379).
The state space of operating machines is S = {0, 1, 2, 3} and the system is

modeled by a birth death process with rate diagram,

0
2/4

�
1/5

1
2/4

�
2/5

2
1/4

�
2/5

3.

a) We then have θ0 = 1,

θ1 =
1/2
1/5

=
5
2

θ2 =
1/2
1/5

1/2
2/5

=
52

23

θ3 =
1/2
1/5

1/2
2/5

1/4
2/5

=
53

24

1
4

=
53

26

and

Θ =
3∑
j=0

θi = 1 +
5
2

+
52

23
+

53

26
=

549
64

.

: 549
64 Therefore πi = θi/Θ gives,

(π0, π1, π2, π3) =
64
549

(
1,

5
2
,

52

23
,

53

26

)
=
(

64
549

160
549

200
549

125
549

)
=
(

0.116 58 0.291 44 0.364 30 0.227 69
)
.

b) If the operating machines can produce 100 units per hour, the long run
output per hour is,

100·π1+200 (π2 + π3) = 100·0.291 44+200 (0.364 30 + 0.227 69) ∼= 147.54 /hour.

Solution to Exercise (Problem VI.4.7, p. 379 but only one repair per-
son.). Here is the same problems with only one repair person. The state space
of operating machines is S = {0, 1, 2, 3} and the system is modeled by a birth
death process with rate diagram,

0
λ0

�
µ1

1
λ1

�
µ2

2
λ2

�
µ3

3

Page: 66 job: 180Notes macro: svmonob.cls date/time: 4-Jun-2008/13:17



8.1 Birth and Death Processes 67

where, λ0 = λ1 = λ2 = 1/4 and µ1 = 1/5, µ2 = µ3 = 2/5, so the rate diagram
is,

0
1/4

�
1/5

1
1/4

�
2/5

2
1/4

�
2/5

3.

a) We then have θ0 = 1,

θ1 =
1/4
1/5

=
5
4

θ2 =
1/4
1/5

1/4
2/5

=
52

2
1
42

θ3 =
1/4
1/5

1/4
2/5

1/4
2/5

=
53

22

1
43

and

Θ =
3∑
j=0

θi = 1 +
5
4

+
52

2
1
42

+
53

22

1
43

=
901
256

.

Therefore πi = θi/Θ gives,

(π0, π1, π2, π3) =
256
901

(
1,

5
4
,

52

2
1
42
,

53

22

1
43

)
=
(

256
901

320
901

200
901

125
901

)
=
(

0.284 0.355 0.222 0.139
)
.

b) If the operating machines can produce 100 units per hour, the long run
output per hour is,

100 · π1 + 200 (π2 + π3) = 100 · 0.355 + 200 (0.222 + 0.139) ∼= 108 /hour.

Example 8.11 (Telephone Exchange). Consider as telephone exchange consist-
ing of K out going lines. The mean call time is 1/µ and new call requests arrive
at the exchange at rate λ. If all lines are occupied, the call is lost. Let X (t)
be the number of outgoing lines which are in service at time t – see Figure 8.1.
We model this as a birth death process with state space, {0, 1, 2, . . . ,K} and
birth parameters, λk = λ for k = 0, 1, 2, . . . ,K − 1 and death rates, µk = kµ
for k = 1, 2, . . . ,K, see Figure 8.2. In this case,

θ = 1, θ1 =
λ

µ
, θ2 =

λ2

2µ2
, θ3 =

λ3

3! · µ3
, . . . , θK =

λK

K!µK

so that

Θ :=
K∑
k=0

1
k!

(
λ

µ

)k
∼= eλ/µ for large K.

Fig. 8.1. Schematic of a telephone exchange.

Fig. 8.2. Rate diagram for the telephone exchange.

and hence

πk = Θ−1 1
k!

(
λ

µ

)k
∼=

1
k!

(
λ

µ

)k
e−λ/µ.

For example, suppose λ = 100 calls / hour and average duration of a connected
call is 1/4 of an hour, i.e. µ = 4. Then we have

π25 =
1

25! (25)25∑25
k=0

1
k! (25)k

∼= 0.144.

so the exchange is busy 14.4% of the time. On the other hand if there are 30 or
even 35 lines, then we have,

π30 =
1

30! (25)30∑30
k=0

1
k! (25)k

∼= 0.053

and

π35 =
1

35! (25)35∑35
k=0

1
k! (25)k

∼= .012

and hence the exchange is busy 5.3% and 1.2% respectively.
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68 8 Long time behavior

8.1.1 Linear birth and death process with immigration

Suppose now that λn = nλ+ a and µn = nµ for some λ, µ > 0 where λ and µ
represent the birth rates and deaths of each individual in the population and a
represents the rate of migration into the population. In this case,

θn =
a (a+ λ) (a+ 2λ) . . . (a+ (n− 1)λ)

n!µn

=
(
λ

µ

)n a
λ

(
a
λ + 1

) (
a
λ + 2

)
. . .
(
a
λ + (n− 1)

)
n!

.

Using Lemma 8.7 with α = a/λ and x = λ/µ which we need to assume is less
than 1, we find

Θ :=
∞∑
n=0

θn =
(

1− λ

µ

)−a/λ
and therefore,

πn =
(

1− λ

µ

)a/λ a
λ

(
a
λ + 1

) (
a
λ + 2

)
. . .
(
a
λ + (n− 1)

)
n!

(
λ

µ

)n
In this case there is an invariant distribution iff λ < µ and a > 0. Notice that
if a = 0, then 0 is an absorbing state so when λ < µ, the process actually dies
out.

Now that we have found the stationary distribution in this case, let us try
to compute the expected population of this model at time t.

Theorem 8.12. If

M (t) := E [X (t)] =
∞∑
n=1

nP (X (t) = n) =
∞∑
n=1

nπn (t)

be the expected population size for our linear birth and death process with im-
migration, then

M (t) =
a

λ− µ

(
et(λ−µ) − 1

)
+M (0) et(λ−µ)

which when λ = µ should be interpreted as

M (t) = at+M (0) .

Proof. In this proof we take for granted the fact that it is permissible to
interchange the time derivative with the infinite sum. Assuming this fact we
find,

Ṁ (t) =
∞∑
n=1

nπ̇n (t)

=
∞∑
n=1

n

(
(a+ λ (n− 1))πn−1 (t)

− (a+ λn+ µn)πn (t) + µ (n+ 1)πn+1 (t)

)

=
∞∑
n=1

n (a+ λ (n− 1))πn−1 (t)

−
∞∑
n=1

n (a+ λn+ µn)πn (t) +
∞∑
n=1

µn (n+ 1)πn+1 (t)

=
∞∑
n=0

(n+ 1) (a+ λn)πn (t)

−
∞∑
n=1

n (a+ λn+ µn)πn (t) +
∞∑
n=2

µ (n− 1)nπn (t)

=aπ0 (t) + [2 (a+ λ)− (a+ λ+ µ)]π1 (t)

+
∞∑
n=2

[(n+ 1) (a+ λn) + µ (n− 1)n− n (a+ λn+ µn)]πn (t)

=aπ0 (t) + [a+ λ− µ]π1 (t) +
∞∑
n=2

[(a+ λn)− µn]πn (t)

=aπ0 (t) +
∞∑
n=1

[a+ λn− µn]πn (t)

=
∞∑
n=0

[a+ λn− µn]πn (t) = a+ (λ− µ)M (t) .

Thus we have shown that

Ṁ (t) = a+ (λ− µ)M (t) with M (0) =
∞∑
n=1

nπn (0) ,

where M (0) is the mean size of the initial population. Solving this simple
differential equation gives the results.
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8.2 What you should know for the first midterm 69

8.2 What you should know for the first midterm

1. Basics of discrete time Markov chain theory.
a) You should be able to compute P (X0 = x0, . . . , Xn = xn) given the

transition matrix, P, and the initial distribution as in Proposition 3.2.
b) You should be able to go back and forth between P and its jump dia-

gram.
c) Use the jump diagram to find all of the communication classes of the

chain.
d) Know how to compute hitting probabilities and expected hitting times

using the first step analysis.
e) Know how to find the invariant distributions of the chain.
f) Understand how to use hitting probabilities and the invariant distribu-

tions of the recurrent classes in order to compute the long time behavior
of the chain.

g) Mainly study the examples in Section 3.2 and the related homework
problems. Especially see Example 4.33 and Exercises 0.6 – 0.9.

2. Basics of continuous time Markov chain theory:
a) You should be able to compute Pi0(Xt1 = i1, Xt2 = i2, . . . , Xtn = in)

given the Markov semi-group, P (t) , as in Theorem 5.4.
b) You should understand the relationship of P (t) to its infinitesimal gen-

erator, Q. Namely P (t) = etQ and

d

dt
|0P (t) = Q.

For example, if

P (t) =

1 2 3 1
3e
−3t + 2

3 0 − 1
3e
−3t + 1

3
−e−2t + 1

3e
−3t + 2

3 e
−2t − 1

3e
−3t + 1

3
− 2

3e
−3t + 2

3 0 2
3e
−3t + 1

3

1
2
3

then

Q = Ṗ (0) =

−1 0 1
1 −2 1
2 0 −2

 .
Note: you will not be asked to compute P (t) from Q but you should
be able to find Q from P (t) as in the above example.

c) You should know how to go between the generator Q and its rate dia-
gram.

d) You should understand the jump hold description of a continuous time
Markov chain explained in Section 6.5. In particular in the example
above, if S1 = inf {t > 0 : X (t) 6= X (0)} is the first jump time of the
chain, you should know that, if the chain starts at sites 1, 2, or 3, then
S1 is exponentially distributed with parameter q1 = 1, q2 = 2, q3 = 2
respectively, i.e.

P (S1 > t|X (0) = i) = e−qit,

where qi = −Qii.
e) You should also understand that

P (XS1 = j|X (0) = i) =
Qij
qi

so that in this example, P (XS1 = 3|X (0) = 2) = 1/2 in the above
example.

f) You should understand how to associate a rate diagram to Q, see the
example section 6.3.

g) You should be familiar with the basics of birth and death processes.
i. Know how to compute the invariant distribution, Proposition 8.5.
ii. Know the relationship of the invariant distribution to the long time

behavior of the chain, Theorem 8.4.
iii. Understand the basics of the repairman models. In particular see

Example 8.9 and homework Problem VI.4 (p. 377 –) P4.1.

Let us look more carefully at Q above and its rate diagram:

Q =

−1 0 1
1 −2 1
2 0 −2

 =⇒
1

1

�
2

3

1 ↑ ↗
1

2

.

The associated embedded Markov chain jump matrix and its rate diagram is
given by

P̃ :=

 0 0 1
1/2 0 1/2
1 0 0

 =⇒
1

1
�
1

3

1/2 ↑ ↗
1/2

2

.

The communication classes are {1, 3} and {2} with {2} being transient and
{1, 3} being closed and hence recurrent. The equations for the invariant distri-
butions of the Q and P̃ restricted to {1, 3} are;
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π1 = 2π3 or (π1, π3) =
1
3

(2, 1) and

π1 = π3 or (π1, π3) =
1
2

(1, 1)

respectively. These are different – can you explain why?



9

Hitting and Expected Return times and Probabilities

Fig. 9.1. A rate diagram for a four state Markov chain.

Let {X (t)}t≥0 be a continuous time Markov chain described by its infinites-
imal generator, Q = (Qij)i,j∈S where S is the state space. Further let

S1 = inf {t > 0 : X (t) 6= X (0)}

be the first jump time of the chain and qj := −Qj j for all j ∈ S. Recall
P (S1 > t|X (0) = j) = e−qjt for all t > 0 and E [S1|X (0) = j] = 1/qj . Given a
subset, A, of the state space, S, let

TA := inf {t ≥ 0 : X (t) ∈ A}

be the first time the process, X (t) , hits A. By convention, TA =∞ if X (t) /∈ A
for all t, i.e. if X (t) does not hit A.

Example 9.1. Let S = {1, 2, 3, 4} and X (t) be the continuous time Markov
chain determined by the rate diagram, Further let A = {3, 4} . We would like
to compute, hi = Pi (X (t) hits A) for i = 1, 2. If {Yn}∞n=0 is the embedded
discrete time chain, this is the same as computing, hi = Pi (Yn hits A) which
we know how to do. We now carry out the details. First off the infinitesimal
generator, Q, is given by

Q =

1 2 3 4
1
2
3
4


−4 1 3 0
2 −3 0 1
1 0 −1 0
0 2 0 −2



and hence the Markov matrix for {Yn} is given by,

P̃ :=

1 2 3 4
1
2
3
4


0 1/4 3/4 0

2/3 0 0 1/3
1 0 0 0
0 1 0 0

 .
The first step analysis for the hitting probabilities then implies,

h1 =P1 (X (t) hits A|XS1 = 3)P1 (XS1 = 3)
+ P1 (X (t) hits A|XS1 = 2)P1 (XS1 = 2)

=
3
4

+ h2
1
4

and

h2 =P2 (X (t) hits A|XS1 = 1)P2 (XS1 = 1)
+ P2 (X (t) hits A|XS1 = 4)P2 (XS1 = 4)

=
2
3
h1 +

1
3

which have solutions, h1 = h2 = 1 as we know should be the case since this is
an irreducible Markov chain.

Example 9.2. Continuing the set up in Example 9.1, we are going to compute
wi = EiTA for i = 1, 2. Again by a first step analysis we have,

w1 = E1 (TA|XS1 = 3)P1 (XS1 = 3) + E1 (TA|XS1 = 2)P1 (XS1 = 2)

=
1
4

3
4

+
(

1
4

+ w2

)
1
4

=
1
4

+
1
4
w2

and

w2 = E2 (TA|XS1 = 1)P2 (XS1 = 1) + E2 (TA|XS1 = 4)P2 (XS1 = 4)

=
(

1
3

+ w1

)
2
3

+
1
3

1
3

=
1
3

+
2
3
w1,
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where 1
4 = E1 (S1) and 1

3 = E2 (S1) . The solutions to these equations are:

E1 (TA) = w1 =
2
5

and E2 (TA) = w2 =
3
5
.

With this example as background, let us now work out the general formula
for these hitting times.

Proposition 9.3. Let Q be the infinitesimal generator of a continuous time
Markov chain, {X (t)}t≥0 , with state space, S. Suppose that A ⊂ S and TA :=
inf {t ≥ 0 : X (t) ∈ A} . If we let wi := EiTA for all i /∈ A, then {wi}i∈Ac satisfy
the system of linear equations,

wi =
1
qi

+
∑
j /∈A

P̃ijwj =
1
qi

+
∑
j /∈A

Qij
qi
wj

where as usual, qi = −Qii =
∑
j 6=iQij .

Proof. By the first step analysis we have, for i /∈ A,

wi =
∑
j 6=i

Ei [TA|XS1 = j]Pi (XS1 = j)

=
∑
j 6=i

P̃ij Ei [TA|XS1 = j] .

By the strong Markov property,

Ei [TA|XS1 = j] = EiS1 + EjTA =
1
qi

+ wj

where wj := EjTA = 0 if j ∈ A. Therefore we have,

wi =
∑
j 6=i

P̃ij

(
1
qi

+ wj

)
=

1
qi

+
∑
j 6=i

P̃ij wj

=
1
qi

+
∑
j /∈A

P̃ij wj

as claimed.

Notation 9.4 Now let

Rj := inf {t > S1 : Xt = j}

be the first return time to j.

Our next goal is to find a formula for EiRj for all i, j ∈ S. Before going to
the general case, let us work out an example.

Example 9.5. Let us do an example of a two state Markov chain. Say

0 α→ 1
β→ 0.

Let m0 = E0R0 and m1 = E1R0, then

m0 = E0 [R0|XS1 = 1]P (XS1 = 1) =
1
α

+m1

m1 = E0 [R0|XS1 = 0]P (XS1 = 0) =
1
β

and therefore, m0 = 1
α + 1

β which is clearly the correct answer in this case. The
long run fraction of the time we are in state 0 is therefore

1/α
m0

=
β

α+ β
.

This is the same as computing limt→∞ P (X (t) = 0) = π0. Indeed for this case,

Q =
(
−α α
β −β

)
has invariant distribution, π = (β, α) / (α+ β) . Therefore,

π0 =
β

α+ β
and π1 =

α

α+ β
. (9.1)

as argued above.

Proposition 9.6 (Expected return times). If mij := EiRj for all j ∈ S,
then

mij =
1
qi

+
∑

k 6=i or j

Qik
qi
mkj . (9.2)

Proof. By a first step analysis we have,

mij = EiRj =
∑
k 6=i

Ei [Rj |XS1 = k]P (XS1 = k)

=
∑
k 6=i

Ei [Rj |XS1 = k]
Qik
qi
.

Since
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Ei [Rj |XS1 = k] =
{

EiS1 + EkRj if k 6= j
EiS1 if k = j

=
{ 1
qi

+mkj if k 6= j
1
qi

if k = j
.

we arrive at the

mij =
∑
k 6=i

Ei [Rj |XS1 = k]
Qik
qi

=
1
q2i
Qij +

∑
k 6=i and k 6=j

(
1
qi

+mkj

)
Qik
qi

=
∑
k 6=i

Qik
q2i

+
∑

k 6=i and k 6=j

mkj
Qik
qi

=
1
qi

+
∑
k

1k 6=i,k 6=jmkj
Qik
qi
.

Corollary 9.7. Let {X (t)}t≥0 be a finite state irreducible Markov chain with
generator, Q = (Qij)i,j∈S . If π = (πi) is an invariant distribution, then

πi =
1

qimii
=

1
qiEi [Ri]

. (9.3)

Proof. Suppose that πj is an invariant distribution for the chain, so that∑
i πiQik = 0 or equivalently,∑

i 6=k

πiQik = −πkQkk = πkqk.

It follows from Eq. (9.2) that∑
i

πiqimij =
∑
i

πiqi
1
qi

+
∑
i

πiqi
∑
k

1k 6=i,k 6=j
Qik
qi
mkj

= 1 +
∑
i,k

πi1i 6=k,k 6=jQikmkj

= 1 +
∑
k

1k 6=jπkqkmkj

= 1 +
∑
i

1i 6=jπiqimij .

Hence it follows that πiqimii = 1 which proves Eq. (9.3).





10

Renewal Processes

Renewal process. Suppose we have a box of identical components, each
numbered by 1, 2, 3, . . . . Let Xi denote the lifetime of the ith component and
assume that {Xi}∞i=1 are i.i.d. non-negative random variables with distribution
function, F. We assume at very least that F (0) < 1, i.e. there is a positive
probability that each component is in fact good. At time zero we put the first
component into service, when it fails we immediately replace it by the second,
when the second fails we immediately replace it by the third, and so on. Based
on this scenario we make the following definition in which the reader should refer
to Figure 10.1.

Fig. 10.1. The graph of N (t) given a realization of the {Xi}∞i=1 . From this picture
it should be clear that {N(t) ≥ k} = {Wk ≤ t}.

10.1 Basic Definitions and Properties

Definition 10.1 (Renewal Process). Let {Xk}∞k=1 be i.i.d. random variables,
assume Xk > 0 a.s. and µ := EX1 > 0 with µ = ∞ being an allowed value.
Further let

Wn := X1 +X2 + · · ·+Xn =
n∑
i=1

Xi

be the time of the nth “renewal.” The renewal process is the counting process
defined by

N(t) = #{n : Wn ≤ t} = max{n : Wn ≤ t}.

More generally, for 0 ≤ a < b <∞, let

N ((a, b]) = N (b)−N (a) = #{n : a < Wn ≤ b}.

So N (t) counts the number of renewals which have occurred at time t or
less and N ((a, b]) counts the number of renewals in (a, b]. The random variable,
Wn, is the time of the nth renewal whereas Xn is the time between the (n− 1)th

and the nth renewals. Since the inter-renewal times, {Xn}∞n=1, are i.i.d., the
process probabilistically restarts at each renewal.

Example 10.2 (Poisson Process). If Xk is exponential with parameter λ then
we know that N(·) is the Poisson Process with parameter λ. In particular we
know that N (t) is a Poisson random variable so that

P (N (t) = k) =
(λt)k

k!
e−λt

and N has independent increments.

Example 10.3 (Markov Chain). Suppose that {Yn}∞n=0 is a recurrent Markov
chain on some state space S. Suppose the chain starts at some site, x ∈ S, and
let {Xk}∞k=1 be the subsequent return times for the chain to x. It follows by the
strong Markov property, that {Xk}∞k=1 are i.i.d. random variables. In this case
N (t) counts the number of returns to x before or equal to time t. This example
has a analogue for continuous time Markov chains as well.
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Referring to Figure 10.1 we see that the following important relationship
holds:

{N(t) ≥ k} = {Wk ≤ t}. (10.1)

Moreover if t is as in Figure 10.1 we see that N (t) = 4, N (t) + 1 = 5 and
WN(t) = W4 ≤ t < W5 = WN(t)+1. In general we always have,

WN(t) ≤ t < WN(t)+1. (10.2)

Notation 10.4 Referring to Figure 10.2 we introduce the following terminol-
ogy:

1. γt = WN(t)+1 − t = (residual life of the part in service at time t).
2. δt = t−WN(t) = (age (or current life) of the part in service).
3. βt = δt + γt = WN(t)+1 −WN(t) = total life time of the part in service at

time t.

Fig. 10.2. The geometry of a renewal process.

For future reference let us note that:

1. For y ≥ 0, γt > y iff there are no renewals in (t, t+ y] and hence

{γt > y} = {N ((t, t+ y]) = 0} = {N (t+ y) = N (t)} .

2. For t ≥ x, δt ≥ x iff there were no renewals in (t− x, t], i.e.

{δt ≥ x} = {N ((t− x, t]) = 0} = {N (t) = N (t− x)} .

Example 10.5 (Poisson Process). Suppose that Xk is exponential with param-
eter λ so that N(t) is the Poisson Process with parameter λ. Then for x, y ≥ 0
we have,

P (δt ≥ x, γt > y) = P (N ((t− x, t]) = 0, N ((t, t+ y]) = 0)
= P (N ((t− x, t]) = 0) · P (N ((t, t+ y]) = 0)

= 1x≤te−λx · e−λy.

This shows γt and δt are independent, γt
d= exp (λ) and δt is a truncated

exponential,

P (δt < x) = 1− 1x≤te−λx =
{

1 if x > t
1− e−λx if x ≤ t

which is equivalent to

P (δt ≤ x) =
{

1 if x ≥ t
1− e−λx if x < t

,

see Figure 10.3.

Fig. 10.3. The plot of the distribution function of a truncated exponential with t = 2.

Let us observe that Eγt = 1
λ while
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Eδt =
∫ ∞

0

P (δt ≥ x) dx =
∫ ∞

0

1x≤te−λxdx

=
∫ t

0

e−λxdx =
1
λ

(
1− e−λt

)
.

Therefore,

Eβt = Eγt + Eδt =
1
λ

+
1
λ

(
1− e−λt

)
.

Compare this with EXj = 1/λ. Notice that the lifetime of the part at service
at time t is in the limit as t → ∞, twice as long as the mean lifetime of any
individual part. Why is this. The point is that t is fixed and hence the we are
more likely to see life intervals of a part which encompass t rather than the
shorter ones. This also represents the memoryless property of the exponential.

Definition 10.6 (Renewal function). We call, M (t) := EN (t) , the re-
newal function.

Example 10.7. If Xj
d= exp (λ) , i.e. P (Xj > t) = e−λt for all t ≥ 0, then

M (t) = EN (t) = λt.

For later purposes it is useful to observe that M (t) may be computed in
terms of the {Wn} by,

M (t) = EN (t) = E

( ∞∑
n=1

1n≤N(t)

)
= E

( ∞∑
n=1

1Wn≤t

)
=
∞∑
n=1

P (Wn ≤ t) .

(10.3)

Remark 10.8 (Convolution). Recall that if X and Y are two independent ran-
dom variables, FX (t) = P (X ≤ t) , FY (t) = P (Y ≤ t) and FX+Y (t) =
P (X + Y ≤ t) , then

FX+Y (t) =
∫ ∞
−∞

P (X + Y ≤ t|X = x) dFX (x)

=
∫ ∞
−∞

P (x+ Y ≤ t|X = x) dFX (x)

=
∫ ∞
−∞

P (Y ≤ t− x) dFX (x)

=
∫ ∞
−∞

FY (t− x) dFX (x) .

When X and Y are non-negative, then FX (t) = FY (t) = FX+Y (t) = 0 if t ≤ 0
and for t ≥ 0 we have,

FX+Y (t) =
∫ t

0

FY (t− x) dFX (x) . (10.4)

Notation 10.9 (Convolution Notation) If F is a (generalized) distribution
function and g is a function, let

g ∗ F (t) :=
∫ t

0

g (t− x) dF (x)

and if f is a density, let

g ∗ f (t) :=
∫ t

0

g (t− x) f (x) dx.

With this notation we may write Eq. (10.4) more succinctly as FX+Y =
FX ∗ FY .

Definition 10.10. Let Fn (t) := FWn (t) = P (Wn ≤ t) with F (t) := F1 (t) =
P (X1 ≤ t) . We may also write this as

Fn =

n – times︷ ︸︸ ︷
F ∗ F ∗ · · · ∗ F . (10.5)

According to Eq. (10.4), we have,

Fn+1 (t) = P (Wn +Xn+1 ≤ t)

=
∫ t

0

Fn (t− x) dF (x) =
∫ t

0

F (t− x) dFn (x) . (10.6)

With this notation, it follows from Eq. (10.1) that

P (N (t) = k) = P (N(t) ≥ k)− P (N(t) ≥ k + 1)
= P (Wk ≤ t)− P (Wk+1 ≤ t) = Fk (t)− Fk+1 (t) .

It now follows from Eq. (10.3) that

M (t) =
∞∑
n=1

P (Wn ≤ t) =
∞∑
n=1

Fn (t) =
∞∑
n=1

F ∗n. (10.7)

Example 10.11. When N (t) is a Poisson as in Example 10.7, we know that
M (t) = λt. As a check, let us compute the right side of Eq. (10.7) and verify
that it gives λt in this case. From Lemma 2.7, we know that

Fn (t) = P (Wn ≤ t) = e−λt
∞∑
j=n

(λt)j

j!
.

Therefore,
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M (t) = e−λt
∞∑
n=1

∞∑
j=n

(λt)j

j!
= e−λt

∞∑
1≤n≤j<∞

(λt)j

j!

= e−λt
∞∑

1≤j<∞

(λt)j

j!
j = λt · e−λt

∞∑
1≤j<∞

(λt)j−1

(j − 1)!
= λt.

Proposition 10.12 (Renewal Equation). The renewal function satisfies the
renewal equation,

M (t) = F (t) +
∫ t

0

M (t− x) dF (x) . (10.8)

or written more succinctly,

M = F +M ∗ F. (10.9)

Proof. First proof. Recall that

M =
∞∑
n=1

Fn =
∞∑
n=1

F ∗n

and therefore,

M ∗ F =
∞∑
n=1

F ∗n ∗ F =
∞∑
n=1

F ∗(n+1) = M − F,

which is Eq. (10.9). Written out in more detail, using the definition of M and
Fn, we have∫ t

0

M (t− x) dF (x) =
∞∑
n=1

∫ t

0

Fn (t− x) dF (x) =
∞∑
n=1

Fn+1 (t) = M (t)−F (t) ,

which is Eq. (10.8).
Second proof based on conditioning on X1. We start with a informal

proof using,

M (t) =
∫ ∞

0

E [N (t) : X1 = x] dF (x)

and

E [N (t) |X1 = x] =
{

0 if t < x
E [1 +N (t− x)] if x ≤ t . (10.10)

Therefore,

M (t) =
∫ t

0

E [N (t) : X1 = x] dF (x) =
∫ t

0

(1 +M (t− x)) dF (x)

which is Eq. (10.8). The point in Eq. (10.10) is that if t < X1 then N (t) = 0
while if t ≥ X1, then

N (t) = 1 +N (t−X1 : X2, X3, . . . )

where we write

N (t : y1, y2, . . . ) := # {n : y1 + · · ·+ yn ≤ t} ,

see Figure 10.4.

Fig. 10.4. In this example, N (t) = 3 while N (t−X1 : X2, X3, . . . ) = 2.

(Rigorous version of second proof.) We have to compute
E [N (t) |X1 = x] with more care. To this end, suppose that g (x) is a
given bounded function. Then

E [N (t) g (X1)] = E [N (t) g (X1) 1t<X1 ] + E [N (t) g (X1) 1X1≤t]
= E [(1 +N (t−X1 : X2, X3, . . . )) g (X1) 1X1≤t]
= E [(1 + EN (t− x) |x=X1) 1X1≤tg (X1)] (10.11)

where in; 1) the first equality we have used N (t) = 0 if t < X1 and

N (t : X1, X2, . . . ) = 1 +N (t−X1 : X2, X3, . . . ) for X1 ≤ t,

and 2) the second equality we used the independence X1 from (X2, X3, . . . ) . It
follows from Eq. (10.11) that

E [N (t) |X1] = (1 +M (t−X1)) 1X1≤t

and therefore,

E [N (t)] = E (E [N (t) |X1])
= E [(1 +M (t−X1)) 1X1≤t]

=
∫

[0,t]

[1 +M (t− x)] dF (x)

= F (t) +
∫

[0,t]

M (t− x) dF (x) .
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Remark 10.13. We will often assume that the distribution of Xj is continuous so
that Ḟ (t) = f (t) exists and is a probability density so that F (t) =

∫ t
0
f (x) dx.

In this case for each n, the distribution, Fn (t) = P (Wn ≤ t) also has a density.
For example,

d

dt
F2 (t) =

d

dt

∫ t

0

F (t− x) f (x) dx

= F (t− t) f (t) +
∫ t

0

F ′ (t− x) f (x) dx =
∫ t

0

f (t− x) f (x) dx

= f ∗ f (t) .

In general we have Ḟn (t) = Ḟn−1 ∗ f from which it follows that

Ḟn =

n - times︷ ︸︸ ︷
f ∗ f ∗ · · · ∗ f.

We now define

m (t) :=
∞∑
n=1

f∗n

so that M (t) =
∫ t
0
m (x) dx. By the same reasoning as in the first proof of

Proposition 10.12 we find that m satisfies the renewal equation,

m = f +m ∗ f. (10.12)

This may also be seen by differentiating the identity,

M (t) = F (t) +
∫ t

0

M (t− x) f (x) dx, (10.13)

to find

m (t) = f (t) +
∫ t

0

m (t− x) f (x) dx+M (0) f (t)

= f (t) +
∫ t

0

m (x) f (t− x) dx. (10.14)

wherein we have used P (X1 = 0) = 0 and therefore, N (0) = 0 and hence
M (0) = EN (0) = 0.

Example 10.14 (Posisson process again). If Xj
d= exp (λ) , then f (t) = λe−λt,

and therefore

m (t) = λe−λt +
∫ t

0

m (x)λe−λ(t−x)dx

= λe−λt
[
1 +

∫ t

0

m (x) eλxdx
]
.

From this equation it follows that m (0) = λ and

d

dt

(
eλtm (t)

)
= λ

(
eλtm (t)

)
which has solution, eλtm (t) = λeλt, i.e. m (t) = λ and therefore,

M (t) =
∫ t

0

m (τ) dτ = λt

which is consistent with the results in Example 10.11.

The next theorem gives an indication as to why the renewal function M (t)
is an important quantity.

Theorem 10.15. The joint distribution of γt and δt is determined by, for t ≥
x ≥ 0 and y > 0,

P (γt > y, δt ≥ x) = 1− F (y + t) +
∫ t−x

0

(1− F (y + t− z)) dM (z) . (10.15)

In particular, taking x = 0 implies,

P (γt > y) = 1− F (y + t) +
∫ t

0

(1− F (y + t− z)) dM (z)

and taking y = 0,

P (δt ≥ x) = 1− F (t) +
∫ t−x

0

(1− F (t− z)) dM (z) . (10.16)

Proof. You will show in Problem VII.P1.1 that

P (γt > y, δt ≥ x) = 1− F (y + t) +
∞∑
k=1

∫ t−x

0

(1− F (y + t− z)) dFk (z) .

Recalling the M (t) :=
∑∞
k=1 Fk (t) , we may write this last equation as in Eq.

(10.16).
Notice that when x = y = 0, we should have

1 = 1− F (t) +
∫ t

0

(1− F (t− z)) dM (z)
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which is the case since,∫ t

0

(1− F (t− z)) dM (z) = M (t)− F ∗M (t) = F (t) .

Goals: Find the limiting behavior of N (t) , M (t) , γt, and δt and apply
these results to reliability models.

The first step in this program is to show the renewal function, M (t) =
EN (t) , is finite.

Lemma 10.16. Suppose that X1 ≥ 0 with X1 6= 0 a.s. (We do not have to
assume that P (X = 0) = 0 here only that P (X > 0) > 0.) Then M (t) < ∞
for all t and consequently N (t) <∞ a.s. for all t ≥ 0.

Proof. Choose α > 0 such that p := P (X1 ≥ α) > 0 and hence

q := 1− p = P (X1 < α) < 1.

Then Xk ≥ α1Xk≥α and hence
∑n
k=1 α1Xk≥α ≤Wn from which it follows that

{Wn ≤ t} ⊂

{
n∑
k=1

α1Xk≥α ≤ t

}
=

{
n∑
k=1

1Xk≥α ≤
t

α

}
.

For large n, the latter event happens iff no more than m := [t/α] of the Xk are
greater than or equal to α. The probability of this event is

m∑
k=0

(
n

k

)
pkqn−k =

m∑
k=0

n · (n− 1) . . . (n− k + 1)
k!

pkqn−k

≤ m · nmqn−m =
m

qm
· nmqn.

So we have shown for large n, that

P (Wn ≤ t) ≤
m

qm
· nmqn

from which it follows (by the ratio test) that M (t) =
∑∞
n=1 P (Wn ≤ t) < ∞.

10.2 The Elementary Renewal Theorem

The following proposition is a consequence of Wald’s formula. We will also give
a proof based on renewal equation theory. For this second proof we will need
the following proposition.

Proposition 10.17. Let µ := EX1 = EXk, then

E
[
W(N(t)+1)

]
= EX1 · E [N(t) + 1] = µ(1 +M(t)). (10.17)

Proof. This is a direct consequence of Wald’s formula in Theorem 4.38,
which is applicable because N (t) + 1 is a stopping time as we saw in item 3. of
Example 4.36. Let us recall the main points here. Recall that

{N(t) = k} = {Wk ≤ t, Wk+1 > t}

which shows N (t) is not a stopping time. However,

{N(t) + 1 = k} = {N(t) = k − 1} = {Wk−1 ≤ t, Wk > t},

from which it follows that N(t)+1 is a stopping time and hence Wald’s formula
applies.

Lemma 10.18. lim
t→∞

N(t) =∞ a.s., i.e. P
(

lim
t→∞

N(t) =∞
)

= 1.

Proof. Since N (t) is increasing in t, N(∞) := lim
t→∞

N(t) exists and rep-
resents the total number of events occurring at any time t ≥ 0. Therefore
N(∞) < ∞ iff Wn = ∞ for some n which happens iff Xn = ∞ for some n.
Thus we conclude that

P (N(∞) <∞) = P (Xn =∞ for some n)

= P (∪n {Xn =∞}) ≤
∑
n

P (Xn =∞) =
∑
n

0 = 0.

Theorem 10.19 (Pointwise renewal theorem). Let µ := EX1 and N (t) be
as above, then

lim
t→∞

N(t)
t

=
1
µ

a.s.

Proof. By the strong law of large numbers

Wn

n
=
X1 + · · ·+Xn

n
→ µ a.s.

Case 1: If µ =∞, then for any 0 < M <∞, we will have Wn ≥Mn for large
n (depending on ω). Therefore, for large t,

N(t) = max{n : Wn ≤ t}
≤ max{n : Mn ≤ t} ∼= t/M
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and hence we may conclude that

N(t)
t
≤ 1
M

for large t.

Since M <∞ was arbitrary it follows that lim
t→∞

N(t)
t = 0 = 1/µ.

Case 2: If µ = EX1 <∞, then Wn

n
∼= µ for large n, i.e. Wn

∼= µn. Therefore,
for large t,

N(t) = max{n : Wn ≤ t} ∼= max{µn ≤ t} ∼= t/µ.

Dividing this equation by t and then letting t ↑ ∞ shows,

lim
t→∞

N(t)
t

=
1
µ

From Theorem 10.19, we expect,

lim
t→∞

EN(t)
t

= lim
t→∞

E
(
N(t)
t

)
= E

(
lim
t→∞

N(t)
t

)
= E

(
1
µ

)
=

1
µ

provided it is permissible to interchange the limit and expectation operation in
this case. Assuming this is OK, we are lead to the elementary renewal Theorem
10.21 below. Before stating this theorem let us consider the following example
which shows that interchanging limits and expectations is not always permissi-
ble.

Example 10.20. Suppose that Yn (x) = n · 1x≤1/n for 0 ≤ x ≤ 1 as in Figure
10.5. If Ef :=

∫ 1

0
f (x) dx, then we have EYn = 1 for all n while limn→∞ Yn = 0

Fig. 10.5. A sequence of approximate δ – functions.

and therefore,
lim
n→∞

EYn = 1 6= 0 = E
[

lim
n→∞

Yn

]
.

Theorem 10.21 (Elementary renewal theorem). If M (t) := EN(t) is the
renewal function, then

lim
t→∞

M(t)
t

=
1
µ
. (10.18)

Proof. First proof for Xj bounded. In this proof we will assume that
the Xj are bounded, i.e. there exists some T < ∞ such that P (X1 ≥ T ) = 0.
(This is a rather reasonable assumption for a man-made object.) The key point
is to observe that WN(t)+1 = t + γt. Taking expectations of this identity and
using Proposition 10.17 implies

µ (M (t) + 1) = t+ Eγt. (10.19)

After a little algebra this gives,

M (t)
t

=
1
µ

+
1
t

(
Eγt
µ
− 1
)
. (10.20)

Since X1 is bounded we must have γt ≤ βt ≤ T for all t and therefore, Eγt ≤ T.
This then implies,∣∣∣∣1t

(
Eγt
µ
− 1
)∣∣∣∣ ≤ 1

t

(
T

µ
+ 1
)
→ 0 as t→∞,

which combined with Eq. (10.20) gives Eq. (10.18).
Second Proof. Recall that N (t) = k iff Wk ≤ t < Wk+1 and hence we

have
WN(t) ≤ t < WN(t)+1. (10.21)

Taking expectations of this equation and then making use of Proposition 10.17
implies,

t ≤ E
[
WN(t)+1

]
= EX1 · E (N (t) + 1) = µ · (M (t) + 1) .

Dividing this equation by t and then letting t→∞ implies,

lim inf
t→∞

M (t)
t
≥ 1
µ
. (10.22)

To prove the opposite inequality, c > 0, Xc
i = Xi ∧ c := min (Xi, c) , and

W c
k :=

∑k
i=1X

c
i . If N c (t) = k then

W c
k ≤ t < W c

k+1 ≤W c
k + c ≤ t+ c

from which it follows that
W c
Nc(t)+1 ≤ t+ c.
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Fig. 10.6. A possible graph of M (t) /t.

Taking expectation of this equation again making use of Proposition 10.17 im-
plies,

EXc
1 · (EN c (t) + 1) ≤ t+ c.

Dividing this inequality by t and then letting t ↑ ∞ implies,

lim sup
t→∞

EN c (t)
t

≤ 1
EXc

1

. (10.23)

Since Xc
i ≤ Xi, W

c
k ≤ Wk and hence N c(t) ≥ N(t) which implies EN (t) ≤

EN c (t) . Therefore it follows form Eq. (10.23) that

lim sup
t→∞

EN (t)
t

≤ lim sup
t→∞

EN c (t)
t

≤ 1
EXc

1

.

We may now let c ↑ ∞ in which case EXc
1 ↑ µ and hence we may conclude that

lim sup
t→∞

EN (t)
t

≤ 1
µ
. (10.24)

Combining Eqs. (10.22) and (10.24) completes the proof of the theorem.
Besides these theorems we also have a central limit theorem for the renewal

process, N (t) .

Theorem 10.22 (Renewal central limit theorem). Let µ := EX1 < ∞
and σ2 := Var (X1) , then

N (t)
d
≈ t

µ
+

σ

µ3/2

√
tZ as t→∞. (10.25)

To be more precise,
N (t)− t

µ

σ
µ3/2

√
t

=⇒ Z, (10.26)

where Z is a standard normal random variable.

Proof. I will not attempt to give a rigorous proof here but let us try to
understand the formula in Eq. (10.25). In doing so well will follow [4, page 110].
(For another “proof,” see subsection 10.5.1 below.) By the usual central limit
theorem,

Wn = µn+
√
nσZn

where Zn is approaching in distribution a standard normal random variable,
Z. be a standard normal random variable, then by the standard central limit
theorem,from which it follows that

N
(
µn+

√
nσZn

)
= N (Wn) = n.

If we write t for µn, then

n = N
(
µn+

√
nσZn

)
=
{
N (t) +N ((t, t+

√
nσZn]) if Zn > 0

N (t)−N ((t+
√
nσZn, t]) if Zn ≤ 0 . (10.27)

However, the number of renewals in an interval of size
√
nσ |Zn| near large times

t, should be approximately,
√
nσ |Zn| /µ and therefore we may write Eq. (10.27)

as
n ∼= N (t) +

√
nσZn/µ

which gives,

N (t) ∼= n−
√
nσZn/µ =

t

µ
−
√
t

µ
σZn/µ

d
≈ t

µ
− σ

µ3/2

√
tZ

d
≈ t

µ
+

σ

µ3/2

√
tZ

where for the last approximation we have used Z
d= −Z.

10.3 Applications of the elementary renewal theorem

10.3.1 Age Replacement Policies

Let X1, X2, X3, . . . be the i.i.d. life times of some device and µ = EXk be
their common means. The device is to be replaced upon failure or at some time
T < ∞ whichever comes first. With this replacement policy, the new effective
lifetime of the jth device is XT

j where XT
j = T ∧ Xj = min (T,Xj) . Observe

that

EXT
1 =

∫ ∞
0

P (XT
1 > x)dx =

∫ T

0

P (XT
1 > x)dx

=
∫ T

0

P (X1 > x)dx =
∫ T

0

(1− F (x))dx =: µT < µ. (10.28)
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10.3 Applications of the elementary renewal theorem 83

Given the above replacement policy, let Y1 denote the time of the first replace-
ment of a part which occurred before time T, i.e. the first time that a part is
replaced because it has failed. We begin by working out the distribution of Y1.
To understand Y1 better we see by its definition, that

Y1 = X1 if X1 ≤ T,
Y1 = T +X2 if X1 > T but X2 ≤ T,
Y1 = 2T +X3 if X1 > T, X2 > T, and X3 ≤ T,

...
Y1 = nT +Xn+1 if X1 > T, X2 > T, . . . , Xn > T and Xn+1 ≤ T.

Thus we see that we may write Y1 = NT+Z, where N is the N0 – valued random
variable Z takes values in [0, T ] such that N = 0 and Z = X1 if X1 ≤ T and

N = n and Z = Xn+1 on {X1 > T, . . . ,Xn > T and Xn+1 ≤ T} .

Hence it follows that

{N ≥ n} = {X1 > T, X2 > T, . . . , Xn > T} and
{N = n} = {X1 > T, X2 > T, . . . , Xn > T,Xn+1 ≤ T} .

Therefore for all n ∈ N0,

P (N ≥ n) = P (X1 > T )n = (1− F (T ))n and (10.29)
P (N = n) = (1− F (T ))n F (T ) . (10.30)

Moreover, for 0 ≤ z ≤ T we have

P (Z ≤ z,N = n) = P (Xn+1 ≤ z,X1 > T, . . . ,Xn > T,Xn+1 ≤ T )
= P (X1 > T, . . . ,Xn > T,Xn+1 ≤ z)
= P (Xn+1 ≤ z)P (X1 > T )n = F (z)P (X1 > T )n

=
F (z)
F (T )

P (X1 > T )nF (T ) =
F (z)
F (T )

P (N = n) . (10.31)

Summing this equation on n, shows,

P (Z ≤ z) =
F (z)
F (T )

for 0 ≤ z ≤ T. (10.32)

Using this information it follows that

EN = E
∞∑
n=1

1n≤N =
∞∑
n=1

P (N ≥ n) =
∞∑
n=1

P (X1 > T )n

=
P (X1 > T )

1− P (X1 > T )
=

1− F (T )
F (T )

. (10.33)

Similarly,

EZ = E
∫ T

0

1z<Zdz =
∫ T

0

P (Z > z) dz =
∫ T

0

[
1− F (z)

F (T )

]
dz (10.34)

and since Y1 = NT + Z we find,

EY1 = T · EN + EZ

=
1− F (T )
F (T )

· T +
∫ T

0

[
1− F (z)

F (T )

]
dz

=
∫ T

0

[
1− F (T )
F (T )

+
F (T )− F (z)

F (T )

]
dz

=
1

F (T )

∫ T

0

(1− F (z)) dz =
µT
F (T )

=
E [X1 ∧ T ]
P (X1 ≤ T )

,

where µT was the mean used life of the part under the replacement scheme in
Eq. (10.28).

Summary: If

µT :=
∫ T

0

(1− F (x))dx, (10.35)

then
E [X1 ∧ T ] = µT and EY1 =

µT
F (T )

. (10.36)

We now let {Yi}∞i=1 be the times between actual successive failures of a part
using the replacement scheme above.

Proposition 10.23. The sequence of random variables, {Yi}∞i=1 are i.i.d.

Proof. We are going to show more, namely if we write Yi = NiT +Zi then
the sequence of random variables, {(Ni, Zi)}∞i=1 are i.i.d. I will actually only
work out the joint distribution of (N1, Z1) and (N2, Z2) here. Let n1, n2 ∈ N0

and z1, z2 ∈ [0, T ] , then

{N1 = n1, Z1 ≤ z1, N2 = n2, Z2 ≤ z2}
= {X1 > T, . . . ,Xn1 > T,Xn1+1 ≤ z1, Xn1+2 > T, . . . ,Xn1+n2+2 > T,Xn1+n2+3 ≤ z2}

and therefore,

P (N1 = n1, Z1 ≤ z1, N2 = n2, Z2 ≤ z2)
= P (X1 > T, . . . ,Xn1 > T,Xn1+1 ≤ z1)
· P (Xn1+2 > T, . . . ,Xn1+n2+2 > T,Xn1+n2+3 ≤ z2)

= P (N1 = n1, Z1 ≤ z1) · P (X1 > T, . . . ,Xn2 > T,Xn2+1 ≤ z2)
= P (N1 = n1, Z1 ≤ z1) · P (N2 = n2, Z2 ≤ z2) .
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84 10 Renewal Processes

This shows that (N1, Z1) and (N2, Z2) are independent and have the same
distribution. The general case follows similarly.

The elementary renewal theorem then implies that the failure rate for this
replacement scheme is

lim
t→∞

Meff (t)
t

=
F (T )
µT

=
F (T )∫ T

0
(1− F (z))dz

=
P (X1 ≤ T )
E [X1 ∧ T ]

.

The long time replacement rate for replacing on failure is given by

lim
t→∞

M(t)
t

=
1

EX1
=

1∫∞
0

(1− F (z))dz

Example 10.24. Suppose that Xi has the uniform on [0, 1] and 0 < T < 1. Then
F (x) = P (Xi ≤ x) = x ∧ 1. Thus effective long run failure rate is given by

F (T )
µT

=
F (T )∫ T

0
(1− F (x)) dx

=
T∫ T

0
(1− x)dx

=
T

T − T 2

2

=
1

1− T
2

=
2

2− T
,

that is :

lim
t→∞

Meff (t)
t

=
F (T )
µT

=
2

2− T
, (10.37)

while

lim
t→∞

M(t)
t

=
1
µ

=
1
1
2

= 2. (10.38)

(Observe that letting T ↑ 1 in Eq. (10.37) gives back Eq. (10.38).) The original
failure rate was 2 while the effective failure rate as a function of T is 2

2−T which
is plotted in Figure 10.24 below.

The effective failure rate as function of the forced replacement time, T.

By making T small we can reduce the long run failure rate to close to 1. Keep
in mind that we are making replacements on average at rate,

1
µT

=
1

E [X1 ∧ T ]
=

1∫ T
0
xdx+ T (1− T )

=
1

T 2/2 + T (1− T )

=
1

T − T 2/2

which is graphed in Figure 10.7. For example if we take T = 1/2, we get a

Fig. 10.7. Replacement rate as a function of T.

failure rate of 4/3 and a replacement rate of

1
1/2− 1/8

=
8
3
∼= 2.67

versus the original failure rate of 2 and replacement rate of 2.

Example 10.25. Let us continue the above analysis by associating different cost
to replacement and to failures. We are now going to assume the cost to replace
a part (failed or not) is K dollars and each failed part incurs and additional
cost of c dollars. The total cost up to time t to the factory is then

V (t) := K ·N
(
t : XT

1 , X
T
2 , . . .

)
+ c ·N (t : Y1, Y2, . . . )

and so the expected cost is

EV (t) = K · EN
(
t : XT

1 , X
T
2 , . . .

)
+ c · EN (t : Y1, Y2, . . . )
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10.3 Applications of the elementary renewal theorem 85

and the limiting cost per unit time becomes, by two applications of the elemen-
tary renewal theorem,

lim
t→∞

EV (t)
t

= K · lim
t→∞

EN
(
t : XT

1 , X
T
2 , . . .

)
+ c · lim

t→∞
EN (t : Y1, Y2, . . . )

=
K

EXT
1

+
c

EY1
.

Recalling form Eqs. (10.35) and (10.36) that

E
[
XT

1

]
= µT and EY1 =

µT
F (T )

, where

µT :=
∫ T

0

(1− F (x))dx,

we have,

C (T ) := lim
t→∞

EV (t)
t

=
K

µT
+

c

µT /F (T )
=
K + cF (T )

µT

=
K + cF (T )∫ T

0
(1− F (t)) dt

.

which represents the long time cost per unit time of running the factory with
this replacement strategy.

Goal: given K, c, and F, we would like to choose T so as to minimize C (T ) .

Let us now be more specific. work this out in an example or two.

Example 10.26. Suppose that Xn have the uniform distribution on [0, 1] , i.e.
F (x) = 1∧x = min (1, x) . In this case we should keep T < 1 and then we have,

C(T ) =
K + cT∫ T

0
(1− x)dx

=
K + cT

T − T 2

2

.

We now the first derivative test to try to find the best choice for T so as to
minimize the cost function, C (T ) ;

0 set= C ′ (T ) ∝ c
(
T − T 2

2

)
− (1− T ) (K + cT )

=
c

2
T 2 +KT −K.

The quadratic formula then gives,

T =
−K ±

√
K2 + 4K c

2

c
=
−K ±K

√
1 + 2c/k

c
.

Only the plus sign gives a positive root and hence the optimal time, T ∗, is given
by

T ∗ =
K

c

(√
1 +

2c
k
− 1

)
.

For example if K = 1 and c = 4 we find,

C(T ) =
1 + 4T

T (1− T/2)

T ∗ =
1
2

and C (T ∗) = 8.

Fig. 10.8. A plot of C (T ) for K = 1 and c = 4.

Example 10.27. Let us work out the above scenario under the assumption that
Xj

d= exp (λ) , so that F (t) = 1− e−λt. In this case

µT =
∫ T

0

e−λtdt =
1
λ

(
1− e−λT

)
=

1
λ
F (T ) .

Therefore EXT
1 = µT = 1

λF (T ) < 1
λ = µ while EY1 = µT /F (T ) = 1

λ . So in
this case the actual failure rate is the same no matter what forced replacement
time, T, we use. Because of this, the best replacement strategy is to take T =∞
as can also be seen by looking at the cost function,

C (T ) = K
1

EX1
+ c

1
EY1

=
λK

F (T )
+ λc ↓ λ (K + c) as t ↑ ∞.
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86 10 Renewal Processes

To see this is reasonable, one might think the parts are failing because of
some rare catastrophic event, like a satellite being hit by a piece of space debris.
In this case the satellite is not wearing out, so if it is not hit at some time T it
is as in good shape as it was the day it was put into service. Therefore there is
no good reason to replace it early.

10.3.2 Comments on Problem VII.4.5

In this problem one is dealing with the Markov chain determined by the Markov
matrix

P =

0 1 2 .3 .7 0
.6 0 .4
0 .5 .5

0
1
2

with jump diagram

Suppose that
(X0, X1, . . . ) = (1, 0, 0, 0, 1, 2, 2, 2, 2, 1, . . . )

is a sample path of the system. The three consecutive zeros is said to be a
Sojourn at 0 with duration time, S0 = 3 and the four consecutive twos is said
to be a Sojourn at 2 with duration time S2 = 4. In this problem a renewal cycle
consists of the times between visits to 1. So in this case the first inter-renewal
time, X1, is 4 = 1 +S0 while the second inter-renewal time is X2 = 5 = 1 +S2.
The mean inter-renewal time is thus,

µ = E1 [X1|first visit 0]P1 (first visit 0) + E1 [X1|first visit 2]P1 (first visit 2)

where

E1 [X1|first visit 0] = E0S0 + 1 and
E1 [X1|first visit 2] = E2S2 + 1.

In order to check your final answer, let us compute the invariant distribution
for this chain:

Nul (P − I)tr = Nul

 .3 .7 0
.6 0 .4
0 .5 .5

−
1 0 0

0 1 0
0 0 1

tr

= Nul

−0.7 0.6 0
0.7 −1 0.5
0 0.4 −0.5

 =

0.556 22
0.648 93
0.519 14

 ,
hence the invariant distribution is given by

π =
1

0.556 22 + 0.648 93 + 0.519 14
[

0.556 22 0.648 93 0.519 14
]

=
[

0.322 58 0.376 35 0.301 07
]
.

10.4 The Key Renewal Theorem

Let F be the distribution function of the interarrival random variables, {Xj}
(f = Ḟ if F can be described by a density) and h : R+ → R be a given a
function. We are interested in solving the renewal equation

g = h+ g ∗ F (10.39)

for the unknown function g.

Example 10.28. We have see in Proposition 10.12 that g = M satisfies the
renewal Eq. (10.39) with h = F. We also have noted in Eq. (10.12) that if
f = Ḟ exists then m = Ṁ exists and g = m satisfies the renewal equation with
h = f.

Example 10.29. Let g (t) := E
[
WN(t)+1

]
, then

g (t) =
∫ ∞

0

E
[
W(N(t)+1)|X1 = x

]
dF (x) . (10.40)

If t < X1, then N (t) = 0 and N (t) + 1 = 1 so that WN(t)+1 = X1, while if t ≥
X1, we have and WN(t)+1 (X1, X2, X3, . . . ) = X1 + WN(t−X1)+1 (X2, X3, . . . )
and therefore,

E
[
W(N(t)+1)|X1 = x

]
=
{

x if t < x
x+ g (t− x) if t ≥ x .

Using this in Eq. (10.40) shows,
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10.4 The Key Renewal Theorem 87

g (t) =
∫ ∞

0

xdF (x) +
∫ t

0

g (t− x) dF (x) = µ+
∫ t

0

g (t− x) dF (x)

= µ+ g ∗ F (t) ,

i.e. g satisfies the renewal Eq. (10.39) with h (t) = µ.

Theorem 10.30. Suppose that h : R+ → R is function which is bounded on
bounded intervals, then among the functions, g, which are bounded on bounded
intervals, there is a unique solution to Eq. (10.39). Moreover this solution is
given1 by,

g (t) = h (t) + h ∗M (t) = h (t) +
∫ t

0

h (t− x) dM (x) . (10.41)

Proof. Uniqueness. Suppose that g1 and g2 are two such solutions to Eq.
(10.39). Then there difference, k := g2 − g1 solves, k = k ∗ F. Iterating this
equation then shows,

|k (t)| = |k ∗ Fn (t)| =
∣∣∣∣∫ t

0

k (t− x) dFn (x)
∣∣∣∣

≤ 2Kt

∫ t

0

dFn (x) = 2KtP (Wn ≤ t) .

where Kt is a bounded on g1 (s) and g2 (s) for s ≤ t. Since 1
nWn → µ > 0 as

n → ∞, i.e. Wn
∼= nµ for n large, it follows that P (Wn ≤ t) → 0 as n → ∞.

This shows that k (t) = 0 and hence g1 (t) = g2 (t) . Thus the solution is unique.
Existence. Notice that

1 If we let CF g := g ∗ F, then the renewal equation may be stated as,

(I − CF ) g = h.

The formal solution to this linear equation is therefore,

g = (I − CF )−1 h.

Motivated by geometric series ideas, we should expect,

(I − CF )−1 =

∞∑
n=0

CnF = I +

∞∑
n=1

CnF

and therefore that

g = h+

∞∑
n=1

CnFh = h+

∞∑
n=1

h ∗ Fn = h+ h ∗M.

This motivates the formula for g in Eq. (10.41).

|h ∗M | (t) =
∣∣∣∣∫ t

0

h (t− x) dM (x)
∣∣∣∣ ≤ ∫ t

0

|h (t− x)| dM (x) ≤ KtM (t)

where Kt = sups≤t |h (s)| <∞. Therefore g := h+h∗M is bounded on bounded
intervals. Moreover,

h+ g ∗ F = h+ (h+ h ∗M) ∗ F
= h+ h ∗ F + (h ∗M) ∗ F
= h+ h ∗ F + h ∗ (M ∗ F ) .

Recalling, see Eq. (10.12) that M satisfies the renewal equation, M ∗F = M−F,
it follows that

h+ g ∗ F = h+ h ∗ F + h ∗ (M − F ) = h+ h ∗M = g

as desired.

Example 10.31. In this example we give a second proof of the identity in Eq.
(10.17) in Proposition 10.17, namely that

E
[
W(N(t)+1)

]
= µ (1 +M (t)) .

By Example 10.29, g (t) := E
[
W(N(t)+1)

]
, satisfies the renewal equation, g =

µ+ g ∗F. The solution to this equation, by Proposition 10.47, is g (t) = µ+µ ∗
M (t) . This complete the proof since,

µ ∗M (t) =
∫ t

0

µdM (x) = µM (t)−M (0) = µM (t) .

To make use of these renewal equations and solutions, we need the following
stronger version of the elementary renewal theorem.

Theorem 10.32 (Blackwell’s renewal theorem). Suppose {Xi}∞i=1 are
i.i.d. random times which have continuous distributions. Then (a bit infor-
mally),

m (t) = Ṁ (t)→ 1
µ

as t→∞.

Proof. Heuristic proof. The elementary renewal theorem states, M (t) ∼=
1
µ t for t large. Hence if we differentiate this relation, we suspect that m (t) =
Ṁ (t) ∼= 1

µ for t large.
For a proof and the correct statement of this theorem along with its gen-

eralizations to “non-lattice” random variables, the reader is referred to Dur-
rett [2, Theorem 4.3 on p. 206] and the references therein.
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88 10 Renewal Processes

Theorem 10.33 (Key Renewal Theorem). Suppose that h is a function
which is bounded on bounded intervals, limt→∞ h (t) = 0, and

∫∞
0
|h (t)| dt <∞.

Let us further suppose that Ḟ = f exists. If g = h+h ∗M is the solution to the
renewal Eq. (10.39), then

lim
t→∞

g (t) =
1
µ

∫ ∞
0

h (t) dt. (10.42)

Proof. By Theorem 10.30, we know that g (t) = h (t) +h ∗M (t) and there-
fore,

lim
t→∞

g (t) = lim
t→∞

h ∗M (t) = lim
t→∞

∫ t

0

h (x)m (t− x) dx.

By Blackwell’s renewal Theorem 10.32, m (x)→ 1
µ as x→∞, it follows that

lim
t→∞

∫ t/2

0

h (x)m (t− x) dx =
1
µ

∫ ∞
0

h (x) dx.

On the other hand (assuming that m is bounded by some K <∞), then∣∣∣∣∣
∫ t

t/2

h (x)m (t− x) dx

∣∣∣∣∣ ≤ K
∫ t

t/2

|h (x)| dx ≤ K
∫ ∞
t/2

|h (x)| dx→∞ as t→∞.

We may relax the assumption on the boundedness of K as follows. For large t
we know that m (t) → 1

µ and hence there exists a c < ∞ such that m (t) ≤ K
for t ≥ c. Therefore,∣∣∣∣∣
∫ t

t/2

h (x)m (t− x) dx

∣∣∣∣∣ ≤
∫ t

t/2

|h (x)|m (t− x) dx

=
∫ t−c

t/2

|h (x)|m (t− x) dx+
∫ t

t−c
|h (x)|m (t− x) dx.

The first integral goes to zero by the previous argument. For the latter integral
we have,∫ t

t−c
|h (x)|m (t− x) dx ≤ sup

x≥t−c
|h (x)| ·

∫ t

t−c
m (t− x) dx

= sup
x≥t−c

|h (x)| ·
∫ c

0

m (u) du

= M (c) · sup
x≥t−c

|h (x)| → 0 as t→∞.

Fig. 10.9. The picture you should have in mind for a two part renewal process. For
this sample path and choice of t, t is in the Y phase of the renewal process.

10.5 Examples using the key renewal theorem

Let us now work out a number of examples of this theory. We will always assume
that Ḟ (t) = f (t) exists so that m (t) = Ṁ (t) exists.

Proposition 10.34 (Two component renewals). Suppose Yi represents a
portion of the duration of Xi. To be precise, we assume that {(Yi, Xi)}∞i=1 are
i.i.d., 0 ≤ Yi ≤ Xi, and Xi is a continuous random variable. Then

lim
t→∞

P (in the Y phase at time t) =
EY1

EX1
, (10.43)

where P (in the Y phase at time t) represents the probability that t falls in a Y
– portion at time t, see Figure 10.9. (The result in Eq. (10.43) is a intuitively
reasonable.)

Proof. If we let At := {in the Y phase at time t} and g (t) := P (At) , then
as usual,

g (t) =
∫ ∞

0

P [At|X1 = x] dF (x) .

If x > t, then
P [At|X1 = x] = P (Y1 > t|X1 = x)

while if x < t (see Figure 10.9), then

P [At|X1 = x] = P (At−x) = g (t− x) .

Therefore,

g (t) =
∫ ∞
t

P (Y1 > t|X1 = x) dF (x) +
∫ t

0

g (t− x) dF (x) .

i.e. g = h+ g ∗ F where
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h (t) :=
∫ ∞
t

P (Y1 > t|X1 = x) dF (x) . (10.44)

To evaluate h more explicitly, observe that P (Yt > t|X1 = x) = 0 if x ≤ t,
therefore we may write Eq. (10.44) as

h (t) :=
∫ ∞

0

P (Y1 > t|X1 = x) dF (x) = P (Y1 > t) .

An application of the key renewal Theorem 10.33 then gives,

lim
t→∞

P (At) =
1
µ

∫ ∞
0

P (Y1 > t) dt =
EY1

EX1
.

Example 10.35 (Peter Principle, see page 450-451 of Karlen and Taylor.). A
person is selected at random from an infinite population containing a fraction
p of competent people and 1− p of incompetent people. If the person selected
is competent she/he remains in the job for a random time, Tc, before being
promoted. While if the person is incompetent, he or she remains for a random
time, Ti, and then retires. Once the job is vacated, another person is selected
at random and the process repeats (i.e. renews). Let µ := ETc and ν = ETi.

Question. In the long run what fraction, f, of the time is the job held by
an incompetent person.

Answer. A renewal interval is a random time,

X =
{
Tc if a competent person is chosen
Ti if an incompetent person is chosen .

If Y represents the incompetent phase of the renewal interval, then

Y =
{

0 if a competent person is chosen
Ti if an incompetent person is chosen .

We then have

f =
EY
EX

=
(1− p) ETi

pETc + (1− p) ETi
=

(1− p) ν
pµ+ (1− p) ν

,

wherein we have used,

EX = E [X|competent]P (competent) + E [X|incompetent]P (incompetent)

and

EY = E [Y |competent]P (competent) + E [Y |incompetent]P (incompetent) .

As a specific example, suppose that p = 1/2, ν = 10 and µ = 1. Then

f =
1
210

1
2 + 1

210
=

10
11
∼= .91.

Theorem 10.36 (Distribution of (γ∞, δ∞) .). Suppose that F is the cumu-
lative distribution function for Xj . Then for all x, y ≥ 0,

lim
t→∞

P (γt > y, δt ≥ x) =
1
µ

∫ ∞
x+y

(1− F (w)) dw. (10.45)

In particular, if we let (γ∞, δ∞) be random variables with

P (γ∞ > y, δ∞ ≥ x) := lim
t→∞

P (γt > y, δt ≥ x)

=
1
µ

∫ ∞
x+y

(1− F (w)) dw,

then γ∞ and δ∞ have distributions with densities given by 1
µ (1− F (t)) for

0 ≤ t <∞.

Proof. First Proof. Recall from your homework (see Theorem 10.15) that

P (γt > y, δt ≥ x) = 1− F (y + t) +
∫ t−x

0

(1− F (y + t− z))m (z) dz.

Making the change of variables, w = y + t− z in the above integral shows,

P (γt > y, δt ≥ x) = 1− F (y + t) +
∫ y+t

x+y

(1− F (w))m (y + t− w) dw.

Writing m (z) = 1
µ + ε (z) where ε (z)→ 0 as z →∞ we learn that

lim
t→∞

P (γt > y, δt ≥ x) = lim
t→∞

∫ y+t

x+y

(1− F (w))m (y + t− w) dw

=
1
µ

∫ ∞
x+y

(1− F (w)) dw

+ lim
t→∞

∫ y+t

x+y

(1− F (w)) ε (y + t− w) dw

=
1
µ

∫ ∞
x+y

(1− F (w)) dw.

Second Proof. We start by considering g (t) := P (γt > y) for some fixed
y ≥ 0. Then by conditioning on X1 = x we find,

g (t) =
∫ ∞

0

P (γt > y|X1 = x) f (x) dx

where
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P (γt > y|X1 = x) =
{

1t+y<x if t < x
P (γt−x > y) = g (t− x) if t ≥ x .

Therefore,

g (t) =
∫ ∞
t

1t+y<xf (x) dx+
∫ t

0

g (t− x) f (x) dx

= 1− F (y + t) +
∫ t

0

g (t− x) f (x) dx,

which shows g (t) satisfies the renewal equation with h (t) = 1 − F (y + t) .
Therefore by the key renewal Theorem 10.33,

lim
t→∞

P (γt > y) =
1
µ

∫ ∞
0

(1− F (y + t)) dt

=
1
µ

∫ ∞
y

(1− F (t)) dt.

Notice that if y = 0, then∫ ∞
0

(1− F (t)) dt =
∫ ∞

0

P (X1 > t) dt = EX1 = µ,

so that
G (y) := 1− 1

µ

∫ ∞
y

(1− F (t)) dt

To finish the second proof, we observe that

{γt > y, δt ≥ x} = {γt−x > x+ y} .

Therefore we may conclude that

lim
t→∞

P (γt > y, δt ≥ x) = lim
t→∞

P (γt−x > x+ y) =
1
µ

∫ ∞
x+y

(1− F (t)) dt.

Example 10.37. If F is the exponential distribution with parameter, λ = 1/µ
so that 1− F (t) = e−λt, then

lim
t→∞

P (γt > y, δt ≥ x) =
1
µ

∫ ∞
x+y

e−λtdt =
1
µλ

e−µ(x+y) = e−µ(x+y)

which is a result we know to be true even without taking the limit as t → ∞
as we saw in Example 10.5.

Example 10.38 (Earthquakes in California). The inter-earthquake time distri-
bution in California is U (0, 1) years. What is the long run probability that an
earthquake will hit California within 6 months? What is the long run probability
that it has been at most 6 months since an earthquake last hit California?

Solution: Since,

lim
t→∞

P (γt ≤ 0.5) = lim
t→∞

P (δt ≤ 0.5) = 1− lim
t→∞

P (γt > 0.5)

the answer to both questions is:

1− lim
t→∞

P (γt > 0.5) = 1− 1
1/2

∫ ∞
.5

(1− F (t)) dt

= 1− 1
1/2

∫ 1

.5

(1− t) dt = 0.75.

In general,

P (γ∞ > T ) = 2
∫ 1

T

(1− t) dt = − (1− t)2 |1T

= (1− T )2 for 0 ≤ T ≤ 1.

Proposition 10.39. Let o (1) denote a function of t which tends to zero as
t→∞, then

Eγt =
1

2µ
(
σ2 + µ2

)
+ o (1) , (10.46)

Eδt =
1

2µ
(
σ2 + µ2

)
+ o (1) and (10.47)

Eβt =
1
µ

(
σ2 + µ2

)
+ o (1) > µ. (10.48)

Proof. By Theorem 10.36, we know that

lim
t→∞

E [f (γt, δt)] = E [f (γ∞, δ∞)]

where
P (γ∞ > y, δ∞ ≥ x) :=

1
µ

∫ ∞
x+y

(1− F (w)) dw.

Notice that

P (γ∞ > y) = P (δ∞ > y) =
1
µ

∫ ∞
y

(1− F (t)) dt (10.49)

so that γ∞ and δ∞ have the same distribution2. Therefore we have,
2 In general γ∞ and δ∞ are independent iff Xj is exponentially distributed.

Page: 90 job: 180Notes macro: svmonob.cls date/time: 4-Jun-2008/13:17



10.5 Examples using the key renewal theorem 91

Eδ∞ = Eγ∞ =
∫ ∞

0

dy
1
µ

∫ ∞
y

(1− F (t)) dt

=
1
µ

∫ ∫
10≤y≤t<∞ (1− F (t)) dy dt

=
1
µ

∫
10≤t<∞t (1− F (t)) dt =

1
µ

∫ ∞
0

tP (X1 > t) dt

=
1
µ

E
∫ ∞

0

t1X1>tdt =
1
µ

E
[

1
2
X2

1

]
=

1
2µ
(
σ2 + µ2

)
,

from which Eqs. (10.46) and (10.47) follows. Equation (10.48) is now a simple
consequence of Eqs. (10.46) and (10.47) and the fact that βt = δt + γt.

Example 10.40 (Earthquakes in California continued). Let us continue the no-
tation in Example 10.38. We now want to compute the long run expected time
to the next earth quake, i.e.

lim
t→∞

Eγt =
1

2µ
(
σ2 + µ2

)
.

For the uniform distribution on (0, 1) , µ = 1
2 , and

σ2 =
∫ 1

0

x2dx− µ2 =
1
3
− 1

4
=

1
12
.

Therefore,

lim
t→∞

Eγt =
1
12

+
1
4

=
1
3
.

The long run expected time between earthquakes is limt→∞ Eβt = 2/3 > 1/2 =
EX1.

Using Theorem 10.36 we can give the following improvement on the elemen-
tary renewal theorem.

Proposition 10.41. Suppose that f (t) = Ḟ (t) exists (i.e. Xn, are continuous
random variables) and suppose that µ = EX1 and σ2 = Var (X1) . Then

M (t) =
t

µ
+
σ2 − µ2

2µ2
+ o (1) (10.50)

where o (1) denotes a function of t which tends to zero as t → ∞. This shows
that we may recover µ and σ from the large t behavior of M (t) .

Proof. From Eq. (10.19) and Eq. (10.46) we have,

(M (t) + 1)µ = t+ Eγt = t+
1

2µ
(
σ2 + µ2

)
+ o (1) .

Solving this identity for M (t) gives Eq. (10.50) upon observing;

1
2µ2

(
σ2 + µ2

)
− 1 =

1
2µ2

(
σ2 + µ2

)
− µ2

µ2
=
σ2 − µ2

2µ2
.

Proposition 10.42. Suppose that f = Ḟ (t) exists, µ = EX1 and σ2 =
Var (X1) = EX2

1 − µ2, then

Var (N (t)) =
σ2

µ3
t+ o (t) , (10.51)

where o (t) represents a function of t such that limt→∞
o(t)
t = 0.

Proof. Let g (t) = E
[
N2 (t)

]
, then by the usual conditioning arguments,

g (t) =
∫ ∞

0

E
[
N2 (t) |X1 = x

]
dF (x) =

∫ t

0

E
[
N2 (t) |X1 = x

]
dF (x)

=
∫ t

0

E
[
(N (t− x) + 1)2

]
dF (x) =

∫ t

0

(g (t− x) + 2M (t− x) + 1) dF (x)

= (g ∗ F + 2M ∗ F + F ) (t) .

Since M = F +M ∗ F, it follows that

g = g ∗ F + 2 (M − F ) + F = g ∗ F + 2M − F

and hence g satisfies the renewal equation with h = 2M − F. The solution to
this equation is

g = h+ h ∗M = 2M − F + (2M − F ) ∗M
= 2M − F + 2M ∗M − F ∗M
= 2M − F + 2M ∗M − (M − F ) = M + 2M ∗M.

Let us now consider,

1
t
M ∗M (t) =

1
t

∫ t

0

M (x)m (t− x) dx.

For t large, the contributions from the integral near x = 0 is not relevant and
so we may replace M (x) by

M (x) =
x

µ
+ c+ o (1)

where
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c =
1

2µ2

(
σ2 − µ2

)
. (10.52)

Thus we have,

1
t
M ∗M (t) =

1
t

∫ t

0

(
x

µ
+ c+ o (1)

)
m (t− x) dx

=
1
t

∫ t

0

(
x

µ
+ c+ o (1)

)
m (t− x) dx

= [c+ o (1)]
M (t)
t

+
1
µt

∫ t

0

xm (t− x) dx

= [c+ o (1)]
M (t)
t

+
1
µt

∫ t

0

(t− x) dM (x)

= [c+ o (1)]
M (t)
t

+
1
µt

∫ t

0

M (x) dx.

Again in the last integral, we need not worry about the contribution of the
integral near zero because of the 1/t factor, and therefore,

1
t
M ∗M (t) = [c+ o (1)]

M (t)
t

+
1
µt

∫ t

0

(
x

µ
+ c+ o (1)

)
dx

=
c

µ
+

1
µt

(
t2

2µ
+ ct+ o (t)

)
= 2

c

µ
+

1
2µ2

t+ o (1) .

Putting this all together shows,

g (t)
t

=
M (t)
t

+
2
t
M ∗M (t) =

1
µ

+ 4
c

µ
+

1
µ2
t+ o (1) .

Let us also notice that

1
t
M2 (t) =

1
t

(
1
µ
t+ c+ o (1)

)2

=
1
µ2
t+ 2

c

µ
+ o (1)

From the previous two equations along with Eq. (10.52) for c, we find,

Var (N (t))
t

=
g (t)
t
− 1
t
M2 (t)

=
1
µ

+ 2
c

µ
+ o (t) =

1
µ

+ 2
c

µ
+ o (1)

=
1
µ

[
1 +

1
µ2

(
σ2 − µ2

)]
+ o (1)

=
σ2

µ3
+ o (1)

which is equivalent to Eq. (10.51).

10.5.1 Second Proof of Theorem 10.22

Using this result we can give another proof or the renewal central limit Theorem
10.22, namely that

N (t)
d
≈ t

µ
+

σ

µ3/2

√
tZ,

where Z is a standard normal random variable. To do this let σ2 (t) :=
Var (N (t)) ∼= σ

µ3/2 t, and then start with the basic relationship, N (t) ≤ k iff
Wk ≤ t. This then implies,

N (t)−M (t)
σ (t)

≥ x ⇐⇒ N (t) ≥M (t) + x
σ

µ3/2

√
t =: k (t)

⇐⇒ Wk(t) ≤ t ⇐⇒
Wk (t)− µk (t)

σ
√
k (t)

≤ t− µk (t)
σ
√
k (t)

.

Notice that

k (t) ∼=
1
µ
t+ c+ x

σ

µ3/2

√
t+ o

(√
t
)
→∞ as t→∞, (10.53)

therefore by the usual central limit theorem, Wk(t)−µk(t)
σ
√
k(t)

is close to a standard

normal random variable, Z. Therefore we have

P

(
N (t)−M (t)

σ (t)
≥ x

)
∼= P

(
Z ≤ t− µk (t)

σ
√
k (t)

)
.

From Eq. (10.53),
t− µk (t)
σ
√
k (t)

∼=
−x σ

µ1/2

√
t

σ
√

1
µ t

= −x

and therefore,

P

(
N (t)−M (t)

σ
µ3/2

√
t

≥ x

)
∼= P (Z ≤ −x) = P (Z > x) .

wherein we have used Z
d= −Z in the last equality. This shows that

N (t)−M (t)
σ

µ3/2

√
t

=⇒ Z as t→∞.
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10.6 Renewal Theory Extras

You should ignore this section.

Example 10.43 (Another proof of Proposition 10.41). We begin by observing
that (

tk ∗ F
)

(t) =
∫ t

0

(t− x)k dF (x)

= (t− x)k F (x) |x=tx=0 +
∫ t

0

k (t− x)k−1
F (x) dx

=
∫ t

0

k (t− x)k−1
F (x) dx.

Taking k = 0 and k = 1, we find,

(1 ∗ F ) (t) =
∫ t

0

1dF (x) = F (t)

and

(t ∗ F ) (t) =
∫ t

0

(t− x) dF (x) =
∫ t

0

F (x) dx =
∫ t

0

P (X1 ≤ x) dx

= E
∫

1X1≤x≤tdx = E
[
(t−X1)+

]
.

Hence if we let
g (t) = M (t)− t

µ
+ 1,

then

g ∗ F − g = M ∗ F − 1
µ
t ∗ F + 1 ∗ F −

(
M − t

µ
+ 1
)

= M − F − 1
µ
t ∗ F + F −

(
M − t

µ
+ 1
)

= − 1
µ
t ∗ F +

t

µ
− 1.

Now,

t− t ∗ F = t−
∫ t

0

(t− x) dF (x) = t−
∫ t

0

F (x) dx =
∫ t

0

(1− F (x)) dx

and hence

1
µ

∫ t

0

(1− F (x)) dx− 1 =
1
µ

∫ t

0

(1− F (x)) dx− 1
µ

∫ ∞
0

(1− F (x)) dx

= − 1
µ

∫ ∞
t

(1− F (x)) dx.

Thus we have shown that

g ∗ F − g = − 1
µ

∫ ∞
t

(1− F (x)) dx

i.e.,

g = g ∗ F +
1
µ

∫ ∞
t

(1− F (x)) dx.

where,∫ ∞
t

P (X1 > x) dx = E
∫

1X1>x≥tdx = E (X1 − t)+ → 0 as t→∞.

Therefore by the key renewal theorem,

lim
t→∞

g (t) =
1
µ

1
µ

∫ ∞
0

dt

∫ ∞
t

(1− F (x)) dx =
1
µ2

∫ ∫
0≤t≤x<∞

(1− F (x)) dxdt

=
1
µ2

∫ ∞
0

x (1− F (x)) dx =
1
µ2

∫ ∞
0

xP (X1 > x) dx

=
1
µ2

∫ ∞
0

xE1X1>xdx =
1

2µ2
EX2

1 =
1

2µ2

(
σ2 + µ2

)
.

Thus we have shown

lim
t→∞

(
M (t)− t

µ
+ 1
)

=
1

2µ2

(
σ2 + µ2

)
i.e.

lim
t→∞

(
M (t)− t

µ

)
=

1
2µ2

(
σ2 + µ2

)
− 1 =

1
2µ2

(
σ2 + µ2

)
− µ2

µ2

=
1

2µ2

(
σ2 − µ2

)
.

which is to say

M (t) =
t

µ
+

1
2µ2

(
σ2 − µ2

)
+ o (1) .
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10.6.1 Laplace transform considerations

The Laplace (and Fourier) transform is often a useful tool in renewal theory.
This subsection introduces the Laplace transform in this setting.

Notation 10.44 (Laplace Transform) If F is a (generalized) distribution
function we define the Laplace transform of F (for all λ > 0 sufficiently large)
by

F̃ (λ) :=
∫ ∞

0

e−λxdF (x) .

If f is a density function, we define the Laplace transform of f (for all λ > 0
sufficiently large) by

f̃ (λ) :=
∫ ∞

0

e−λxf (x) dx.

Fact 10.45 Under fairly general conditions, if F̃ (λ) = 0 for all large λ then
F = 0 and f̃ (λ) = 0 for all large λ then f = 0.

Theorem 10.46 (Laplace Transform). If h is a function admitting a Laplace
transform and F is a (generalized) distribution and f is a density, then

(h ∗ F )˜ = h̃ · F̃ and (h ∗ f)˜ = h̃ · f̃ .

That is the Laplace transform takes convolution to multiplication (a much sim-
pler operation).

Proof. Let us prove the first equation as the second follows by taking F :=∫ x
0
f (y) dy. By the definitions we have,

(h ∗ F )˜ (λ) =
∫ ∞

0

(h ∗ F ) (x) e−λxdx =
∫ ∞

0

∫ x

0

h (x− y) dF (y) e−λxdx

=
∫ ∫

10≤y≤x<∞h (x− y) dF (y) e−λxdx

=
∫ ∫

10≤y≤x<∞h (x− y) e−λxdxdF (y)

=
∫ ∫

10≤y≤x<∞h (x) e−λ(x+y)dxdF (y)

=
∫ ∞

0

(∫ ∞
0

h (x) e−λxdx
)
e−λydF (y)

=
∫ ∞

0

h̃ (λ) e−λydF (y) = h̃ (λ) F̃ (λ) .

Proposition 10.47 (Solving Renewal Equations). Suppose that g satisfies,

g (t) = h (t) +
∫ t

0

g (t− x) dF (x) , i.e. g = h+ g ∗ F. (10.54)

Then under “reasonable” growth restrictions on g, the unique solution to this
equation is given by,

g (t) = h (t) +
∫ t

0

h (t− x) dM (x) , i.e. g = h+ h ∗M. (10.55)

Proof. We do not give the full proof here, just enough to understand
where the solution is coming from. To simplify notation, let g ∗ F (t) :=∫ t
0
g (t− x) dF (x) so that Eq. (10.54) becomes,

g = h+ g ∗ F (10.56)

and Fn =

n times︷ ︸︸ ︷
F ∗ F ∗ · · · ∗ F . Feeding Eq. (10.56) back into itself implies,

g = h+ (h+ g ∗ F ) ∗ F = h+ h ∗ F + g ∗ F2 (10.57)

and then feeding Eq. (10.56) back into Eq. (10.57) implies,

g = h+ h ∗ F + (h+ g ∗ F ) ∗ F2

= h+ h ∗ F + h ∗ F2 + g ∗ F3.

Continuing on this way shows,

g = h+
n−1∑
k=1

h ∗ Fk + g ∗ Fn. (10.58)

The remainder term, g ∗ Fn may be written as,

g ∗ Fn (t) =
∫ t

0

Fn (t− x) dg (x) =
∫ t

0

P (Wn ≤ t− x) dg (x)

where by the strong law of large numbers, Wn

n → µ an n→∞, so that

P

(
Wn

n
≤ t− x

n

)
→ P (µ ≤ 0) = 0.

On these grounds we might expect g∗Fn → 0 and hence may expect g∗Fn → 0.
Thus letting n→∞ in Eq. (10.58) gives g is given by
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g = h+
∞∑
k=1

h ∗ Fk = h+ h ∗
∞∑
k=1

Fk = h+ h ∗M.

Conversely if we define g by this equation, we have

g ∗ F = h ∗ F + h ∗M ∗ F = h ∗ F + h ∗ (M − F )
= h ∗M = g − h,

so that g solves the desired renewal equation.
Another way to understand the uniqueness assertion is by making use of the

Laplace transform. Taking the Laplace transform of Eq. (10.54) shows,

g̃ (λ) = h̃ (λ) + g̃ (λ) F̃ (λ)

and therefore,

g̃ (λ) =
h̃ (λ)

1− F̃ (λ)

while taking the Laplace transform of Eq. (10.55) implies,

g̃ (λ) = h̃ (λ) + h̃ (λ) M̃ (λ)

but

M̃ (λ) =
∞∑
n=1

F̃n (λ) =
∞∑
n=1

[
F̃ (λ)

]n
=

F̃ (λ)
1− F̃ (λ)

and therefore,

g̃ (λ) = h̃ (λ) + h̃ (λ)
F̃ (λ)

1− F̃ (λ)
= h̃ (λ)

1
1− F̃ (λ)

.

Since both formulas give the same Laplace transform for g they must define the
same function g by Fact 10.45.





11

What you need to know for the Final

11.1 Continuous Time Markov Chain Review

See the part of Section 8.2 pertaining to continuous time Markov chains. Besides
what is there you should also know how to compute hitting probabilities and
expected hitting times using first step analysis, see Examples 9.1 and 9.2 and
Proposition 9.3 for the general theory. You should also be familiar with long
time limiting behavior of continuos time Markov chains in Theorem 8.4.

11.2 Formula for EXp

It is worth remembering that if X ≥ 0 is a random variable, then

EX =
∫ ∞

0

P (X > x) dx =
∫ ∞

0

(1− F (x)) dx. (11.1)

More generally, if 1 ≤ p <∞,

EXp = E
∫ X

0

pxp−1dx = E
∫ ∞

0

1x<Xpxp−1dx

=
∫ ∞

0

E1x<X · pxp−1dx

= p

∫ ∞
0

P (X > x)xp−1dx. (11.2)

Taking p = 1 gives Eq. (11.1) and taking p = 2 gives,

EX2 = 2
∫ ∞

0

P (X > x)xdx = 2
∫ ∞

0

(1− F (x))xdx. (11.3)

11.3 Renewal Theory Review

11.3.1 Renewal Theory Setup

Recall the setup: {Xi}∞i=1 i.i.d. sequence of random times, W0 = 0,

Wn = X1 + · · ·+Xn,

N (t) = # {n : Wn ≤ t}
M (t) := EN (t) – the renewal function

γt := WN(t)+1 − t = excess life process
δt := t−WN(t) = are or current life process
βt := γt + δt = total lifetime process.

Let F (t) := P (Xj ≤ t) be the cumulative distribution function for the inter-
renewal times, {Xi} .

11.3.2 Renewal Theorems

We now suppose that F (t) =
∫ t
0
f (x) dx, i.e. the distribution of Xj is described

by a probability density, f. Also let

µ = EX1 and σ2 = Var (X1) .

Here is a listing of a number of the key renewal results:

1. M (t) = t
µ + σ2−µ2

2µ2 + o (1)
2. limt→∞ P (γt > y, δt ≥ x) = 1

µ

∫∞
x+y

(1− F (w)) dw. In particular,

lim
t→∞

P (γt > x) = lim
t→∞

P (δt ≥ x) =
1
µ

∫ ∞
x

(1− F (w)) dw.

3. From the previous item we derived,

lim
t→∞

Eγt = lim
t→∞

Eδt =
1

2µ
(
σ2 + µ2

)
, and

lim
t→∞

Eβt =
1
µ

(
σ2 + µ2

)
.

4. You should also be familiar with the alternating renewal theorem (see
Proposition 10.34 and Example 10.35) which states

lim
t→∞

P (in the Y phase at time t) =
EY1

EX1
.
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Brownian Motion

Let {Xj}∞j=1 be a sequence of independent Bernoulli random variables with
P (Xj = ±1) = 1

2 and let W0 = 0, Wn = X1 + · · ·+Xn be the random walk on
Z. For each ε > 0, we would like to consider Wn at n = t/ε. We can not expect
Wt/ε to have a limit as ε → 0 without further scaling. To see what scaling is
needed, recall that

Var (X1) = EX2
1 =

1
2

12 +
1
2

(−1)2 = 1

and therefore, Var (Wn) = n. Thus we have

Var
(
Wt/ε

)
= t/ε

and hence to get a limit we should scale Wt/ε by
√
ε. These considerations

motivate the following theorem.

Theorem 12.1. For all ε > 0, let {Bε (t)}t≥0 be the continuous time process,
defined as follows:

1. If t = nε for some n ∈ N0, let Bε (nε) :=
√
εWn and

2. if nε < t < (n+ 1) ε, let Bε (t) be given by

Bε (t) = Bε (nε) +
t− nε
ε

(Bε ((n+ 1) ε)−Bε (nε))

=
√
εWn +

t− nε
ε

(√
εWn+1 −

√
εWn

)
=
√
εWn +

t− nε
ε

√
εXn+1,

i.e. Bε (t) is the linear interpolation between (nε,
√
εWn) and

((n+ 1) ε,
√
εWn+1) , see Figure 12.1. Then Bε =⇒ B (“weak con-

vergence”) as ε ↓ 0, where B is a continuous random process.

The next proposition gives some of the basic facts about Brownian motion.

Proposition 12.2. The law of the process, B, is uniquely determined by the
following properties:

1. B (0) = 0.

Fig. 12.1. The four graphs are constructed (in Excel) from a single realization of
a random walk. Each graph corresponds to a different scaling parameter, namely,
ε ∈

{
2−4, 2−8, 2−12, 2−14

}
. It is clear from these pictures that Bε (t) is not converging

to B (t) for each realization. The convergence is only in law.

2. For all 0 ≤ s < t < ∞, B (t) − B (s) is a Gaussian random variable with
variance t− s.

3. The increments of B are independent. To be more specific, if 0 = t0 <
t1 < · · · < tn < ∞, then {B (ti)−B (ti−1)}ni=1 are independent Gaussian
random variables.

Proof. The first item is clear since Bε (0) = 0 for all ε > 0. The second
follows from the central limit theorem. To prove the third, suppose that 0 ≤
s < t < ∞ are rational numbers. Then for n ∈ N sufficiently large chosen
so that ns and nt are integers, we have Bn−1 (t) − Bn−1 (s) is independent of
{Bn−1 (σ) : σ ≤ s} . This independence is preserved in the limit to learn that
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B (t) − B (s) is independent of {B (σ) : σ ≤ s} . The continuity of B allows us
to remove the restriction on s and t being rational.

Definition 12.3 (Brownian motion). Brownian motion refers to any con-
tinuous process, B, satisfying the properties in Proposition 12.2.

In what follows, N will denote a standard normal random variable which is
independent of B. We will make use of the fact that B (t) − B (s) d=

√
t− sN

for all 0 ≤ s < t <∞ and that

E
[
f
(
x+
√
τN
)]

=
∫

R
f
(
x+
√
τy
) e− 1

2y
2

√
2π

dy =
∫

R
f (y)

e−
1
2τ (y−x)2

√
2πτ

dy. (12.1)

To simplify (and clarify) notation we will define,

pt (x, y) :=
1√
2πt

e−
1
2t |y−x|

2
for all t > 0 and x, y ∈ R.

Therefore Eq. (12.1) may be written as

Pτf (x) := E
[
f
(
x+
√
τN
)]

=
∫

R
pτ (x, y) f (x) dy. (12.2)

Corollary 12.4. If 0 = t0 < t1 < · · · < tn < ∞, ∆it := ti − ti−1, and
Ji = (ai, bi) ⊂ R are given bounded intervals, then

P (B (ti) ∈ Ji for i = 1, 2, . . . , n)

=
∫
. . .

∫
J1×···×Jn

p∆1t (0, x1) p∆2t (x1, x2) . . . p∆nt (xn−1, xn) dx1 . . . dxn.

(12.3)

Proof. Let x0 := 0. We are going to prove by induction on n that

EF (B (t1) , . . . , B (tn))

=
∫
F (x1, . . . , xn) p∆1t (x0, x1) . . . p∆nt (xn−1, xn) dx1 . . . dxn. (12.4)

Eq. (12.3) will then follow by taking F (x1, . . . , xn) := 1J1 (x1) . . . 1Jn (xn) .
For n = 1, we have, using Eq. (12.2),

EF (B (t1)) = EF
(√
t1N

)
=
∫

R
pt1 (0, y) f (y) dy

which is Eq. (12.4) with n = 1. For the induction step we begin with the
following identity,

EF (B (t1) , . . . , B (tn)) = EF (B (t1) , . . . , B (tn−1) , B (tn−1) +B (tn)−B (tn−1))

= EF
(
B (t1) , . . . , B (tn−1) , B (tn−1) +

√
∆ntN

)
= E

∫
R
F (B (t1) , . . . , B (tn−1) , y) p∆nt (B (tn−1) , y) dy

=
∫

R
E [F (B (t1) , . . . , B (tn−1) , y) p∆nt (B (tn−1) , y)] dy

(12.5)

wherein the second line we have again used Eq. (12.2). By the induction hy-
pothesis,

E [F (B (t1) , . . . , B (tn−1) , y) p∆nt (B (tn−1) , y)]

=
∫
F (x1, . . . , xn−1, y) ρ (x0, . . . , xn−1, y) dx1 . . . dxn−1, (12.6)

where

ρ (x0, . . . , xn−1, y) := p∆1t (x0, x1) . . . p∆n−1t (xn−2, xn−1) p∆nt (xn−1, y) .

Combining Eqs. (12.5) and (12.6) and then replacing y by xn verifies Eq. (12.4).

Theorem 12.5. Let f be a C2 – function which is bounded and has bounded
first and second derivatives. As above, let

Ptf (x) :=
∫

R
pt (x, y) f (y) dy.

Then
lim
t↓0

Ptf (x) = f (x) for all x ∈ R (12.7)

and
d

dt
Ptf =

1
2
D2Ptf = Pt

(
1
2
D2f

)
. (12.8)

Proof. From Eq. (12.2),

Ptf (x) = E
[
f
(
x+
√
tN
)]
→ Ef (x) = f (x) as t ↓ 0

which proves Eq. (12.7). To prove Eq. (12.8), one show by an explicit compu-
tation that

d

dt
pt (x, y) =

1
2
∂2

∂x2
pt (x, y) =

1
2
∂2

∂y2
pt (x, y) .

Therefore,
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d

dt
Ptf (x) =

d

dt

∫
R
pt (x, y) f (y) dy =

∫
R

d

dt
pt (x, y) f (y) dy

=
∫

R

1
2
∂2

∂x2
pt (x, y) f (y) dy =

1
2
∂2

∂x2

∫
R
pt (x, y) f (y) dy

which combined with the integration by parts identity,∫
R

∂2

∂x2
pt (x, y) f (y) dy =

∫
R

∂2

∂y2
pt (x, y) f (y) dy

=
∫

R
pt (x, y)

∂2

∂y2
f (y) dy,

verifies Eq. (12.8).

Remark 12.6. The last two results show that {B (t)}t≥0 is a Markov process,
Pt is the transition semigroup with infinitesimal generator being Q := 1

2D
2,

and {pt (x, y)}x,y∈R are the “matrix entries” of Pt.

12.1 Itô Calculus

Lemma 12.7. Let N be a standard normal random variable. Then Var
(
N2
)

=
2.

Proof. By integration by parts and the fact EN2 = 1, we find,

EN4 =
1√
2π

∫
R
x4e−x

2/2dx = − 1√
2π

∫
R
x3 d

dx
e−x

2/2dx

=
1√
2π

∫
R

d

dx
x3 · e−x

2/2dx = 3EN2 = 3.

Therefore,
Var

(
N2
)

= EN4 −
(
EN2

)2
= 3− 1 = 2.

The next few results (see especially Corollary 12.9) are key ingredients in
the Itô calculus and explains why it differs from ordinary calculus you learned
in 20A-B.

Proposition 12.8. Let T > 0 and Π = {0 = t0 < t1 < · · · < tn = T} be a par-
tition of [0, T ] ,

|Π| := max {ti − ti−1 : 1 ≤ i ≤ n} – the mesh size of Π,

and

QΠ :=
n∑
i=1

(Bti −Bti)
2
.

Then EQΠ = T and

E
[
(QΠ − T )2

]
= Var (QΠ) = 2

n∑
i=1

(ti − ti−1)2 ≤ 2T |Π| .

Therefore,
E
[
(QΠ − T )2

]
→ 0 as |Π| → 0.

Proof. We have

EQΠ =
n∑
i=1

E (Bti −Bti)
2 =

n∑
i=1

(ti − ti−1) EN2 =
n∑
i=1

(ti − ti−1) = T.

Since
{

(Bti −Bti)
2
}n
i=1

are independent random variables,

VarQΠ =
n∑
i=1

Var
[
(Bti −Bti)

2
]

=
n∑
i=1

(ti − ti−1)2 Var
[
N2
]

= 2
n∑
i=1

(ti − ti−1)2 ≤ 2T |Π| .

Corollary 12.9. If {Πn}∞n=1 is a sequence of partitions of [0, T ] such that∑∞
n=1 |Πn| < ∞, then limn→∞QΠn = T a.s. We summarize this statement

as
∫ T
0
dB2

t = T or even more informally as dB2
t = dt.

Proof. By Proposition 12.8,

E

[ ∞∑
n=1

(QΠn − T )2
]

=
∞∑
n=1

E (QΠn − T )2 ≤ 2T
∞∑
n=1

|Πn| <∞

and hence
∞∑
n=1

(QΠn − T )2 <∞ a.s.

which implies limn→∞ (QΠn − T )2 = 0 a.s.
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Definition 12.10. The Itô integral of an adapted process1 {ft}t≥0 , is defined
by ∫ T

0

fdB = lim
|Π|→0

n∑
i=1

fti−1

(
Bti −Bti−1

)
(12.9)

when the limit exists.

Proposition 12.11. Keeping the notation in Definition 12.10 and further as-
sume Ef2

t <∞ for all t. Then we have,

E

[
n∑
i=1

fti−1

(
Bti −Bti−1

)]
= 0

and

E

[
n∑
i=1

fti−1

(
Bti −Bti−1

)]2

= E
n∑
i=1

f2
ti−1

(ti − ti−1) .

Proof. Since
(
Bti −Bti−1

)
is independent of fti−1 we have,

E

[
n∑
i=1

fti−1

(
Bti −Bti−1

)]
=

n∑
i=1

Efti−1E
(
Bti −Bti−1

)
=

n∑
i=1

Efti−1 · 0 = 0.

For the second assertion, we write,[
n∑
i=1

fti−1

(
Bti −Bti−1

)]2

=
n∑

i,j=1

ftj−1

(
Btj −Btj−1

)
fti−1

(
Bti −Bti−1

)
.

If j < i, then ftj−1

(
Btj −Btj−1

)
fti−1 is independent of

(
Bti −Bti−1

)
and

therefore,

E
[
ftj−1

(
Btj −Btj−1

)
fti−1

(
Bti −Bti−1

)]
= E

[
ftj−1

(
Btj −Btj−1

)
fti−1

]
· E
(
Bti −Bti−1

)
= 0.

Similarly, if i < j,

E
[
ftj−1

(
Btj −Btj−1

)
fti−1

(
Bti −Bti−1

)]
= 0.

1 To say f is adapted means that for each t ≥ 0, ft should only depend on {Bs}s≤t ,
i.e. ft = Ft

(
{Bs}s≤t

)
.

Therefore,

E

[
n∑
i=1

fti−1

(
Bti −Bti−1

)]2

=
n∑

i,j=1

E
[
ftj−1

(
Btj −Btj−1

)
fti−1

(
Bti −Bti−1

)]
=

n∑
i=1

E
[
fti−1

(
Bti −Bti−1

)
fti−1

(
Bti −Bti−1

)]
=

n∑
i=1

E
[
f2
ti−1

(
Bti −Bti−1

)2]
=

n∑
i=1

Ef2
ti−1
· E
(
Bti −Bti−1

)2
=

n∑
i=1

Ef2
ti−1

(ti − ti−1)

= E
n∑
i=1

f2
ti−1

(ti − ti−1) ,

wherein the fourth equality we have used Bti −Bti−1 is independent of fti−1 .
This proposition motivates the following theorem which will not be proved

here.

Theorem 12.12. If {ft}t≥0 is an adapted process such that E
∫ T
0
f2
t dt < ∞,

then the Itô integral,
∫ T
0
fdB, exists and satisfies,

E
∫ T

0

fdB = 0 and

E

(∫ T

0

fdB

)2

= E
∫ T

0

f2
t dt.

Corollary 12.13. In particular if τ is a bounded stopping time (say τ ≤ T <
∞) then

E
∫ τ

0

fdB = 0 and

E
(∫ τ

0

fdB

)2

= E
∫ τ

0

f2
t dt.

Proof. The point is that, by the definition of a stopping time, 10≤t≤τft is
still an adapted process. Therefore we have,

Page: 102 job: 180Notes macro: svmonob.cls date/time: 4-Jun-2008/13:17



12.1 Itô Calculus 103

E
∫ τ

0

fdB = E

[∫ T

0

10≤t≤τftdBt

]
= 0

and

E
(∫ τ

0

fdB

)2

= E

[∫ T

0

10≤t≤τftdBt

]2

= E

[∫ T

0

(10≤t≤τft)
2
dt

]
= E

[∫ τ

0

f2
t dt

]
.

Theorem 12.14 (Itô’s Lemma). If f is a C2 – function, then

df (B) = f ′ (B) dB +
1
2
f ′′ (B) dB2

= f ′ (B) dB +
1
2
f ′′ (B) dt.

More precisely,

f (BT ) = f (B0) +
∫ T

0

f ′ (Bt) dBt +
1
2

∫ T

0

f ′′ (Bt) dt.

Roughly speaking, all differentials should be expanded out to second order using
the multiplication rules,

dB2 = dt and dBdt = 0 = dt2.

Proof. We do not give the proof here which is based in part on Taylor’s
theorem to order two and Corollary 12.9.

12.1.1 Examples of using Itô’s formula

For this subsection, let −∞ < a < 0 < b <∞,

τb := inf {t > 0 : B (t) = b} ,
τa := inf {t > 0 : B (t) = a} ,

and τ := τa ∧ τb, , with the convention that inf ∅ =∞.
Now let f (x) = (x− a) (b− x) , see Figure 12.2 below. By Itô’s lemma we

have, using f ′ (x) = −2x+ b+ a, and f ′′ (x) = −2. that

df (B) = f ′ (B) dB − dt

Fig. 12.2. A plot of f for a = −2 and b = 5.

or in its integrated form,

f (Bt) = f (0) +
∫ t

0

f ′ (B) db− t.

integrated form. Taking t = T ∧ τ in this formula and then taking expectations
gives,

Ef (BT∧τ ) = −ab− E [T ∧ τ ] ,

i.e.
E [T ∧ τ ] = −ab− Ef (BT∧τ ) ≤ −ab.

By MCT we may let T ↑ ∞, to discover, Eτ ≤ −ab < ∞ and in particular
P (τ <∞) = 1. An application of DCT now implies that limT↑∞ Ef (BT∧τ ) =
Ef (Bτ ) = 0 and therefore we have shown

E [τa ∧ τb] = −ab.

This is the same formula we had for simple random walks and in fact formally
follows from the random walk formula by our construction of Brownian motion
as a limit of scaled random walks.

For our next application of Itô’s formula, let f (x) = x− a. Since f ′ (x) = 1
and f ′′ (x) = 0, it follows by Itô’s formula that

df (B) = dB,

i.e.

−a+Bt = −a+
∫ t

0

dB.

Evaluating this equation at t = τ ∧ T and then taking expectations implies,
E [−a+BT∧τ ] = −a. By the MCT we may now let T ↑ ∞ to find,
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−a = E [−a+Bτ ] = 0P (τa < τb) + (−a+ b)P (τb < τa) .

Thus we have shown
P (τb < τa) =

−a
b− a

which again should be compared with our random walk results. Since
{τb < τa} ⊂ {τb <∞} for all a, it follows that

P (τb <∞) ≥ −a
b− a

→ 1 as a ↓ −∞

and therefore, P (τb <∞) = 1. This shows that Brownian motion hits every
point in R and by the Markov property is therefore, recurrent. Again these
results agree with what we found for simple random walks.

12.2 Option Pricing

In this section we are going to try to explain the Black–Scholes
formula for option pricing. The following excerpt is taken from
http://en.wikipedia.org/wiki/Black-Scholes.

Robert C. Merton was the first to publish a paper expanding the mathematical
understanding of the options pricing model and coined the term ”Black-
Scholes” options pricing model, by enhancing work that was published by
Fischer Black and Myron Scholes. The paper was first published in 1973.
The foundation for their research relied on work developed by scholars such
as Louis Bachelier, A. James Boness, Sheen T. Kassouf, Edward O. Thorp,
and Paul Samuelson. The fundamental insight of Black-Scholes is that the
option is implicitly priced if the stock is traded.
Merton and Scholes received the 1997 Nobel Prize in Economics for this
and related work. Though ineligible for the prize because of his death in
1995, Black was mentioned as a contributor by the Swedish academy.

Definition 12.15. A European stock option at time T with strike price
K is a ticket that you would buy from a trader for the right to buy a particular
stock at time T at a price K. If the stock prices, ST , at time T is greater
that K you could then buy the stock at price K and then instantly resell it for
(ST −K) dollars. If the ST < K, you would not turn in your ticket but would
loose whatever you paid for the ticket. So the pay off of the option is (ST −K)+ .

12.2.1 The question and the general setup

Question: What should be the price (q) of such a stock option?
To answer this question, we will use a simplified version of a financial market

which consists of only two assets; a no risk bond worth βt = β0e
rt (for some

r > 0) dollars per share at time t and a risky stock worth St dollars per share.
We are going to model St via a geometric “Brownian motion.”

Definition 12.16 (Geometric Brownian Motion). Let σ, µ > 0 be given
parameters. We say that the solution to the “stochastic differential equa-
tion,”

dSt
St

= σdBt + µdt (12.10)

with S0 being non-random is a geometric Brownian motion. More precisely,
St, is a solution to

St = S0 + σ

∫ t

0

SdB + µ

∫ t

0

Ssds. (12.11)

Notice that dS
S is the relative change of S and formally, E

(
dS
S

)
= µdt and

Var
(
dS
S

)
= σ2dt. Taking expectation of Eq. (12.11) gives,

ESt = S0 + µ

∫ t

0

ESsds.

Differentiating this equation then implies,

d

dt
ESt = µESt with ES0 = S0,

which yields, ESt = S0e
µt. So on average, St is growing or decaying exponen-

tially depending on the sign of µ.

Proposition 12.17 (Geometric Brownian motion). The stochastic differ-
ential Equation (12.11) has a unique solution given by

St = S0 exp
(
σBt +

(
µ− 1

2
σ2

)
t

)
.

Proof. We do not bother to give the proof of uniqueness here. To prove
existence, let us look for a solution to Eq. (12.10) of the form;

St = S0 exp (aBt + bt) ,

for some constants a and b. By Itô’s lemma, using d
dxe

x = d2

dx2 e
x = ex and the

multiplication rules, dB2 = dt and dt2 = dB · dt = 0, we find that
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dS = S (adB + bdt) +
1
2
S (adB + bdt)2

= S (adB + bdt) +
1
2
Sa2dt,

i.e.
dS

S
= adB +

(
b+

1
2
a2

)
dt.

Comparing this with Eq. (12.10) shows that we should take a = σ and b =
µ− 1

2σ
2 to get a solution.

Definition 12.18 (Holdings and Value Processes). Let (at, bt) be the hold-
ings process which denotes the number of shares of stock and bonds respectively
that are held in the portfolio at time t. The value process, Vt, of the portfolio,
is

Vt = atSt + btβt. (12.12)

Suppose time is partitioned as,

Π = {0 = t0 < t1 < t2 < · · · < tn = T}

for some time T in the future. Let us suppose that (at, bt) is constant on the
intervals, [0, t1] , (t1, t2], . . . , (tn−1, tn]. Let us write (at, bt) = (ai−1, bi−1) for
ti−1 < t ≤ ti, see Figure 12.3.

Fig. 12.3. A possible graph of either at or bt.

Therefore the value of the portfolio is given by

Vt = ai−1St + bi−1βt for ti−1 < t ≤ ti.

If our holding process is said to be self financing (i.e. we do not add any
external money to portfolio other than what was invested, V0 = a0S0 + b0β0,
at the initial time t = 0), then we must have2

2 Equation (12.13) may be written as

ai−1Sti + bi−1βti = Vti = aiSti + biβti for all i. (12.13)

That is to say, when we rebalance our portfolio at time ti, we are only use the
money, Vti , dollars in the portfolio at time ti. Using Eq. (12.13) at i and i− 1
allows us to conclude,

Vti − Vti−1 = ai−1Sti + bi−1βti −
(
ai−1Sti−1 + bi−1βti−1

)
= ai−1

(
Sti − Sti−1

)
+ bi−1

(
βti − βti−1

)
for all i, (12.14)

which states the change of the portfolio balance over the time interval, (ti−1, ti]
is due solely to the gain or loss made by the investments in the portfolio. The
Equations (12.13) and (12.14) are equivalent. Summing Eq. (12.14) then gives,

Vtj − V0 =
j∑
i=1

ai−1

(
Sti − Sti−1

)
+

j∑
i=1

bi−1

(
βti − βti−1

)
(12.15)

=
∫ tj

0

ardSr +
∫ tj

0

brdβr for all j. (12.16)

More generally, if we throw any arbitrary point, t ∈ [0, T ] , into our partition
we may conclude that

Vt = V0 +
∫ t

0

adS +
∫ t

0

bdβ for all 0 ≤ t ≤ T. (12.17)

The interpretation of this equation is that Vt−V0 is equal to the gains or losses
due to trading which is given by∫ t

0

adS +
∫ t

0

bdβ.

Equation (12.17) now makes sense even if we allow for continuous trading. The
previous arguments show that the integrals appearing in Eq. (12.17) should
be taken to be Itô – integrals as defined in Definition 12.10. Moreover, if the
investor does not have psychic abilities, we should assume that holding process
is adapted.

(ai − ai−1)Sti + (bi − bi−1)βti = 0.

This explains why the continuum limit of this equation is not Stdat+βtdbt = 0 but
rather must be interpreted as St+dtdat + βt+dtdbt = 0. It is also useful to observe
that

d (XY )t = Xt+dtYt+dt −XtYt
= (Xt+dt −Xt)Yt+dt +Xt (Yt+dt − Yt) ,

and hence there is not quadratic differential term when d (XY ) is written out this
way.

Page: 105 job: 180Notes macro: svmonob.cls date/time: 4-Jun-2008/13:17
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12.2.2 Pricing the Option

Now that we have set the stage we can now try to price the option. (We will
closely follow [1, p. 255-264.] here.) The guiding principle is:

Fundamental Principle: The price of the option, q := f (S0, T,K, r) , should
be equal to the amount of money, V0, that an investor would have to put
into the bond-stock market at time t = 0 so as there exists a self-financing
holding process (at, bt), such that

VT = aTST + bTβT = (ST −K)+ .

Remark 12.19 (Free Money). If we price the option higher than V0, i.e. q > V0,
we could make risk free money by selling one of these options at q dollars,
investing V0 < q of this money using the holding process (at, bt) to cover the
payoff at time T and then pocket the different, q − V0.

If the price of the option was less than V0, i.e. q < V0, the investor should
buy the option and then pursue the trading strategy, (−a,−b) . At time zero the
investor has invested q+ (−a0S0 − b0β0) = q−V0 < 0 dollars, i.e. he is holding
V0− q dollars in hand at time t = 0. The value of his portfolio at time T is now
−VT = − (ST −K)+ . If ST > K, the investor then sells his option to pay off
the debt he as accrued in his portfolio and if ST ≤ K, he does nothing since
his portfolio is worth zero dollars. Either way, he still has the V0 − q dollars in
hand.

If we have such a self-financing holding process (at, bt) , then {(as, bs)}t≤s≤T
is a self-financing holding process on [t, T ] such that VT = aTST + bTβT =
(ST −K)+ , therefore if the stock price is St at time t, the option price at this
time, f (St, T − t,K) , should be Vt, i.e. we have

Vt = f (St, T − t,K) . (12.18)

By Itô’s lemma (dropping K from the notation),

dVt = fx (St, T − t) dSt +
1
2
fx x (St, T − t) dS2

t − ft (St, T − t) dt

= fx (St, T − t)St (σdBt + µdt) +
[

1
2
fx x (St, T − t)S2

t σ
2 − ft (St, T − t)

]
dt

= fx (St, T − t)StσdBt

+
[
fx (St, T − t)Stµ+

1
2
fx x (St, T − t)S2

t σ
2 − ft (St, T − t)

]
dt

On the other hand from Eqs. (12.17) and (12.10), we know that

dVt = atdS + btβ0re
rtdt

= atSt (σdBt + µdt) + btβ0re
rtdt

= atStσdBt +
[
atStµ+ btβ0re

rt
]
dt.

Comparing these two equations implies,

at = fx (St, T − t) (12.19)

and

atStµ+ btβ0re
rt

= fx (St, T − t)Stµ+
1
2
fx x (St, T − t)S2

t σ
2 − ft (St, T − t) . (12.20)

Using Eq. (12.19) and

f (St, T − t) = Vt = atSt + btβ0e
rt

= fx (St, T − t)St + btβ0e
rt

in Eq. (12.20) allows us to conclude,

1
2
fx x (St, T − t)S2

t σ
2 − ft (St, T − t) = rbtβ0e

rt

= rf (St, T − t)− rfx (St, T − t)St.

Thus we see that the unknown function f should solve the partial differential
equations,

1
2
σ2x2fx x (x, T − t)− ft (x, T − t) = rf (x, T − t)− rxfx (x, T − t)

or equivalently,

ft (x, T − t) =
1
2
σ2x2fx x (x, T − t) + rxfx (x, T − t)− rf (x, T − t)

with f (x, 0) = (x−K)+ .

Fact 12.20 The solution to this equation is given by;

f (x, t) = xΦ (g (x, t))−Ke−rtΦ (h (x, t)) , (12.21)

where,

g (x, t) =
ln (x/K) +

(
r + 1

2σ
2
)
t

σ
√
t

,

h (x, t) = g (x, t)− σ
√
t,

and
Φ (x) := P (N ≤ x)

where N is a standard normal random variable.
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Theorem 12.21 (Option Price). Given the above setup, the “rational” price”
of the European call option is q = f (S0, T ) where f is given as in Eq. (12.21).
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