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0

Math 180C Homework Problems

The problems from Karlin and Taylor are referred to using the conventions.
1) II.1: E1 refers to Exercise 1 of section 1 of Chapter II. While I1.3: P4 refers
to Problem 4 of section 3 of Chapter II.

0.1 Homework #1 (Due Monday, April 7)

Exercise 0.1 (2nd order recurrence relations). Let a, b, ¢ be real numbers
with @ # 0 # ¢ and suppose that {y,} - solves the second order homoge-

neous recurrence relation: ~
ayn+1 + by, + cyp—1 = 0. (0.1)
Show:
1. for any A € C,
a4 AT AT = A" p () (0.2)

where p (\) = aA\® + b + c.
2. Let A\ = —bEvbi-dac VQZLMC be the roots of p and suppose for the moment that
b? — 4ac # 0. Show
Yn = ALY F AN
solves Eq. for any choice of A, and A_.
3. Now suppose that b? = 4ac and A\ := —b/ (2a) is the double root of p (\).
Show that
Yn = (Ao + Aln) Ag

solves Eq. (0.1 for any choice of Ag and A;. Hint: Differentiate Eq. (0.2)
with respect to A and then set A = Aq.
4. Show that every solution to Eq. (0.1)) is of the form found in parts 2. and 3.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {X,,} 2 be
the Markov chain with values in Z with transition probabilities given by

P(Xpy1=7x1X,=j4)=1/2foralln € Ny and j € Z.

Further let a,b € Z with a < 0 < b and

Top :=min{n: X, € {a,b}} and T, :=inf {n : X,, = b}.

We know by Proposition that Eg [T,] < oo from which it follows that
P(Typ<oo)=1foralla<0<b.

Exercise 0.2. Let wj = Pj (XTu,b = b) =P (XTa,b = b‘XO = j) .

1. Use first step analysis to show for a < j < b that

1
wj = 5 (Wj+1 +wj-1) (0.3)

provided we define w, = 0 and w;, = 1.
2. Use the results of Exercise [0.1] to show

Pj (X1, =b) =w; = ﬁ (j—a). (0.4)

3. Let
min{n : X,, = b} if {X,} hits b
Tb = .
00 otherwise
be the first time {X,} hits b. Explain why, {Xr, , =b} C {T}, < oo} and
use this along with Eq. (0.4) to conclude that P; (T} < oo) = 1 for all j < b.
(By symmetry this result holds true for all j € Z.)

Exercise 0.3. The goal of this exercise is to give a second proof of the fact that
P; (T, < 00) = 1. Here is the outline:

1. Let w; := P; (T < 00). Again use first step analysis to show that w; satis-

fies Eq. (0.3) for all j with w, = 1.
2. Use Exercise to show that there is a constant, ¢, such that

w;=c(j—0b)+1forall jeZ

3. Explain why ¢ must be zero to again show that P; (T} < co) = 1 for all
Jj € L.

Exercise 0.4. Let T =T, ; and u; :=E;T:=E[T|X, = j].



ii 0 Math 180C Homework Problems
1. Use first step analysis to show for a < j < b that

1
uj = 5 (i +uj-1) +1 (0.5)
with the convention that u, = 0 = wuy.
2. Show that
uj = Ag + Arj — j° (0.6)

solves Eq. (0.5 for any choice of constants Ay and Aj;.
3. Choose Ap and A; so that u; satisfies the boundary conditions, ug = 0 = uy.
Use this to conclude that

E;jT,p=—ab+ (b+a)j—j*>=—a(b—7)+bj—j> (0.7)

Remark 0.1. Notice that T, 5, T T = inf {n : X,, = b} as a | —o0, and so passing
to the limit as a | —oc0 in Eq. shows

E;T, = oo for all j <b.

Combining the last couple of exercises together shows that {X,,} is null - re-
current.

Exercise 0.5. Let T' = Tj,. The goal of this exercise is to give a second proof of
the fact and u; := E;T = oo for all j # b. Here is the outline. Let u; := E;T" €
[0, 00] = [0, 00) U {00} .

1. Note that uy = 0 and, by a first step analysis, that u; satisfies Eq. for
all j # b — allowing for the possibility that some of the u; may be infinite.

2. Argue, using Eq. , that if u; < oo for some j < b then u; < oo for all
i < b. Similarly, if u; < oo for some j > b then u; < oo for all 7 > b.

3. If u; < oo for all j > b then u; must be of the form in Eq. for some Ag
and A; in R such that u, = 0. However, this would imply, u; = E;T — —oo
as j — oo which is impossible since E;T° > 0 for all j. Thus we must
conclude that E;T" = u; = oo for all j > b. (A similar argument works if we
assume that u; < oo for all j < b.)

0.2 Homework #2 (Due Monday, April 14)
e IV.1 (p.208 -): E5, E8, P1, P5

o IV.3 (p. 243 ): E1, E2, E3,
o IV.4 (p.254 - ): E2
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0.3 Homework #3 (Due Monday, April 21)

Exercises [0.6] - [0.9] refer to the following Markov matrix:

(0.8)

S T W N =

We will let {X,,},°, denote the Markov chain associated to P.

Exercise 0.6. Make a jump diagram for this matrix and identify the recurrent
and transient classes. Also find the invariant destitutions for the chain restricted
to each of the recurrent classes.

Exercise 0.7. Find all of the invariant distributions for P.

Exercise 0.8. Compute the hitting probabilities, hs = P5 (X, hits {3,4}) and
he = Ps (X, hits {3,4}).

Exercise 0.9. Find lim,, .o, Ps (X,, = j) for j =1,2,3,4,5,6.

Exercise 0.10. Suppose that {T}};_, are independent exponential random
variables with parameters {q},_,, i.e. P (T} >t) = e~ %" for all ¢t > 0. Show
that T := min (71, 75,...,T,) is again an exponential random variable with

parameter ¢ = Y ;_, G-

Exercise 0.11. Let {T}};/_; be as in Exercise Since these are continuous
random variables, P (T}, = T;) = 0 for all k # j, i.e. there is no chance that any
two of the {T}};_, are the same.
Find
P(Ty <min(Ty,...,Ty)).

Hints: 1. Let S := min (T3,...,Ty), 2. write P (T} < min (Ts,...,T,)) =
E[l7,<s], 3. use Proposition above.

Exercise 0.12. Consider the “pure birth” process with constant rates, A > 0.
In this case S ={0,1,2,...} and if 7 = (7o, 71, 72, ... ) is a given initial distri-
bution. In this case one may show that 7 (¢), satisfies the system of differential
equations:
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7'T0 (t) == —)\71'0 (f)
7-T1 (t) = )\7T0 (t) — )\7’(1 (t)
7:1'2 (t) = )\771 (t) — Aﬂ'g (t)

fon () = M1 (£) — Ao (2)

Show that the solution to these equations are given by
7o (t) = moe™ M

71 (t) = e (moMt + mp)

2
o (t) = e~ M <7r0 ()\;‘) + At + 7r2>

[ At)*
T (t) = e (Zﬂ'n—k(k!) )

k=0

Note: There are two ways to do this problem. The first and more interesting
way is to derive the solutions using Lemma The second is to check that
the given functions satisfy the differential equations.

0.4 Homework #4 (Due Monday, April 28)

e VLI (p. 342 -): E1, E2, E5, P3, P5*, P&**
e VL2 (p. 353 -): E1, P2#**

* Please show that W1 and W2 - W1 are independent exponentially dis-
tributed random variables by computing P(W1 > t and W2 - W1 > s) for all
s,t>0.

**Hint: you can save some work using what we already have seen about two
state Markov chains, see the notes or sections VI.3 or VI.6 of the book.

*** Depending on how you choose to do this problem you may find Lemma
2.7 in the lecture notes useful.
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0.8 Homework #8 (Due Monday, June 2) il
0.5 Homework #5 (Due Monday, May 5)

e VI2 (p. 353 —): P2.3 (Hint: look at the picture on page 345 to find an
expression for the area in terms of the {Sy}n_; .)
VL3 (p. 365 -): E3.1, 3.3, P3.3, P3.4
VL4 (p. 377 -):E4.2, PA.1

Test #1 is on Friday May 9

0.6 Homework #6 (Due Monday, May 12)

VL4 (p. 377 -): P4.3
VL5 (p. 392 ): P5.2
VL6 (p. 405-): P6.2

0.7 Homework #7 (Due Monday, May 19)

VIL1 (p. 424-426): Ex. 1.2, 1.3; Pr. 1.1, 1.3
VIL2 (p. 431-432): Ex. 2.1
VIL3 (p. 435-437): Ex. 3.1*, 3.3%; Pr. 3.2

* Hint. Write the event {N (t) =n and W41 >t + s} purely in terms
of the Poisson process, N. Then use your knowledge of N in order to do the
computations. Use facts you know about Poisson processes and make use of Ex.
3.1.

0.8 Homework #8 (Due Monday, June 2)

VIL.3 (p. 435-437): Pr. 3.4

VILA (p. 445-447): Ex. 4.2, 4.3, 4.5; Pr. 4.1, 4.5

VIL5 (p. 455-457): Ex. 5.1; Pr. 5.1, 5.4

[VIII.1 (p. 487-491): Ex. 1.1, 1.4, 1.5; Pr. 1.1: These have been removed
from the assignment.]
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1

Independence and Conditioning

Definition 1.1. We say that an event, A, is independent of an event, B, iff
P (A|B) = P (A) or equivalently that
P(ANnB)=P(A)P(B).
We further say a collection of events {Aj}jeJ are independent iff
P(Njend;) =[] P(4))
Jj€Jo
for any finite subset, Jy, of J.
Lemma 1.2. If {Aj}jeJ is an independent collection of events then so is
{Aj’ A§}jgj :
Proof. First consider the case of two independent events, A and B. By
assumption, P (AN B) = P(A) P (B). Since
ANB*=A\B=A\(BNA4),
it follows that
PANB)=P(A)—P(BNA)=P(A)—P(A)P(B)
= P(A)(1-P(B)) =P (A) P(B).
Thus if {A, B} are independent then so is {A, B°}. Similarly we may show
{A°, B} are independent and then that {A°, B°} are independent. That is
P (A® N B%) = P(A°) P (B°) where ¢, is either “nothing” or “c.”

The general case now easily follows similarly. Indeed, if {4;,...,4,} C
{A;};c,; we must show that

P(AT*N---NA»)=P(AY) ... P(A:r)
where € = c or g5 = “ 7. But this follows from above. For example,
{41N---NA,_1,A,} are independent implies that {41 N---NA,_1, A%} are
independent and hence
PAN--NA,_1NAS)=P(AN---NA,_1)P(AS)
= P(A1)...P(Au1) P(AS).

Thus we have shown it is permissible to add A§ to the list for any j € J. ]

Lemma 1.3. If {A,},7 | is a sequence of independent events, then

0o N
P(M2An) = [ P(An) = Jim ] P(4n).
n=1 n=1

Proof. Since NY_, A, | N5, A, it follows that

N
P(Nili4,) = Nhinoop (ﬂrjyzlAn) = 1\}21100 P (An),
1

n=

where we have used the independence assumption for the last equality. [

1.1 Borel Cantelli Lemmas

Definition 1.4. Suppose that {A,} -, is a sequence of events. Let

{4,, i.0.}:= {i la, = oo}

denote the event where infinitely many of the events, A, occur. The abbrevia-
tion, “i.0.” stands for infinitely often.

For example if X,, is H or T depending on weather a heads or tails is flipped
at the n'® step, then {X,, = H i.0.} is the event where an infinite number of
heads was flipped.

Lemma 1.5 (The First Borell — Cantelli Lemma). If {A4,} is a sequence
of events such that Y~ P (A,) < oo, then

P ({A, i.0.}) = 0.

Proof. Since

(oo} oo
0> P(A) =) Els, =E
n=0 n=0

o
>
n=0



2 1 Independence and Conditioning

it follows that Y 14, < oo almost surely (a.s.), i.e. with probability 1 only
finitely many of the {A,} can occur. ]

Under the additional assumption of independence we have the following
strong converse of the first Borel-Cantelli Lemma.

Lemma 1.6 (Second Borel-Cantelli Lemma). If {A,}.. | are independent
events, then

Y P(A) =00 = P({A,io0})=1 (1.1)

Proof. We are going to show P ({4, i.0.}) = 0. Since,

{An i.O.}CZ{ilAn:OO} {ilAn<OO}

we see that w € {4, i.0.}° iff there exists n € N such that w ¢ A,, for all

m > n. Thus we have shown, if w € {4,, i.0.}° then w € B, := N>, AS, for

some n and therefore, {4,, i.0.}° = U, B,. As B, T {4, i.0.}° we have
P({A, i.0.}°) = lim P(B,).

But making use of the independence (see Lemmasand and the estimate,
1—2z < e 7, see Figure below, we find

P(B,) = P(Nm>nA%) = [[ P(4A5) = [] 1 - P(An)]

m>n m>n

< H e—P(A'm) —exp | — Z P(Am) — e ™ .

m>n m>n

]
Combining the two Borel Cantelli Lemmas gives the following Zero-One
Law.

Corollary 1.7 (Borel’s Zero-One law). If {A,} -, are independent events,
then
v JOou>  P(A,) <o
P (A, io.)= {1 IS P A = oo
Ezample 1.8. If {X,,}.-_, denotes the outcomes of the toss of a coin such that

n=1

P(X,=H)=p>0, then P(X,,=H io.)=1.
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T

Fig. 1.1. Comparing e”* and 1 — z.

Ezxample 1.9. If a monkey types on a keyboard with each stroke being indepen-
dent and identically distributed with each key being hit with positive prob-
ability. Then eventually the monkey will type the text of the bible if she
lives long enough. Indeed, let S be the set of possible key strokes and let
(81,...,8n) be the strokes necessary to type the bible. Further let {X,} ~
be the strokes that the monkey types at time n. Then group the monkey’s
strokes as Y := (XkN+1, e 7X(I<:+1)N) . We then have
N
P(Yi=(s1,...,sn)) = [[P(X; = ;) =:p>0.

Jj=1

Therefore,
oo
ZP(Yk = (Sla"'aSN)) =0
k=1

and so by the second Borel-Cantelli lemma,

P({Yy = (s1,....5n)} io. k) = 1.

1.2 Independent Random Variables

Definition 1.10. We say a collection of discrete random variables, {X;}
are independent if

jeJ

P(le = Il,...,Xjn = In) = P(le = 1‘1) P(X]n = SCn) (12)

for all possible choices of {j1,...,jn} C J and all possible values xy, of X, .
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Proposition 1.11. A sequence of discrete random variables, {X;} s in-

dependent iff
Elfi (X50) - fo (X))l = Ef1 (X5,)] - E[fn (Xj,)] (1.3)

for all choices of {j1,...,jn} C J and all choice of bounded (or non-negative)
functions, fi,..., fn. Here n is arbitrary.

jeJ’

Proof. (=) If {X;},_;, are independent then

Elf (X, X))l = Y. flan..,2) P(Xj, =21,...,Xj, =)
T1yeeeyTp
= > fl@..z) P(Xj =m1) - P(X;, = ).
L1y Tn

Therefore,

Elf1 (X5,) - fo (X5,)] =

LlyeeesTp

- <Zf1 (‘Tl)P(le I1)> (Zf(xn)P(Xjn :ajn)

Tn

=E[fi (X;)].. . Elfn (Xj,)]-
(<=) Now suppose that Eq. (1.3)) holds. If f; := d,, for all j, then

Elfi (X5) . fo (X)) = E0g, (Xj,) .- 00, (X)) = P(Xj, = 21,..., X, =)

while
E [fi (X;,)] = E [0, (Xj,)] = P (Xj,, = z1) -

Therefore it follows from Eq. 1| that Eq. l} holds, i.e. {Xj}jeJ is an
independent collection of random variables. [
Using this as motivation we make the following definition.

are in-

Definition 1.12. A collection of arbitrary random variables, {X;},_;,

dependent iff

]E[fl (le)fn (Xjn)] = E[fl (Xj1)] ]E[fn (Xj )]

for all choices of {j1,...
functions, f1,..., fn-

,int C J and all choice of bounded (or non-negative)

Fact 1.13 7o check independence of a collection of real valued random vari-
ables, {X;},c ;. it suffices to show

P(X;, <t1,...,X;, <tp) =P(Xj, <t1)...P(Xj, <t,)
for all possible choices of {j1,...,4n} C J and all possible t;, € R. Moreover,
one can replace < by < or reverse these inequalities in the the above expression.
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Z fl(xl)“-fn(xn)P(XJ& :ml)"'P(Xjn:xn)

)

macro:

1.3 Conditioning 3

One of the key theorems involving independent random variables is the
strong law of large numbers. The other is the central limit theorem.

Theorem 1.14 (Kolmogorov’s Strong Law of Large Numbers). Suppose
that {Xn}ff=1 are i.i.d. random variables and let S, == X; + ---+ X,,. Then
there exists ;1 € R such that %Sn — p a.s. iff Xy, is integrable and in which
case EX,, = p.

Remark 1.15. T E | X;1| = oo but EX| < oo, then %Sn — oo a.s. To prove this,

for M > 0 let
X, if X, <M
MifX,>M

and SM :=Y"" | XM Tt follows from Theorem that L SM — M .= EXM
a.s.. Since S,, > S,]% we may conclude that

X

:= min (X,,, M) = {

S, 1
liminf = > lim inf —Sfy =M as.

Since pM — oo as M — oo, it follows that liminf,, .. i

= oo a.s. and hence

that lim,, ..o % = 00 a.8.

1.3 Conditioning

Suppose that X and Y are continuous random variables which have a joint
density, p(x,y) (#,%) . Then by definition of p(x y), we have, for all bounded or
non-negative, f, that

E[f(X,Y)] = / / f (@) Py () dady. (1.4)

The marginal density associated to Y is then given by

py (y) = /P(x,y) (z,y)dz. (1.5)

Using this notation, we may rewrite Eq. (1.4) as:

E[f (X,Y)] = / [ / f (a,y) de py (y) dy. (1.6)

The term in the bracket is formally the conditional expectation of f (X,Y)
given Y = y. (The technical difficulty here is the P (Y = y) = 0 in this contin-
uous setting. All of this can be made precise, but we will not do this here.) At
any rate, we define,
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X,Y) (z,y)

E[f (X,Y)[Y =] =E[f (X,5) |V =] :=/f<x,y> e
in which case Eq. may be written as
B(f (X.Y)) = [EIf (XYY =3l oy (0)d, (L.7)

This formula has obvious generalization to the case where X and Y are random
vectors such that (X,Y) has a joint distribution, p(x yy. For the purposes of
Math 180C we need the following special case of Eq. (1.7)).

Proposition 1.16. Suppose that X andY are independent random vectors with
densities, px (x) and py (y) respectively. Then

B(f (X)) = [El (X)) oy (5) d. (18)

Proof. The independence assumption is equivalent of pixy)(z,y) =
px (z) py (y) . Therefore Eq. (1.4) becomes

E[f(X,Y)] Z//f(w,y)px (z) py (y) dzdy
=/[/f(x,y)px(w)daf py (y)dy
Z/]E[f(X,y)]-py (y) dy.

Remark 1.17. Proposition [[.16]should not be surprising based on our discussion
leading up to Eq. (|1.8). Indeed, because of the assumed independence of X and
Y, we should have

Ef(X,V)Y =yl =E[f (X,y)|Y =y| =E[f (X,y)].

Using this identity in Eq. (1.7)) gives Eq. (1.8]).



2

Some Distributions

2.1 Geometric Random Variables

Definition 2.1. A integer valued random wvariable, N, is said to have a geo-
metric distribution with parameter, p € (0,1) provided,

P(N=k)=p(1—p)"" forkeN.
If |s| < +&, we find

1—p°
E[N = p(1—p) sk =psy (1—p)T s
k=1 k=1
_ bs
1—s(1-p)
Differentiating this equation in s implies,
d S
E [NsN_l] = gm and
E[N(N-1)s""2] = (d)2 B
ds) 1—s(1l—p)
For s =1+ ¢, we have
ps _ p(+e) p(l+e) 1

I—s(l—p) 1-(+e)(1-p) p+e—c 1-55
[eS) k 2
€ € €
=N 14 + +0 (&
kZ:()p’“(1+e)’“ p(l+e)  p2(1+e¢) )
e(l—e+. g2
=1+ ( )+7+O(53)
p p
1
=144 2<—>+O 3
p > p (=)
Therefore,
d 1
ls=1 ps = — and

Hence it follows that
EN =1/p and

EN21/p_IE[N(N1)]_2<p12;>

which shows,

and therefore ,

iS]
bS]

]
)Ew"—‘
SRR

2.2 Exponential Times

Much of what follows is taken from [5].

Definition 2.2. A random variable T > 0 has the exponential distribution
of parameter \ € [0,00) provided, P(T >t) = e * for all t > 0. We will
write T ~ E (X) for short.

If A > 0, we have
P(T>t)=e M= / e Mdr
t

from which it follows that P (T € (t,t+dt)) = Al;>pe *dt. Let us further
observe that

o d o d
ET = —AT _ = —AT _ _ -1 _ 1 2.1
/0 tAe Tdr )\( dA)/O e dr /\( d)\>)\ A (2.1)

and similarly,
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oo k 00 k
k _ k — AT _ _ d — AT _ _ d =1 _ )k
ET" = t*Ae”MdT = A —d)\ e dr = A I AT = kIR
0 0

In particular we see that
Var (T) =222 - X\ 2 = \72 (2.2)
For later purposes, let us also compute,

S|
14N 14N

E[e™"] :/ e A Mdr = (2.3)
0

Theorem 2.3 (Memoryless property). A random variable, T € (0,00] has
an exponential distribution iff it satisfies the memoryless property:
P(T>s+tT>s)=P(T>t) forall s,t>0.

(Note that T ~ E (0) means that P (T > t) = " =1 for allt > 0 and therefore
that T = 00 a.s.)

Proof. Suppose first that T'= E (\) for some A > 0. Then

P(T>s+t) e tD
P(T>s+tT>s)= P> ) =%

—eM=P(T>1).

For the converse, let g (t) := P (T > t), then by assumption,

g(t+s)

e =P(T>s+tT>s)=P(T>t)=g(t)

whenever g (s) # 0 and ¢ (¢) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (¢t) = 0 for all ¢ > s. Thus it follows that

gt+s)=g(t)g(s) forall s,t>0.

Since T > 0, we know that ¢g(1/n) = P (T >1/n) > 0 for some n and
therefore, g (1) = g (1/n)" > 0 and we may write g (1) = e~ for some 0 < \ <
00.

Observe for p,q € N, g(p/q) = g(1/q)" and taking p = ¢ then shows,
e =g (1) = g(1/q)?. Therefore, g (p/q) = e~ /9 so that g (t) = e~ * for all
t € Q. Given r,s € Q4 and t € R such that » < ¢t < s we have since g is
decreasing that

eV = g() > g(t) > g(s) = e

Hence letting s T ¢ and 7 | ¢ in the above equations shows that g (t) = e=** for
all t € Ry and therefore T~ E (X). |
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Theorem 2.4. Let I be a countable set and let {T}.}, o, be independent random
variables such that Ty ~ E (q) with q := Y, c;qx € (0,00). Let T := infy T},
and let K =k on the set where T; > Ty, for all j # k. On the complement of all
these sets, define K = x where  is some point not in I. Then P (K = x) =0,
K and T are independent, T ~ E(q), and P (K = k) = q/q.

Proof. Let k € I and ¢t € Ry and A,, Cy I such that A, T I\ {k}, then

P(K=kT>t) ZP(ﬁﬁ,gk{Tj > T}, T >t) = lim P(ﬁjeAn {Tj > T}, T > t)

= lim H 1tj>t,c “Liy>edpn ({tj}je/ln) le_qktkdtk
€A,

n—oo [0700)Anu{k} j

where p,, is the joint distribution of {7} . So by Fubini’s theorem,

JEAR

P(K=FkT>t)= lim qke—Qkfkdtk/ T te500 - Losedin ({tj}jeAn)

n—oo t [07(X1)A" jeAn
o
= lim P (ﬂjeAn {Tj > tk}) qke_qkt’“dﬁk
n—oo J,

o0
= / P (ﬂj#k {Tj > T}) qre” *Tdr
t
oo oo
:/ Heququcefq“dT :/ Hefq"TdeT
bj#k t el
oo

:/ efzioilqudeT:/ e Tqpdr = %kefqt- (2.4)
¢ t

Taking t = 0 shows that P (K =k) = % and summing this on k shows
P(K €I)=1so that P (K = %) = 0. Moreover summing Eq. on k now
shows that P (T > t) = e 9" so that T is exponential. Moreover we have shown
that

P(K=kT>t)=P(K =k P(T>t)

proving the desired independence. [

Theorem 2.5. Suppose that S ~ E (\) and R ~ E (u) are independent. Then
fort > 0 we have

puP(S<t<S+R)=AP(R<t<R+5).

Proof. We have
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t
uP(S§t<S+R):,u/ Ae P (t< s+ R)ds
0

t
:u)\/ e MemHE9) g
0

t —(A—p)t
— ,u)\eﬂ”/ e~ A—m)sge — pre Mt ﬁ

0 A—p
efp,t _ 67)\15
S
which is symmetric in the interchanged of p and . [

Ezxample 2.6. Suppose 1T is a positive random variable such that
P(T>t+s|T>s)=P(T >t) for all s,t > 0, or equivalently

P(T>t+s)=P(T>t)P(T >s) forall s,t >0,

then P (T >t) = e~ for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
Fr(t):=P(T <t)=1—-e*V0 Since Fr (t) is piecewise differentiable, the
law of T, 1 := P o T~1, has a density,

dp (t) = Fp (t) dt = ae™ " 1;>odt.

Therefore,
(oo}
E iaT) _ —at i/\tdt: a =a(\).
[e"] /0 ae”%e — ()
Since a a
V(N =i———and i/ (\) = 2———
i’ (A) @ in? i (A) @ i)
it follows that
~7 ~ 11 2
ET = ©) —aland ET? = ¥ (0) = —
1 2 a?

and hence Var (T) = % — (1)2 =a 2

2.3 Gamma Distributions

Lemma 2.7. Suppose that {S; };.L:l are independent exponential random vari-
ables with parameter, 0. and W,, =S, +---+ Sp. Then
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2.3 Gamma Distributions 7

n—1 j
ot)’
PW,<t)=1-¢% ( ,') (2.5)
im0 I
ot o (Ot)
— e etz (ﬂ) (2.6)
j=n 7
and the distribution function for W, is
B 9t n—1
fw, (t) = fe=b ((n )_ ok (2.7)

Proof. Let Wy := 51 +--- + Sg. We then have,
¢
= / P (W1 + Sp <t]S, =s)0e%ds
0
t
= / P(W,_1+s <t)fe ds
0
¢
= / P(W,_1 <t—s)fe %ds.
0
We may now use this expression to compute P (W,, <t) inductively starting

with
PW,<t)=P(S; <t)=1-¢".

For n = 2 we have,

¢ t
P(Wy<t)= / (1 - efe(tfs)) e ds = 9/ (e7 — ™) ds
0

0
=1—e % _gte
=1—e % (1+6t) (2.8)
B B o) (01)3
e (D)
= ‘”Z%. (2.9)
n=2 :

Differentiating Eq. (2.8)) shows,

fw, (t) = %P(WQ <t)= % [1—e % (1+061)]

= 0e % (1 +6t) — e %0 = Ote™ .
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8 2 Some Distributions

For the general case, we find, assuming that Eq. (2.5) is correct,

t [ n—1 . j
PWy1 <t)= 9/ 1 — e 0=9) M =05 s
0 i =0 7!
t [ n—1 _ j
= 9/ e s 0t M ds
0 i s 7!
J —
=1-—e" 9@‘“2/9 (t—s)’ ds
0
Qi+l
—1—e 0t _pe ot
’ Z (j+ 1)

93+1tj+1

et ﬂ%z( _1_67915273@
=0

which completes the induction argument and proves Eq. (2.5]). Since,

e 0 i @

1 — efeteet — ;
P

we also have,

e (0t [ (0t
P(Wn < t) GtZ( .') o ot Z ( |)
j=0 J: j=0 J:
Lo (01)
>
Jj=n

which proves Eq. (2.6]). The distribution function for W,, now be computed by,

d d o [ (0t
o (O = POV <0 = G 1= | 325

- nlogjpi-1

Ny

Qi—14i—1

o (1)
z_; =g’ m

(j—1)!
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2.4 Beta Distribution

Lemma 2.8. Let

1
B(x,y) = / 71 (1 — )" dt for Rex,Rey > 0. (2.10)
0
Then @) ()
£ )
B(z,y) = ——%.
@)= Tty
Proof. Let u = % so that ¢ = u(1—1t) or equivalently, ¢ = s and
1—t=1t and dt = (1+u) " du.
0o r—1 y—1 2
1 1
B(z,y) = / 4 du
0 14+u 1+u 1+u
o0 1 Tty
:/ u®! ) du.
0 14+u
Recalling that
> —t zdt
I'(z):= et —.
O t
We find p p
> t °° t\“dt 1
/ e M= / et () —=—TI(2),
0 t 0 A) ot N
ie. ) ) - U
—Atyz
— = =
T (2) /0 © G
Taking A = (1 + u) and z = = + y shows
° 1 e dt
B(z,y =/ uw’li/ —(tu)tyety 2 du
(@) 0 I'(z+y) Jo
_ 1 /OO ﬂme—ttx-‘,—y /OO @uxe—ut
F(.T +y) 0 t 0 u
— 1 /OO ﬁa:efttm%»yl—1 (‘T)
I'(x+y) Jo t £
_ I'(x) /OO ﬁme*tt‘y _ F(x)F(y)
'(z+y) Jo t I'(z+vy)
|
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Fig. 2.1. Plot of t/ (1 —¢).

Definition 2.9. The 8 — distribution is

(-t

dlig., (1) =
Heo 0 = 5o y)
Observe that
L(z+1)I(;
/1th w=BlEtrly) T
i o - ()l -
and
I'(z+2)I"(y)

I'(z+y)






3

Markov Chains Basics

For this chapter, let S be a finite or at most countable state space and
p: S xS —][0,1] be a Markov kernel, i.e.

Zp(m,y) =1forallies. (3.1)
yeS

A probability on S is a function, 7 : S — [0,1] such that ) _om(z) = 1.
Further, let Ng = NU{0},

Q=% = {w=(s9,81,...):5; € S},
and for each n € Ny, let X,, : {2 — S be given by
X5 (80,81,--.) = Sn.

Definition 3.1. A Markov probabilit@,ﬂ P, on 2 with transition kernel, p,
is probability on §2 such that

P(Xn+1 = £Cn+1|X0 = .’ﬂo,Xl =T1,y... ,Xn = xn)
=P (Xn+1 = 2p1|Xn = 25) = p (T, Tnt1) (3.2)

where {x]}?:ll are allowed to range over S and n over No. The iden-

tity in Fq. is only to be checked on for those x; € S such that
P(XO :Io,Xl :SC17...,Xn :l’n) > 0.

If a Markov probability P is given we will often refer to {X,} ~, as a
Markov chain. The condition in Eq. (3.2]) may also be written as,

! The set £2 is sufficiently big that it is no longer so easy to give a rigorous definition
of a probability on (2. For the purposes of this class, a probability on (2 should
be taken to mean an assignment, P (A) € [0, 1] for all subsets, A C {2, such that
P(@)=0,P(£2)=1, and

P(A)=) P (An)

whenever A = U5 A, with A, N A, = 0 for all m # n. (There are technical
problems with this definition which are addressed in a course on “measure theory.”
We may safely ignore these problems here.)

E[f (Xns1) | Xo. X1, ..o, Xo] = E[f(Xng1) [ Xa] =D p(Xay) f(y)  (3.3)
yeS

for all n € Ny and any bounded function, f :.S — R.

Proposition 3.2. If P is a Markov probability as in Deﬁnition and 7 (x) :=
P(Xo =), then for alln € Ny and {z;} C S,

P(Xo=20,...,Xn=2pn) =7 (x0) 0 (T0,21) ... 0 (Tn_1,%n) - (3.4)

Conversely if = : S — [0,1] is a probability and {X,} _, is a sequence of
random variables satisfying Eq. for alln and {x;} C S, then ({X,.},P,p)
satisfies Definition [3.]]

Proof. ( = )We do the case n = 2 for simplicity. Here we have

P(Xo =120, X1 =21,Xo =22) = P(Xy = 22| Xo =20, X1 =21,) - P(Xog =20, X1 =2

=P (Xo =23 X1 =21,) - P(Xo =20, X1 = 21)
=p(z1,22) - P (X1 = 21|Xo = z0) P (X0 = 20)
= p(z1,22) - p (0, 71) 7 (20) -
(«<=) By assumption we have
P(Xn+1 = ’lj‘n+1|X0 = .IQ,Xl =T1y... ,Xn = Zn)

_ 7(330)]9(5507331)-~-p($n—17$n)p($n7$n+1) o
- _p(xnaxn+1)
7 (20) p (T0,21) - .. P (Tn—1, %)

provided the denominator is not zero. [ |

Fact 3.3 To each probability m on S there is a unique Markov probability, Py,
on 2 such that Py (Xo =x) = 7 (x) for all x € X. Moreover, Py is uniquely

determined by Eq. .
Notation 3.4 If

w =6 { o HE 20, 5)

we will write P, for P.. For a general probability, w, on S we have

P, = Z 7 (z) Py. (3.6)

zeS
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Notation 3.5 Associated to a transition kernel, p, is a jump graph (or jump
diagram) gotten by taking S as the set of vertices and then for x,y € S, draw
an arrow from x to y if p(x,y) > 0 and label this arrow by the value p (x,y) .

Ezample 3.6. Suppose that S = {1,2,3}, then

123

01071
P=11/201/2]2

100 |3

has the jump graph given by

10_———%.2

Fig. 3.1. A simple jump diagram.

Ezxample 3.7. The transition matrix,

12 3

1/41/21/47] 1
P=1{1/2 0 1/2]2

1/31/31/3| 3

is represented by the jump diagram in Figure |3.2

If g : S x S — [0,1] is another probability kernel we let p-¢q: S x S — [0, 1]
be defined by

(p-q) (z,y) = Zp (x,2)q(z,y). (Matrix Multiplication!) (3.7)
zeS
n - times
We also let p" :=p-p----- p. If m: S — [0,1] is a probability we let (7 - q) :

S — [0,1] be defined by
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QO/iI\ -

| o >0 2 ,._4/‘___&_7\92
3 1 L
3 P 3

3

Vi
¢
L
3 o
©
1L
3

Fig. 3.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

(m-q) () == > _7(2)q(z,y)

eSS

which again is matrix multiplication if we view 7 to be a row vector. It is easy
to check that 7 - ¢ is still a probability and p - ¢ and p™ are Markov kernels.

A key point to keep in mind is that a Markov process is completely specified
by its transition kernel, p : S x S — [0, 1]. For example we have the following
method for computing P, (X, = y).

Lemma 3.8. Keeping the above notation, P, (X, =y) = p" (z,y) and more
generally,

Pr(Xp=y) =Y w(2)p" (z,y) = (-p") ().
zeS

Proof. We have from Eq. (3.4]) that

Pe(Xp=y)= Y, PeXo=w0,X1=21,...,Xn 1 =2n1,Xn=1)

= > S(@)p(@o,m1). P (@2, Tn1)p (Tn-1,y)

0,y Tn—1E€S

= Z p(xvl'l)~~~p(xn72vxn71)p(xn717y) :pn (l',y)
T1,e,Tn—1€S

The formula for P, (X,, = y) easily follows from this formula. [ ]

Definition 3.9. We say that 7 : S — [0,1] is a stationary distribution for p,

if
P.(X,=2z)=mn(z) forallz €S andn € N.
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Since P (X, =x) = (m-p™) (x), we see that 7 is a stationary distribution
for p iff wp™ = p for all n € N iff 7p = p by induction.

Ezxample 3.10. Consider the following example,

123
1/21/2 0 1
P=1|0 1/21/2]2
1/21/2 0 |3

with jump diagram given in Figure We have

2

1/21/2 0 % % %
PP=|0 1/21/2| = 131
1/21/2 0 151
and X
1/21/2 0 % % %
PP=10 1/21/2| = -
1/21/2 0 111
To have a picture what is going on here, imaging that 7 = (w1, 72, ms3)

represents the amount of sand at the sites, 1, 2, and 3 respectively. During
each time step we move the sand on the sites around according to the following
rule. The sand at site j after one step is ), m;p;;, namely site ¢ contributes p;;
fraction its sand, m;, to site j. Everyone does this to arrive at a new distribution.
Hence 7 is an invariant distribution if each m; remains unchanged, i.e. 7 = 7 P.
(Keep in mind the sand is still moving around it is just that the size of the piles
remains unchanged.)
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As a specific example, suppose m = (1,0, 0) so that all of the sand starts at
1. After the first step, the pile at 1 is split into two and 1/2 is sent to 2 to get
m = (1/2,1/2,0) which is the first row of P. At the next step the site 1 keeps
1/2 of its sand (= 1/4) and still receives nothing, while site 2 again receives
the other 1/2 and keeps half of what it had (= 1/4 + 1/4) and site 3 then gets
(1/2-1/2=1/4) so that w3 = [} 3 1| which is the first row of P2 It turns

421
out in this case that this is the invariant distribution. Formally,
1/21/2 0
[131]] 0 1/21/2| =[f351]
1/21/2 0

In general we expect to reach the invariant distribution only in the limit as
n — oo.

Notice that if 7 is any stationary distribution, then 7 P™ = 7 for all n and
in particular,

m=mP?= [7T1 2 7T3}

ENTEENEINTE
—
=
ol
=
[

Ll Lt L
(SIS NI

Hence H % H is the unique stationary distribution for P in this case.

Ezample 8.11 (§3.2. p108 Ehrenfest Urn Model). Let a beaker filled with a par-
ticle fluid mixture be divided into two parts A and B by a semipermeable
membrane. Let X,, = (# of particles in A) which we assume evolves by choos-
ing a particle at random from A U B and then replacing this particle in the
opposite bin from which it was found. Suppose there are N total number of
particles in the flask, then the transition probabilities are given by,

0 ifj¢{i—1i+1}

pij = P(Xnt1 =7 Xn=1)= ]\;L{z.lf J=i—-1
o if j=1+1.
For example, if N = 2 we have
012
01010
(pij) = [1/201/2 | 1
010 |2
and if N = 3, then we have in matrix form,
01 2 3
0 1 0 010
(ps;) = 1/3 0 2/3 0 |1
Pii) =10 2/3 0 1/3]2
0 0 1 0 (3
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14 3 Markov Chains Basics
In the case N = 2,

1
I
[
1

010 104

1/201/2| =1]010

010 1207 ]

0107 o107

1/201/2| =|503%

010 | 1010 ]
and when N = 3,

[0 1.0 071* [Lfo2o
1/302/30 | |0Z02
02/301/3 |[20Z%0

| 0 0 1 0 | 10203

[0 1.0 01> [oZIo2
1/302/30 | |4 020
0 2/3 0 1/3 020 £

2 7

0 0 1 0 20210

0 1 0 071 [0.0075 00 025]
1/3 0 2/3 0 - |0.25 0.0 0.75 0.0
0 2/3 0 1/3| ~ | 0.0 0.75 0.0 025

L0 0 1 0 | 10.25 0.0 0.75 0.0 |

0 1 0 071%° 7[02500075 00]
1/3 0 2/3 0 . | 0.0 0.75 0.0 0.25
0 2/3 0 1/3| ~ |0.25 0.0 0.75 0.0

|0 0 1 0 | | 0.0 0.75 0.0 0.25 |

01 0 071" T0.2500 075 0.0

1/3 0 2/3 0 - | 0.0 0.75 0.0 0.25
0 2/3 0 1/3 0.25 0.0 0.75 0.0
0 0 1 0 0.0 0.75 0.0 0.25

We also have
-11 0 07" [-11 0 0
L1209 1 -12 0
_n\fr— 1| 3 3 — 3
(PI)—0§—1§ |0 211
00 1 -1 00 % -1

and
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1

Nul((P—I)“): g

1

Hence if we take, m = % [1 33 1] then
0O 1 0 O
1 1/3 0 2/3 0 | 1 B
wP—§[1331] 0 2/3 0 1/3 _§[1331]_w

0O 0 1 O

is the stationary distribution. Notice that

0.0 0.75 0.0 0.25

1 (P% 4 P) =~ 11025 0.0 075 00 | 1
2

0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
21 0.0 0.75 0.0 0.25 2 1025 0.0 0.75 0.0

0.25 0.0 0.75 0.0 0.0 0.75 0.0 0.25

0.125 0.375 0.375 0.125 m
0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125

SR

3.1 First Step Analysis

We will need the following observation in the proof of Lemma below. If T
is a Ng U {oco} — valued random variable, then

E,T =E, i lner = i Eolper = i P, (T >n). (3.8)
n=0 n=0

n=0

Now suppose that S is a state space and assume that S is divided into two
disjoint events, A and B. Let

T:=inf{n>0:X, € B}

be the hitting time of B. Let Q := (p(2,9)), yca and R := (p(2,Y)),ca. yeB
so that the transition “matrix,” P = ( (x,yﬁ ¢ may be written in the
following block diagonal form;

)m,ye

AB
2100
P= = .
* ok * % | B
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Remark 3.12. To construct the matrix @ and R from P, let P’ be P with the
rows corresponding to B omitted. To form @ from P’, remove the columns
of P’ corresponding to B and to form R from P’, remove the columns of P’
corresponding to A.

Ezample 8.13. Suppose that S = {1,2,...,7}, A ={1,2,4,5,6}, B = {3,7},
and
1 2 3 4 5 6 7

[0 1/2 0120 0 011
1/3 0 1/3 0 1/3 0 0 |2
0 1/20 0 0 1/2 0 |3
P=1{1/3 0 0 0 1/3 0 1/3]|4.
01/3 0 1/3 0 1/3 0 |5
0 0120 1/2 0 0 |6
L0 0 0 1 0 0 0]7
Following the algorithm in Remark leads to:
1 2 3 45 6 7
[0 1/2 0 1/20 0 01]1
1/3 0 1/3 0 1/3 0 0 |2
P=|1/30 0 0 1/3 0 1/3]4,
0 1/3 0 1/3 0 1/3 0 |5
| 0 0 1/201/20 0|6
1 2 4 5 6 3 7
[0 1/21/2 0 0 ]1 0 071
/3 0 0 1/3 0 |2 1/3 0 |2
Q=11/30 0 1/3 0 |4, andR=| 0 1/3|4
0 1/31/3 0 1/3|5 0 0|5
| 0 0 0 1/2 0 |6 1/2 0 |6
Lemma 3.14. Keeping the notation above we have
EZT:ZZQH (z,y) forallxz € A, (3.9)

n=0ycA
where E, T = oo is possible.
Proof. By definition of T' we have for x € A and n € Ny that,
P.(T>n)=P,(Xq,...,X,, € A)

= Z p(x,l‘l)p(l‘l,iEQ)--~p(xn—lazn)

1,0, €A

=> Q" (z,y). (3.10)

yeA
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3.1 First Step Analysis 15
Therefore Eq. (3.9) now follows from Eqgs. (3.8) and (3.10]). ]

Proposition 3.15. Let us continue the notation above and let us further as-
sume that A is a finite set and

P, (T < ) =P (X, € B for somen) >0V z € A. (3.11)

Under these assumptions, E,T < oo for all x € A and in particular
P, (T < 00) =1 for all x € A. In this case we may may write Eq. (@ as

(EIT)xeA = (I - Q)il 1 (3'12)
where 1 (z) =1 for all x € A.

Proof. Since {T'>n} | {T =00} and P, (T =00) < 1 for all z € A it
follows that there exists an m € N and 0 < o < 1 such that P, (T'>m) < «
for all z € A. Since P, (T'>m) =3 4, Q™ (z,y) it follows that the row sums
of @™ are all less than o < 1. Further observe that

DM@y = > QM@ 2)Q" (zy) =D Q" (z,2) Y Q" (zy)

yeA y,zEA z€EA yeA

< ZQm(x,z)a§a2.

z€EA

Similarly one may show that 3 _, QF™ (x,y) < oF for all k € N. Therefore

from Eq. (3.10) with m replaced by km, we learn that P, (T > km) < oF for
all £ € N which then implies that

ZQ"my (T>n)<atﬂ for all n € N,
yeA

where [t| =m € Ny if m <t <m+1, i.e. |t] is the nearest integer to ¢ which
is smaller than t. Therefore, we have

E,T = ZZQ"wy gz

o0
l 1
. E a =m——- < Q.
1—«
n=0ycA =0

So it only remains to prove Eq. (3.12)). From the above computations we see
that Y Q™ is convergent. Moreover,

T-Q> @ =3 - @=r
n=0 n=0 n=0

and therefore (I — Q) is invertible and $°°° Q" = (I — Q)" . Finally,
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16 3 Markov Chains Basics

I-Q) 1= Q1= > Q"@y) | =(ET),eq
n=0

n=0ye4 z€A

as claimed. [ ]

Remark 3.16. Let {X,,},° , denote the fair random walk on {0,1,2,...} with 0
being an absorbing state. Using the first homework problems, see Remark
we learn that E;T" = oo for all ¢ > 0. This shows that we can not in general
drop the assumption that A (A = {1,2,...} in this example) is a finite set the
statement of Proposition [3.15

For our next result we will make use of the following important version of
the Markov property.

Theorem 3.17 (Markov Property II). If f (zo, 1, ...) is a bounded random
function of {xn},— o C S and g (zo,...,x,) is a function on S™*1, then

Er [f (Xn, Xng1s ) 9 (Xo, o, Xo)] = Er [(Ex,, [f (Xo, X1, )]) 9 (Xo, - -, Xi))]

Eﬂ- [f (anXn+1; .. ) ‘XO =20, --- 7Xn = ,CCn] == ]Ewnf(Xo,Xl, .. ) (314)

for all xo,...,x, € S such that Py (Xo = zo,..., X = @) > 0. These results
also hold when f and g are non-negative functions.

Proof. In proving this theorem, we will have to take for granted that it
suffices to assume that f is a function of only finitely many {x, }. In practice,
any function, f, of the {z,}, -, that we are going to deal with in this course
may be written as a limit of functions depending on only finitely many of
the {x,}. With this as justification, we now suppose that f is a function of
(zo,-..,2m) for some m € N. To simplify notation, let F' = f (X, X1,...Xm),
0. F = f(Xn, Xnt1,- - Xntm), and G = g (Xo, ..., Xp).

We then have,

By [0,F - G

= Z 7 (20) P (70, 21) -+ P (Tntm—1, Tmin) [ (Tns Tyt - Tnym) 9 (Tos - - -

{wJ}m+nCS

and

Z P(Tns Tng1) ... p (xn-i-m—la mm-&-n) f (xm Tn+ls--- mn-&-m) g (an ey Tp)
{lj};n:tﬁrlcs

p (l’n, anrl) ...p ($n+m717 mern) .
g( 05 9 ”L) Z |: f(xn,mn+17.mn+m)

{z; };n:tzil cs

=g(xo,...,2n)Es, [ (Xoy.. ., Xm) =g (x0,...,2n)Ey, F.
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Combining the last two equations implies,
E, [0nF - G]
= Z T (z0) p(zo, 1) ... p(Tn—1,2pn) g (20, ..., Tn)Ey F
{z;}jLCS

=E,[g(Xo,...,Xn) Ex, F]

as was to be proved.
Taking g (Yo, .-, Yn) = ag.yo - - - Oz . 15 Eq. (3.13]) implies that

Eﬂ— [f(Xn,Xn+1,...) : XO = $07...,Xn = l'n]
:}E%LF' Pﬂ- (XO = Zg, - ..,Xn = l‘n)
which implies Eq. (3.14). The proofs of the remaining equivalence of the state-
ments in the Theorem are left to the reader. [
Here is a useful alternate statement of the Markov property. In words it

states, if you know X,, = x then the remainder of the chain X, X;,41, Xn42, ...
forgets how it got to x and behave exactly like the original chain started at z.

Corollary 3.18. Letn € Ny, x € S and 7 be any probability on S. Then relative
to Pr (+|Xn =), {Xntrtyso is independent of {Xo, ..., Xn} and {Xnik}ys
has the same distribution as {X}7—, under Py.

Proof. According to Eq. (3.13),

Erlg (X0, Xn) f (X Xns1,...) : X =
E X,) 0, (X ) (X, Xng1, )]
Ew[g(Xm ,Xn) 6 (Xn)Ex, [f (X0, X1,...)]]

=Er [9(Xo,..., Xn) I(Xn) 2 f (X0, X1,..)]]
Er[9(Xo,. .., Xn) : Xp = 2] By [f (X0, X1,...)].

Dividing this equation by P (X,, = x) shows,

Ex [g (XOa~~~3Xn)f(Xn7Xn+17"') |Xn = .’K]
=Er[g(Xo,...,Xn) | Xy = 2] E; [f (X0, X1,...)]. (3.15)

Taking g = 1 in this equation then shows,
E:[f (Xn, Xnt1,.- )| Xn =2] =E, [f (X0, X1,...)]. (3.16)

This shows that {X,ix};>, under Pr(-[X,, =) has the same distribution

as {Xy},—, under P, and, in combination, Eqs. (3.15) and (3.16) shows

{Xntk}pso and {Xo,..., X, } are conditionally independent on {X,, =z}. m
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Theorem 3.19. Let us continue the notation and assumption in Proposition
and further let g : A — R and h : B — R be two functions. Let g :=
(9(2))zea and h:= (h(y)),cp to be thought of as column vectors. Then for all
T €A,

E, Z g(Xn)] = '™ component of (I — Q) 'g (3.17)
n<T
and for allz € A and y € B,
Pe(Xr=y) = [(I-Q)'R], . (3.18)
Taking g =1 (where 1 (x) =1 for all x € A) in Eq. shows that
E,T = the ' component of (I — Q)1 (3.19)

in agreement with Eq. . If we take g (z") = §, (2') for some x € A, then

E. [Z 9(X S 6,(x

n<T n<T

= E,, [number of visits to y before T

and by Fq. it follows that
E,. [number of visits to y before hitting B] = (I — Q)I_yl . (3.20)
Proof. Let

0<n<T

for z € A where G := Zogn<T9(Xn)' Then

=> playE

yeS

u(z) = Eq [E, [G]X0]] 2 (G X1 =y].

For y € A, by the Markov propertyﬂ in Theorem we have,

2 In applying Theorem we note that when Xo = z, T (Xo,X1,...) > 1,
T(X1,X2,...) =T (Xo,X1,...) — 1, and hence

01 Z 9(Xn)
0<n<T(X0p,X1,...)

= Z 9(Xny1) = Z 9(Xn+1)

0<n<T(X1,X2...) 0<n<T (X0, X1,...)—1

- Y X=X g(X)= Y g(x)

1<n+1<T(X0,X1,...) 1<n<T(X0,X1,...) 1<n<T
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E,[GIXi=yl=g(2) +E; | Y g(Xa)|Xi=y

=g@) +Ey | Y 9(Xn)| =g(@)+uy)
0<n<T

and for y € B, E, [G| X1 = y] = g (z) . Therefore

)= paylg@ +u@]+ Y pl@y g
yEA yEB

x)—l—Zp(x,y)u

yeEA

In matrix language this becomes, u = Qu+g and hence we have u = (I—-Q)~*
which is precisely Eq. .

To prove Eq. (3.18), let w (z) := E, [k (X7)]. Since X is the location of
where {X, } 7, first hits B if we are given X € A, then X7 is also the location
where the sequence, {X, } _, first hits B and therefore X7 0 6; = X7 when
Xo € A. Therefore, working as before and noting now that,

=Y E (W(X7)| X1 = y)p (,y) + Y Eal

h(X7)| X1 =y)p(z,y)

yEA yEB

= Zp(x,y)E h(XT> © Hl‘Xl = y) + Zp(x’y) Ew<h<XT>|X1 = y)
yeA yeB

=Y p(@y E,(h(X7))+ > p(2,9) h(y)
yeEA yeEB

=> p@y)wy)+ > p,y)h

yeA yeB

= (Qw + Rh),.
Writing this in matrix form gives, w =Qw + Rh which we solve for w to find
that w = (I — Q)" 'Rh and therefore,
(B [A(X7)]),eq = 2 — component of (I —Q)™'R (h(y)),ep
Given yg € B, the taking h (y) = d,,,, in the above formula implies that
P, (X7 =1yo) = 2™ — component of (I —Q)~!
—[r-rH,,

R (5y07y)yeB
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18 3 Markov Chains Basics

Remark 3.20. Here is a story to go along with the above scenario. Suppose
that g (z) is the toll you have to pay for visiting a site x € A while h (y)
is the amount of prize money you get when landing on a point in B. Then

E. [Zogn <T g(Xn)} is the expected toll you have to pay before your first exit
from A while E, [h (X7)] is your expected winnings upon exiting B.

The next two results follow the development in Theorem 1.3.2 of Norris [5].

Theorem 3.21 (Hitting Probabilities). Suppose that A C S as above and
now let H := inf {n : X,, € A} be the first time that {X,} —, hits A with the
convention that H = oo if X, does not hit A. Let h; := P, (H < o0) be the
hitting probability of A given Xog = i, v; = ngAp(i,j) for alli ¢ A, and
{Qij =D (i,j)}i’ng . Then

hi=P;(H < 00) = Lica+ Liga y_[Q"]; (3.21)
n=0

and h; may also be characterized as the minimal non-negative solution to the
following linear equations;

hi=1i4fie€ A and
hi=Y_p@i,5)hj = > Qi,j)hj+vi for alli € A°. (3.22)

JjES JEA®

Proof. Let us first observe that P, (H = 0) =
any n € N

P, (Xo € A) = 1;c4. Also for

{H:n}:{X()¢A""7Xn71¢A7Xn€A}

and therefore,

Pi(H=n)=1Liga > > pli,j1)p(r.j2) P Gn-2:in-1) P (Jn-1,Jn)
J1yeesdn— 1€AL.7n€A

= Liga [Q"10],.

Since {H < oo} = U2 {H = n}, it follows that

o
Pi(H <o00)=lica+ Y _ liga [Q" 0],

n=1

which is the same as Eq. (3.21)). The remainder of the proof now follows from
Lemma below. Nevertheless, it is instructive to use the Markov property
to show that Eq. (3.22) is valid. For this we have by the first step analysis; if
1 ¢ A, then
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h; = P;(H < c0) szy (H < 00| X1 =)
JES
=Y p(,5) P (H<o00)=> pli,j)hy
JjES jeS
as claimed. u

Lemma 3.22. Suppose that QQ;; and v; be as above. Then h = fozo Q™v is
the unique mon-negative minimal solution to the linear equations, x = Qx + v.

Proof. Let us start with a heuristic proof that h satisfies, h = Qh + v.
Formally we have 7 Q™ = (1 — Q) ' sothat h = (1 — Q)" v and therefore,
(1-Q)h = v, ie. h = Qh + v. The problem with this proof is that (1 — Q)
may not be invertible.

Rigorous proof. We simply have

thh:iQ"vfiQ"v:v.
n=0 n=1

Now suppose that x = v + Qx with x; > 0 for all 7. Iterating this equation
shows,

r=v+Q(Qr+v)=v+Qu+ Q%
r=v+Qu+Q*(Qr+v)=v+Qu+Q*+ Q%

x—ZQ"v+QN+1x>ZQ"

n=0

where for the last inequality we have used [QN 'HasL, >0 for all N and i € A°.
Letting N — oo in this last equation then shows that

N 00
r> lim Y Q=) Q"v=h
n=0 n=0

so that h; < z; for all 1. [ |

3.2 First Step Analysis Examples

To simulate chains with at most 4 states, you might want to go to:

http://people.hofstra.edu/Stefan_ Waner/markov/markov.html
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3.2 First Step Analysis Examples 19

Ezxample 3.23. Consider the Markov chain determined by

1 2 3 4 State Transition Matrix State Transition Diagram
0 1/31/31/3]| 1 TO
()]
p_ |3/41/81/8 0 |2 1 2 3 4 h @
0 0 1 03 - np [3 B [ N
0 0 0 1 |4 R 2[5 /e /e | @
0 N
Notice that 3 and 4 are absorbing states. Let h; = P; (X, hits 3) fori = 1,2, 3,4. ME I | | |
Clearly hs = 1 while hy = 0 and by the first step analysis we have [+ | I | \
hl _ th n lhg n 1h4 _ 1h2 4 1 Iterations: [1000 Start State:l Speed:[10 (1-10). .
. _gh +?h +?h _gh +‘I)h +1 Runl EraseEvery'mingl
2T TR TR TR
i.e. Results
1 1
hy = §h2 + § State 1 Hits | State 2 Hits | State 3 Hits | State 4 Hits
3 1 1 i [205 [ fi5s
h2 = Ehl + §h2 + é State 1 Prob. |State 2 Prob. |State 3 Prob. |State 4 Prob.
hich b I [o047053 [p2048 [o-17083 [p15385
which have solutions,
. B B 8 Fig. 3.3. In this run, rather than making sites 3 and 4 absorbing, we have made
Py (Xn hits 3) = hy = 15 0.533 33 them transition back to 1. I claim now to get an approximate value for P; (X, hits 3)
3 we should compute: (State 3 Hits)/(State 3 Hits + State 4 Hits). In this example we

Py (X, hits 3) = hy = 5 will get 171/(171 + 154) = 0.526 15 which is a little lower than the predicted value of

.. . . . . . 0.533. You can try your own runs of this simulator.
Similarly if we let h; = P; (X,, hits 4) instead, from the above equations with

hg =0 and h4 = 1, we find

hy = %hQ + é 3.2.1 A rat in a maze example Problem 5 on p.131.
_3 1 Here is the maze
he = Zhl + §h2 1 2 3(food)
which has solutions, 4 5 6
. 7(Shock)
Py (X, hits 4) = Iy = 15 and in which the rat moves from nearest neighbor locations probability being 1/D
) 2 where D is the number of doors in the room that the rat is currently in. The
Py (X, hits 4) = hy = 5 transition matrix is therefore,

Of course we did not really need to compute these, since

Py (X, hits 3) + P, (X, hits 4) = 1 and
Py (X,, hits 3) + Py (X,, hits 4) = 1.

The output of one simulation is in Figure [3.3] below.
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20 3 Markov Chains Basics

1 -2-20 o0
1 1
'\ 5 2 ~ 3 3L 050
I-Q=|-3 0 1 —3 0 |,
TR EERE
0 0 O —% 1
N —=5 7 6 12456
& 155117
4
! LT IF
7 I-Q) = gzzlg 4,
2112215
illli 6
Fig. 3.4. Rat in a maze. 3 2273
1 5511 1] 177 1
823,1 it
1 1 2
-1 844,13 iy
1 2 3 45 6 7 (]_Q)1:§ZZ1§1:?4,
[0 120 1/20 0 011 §112§ 1 215
/30 1/3 0 1/3 0 0 |2 s 3313]|1] $16
0120 0 0 1/2 0 |3
and
P=|130 0 0 1/3 0 1/3|4.
0 1/3 0 1/3 0 1/3 0 |5 1@1%;1% [0 0
0 0 1/2 0 1/2 0 0 |6 §§§1§ 1/3 0
00 0 1 0 0 0]7 I-Q 'R=|231111] 0 1/3
] ] S1123 0 0
and the corresponding jump diagram is given in Figure [3.4] 11 12 1/2 0
Given we want to stop when the rat is either shocked or gets the food, we -3 2280t
first delete rows 3 and 7 from P and form ) and R from this matrix by taking ) 37
columns 1,2,4,5,6 and 3,7 respectively as in Remark This gives, @ % 1
s 12
1 2 45 6 S
0 1/21/2 0 0 |1 ]%2%5
1/3 0 0 1/3 0 |2 | 5 516
Q=11/30 0 1/3 0 |4
0 1/31/3 0 1/3|5 Hence we conclude, for example, that E47 = 4 and Py (X7 = 3) = 5/12 and
0 0 01/2 0 |6 the expected number of visits to site 5 starting at 4 is 1.
d Let us now also work out the hitting probabilities,
an
37 h; = P; (X, hits 3 = food before 7 = shock),
0 0|1
1/3 0 |2 in this example. To do this we make both 3 and 7 absorbing states so the jump
R=1]0 1/3|4 diagram is in Figure [3.2.1] Therefore,
0 0 |5
1/2 0 |6
Therefore

)
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1
h6:§(1+h5)

1
h5:§(h2+h4+h6)

1
h4:§h1

1
h2:§(1+h1+h5>

1

The solutions to these equations are,

4 2 2 5 7

—  ho==, hy=—, hs ==, hg = —.
9 s 102 3 ; 14 9 s 15 9 y 16 9
Similarly if h; = P; (X,, hits 7 before 3) we have hy =1, h3 = 0 and

hy =

1

h6:§h5

1
h5:§(h2+h4+h6)

1
h4=*(h1+1)

2

1
hgzg(h1+h5)

1
hlzi(h2+h4)

whose solutions are

hy =
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(3.23)

(3.24)

3.2 First Step Analysis Examples 21

Notice that the sum of the hitting probabilities in Egs. (3.23]) and (3.24) add
up to 1 as they should.

3.2.2 A modification of the previous maze

Here is the modified maze,

1 2 3(food)
4 )
6(Shock)

The transition matrix with 3 and 6 made into absorbing stateﬂ is:

1 2 3 4 5 6

T 0 1/2 0 1/20 0171
1/3 0 1/3 0 1/3 0 |2
p_ 0O 0 1 0 0 0 (3
“ 1130 0 0 1/31/3]4
01/201/20 0 |5
00 0 0 0 1 ]6
1 2 4 5 36
[0 1/21/2 0 |1 0 071
o_ Y30 0l b 130 2
=113 0 0 1/3|4 =10 1/3[4
0 1/21/2 0 |5 0 05
1 245
SHHF
-1 _
[1552]5
36
11
117
Lo BT
(- 'R=[11|2,
? 3
3215

3 Tt is not necessary to make states 3 and 6 absorbing. In fact it does matter at all
what the transition probabilites are for the chain for leaving either of the states 3
or 6 since we are going to stop when we hit these states. This is reflected in the
fact that the first thing we will do in the first step analysis is to delete rows 3 and
6 from P. Making 3 and 6 absorbing simply saves a little ink.
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(L—Q)"!

— =

6

So for example, Py(X7r = 3(food)) = 1/3, E4(Number of visits to 1) = 1,
Es(Number of visits to 2) = 3/2 and E1T = EsT = 6 and E;T = E,T = 5.

ot



4

Long Run Behavior of Discrete Markov Chains

For this chapter, X,, will be a Markov chain with a finite or countable state
space, S. To each state i € S, let

R;:=min{n >1: X,, =i} (4.1)

be the first passage time of the chain to site i, and

M; = Z Ix,=i (4.2)

n>1
be number of visits of {X,,},, to site i.

Definition 4.1. A state j is accessible from i (written ¢ — j) iff P;(R; <
o0) > 0 and i <« j (i communicates with j) iff i — j and j — i. No-
tice that i — j iff there is a path, i = x9,%1,...,Tn = Jj € S such that
p(zo,z1)p (21, 22) ... D (Tp_1,Ts) > 0.

Definition 4.2. For each i € S, let C; :=={j € S :i < j} be the communi-
cating class of i. The state space, S, is partitioned into a disjoint union of its
communicating classes.

Definition 4.3. A communicating class C C S is closed provided the proba-
bility that X, leaves C' given that it started in C is zero. In other words P;; = 0
for alli e C and j ¢ C. (Notice that if C is closed, then X, restricted to C is
a Markov chain.)

Definition 4.4. A state i € S is:

1. transient if P;(R; < 00) < 1,
2. recurrent if P;(R; < c0) = 1,
a) positive recurrent if 1/ (E;R;) > 0, i.e. E;R; < o0,
b) null recurrent if it is recurrent (P;(R; < 00) =1) and 1/ (E;R;) =0,
i.e. ER; = oo.

We let S¢, Sy, Spr, and Sy, be the transient, recurrent, positive recurrent,
and null recurrent states respectively.

The next two sections give the main results of this chapter along with some
illustrative examples. The remaining sections are devoted to some of the more
technical aspects of the proofs.

4.1 The Main Results

Proposition 4.5 (Class properties). The notions of being recurrent, positive
recurrent, null recurrent, or transient are all class properties. Namely if C C S
is a communicating class then either all i € C' are recurrent, positive recurrent,
null recurrent, or transient. Hence it makes sense to refer to C' as being either
recurrent, positive recurrent, null recurrent, or transient.

Proof. See Proposition [£.13] for the assertion that being recurrent or tran-
sient is a class property. For the fact that positive and null recurrence is a class
property, see Proposition below. [

Lemma 4.6. Let C C S be a communicating class. Then
C not closed = C is transient
or equivalently put,
C is recurrent = C' is closed.

Proof. If C is not closed and ¢ € C, there is a j ¢ C such that i — j, i.e.
there is a path i = zo, 21, ..., 2, = j with all of the {x; };.L:O being distinct such
that

Pi (XQ = i,Xl =T1,y... 7Xn—1 = .1‘7,_17X7, =Ty = ]) > O

Since j ¢ C' we must have j - C and therefore on the event,
A= {XO :i,Xl :$17...,Xn_1 :llin_l,Xn =Tn :j},

X, ¢ C for all m > n and therefore R; = oo on the event A which has positive
probability. [

Proposition 4.7. Suppose that C C S is a finite communicating class and
T=inf{n>0:X, ¢ C} be the first exit time from C. If C is not closed, then
not only is C transient but E;T < oo for alli € C. We also have the equivalence
of the following statements:

1. C is closed.
2. C 1is positive recurrent.
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3. C is recurrent.

In particular if # (S) < oo, then the recurrent (= positively recurrent) states
are precisely the union of the closed communication classes and the transient
states are what is left over.

Proof. These results follow fairly easily from Proposition Also see
Corollary [£:20] for another proof. [

Remark 4.8. Let {X,,}, denote the fair random walk on {0,1,2,...} with 0
being an absorbing state. The communication classes are {0} and {1,2,...}
with the latter class not being closed and hence transient. Using Remark [0.1] it
follows that E;T" = oo for all i > 0 which shows we can not drop the assumption
that # (C) < oo in the first statement in Proposition Similarly, using the
fair random walk example, we see that it is not possible to drop the condition
that # (C) < oo for the equivalence statements as well.

Ezxample 4.9. Let P be the Markov matrix with jump diagram given in Figure
In this case the communication classes are {{1,2},{3,4},{5}}. The latter
two are closed and hence positively recurrent while {1, 2} is transient.

- 5 05
L

]
VI 79 ™\ L

2 2
%

3

Warning: if C C S is closed and # (C) = oo, C could be recurrent or it
could be transient. Transient in this case means the walk goes off to “infinity.”
The following proposition is a consequence of the strong Markov property in

Corollary
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Proposition 4.10. If j € S, k € N, and v : S — [0,1] is any probability on S,
then
P,(M; >k)=P,(R; <o) P; (R; <o) ", (4.3)

Proof. Intuitively, M; > k happens iff the chain first visits j with proba-
bility P, (R; < oo) and then revisits j again k£ — 1 times which the probability
of each revisit being P; (R; < co0). Since Markov chains are forgetful, these
probabilities are all independent and hence we arrive at Eq. . See Propo-
sition below for the formal proof based on the strong Markov property in

Corollary [
Corollary 4.11. If j € S and v : S — [0,1] is any probability on S, then

P,(Mj=00)=P,(X,=7jto)=P,(Rj <0)ljes,, (4.4)
Pj (Mj = OO) = Pj (Xn :] ZO) = leSra (45)
= ) P, (R; < o0)
E,M; = v(i) P = J , (4.6)
J nz::l zEZS 1-— Pj (R] < OO)
and
= P;(R; < 0)
E;M;: = Pl = J 4.
7 ; 9T TZ P (R, < o0) (4.7)

where the following conventions are used in interpreting the right hand side of

Egs. (4.6) and ([4.7): a/0 := oo if a > 0 while 0/0 := 0.
Proof. Since
{M; >k} | {M; =00} ={X,, =jio. n}ask?T oo,
it follows, using Eq. (4.3), that
P, (Xp =jio.n)= lim P,(M; > k) = P,(R; < o) lim Pj(R; < o)kt

(4.8)
which gives Eq. . Equation follows by taking v = ¢; in Eq. and
recalling that j € S, iff P; (R; < oo) = 1. Similarly Eq. is a special case
of Eq. with v = §;. We now prove Eq. .

Using the definition of M; in Eq. (4.2),

E,M; =B, Y 1x,—j=> E,lx, -

n>1 n>1
oo
=X PXn=0) =2 > v(i)Fj
n>1 n=1jes
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which is the first equality in Eq. (4.6]). For the second, observe that
oo (oo} oo
S PM; > k) =) Eydazk =E, Y le<n, =E M.
k=1 k=1 k=1

On the other hand using Eq. (4.3]) we have

oo

S _ P,(R; < 00)
P,(M; > k) P,(R; < o0)Pj(R; < co)k™1 = 20 = =/
kzzl /; ’ Y 1= Pj(R; < o0)
provided a/0 := oo if @ > 0 while 0/0 := 0. |

It is worth remarking that if j € Sy, then Eq. (4.6) asserts that
E, M; = (the expected number of visits to j) < oo

which then implies that M, is a finite valued random variable almost surely.
Hence, for almost all sample paths, X,, can visit j at most a finite number of
times.

Theorem 4.12 (Recurrent States). Let j € S. Then the following are equiv-
alent;

1. j is recurrent, i.e. P; (R; < o00) =1,
2. Pj (X, =ji.0.n)=1,
3

Proof. The equivalence of the first two items follows directly from Eq. (4.5)
and the equivalent of items 1. and 3. follows directly from Eq. (4.7)) with ¢ = j.
|

Proposition 4.13. If i «—— j, then i is recurrent iff j is recurrent, i.e. the
property of being recurrent or transient is a class property.

Proof. Since ¢ and j communicate, there exists o and § in N such that
Pg >0 and P} > 0. Therefore

n+a+pG o pn pb
ZPM‘ EZPUPJJPN
n>1 n>1

which shows that > -, P/, = oo = }_ o, Pj} = ooc. Srmllarly Yo Pl =
00 =) 5 PJ; = 0. Thus using item 3. of Theorem it follows that iis
recurrent iff j is recurrent. ]
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Corollary 4.14. If C' C S, is a recurrent communication class, then
Pi(Rj <o0)=1 foralli,jeC (4.9)
and in fact
Pi(Njec{Xn=j i.0.n})=1 forallie C. (4.10)

More generally if v : S — [0,1] is a probability such that v (i) = 0 for i ¢ C,
then
P,(Njec{X,, =j i.0.n})=1 foralliecC. (4.11)

In words, if we start in C' then every state in C' is visited an infinite number of
times. (Notice that P; (R; < co) = Pi({X,},,~, hits j).)

Proof. Let i,j € C' C S, and choose m € N such that Pj > 0. Since
P;j(M; = 00) =1 and
{X,, =i and X,, = j for some n > m}

= Z {Xm:i7Xm+l #ja"anfl #]aXn:]}7

n>m
we have
P;;-L = Pj(Xm = Z) = Pj(Mj = OO7Xm = ’L)
< Pj(X,, =4 and X,, = j for some n > m)

— Z Pi(Xon =0, Xpng1 # Gy X1 # J, Xn = )

n>m
- Z PrP(X1# j, s Xnome1 # J, Xnem = j)
n>m
=D PPy =n—m)=Pjy Pi(R; = k)
n>m k=1
= Pji bi(R; < o0). (4.12)

Because P} > 0, we may conclude from Eq. that 1 < P;(R; < 00), i.e.
that P (R < oo) 1 and Eq. ( is proved Feedlng this result back into
Eq. with v = §; shows PZ(M =o0) =1forall 4,j € C and therefore

P(ﬁjec {M;=00}) = 1forallice C’ which is Eq. - Equation
follows by multiplying Eq. - 4.10)) by v (i) and then summing on i € C. ]

Theorem 4.15 (Transient States). Let j € S. Then the following are equiv-
alent;

1. j is transient, i.e. P; (R; < 00) < 1,
2. Pj (X, =] to. n)—O and
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26 4 Long Run Behavior of Discrete Markov Chains
oo
3. Eij = Zn:l PJZ < 0.

Moreover, if i € S and j € S, then

— limy, oo P} =0
Y P =EM; <oco = {R-(anji.o. n) = 0. (4.13)

and more generally if v: S — [0,1] is any probability, then

oo
lim,,— 00 Py (Xn Jj)=0
Z =E,M; <0 = {PV(X o m) =0, (4.14)
Proof. The equivalence of the first two items follows directly from Eq. (4.5)
and the equivalent of items 1. and 3. follows directly from Eq. (4.7)) with i = j.
The fact that E;M; < oo and E, M; < oo for all j € S; are consequences of Eqgs.

and ( respectlvely The remaining implication in Egs. and (4.6 .

follow from the first Borel Cantelli Lemma [1.5] and the fact that — term in
a convergent series tends to zero as n — 0. ]

Corollary 4.16. 1) If the state space, S, is a finite set, then S, # (. 2) Any
finite and closed communicating class C C S is a recurrent.

Proof. First suppose that #(S) < oo and for the sake of contradic-
tion, suppose S, = 0 or equivalently that S = S;. Then by Theorem [4.15]

limy, oo Pj; =0 for all 4,7 € S. On the other hand, des =1 so that
1= lim > P}=> lim Pi=>% 0=0,
nHOOjES e n—oo e

which is a contradiction. (Notice that if S were infinite, we could not interchange
the limit and the above sum without some extra conditions.)

To prove the first statement, restrict X, to C to get a Markov chain on a
finite state space C. By what we have just proved, there is a recurrent state
i € C. Since recurrence is a class property, it follows that all states in C' are
recurrent. [ |

Definition 4.17. A function, = : S — [0,1] is a sub-probability if
Yies™(J) < 1. We call 37, g7 (j) the mass of m. So a probability is a sub-
probability with mass one.

Definition 4.18. We say a sub-probability, = : S — [0,1], is invariant if
P =m, ie.

ZT{' i)pij =m(j) foralljeS. (4.15)

€S

An invariant probability, 7 : S — [0,1], is called an invariant distribution.
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Theorem 4.19. Suppose that P = (p;;) is an irreducible Markov kernel and
T = ﬁ for all j € S. Then:

1. For all i,j € S, we have

N
.1
ngnooﬁz_%un:j:nj P, — a.s. (4.16)
and
1 N
i, 2 P (Ko =) ZNIE%ONZ =m. (417)

2. If u: S —1[0,1] is an invariant sub-probability, then either y (i) > 0 for all
i or (i) =0 for all .

3. P has at most one invariant distribution.

4. P has a (necessarily unique) invariant distribution, p: S — [0,1], iff P is
positive recurrent in which case (i) = 7 (1) = ﬁ >0 forallieS.

(These results may of course be applied to the restriction of a general non-
irreducible Markov chain to any one of its communication classes.)

Proof. These results are the contents of Theorem [4.45| and Propositions
[£.46] and below. m

Using this result we can give another proof of Proposition [£.7}

Corollary 4.20. If C' is a closed finite communicating class then C' is positive
recurrent. (Recall that we already know that C is recurrent by Corollary )

Proof. For 7,5 € C, let

1 1
i i 5 R0 = gl
as in Theorem [4:21] Since C is closed,
jec
land therefore,
1 N
ST S SO DAL NS 3 Syte
jecC jeCn=1 n=1j€C

Therefore m; > 0 for some j € C and hence all j € C' by Theorem with S
replaced by C. Hence we have E;R; < 00, i.e. every j € C' is a positive recurrent
state. -
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Theorem 4.21 (General Convergence Theorem). Let v : S — [0,1] be
any probability, i € S, C be the communicating class containing i,

{X,, hits C'} :={X,, € C for some n},

and P, (X, hits C
M= (V) = ”(]E"_—RZ_S), (4.18)
where 1/00 := 0. Then:
1. P, —a.s.,
al 1
ngnooﬁ Z Xp=1i — E R {X" hits C'} (419)
2.
1 & 1<
NliinooNZZV(j)Pﬂ - JJEHOONZP” (X, =1i) =m, (4.20)
n=1j €S n=1

3. 7 is an invariant sub-probability for P, and
4. the mass of m is

> o= > P, (X, hits C) < 1. (4.21)
€S C': pos. recurrent

Proof. If ¢ € S is a transient site, then according to Eq. (4.14),
P, (M; < 00) =1 and therefore limy_, oo % EnNzl 1x,—; = 0 which agrees with

Eq. (4.19) for i € S;.

So now suppose that ¢ € S, and let C' be the communication class containing
i and
T=inf{n>0:X, €C}
be the first time when X, enters C. It is clear that {R; < oo} C {T < o0}.

On the other hand, for any j € C, it follows by the strong Markov property

(Corollary 4.42)) and Corollary that, conditioned on {T" < oo, X7 = j},
{X,} hits i i.0. and hence P (R; < oo|T < 00, X1 = j) = 1. Equivalently put,

P(Ri< o0, T<oo,Xpr=35)=P(T <o00,Xpr=4j) forall j€C.
Summing this last equation on j € C' then shows
P(R;<>)=P(R; <00, T<00)=P(T <)

and therefore {R; < o0} = {T < o0} modulo an event with P, — probability
zZero.

Another application of the strong Markov property (in Corollary ,
observing that Xp, = ¢ on {R; < oo}, allows us to conclude that the
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P, (-|R; < ) = P, (-|]T < 0) — law of (Xg,, Xg,+1, XRr,+2,...) is the same
as the P; — law of (X, X1, Xa,...). Therefore, we may apply Theorem to
conclude that

1
]\}gnooﬁzlxn_z = hm —ZIXR Wi = gR P, (|R; < ) — a.s.

On the other hand, on the event {R; = oo} we have limy_.oc & ij:l 1x, =i =
0. Thus we have shown P, — a.s. that

1 1
]\}EHOO N Z Ix,=i = E, R == 1lRr,<00 = mlT«m = ml{Xn hits C'}

which is Eq. (4.19)). Taking expectations of this equation, using the dominated
convergence theorem, gives Eq. (4.20)).
Since 1/E;R; = oo unless i is a positive recurrent site, it follows that

Zmaj = Z TPy = Z P, (X, hits C) ZE = (4.22)

€S 1€ Spr C': pos-rec. eC

As each positive recurrent class, C, is closed; if i € C and j ¢ C, then P;; = 0.
Therefore ZzEC’ ER R Pj is zero unless j € C’ So if j ¢ Spr wehave Y . o™i Pyj =
0=m;andif j € Spr, then by Theorem [I.19)

1
eCc .
; E; R Li EjRj
Using this result in Eq. (4.22)) shows that
. 1
€S C': pos-rec. )
so that 7 is an invariant distribution. Similarly, using Theorem [£.19] again,
. 1 .
Y mi= > P,(X,hits C) e = > P, (X, hits C).

€S C': pos-rec. iec C': pos-rec.

Definition 4.22. A state i € S is aperiodic if P} > 0 for all n sufficiently
large.

Lemma 4.23. If i € S is aperiodic and j < i, then j is aperiodic. So being
aperiodic is a class property.
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28 4 Long Run Behavior of Discrete Markov Chains
Proof. We have

Pn+m+k Z P’n Pm Pk > P’n PmPk‘

Jywt w,zt z, 5 = L gt dit i,y
w,z€S

Since j «— 1, there exists n,k € N such that PJ; > 0 and PlkJ > 0. Since

P > 0 for all large m, it follows that Pﬂ*m% > 0 for all large m and
therefore, j is aperiodic as well. [

Lemma 4.24. A state i € S is aperiodic iff 1 is the greatest common divisor
of the set,
{neN: P (X, =14 =P} >0}.

Proof. Use the number theory Lemma below. [

Theorem 4.25. If P is an irreducible, aperiodic, and recurrent Markov chain,
then .
lim P} = ——. 4.23
nivoe E;(R;) (423)
More generally, if C' is an aperiodic communication class, then

lim P, (X, =1):= lim Zy(j) Pji =P, (R; < 00) =%~ forallie C.

n—o0 £
jeSs

1
E;(R;)

Proof. I will not prove this theorem here but refer the reader to Norris [5,
Theorem 1.8.3] or Kallenberg |3, Chapter 8]. The proof given there is by a
“coupling argument” is given. ]

4.1.1 Finite State Space Remarks

For this subsection suppose that S = {1,2,...,n} and P;; is a Markov matrix.
Some of the previous results have fairly easy proofs in this setting.

Proposition 4.26. The Markov matriz P has an invariant distribution.
Proof. If 1:= [1 1... 1], then P1 = 1 from which it follows that
0=det(P —1)=det(P"—1).

Therefore there exists a non-zero row vector v such that P"v" = % or equiv-
alently that v P = v. At this point we would be done if we knew that v; > 0 for
all 4 — but we don’t. So let 7; := |v;| and observe that

n n
<D Ikl Pri < mPra.
k=1 k=1

7‘[‘2 = |I/’L| =
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We now claim that in fact # = 7 P. If this were not the case we would have
T < ZZ:1 7, Pr; for some ¢ and therefore

0<z:71'1<§:§:71'k]%ﬂ ZZT(;@P;@Z‘:ZT(}C
k=1

i=1 k=1 k=1i=1
which is a contradiction. So all that is left to do is normalize 7; so Z?:l =1

and we are done. n

Proposition 4.27. Suppose that P is irreducible. (In this case we may use
Proposition to show that E; [R;] < oo for all i,j.) Then there is precisely
one invariant distribution, m, which is given by m; = 1/E;R; > 0 for alli € S.

Proof. We begin by using the first step analysis to write equations for
E; [R;] as follows:

E; | ZIE [Rj| X1 = k] Py = Y _Ei[Rj| X1 = k] Py, + Pij1
k#j
_Z Ey [R;] + 1) Pip + Pij1 _ZEk ] Py, + 1.
k#j k#j
and therefore,
1= PuBi[Ry] + 1. (4.24)
k£

Now suppose that 7 is any invariant distribution for P, then multiplying Eq.
(4.24) by m; and summing on ¢ shows

Zﬂ—i]Ei [Rj] - Zﬂ'i Z PikEk [RJ] + Zﬂ'zl
i=1 1=1

i=1  k#j
= Zﬂ'kEk: [R;]+1
k#j
from which it follows that m;E; [R;] = 1. |

We may use Eq. - to compute E; [R;] in examples. To do this, fix j and
set v; := E; ;. Then Eq. states that v = POy + 1 where P(J) denotes
P with the jth — column replaced by all zeros. Thus we have

=1
(E:R))"_, = (I - PU)) 1, (4.25)
ie.
E\R; ) 1
| = (1-P0) ] (4.26)
E,R; 1
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4.2 Examples

Ezample 4.28. Let S = {1,2} and P = {(1)(1)

In this case P?" = I while P?*t! = P and therefore lim,, . P™ does not

L8
/\.
K_/ l
4

with jump diagram in Figure

have a limit. On the other hand it is easy to see that the invariant distribution,
7, for Pis m = [1/2 1/2] . Moreover it is easy to see that

2111

P+pP?+---+PY 1[11] _ [«
N 2 ISR

] - (3] -[0a]) L]0
] - (03] -[2a]) L] ]

so that indeed, 71 = 1/E; Ry and 7 = 1/EaRs.

and

Ezample 4.29. Again let S = {1,2} and P = [(1) (1)]

Figure In this case the chain is not irreducible and every = = [a b] with

a+b=1and a,b > 0is an invariant distribution.

Ezample 4.30. Suppose that S = {1,2,3}, and

s

|

—
—=~ O

[\

o

—
O~ O

[\
W N
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with jump diagram in
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i

4
ﬂ-."d—ﬁ.z
D) 3

°

3

Fig. 4.1. A simple jump diagram.

has the jump graph given by Notice that P > 0 and P, > 0 that P is

“aperiodic.” We now find the invariant distribution,

1
Nul (P — I)" = Nul

— N N

1
-11 1
1 -10 ] =R
1
01

Therefore the invariant distribution is given by

1
=z [221].
Let us now observe that
ri 1
i 0 1
% 2
PP= |10
(010
ro0101° % % 0
P =11/201/2| = %5%
| 100 303
i 1400234 §§a 120054 0.39941 0.400 39 0.200 20
P20 = % {54 1290%04 = 1 0.40039 0.399 41 0.200 20
| 22 2 oL 0.400 39 0.400 39 0.199 22
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30 4 Long Run Behavior of Discrete Markov Chains

Let us also compute Eq R3 via,

EqR3 100 010 1 4
EoRs| = 010 —1[1/200 1| =13
EsRs 001 1 00 1 5
so that
1 1
EsRs 5

Ezxample 4.31. The transition matrix,

12 3

1/41/21/47 1
P=1{1/2 0 1/2]2

1/31/31/3 |3

is represented by the jump diagram in Figure This chain is aperiodic. We

g
QO/iL\ =

]
Vi 28 2 | o ._4/1—.__&—) 2
% Vi %
L 4 an
3 o 3 Jj 3
o
) g

L
3

Fig. 4.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

find the invariant distribution as,

tr

[1/41/21/4 100]
Nul(P—I)"=Nul| [1/2 0 1/2| = |010
|1/31/31/3 001 ]

R 11 [

= Nul %-15 =R|2|=R|5

L1 3 3 1] 6
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S [656] =[0.35294 0.29412 0.35294] .

17
In this case

(1/41/21/47"°  [0.35298 0.29404 0.352 98
PO =11/2 0 1/2| = |0.35289 0.29423 0.35289
11/31/31/3 ] 0.35295 0.2941 0.35295

Let us also compute
E1 R, ] 1001 T[1/401/47\ ' [1 %
EyRo| = | [010] —|1/201/2 1= |4
EsR; | 001 ] 1/301/3 1 2

so that
1/E2R2 = 5/17 = T9.

Ezxample 4.32. Consider the following Markov matrix,

12 3 4
1/41/41/41/47 1
1/4 0 0 3/4|2
1/21/2 0 0 |3
0 1/43/4 0

with jump diagram in Figure Since this matrix is doubly stochastic, we
know that m = i [1 11 1} . Let us compute E3zR3 as follows

P =

=~

-1

Eq1R3 1000 1/41/401/4 1
EoRsz| 0100 1/4 0 03/4 1
EsRs| 0010 1/21/20 0 1
E4R3 0001 0 1/40 0 1

[ 50

55

— | 17

4

30

L 17

so that EsR3 = 4 = 1/m4 as it should. Similarly,

E1 R, 1000 1/401/41/47\ ' [1
EoRy| 0100 _ 1/40 0 3/4 1
EsRy| 0010 1/20 0 0 1
E4sRs 0001 0 03/4 0 1

[ 54

17

| 4

— | 4

5

L17
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A
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3

Fig. 4.3. The jump diagram for P.

L
Z

and again Eo Ry =4 = 1/ms.

Example 4.33 (Analyzing a non-irreducible Markov chain). In this example we
are going to analyze the limiting behavior of the non-irreducible Markov chain
determined by the Markov matrix,

12345
01/20 0 1/2]1
1/2 0 0 1/2 0 |2
P=|0 0 1/21/2 0 |3.
0 0 1/32/3 0 |4
00 0 0 1|5

Here are the steps to follow.

1. Find the jump diagram for P. In our case it is given in Figure

2. Identify the communication classes. In our example they are {1,2},
{5}, and {3,4} . The first is not closed and hence transient while the second
two are closed and finite sets and hence recurrent.

3. Find the invariant distributions for the recurrent classes. For {5}
it is simply 7rf{5} = [1] and for {3,4} we must find the invariant distribution
for the 2 x 2 Markov matrix,
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i
2

(JA

TEONG
—‘i

o/\>c
3 _J__ ’-j

Fig. 4.4. The jump diagram for P above.

34
Q= 1/21/2]3
- 11/32/3|4
We do this in the usual way, namely

(=)= ([o3] - [11]) -=[3]

so that 71'{{3’4} = % [2 3]

. We can turn 7} (3.4} and 77{5} into invariant distributions for P by padding

the row vectors with zeros to get

T343 =[002/53/50]
77{5}2 [00001].

The general invariant distribution may then be written as;

T = an(sy + Bz 4y with o, >0 and a + 3 = 1.

. We can now work out the lim,, ., P". If we start at site ¢ we are considering

the i*t — row of lim,, o, P™. If we start in the recurrent class {3,4} we will
simply get 73 4) for these rows and we start in the recurrent class {5} we
will get m(5). However if start in the non-closed transient class, {1,2} we
have
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32 4 Long Run Behavior of Discrete Markov Chains
first row of lim P" = P; (X,, hits 5) 75y + P1 (X, hits {3,4}) 734}

o (4.27)

and
second row of nllm P" = P, (X, hits 5) w5y + P> (X, hits {3,4}) mg3.43.
o (4.28)

6. Compute the required hitting probabilities. Let us begin by comput-
ing the fraction of one pound of sand put at site 1 will end up at site 5, i.e.
we want to find hy := P; (X, hits 5). To do this let h; = P; (X, hits 5) for
1=1,2,...,5. It is clear that hs = 1, and hg = hy = 0. A first step analysis
then shows

N~ N —

1
h1 = 5 - Py (X, hits 5) + 3 P5 (X, hits 5)

1
ha = 5 - Pu (X, hits 5) + 3 Py (X, hits 5)

which leads tdl

1 1
hi = =h -
1 22+2
1 1
ho = =h =0.
2 21+20

The solutions to these equations are

2 1
P1 (Xn hits 5) = h1 = § and P2 (Xn hits 5) = h2 = g

Since the process is either going to end up in {5} or in {3,4}, we may also
conclude that

Example 4.34. Note: If we were to make use of Theorem we would have not
set hs = hy = 0 and we would have added the equations,

1 1
hs = §h3 + §h4

1 2
ha = ghs + §h47
to those above. The general solution to these equations is ¢ (1, 1) for some ¢ € R and
the non-negative minimal solution is the special case where ¢ = 0, i.e. hg = ha = 0.
The point is, since {3,4} is a closed communication class there is no way to hit 5
starting in {3,4} and therefore clearly hs = hs = 0.
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1 2
Py (X, hits {3,4}) = 3 and P (X, hits {3,4}) = 3
7. Using these results in Eqs. (4.27) and (4.28)) shows,

. n 2 1
first row of nlLHoloP = 571'{5} + gw{3’4}
=[00& £2/3]
= [0.0 0.0 0.13333 0.2 0.666 67]

and
. 1 2
second row of lim P" = 37{5} + 3734}
1 2
27[00001}4—5[002/53/50]

3
=[0045 5 5]
= [0.0 0.0 0.266 67 0.4 0.33333] .

These answers already compare well with

9.7656 x 10~* 0.0 0.13276 0.200 24 0.666 02

0.0 9.7656 x 10~* 0.266 26 0.399 76 0.333 01
PO = 0.0 0.0 0.4 0.60000 0.0
0.0 0.0 0.40000 0.6 0.0
0.0 0.0 0.0 0.0 1.0

4.3 The Strong Markov Property

In proving the results above, we are going to make essential use of a strong form
of the Markov property which asserts that Theorem |[3.17| continues to hold even
when n is replaced by a random “stopping time.”

Definition 4.35 (Stopping times). Let 7 be an Ng U {00} - valued random
variable which is a functional of a sequence of random variables, { X}, which
we write by abuse of notation as, T = 7 (Xo, X1,...). We say that 7 is a stop-
ping time if for alln € Ny, the indicator random variable, 1.—,, is a functional of
(Xo,...,Xn). Thus for each n € Ny there should exist a function, o, such that
lren = on (Xo,...,Xn). In other words, the event {T = n} may be described
using only (Xo, ..., Xn) for alln € N.

Ezxample 4.36. Here are some example of random times which are which are not
stopping times. In these examples we will always use the convention that the
minimum of the empty set is +o0.
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1. The random time, 7 = min {k : | Xj| > 5} (the first time, k, such that | X| >
5) is a stopping time since

{r =k} ={|X1] <5,...,|Xk-1] <5,|Xk| > 5}.
2. Let Wy := X1 + - - + X}, then the random time,
7 =min{k : W}, > 7}
is a stopping time since,

(r=k} = W;=X1+--+X;<mforj=12,...,k—1,
B - X1+ +Xp 1+ X >7 ’

3. Fort >0, let N(t) = #{k : Wi, <t}. Then
(N®)=ky={X1+ -+ Xp <t, X1+ 4 Xpy1 >t}
which shows that N (¢) is not a stopping time. On the other hand, since
{Nt)+1=k}={N{t)=Fk—1}
={Xi 4+ + X1 St Xyt + X >t

we see that N(t) 4+ 1 is a stopping time!
4. If 7 is a stopping time then so is 7 + 1 because,

Lirpi=ky = Lr=k—1y = o1 (X0, -, Xp—1)

which is also a function of (Xj,...,Xs) which happens not to depend on
Xk.

5. On the other hand, if 7 is a stopping time it is not necessarily true that
7 — 1 is still a stopping time.

6. One can also see that the last time, k, such that | X%| > 7 is typically not
a stopping time. (Think about this.)

Remark 4.37.If 7 is an {X,, },—, - stopping time then

17’2n:1_17'<n =1- Zak (XOa"'an) = un(X07"-,Xn71)~
k<n

That is for a stopping time 7, 1,5, is a function of (X,..., X,—_1) only for all
n € Np.

The following presentation of Wald’s equation is taken from Ross |6} p.
59-60].
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Theorem 4.38 (Wald’s Equation). Suppose that {X,},- is a sequence of
i.i.d. random variables, f (x) is a non-negative function of x € R, and 7 is a
stopping time. Then

=Ef (X,)-Er. (4.29)

B> f(X
n=0

This identity also holds if f (X,,) are real valued but integrable and T is a stop-
ping time such that BT < co. (See Resnick for more identities along these lines.)

Proof. If f(X,) > 0 for all n, then the the following computations need no
justification,

Elz:)f(Xn) —E if( n) n<71 ZIE ) Ln<r]
ij:OE[f(Xn)un(Xo,...,Xn_l)]
- iE[f (X)) - E [un (Xo, .., Xn1)]
:iOE[f(Xn)]-]E[ n<r] = Ef (Xo) ZO]E n<r)
=Ef (Xo) - Z1H<T] Ef (Xo) - Er.

IFE|f(X,)| < oo and ET < oo, the above computation with f replaced by
|f| shows all sums appearing above are equal E|f (Xo)| - ET < co. Hence we
may remove the absolute values to again arrive at Eq. (4.29). ]

Ezample 4.39. Let {X,,},2_| be i.i.d. such that P (X,, =0) =P (X, =1)=1/2
and let
T:=min{n: X3+ -+ X, =10}.

For example 7 is the first time we have flipped 10 heads of a fair coin. By Wald’s
equation (valid because X,, > 0 for all n) we find

i 1
—E ZXn] =EX Er = SEr

and therefore ET = 20 < co.
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34 4 Long Run Behavior of Discrete Markov Chains

Ezample 4.40 (Gambler’s ruin). Let {X,,} —, beii.d. such that P (X, = —1) =
P(X, =1)=1/2 and let

Ti:=min{n: X; +---+ X, =1}.

So 7 may represent the first time that a gambler is ahead by 1. Notice that
EX; = 0. If ET < oo, then we would have 7 < 0o a.s. and by Wald’s equation

would give,
=Y,
n=1

which can not hold. Hence it must be that

=EX, Er=0-Er

Er = E [first time that a gambler is ahead by 1] = co.

Here is the analogue of

Theorem 4.41 (Strong Markov Property). Let ({X,}7  ,{Ps},cq,P) be
Markov chain as above and 7 : £2 — [0,00] be a stopping time as in Definition

[£:38. Then

Er [f (X7 Xog1s- ) gr (Ko oo X2) Lycoo]
= E, [Ex. f (X0, X1,.. )] gr (X0, Xr) Lreoo] - (4.30)

forall f,g={gn} >0 or f and g bounded.

Proof. The proof of this deep result is now rather easy to reduce to Theorem

Indeed,

IE'rr [f (XT7XT+17 cee ) gr (XOa s 7XT) 1T<DO}

= Er[f (Xn, Xns1,--) gn (Koo, X)) 1r—p]

= Er[f (Xn, Xns1,-- ) gn (Xo, -, Xn) o (Ko, -, X))

n=0
= Z]Eﬂ' [[]Ean (X07X17 e )] g’ﬂ (XO7 A 7XTL) On (X()? e 7X’ﬂ)]
n=0
=Y B [Ex, f (X0, X1, )l gr (Xo, -, Xp) Lr=)]
n=0
=E- [[EXTf (XU, D ST )] gr (X07 cee >X‘r) 1T<OO]
wherein we have used Theorem in the third equality. [

The analogue of Corollary in this more general setting states; condi-
tionedon 7 < oo and X, =z, X, X; 41, X;42,... isindependent of Xo, ..., X
and is distributed as Xg, Xy,... under P,.
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Corollary 4.42. Let 7 be a stopping time, x € S and m be any probability
on S. Then relative to Pr (-]t < oo, X; =), {Xrir}yso is independent of
{Xo,..., X:} and {X; 41}~ has the same distribution as { X}y, under P,

Proof. According to Eq. (4.30),

Erlg(Xo,.. s Xo) (X, Xri1,...) 1 7 <00, X, =1
=Er [9(Xo, -, X7) Lrcoola (X7) f (X7, Xrg1,..0)]
=Er [9(Xo,- -+, X7) Lrcools (X7) Ex, [f (X0, X1, ...)]]
=Ex [g(Xos- ., X7) Lrcooba (X7) Eq [f (Xo, X1,...)]]
=E[g9(Xo,...,X7) : 7 <00, Xy =] B [f (X0, X1,...)].

Dividing this equation by P (7 < oo, X, = ) shows,
Erlg(Xoy--, X)) [ (Xr, Xri1,...) |7 < 00, Xr = x]
=E,[g(Xo,...,.X;) |7 <00, X; =2|E; [f (X0, X1,...)]. (4.31)
Taking g = 1 in this equation then shows,
E.[f (X7 Xri1,...) |7 <00, Xr =] =E, [f (Xo, X1,...)].  (4.32)

This shows that {Xiy};>, under Py (-7 < oo, X, = x) has the same distri-

bution as { X}, , under P, and, in combination, Egs. ) and ( - ) shows

{Xr4k}>o and {Xo,...,X;} are conditionally, on {T < oo, X; =x}, inde-

pendent. -
To match notation in the book, let

fi(in) =P(Ri=n)=FP(X1#4,....,Xn1 #1,X, =1)

and m;; := E;(M;) — the expected number of visits to j after n = 0.

Proposition 4.43. Let i € S and n > 1. Then P]} satisfies the “renewal equa-
tion,”

ZP = k)Prk, (4.33)
Alsoif j€ S, keN, and v : S — [0,1] is any probability on S, then Eq.

holds, i.e.
P,(M; > k) =P, (R; <) P; (R; <o) ", (4.34)

Proof. To prove Eq. (4.33) we first observe for n > 1 that {X,, =i} is the
disjoint union of {X,, =4, R; =k} for 1 <k <n and thereforeﬂ

2 Alternatively, we could use the Markov property to show,
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3

Pl =P(X,=i) =Y Pi(Ri=kX,=1)
k=1

=Y P(X1# X1 #4, Xp =, X,, = 1)
k=1

:ZPZ(Xl #iw'ka—l %ivXk :i)Pg_k
k=1

=> P FP(R; = k).
k=1

For Eq. (4.34) we have {M; > 1} = {R; < oo} so that P, (M; >1) =
P;(R; < o0). For k > 2, since R; < oo if M; > 1, we have

Since, on R; < oo, Xg; = j, it follows by the strong Markov property (Corollary

-that
Pl(]\fj Zk|RJ <OO):PZ‘(MJ‘ Zki\Rj<oo, XRj Zj)

=F |1+ Z 1XR_7+n=j > k|R;j < oo, XRr;, =7
n>1

=P [14) 1x,—j >k | =P (M; > k—1).
n>1
By the last two displayed equations,
Taking ¢ = j in this equation shows,
by (Mj > k) = P; (Mj > k — 1) P; (R; < o)
P =P(Xp=i)=> Bi(lp=k - 1x,=) = ¥ Ei(lr,= - Eilx,_,=:)
k=1 k=1

Ei(1r;=x)E: 1X" o= z ZPz Pi(Xn—r =1)
1 k=1

[
M=

£
Il

PP P(R; = k).

I
hE

B
Il

1
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and so by induction,
P; (M; > k) = P; (R; < o0)*. (4.36)
Equation ({4 now follows from Eqgs. ) and (4.36] - [

4.4 Irreducible Recurrent Chains

For this section we are going to assume that X, is a irreducible recurrent
Markov chain. Let us now fix a state, j € S and define,

T1 :Rj :mm{nZ 1Xn:J}’
7o =min{n >1: X,4r, =J},

Tn=min{n >1: X,y _, =i}

so that 7, is the time it takes for the chain to visit j after the (n — 1)’st visit
to j. By Corollary [£.14] we know that P; (1, < co0) =1 for all i € S and n € N.
We will use strong Markov property to prove the following key lemma in our
development.

Lemma 4.44. We continue to use the notation above and in particular assume
that X,, is an irreducible recurrent Markov chain. Then relative to any P; with
i €8, {Ta},—, is a sequence of independent random variables, {r,},_, are
identically distributed, and P; (1, = k) = Pj (11 = k) for all k € Ny and n > 2.

Proof. Let Ty = 0 and then define T} inductively by, Txi1 =
inf {n > T} : X,, = j} so that T,, is the time of the n’th visit of {X,} 7, to
site j. Observe that 77 = 711,

Tn+1 (Xo,Xl, . ) =T (XTn’XTnJrl’XT

'n.+2"")7

and (71,...,7,) is a function of (Xo,..., X7, ). Since P; (T,, < o0) = 1 (Corol-
lary |4.14) and X7 = j, we may apply the strong Markov property in the form
of Corollary to learn:

1. 741 is independent of (Xy,...,Xr,) and hence 7,41 is independent of
(T1,...,7n), and

2. the distribution of 7,41 under P; is the same as the distribution of 7 under
P;.

J

The result now follows from these two observations and induction. [ ]
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36 4 Long Run Behavior of Discrete Markov Chains

Theorem 4.45. Suppose that X,, is a irreducible recurrent Markov chain, and
let j € S be a fized state. Define

T = E, (%) (4.37)
with the understanding that m; = 0 if E;j(R;) = co. Then
1
Jim 2_:0 lx,—j=m; P —a.s. (4.38)

forallie S and
lim Z = (4.39)

Proof. Let us first note that Eq. @[) follows by taking expectations of
Eq. . So we must prove Eq. @ .
By Lemma @ the sequence {7,}, -, is i.i.d. relative to P; and E;7,, =
E;7; = E;R; for all i € S. We may now use the strong law of large numbers
(Theorem to conclude that
TT+T2o+ - +7TN

]\;E}Iloo N = Eﬂ'g = EjTl = E]‘Rj (sz a.s.). (440)

This may be expressed as follows, let R;N) =71+ 72+ -+ 7N, be the time
when the chain first visits j for the N*" time, then

RV
ngnoo N = E]‘Rj (sz a.s.) (441)

Let
N
= lx, =]
n=0

be the number of time X,, visits j up to time N. Since j is visited infinitely
often, vy — o0 as N — oo and therefore, limy_. o "1;“ = 1. Since there were

vy visits to j in the first N steps, the of the vx*™ time j was hit is less than or
equal to N, i.e. R(VN) < N. Similarly, the time, R(VNH) of the (vy + 1)™ visit
to j must be larger than N, so we have R(VN) <N R(VNH) Putting these
facts together along with Eq. ( - shows that

(vN) (vN+1)
R; R;

< N o vnAl
VN @ — VN — vNn+l1 VN
! ! ! N — oo,
: N
EjRj S th_,OO N S EjRj -1

Page: 36 job: 180Notes

ie. Hmy_ e % v = = E,R; for P; — almost every sample path. Taking reciprocals
of this last set of 1nequaht1es implies Eq. (4.38). [

Proposition 4.46. Suppose that X,, is a irreducible, recurrent Markov chain
and let m; = m for all j € S as in Eq. . Then either m; = 0 for all
i €S (in which case Xy, is null recurrent) or m; > 0 for alli € S (in which case
X, is positive recurrent). Moreover if w; > 0 then

> mi=1and (4.42)

€S
> miPy =m; forallj€S. (4.43)
€S
That is m = (7;)ics 18 the unique stationary distribution for P.
Proof. Let us define
1 n
TN — — Pl 4.44
ki n ; ki ( )
which, according to Theorem satisfies,

lim T7; = m; for all i,k € S.

n—oo

Observe that,
1 n
= ZP,ijl Z P,“ P"Jrl Pki] — T; as N — 00.

Let o :=
i,j € S that

ies i Since m; = lim,_. T};, Fatou’s lemma implies for all

a=) m=) lim inf Tf; <lim inf Y T} =1

i€S €S i€S
and
E ’iTl'Pij = E lim :Z}TZLP” < lim inf E T[[Plj = lim inf ’_Z}?jﬂLl =T;
n—oo n—oo n—oo
i€S €S i€S

where [ € S is arbitrary. Thus

ZTK‘Z‘ = S 1 and Zﬂipij S Uy for all] € s. (445)
i€S €S

By induction it also follows that
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> miPfy < mjforall j €S (4.46)
i€s
So if 7; = 0 for some j € S, then given any i € S, there is a integer k such that
PZ; > 0, and by Eq. (4.46] we learn that m; = 0. This shows that either m; = 0
forallie Sorm >0foralli e S.

For the rest of the proof we assume that 7; > 0 for all ¢ € S. If there were
some j € S such that ), ¢ mP;; < m;, we would have from Eq. (4.45)) that

€S
o = E T = E E WiPij: E E ﬂ'ipij< E T = Q,
i€S i€S jes jes ies =

which is a contradiction and Eq. (4.43) is proved.
From Eq. (4.43]) and induction we also have

ZmP;} =m;forall je§
€S
for all k£ € N and therefore,
> mTh =m; forall j € 8. (4.47)
€S

Since 0 < Tj; < 1 and ZieS m; = a < 1, we may use the dominated convergence
theorem to pass to the limit as k — oo in Eq. (4.47) to find

. k . k
T = leIEO ZmTij = Z klin;o w1y = Zﬂ'ﬂl’j = am;.
€S €S €S
Since m; > 0, this implies that o = 1 and hence Eq. (4.42) is now verified. m

Proposition 4.47. Suppose that P is an irreducible Markov kernel which ad-
mits a stationary distribution p. Then P is positive recurrent and p; = 7; =
m for all j € S. In particular, an irreducible Markov kernel has at most
one invariant distribution and it has exactly one iff P is positive recurrent.

Proof. Suppose that u = (u;) is a stationary distribution for P, i.e.
Yiegti =1land pj =37, o u; Py for all j € S. Then we also have

pi = Tk forall k € N (4.48)
€S

where TZ; is defined above in Eq. || As in the proof of Proposition m
we may use the dominated convergence theorem to find,

— i Tk _ i Tk _ e
by = i DT = 3 i T = 3 iy =i
i€S i€S i€S
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Alternative Proof. If P were not positive recurrent then P is either tran-

sient or null-recurrent in which case lim,,—.o 17; = ﬁ = 0 for all 7,j. So
] J

letting & — oo, using the dominated convergence theorem, in Eq. (4.48) allows
us to conclude that u; = 0 for all 7 which contradicts the fact that p was
assumed to be a distribution. ]

Lemma 4.48 (A number theory lemma). Suppose that 1 is the greatest
common denominator of a set of positive integers, I' := {ni,...,ng}. Then
there exists N € N such that the set,

A={mini + - +mgng : m; >0 for all i},
contains allm € N with n > N.

Proof. (The following proof is from Durrett |2].) We first will show that A
contains two consecutive positive integers, a and a + 1. To prove this let,

k:=min{|b —a|:a,b € A with a # b}

and choose a,b € A with b =a+ k. If k > 1, there exists n € I" C A such that
k does not divide n. Let us write n = mk +r withm > 0and 1 < r < k. It
then follows that (m +1)b and (m + 1)a + n are in A,

m+Db=(m+1)(a+k)>(m+1)a+mk+r=(m+1)a+n,

and
(m+1Db—(m+1a+n=k—r<k.

This contradicts the definition of k and therefore, k = 1.
Let N = a?. If n > N, then n —a? = ma+r for some m > 0 and 0 < r < a.
Therefore,

n=a>+ma+r=(a+m)at+r=(a+m-r)a+r(a+tl)c A
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5

Continuous Time Markov Chain Notions

In this chapter we are going to begin out study continuous time homogeneous
Markov chains on discrete state spaces S. In more detail we will assume that

{Xi},5( is a stochastic process whose sample paths are right continuous and
have left hand limits, see Figures [5.1] and

— : :
Jo=0 J1 Jé -]:3 J:4 J:5
S S S Sy . S5 1 Se

Fig. 5.1. Typical sample paths of a continuous time Markov chain in a discrete state
space.

As in the discrete time Markov chain setting, to each i € S, we will write
P, (A) := P(A|Xo =1). That is P, is the probability associated to the scenario
where the chain is forced to start at site i. We now define, for i, j € S,

Pij (t) .= P (X (t) =) (5.1)

which is the probability of finding the chain at time ¢ at site j given the chain
starts at 1.

et -
Eabt N

S S 0 83 Sy D S5 Se

A
A

.‘r...-.-.

Fig. 5.2. A sample path of a birth process. Here the state space is {0,1,2,...} to be
thought of the possible population size.

Definition 5.1. The time homogeneous Markov property states for every
0 < s <t< oo and any choices of 0 = tg < t1 < -+ < t, = s < t and
Tlyeveyln € S that

P(X (1) =jIX (1) =d1,.... X (tn) =in) = B, ; (t = 5), (5.2)
and consequently,
P (X (t) = jIX (s) =in) = P, j (t —5). (5.3)

Roughly speaking the Markov property may be stated as follows; the
probability that X (¢) = j given knowledge of the process up to time s is
Px(s),; (t = s). In symbols we might express this last sentence as
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P (X (1) = JHX (D}e,) = PX (1) = J1X () = Pxgay (= 9).

So again a continuous time Markov process is forgetful in the sense what the
chain does for t > s depend only on where the chain is located, X (s), at time
s and not how it got there. See Fact below for a more general statement of
this property.

Definition 5.2 (Informal). A stopping time, T, for {X (t)}, is a random vari-
able with the property that the event {T < t} is determined from the knowledge
of {X (s):0< s <t}. Alternatively put, for each t > 0, there is a functional,
ft, such that

fi({X(s):0<s<t}).

Asin the discrete state space setting, the first time the chain hits some subset
of states, A C S, is a typical example of a stopping time whereas the last time
the chain hits a set A C S is typically not a stopping time. Similar the discrete
time setting, the Markov property leads to a strong form of forgetfulness of the
chain. This property is again called the strong Markov property which we
take for granted here.

lr<y =

Fact 5.3 (Strong Markov Property) If {X (t)},5, is a Markov chain, T is
a stopping time, and j € S, then, conditioned on {T < oo and Xt = j},

{X(5):0<s<T} and {X(t+T):t>0}
are {X (t+T) :t >0} has the same distribution as {X (t)},5, under P;.

We will use the above fact later in our discussions. For the moment, let us
go back to more elementary considerations.

Theorem 5.4 (Finite dimensional distributions). Let 0 < t; <ty <--- <
t, and ig,i1,12,...,i, € S. Then

F)io(th - i17Xt2 = i27 s

- Plo,ll (tl)Pil,iz (t2

7Xt = Zn)

n

—t)...P,

In—1,tn

(tn — tn_1). (5.4)

Proof. The proof is similar to that of Proposition [3.2] For notational sim-
plicity let us suppose that n = 3. We then have

P (Xt = i1, Xy, = 2, Xyy = i3) =

= Rz i3 (t3 )P (Xt1 = ,1’17Xt2 = 12)
- 1312713 (t3 )P (th = Z2|Xt1 = Z1) P)io (th = Zl)
= Py, 5 (t3 — t2) Py iy (t2 — 1) Pig iy (t1)

wherein we have used the Markov property once in line 2 and twice in line 4. m
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Pig(Xt3 = 7;3|th = Z.l, XtQ = 7’2)P’Lo (th = Z.1>Xt2 = /LQ)

Proposition 5.5 (Properties of P). Let P;; (t) := P; (X (t)
Then:

1. For each t > 0, P (t) is a Markov matriz, i.e.
> Py(t)
j€s

P;; (t) >0 foralli,j € S.

= j) be as above.

=1 forallie S and

2. limtlo Pl‘j (t) = (52‘j fOT‘ alli,5 € S.
3. The Chapman — Kolmogorov equation holds:

P(t+s) = P(t)P(s) for all s,t >0,

Zsz:

keS

(5.5)

i.€e.

P (t+s) s) Pyj (t) for all s,t > 0. (5.6)

We will call a matriz {P (t)},~, satisfying items 1. — 3. a continuous time
Markov semigroup. B

Proof. Most of the assertions follow from the basic properties of conditional
probabilities. The assumed right continuity of X, implies that lim, o P(t) =
P(0) = I. From Equation (5.4) with n = 2 we learn that

P7IO;12 t2 Z Plo Xt1 - /Ll7Xt2 - 22)
i1€S
= Z Piyi, (tl)Pi1,i2 (t2 - tl)
i1E€8
= [P(t1) P(t2 — t1)lig,ix-

]

At this point it is not so clear how to find a non-trivial (i.e. P (t) # I for all

t) example of a continuous time Markov semi-group. It turns out the Poisson
process provides such an example.

Ezample 5.6. In this example we will take S = {0,1,2,...} and then define, for

A >0,
01 2 3 4 5 6
[ A2 () n* (M)E’ ]
1At o ()\P)t! ()3;3 ()\t)4 -lo
01 x QU 3 S| 1
Pit)y=e>[00 1 x O %C”.é
00 0o 1 x &Y
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In components this may be expressed as,

MY T

Py (t ZB_M(. ~li<;

J ( ) <] _ Z)' =7

with the convention that 0! = 1. (See Exercise of this weeks homework

assignment to see where this example is coming from.)
If 4,5 € S, then Py, (t) Pyj (s) will be zero unless i < k < j, therefore we
have

Zsz ij —1z<j Z P (t ij s)

kes i<k<j

s AD)" (As) "
= li< e A(t+ )géj CEOIETE (5.7)

Let k =7+ m with 0 < m < j — 4, then the above sum may be written as

S

and hence by the Binomial formula we find,

—1

\)

0

3
I

()\t)kﬂ‘ ()\S)jfk - )
<Zk:<g G=0lG=R G Mt As)! ™

Combining this with Eq. (5.7) shows that

> Pi(8) Py (s) = Pij (s +1).
keS

Proposition 5.7. Let {X,},- is the Markov chain determined by P (t) of Ex-
ample . Then relative to Py, {Xi},>¢ is precisely the Poisson process on
[0, 00) with intensity . B

Proof. Let 0 < s < t. Since Py (X; =n|X; =k) = Pe (t —s) =0if n <k,
{Xt},>0 is a non-decreasing integer value process. Suppose that 0 = 59 < 51 <
Sg<---<s,=sandipcSfork=0,1,2,...,n, then

Py (X — X =ig|X,, =ij for 1 < j <n)
= Py (X; = in + i0| Xs, =i for 1 < j <n)
= PO (Xt = Zn + iO‘Xsn = Zn)

At
— e—)x(t—s)( )

io!
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Since this answer is independent of i1, ...,4, we also have

Py (X — X5 =)

= Y PR (Xi—X.=ig|X,, =ij for 1 < j <n)Py(X,, =i for 1 <j<n)

B1,eeey in€S
At)'o M)
— Z e—k(t—s)!pO (Xs> =i for1<j< n) - e—A(t—s)(li)
i1rin€S io! ’ io!

Thus we may conclude that X; — X is Poisson random variable with intensity
A which is independent of {X,}, . That is {X;},. is a Poisson process with
rate . [ |

The next example is generalization of the Poisson process example above.
You will be asked to work this example out on a future homework set.

Ezxample 5.8. In problems VI.6.P1 on p. 406, you will be asked to consider a
discrete time Markov matrix, p;;, on some discrete state space, S,with associate
Markov chain {Y,}. It is claimed in this problem that if {N (¢)},-, is Poisson
process which is independent of {Y;,}, then X; := Yy is a continuous time
Markov chain. More precisely the claim is that Eq. holds with

oo tm
— et —. otlp—=I)
P(t)y=e X:O m'p e ,
ie.
oo tm
— 1 m
Pj(t)=e §_0 ml (p )ij .

(We will see a little later, that this example can be used to construct all finite
state continuous time Markov chains.)

Notice that in each of these examples, P(t) = I + Qt + O (tz) for some
matrix Q. In the first example,

Qij = —Adij + Adiit1

while in the second example, @ = p — 1.

For a general Markov semigroup, P (), we are going to show (at least when
#(S) < o0) that P (t) = I + Qt + O (¢*) for some matrix @ which we call
the infinitesimal generator (or Markov generator) of P. We will see that
every infinitesimal generator must satisfy:

Qi <0 forall i # j, and (5.8)
ZQij = 07 ie. — Qii = Z Qij for all 3. (59)
J Jj#i
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Moreover, to any such @, the matrix

=t 12 13
P(t) = €@ ::ZEQ”:I+tQ+5Q2+§Q3+...

n=0 "

will be a Markov semigroup.

One useful way to understand what is going on here is to choose an initial
distribution, 7 on S and then define 7 (t) := 7P (t) . We are going to interpret
m; as the amount of sand we have placed at each of the sites, j € S. We are going
to interpret 7, (¢) as the mass at site j at a later time ¢ under the assumption
that 7 satisfies, 7 (t) = 7 (¢) Q, i.e.

() =Y mi () Qij — qjm; (t), (5.10)
i#]

where ¢; = —Q; ;. (See Example below.) Here is how to interpret each

term in this equation:

7j (t) = rate of change of the amount of sand at j at time ¢,
m; (t) Qij = rate at which sand is shoveled from site ¢ to j,

g;m; (t) = rate at which sand is shoveled out of site ¢ to all other sites.

With this interpretation Eq. has the clear meaning: namely the rate of
change of the mass of sand at j at time ¢ should be equal to the rate at which
sand is shoveled into site j form all other sites minus the rate at which sand is
shoveled out of site i. With this interpretation, the condition,

~Qji=¢=) Qi
k£

just states the total sand in the system should be conserved, i.e. this guarantees
the rate of sand leaving j should equal the total rate of sand being sent to all
of the other sites from j.

Warning: the book denotes @) by A but then denotes the entries of A by
gi;- 1 have just decided to write A = @) and identify, Q;; and g;;. To avoid some
technical details, in the next chapter we are mostly going to restrict ourselves
to the case where # (S) < oo. Later we will consider examples in more detail
where # (5) = 0.



6

Continuous Time M.C. Finite State Space Theory

For simplicity we will begin our study in the case where the state space is
finite, say S = {1,2,3,..., N} for some N < oo. It will be convenient to define,

be the column vector with all entries being 1.

Definition 6.1. An N x N matriz function P (t) for t > 0 is Markov semi-
group if

1. P (t) is Markov matriz for allt > 0, i.e. P;; (t) >0 for all i,j and
> Pj(t)=1forallics. (6.1)
JjES
The condition in Eq. may be written in matrix notation as,
P(t)1=1 forallt>0. (6.2)

(0) = Inxn,
(t+s)=P(t) P(s) for all s,t > 0 (Chapman - Kolmogorov),
lim; o P (t) = I, i.e. P is continuous at t = 0.

2. P
3. P
4.

Definition 6.2. An N x N matriz, Q, is an infinitesimal generator if Q;; >
0 for all i # j and

> Qij =0 forallics. (6.3)

JjES
The condition in Fq. may be written in matriz notation as,

Q1L=0. (6.4)

6.1 Matrix Exponentials

In this section we are going to make use of the following facts from the theory
of linear ordinary differential equations.

Theorem 6.3. Let A and B be any N X N (real) matrices. Then there exists
a unique N X N matriz function P (t) solving the differential equation,

P (t) = AP (t) with P(0) =B (6.5)
which is in fact given by
P(t)=¢"B (6.6)
where
tA — 1" n t2 2 t3 3
e :ZOEA =T +tA+ A%+ AT+ (6.7)
n—

The matriz function et® may be characterized as the unique solution Eq.
with B = I and it is also the unique solution to

P (t) = AP (t) with P (0) = I.

tA

Moreover, et satisfies the semi-group property (Chapman Kolmogorov equa-

tion),
eF)A = otAesA for all s,t > 0. (6.8)

Proof. We will only prove Eq. here assuming the first part of the
theorem. Fix s > 0 and let R (t) := e(*+*)4_ then

R(t) = Ae+94 = AR (t) with R(0) = P (s).
Therefore by the first part of the theorem

4 = R (t) = e R (0) = ete.
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Ezxample 6.4 (Thanks to Mike Gao!). IfAz[g(ﬂ,thenA":OfornZZ, SO
that
" CJ10 011 [1t
e IthA[Ol +1 ool =1lo1l-
. . 00
Similarly if B = 10 , then B" =0 for n > 2 and
B |10 00| (10
e —I—|—tB—{01 +1 _10l =121 |-

01

Now let C = A+ B = [_10

C® = C etc., so that
C?" = (-1)"I and C*"* = (-1)" C.

].In this case C? = -1, C® = -C, C* =1,

Therefore,
00 t2n 00 t2n+1
“ =3 Gt
7 |
— (2n)! oy (2n+1)!
o0 t2n e t2n+l
_ T —(-)"C
2o 2 G Y
) cost sint
= cos (t) [ +sin (t) C = |:—Sint cost}

which is the matrix representing rotation in the plan by ¢ degrees.

Here is another way to compute e/“ in this example. Since C? = —I, we
find
& o 2 tC tC
= (C*%e"™” = —e'™ with
dt?
d
oc tC
e~ =1and —e"™ |—g = C.
@ l=o

It is now easy to verify the solution to this second order equation is given by,
e!® = cost- I +sint-C
which agrees with our previous answer.

Remark 6.5. Warning: if A and B are two N X N matrices it is not generally
true that
e(A+B) — eAeB (6.9)

as can be seen from Example [6.4]
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However we have the following lemma.
Lemma 6.6. If A and B commute, i.e. AB = BA, then Eq. holds. In
particular, taking B = — A, shows that e~ = [e’ﬂ -

Proof. First proof. Simply verify Eq. using explicit manipulations
with the infinite series expansion. The point is, because A and B compute, we
may use the binomial formula to find;

n
A n_ n k nfk'
(A+B)"=>" <k)A B
k=0
(Notice that if A and B do not compute we will have
(A+B)=A?>4+ AB + BA + B®> # A> 4+ 2AB + B%)

Therefore,
e(A—O—B):il(A_i_B)n:ili: N\ gk gn—k
n! n! k

n=0 n=0 k=0

= Y L1 yepnet (let n—k =1

k! (n — k)!

0<k<n<oco

_Oooollkl_oolkoolz_AB
k=0 1=0 k=0 1=0

Second proof. Here is another proof which uses the ODE interpretation
of e, We will carry it out in a number of steps.

1. By Theorem and the product rule

d

%e*tABetA =e M (—A)Be! + e BA = ¢ (BA - AB) e =0
since A and B commute. This shows that e *4Bet4 = B for all t € R. )

2. Taking B = I in 1. then shows e~ e =T for all t ie. e ™ = [e'] .
Hence we now conclude from Item 1. that e 4B = Be 4 for all ¢.

3. Using Theorem Item 2., and the product rule implies

% [e—tBe—tAet(A-i-B)}

—tB (-B) e tAGHA+B) | —tB —tA (—A) et(A+B)
+ e~ tBo—tA (A + B) et(A+B)

—etBetA (LB etATB) | o~tB—tA (_ 1) ot(A+B)

+e tBe 4 (A + B) etA+B) —

macro: svmonob.cls date/time: 4-Jun-2008/13:17



Therefore,

e Bt AMATE) — o mtB—tAHALE)| T for all ¢,

and hence taking ¢ = 1, shows

e BemAeAtB) — 1. (6.10)

Multiplying Eq. (6.10) on the left by e4e? gives Eq. (6.9).

]
The next two results gives a practical method for computing e’? in many
situations.

Proposition 6.7. If A is a diagonal matriz,

A1
A &
Am
then
et>\1
et)\g
ot —
et)\n
Proof. One easily shows that
AT
A" = &
Am
for all n and therefore,
[e%e] tm
Zn 0 n! )\n o 4n
etA—iﬁAn— Zn Onl)\n
- [ -
i .
SN
Zn 0 n! >\n
t/\l
e
6t)\2
etAn
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Theorem 6.8. Suppose that Q is a diagonalizable matriz, i.e. there exists an
invertible matriz, S, such that ST'QS = A with A being a diagonal matriz. In
this case we have,

el@ = Seth g1 (6.11)

Proof. We begin by observing that
(571QS)° = 57'QSS QS = S71Q%S,
(57'QS)° = 57'Q*S5 QS = S'QS

(S7'QS)" =S57'Q"S foralln > 0.
Therefore we find that

S7lel9s = 51[S+Z SlQ”

n= O

—I+Ztn $71Qs)"

— n _ tA
n=0

Solving this equation for e!? gives the desired result. [

6.2 Characterizing Markov Semi-Groups

We now come to the main theorem of this chapter.

Theorem 6.9. The collection of Markov semi-groups is in one to one cor-
respondence with the collection of infinitesimal generators. More precisely we
have;

1. P(t) = e'? is Markov semi-group iff Q is an infinitesimal generator.
2. If P (t) is a Markov semi-group, then @ := %|O+P (t) exists, Q is an in-
finitesimal generator, and P (t) = e'@.

Proof. The proof is completed by Propositions - below. (You
might look at Example to see what goes wrong if @) does not satisfy the
properties of a Markov generator.) [

We are now going to prove a number of results which in total will complete
the proof of Theorem [6.9} The first result is technical and you may safely skip
its proof.
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46 6 Continuous Time M.C. Finite State Space Theory

Proposition 6.10 (Techinical proposition). Every Markov semi-group,
{P (t)}>¢ is continuously differentiable.

Proof. First we want to show that P (¢) is continuous. For ¢, h > 0, we have
P(t+h)—Pt)=P@t)P(h)—P({t)=P(t)(P(h)—1)—0ash]O.
Similarly if £ > 0 and 0 < h < t, we have

P(t)—P({t—h)=P(t—h+h)—P({t—h)=P(t—h)P(h)—P(t—h)
=P(t—h)[P(h)—1] —0ash |0

where we use the fact that P (¢ — h) has entries all bounded by 1 and therefore
< Palt—h)|(P ()= 1))
k

<> |Pm) -1, —0asn o
k

(P (t=h)[P(h)

Thus we have shown that P (¢) is continuous.
To prove the differentiability of P (t) we use a trick due to Garding. Choose
€ > 0 such that

e

H:—l/OEP(s)ds

is invertible. To see this is possible, observe that by the continuity of P,
%fOEP(s) ds — I as € | 0. Therefore, by the continuity of the determinant
function,

det <i P(s)ds) —det(I)=1ase 0.
0

With this definition of I1, we have

:i/OEP(t)P /Pt+s / P(s

So by the fundamental theorem of calculus, P (¢) IT is differentiable and

1
— [P(t) ] =—-(P(t —P(1)).
SIP ()] =~ (P(t+2) - P(1)
As IT is invertible, we may conclude that P (t) is differentiable and that
. 1
P(t):= - (P(t+e)—P(t) T .

Since the right hand side of this equation is continuous in ¢ it follows that P (t)
is continuous as well. ]

Page: 46 job: 180Notes

Proposition 6.11. If {P (t)},-, is a Markov semi-group and Q := %[04 P (1),
then N

1. P (t) satisfies P (0) = I and both,
Pt)=P({t)Q (Kolmogorov’s forward Eq.)
and .
P(t)=QP(t) (Kolmogorov’s backwards Eq.)
hold.

2. P (t) = e!?.
3. Q is an infinitesimal generator.

Proof. 1.-2. We may compute P (t) using
P(t) = i| P(t+s)
~ s '

We then may write P (t + s) as P (t) P (s) or as P (s) P (¢) and hence
=P (t)Q and
—lo[P(s) P ()] = QP (t).

This proves Item 1. and Item 2. now follows from Theorem [6.3]
3. Since P (t) is continuously differentiable, P (t) = I 4+ tQ + O (t?), and so
for i # 7,
0< Pij (t) = (Sij + tQij +0 (tQ) = tQij +0 (tQ) .
Dividing this inequality by ¢ and then letting ¢ | 0 shows Q;; > 0. Differentiating
the Eq. 7P(t)1:17 at t = 04 to show Q1 =0. ]

Proposition 6.12. Let ) be any matriz such that Q;; > 0 for all i # j. Then
(etQ)ij >0 forallt >0 andi,j €S.

Proof. Choose A € R such that A > —Q; for all i € S. Then A\l + @ has
all non-negative entries and therefore e!(*/*@) has non-negative entries for all
t > 0. (Think about the power series expansion for ¢!(*+@)) By Lemma 6.6}
we know that e!M+Q) = M !@ and since e = eI (you verify), we havd!|

HOTHQ) _ A Q.
Therefore, '@ = et etM+Q) again has all non-negative entries and the proof
is complete. [

1 Actually if you do not want to use Lemma. 6.6, you may check that e HAIHQ) — tAet@

by simply showing both sides of this equation satisfy the same ordinary differential
equation.
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Proposition 6.13. Suppose that Q is any matriz such that ZjeS Qij =0 for
alli € S, i.e. Q1 = 0. Then e!?1 = 1.
Proof. Since
d

@eth :etQQl =0,

it follows that /9?1 = 6tQ1|t:0 =1L -

Lemma 6.14 (ODE Lemma). If h(t) is a given function and A € R, then
the solution to the differential equation,

7 () = A (t) + h (¢) (6.12)
rt)=eM|(n te*)‘s s)ds .
0= (04 [ nas) (6.13)
= Mg M9 b (5) ds. .
(O)+/O h(s)d (6.14)

Proof. If 7 (t) satisfies Eq. (6.12)), then

% (eMr @) =e M(=Ar(t)+7(t) =e Mh(t).

Integrating this equation implies,

Solving this equation for m (t) gives
¢
m (t) = M (0) +e”/ e h (s)ds (6.15)
0

which is the same as Eq. (6.13). A direct check shows that 7 (¢) so defined solves
Eq. (6.12)). Indeed using Eq. (6.15) and the fundamental theorem of calculus
shows,

7 (t) = AeMm (0) + NeM /t e h(s)ds + eMe Mh(t)
0
=Ar(t)+h(t).
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Corollary 6.15. Suppose A € R and 7 (t) is a function which satisfies, 7 (t) >
A7 (t), then
7 (t) > eMn (0) for allt > 0. (6.16)

In particular if w(0) > 0 then w (t) > 0 for all t. In particular if Q is a Markov
generator and P (t) = €9, then

Py (t) > e % forallt >0

where q; := —Qy;. (If we put all of the sand at site i at time 0, e~ %t represents
the amount of sand at a later time t in the worst case scenario where no one
else shovels sand back to site i.)

Proof. Let h (t) := 7 (t)—An (t) > 0 and then apply Lemmal6.14]to conclude
that

t
T (t) = M (0) + / =3 (5) dis. (6.17)
0
Since e**=*)} (s) > 0, it follows that fg eMt=9)h (s)ds > 0 and therefore if we

ignore this term in Eq. (6.17) leads to the estimate in Eq. (6.16)). ]

6.3 Examples

Example 6.16 (2 x 2 case I). The most general 2 x 2 rate matrix @ is of the

form
0 1

—-a a0
@=[g_41

with rate diagram being given in Figure We now find e*® using Theorem

Fig. 6.1. Two state Markov chain rate diagram.

To do this we start by observing that
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48 6 Continuous Time M.C. Finite State Space Theory
det (Q — M) = det ({O‘g _5_§D =(a+A)(B+A)—aB

=M HrA= (A +1).

Thus the eigenvalues of Q are {0, —7}. The eigenvector for 0 is [1 1 ]tr. More-
over,

Q—(—mz[gg:

which has [a —B]tr and therefore we let

We then have

So in our case

0t
-1 tQq __ _tA __ e 0 o 1 0
Se*S=e —[Oeﬁ}—[oeﬁ .

Hence we must have,

0 e—Tt

(1 « 1 0 8 «
18] [0e |11
[B+ae ™ a—ae™ ™

_5 _ ﬂe—-rt a —|—,3€_Tt

[ B4+ ae™™ a(l—eT)
_5(1 _ ef'rt) a +ﬁ677—t

e B B

Ezample 6.17 (2 x 2 case II). If P (t) = e!? and 7 (t) = 7 (0) P (t), then

# 0 =7 (0Q=lro(0)m (0] 5]
[ —amo (t) + B (t) amo () — B (1) ],
o (t) = —am (t) + B (1) (6.18)
7:(1 (t) = QT (t) — 67T1 (t) . (619)
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The latter pair of equations is easy to write down using the jump diagram and
the movement of sand interpretation. If we assume that 7o (0) + 71 (0) = 1 then
we know o () + 1 (t) = 1 for all later times and therefore we may rewrite Eq.
(6.18) as

7o (t) = —amo (t) + B (1 — 7o (2))
= —7mo (t) + 3

where 7 := a + 3. We may use Lemma [6.14] below to find

t
7o (t) = e Thm (0) + / e =% 3ds
0

=e 'y (0) + = (1 — 67”) .
We may also conclude that
mt)=1—m(t)=1—e "'m(0) — s (1—e")
T

=1—-e"(1-m(0)— b (1—e)

= Tm O+ (- ) = (1o

=e i (0) + & (1 - e*”) :
T
By taking 7o (0) = 1 and 71 (0) = 0 we get the first row of P (t) is equal to
1
e+ 81 —e ) 2(1-eT)] = = [ea+Ba(l—e)]

and similarly the second row of P () is found by taking 7 (0) = 0 and 71 (0) =1
to find

1 [B(l_e—m:) ﬁe_Tt—l—Oé].

T

[

Hence we have found

RISy

(1 _ e—‘rt) e Tt + % (1 _ e—Tt)] _

P(t)= [eTtaJrﬁ a(le'rt):|

1
B0 —eT) Be T+ a
_1f(eT" =1 a+ 8+« a(l—e™ )
T B(l—eT BleT™ =1)+a+p

1 | 0«
:I+;(1—e t)[ﬁ _ﬂ}

:I—i—%(l—e‘”)@.
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Let us verify that this is indeed the correct solution. It is clear that P (0) = I,

Pi)=e | & @ ]
W= 50
while on the other hand,

af+a? —af —a? a —a«
@ = e e | =7 s =

and therefore,
PQ=Q-(1-¢)Q=cTQ
as desired.
We also have

P(s)P(t) = <1+ % (1—e7) Q) <I+ % (1—e) Q)
1 1
=1+ % (2—e™—eT)Q+ - (1—e™) - (1-e™(-7)Q
=I+- [(2 —e 77— eiTt) —(1-e) (1 — e*”)] Q
—T+- [1 —e*ﬂsﬂ)] Q=P(s+1)
T
as it should be. Lastly let us observe that

lim P(f) =1+ lim (1—¢ ™) [a a }

t—o0 T t—o0

Moreover we have

lim P (t) = lim e ™" {—a @ ] =0.

t—o0 t—oo

Suppose that 7 is any distribution, then

. 1 Sal 1
tlirgowP(t) == [mo 1] {ﬂa} == (8]
independent of 7. Moreover, since
1
—[Ba]P(s)= lim 7P (t) P(s) = lim 7P (t+ s)
T t—oo t—oo
) 1
= tlirgoﬂ'P(t) == (8 a]
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which shows that the limiting distribution is also an invariant distribution. If
m is any invariant distribution for P, we must have

7= lim wP(t):l[ﬁa]:[a’%ﬁ =25 | (6.20)

t—oo T

and moreover,

d d
0= ahﬂr = %|0’R’P (t) = Q.

The solutions of m1Q = 0 correspond to the null space of Q' which implies

Nul Q% = Nul {_O‘ A ] -R- {5]

a —f «
and hence we have again recovered m = [ﬂ oz] .

T

Ezample 6.18 (2% 2 case IIT). We now compute @ by the power series method
as follows. A simple computation shows that

af+a? —aff —a? a —«
@ = | =[] = e

Hence it follows by induction that Q" = (77')71_1 Q@ and therefore,

Pt)=e9 =TI+ i %n, (—n)"'Q
n=1

o0

:I—lzﬁ(—r)nQ:I—%(e_”—l)Q

=lot] —Femn 5]

B [f_(e”—l)—l—l —2 (e —1) ]
Tl -Let—1) Zet—1)+1

1 aem™+ 8 a(l—e'T)
7|81 —et) Be " +a

T
: Let us again verify that this answer is correct;
P (t) = e~ "'Q while
1 -7 —7 s
PHQ=Q- (™ =1)(-1)Q=Q+ (¢ -1)Q=P).

Ezample 6.19. Let S = {1,2,3} and
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50 6 Continuous Time M.C. Finite State Space Theory

123 up any of its sand while happily receiving sand from site 1 at rate 271 and from
-3 12]1 site 2 are rate 1mg. Solving Eq. (6.21)) gives,
Q=] 0-11]2 N
0 00]3 m (1) = e "'m (0)
which we represent by Figure Let m = (w1, T2, m3) be a given initial ( at and therefore Eq. (6.22)) becomes

7.T'2 = 6_3t7T1 (0) — T9

ﬂ" which, by Lemma below, has solution,

t
7o (t) = e tmy (0) + e_t/ eTe 3y (0) dr
0

Y
2 = % (e7" - 6*3’5) 71 (0) + e fmo (0).
2 A— Using this back in Eq. then shows
'i 3 = 2¢ 3ty (0) + % (e7" =) m (0) + e 'my (0)

1 3

=(ze "+ e ) m (0) + ety (0)
2 2

t = 0) distribution (of sand say) on S and let 7 (¢) := 7e’®@ be the distribution

which integrates to
at time ¢. Then &

7 (t) = 1e’?Q =7 (1) Q. 1 1 )
(® Q 73 (t) = < 1—e]+-(1- Gdt)) 71 (0) + (1 — e ") m2 (0) 4 73 (0)
In this particular example this gives, 2 2
1
-3 12 = (1 —5le e‘?’t]) m1(0) + (L —e™") w2 (0) + 735 (0) -
[7'1'1 7:(2 7%3}:[71'1 7T27T3} 0-11
0 00 Thus we have
= [—37T1 T — T 2 +7T2}, ™ (t) ()
. ()| = |3 (et —e ) 7 (0) + e tme (0)
lently, 7 - . -
or equivalently. 71'3(15) _(1—%[6 tye StDﬂ.l (O)+(1—e t)F2(0)+7T3(0)
7:r1 = 737T1 (621)
g = M — Ty (622) [e—3t 0 0 T (0)
3 = 2m; + . (6.23) =|3(et—e3) et 0 |m(0)
1—Zet+e ] 1-e"1] [m3(0)

Notice that these equations are easy to read off from Figure For example,
the second equation represents the fact that rate of change of sand at site 2 is From this we may conclude that
equal to the rate which sand is entering site 2 (in this case from 1 with rate
171) minus the rate at which sand is leaving site 2 (in this case 17y is the rate
that sand is being transported to 3). Similarly, site 3 is greedy and never gives
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e3¢ 0 01"
Pt)y=e9=|1(et—e® e’? 0
1-— % [e’t + eiSt} 1—et1

o3t (%e—t le—St) (1 1t le—St)
=10 et e t+1
0 0 1

6.4 Construction of continuous time Markov processes

Theorem 6.20. Let {p;;}, jes be a discrete time Markov matrix over a discrete

state space, S and {Y,}.~_, be the corresponding Markov chain. Also let {N;},~,
be a Poisson process with rate X > 0 which is independent of {Y,}. Then
X =Y, 15 a continuous time Markov chain with transition semi-group given

by,
P(t) — et)\(pfl) — 67)\156”;).

Proof. (To be supplied later.) STOP [

6.5 Jump and Hold Description

We would now like to make a direct connection between ) and the Markov
process X;. To this end, let 7 denote the first time the process makes a jump
between two states. In this section we are going to write x and y for typical
element in the state space, S.

Theorem 6.21. Let Q, := —Q, , > 0. Then P,(S > t) = e~ 9! which shows
that relative P, S is exponentially distributed with parameter Q.. Moreover,
X is independent of S and

Pm(XS = y) = Qm,y/Qx

Proof. For the first assertion we let

A, = {X (;nt) :mfori:l,Q,...,Q"—Lz”}.

Ap L {X (s) =z for s <t} ={5 >t}
and therefore, P, (A,,) | Py (S > t). Since,

Then
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6.5 Jump and Hold Description 51

P(A,) = [Poa(t/2)] = [1 -Sevo(u Wﬂ

— et agnp — 00,

n

we have shown P, (S > t) = e *Q=.

First proof of the second assertion. Let T be the time between the second
and first jump of the process. Then by the strong Markov property, for any
t >0 and A > 0 small, we have,

Po(t<S<t+A T<A)=> P(t<S<t+A T<A Xg=y)

yes
=Y P(t<S<t+A Xs=vy) Py (T <A)
yeSs
ZZPx(t<S§t—|—A,Xs:y)-(l—e_QyA)
yeSs
< mi — e @A . =
_21613(1 e )Y Pa(t<S<t+ A Xe=1y)
yeS

=min (1 —e @) P, (t<S<t+A)
yeSs

o,ay [T Q 2
= 1 1— Wy a:_ITd :OA .
mig (1—e™2) | Qe 7dr = 0 (47)

(Here we have used that the rates, {Qy}, . are bounded which is certainly the
case when # (S) < 00.) Therefore the probability of two jumps occurring in the
time interval, [t,t + A], may be ignored and we have,
P (Xs=y,t<S<t+A)=Py(Xiyn=y,5>1)+0(4Q)
= Paf:(Xt+A = ant = J?,S > t) + O(A)
t . n
1o
n

+0(n%)| Puy(4)+o0(4)

= lim
n—oo

=7t p, (A) 4 0(A).

Also
t+A

P,(t<S<t+A)= Que~Fe3ds = e @t _=Qe(t+A) — 9 =Pt Ato(A).

t

Therefore,

_ P(Xs=yt<S<t+A)
P(Xs=y|S=1t)=1
s =yl =0 == s <t+ a)
—tQq
A0 Qre=@tA+o(A) Qs Al0 A

= Q-L,y/Q.L
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52 6 Continuous Time M.C. Finite State Space Theory

I T . —0

P —o
}- ::': | >
t /tS\ SR IIN Fiwe,
'L"'-%A t+k:iA

This shows that S and Xg are independent and that Py(Xs =y) = Qqu,y/Qu-
Second Proof. For ¢t > 0 and § > 0, we have that

P.(S>t,Xir5 =v) :nlirrgoPm(Xt+5 =y and X (Q"t) =g fori=1,2,...,2")

= lim [Pyo(t/2")]%" Puy(6)

n—oo

gn
= Pyy(9) lim |1 - t?n" +0 (2—2")} = P, (0)e 9=,
With this computation in hand, we may now compute P, (Xgs =y,t < S <
t + A) using the Figure as our guide
So according Figure we must have Xg =y & t < S <t + A iff for all
large n there exists 0 < k < n such that S >t +kA/n & Xiy(r41)a/m =y and
therefore
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P Xs=y&t<S<t+A)

T S>t+kA/n&Xt+(k+1)A/n:y
- nh—{r;o Pr ( for some 0 < k <n
n—1
= lim Z Py(S>t+kA/n & Xiy(ky1)a/m =Y)
k=0
n—1
— lim Z Py (A/n)e (H5A/MQe
k=0

n—1

A
= lim » e FRA/MO(=Q,, 4 o(n))
n—oo n
k=0

t+A Q t+A
= me/ e Ferds = S5 Que~%ds
¢ Quz Ji

= %’ypx(t <S<t+ A).

Letting ¢t | 0 and A T oo in this equation we learn that

— Q(IJ,y
o

and hence
P Xs=y,t <S<t+A)=P,(Xsg=y) P(t<S<t+A).
This proves also that Xg and S are independent random variables. [

Remark 6.22. Technically in the proof above, we have used the identity,

{(Xs=y&t<S<t+A}
:U?=1 m?LZN U0§m<n {S>t+l€A/7’l & Xt+(k+1)A/n :y}

Using Theorem along with Fact leads to the following description
of the Markov process associated to (). Define a Markov matrix, P, by

~ Qaz,y
P,y = ~Quw ?f Ty for all x,y € S. (6.24)
0 ifx=y

The process X starting at x may be described as follows: 1) stay at = for an
exp(Q,) — amount of time, Sy, then jump to x; with probability ]Sgwl. Stay
at x1 for an exp(Q,,) amount of time, S, independent of S; and then jump
to zo with probability 15117:62. Stay at xo for an exp(Q.,) amount of time, Ss,
independent of S7 and S5 and then jump to xz3 with probability 15352,9;3, etc. ete.
etc. etc. The next corollary formalizes these rules.
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Corollary 6.23. Let Q be the infinitesimal generator of a Markov semigroup
P (t). Then the Markov chain, {X:}, associated to P (t) may be described
as follows. Let {Yi},—, denote the discrete time Markov chain with Markov

matriz P as in Eq. . Let {Sj};il be random times such that given

{Yj=a;:5<n}, S; L exp (Qu,_,) and the {Sj}?:1 are independent for
1 <5< nE| Now let Ny = max{j: 51+ ---+5; <t} (see Figure and
X = YNy Then {Xt}t > 0 is the Markov process starting at x with Markov
semi-group, P (t) = e'Q.

N
> —
2 —
| «—0
(o) + t { >

S, S S, S+, S, tve

Fig. 6.2. Defining N;.

In a manner somewhat similar to the proof of Example [5.8 one shows the
description in Corollary [6.23]is defines a Markov process with the correct semi-
group, P (t) . For the much more on the details the reader is referred to Norris |5,
See Theorems 2.8.2 and 2.8.4].

2 A concrete way to chose the {S;}2, is as follows. Given a sequence, {7},
of i.i.d. exp (1) — random variables which are independent of {Y'}, define S; :=
T;/Qv; -






7

Continuous Time M.C. Examples

7.1 Birth and Death Process basics

A birth and death process is a continuous time Markov chain with state
space being S = {0,1,2,...} and transitions rates of the form;

Ao A1 A2 An—2 An-1 An
0=1=2=23... 2 (n—-1) 2 n = (n+1)...
M1 M2 M3 Hn—1 Hn Hnt1

The associated @) matrix for this chain is given by

0 1 2 3 4
0 —Xo Ao
Lo — (A4 p) Al
Q=2 2 — (A2 + p2) A2
3 M3 — (A3 +p3) A3
4 .

If m, (t) = P(X (t) =n), then 7w (t) = (m,(t)),>, satisfies, 7(t) = 7 (t)Q
which written out in components is the system of differential equations;

7o () = —Aomo (1) + pam (1)
71 () = Aomo (t) — (A1 + pa) w1 (£) + pama ()

Tn (£) = An—1Tn—1 (t) — (Ao + ftn) T (£) + pnp1 o () -

The associated discrete time chain is described by the jump diagram,

A1 A BT B An
1 INE S Xo o An—1tHn_—1 An+pn
0 =21 =2 2 2 3---2(n-1) = n =
P na w3 bn K41
X1 FAa1 Xo+Ho A3 +u3 Antun N1 THnt1

In the jump hold description, a particle follows this discrete time chain. When
it arrives at a site, say n, it stays there for an exp (A, + p,,) — time and then

jumps to either n — 1 or n with probability Aﬂ’f:ﬂﬂ or /\n/\fun respectively. Given
your homework problem we may also describe these transitions by assuming at
each site we have a death clock D,, = exp (u,,) and a Birth clock B,, = exp (\,)
with B, and D,, being independent. We then stay at site n until either B,, or
D,, rings, i.e. for min (B,,, D,,) = exp (A, + 1n) — amount of time. If B,, rings
first we go to n + 1 while if D,, rings first we go to n — 1. When we are at 0 we
go to 1 after waiting exp (\g) — amount of time.

7.2 Pure Birth Process:

The infinitesimal generator for a pure Birth process is described by the following
rate diagram

A
0 =%

A1 A2 An—1 An—1 An
2= ... = h-1)—n"">

1
For simplicity we are going to assume that we start at state 0. We will examine
this model is both the sojourn description and the infinitesimal description. The
typical sample path is shown in Figure[7.2]

I]\Si”“k“-”
34 —
2 —
1T g o= ¢ . S
2yl g et ——
o 4’;‘ <~‘__, I \ >
W, Wo Wy Hme

7.2.1 Infinitesimal description

The matrix () is this case is given by



56 7 Continuous Time M.C. Examples
Qiit1 =X and Q;; = —\; foralli =0,1,2,...

with all other entries being zero. Thus we have

012 3 ...
[—Xo Ao
0
1 -1 A
: X A
Q= 3 —A3 A3

If we now let
7 (t) = Po (X (1) = ) = [ (0) '],
then m; (t) satisfies the system of differential equations;
7:1'0 (t) = —/\07T0 (t)
7:1'1 (t) = )\07‘(0 (t) — )\17‘(1 (t)

o () = Ape17m1 (£) — Anrn (£)

The solution to the first equation is given by

o (t) = e 2l (0) = e Mot
and the remaining may now be obtained inductively, see the ODE Lemma
using

t
T (t) = An,le_A7Lt/O T,y (1) dr. (7.1)

So for example

t t
m () = /\oe”‘lt/ Mg (1) dr = )\Oeﬁ‘lt/ eMTe AT dr
0 0

Ao ait (a—ro)rpr=t _ A0

A — Ao 720_/\1on{
_ Ao —Xot _ =M1t
—/\1_)\0[6 0 e 1].

e~ Mte(Ai—Xo)t _ e—ht}

If \; = Mo, this becomes, m; (t) = (Agt) e~*°! instead. In principle one can
compute all of these integrals (you have already done the case where A; = A for
all j) to find all of the =, (¢) . The formula for the solution is given as
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T (t) = P (X (t) = n|X (0) = 0) = Ag... An_1

n
§ Bk,ne_kkt
k=0

where the By, ,, are given on p. 338 of the book.
To see that this form of the answer is reasonable, if we look at the equations
for n =0,1,2,3, we have

7o (t) = —Ao7o (t)
7:(1 (t) = )\071'0 (t) — )\171'1 (t
7:r2 (t) = )\17T1 (t) - )\2’/T2 (t
7.T'3 (t) = )\271'2 (t) )\371'3 (t
and the matrix associated to this system is
—Ao Ao
! _)\1 >\1
@ = —A2 A2
—\3

so that (mo (), ..., 7 (t)) = (1,0,0,0) e!Q". If all of the A; are distinct, then @’
has {\; }?:0 as its distinct eigenvalues and hence is diagonalizable. Therefore
we will have

e—t>\0
7t/\1
(70 (t) -3 (1) = (1,0,0,0) S C s

eft>\3

for some invertible matrix S. In particular it follows that 75 (t) must be a linear
combination of {e‘t’\f }j':o . Generalizing this argument shows that there must
be constants, {Ck.n}y_, such that

n
(1) = Z Chne” e,
k=0

We may now plug these expressions into the differential equations,
Tn (t) = Ap—17pn—1 () — A7 (1),

to learn
n n—1 n
- E )\kckne_w\k = A1 E Ck,nfle_tkk — A E Ckne_tkh
k=0 k=0 k=0
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Since one may show {e‘t’\k }Z:o are linearly independent, we conclude that
*)\kckn = )\n—lck,n—l . 1k§n—1 - )\nckn for k = Oa 17 2> EEREN2

This equation gives no information for k£ = n, but for k£ < n it implies,

A
Cin = Mi_i\kam_l for k<n—1.
To discover the value of C,, ,, we use the fact that Y, Ci, = m, (0) = 0 for
n > 1 to learn,

n—1 n—1
Cpon = Cin = At g
nn — kn — — ﬁ kn—1-
n — Nk
k=0 k=0

One may determine all of the coefficients from these equations. For example,
we know that Cpg = 1 and therefore,

Ao Ao
Co1 = dCi1=-Ch1=— .
0,1 M — Ao al 1,1 0,1 M — o
Thus we learn that
Ao —Xot -\t
t) = ot _ 1
1 ( ) Al — )\0 (6 e )
as we have seen from above.
Remark 7.1. 1t is interesting to observe that
1 1
d 1 d 1
%(’”O(t),"wﬂg(t)) 1 :&(1707070)6tQ 1
1 1
1
=(1,0,0,0)¢'?'Q’ }
1
where
1 —Xo Ao 1 0
o 1 _ - A1 1 _ 0
1 -2 Ao 1 0
1 —A3 1 —A3

and therefore,
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<0.

1
o (6), s () ||
1

This shows that Z?:o 7 (t) < Z?:o 7; (0) = 1. Similarly one shows that

Zﬂ'j (t) <1 forallt >0 and n.
3=0

Letting n — oo in this estimate then implies

iﬂ'j (t) S 1.

It is possible that we have a strict inequality here! We will discuss this below.

Remark 7.2. We may iterate Eq. (7.1) to find,
¢ t
T (t) = )\067)\1t\/ (3)\17'71.0 (7_) dr = )\067)\1t/ e)\l'ref,\ofrdT
0 0
t
mo (t) = )‘16_>\2t/ 6A2U7T1 (0)do
0
t (e
= )\167)\2t/ e>\20 |:)\0€)\10/ €>\17€>\on7':| do
0 0
t o
Z)\o)\1€_)‘2t/ daeo‘Q_Al)"/ e1=2o)T 710
0 0
— )\0)\16—)\215/ e()\Q—Al)a'+()\1_)\0)7-do_d7_
0<r<0o<t

and continuing on this way we find,

T (1) = XA . .. An_le**nt/ ei= N A-Di g, ds

0<s1<s2<--<s5,<t

ne

(7.2)
In the special case where \; = X for all j, this gives, by Lemma [7.3] below with
f(s)=1,
A"

() = A”eﬂ\t/ dsy...dsp = ——e . (7.3)
0<s1<s2<Ssp <t n!

Another special case of interest is when \; = §(j + 1) for all j > 0. This will
be the Yule process discussed below. In this case,
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58 7 Continuous Time M.C. Examples

T (t) _ n!ﬁne—(n-‘rl)ﬁt/

0<s51<s2<+ <5, <t

t n Bt n
_ pigre—nse L (/ eﬁsds> _ gre- e <6 1)
n! \ Jy 8

=e Pt (1—e )", (7.4)

ePri=1%ds, ... ds,

wherein we have used Lemma below for the the second equality.
Lemma 7.3. Let f (t) be a continuous function, then for all n € N we have

f(sl)...f(sn)dsl...dsn:;(/Otf(s)ds>n.

/(;§51S52S'“§571§t

Proof. Let F (i) := fotf(s) ds. The proof goes by induction on n. The
statement is clearly true when n = 1 and if it holds at level n, then

F(s1) - f(sn) f(Spx1)dsy...dspdsnir

/0<81 <2< <5 <sp41<t

t
:/ </ f(sl)...f(sn)dsl...dsn> f(sn+1) dSnt1
0 0<s1<s2<-<sp<snp+1

-[ (o (F )" ) P ) s = | " () au

B F(t)n+1
 (n+1)!

as required. ]

7.2.2 Yule Process

Suppose that each member of a population gives birth independently to one
offspring at an exponential time with rate §. If there are ¥ members of the
population with birth times, T7,...,7T%, then the time of the birth for this
population is min (71,...,7%) = Sk where Sk is now an exponential random
variable with parameter, Gk. This description gives rise to a pure Birth process
with parameters A\, = k. In this case we start with initial distribution, 7; (0) =
;1. We have already solved for 7 (t) in this case. Indeed from from Eq. (7.4))
after a shift of the index by 1, we find,

T (t) = e P (1 - e_ﬂt)n_1 for n > 1.
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7.2.3 Sojourn description

Let {S,},, be independent exponential random variables with P (S,, > t) =
e~*nt for all n and let
Wi =8+ -+ Sk_1

be the time of the k' — birth, see Figure where the graph of X (t) is shown
as determined by the sequence {S,},- . With this notation we have

P(X(t)=0)=P (S >t)=e !
P(X(t)=1)=P(So <t <Sy+51)=P (W, <t<Wy)
P(X(t)ZQ):P(W2§t<W3)

P(X(t) ZJ)': PW; <t <Wji)

where {W; <t < W,1} represents the event where the j*® — birth has occurred
by time ¢ but the j** — birth as not. Consider,

P(W1 <t< Wg) = /\0/\1/ eiAomoeiAlxldﬁbodJEl.

0<zo<t<zo+z1
Doing the z; -integral first gives,

P(X(t)=1)=P (W, <t< W)

oo

_ —Xoxo [__,—A1T1
= /\0/ e [ e ]Il:tizo dxg
0<zo<t<zo+x1

= o / e—Aoloe—)\l(t—wo)de
Oﬁf()ft

= )\Oe*/\lt/ eA1=20)To g0
0<zo<t

Ao —Art [ (A1 —=Xo)t
N /\Oe e

_ /\0 —Xot
RV [e

e*)‘lt] .

There is one point which we have not yet addressed in this model, namely
does it make sense without further information. In terms of the Sojourn de-

scription this comes down to the issue as to whether P (Z;’il S; = oo) = 1.
Indeed, if this is not the case, we will only have X (¢) defined for ¢ < Z;‘;l S

which may be less than infinity. The next theorem tells us precisely when this
phenomenon can happen.

macro: svmonob.cls date/time: 4-Jun-2008/13:17



Theorem 7.4. Let {Sj};il be independent random variables such that S; 2
exp (A;) with 0 < \j < oo for all j. Then:

LI A < oo then P (307, S < o0) = 1.
2. If > At =00 then P(Y.)7 | S, =00) =1.

Proof. 1. Since

E

isnl :i]E[S,L] Y Al < oo
n=1 1

n=1 n=

it follows that Y.~ , S, < oo a.s.
2. By the DCT, independence, and Eq. (2.3)),

E[em ™8] = lim E[em =05 = Jim 1 E [e=5"]
n=1

N 1 N
i 1 () = oo (-;m (- W)
= exp (—Zln (1—}—)\;1)) .
n=1

If \,, does not go to infinity, then the latter sum is infinite and A\, — oo and
S ARt =00 then 307 In(1+ M%) =ocoasIn(1+A;1) =2 A for large

n. In any case we have shown that E [6’2?:1 S”] = 0 which can happen iff

|
5

e~ Xn=15" =0 a.s. or equivalently Yoo 1 Sy =00 as. ]

Remark 7.5.1f 72, 1/A\;, < oo so that P(> .2, S, <oo) = 1, one may
define X (t) = oo on {t>3>°,S,}. With this definition, {X (¢)},5, is
again a Markov process. However, most of the examples we study will satisfy
Zl?;l 1//\k = Q.

7.3 Pure Death Process

A pure death process is described by the following rate diagram,

0—1«—2«—3... — (N—-1)«—N.
M1 H2 M3 HN-—1 KN

If m; (t) = P (X (t) = j|X (0) = m; (0)) , we have that
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Tin (1) = —pnmy (t)
n-1(t) = unTN (t) — py—17N -1 (t)

Tn (t) = Un4+1Tn+1 (t) — HnTn (t)

1 (t) = pama (t) — pam ()
7.1'0 (t) = —U17T1 (t) .

Let us now suppose that 7; (t) = P (X (¢t) =j|X (0) = N). A little thought
shows that we may find 7; (¢) for j = 1,2,..., N by using the solutions for
the pure Birth process with 0 — N, 1 — (N—-1),2 — (N—2),..., and
(N —1) — 1. We may then compute

N
7o (t) := 1—Z7Tj (t).

The explicit formula for these solutions may be found in the book on p. 346 in
the special case where all of the death parameters are distinct.

7.3.1 Cable Failure Model

Suppose that a cable is made up of N individual strands with the life time
of each strand being a exp (K (1)) — random variable where K (I) > 0 is some
function of the load, [, on the strand. We suppose that the cable starts with NV
— fibers and is put under a total load of NL that L is the load applied per fiber
when all N fibers are unbroken. If there are k — fibers in tact, the load per fiber is
NL/k and the exponential life time of each fiber is now K (NL/k). Thus when
k - fibers are in tact the time to the next fiber breaking is exp (kK (NL/k)).
So if {S; };:N are the Sojourn times at state j, the time to failure of the cable

isT = Zjvzl S; and the expected time to failure is

SN D /I R SRS S SOy S
! S kK (NL/k) ~ N LK (%L)  Jo =K (L/x)

Jj=1

if K is a nice enough function and N is large. For example, if K (I) = 1%/A for
some 3 > 0 and A > 0, we find

1 1
ET = / Ldaz A 2P Yy =
0o z(

L/x)ﬁ B 0 L8g
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60 7 Continuous Time M.C. Examples

Where as the expected life, at the start, of any one strand is 1/K (L) = A/L".
Thus the cable last only % times the average strand life. It is actually better
to let Ly be the total load applied so that L = Ly/N, then the above formula
becomes,
A NP
ET = ——.
Ly B

7.3.2 Linear Death Process basics

Similar to the Yule process, suppose that each individual in a population has a
life expectancy, T' 4 exp («) . Thus if there are £ members in the population at
time ¢, using the memoryless property of the exponential distribution, we the
time of the next death is has distribution, exp (ka)) . Thus the i = ak in this
case. Using the formula in the book on p. 346, we then learn that if we start
with an population of size NN, then

T (1) = P (X (t) = n|X (0) = N)

N —n
- < >e”°‘f (1—e )" forn=0,1,2,...,N. (7.5)
n

So {m, (t)}flvzo is the binomial distribution with parameter e~*¢. This may be
understood as follows. We have {X (t) = n} iff there are exactly n members out
of the original N still alive. Let &; be the life time of the j*" member of the
population, so that {fj};—vzl are i.i.d. exp (u) — distributed random variables.
We then have the probability that a particular choice, A C {1,2,...,N} of n -
members are alive with the others being dead is given by
— n _ N—n
P((Njea{s >t 0 (Njea sy <83)) = (e7)" (1 —e™) ",

As there are ([r\[) — ways to choose such subsets, A C {1,2,...,N}, with n —
members, we arrive at Eq. ((7.5).

7.3.3 Linear death process in more detail

(You may safely skip this subsection.) In this subsection, we suppose
that we start with a population of size N with {; being the life time of the
4" member of the population. We assume that {Ej};.vzl
distributed random variables and let X (¢) denote the number of people alive

at time t, i.e.

are 1.i.d. exp (u) —

X()=#4i:& > 1),
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Theorem 7.6. The process, {X (t)},~ is the linear death Markov process with
parameter, o. -

We will begin with the following lemma.

Lemma 7.7. Suppose that B and {A; };”:1 are events such that: 1) {A; }?:1 are
pairwise disjoint, 2) P (A;) = P (A1) forallj, and 3) P(BNA;) =P (BNA)
for all j. Then

P (B|UYL, A;) = P(B|Ay). (7.6)

We also use the identity, that
P(B|ANC) =P (B|A) (7.7)
whenever C' is independent of {A, B}.

Proof. The proof is the following simple computation,

P (B To14; P(U"_ BNA;
P(BlUL, 4;) = (BN (Up_i4))) _ P(UiBNA;)

P (U, 4;) P(Ur_,A))
_ ?:1P(B0Aj)_ﬂP(BﬂA1)_
X PA) P (4) = P(BlA1).

For the second assertion, we have

P(BNANC) P(BNA)-P(C)

P(BIANC) = P(ANC) ~—  P(A)-P(C)
_P(BNA)

[
Proof. Sketch of the proof of Theorem@ LetO<u<v<tandk>1l>m
as in Figure(7.3.3] Given V C U C {1,2,..., N} with #V =1 and #U =k, let

W L =2 wm e (o) )N}
— t—
w v t

\V

T

Avy = Njev {& > uf NNjgu {& < up NNjev {&5 > v} NNjgy {§ < v}
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so that {X, =k, X, =} is the disjoint union of {Ay y} over all such choices
of V.C U as above. Notice that P (Ay,y) is independent of how U C V
as is P({X; =m} N Apy). Therefore by Lemma we have, with V =

{1,2,...,1} cU =1{1,2,...,k}, that
P(Xt :m|Xu =k, X, = l) = P(Xt :m|AU7v)
Exactly m of &,...,& >t >v,...,8 > 0,0 > 841 > u,...,0 > & > u)

7£l >t‘€1>va"'a€l>v)

(

(Exactly m of &, ...
l

)P(gl >t Em > 6my1 <t g <tHE >, 8 > )

l)P(gl >H" . Po<& <t)"
P(’U<fl)l

—at\m —vt —at\l-m —
_ (6 t) i (6 ‘e t) _ ! e—am(t—v) (1 _ e—(x(t—v))l
m e—avl m

Similar considerations show that X; has the Markov property and we have just
found the transition matrix for this process to be,

l —am(t—v —a(l—v
P(X,=m|X,=1) = 1l2m<m>e (t=v) (1 _emalt >)

z
g

m
m
l

l—m

So
l —m
le (t) = P (Xt = m‘Xo = l) — 1>77L< )eoémt (1 _ efat)l '
- m

Differentiating this equation at ¢ = 0 implies <[4 Pin (t) = 0 unless m = [ or
m=1—1 and

d
%|0+P” (t) = —al and

d l
— o+ By - = =al.
o+ Fri-1(t) (l_1>0< «

These are precisely the transition rate of the linear death process with parameter
a. ]
Let us now also work out the Sojourn description in this model.

Theorem 7.8. Suppose that {&; }jvzl are independent exponential random vari-
ables with parameter, o as in the above model for the life times of a popu-
lation. Let W1 < Wy < --- < Wy be the order statistics of {fj}évzl, i.e.
Wy < Wy < < Wy} = {fj};vzl Hence W is the time of the j™ — death.
Further let S; = Wy, So = Wo — W1,..., Sy = W — Wx_1 are times be-

tween successive deaths. Then {Sj};.vzl are exponential random variables with

;L exp (N —j)a).
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Proof. Since Wy = 57 = min (&, ... 4

exp (Na). Let

,EN), by a homework problem, S;

A= {& < min (&), } 0118 = 1}

We then have
Wy =t} = Uj‘V:1Aj

and
A0 {Wa > st} = {5+t < min (&), } N1E = 1}

By symmetry we have (this is the informal part)

P(A;) = P(4;) and
PANn{Wy >s+t})=PAN{Wy >s+t}),
and hence by Lemma 777}
P(Wy>s+tW, =t)=P

Now consider

Wy = P (AL N{Wy > s+ 1} A1)
= P ({& = 0 {min (6 > s+ ¢} [ min (60, > &1 = 1)
P(mm E)ppy > s+ & 7t)

P (min (€) > 1, &1 = 1)

P (min (&) 0 > 5+ 1)

= = e

P (min (€r)ppr > t)

—(N-1)as

since min (&), 21 4 exp ((N — 1) @) and the memoryless property of exponen-

tial random variables. This shows that Sy := Wy — Wy < exp (N —1)a).
Let us consider the next case, namely P (W3 — Wy > ¢t|W, = a,Wa =a+1).
In this case we argue as above that

P(Wg—W2>t|W1:(l,W2:a+b)

= P (min (&,...,&n) =& >t =a, & =a+b, min(&s,...,&n) > &2)
_ P(min (&3,...,én) >t+a+b, & =a, & =a+b, min(&s,...,Ey) > &)
P& =a, &=a+b, min(&,...,Eny) > a+b)
_ P (min (&3,...,6n) >t+a+b) _ —(N-2)at
P (min (&,...,éN) > a+b) '
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62 7 Continuous Time M.C. Examples

We continue on this way to get the result. This proof is not rigorous, since E[lw,—wyst g (Wi, Wa)] = ZE Mwy—wyst g (Wi, Wa) 0 & < &k < T
P (& =t) = 0 but the spirit is correct. J#k
Rigorous Proof. (Probably should be skipped.) In this proof, let ¢ . _ e ‘
be a bounded function and T}, := min (& : [ # k). We then have that T}, and & - ;E (e 9 (6, 860) & < & < T
J
are independent, Ty 4 exp (N — 1) @), and hence B ZE [ eor 90660 1 & < &]
= k=& >t 7 Y]
E[lwy-wist ¢ (W)l = S E [Lwy—wise 9 (Wh) : & < Ti] 7t
k =Y Elexp(— (N —=2)a(t+&)) g (&, &) : & < &l
=Y Elln gt 9 (&) : & < Ti 7k
k =exp(— (N =2)at) Y Elexp (— (N = 2) a&s) g (§,&) : & <
= ZE [1Tk*§k>t g (516)} el
k = exp (_ (N - 2) at) ZE [1Tjk—5k>0 g (gjafk) : fj < fk]
=Y Elexp (= (N =1 a(t+&)) g (&) i#k
g =exp(— (N —2)at) Y Elg(Wi,W2) : & < & < Tl
—exp(— (N —1)at) Y Elexp (= (N — 1) atx) g ()] #k
F =exp (= (N —2)at) - E[g (Wi, Wy)].

=exp(— (N —1)at) Y E[ln, g0 9(&)]
k This again shows that W5 — W5 is independent of {W;, W5} and W3 — Wy

=exp (— (N —1)«at) ZE [I7 >0 g (W1)] exp ((N — 2)a) . We leave the general argument to the reader.

k
= exp(~ (N — 1)at) -E[g (W1)].

m =

It follows from this calculation that Wy — W7 and W; are independent, Wy —
Wi =exp(a(N—1)).

The general case may be done similarly. To see how this goes, let us show
that W5 — Wy £ exp ((N — 2)a) and is independent of W and Ws. To this end,
let Tj, := min{& : [ # j or k} for j # k in which case T} 2 exp (N —2) )
and is independent of {¢;, ¢} . We then have
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8

Long time behavior

In this section, suppose that {X (t)},-, is a continuous time Markov chain
with infinitesimal generator, @, so that

P(X(t+h)=jlX({t)=1) =0 +Qijh+o(h).
We further assume that @ completely determines the chain.

Definition 8.1. {X (¢)} is irreducible iff the underlymg discrete time jump
chain, {Y,}, determined by the Markov matriz, PZ] = Q‘ 1#]7 is irreducible,

where
g = —Qii = > Qij.
i

Remark 8.2. Using the Sojourn time description of X (¢) it is easy to see that
P (t) = (etQ)ij >0 forall ¢ >0 andd,j €S if X (¢) is irreducible. Moreover,

if for all ¢,j € S, P;; (t) > 0 for some ¢ > 0 then, for the chain {Y,,}, i — j and
hence X (t) is irreducible. In short the following are equivalent:

1. {X (t)} is irreducible,
2.oralli,j €S, Py(t) >0 for some t > 0, and
3. Py (t)>0forallt>0andijeS.

In particular, in continuous time all chains are “aperiodic.”

The next theorem gives the basic limiting behavior of irreducible Markov
chains. Before stating the theorem we need to introduce a little more notation.

Notation 8.3 Let Sy be the time of the first jump of X (t), and
R;:=min{t > 5 : X (t) =i},

is the first time hitting the site i after the first jump, and set

T = where q; := — Q.

q; - B R;

Theorem 8.4 (Limiting behavior). Let {X (t)} be an irreducible Markov
chain. Then

1. for all initial staring distributions, v (j) := P (X (0) = j) for all j € S, and

all j € S,
1 T
P, IEEOT/ Lx

2. limy_. o P;; (t) = m; independent of i.
3. = (ﬂ'j)jes is stationary, i.e. 0 = wQ, i.e.

—jdtzﬂ'j> =1. (81)

> Qi =0 for all j € S,
€S
which is equivalent to mP (t) = m for all t and to Py (X (t) = j) = 7 (j) for
allt>0 and j € 8S.
If i >0 for some i € S, then w; > 0 for alli € S and ),
. The m; are all positive iff there exists a solution, v; > 0 to

ZWQU =0 for all j € S with Zyi =1.

i€S €S

71'2':1.

G R~

If such a solution exists it is unique and v = T.

Proof. We refer the reader to [5, Theorems 3.8.1.] for the full proof. Let us
make a few comments on the proof taking for granted that lim, .., P;; (t) =: 7,
exists.

1. Suppose we assume that and that v is a stationary distribution, i.e.
vP (t) = v, then (by dominated convergence theorem),

tlgg)ZVl i (1) = Ztlirgo v, Py (t) = <Z I/i> T = Tj.

Thus v; = 7;. If m; = 0 for all j we must conclude there is not stationary
distribution.
2. If we are in the finite state setting, the following computation is justified:

Zﬂ'jpjk. (s) = Z lim Pw = hm ZPU

jES JES jES
= lim Py (t+ s) = 7g.
t—o0o
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This show that 7P (s) = « for all s and differentiating this equation at s = 0
then shows, 7@ = 0.
3. Let us now explain why

L /Tl dt L
1 b
T ), X7 q; - BjR;

The idea is that, because the chain is irreducible, no matter how we start the
chain we will eventually hit the site j. Once we hit j, the (strong) Markov
property implies the chain forgets how it got there and behaves as if it started
at j. Since what happens for the initial time interval of hitting j in computing
the average time spent at j, namely limp_. % fOT 1x)=;dt, we may as well
have started our chain at j in the first place.

Now consider one typical cycle in the chain staring at j jumping away at
time S; and then returning to j at time R;. The average first jump time is
ES: = 1/q; while the average length of such as cycle is ER;. As the chain
repeats this procedure over and over again with the same statistics, we expect
(by a law of large numbers) that the average time spent at site j is given by

ESl o l/q] o 1
]ERj ]EjRj qj EjRj '

8.1 Birth and Death Processes

We have already discussed the basics of the Birth and death processes. To have
the existence of the process requires some restrictions on the Birth and Death
parameters which are discussed on p. 359 of the book. In general, we are not able
to find solve for the transition semi-group, e’ in this case. We will therefore
have to ask more limited questions about more limited models. This is what we
will consider in the rest of this section. We will also consider some interesting
situations which one might model by a Birth and Death process.

Recall that the functions, m; (t) = P (X (t) = j), satisfy the differential
equations

7o (t) = —Xomo (1) + pam (t)
71 (t) = Moo (t) — (A1 + pa) w1 () 4 pama (1)
o (t) = Ay (t) — (A2 + p2) m2 (¢) + pams (1)

Tn (t) = An—1Tn—1 () — (Ao + ftn) T () + pnr1 o (1) -
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Hence if are going to look for a stationary distribution, we must set 7; (t) =0
for all ¢ and solve the system of algebraic equations:

0= —Xomo + p17m1
0= Xomo — (A1 + p1) m1 + poms
0=Mm — (A2 + p2) m2 + p3ms

0= )\n—lﬂ-n—l - (An + ,U/n) Tp + Un+1Tn+1-

We solve these equations in order to find,

Ao
T = — T,
H1
A1+ Ao A1+ 1 Ao Ao
My=——""M — —NMg=—"—T9g— —Tp
H2 2 M2 1 2
_ Ao
12
Ao + Lg A1 Ao + p2 Ao A1 Ao
m=——""MT——M=—""""~——"T9g— ——70
M3 u3 M3 12 M3 1
AoA1 A2
= 7'('0
H1p2 3
AoA1I A .. A1
Ty = ————————— .
H1f2ft3 - - - Hn

This leads to the following proposition.

Proposition 8.5. Let 0, := % forn=1,2,.... and 0y := 1. Then

the birth and death process, {X (t)} with birth rates {)\j};io and death rates
{/Lj};il has a stationary distribution, , iff © ==Y ° 60, < co in which case,

T = — for all n.

e

Lemma 8.6 (Detail balance). In general, if we can find a distribution,
satisfying the detail balance equation,

WiQij = ﬂiji fOT all 7 7& j, (82)

then 7 is a stationary distribution, i.e. m1Q = 0.
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Proof. First proof. Intuitively, Eq. states that sites ¢ and j are always
exchanging sand back and forth at equal rates. Hence if all sites are doing this
the size of the piles of sand at each site must remain unchanged.

Second Proof. Summing Eq. on ¢ making use of the fact that
> Qji = 0 for all j implies, . m;Q;; = 0. ]

We could have used this result on our birth death processes to find the
stationary distribution as well. Indeed, looking at the rate diagram,

)\g )\1 )\2 An72 >\n71 )\n
0=1=2=3... =2 (n—-1) 2 n = (n+1),
M1 M2 M3 Hn—1 Hn Hn+1

we see the conditions for detail balance between n and n =1 are,

7Tn)\n = Tp+1MUn+1

T

which implies Totl = Au_
Tn

o Therefore it follows that,
Hn+41
1 - )\()
T
Ty MW A1 Ao

b)
o 1 7o H2 1

ﬂ _ Tn Tn—1 E _ )\nfl ﬁ&
0 Tn—1 Tpn—2 o Hn M2 [
_Aoh A
- —Un
M2 - o - oy

as before.

Lemma 8.7. For |z| <1 and a € R we have,

(1_x)_a:Za(a+1)...(a—|—k—1) k (8.3)

il v
k=0

where w := 1 when k = 0.

Proof. This is a consequence of Taylor’s theorem with integral remainder.
The main point is to observe that
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di (1-2)*=a(-z)~ "
T

(C;‘DQ (1-2) =a(@+1)(1—z)

k
<;lx> (lfx)foé:a(a+1)...(a+kf1)(17@7(@%)

and hence,

k
<j:z:> 1-—2) " smo=ala+1)...(a+k—1). (8.4)

Therefore by Taylor’s theorem,

1o =3 k(&) 0w s

k=0
which combined with Eq. (8.4)) gives Eq. (8.3). [

Ezample 8.8 (Exercise 4.5 on p. 377). Suppose that A\, =0 < 1 and u,, = g

In this case,

971

Op = 15— =(n+1)0"
TR

N|—=
win

and we must have,
(n+1)0™
Tn = &S 7 1 15 on"
Zn:O (TL + 1) 9n

We can simplify this answer a bit by noticing that

Nt d & d 0 (1—-6)+06 1
E n+1 9":—5 gt = — = = .
n:O( ) do n=0 dg1—9 (1_9)2 (1_€>2

(Alternatively, apply Lemma with @ = 2 and « = 6. )Thus we have,
= (1-0)>n+1)0"

Ezample 8.9 (Ezercise 4.4 on p. 877). Two machines operate with failure rate
1 and there is a repair facility which can repair one machine at a time with rate
A. Let X (t) be the number of operational machines at time ¢. The state space
is thus, {0, 1,2} with the transition diagram,
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66 8 Long time behavior

Ao A]
0=12=2
M1 M2

where A\g = A\, A\ = A, po = 2p and p; = p. Thus we find,

Ao A
T = —Tg = —To
H1 H
A2 12
T - —
2 2M2 0 2M2 0

so that

A 12

l=my+m +m = 1—i———|—f—2 0.

M H

So the long run probability that all machines are broken is given by
1+ A + LN
Ty = -+ == .
0 PRIEYE

If we now suppose that only one machine can be in operation at a time
(perhaps there is only one plug), the new rates become, A\g = A, Ay = A\, o =
and pq = p and working as above we have:

Ao A
T = —To = —To
H1
A2 A?
o = —5 T — -
2 2
W

so that
A A2
1:7T0+7T1+7T2: 1+*+*2 -
B

So the long run probability that all machines are broken is given by
A oA\t
Ty = (1 + -+ 2) .
[

Ezample 8.10 (Problem VI.4.7, p. 379). A system consists of 3 machines and
2 repairmen. At most 2 machines can operate at any time. The amount of
time that an operating machine works before breaking down is exponentially
distributed with mean 5 hours. The amount of time that it takes a single re-
pairman to fix a machine is exponentially distributed with mean 4 hours. Only
one repairman can work on a failed machine at any given time. Let X (t) be
the number of machines in operating condition at time ¢.

a) Calculate the long run probability distribution of X (¢).

Page: 66 job: 180Notes

b) If an operating machine produces 100 units of output per hour, what is the
long run output per hour from the factory.

Solution to Exercise (Problem VI.4.7, p. 379).
The state space of operating machines is S = {0, 1,2,3} and the system is
modeled by a birth death process with rate diagram,

a) We then have 6y = 1,

1/2 5
01 = —— = —
1/5 2
o _ 1212 %
> 1/52/5 2
g, - 121214 5°1 5
T 1/52/52/5  2i4 26
and 5
5 5% 5% 549
0= =1+-+—"+= =2,
jz:(:) ot ety T
: %Therefore m; = 0;/6 gives,

(7o, 1, 2 7g) = Db L 525
0, /11, 72,713 _549 ’2723’26

_(ﬁ 160 200 1275)
— \ 549 549 549 549

= (0.116 58 0.291 44 0.364 30 0.22769) .

b) If the operating machines can produce 100 units per hour, the long run
output per hour is,

100-7,+200 (g + 73) = 100-0.291 444200 (0.364 30 + 0.227 69) = 147.54 /hour.

Solution to Exercise (Problem VI1.4.7, p. 379 but only one repair per-
son.). Here is the same problems with only one repair person. The state space
of operating machines is S = {0,1,2,3} and the system is modeled by a birth
death process with rate diagram,

Ao A1 A2
0=21222

M1 H2 M3

macro: svmonob.cls date/time: 4-Jun-2008/13:17



where, A\g = A1 = Ao = 1/4 and py = 1/5, po = uz = 2/5, so the rate diagram
is,

a) We then have 6y = 1,

g 145
1/5 4

y VAL 51

>T1/52/5 242
1/41/41/4 5% 1

93 = ———— =

1/52/52/5 2243

and

3
5 521 531 901

= 92:1 —_— —_—— —_— = =,
© = TiT o E T EE T 9

Therefore m; = 0,/6 gives,

( (551 5
T, 1,72, T3) = 901 a4, 2 42722 43

— (256 320 200 125)

— 1901 901 901 901
= (0.284 0.355 0.222 0.139) .

b) If the operating machines can produce 100 units per hour, the long run
output per hour is,

100 - 711 + 200 (3 + 73) = 100 - 0.355 + 200 (0.222 + 0.139) = 108 /hour.

Example 8.11 (Telephone Exchange). Consider as telephone exchange consist-
ing of K out going lines. The mean call time is 1/p and new call requests arrive
at the exchange at rate \. If all lines are occupied, the call is lost. Let X ()
be the number of outgoing lines which are in service at time t — see Figure 8.1
We model this as a birth death process with state space, {0,1,2,..., K} and
birth parameters, A\, = A for £k = 0,1,2,..., K — 1 and death rates, ux = ku
for k=1,2,..., K, see Figure In this case,
A A2 A3 \E
0=1,0=—,0=—,03=——,....0k = ——
» UVl /sz 2 2//627 3 3!'//63, y VK K'/,LK

so that

K 1 /\\*
(CRES Z o (N) >~ M for large K.
k=0
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>\ r Echam
— ?._ﬁ_ l<
N Calks pen Woun’ :

b ok lnes

Fig. 8.1. Schematic of a telephone exchange.

A \ N
o T— | F—1$¥——1 ¢«
M 1M 3}4. ZM'

Fig. 8.2. Rate diagram for the telephone exchange.

and hence

/2" 1 /2"
— o1 (Z) (2 —Mu
=0 (u) k! (u) ‘

For example, suppose A = 100 calls / hour and average duration of a connected
call is 1/4 of an hour, i.e. u = 4. Then we have

1 25
== (25

Moy = % =~ (.144.
k=0 71 (29)

so the exchange is busy 14.4% of the time. On the other hand if there are 30 or
even 35 lines, then we have,

1 30
1(25)
— 30! ( ~
k=0 71 (29)
and ) -
T35 = TR - (25) =
- 35 k-
k=0 71 (25)

and hence the exchange is busy 5.3% and 1.2% respectively.
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68 8 Long time behavior

8.1.1 Linear birth and death process with immigration

Suppose now that A, = nA+ a and p,, = nu for some A, x> 0 where A and p
represent the birth rates and deaths of each individual in the population and a
represents the rate of migration into the population. In this case,

al@a+A)(a+2)\)...(a+(n—1)N)
nlpn
= (A)"i(i-i-l) (%4—2)...(%4-(”_1)).

1 n!

0 =

Using Lemma with & = a/X and © = \/u which we need to assume is less

than 1, we find
0o A —a/A
O:=) 0o = (1—)
n=0 K

and therefore,

- (1_/\)am L(441)($+2)...($4+(n—-1)) (/\>n

7 n! I

In this case there is an invariant distribution iff A < p and a > 0. Notice that
if @ = 0, then 0 is an absorbing state so when A < u, the process actually dies
out.

Now that we have found the stationary distribution in this case, let us try
to compute the expected population of this model at time ¢.

Theorem 8.12. If

M(t):=RE[X ()] =Y nP(X(t)=n)=>_ nm,(t)

be the expected population size for our linear birth and death process with im-
magration, then

__a t(A—p) _ t(A—p)
M (t) A—u(e 1)+M(O)e
which when A = p should be interpreted as

M (t) = at + M (0).

Proof. In this proof we take for granted the fact that it is permissible to
interchange the time derivative with the infinite sum. Assuming this fact we
find,
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= Z nity, (t)

( (a+A(n— 1) w0t (8) )
—(a+ An+ an) o (8) + (0 + 1) s (8)

t”ﬂg

n

n=1

7

n(a+A(n—1))m,—1(t)

3
Il
=

n(a+ An+ un)m, (t) + Zun(nJr 1) mpg (8)

n=1

M

3
—

i n+1)(a+ An)m, (t)

n=0
n(a+ A+ ) m () + (= 1) nm, (1)
n=1 n=2

=AqaT

—~

D4 2@+N) = (a+ X+ p)]m (t)

[(n+1D)(a+In)+pun—1)n—n(a+ An+ un)]m, (¢)

HM8

=amo () + la+ A — p] w1 ( +Z [(a + An) — pn] m, (t)
=an (t)—i—Z[a—F/\n—un]ﬂ'n (1)
n=1

= fa+ An— un] T (8) = a+ (A — o) M (2).
n=0
Thus we have shown that

M (t) = a+ (A — p) M (1) WithM(O):z:mrn(O)7

where M (0) is the mean size of the initial population. Solving this simple

differential equation gives the results.

macro: svmonob.cls

date/time: 4-Jun-2008/13:17



8.2 What you should know for the first midterm

1. Basics of discrete time Markov chain theory.

a) You should be able to compute P (Xy = xg,...,X, = x,) given the
transition matrix, P, and the initial distribution as in Proposition [3.2}

b) You should be able to go back and forth between P and its jump dia-
gram.

c¢) Use the jump diagram to find all of the communication classes of the
chain.

d) Know how to compute hitting probabilities and expected hitting times
using the first step analysis.

e) Know how to find the invariant distributions of the chain.

f) Understand how to use hitting probabilities and the invariant distribu-
tions of the recurrent classes in order to compute the long time behavior
of the chain.

g) Mainly study the examples in Section and the related homework
problems. Especially see Example [£.33] and Exercises [0.6] -

2. Basics of continuous time Markov chain theory:
a) You should be able to compute P, (Xy, = i1, Xt, = G2,..., X, = in)
given the Markov semi-group, P (t), as in Theorem
b) You should understand the relationship of P (¢) to its infinitesimal gen-
erator, Q. Namely P (t) = €' and

d
—|oP (t) =
LP ) =Q
For example, if
1 2 3
P(t)= 672t+3673t+ : o2t 75673t+§ 9
-3 -3
—3¢€ t+ 0 3€ t+§ 3
then
. 10 1
Q=P0)=|1 -2 1
2 0 -2

Note: you will not be asked to compute P (t) from @ but you should
be able to find @ from P (t) as in the above example.

¢) You should know how to go between the generator ) and its rate dia-
gram.
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d) You should understand the jump hold description of a continuous time
Markov chain explained in Section In particular in the example
above, if S; = inf {t > 0: X (t) # X (0)} is the first jump time of the
chain, you should know that, if the chain starts at sites 1,2, or 3, then
S1 is exponentially distributed with parameter ¢ = 1, g2 = 2, q3 = 2
respectively, i.e.

P(S; > /X (0) = i) = e %,

where q; = —Q“
e) You should also understand that

. N
P(Xs, = j1X(0) = 1) = qfﬂ
so that in this example, P(Xg, = 3|X (0) = 2) = 1/2 in the above

example.
f) You should understand how to associate a rate diagram to @, see the
example section [6.3]
g) You should be familiar with the basics of birth and death processes.
i. Know how to compute the invariant distribution, Proposition 8.5
ii. Know the relationship of the invariant distribution to the long time
behavior of the chain, Theorem
iii. Understand the basics of the repairman models. In particular see
Example and homework Problem VI.4 (p. 377 —) P4.1.

Let us look more carefully at () above and its rate diagram:

1
10 1 1 23
2
Q=11 -21 == 4
2 0 =2 ) 1

The associated embedded Markov chain jump matrix and its rate diagram is
given by

1
) 00 1 L=3
P:=1/2012| = 51/
100 1/2
2

The communication classes are {1,3} and {2} with {2} being transient and
{1,3} being closed and hence recurrent. The equations for the invariant distri-
butions of the @ and P restricted to {1, 3} are;
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1
71'1:2’/T3 or (’/T1,7T3): 5(2,1) and
1
= (1,1
5 (1L 1)

T = T3 Or (7T1,’/T3) =

respectively. These are different — can you explain why?



9

Hitting and Expected Return times and Probabilities

Fig. 9.1. A rate diagram for a four state Markov chain.

Let {X (t)},>, be a continuous time Markov chain described by its infinites-
imal generator, () = (Qij), jes where S is the state space. Further let

Sp=inf{t>0: X () # X (0)}

be the first jump time of the chain and ¢; := —Q;; for all j € S. Recall
P(S; >t|X(0)=j)=e %" for all t > 0 and E[S1|X (0) = j] =1/g;. Given a
subset, A, of the state space, S, let

Ta:=inf{t>0:X(t) € A}

be the first time the process, X (t), hits A. By convention, T4 = co if X (t) ¢ A
for all ¢, i.e. if X (¢) does not hit A.

Ezample 9.1. Let S = {1,2,3,4} and X (¢) be the continuous time Markov
chain determined by the rate diagram, Further let A = {3,4}. We would like
to compute, h; = P; (X (¢) hits A) for i = 1,2. If {Y,,}, is the embedded
discrete time chain, this is the same as computing, h; = P; (Y;, hits A) which
we know how to do. We now carry out the details. First off the infinitesimal
generator, @, is given by

1 23 4
11-41 3 0

212 -30 1
Q_3 1 0-10
410 2 0 =2

and hence the Markov matrix for {Y,} is given by,

1 23 4
1[0 1/43/4 0
p._2(2/30 01/3

3|11 0 0 O
410 1 0 O

The first step analysis for the hitting probabilities then implies,

hl :Pl (X (t) hits A|X51 = 3) P1 (Xsl = 3)
+ P (X (t) hits A|Xg, =2) P, (Xg, = 2)
3

1
= — h—
1y

and
ho =P, (X (t) hits A|X51 = 1) P ()(S1 = 1)
+ Py (X (t) hits A|Xg, =4) P, (Xg, =4)
2 1
:—h —

3" T3
which have solutions, h; = ho = 1 as we know should be the case since this is
an irreducible Markov chain.

Ezample 9.2. Continuing the set up in Example [0.1] we are going to compute
w; = E;T4 for i =1,2. Again by a first step analysis we have,

wy = Eq (TA|X31 = 3) P (.XS1 = 3) + E; (TA|X5'1 = 2) P (Xsl = 2)

J13 (1 N1 1
- W2 )g ="

and
Wy = EQ (TA|X51 = 1) P2 (X51 = ].) +E2 (TA|X51 = 4) Pg (XS1 = 4)

(L )22
“\37"Y)3T337 373"
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where i =E; (S1) and % = [E5 (S1) . The solutions to these equations are:

2 3
IE1 (TA) = w1 = 5 and E2 (TA) = Wy = 5

With this example as background, let us now work out the general formula
for these hitting times.

Proposition 9.3. Let Q be the infinitesimal generator of a continuous time
Markov chain, {X (t)},~, with state space, S. Suppose that A C S and T :=

inf{t >0: X (t) € A}. If we let w; := E;T for alli ¢ A, then {w;},c 4. satisfy
the system of linear equations,
1 - 1 i
wim gt S Py = o+ 3 S,
qi JgA qi jga qi
where as usual, ¢; = —Q;; = Zj# Qij-
Proof. By the first step analysis we have, for i ¢ A,
w; =Y B [Ta|Xs, = j] P (Xs, = j)
J#i
=Y Py Ei[TalXs, = j].
J#i
By the strong Markov property,
. 1
E; [TA‘X& = j] =E;S; + E;Ty = E + w;
where w; :=E;T4 =0 if j € A. Therefore we have,
- 1 1 .
wi=) Py (-+wi)=—+3 Py
o 7 %
1 .
=—+) b w;
% jga
as claimed. ]

Notation 9.4 Now let
R :=inf{t > S;: X; = j}

be the first return time to j.
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Our next goal is to find a formula for E;R; for all i,j € S. Before going to
the general case, let us work out an example.

Example 9.5. Let us do an example of a two state Markov chain. Say

0—-1—=0.

Let mg = EgRg and m; = E; Ry, then

1
mo = Eo [R0|XS1 = 1]P(Xsl = 1) = a + m
1

my = Eq [Ro|Xs, =0] P (X5, =0) = 3

and therefore, mo = & + 5 which is clearly the correct answer in this case. The
long run fraction of the time we are in state 0 is therefore

lja B
my a+8

This is the same as computing lim;_,., P (X (¢t) = 0) = 7. Indeed for this case,

o= (%)

has invariant distribution, 7 = (3, @) / (o + ) . Therefore,

o
and m =

a+f a+ 3

Ty =

(9.1)

as argued above.

Proposition 9.6 (Expected return times). If m;; := E;R; for all j € S,
then

1 Qik
mig=—t > =Sy 9.2)
4 k#i or j i

Proof. By a first step analysis we have,
mi; =EiR; = > Ei[Rj|Xs, = k| P(Xs, = k)

ki
= SR [R[Xs, = K] E
ki v

Since
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Ei[Rj‘XSIZk'] {]EZSl +EkRj lfk%]

E,S,  ifk=j

o T ik #
o ifk=j"

we arrive at the

mi; =Y Ei[Rj|Xs, = k]
ki

1 1 Qik
— quz‘j + Z < + mkj) “

ki and k#j 1

_ Z Q;k L Z - Qz‘-k

Qi
qi

ki 4 k=i and k#j i

1 Qi
=—+ Z L ot Mj ——

qi % q;

Corollary 9.7. Let {X (t)},~, be a finite state irreducible Markov chain with
generator, Q = (Qij); jes - If 7 = (m;) is an invariant distribution, then

1 1
T, =

= = . 9.3
gimii  GE; (R (9:3)

Proof. Suppose that 7; is an invariant distribution for the chain, so that
> miQir = 0 or equivalently,

Zink = —TkQrk = Trqk.
itk

It follows from Eq. (9.2) that
B 1 Qi
Z TiqiMij = Z WiQia + Z Tidi Z 1k#’k¢j?mkj
i i b k '

-1+ Zmli#k,k#ijmw
ik

=1+ Z Lkt j QMg
k

=1 + Z li?gjﬂ'iqimij.
A

Hence it follows that m;q;m;; = 1 which proves Eq. (9.3). [
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Renewal Processes

Renewal process. Suppose we have a box of identical components, each
numbered by 1,2,3,.... Let X; denote the lifetime of the i*" component and
assume that {X;}.2, are i.i.d. non-negative random variables with distribution
function, F. We assume at very least that F'(0) < 1, i.e. there is a positive
probability that each component is in fact good. At time zero we put the first
component into service, when it fails we immediately replace it by the second,
when the second fails we immediately replace it by the third, and so on. Based
on this scenario we make the following definition in which the reader should refer

to Figure [10.1]

N . Xs

&/
5 P : g
.@'—‘_? |
1 i
W1 \
s 4 1 ——0 (
1 |
Loy |
2 44 7(| , X2 :——0 :
£\ &2 | |
i) ! |
o —— — } —>

Wy Wy Wy Wy Wg

Fig. 10.1. The graph of N (t) given a realization of the {X;}:°, . From this picture
it should be clear that {N(t) > k} = {Wi < t}.

10.1 Basic Definitions and Properties

Definition 10.1 (Renewal Process). Let { X }7° | be i.i.d. random variables,

assume X > 0 a.s. and p := EX; > 0 with g = oo being an allowed value.
Further let

Wo=X1+Xo+ -+ Xp=> X;

be the time of the n'™ “renewal.” The renewal process is the counting process
defined by

N(t) = ##{n: W, <t} = max{n : W, < t}.
More generally, for 0 < a < b < oo, let

N ((a,b])) = N (b) — N(a) =#{n:a < W, <b}.

So N (t) counts the number of renewals which have occurred at time ¢ or
less and N ((a, b]) counts the number of renewals in (a, b]. The random variable,
Wi, is the time of the n*® renewal whereas X, is the time between the (n — 1)th
and the n'? renewals. Since the inter-renewal times, {Xn}flozl, are i.i.d., the
process probabilistically restarts at each renewal.

Ezample 10.2 (Poisson Process). If X}, is exponential with parameter A then
we know that N(-) is the Poisson Process with parameter A. In particular we
know that N (t) is a Poisson random variable so that

and N has independent increments.

Ezample 10.3 (Markov Chain). Suppose that {Y,} 2, is a recurrent Markov
chain on some state space S. Suppose the chain starts at some site, x € S, and
let {X}},—, be the subsequent return times for the chain to z. It follows by the
strong Markov property, that {Xk}zozl are i.i.d. random variables. In this case
N (t) counts the number of returns to = before or equal to time ¢. This example
has a analogue for continuous time Markov chains as well.
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Referring to Figure we see that the following important relationship

holds:
{N(t) > k} = {W) < t}. (10.1)

Moreover if ¢ is as in Figure we see that N (t) =4, N(t) +1 = 5 and
Wiy = Wy <t < W5 = Wn)41. In general we always have,
Wy <t < Wny41- (10.2)

Notation 10.4 Referring to Figure we introduce the following terminol-
0gy:
1. v¢ = Wn@)+1 — t = (residual life of the part in service at time t).
2. 6y =t — Wy = (age (or current life) of the part in service).
3. B =0t +v = Wny+1 — Wn) = total life time of the part in service at
time t.

?aé;\‘r?ce \ ‘-——p—t—b '

— ¢

> Y _
\Vj

i
O 7 t
W) Wy b)+d

Fig. 10.2. The geometry of a renewal process.

For future reference let us note that:

1. For y > 0, v > y iff there are no renewals in (¢,t + y] and hence

>yt ={N((t,t+y)) =0} ={N (t+y) = N (t)} .
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2. For t > x, 6; > «x iff there were no renewals in (t — x, 1], i.e.
{or 2 a} ={N((t —=,t]) =0} ={N(t) = N (t —2)}.

Ezxample 10.5 (Poisson Process). Suppose that X} is exponential with param-
eter A so that N(t) is the Poisson Process with parameter A. Then for x,y > 0

we have,

P(5 > w7 >y) = P(N ((t —,)) = 0,N ((t,t +y]) = 0)
= PN ((t—2.1]) = 0)- P(N ((t,¢ +y]) = 0)

= 1$§t6—)\m e M,

This shows 7; and §; are independent, 4 4 exp (A\) and d; is a truncated

exponential,
_ 1 ifx >t
1 _ Az _
P(5t<$)—1 1z§te _{1—6_)‘9”1fo1§
which is equivalent to
1 ifx >t
< = -
P (o <) {1—6_’\95 ifx <t’

see Figure [10.3

057

Fig. 10.3. The plot of the distribution function of a truncated exponential with ¢ = 2.

Let us observe that Ev; = % while
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Eé, :/ P (6 > x)dx :/ lo<ie da
0 0

¢
:/ e Ndr =
0

1 1
Ef; = Ey; + Ed; = X+X(1_6_M)'

Compare this with EX; = 1/X. Notice that the lifetime of the part at service
at time t is in the limit as t — oo, twice as long as the mean lifetime of any
individual part. Why is this. The point is that ¢ is fixed and hence the we are
more likely to see life intervals of a part which encompass ¢ rather than the
shorter ones. This also represents the memoryless property of the exponential.

Definition 10.6 (Renewal function). We call, M (t) := EN (t), the re-
newal function.

(1— ).

> =

Therefore,

Ezample 10.7.If X; 4 exp(A), i.e. P(X;>1t) = e for all t > 0, then
M (t) =EN (t) = M.

For later purposes it is useful to observe that M (t) may be computed in
terms of the {W,} by,

o0 oo o
M(t)=EN (t)=E <Z 1n<N(t)> =E (Z 1Wn§t> =Y P(W,<t).
n=1 n=1 n=1
(10.3)
Remark 10.8 (Convolution). Recall that if X and Y are two independent ran-

dom variables, Fx (t) = P(X <t), Fy (t) = P(Y <t¢) and Fxiy (t) =
P(X+Y <t), then
Frpy (t) = / P(X+Y <X = 2)dFy (z)
:/ P(z+Y <t|X =z)dFx (z)

:/OOP(Ygt—J;)dFX(x)

:/Oo Fy(t—z)de(x).

— 00

When X and Y are non-negative, then Fx (t) = Fy (t) = Fx4y (t) =0ift <0
and for ¢ > 0 we have,

Fx+y (t) = /0 Fy (t — .13) dFX (x) . (104)
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Notation 10.9 (Convolution Notation) If F is a (generalized) distribution
function and g is a function, let

g F (t) ::/0 g(t—x)dF (z)

and if f is a density, let

945 0= [ alt=a)f (@)

With this notation we may write Eq. (10.4) more succinctly as Fxiy =
FX * Fy.

Definition 10.10. Let F, (t) := Fyw, (t) = P(W,, <t) with F (t) := Fy () =
P (X, <t). We may also write this as

n — times

———
F,=Fx«Fx---xF. (10.5)
According to Eq. (10.4), we have,
Fn+1 (t) = P(Wn + Xn-i—l < t)
t t
:/ F, (t —z)dF (z) = / F(t—x)dF,(x). (10.6)
0 0
With this notation, it follows from Eq. (10.1) that

P(N(t)= k) = P(N(t) > k) = P(N(t) > k+1)
=P (Wi <t)— P (Wit <t) = F (£) — Fypn (1)

It now follows from Eq. (10.3)) that

M(t) = i P(W, <t)= iFn (t) = i e, (10.7)
n=1 n=1 n=1

M (t) = At. As a check, let us compute the right side of Eq. (10.7) and verify
that it gives At in this case. From Lemma [2.7] we know that

Ezample 10.11. When N (t) is a Poisson as in Example we know that

= (M)
—A
Fo(t)=P(W,<t)=e Y i
Jj=n
Therefore,
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M (t) _ e—)\t Z Z ()‘t) _ e—)\t Z ()‘t')

|
n=1j=n J 1<n<j<oo J:
oS} J 00 Jj—1
Y Z () A oM ()
—_— —j=A-e¢ Z - = M\t.
| _ |
1<j<00 I 15520 U 1)

Proposition 10.12 (Renewal Equation). The renewal function satisfies the
renewal equation,

t
+/ M (t—=x)dF (z). (10.8)
0

or written more succinctly,

M=F+ M xF. (10.9)

Proof. First proof. Recall that
Y R-Yr
n=1 n=1

and therefore,

M*F:iF*”*F:iF*(”“):MfF,

n=1 n=1

which is Eq. (10.9)). Written out in more detail, using the definition of M and
F,,, we have

/Mt—ac )dF (z

which is Eq. ((10.8]).

Second proof based on conditioning on X;. We start with a informal
proof using,

Z/ (t —z)dF (z ZFW M (t) = F (1),

M(t):/OOOE[N(t) . X, = 2] dF (z)

and
0 ift<uaz

]E[N(t)|X1:x]:{E[1+N(t_x)]ifxgt. (10.10)

Therefore,
M (t) :/0 E[N (t): Xy = z]dF (z) :/0 (1+ M (t—xz))dF (x)
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which is Eq. (10.8). The point in Eq. (10.10) is that if ¢ < X3 then N (t) =
while if t > X7, then

N#)=14+N({t—X;: X0, X3,...)
where we write
N(t:y,y2,...) =#{n:y1+ - +yn < t},

see Figure [10.4}

%
\N\:.. XI Wl w& t Wl—l WS 'L'»l‘;%

Fig. 10.4. In this example, N (¢) = 3 while N (t — X3 : X2, X3,...) =2.

(Rigorous version of second proof.) We have to compute
E[N (t)|X; = 2] with more care. To this end, suppose that g(z) is a
given bounded function. Then

E[N () g(X1)] =E[N (t) g (X1) Licx,] + E[N (¢) g (X1) 1x, <]
:E[(1+N(t7X1 ZXQ,Xg,...))g(Xl)lxlét}
SE[(1+EN (= 2) loox,) Lryg (X)) (10.11)
where in; 1) the first equality we have used N (¢) =0 if t < X; and
N(tZXl,XQ,...):l-i-N(t—Xl :XQ,Xg,...) for X7 <t,

and 2) the second equality we used the independence X; from (Xo, X3,...). It
follows from Eq. (10.11)) that

EIN (8)|X1] = (1+ M (t = X1)) 1x, <t
and therefore,
E[N ()] =E(E[N (t) [X1])
=E[(1+M(t-X1))1x,<]

:/[Ot][HM(t—x)}dF(a:)

=F(t)+ Mt —z)dF ().
[0,¢]
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Remark 10.13. We will often assume that the distribution of X is continuous SO

that F (t) = f (t) exists and is a probability density so that F (¢ fo
In this case for each n, the distribution, F, (t) = P (W,, <t) also has a den51ty
For example,

jtn(t):jt/OF(t—x)f(z)dx
:F(t—t)f(t)—l—/OF'(t—x)f(x
—Fer).

o= [ =0 f @)

In general we have E, (t) = F, 1 * f from which it follows that
n - times
. —_—~~
We now define

)= "
n=1

so that M (¢ fo x)dz. By the same reasoning as in the first proof of
Propos1t10n we ﬁnd that m satisfies the renewal equation,

m=f+m=xf. (10.12)
This may also be seen by differentiating the identity,
t
+/ Mt —z)f(z)de, (10.13)
0
to find
t
+/ m(t—zx) f(x)de+ M (0) f (1)
/ m(z) f(t —z)dx. (10.14)

wherein we have used P (X; =0) = 0 and therefore, N (0) = 0 and hence
M (0) =EN (0) =0.

Example 10.14 (Posisson process again). If X; 4 exp (\), then f(t) = Ae™™,
and therefore

Page: 79 job: 180Notes

10.1 Basic Definitions and Properties 79

—/\e )\t / m )\(tfm)dx

e M {1 +/ m ( ’\Idx] .

From this equation it follows that m (0) = A and

d

p (eMm(t)) = X (eMm (1))

which has solution, e*m (t) = Ae*, i.e. m (t) = A and therefore,

t)/otm(T)dT)\t

which is consistent with the results in Example |10.11

The next theorem gives an indication as to why the renewal function M ()
is an important quantity.

Theorem 10.15. The joint distribution of v and &; is determined by, for t >
x>0 andy >0,

P(y>y,0>x)= l—F(y—i—t)—&-/Ot x(l—F(y—l—t—z))dM(z). (10.15)
In particular, taking x = 0 implies,
Pyw>y) = 1F(y+t)+/0t(1F(y+tz))dM(z)
and taking y = 0,
P(6t23:):1—F(t)+/0t_m(1—F(t—z))dM(z). (10.16)
Proof. You will show in Problem VII.P1.1 that

P(’Yt>y,5t2x):1—F(y+t)—|—Z/tI(l—F(y—!—t—z))dFk(z).

Recalling the M (t) := "2, Fy (t), we may write this last equation as in Eq.

(10.16). -

Notice that when x = y = 0, we should have

11F(t)+/0t(1F(tz))dM(z)
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80 10 Renewal Processes

which is the case since,
/Ot(lF(tz))dM(z) =M@)—F«M(t)=F().

Goals: Find the limiting behavior of N (), M (t), v, and §; and apply
these results to reliability models.

The first step in this program is to show the renewal function, M (t) =
EN (t), is finite.

Lemma 10.16. Suppose that X1 > 0 with X1 # 0 a.s. (We do not have to
assume that P (X =0) = 0 here only that P(X > 0) > 0.) Then M (t) < oo
for all t and consequently N (t) < oo a.s. for all t > 0.

Proof. Choose a > 0 such that p := P (X; > «) > 0 and hence
g=1-p=P(X; <a)<l1.
Then Xj, > alx,>q and hence Y.}, alx,>q < W, from which it follows that
n n t

For large n, the latter event happens iff no more than m := [t/«] of the X} are
greater than or equal to «. The probability of this event is

Z<Z>pkqn—k:Zn'(n_l)'}c‘!(n_k"i_l)pkqn—k

k=0 k=0
<m- nmqn—m _ ﬁ . nmqn.
qm
So we have shown for large n, that
m
P(Wnﬁt)ﬁqu'nmqn

from which it follows (by the ratio test) that M (t) = > 02, P (W, <t) < oco.
]

10.2 The Elementary Renewal Theorem

The following proposition is a consequence of Wald’s formula. We will also give

a proof based on renewal equation theory. For this second proof we will need
the following proposition.
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Proposition 10.17. Let p:= EX; = EXy, then
E [W(N(t)+1)] =EX;-E [N(t) + 1] = u(l + M(t)) (1017)

Proof. This is a direct consequence of Wald’s formula in Theorem [4.38]
which is applicable because N (t) + 1 is a stopping time as we saw in item 3. of
Example Let us recall the main points here. Recall that

[N() = k} = {Wie <8, Wieir > 1}
which shows N (t) is not a stopping time. However,
{Nt)+1=k}={N@t)=k -1} = {Wi_1 < t, Wi > t},

from which it follows that N(t)+1 is a stopping time and hence Wald’s formula
applies. [

Lemma 10.18. tlim N(t)=c a.s., ie P (tlim N(t) = oo) =1.

Proof. Since N (t) is increasing in ¢, N(c0) := tlim N(t) exists and rep-
—00
resents the total number of events occurring at any time t > 0. Therefore

N(0) < oo iff W, = oo for some n which happens iff X,, = oo for some n.
Thus we conclude that

P(N () < o0) = P(X,, = oo for some n)
=P(Up {Xp, =00}) <) P(X,=00)=)» 0=0.

n

Theorem 10.19 (Pointwise renewal theorem). Let u := EX; and N (t) be

as above, then

lim 7N(t) = 1
t—o0 t M

Proof. By the strong law of large numbers

W Xi4-+ X

— [ a.s.
n n

Case 1: If y1 = oo, then for any 0 < M < oo, we will have W,, > Mn for large
n (depending on w). Therefore, for large ¢,
N(t) = max{n: W, <t}
<max{n: Mn <t} =2t/M

macro: svmonob.cls date/time: 4-Jun-2008/13:17



and hence we may conclude that

N(t 1
¥ < i for large t.

Since M < oo was arbitrary it follows that lim @ =0=1/p.
t—oo

Case 2: If y = EX; < o0, then % = u for large n, i.e. W, = pn. Therefore,
for large t,
N(t) = max{n : W,, <t} 2 max{un <t} =t/p.
Dividing this equation by ¢ and then letting ¢ T co shows,
N(it) 1

lim —= = —
t—oo t 12

From Theorem [10.19] we expect,
EN N N 1

lim (t)zlim}E<(t)>:E(lim(t)>:}E<>:

t—oo { t—00 t t—oo ¢ n 7’

provided it is permissible to interchange the limit and expectation operation in
this case. Assuming this is OK, we are lead to the elementary renewal Theorem
below. Before stating this theorem let us consider the following example
which shows that interchanging limits and expectations is not always permissi-
ble.

—_

Ezample 10.20. Suppose that Y, (z) = n - 1,<1/, for 0 <z < 1 as in Figure
IfEf := [ f (z) dz, then we have EY,, = 1 for all n while lim,, o0 Y, = 0

—_—
>

o[f\ O :L

Fig. 10.5. A sequence of approximate J — functions.

and therefore,
lim EY,, =1#0=E | lim Y,
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Theorem 10.21 (Elementary renewal theorem). If M (t) := EN(t) is the

renewal function, then
M(t 1
lim ®) = —. (10.18)
t—o00 t 7

Proof. First proof for X; bounded. In this proof we will assume that
the X; are bounded, i.e. there exists some T' < oo such that P (X; > T) = 0.
(This is a rather reasonable assumption for a man-made object.) The key point
is to observe that Wy ;)41 = ¢ + ;. Taking expectations of this identity and
using Proposition implies

w(M(t)+1) =t+ Ey. (10.19)
After a little algebra this gives,
M (t 1 1/E
():+(%—1). (10.20)
t n ot o’

Since X3 is bounded we must have 4 < §; < T for all ¢ and therefore, Ey, < T.
This then implies,

1 /E 1 /T
‘(%—1>‘<<+1>—>0a5t—>oo,
t 7 t \ @

which combined with Eq. (10.20)) gives Eq. ((10.18)).
Second Proof. Recall that N (t) = k iff Wi, < ¢t < Wg41 and hence we

have
Wiy <t < Wii41- (10.21)

Taking expectations of this equation and then making use of Proposition
implies,

t <E W] = EX1-E(N (8) + 1) = - (M (1) +1).

Dividing this equation by ¢ and then letting ¢ — oo implies,

lim inf

t—o0

M (¢ 1
.1 (10.22)
3 %
To prove the opposite inequality, ¢ > 0, X¢ = X; A ¢ := min (X;,¢), and
We =% | X¢ If N () = k then
WE<t<Wi, <Wi+e<t+ec

from which it follows that
Wﬁ/c(t)+1 St+ec
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82 10 Renewal Processes

W’M\'/.?'
M
>
+

Fig. 10.6. A possible graph of M (¢) /t.

Taking expectation of this equation again making use of Proposition im-
plies,
EX7 - (EN“(t)+1) <t+ec

Dividing this inequality by ¢ and then letting ¢ T co implies,

e ENC()
11m su .

(10.23)

Since X7 < X;, W¢ < Wy, and hence N¢(t) > N(t) which implies EN (¢) <
EN¢€ (t) . Therefore it follows form Eq. (10.23) that

, N _ Ne@) _ 1
m sup — 11m su .
el Tt P T S EXY

We may now let ¢ T oo in which case EX{ T i and hence we may conclude that

EN (¢t 1
lim sup A < . (10.24)
t—o0 t 1%

Combining Egs. (10.22) and (10.24) completes the proof of the theorem. [
Besides these theorems we also have a central limit theorem for the renewal
process, N (t).

Theorem 10.22 (Renewal central limit theorem). Let u := EX; < oo
and % := Var (X)), then

+ 7 ViZ ast — . (10.25)

d
N(t) =~ R

= |+

To be more precise,
N(t) -+
— — %
Vi

where Z is a standard normal random variable.

(10.26)
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Proof. I will not attempt to give a rigorous proof here but let us try to
understand the formula in Eq. (10.25). In doing so well will follow [4, page 110].
(For another “proof,” see subsection below.) By the usual central limit
theorem,

W, = pun+ vnoZ,

where Z,, is approaching in distribution a standard normal random variable,
Z. be a standard normal random variable, then by the standard central limit
theorem,from which it follows that

N (pn+/noZy,) = N (W,) = n.
If we write t for pn, then

N (t)+ N ((t,t + /noZ,)) if Z, >0

n=N (un+/noZ,) = {N(t)N((t+\/ﬁaZn,t]) 7. <0 (10.27)

However, the number of renewals in an interval of size v/no | Z,,| near large times
t, should be approximately, v/no |Z,| /i and therefore we may write Eq. (10.27))
as

n=N(t)+VnoZ,/u

which gives,

N({t)=n—/noZ,/n= % — \/ZaZn/,u

t o d 1 o
Z*W\/{wa;+W\/zZ

4
where for the last approximation we have used Z L 7 ]

10.3 Applications of the elementary renewal theorem

10.3.1 Age Replacement Policies

Let X, X5, X3,... be the ii.d. life times of some device and p = EX} be
their common means. The device is to be replaced upon failure or at some time
T < oo whichever comes first. With this replacement policy, the new effective
lifetime of the j*™ device is X7 where XT = T A X; = min (T, X;) . Observe
that

o) T
EXlT:/ P(x{ >x)dx:/ P(X{ > z)dx
0 0

T T
= / P(Xy > z)dx = / (1= F(x))dz =: pr < p. (10.28)
0 0
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Given the above replacement policy, let Y7 denote the time of the first replace-
ment of a part which occurred before time T, i.e. the first time that a part is
replaced because it has failed. We begin by working out the distribution of Y7.
To understand Y7 better we see by its definition, that

Y1 =X, if X7 <T,

Yi=T+ X if X1 >T but Xo <T,

Y, =2T + X35 if X1 > T, Xo > T, and X3 < T,

Vi=nT+ Xp it X1 >T, Xo>T,..., Xo>T and Xpy1 <T.

Thus we see that we may write Y1 = NT+Z, where N is the Ny — valued random
variable Z takes values in [0, 7] such that N =0 and Z = X; if X; < T and

N=nand Z=X,410on {X;>T,...,X,>T and X,41 <T}.
Hence it follows that

{NZH}Z{X1>T, Xo>T,...,
{N:n}:{X1>T, Xo>T,...,

X, >T} and
Xn>T,Xp41 <T}.
Therefore for all n € Ny,
P(N>n)=P(X;>T)"=(1-F(T))" and (10.29)
P(N=n)=(1-F((T)"F(T). (10.30)
Moreover, for 0 < z < T we have
P(Z<zN=n)=P(Xpt1<z,X1>T,..., X, >T,X,11 <T)
=P(X1>T,....Xn>T,Xp41 < 2)
=P(X,11 <2)P(X; >T)"=F(2) P(X; >T)"

_F(?) n _ F(z) _
= F(T)P(Xl >T)"F(T) = F(T)P(N =n). (10.31)
Summing this equation on n, shows,
F(z)
< = < < . .
P(Z < z) F(T) for0<2<T (10.32)

Using this information it follows that

EN = EZln<N—ZPN>n :i P(X, >T)"
n=1

B P(X, > T) 1 F(T)
=TT = F@ (10.33)
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Similarly,

EZ:]E/OT1Z<Zdz:/OTP(Z>z)dz:/OT [1—5%]@ (10.34)

and since Y7, = NT + Z we find,

EleT-IEN—l-EZ

o -
[ g,

1 r m E[X; AT]
F 0 PO = = v sy

where ur was the mean used life of the part under the replacement scheme in

Eq. (10.28).

Summary: If
T
pur = / (1 - F(x))dz, (10.35)
0

then
KT

F(T)

We now let {Y;}:°, be the times between actual successive failures of a part
using the replacement scheme above.

E[X1 AT] = pr and EY; = (10.36)

Proposition 10.23. The sequence of random variables, {Y;}.-, are i.i.d.

Proof. We are going to show more, namely if we write Y; = N,;T + Z; then
the sequence of random variables, {(N“ Z;) oo, are iid. I will actually only
work out the joint distribution of (N7, Z1) and (Na, Z2) here. Let ni,ns € Ny
and z1, 29 € [0,T], then

{Nl :nth < Zl,NZ :n2722 < ZQ}

= {X1 > T, . ,an > T, X7L1+1 < 21,X7L1+2 > T7 e 7Xn1+n2+2 > T, Xn1+n2+3 < Zz}

and therefore,

P (N1 =mn1,21 < 21,Na =n3, 25 < z3)
—P(X1>T,....Xp, > T, Xoyi1 < 21)

P(Xny42>T, o, Xojqnat+2 > T, Xy 4ngrs < 22)
P(Ni=n1,Z1<z) - P(X1>T,...,Xn, >T, Xp,+1 < 22)
P(N1=n1,Z1 <2z1) - P(Ny=no,Zs < 25).
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84 10 Renewal Processes

This shows that (Ny,Z;) and (N, Zs3) are independent and have the same
distribution. The general case follows similarly. [ ]

The elementary renewal theorem then implies that the failure rate for this
replacement scheme is

po Megg(®) _F(T) _ F(T) _ P(Xi<7T)
JTA-F)d  EXAT]

t—oo t pr

The long time replacement rate for replacing on failure is given by

lim M@ 1 1
tmoo  t  REX; Jo S (1= F(2))dz

Ezample 10.24. Suppose that X; has the uniform on [0,1] and 0 < T' < 1. Then
F(z) = P(X; <x)=a Al. Thus effective long run failure rate is given by

F(T) F(T) T

that is : o . (T )
lim Mess®) _ F(T) , (10.37)
t—o0 t ,LLT 2 — T
while Iy ) )
lim J =—=3=2 (10.38)
t—o0 t M 3

(Observe that letting 7' 7 1 in Eq. (10.37)) gives back Eq. (10.38]).) The original

failure rate was 2 while the effective failure rate as a function of T is % which
is plotted in Figure [10.24] below.

-

1757

+
t t t 1
025 05 0.75 1

T
The effective failure rate as function of the forced replacement time, 7.
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By making T small we can reduce the long run failure rate to close to 1. Keep
in mind that we are making replacements on average at rate,

1 1 1 1

pro EIXOAT] (Toge+T(1-T) T?/24T(1-T)
B 1
T —-T2/2

which is graphed in Figure For example if we take T = 1/2, we get a

100T

757

507

025 0.5 0.75 1

T

Fig. 10.7. Replacement rate as a function of 7.

failure rate of 4/3 and a replacement rate of

1 8
- — —~967
1/2—-1/8 3

versus the original failure rate of 2 and replacement rate of 2.

Example 10.25. Let us continue the above analysis by associating different cost
to replacement and to failures. We are now going to assume the cost to replace
a part (failed or not) is K dollars and each failed part incurs and additional
cost of ¢ dollars. The total cost up to time ¢ to the factory is then

V(t):=K-N(t: X[ ,XJ,...)+c- N(t:Y,Ys,...)
and so the expected cost is

EV (t)=K-EN (t: X{,XJ,...)+c-EN(t:Y1,Ys,...)
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and the limiting cost per unit time becomes, by two applications of the elemen-
tary renewal theorem,

EV (¢
lim ()ZK-1imEN(t;X1T,X§”,...)+c-1imJEN(t:Y1,Y2,...)
t—oo t—oo t—oo
K n c
- EX! T EYy°

Recalling form Egs. (10.35)) and (10.36]) that

wr

E [XlT] = pur and EY; = F(T)’ where
T
pr = [ (1= @),
0
we have,
. EV(#) K c K +cF(T)
C(T) := lim =—+ =
)= Jp =5 pr  pr/F(T) pr
K+ cF(T)

B Sy —F(t)dt

which represents the long time cost per unit time of running the factory with
this replacement strategy.
Goal: given K, ¢, and F, we would like to choose T' so as to minimize C (T) .

Let us now be more specific. work this out in an example or two.

Ezample 10.26. Suppose that X,, have the uniform distribution on [0, 1], i.e.
F(z) =1A2z =min(1,z). In this case we should keep T' < 1 and then we have,
K+ K+T

C(T) = = .
o Sl —ax)yde T-%

We now the first derivative test to try to find the best choice for T so as to
minimize the cost function, C (T');

ositc’(T)occ<T—1;>—(1—T)(K+cT)

:§T2+KT—K.

The quadratic formula then gives,

o KEVETTIRS K+ K112k
Cc c
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Only the plus sign gives a positive root and hence the optimal time, T, is given

by
T*:K<,/1+QC—1>.
c k

For example if K =1 and ¢ =4 we find,

1+4T
N O 7P

T* = % and C (T*) = 8.

om) 20T

157

107

t t t !
0 025 0.5 0.75 1

T

Fig. 10.8. A plot of C'(T) for K =1 and ¢ = 4.

Ezxample 10.27. Let us work out the above scenario under the assumption that
X; 4 exp (M), so that F (t) =1 — e~ **. In this case

T 1 —AT 1
uT:/Oe dt:X(lfe ):XF(T)

Therefore EX] = pp = +F(T) < + = p while EY; = pup/F (T) = +. So in
this case the actual failure rate is the same no matter what forced replacement
time, T, we use. Because of this, the best replacement strategy is to take T' = oo
as can also be seen by looking at the cost function,

1 1 AK
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86 10 Renewal Processes

To see this is reasonable, one might think the parts are failing because of
some rare catastrophic event, like a satellite being hit by a piece of space debris.
In this case the satellite is not wearing out, so if it is not hit at some time 7' it
is as in good shape as it was the day it was put into service. Therefore there is
no good reason to replace it early.

10.3.2 Comments on Problem VII.4.5

In this problem one is dealing with the Markov chain determined by the Markov
matrix

0

[\V]

e

Il
S o w
;O g
o ©
N = O

with jump diagram
Y s
7z
0
O,

3

'\.. £
e

Suppose that
(Xo0,X1,...)=1(1,0,0,0,1,2,2,2,2,1,...)

is a sample path of the system. The three consecutive zeros is said to be a
Sojourn at 0 with duration time, Sy = 3 and the four consecutive twos is said
to be a Sojourn at 2 with duration time Sy = 4. In this problem a renewal cycle
consists of the times between visits to 1. So in this case the first inter-renewal
time, X1, is 4 = 1 + Sy while the second inter-renewal time is Xo =5 =14 5.
The mean inter-renewal time is thus,

w=Eq [X;]|first visit 0] Py (first visit 0) + E [ X |first visit 2] Py (first visit 2)
where

E; [ X [first visit 0] = E¢So + 1 and
El [X1|ﬁI‘St visit 2] = EQSQ + 1.
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In order to check your final answer, let us compute the invariant distribution
for this chain:

[3.70 100]\"
Nul(P-D)"=Nul[|.60.4]—-]010
[0.5.5 001
[—0.706 0 0.556 22
= Nul 0.7 =1 0.5 = 0.64893 | ,
0 0.4-0.5 0.51914

hence the invariant distribution is given by

1
" 055622 + 0.64893 + 0.519 14
= [0.32258 0.376:35 0.30107] .

[0.556 22 0.64893 0.519 14]

10.4 The Key Renewal Theorem

Let F' be the distribution function of the interarrival random variables, {X;}
(f = F if F can be described by a density) and h : Ry — R be a given a
function. We are interested in solving the renewal equation

g=h+gxF (10.39)
for the unknown function g.

Ezample 10.28. We have see in Proposition [10.12] that g = M satisfies the
renewal Eq. (10.39) with h = F. We also have noted in Eq. (10.12) that if

f = F exists then m = M exists and g = m satisfies the renewal equation with

h=f.
Ezample 10.29. Let g (t) :=E [WN(t)+1] , then

90 = [ E Wiy = o] aF (o). (10.40)

If t < Xy, then N (t) =0 and N (t) + 1 = 1 so that Wy )41 = X1, while if ¢ >
X1, we have and WN(t)+1 (Xl,X27X3, .. ) = X7 + WN(t—X1)+1 ()(2,)(37 .. )
and therefore,

T ift<uz
E[W(N(t)+1)|X1::C] = {x+g(t—x) ift>a’

Using this in Eq. (10.40)) shows,
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00 t t
g(t):/ a:dF(a:)—i—/g(t—x)dF(x)z,u—i—/g(t—x)dF(x)
0 0 0
=p+g*F(1),
i.e. g satisfies the renewal Eq. (10.39)) with h (¢) =

Theorem 10.30. Suppose that h : Ry — R is function which is bounded on
bounded intervals, then among the functions, g, which are bounded on bounded
intervals, there is a unique solution to Eq. . Moreover this solution is

gzvevﬂ by,

g(t)=h(t)+hxM(t) /h (t —z)dM (z). (10.41)

Proof. Uniqueness. Suppose that g; and gy are two such solutions to Eq.
(10.39). Then there difference, k := g3 — g1 solves, k = k % F. Iterating this
equation then shows,

|k<t>|=k*Fn<t>|=]/0 k(t— 2)dF, (2)

t
< 2K, / dF, (x) = 2K,P (W, < t).
0

where K, is a bounded on g; (s) and g5 (s) for s < t. Since 1 W,, — > 0 as

n — oo, i.e. Wy, = ny for n large, it follows that P (W,, <t) — 0 as n — oo.

This shows that & (t) = 0 and hence g; (t) = g2 (¢) . Thus the solution is unique.
Existence. Notice that

L If we let Crg := g * F, then the renewal equation may be stated as,
(I—-Cr)g=h.
The formal solution to this linear equation is therefore,
g=(I~-Cp)™"

Motivated by geometric series ideas, we should expect,
(I-Cp)'=) Ci=I+) Cp
n=0 n=1
and therefore that

g:h+ic;h=h+§:h*Fn=h+h*M.

n=1 n=1

This motivates the formula for g in Eq. (10.41]).
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[h« M| (¢

/ht—x )dM (z

where Ky = sup,<, |h (s)| < oo. Therefore g := h+hx M is bounded on bounded
intervals. Moreover,

/\ht—xndM( ) < K M (1)

h+g«F=h+(h+hxM)xF
=h+h«F+ (hxM)xF
=h+h«F+hx(M=xF).

Recalling, see Eq. (10.12)) that M satisfies the renewal equation, M xF = M — F,
it follows that

h+gxF=h+hxF+h«(M—-F)=h+hxM=g
as desired. [ ]

Ezxample 10.31. In this example we give a second proof of the identity in Eq.

(10.17)) in Proposition [10.17) namely that
E[Winw+n] =p(l+M(t)).

By Example [10.29} ¢ (t) := E [W(N(t)+1)] , satisfies the renewal equation, g =
i+ g F. The solution to this equation, by Proposition [10.47] is g (t) = pu+ u *
M (t) . This complete the proof since,

oM (1) = [ dM () = 0 ()= M (0) = b (1.

To make use of these renewal equations and solutions, we need the following
stronger version of the elementary renewal theorem.

Theorem 10.32 (Blackwell’s renewal theorem). Suppose {X;}.-, are
i.i.d. random times which have continuous distributions. Then (a bit infor-
mally),

m(t):M(t)Hi as t — oo.

Proof. Heuristic proof. The elementary renewal theorem states, M (t) =
it for t large. Hence if we differentiate this relation, we suspect that m (t) =
M (t) = i for t large.

For a proof and the correct statement of this theorem along with its gen-
eralizations to “non-lattice” random variables, the reader is referred to Dur-
rett [2, Theorem 4.3 on p. 206] and the references therein. ]
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88 10 Renewal Processes

Theorem 10.33 (Key Renewal Theorem). Suppose that h is a function
which is bounded on bounded intervals, limy o h (t) = 0, and [~ |k (t)| dt < co.

Let us further suppose that F = f exists. If g = h+ h* M is the solution to the
renewal Eq. , then

lim g (£) = ~ /0 o (10.42)

t—o0 17

Proof. By Theorem [10.30} we know that g (¢) = h () + h* M (¢) and there-

fore,
¢
lim g (t) = tlim hxM ()= lim [ h(x)m(t—z)dx.

t—oo t—o0 0

By Blackwell’s renewal Theorem [10.32) m () — i as  — 00, it follows that

t/2 1 o0
lim h(x)m(tfx)da::f/ h(x) dx.
t=o0 Jo K Jo

On the other hand (assuming that m is bounded by some K < o), then

t o)
<K |h(z)|de < K |h (z)] dx — oo as t — oo.
t/2 /2

/ h(z)m(t —z)dx
/2

We may relax the assumption on the boundedness of K as follows. For large ¢
we know that m (t) — i and hence there exists a ¢ < oo such that m () < K
for t > c¢. Therefore,

S/t |h(z)|m (t — z) dx

/ h(x)m(t —x)dx
¢ /2

/2

:/t_c|h(x)|m(t—x)dx+/ b ()| m (t — ) da.

/2 t—c

The first integral goes to zero by the previous argument. For the latter integral
we have,

/t |h(z)|m (t — z)dz < sup |h(x)|/ m(t —x)dx

—ec r>t—c t—c
c
= sup |h(z)|- | m(u)du
r>t—c 0

=M (c)- sup |h(x)] —0ast— oo.
r>t—c
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X K, Xs
X

Fig. 10.9. The picture you should have in mind for a two part renewal process. For
this sample path and choice of t, ¢ is in the Y phase of the renewal process.

10.5 Examples using the key renewal theorem

Let us now work out a number of examples of this theory. We will always assume
that F' (t) = f (t) exists so that m (t) = M (t) exists.

Proposition 10.34 (Two component renewals). Suppose Y; represents a
portion of the duration of X;. To be precise, we assume that {(Y;, X;)}ie, are
i.4.d., 0 <Y; < X;, and X; is a continuous random variable. Then

EY;
EX,’

75lim P (in the Y phase at time t) = (10.43)

where P (in the Y phase at time t) represents the probability that t falls in a Y

— portion at time t, see Figure , (The result in Eq. s a intuitively
reasonable.)

Proof. If we let A; := {in the Y phase at time ¢} and g (t) := P (A;), then
as usual,

g(t) = /OOOP[At|X1 = x| dF (x).

If x > ¢, then
P[At|X1 = JJ] = P(Yl > t|X1 = J})

while if < t (see Figure[10.9)), then
PlA)| X1 =2]=P(Ai—z) =gt —x).
Therefore,

g(t):/tooP(Yl>t|X1:x)dF(m)+/0 g({t—x)dF (x).

i.e. g = h+ g+ F where
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h@y—lmpaq>¢&—me@y (10.44)

To evaluate h more explicitly, observe that P (Y; >t X; =2) = 0if z < ¢,
therefore we may write Eq. (10.44]) as

h(t) ::/OOOP(YI>t|X1=x)dF(x):P(Y1>t).

An application of the key renewal Theorem [10.33] then gives,

_EYy
T EX,

1 oo
hmPMﬁ:;/AHH>ﬂﬁ
0

t—oo

Ezample 10.35 (Peter Principle, see page 450-451 of Karlen and Taylor.). A
person is selected at random from an infinite population containing a fraction
p of competent people and 1 — p of incompetent people. If the person selected
is competent she/he remains in the job for a random time, T, before being
promoted. While if the person is incompetent, he or she remains for a random
time, T;, and then retires. Once the job is vacated, another person is selected
at random and the process repeats (i.e. renews). Let p:= ET, and v = ET;.

Question. In the long run what fraction, f, of the time is the job held by
an incompetent person.

Answer. A renewal interval is a random time,

Y T. if a competent person is chosen
" | T; if an incompetent person is chosen’

If Y represents the incompetent phase of the renewal interval, then

y — 0 if a competent person is chosen
" | T; if an incompetent person is chosen’

We then have
EY  (1-pEn;, ~  (1-pv

I = EX T RL.+ (1-pEL it (-p)

wherein we have used,

EX = E [X|competent] P (competent) + E [X|incompetent] P (incompetent)
and
EY = E [Y|competent] P (competent) + E [Y]incompetent] P (incompetent) .
As a specific example, suppose that p = 1/2, v = 10 and p = 1. Then

119 1
2 0. 91.

f=1T"7=7 =
T+l 11
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Theorem 10.36 (Distribution of (v, 0s).). Suppose that F is the cumu-
lative distribution function for X;. Then for all z,y > 0,

1 o
hmPW>%@Z@:f/ (1= F (w)) dw. (10.45)
t—00 B Sty
In particular, if we let (Yoo, d00) be Tandom variables with
P (Voo > ¥, 000 > ) := tlim P(v >y, > x)
1 oo
— [ a-Fw).

HJzty

then Yoo and doo have distributions with densities given by %(1 — F(t)) for
0<t<oo.

Proof. First Proof. Recall from your homework (see Theorem [10.15]) that

P(’yt>y75t>x):1—F(y+t)+/O_gc(l—F(y—i-t—z))m(z)dz.

Making the change of variables, w = y + t — z in the above integral shows,
y+t

P(’yt>y,6t2x):1—F(y+t)+/+ (I1-F(w)m(y+t—w)dw.

Writing m (z) = i + £ (2) where £ (2) — 0 as z — oo we learn that

y+t
tlimP('yt>y,5th):tlim (I1-Fw)m(y+t—w)dw
1 oo
:f/ (1-F(w))dw
H z+y
ytt
+ lim 1-F(w)e(ly+t—w)dw
t—o0 Tty
1 oo
:—/ (1-F (w))dw.
H z+y

Second Proof. We start by considering g (t) := P (7 > y) for some fixed
y > 0. Then by conditioning on X; = x we find,

g<t>/0°OP<%>yX1x>f<x>dx

where
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90 10 Renewal Processes

1t+y<$ ift<z

Py >ylXi=2)= {p(%m >y)=g(t—z)ift>ax"’
Therefore,

t

Mﬂ=lmhw@f@Mx+Agﬁ—@f®Mx
:17F(y+t)+/0 g(t—2x) f(z)de,

which shows g (¢) satisfies the renewal equation with h(t) = 1 — F(y+1).
Therefore by the key renewal Theorem [10.33]

1 oo
Jim P >w) = [Pl
1

_u/y (1— F (1) dt.

Notice that if y = 0, then

/Oo(l—F(t))dt:/oOP(Xl>t)dt:EX1:u,
0 0

so that |
G(y):zl—u/y (1-=F(t)dt

To finish the second proof, we observe that

{ve>y o>} ={v-0o>x+y}.

Therefore we may conclude that

1 oo
ympm>%@zm=ympmﬁ>x+w=;/ (1—F (1) d.
—00 — 00 z+y

Ezample 10.37. If F is the exponential distribution with parameter, A\ = 1/u
so that 1 — F (t) = e~ then

1

= e~ m@ty) — o—u(zty)
UA

1 o0
lim P (v >y,0 > ) = 7/ e Mdt =
t—o0 14 Tty

which is a result we know to be true even without taking the limit as t — oo
as we saw in Example
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Ezample 10.38 (FEarthquakes in California). The inter-earthquake time distri-
bution in California is U (0, 1) years. What is the long run probability that an
earthquake will hit California within 6 months? What is the long run probability
that it has been at most 6 months since an earthquake last hit California?
Solution: Since,
lim P (v <0.5)= lim P(§; <05)=1- thjgop(% > 0.5)

t—o0 t—o0
the answer to both questions is:

: 1 [

1 1
:1—7 1— = U. .
1/2/5( B dt = 0.75

In general,

1

wa>ﬂ=zéa—wﬁ=—u—ﬁﬁ

=(1-T7)" for 0<T <L

Proposition 10.39. Let o (1) denote a function of t which tends to zero as
t — oo, then

1

Ev, = 5 (e*+p?) +o(1), (10.46)

RS, = i (e* +p?) +0o(1) and (10.47)
1

EB, = B (0% +p?) +o(1) > p. (10.48)

Proof. By Theorem [10.36] we know that
Jim E[f (1.5)] = E[f (100: )]

where

P(%o>y,6oo2x):=1/ (1 - F (w))dw.
2 T4y

Notice that
Pl >0 =Pl = [ Q=F@)a (09
Yy

so that v, and d4 have the same distributiotﬂ Therefore we have,

2 In general 7o and do are independent iff X; is exponentially distributed.
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Eém:E’yw:/ dyl/ (1=F(t))dt
0 H

Y
1
= ;//10§y§t<oo (1 - F (t)) dy dt
1

1 [oe)
:7/10<t<oot(1—F(t))dt:f/ LP(X) > ) dt
p) 0% wJo

1 o0 1 _T1 1
=—E t1 dt = —E | =X2| = — (o2 2
1t /0 A {2 1} 2 (" +0r)

from which Eqs. (10.46]) and ((10.47)) follows. Equation (10.48|) is now a simple
consequence of Eqgs. (10.46) and (10.47)) and the fact that G; = §; + Y. |

Ezample 10.40 (Earthquakes in California continued). Let us continue the no-
tation in Example [10.38] We now want to compute the long run expected time
to the next earth quake, i.e.

lim Ev; = i <02 + ,u2) .

t—o0

For the uniform distribution on (0,1), 4 = %, and
1
1 1 1
2 2 2
= d — = - — — = —,
7 /0 T TR T T
Therefore,
) 1 1 1
A= Ty

The long run expected time between earthquakes is lim; o Ef =2/3 > 1/2 =
EX;.

Using Theorem [10.36] we can give the following improvement on the elemen-
tary renewal theorem.

Proposition 10.41. Suppose that f (t) = F (t) exists (i.e. Xy, are continuous
random variables) and suppose that yu = EX; and 0? = Var (X1). Then

n 2 2
M@ =-+2L
% 2p

+o(l) (10.50)

where o (1) denotes a function of t which tends to zero as t — oo. This shows
that we may recover p and o from the large t behavior of M (t).

Proof. From Eq. (10.19) and Eq. (10.46) we have,

(M(t)—i-l)u:t—&—IEfyt:t+i(02+u2)+0(1).
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Solving this identity for M (t) gives Eq. (10.50) upon observing;

1 I
2 2 2 2
e — 1 = — _—_— = —
2N2 (U +u ) 2M2 (U +u ) ,u2 2,“2
[ ]
Proposition 10.42. Suppose that f = F(t) exists, 4 = EX; and 0% =
Var (X;) = EX? — u?, then
o2
Var (N (t)) = <t +o(t), (10.51)
1

where o (t) represents a function of t such that lim;_, O(tt) =0.

Proof. Let g (t) = E [N? (¢)] , then by the usual conditioning arguments,
oo t
g (t) :/ E [N?(t) | X1 = 2] dF (z) :/ E [N?(t) | X1 = 2] dF (z)
0 0

:/OtE[(N(t—x)H)ﬂ dF(x):/Ot(g(t—x)+2M(t—x)+1)dF(a:)
—(gx F+2M +F + F) (t).
Since M = F + M x F, it follows that
g=g*F+2(M—F)+F=g+F +2M —F

and hence g satisfies the renewal equation with h = 2M — F. The solution to
this equation is

g=h+h*xM=2M—-F+(2M - F)«M
=2M - F+2M«M —Fx M
=2M —-F+2M«M - (M —F)=M +2M % M.

Let us now consider,

%M*M(t)=%/0 M (z)m (t — z)da.

For t large, the contributions from the integral near x = 0 is not relevant and
so we may replace M (z) by

where
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92 10 Renewal Processes
c=— (o —p?). (10.52)

Thus we have,

1

=k+o<n@59+3;/< 2)dM (z)

t

= [e+o(1)] ut/ M (x

Again in the last integral, we need not worry about the contribution of the
integral near zero because of the 1/t factor, and therefore,

%M*M(t)z [c—i—o(l)]]W(t)—I—l/O (24—04—0(1)) dx

4 nt

c 1 /2 c
= —|—<—|—ct+0(t)> :2M+2,u2t+0(1)'

B pt \2p
Putting this all together shows,
gty M) 2 1 c 1
— =4 -MxM(t)=—+4—+ —t 1).
. ; +t « M (t) u+ u+u2 +o0(1)

Let us also notice that

EMQ(t):l

t t

2
1 1 c
—t4+c+o 1) = —t+2-+4o0(1
(u M) u? 0 M)

From the previous two equations along with Eq. (10.52)) for ¢, we find,
Var(N(8)  g(t) 1

= — =M (t
t t t ®)
1 c 1 c
=—42—4o(t)=—+2—+40(1)
T [T
_2 1—|—i(02—u2) +o0(1)
I p?
2
o
which is equivalent to Eq. ((10.51]). ]
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10.5.1 Second Proof of Theorem [10.22]

Using this result we can give another proof or the renewal central limit Theorem

10.22} namely that

t o Viz

; + W )

where Z is a standard normal random variable. To do this let o2 (t) :=
Var (N (t)) = 7o7zt, and then start with the basic relationship, N (t) < k iff
Wi, < t. This then implies,

T V= k()

RE

Wi (t) —pk () _ t— pk(t)
ovE®) T o k()

Notice that
k(t)%—t—&—c—i—x 3/2\/—1—0(\/)—>ooast—>oo, (10.53)

Wi (t)—pk(t)

Ji® is close to a standard

therefore by the usual central limit theorem,

normal random variable, Z. Therefore we have

N (t) — M (t) ~ t — uk(t)
P<<ﬂﬂ2x)_P<Z§ak@>'
From Eq. (10.53)),

t—pk(t)  —pfEVE

oVE® oLt

= —X

and therefore,

P(M ) 2 p s - ps )
3/2

wherein we have used Z < —Z in the last equality. This shows that

N (1)~ M (1)
i

— Z ast — oo.
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You should ignore this section.

Ezxample 10.43 (Another proof of Proposition [10.41]). We begin by observing
that

ko = t —a)F x

(< F) (0= [ (1= dF @
_ —I‘k T :Eit _xkfl ) dz
(- F@ES+ [ k) Fa)d
:/ k(t—2)" ' F(2)da.

0

Taking k =0 and k£ = 1, we find,
(l*F)(t):/O 1dF (z) = F (t)

and

(t*F)(t):/O (t—x)dF(a:):/O F(x)dx:/o P (X, <a)do
:E/lxlgwgtda}:E[(t—Xl)Jr].

Hence if we let

I
then
1 t
g*F—g:M*F—t*F—i—l*F—(M——f—l)
Iz H
1 t
=M-F—-——t«xF+F—-|M-—+1
H 2
1 t
=——txF4+ - -1
I H
Now,

tt*Ft/Ot(t:c)dF(as)t/OtF(z)dx/Ot(lF(x))dx

and hence
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i/o (1—F(x))da:—1:%/0 (l—F(x))dx—i/Om(l—F(x))dx
1 oo
:_;/t (1 F(2))da.

Thus we have shown that
1 oo
g*F—g:——/ (1-F(z))dx
HJe

ie.,
1 o0
g:g*F—F;/ (1= F(z))dx.
t

where,
/ P(X; >x)dm:E/1X1>w2td$:E(X1—t)+—>Oast—>oo.
t

Therefore by the key renewal theorem,

11 [ > 1
limgt:ff/ dt/ 1—F(x dx:—// 1— F(x))dzdt
t—00 Q B Jo t ( ) 2 0§t§x<oo( (=)
1 [ 1 [
:—2/ x(l—F(:c))dac:—z/ 2P (X1 > x)dz
H=Jo w=Jo
= L [T By sede = —EX? = L (02 4 2
iﬁ . X Xi>z I—ﬁ 1—27'u2(0' +ILL)
Thus we have shown

lim <M(t)—t+1> :%(024-#2)

t—o0

ie.
i (30 - L) = o (0% 4 07) 1= o (074 7) -
t—00 1 21 2u
_ 2% (02 _ M2)
which is to say
M(t)z%—i—%(ﬁ—/ﬂ)—i—o( ).
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94 10 Renewal Processes

10.6.1 Laplace transform considerations

The Laplace (and Fourier) transform is often a useful tool in renewal theory.
This subsection introduces the Laplace transform in this setting.

Notation 10.44 (Laplace Transform) If F' is a (generalized) distribution
function we define the Laplace transform of F (for all X > 0 sufficiently large)
by

F()\):= /OOO e MdF (x).

If f is a density function, we define the Laplace transform of f (for all A > 0
sufficiently large) by

FOy = /OOO e f (2) da

Fact 10.45 Under fairly general conditions, if F()\) = 0 for all large A\ then
F =0 and f (A\) =0 for all large A then f = 0.

Theorem 10.46 (Laplace Transform). If h is a function admitting a Laplace
transform and F' is a (generalized) distribution and f is a density, then

(h«F) =h-Fand (h+f) =h-f.

That is the Laplace transform takes convolution to multiplication (a much sim-
pler operation).

Proof. Let us prove the first equation as the second follows by taking F :=
fom f (y) dy. By the definitions we have,

(h*F)”(A)z/m(h*F) —*xdx—/ / h(z — y) dF (y) e=>"dz
/ / Lo<y<ococh (& — y) dF (y) e Nda
- / / locyzococh (@ — y) e dedF (y)
= / / lo<y<acooh () e N dzdF (y)

= /OOo (/Ooo h (z) e—*wdx) e MdF (y)

_ /O TR O) e MaF (y) = () F (V).
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Proposition 10.47 (Solving Renewal Equations). Suppose that g satisfies,

g(t):h(t)—i-/o g({t—x)dF (z), i.e. g=h+gx*F. (10.54)

Then under “reasonable” growth restrictions on g, the unique solution to this
equation is given by,

t
g(t):h(t)Jr/h(t—:z:)dM(:zz),i.e.g:h+h*M. (10.55)

0
Proof. We do not give the full proof here, just enough to understand

where the solution is coming from. To simplify notation, let g x F (t) :=
fo (t —x) dF (z) so that Eq. (10.54]) becomes,

g=h+gxF (10.56)

n times

—_—f—
and F,, = F « F % ---x F. Feeding Eq. (10.56)) back into itself implies,

g=h+(h+gxF)x F=h+hxF+gx*xF, (10.57)

and then feeding Eq. (10.56)) back into Eq. (10.57)) implies,
g=h+hxF+(h+g=xF)x*F,
=h+h*xF+hxFy+gxFj3.
Continuing on this way shows,

n—1

g=h+> hxF,+gF,. (10.58)
k=1

The remainder term, g * F,, may be written as,

g*Fn(t):/O Fn(t—x)dg(x):/o P(W, <t—x)dg(x)

where by the strong law of large numbers, ”T/L”

P(mgt_”")ap(ugo)zo.
n n

— @ an n — oo, so that

On these grounds we might expect g* F,, — 0 and hence may expect g*F,, — 0.
Thus letting n — oo in Eq. (10.58)) gives ¢ is given by
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g=h+> hxFy=h+hxY F.=h+hxM.
k=1 k=1

Conversely if we define g by this equation, we have

gxF=hxF+hxM+«F=h+xF+hx(M-F)
=hxM=g—h,

so that g solves the desired renewal equation.
Another way to understand the uniqueness assertion is by making use of the
Laplace transform. Taking the Laplace transform of Eq. (10.54) shows,

g =h(N)+gN)F X
and therefore, ~
- h (A
)=
1-F(\)
while taking the Laplace transform of Eq. implies,
GO =hN)+hN) M)

but ~
= B =3 [Fo]" = A

and therefore,
- F(\)

g()\):ﬁ()\)—i—h()\)m:ﬁ()\)m.

Since both formulas give the same Laplace transform for g they must define the
same function g by Fact [10.45) [






11

What you need to know for the Final

11.1 Continuous Time Markov Chain Review We=X1+--+X,,
N (t) = #{n: W, <t}

See the part of Section[R:2] pertaining to continuous time Markov chains. Besides M () := EN (£) — the renewal function

what is there you should also know how to compute hitting probabilities and

expected hitting times using first step analysis, see Examples and and Y = Wn(t)+1 —1 = excess life process
Proposition for the general theory. You should also be familiar with long 0t ==t — Wiy = are or current life process
time limiting behavior of continuos time Markov chains in Theorem By =7 + 0, = total lifetime process.

Let F' (t) := P (X; < t) be the cumulative distribution function for the inter-
11.2 Formula for EXP renewal times, {X;}.

It is worth remembering that if X > 0 is a random variable, then 11.3.2 Renewal Theorems

o0 o We now suppose that F' (t) = fg f (x) dz, i.e. the distribution of X is described
EX = /0 P(X>z)dz = /o (1 - F(z))da. (11.1) by a probability density, f. Also let

More generally, if 1 < p < oo, p=EX; and 0 = Var (X;).

Here is a listing of a number of the key renewal results:

X %)
EXP :IE/ pxp—ldx:JE/ loexprP tdx 2 2
0 o L M(t) =L+ 2 +0(1)

= /Oo El,cx - paP~tdx 2. limg o P (7t > 9,0 2 1) = i zoiy (1 — F (w)) dw. In particular,
0
00 . , 1 [
:p/ P(X > z)aP " dx. (11.2) JHm Py > z) = lim P (6, > x) = ;/w (1—F (w)) dw.
0

. . ) ) 3. From the previous item we derived,
Taking p = 1 gives Eq. (11.1) and taking p = 2 gives,

1
- - lim By, = lim E§; = (0% + p?), and
EX2 = 2/ P(X > z)zdx = 2/ (1 - F(2))zdz. (11.3) e tf°° H
0 0 lim B, = ~ (o2 + 1i2) .
t—o0 /,[,
11.3 Renewal Theory Review 4. You should also be familiar with the alternating renewal theorem (see
Proposition [10.34] and Example [10.35]) which states
11.3.1 Renewal Theory Setup EY;

tlim P (in the Y phase at time t) = EX.
Recall the setup: {X;};~; i.i.d. sequence of random times, Wy = 0, !
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Brownian Motion

Let {X; };11 be a sequence of independent Bernoulli random variables with
P(X;=4%41)= % and let Wy =0, W,, = X1 4+ ---+ X, be the random walk on
Z. For each € > 0, we would like to consider W,, at n = t/e. We can not expect
Wi /e to have a limit as ¢ — 0 without further scaling. To see what scaling is
needed, recall that

1 1

Var (X;) = EX? = 512 +-(-1)*=1

and therefore, Var (W,,) = n. Thus we have
Var (W) = t/e

and hence to get a limit we should scale Wy, by \/e. These considerations
motivate the following theorem.

Theorem 12.1. For all € > 0, let {B. (t)},~, be the continuous time process,
defined as follows: B

1. If t = ne for some n € Ny, let B, (ne) := \/eW,, and
2.ifne <t<(n+1)e, let B (t) be given by

B. (t) = B. (ne) + "¢

_fw+

(Be ((n+1)¢e) — Be (ne))

(\[WnJrl \EWn)

— ne

n+1;

i.e. B.(t) is the linear interpolation between (ne,\/eW,) and
(n+1)e,veWni1), see Figure [12.1. Then B. = B (“weak con-
vergence”) as € | 0, where B is a continuous random process.

The next proposition gives some of the basic facts about Brownian motion.

Proposition 12.2. The law of the process, B, is uniquely determined by the
following properties:

1. B(0) =

Random Walks to BM

0.8
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Fig. 12.1. The four graphs are constructed (in Excel) from a single realization of
a random walk. Each graph corresponds to a different scaling parameter, namely,
€€ {2_4, 278 9712 2_14} . It is clear from these pictures that B. (t) is not converging
to B (t) for each realization. The convergence is only in law.

2. For all0 < s <t < o0, B(t)— B(s) is a Gaussian random variable with
vartance t — s.

3. The increments of B are independent. To be more specific, if 0 = tg <
t < -+ < tp < 00, then {B(t;) — B (t;—1)}.—, are independent Gaussian
random variables.

Proof. The first item is clear since B (0) = 0 for all ¢ > 0. The second
follows from the central limit theorem. To prove the third, suppose that 0 <
§ < t < oo are rational numbers. Then for n € N sufficiently large chosen
so that ns and nt are integers, we have B,,-1 (t) — B,,-1 (s) is independent of
{B,-1(0) : 0 < s}. This independence is preserved in the limit to learn that
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B (t) — B(s) is independent of {B (c) : 0 < s}. The continuity of B allows us
to remove the restriction on s and ¢ being rational. ]

Definition 12.3 (Brownian motion). Brownian motion refers to any con-
tinuous process, B, satisfying the properties in Proposition [12.3

In what follows, N will denote a standard normal random variable which is
independent of B. We will make use of the fact that B (t) — B (s) L JT=sN
for all 0 < s < t < oo and that

2

/f i/(y?:)dy. (12.1)

E[f(z+V7TN)] /fx—i—fy)r

To simplify (and clarify) notation we will define,

e~2e1v=2” for all t > 0 and z,y € R.

Dt (fﬂ,y) = \/ﬁ

Therefore Eq. (12.1) may be written as

Pof(x) =E[f (x + V7N)] = / pr (z,y) f (2) dy. (12.2)

Corollary 12.4. If 0 = tg < t; < -+ < t, < o0, At := t; — t;_1, and
Ji = (a;,b;) C R are given bounded intervals, then

P(B(t;) € J; fori=1,2,...,n)

g S

Proof. Let xg := 0. We are going to prove by induction on n that

DAt (0,21) pase (X1, 22) .. DAL (Tp—1,Tn) d2y ... dTy,.

(12.3)

EF (B (t1),...,B(ty))

= /F (1, -y Tn) paye (o, 1) -« - PALE (X1, Tp) dzy . . day. (12.4)

Eq. (12.3) will then follow by taking F (21, ...,2y) := 1y, (z1)...1;, (2,).
For n = 1, we have, using Eq. (12.2),

EF (B () = EF (VAN) = /R pey (0,9) f () dy

which is Eq. (12.4) with n = 1. For the induction step we begin with the
following identity,
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EF (B(t1),...,B(ty) =EF (B(t1),..., B (tn_1), B(t L)+ B(tn) — B (ta1))
:EF<B(t1),...,B(tn DB (to) + /A N)

:E/F(B(h),---aB(tn—1),y)pAnt (B (t1) ,y) dy
R

:/RE[F(B (t1) 1o B (tn1) ) Pane (B (ta_1) ,9)] dy

(12.5)

wherein the second line we have again used Eq. (12.2)). By the induction hy-
pothesis,

E[F(B(t1),...,B(tn-1),y)pa, (B (tn-1),y)]
= /F (1, Tn_1,9) p(z0o, -, Tpn—1,¥)dx1 ... dTpH_1, (12.6)
where
P (205 s Tn-1,Y) =Pyt (T0,T1) - - PA, 1t (Tn—2,Tn-1) PAa,t (Tn-1,Y) -
Combining Eqs. and and then replacing y by z,, verifies Eq. .
]

Theorem 12.5. Let f be a C? — function which is bounded and has bounded
first and second derivatives. As above, let

Pf(x) = / pe (2,y) f () dy.

Then
ltilrél Pif(x)=f(x) forallz eR (12.7)

and 4 . .
ﬁPtf = §D2Ptf =P <2D2f> . (12.8)
Proof. From Eq. ,
P f (x) :E{f(x—i—\/iN)} —Ef(z)=f(x) ast |0

which proves Eq. (12.7). To prove Eq. (12.8]), one show by an explicit compu-

tation that
1 92 1 02

d
@pt (z,y) = 5@% (z,y) = 55’7y2pt (z,y).

Therefore,
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SR @ =5 [man f o= [ Snt i

02 o2
:/R%@pt(x,y)f(y)dyz %@/Rpt (z,y) f(y) dy

which combined with the integration by parts identity,

0? 02
/R@Pt (z,y) f(y)dy = . 67y2pt (z,y) f (y)dy

82
- /R @) 5oz () .

verifies Eq. ((12.8). ]
Remark 12.6. The last two results show that {B (t)}tzo is a Markov process,
P, is the transition semigroup with infinitesimal generator being @ := %Dz,

and {p: (z,y)}, ,cg are the “matrix entries” of P;.

12.1 Ito Calculus

Lemma 12.7. Let N be a standard normal random variable. Then Var (NQ) =
2.

Proof. By integration by parts and the fact EN? = 1, we find,

4 —12/2dx_ _ 1 3 d —w2/2dx
/ V2T

=— [ —a. e :3IEN2:3
27-(-/Rdl‘x e i .

Var (N?) = EN* — (EN?)® =3 -1=2.

Therefore,

|

The next few results (see especially Corollary [12.9)) are key ingredients in

the It6 calculus and explains why it differs from ordinary calculus you learned
in 20A-B.

Proposition 12.8. Let T >0 and [l ={0 =1ty < t; <--- < t, =T} be a par-
tition of [0,T],

|[II| := max {t; —t;—1 : 1 <i<n} — the mesh size of II,

and
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n

Qu:=>» (B, — By)".

i=1
Then EQp =T and

E[(Qn—T)°] = Var (Qu) =2 (t: — ti-1)* <271,
i=1

Therefore,
E [(QU - Tﬂ — 0 as |[II| — 0.

Proof. We have

n n

]EanzE (B, — By,) Z t;ii1) EN? = Z(trt,;_l):T.

=1 i=1 i=1
2 n
Since {(Btl. — By,) } are independent random variables,
i=1

n

Var Qp = ZVar [(Bt — Bti)2i| = Z (ti — t;—1)* Var [NQ]

i=1 i=1

=2 (ti— ti_q)® < 2T |].
i=1

Corollary 12.9. If {I1,,},2 | is a sequence of partitions of [0,T] such that
Yoot LM, < oo, then limy—.oo Qu, = T a.s. We summarize this statement

as fOT dB? =T or even more informally as dB? = dt.
Proof. By Proposition [12.8

oo

Z Qm, —T) ZIE Qu, —1T) <2TZ|H|<oo

n=1 n=1
and hence
o0
Z Qm, — T < 00 a.s.
n=1
which implies lim, o (Qrz,, — T) =0 a.s. [
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Definition 12.10. The It6 integral of an adapted proce&ﬂ {fi}iso, is defined
by B

T
/ fdB = lim Z fiooy (B, — B, ) (12.9)
0

|-
when the limit exists.

Proposition 12.11. Keeping the notation in Definition [12.1(] and further as-
sume Ef? < oo for all t. Then we have,

E thi—l (Btz - Bti—l)
=1

=0

and

n 2 n
E lz fri (Bti — By, = ]EthQi,l (ti - tifl)-
i=1 =1

Proof. Since (B, — By,_,) is independent of f;, , we have,

E lz froy (B
i=1

= ZE-fti—lE (Bti - Bti—l)
i=1

=Y Efi ,-0=0
i=1

For the second assertion, we write,

[Z fti—l (Bti - Bti—l)
=1

If j < i, then f;, | (Bt
therefore,

= Z ftj71 (Bt]' - Btj71) fti71 (Btl - Bti,l) .

ij=1

—Bt_,»_l) ft,_, is independent of (Bt,; _Bti—l) and

E [ftj—l (Btj o Btj—l) friy (Bti B Bti—l)}
=E [ftj—l (Btj - Bt.y’—l) ftz‘—l] K (Btz‘ - Btz‘—l) =0.

Similarly, if ¢ < j,
E [ftj—l (Btj - Btj—l) ftio (Bti - Bti—l)} = 0.

Tayfis adapted means that for each ¢t > 0, f; should only depend on {B.} ,,
ie. fi =F <{Bs}s§t) .
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Therefore,

E thi—l (Bti o Btifl)
i=1

E [ftj—l (Bty - Btj—l) iy (Bti - Bti—l)]

-
S,
Il
_

I
M:

[ftb 1 ( - Bti—l) fti—l (Bti - Bti—l)]

o
Il
_

M:

B (S (B 5]

o
Il
s

ftl 1 ( 7Bti—1)2

I
2 M:
I

']

ftll(i_ 1— 1)

.
Il

|

Il
-

EY f7  (ti—tis1),

?

wherein the fourth equality we have used By, — By, , is independent of f;, ,. ®
This proposition motivates the following theorem which will not be proved
here.

Theorem 12.12. If {fi},~, is an adapted process such that ]EfOT fRdt < oo,
then the It6 integral, fOT fdB, exists and satisfies,

T
E/ fdB =0 and
0

E(/OdeB>2E/OTfEdt.

Corollary 12.13. In particular if T is a bounded stopping time (say 7 < T <
o0) then

IE/ fdB =0 and
0

E(/OdeB)ZzE/OTfEdt.

Proof. The point is that, by the definition of a stopping time, lo<¢<ft is
still an adapted process. Therefore we have,
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r T
E/ fdB =E / lo<i<r ftdBy| =0
0 0

and

2 2

T T
E (/0 de) =E VO lo<t<r fedBy
T T
=E l/o (lo<i<r fo)? dt] =E [/0 ffdt] .

Theorem 12.14 (Itd’s Lemma). If f is a C? — function, then

df (B) = f' (B)dB + %f” (B) dB*

— f/(B)dB + %f” (B) dt.

More precisely,

T T
FBr) =)+ [ rwyaseg [ s

Roughly speaking, all differentials should be expanded out to second order using
the multiplication rules,

dB? = dt and dBdt = 0 = dt?.

Proof. We do not give the proof here which is based in part on Taylor’s
theorem to order two and Corollary |

12.1.1 Examples of using Itd’s formula
For this subsection, let —oo < a <0 < b < 00,

Tp:=1inf {t > 0: B(t) = b},
Te :=inf{t >0: B(t) =a},

and 7 := 7, AT, , with the convention that inf §) = co.

Now let f(x) = (x —a) (b—x), see Figure below. By Itd’s lemma we
have, using f’ (z) = —2x + b+ a, and f" (x) = —2. that

df (B) = f' (B)dB — dt
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&)
o
w
IS
w

Fig. 12.2. A plot of f for a = —2 and b = 5.

or in its integrated form,

f(Bt):f(OH/0 f'(B)db—t.

integrated form. Taking ¢ = T'A 7 in this formula and then taking expectations
gives,
Ef (Brar) = —ab—E[T AT],

ie.
E[T AT|=—ab—Ef (Brar) < —ab.

By MCT we may let T T oo, to discover, Er < —ab < oo and in particular
P (17 < 00) = 1. An application of DCT now implies that limpeo Ef (Brar) =
Ef (B;) = 0 and therefore we have shown

E [1a A Tp) = —ab.

This is the same formula we had for simple random walks and in fact formally
follows from the random walk formula by our construction of Brownian motion
as a limit of scaled random walks.

For our next application of Ito’s formula, let f (z) = x — a. Since f' (z) =1
and f” (z) =0, it follows by Itd’s formula that

df (B) = dB,

i.e. .
fa+Bt:fa+/ dB.
0

Evaluating this equation at t = 7 AT and then taking expectations implies,
E[—a+ Brar] = —a. By the MCT we may now let T' 1 oo to find,
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104 12 Brownian Motion

—a=E[-a+ B;]=0P (1, <7)+ (—a+b)P(1n < 7).
Thus we have shown
—a
b—a
which again should be compared with our random walk results. Since
{1 < 7} C {7 < o0} for all a, it follows that

P(Tb<Ta)=

—a
P(Tb<oo)2b7—>1asal—oo
and therefore, P (7, < o0) = 1. This shows that Brownian motion hits every
point in R and by the Markov property is therefore, recurrent. Again these
results agree with what we found for simple random walks.

12.2 Option Pricing

In this section we are going to try to explain the Black—Scholes
formula for option pricing. The following excerpt is taken from
http://en.wikipedia.org/wiki/Black-Scholes.

Robert C. Merton was the first to publish a paper expanding the mathematical
understanding of the options pricing model and coined the term ”Black-
Scholes” options pricing model, by enhancing work that was published by
Fischer Black and Myron Scholes. The paper was first published in 1973.
The foundation for their research relied on work developed by scholars such
as Louis Bachelier, A. James Boness, Sheen T. Kassouf, Edward O. Thorp,
and Paul Samuelson. The fundamental insight of Black-Scholes is that the
option is implicitly priced if the stock is traded.

Merton and Scholes received the 1997 Nobel Prize in Economics for this
and related work. Though ineligible for the prize because of his death in
1995, Black was mentioned as a contributor by the Swedish academy.

Definition 12.15. A European stock option at time T with strike price
K is a ticket that you would buy from a trader for the right to buy a particular
stock at time T at a price K. If the stock prices, St, at time T is greater
that K you could then buy the stock at price K and then instantly resell it for
(St — K) dollars. If the St < K, you would not turn in your ticket but would

loose whatever you paid for the ticket. So the pay off of the option is (S — K, .

Page: 104 job: 180Notes

12.2.1 The question and the general setup

Question: What should be the price (¢) of such a stock option?

To answer this question, we will use a simplified version of a financial market
which consists of only two assets; a no risk bond worth 3; = Boe™ (for some
r > 0) dollars per share at time ¢ and a risky stock worth S; dollars per share.
We are going to model S; via a geometric “Brownian motion.”

Definition 12.16 (Geometric Brownian Motion). Let o, > 0 be given
parameters. We say that the solution to the “stochastic differential equa-
tion,”

d
% — 6dB; + pdt (12.10)
t

with Sy being non-random is a geometric Brownian motion. More precisely,
S, is a solution to

t i
S, :so+a/ SdB—i—u/ Sids. (12.11)
0 0

Notice that % is the relative change of S and formally, E (%) = pdt and
Var (%) = ¢2dt. Taking expectation of Eq. (12.11)) gives,

t
ES; = S +M/ ES,ds.
0

Differentiating this equation then implies,
d .
ﬁESt = pES; with ESy = Sy,

which yields, ES; = Spe”t. So on average, S; is growing or decaying exponen-
tially depending on the sign of p.

Proposition 12.17 (Geometric Brownian motion). The stochastic differ-
ential Equation (12.11) has a unique solution given by

1
Sy = Sp exp <UB,5 + (u — 202> t> .

Proof. We do not bother to give the proof of uniqueness here. To prove
existence, let us look for a solution to Eq. (12.10) of the form;

Sy = Sopexp (aB; + bt) ,

for some constants a and b. By [t6’s lemma, using %em = %eﬂ = ¢€” and the
multiplication rules, dB? = dt and dt? = dB - dt = 0, we find that
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dS = S (adB + bdt) + %S (adB + bdt)?

= S (adB + bdt) + %Sant,

i.e.

ds 1

& = adB+ (b + 2a2> dt.
Comparing this with Eq. (12.10) shows that we should take a = ¢ and b =
w— %02 to get a solution. ]

Definition 12.18 (Holdings and Value Processes). Let (at, b;) be the hold-
ings process which denotes the number of shares of stock and bonds respectively
that are held in the portfolio at time t. The value process, Vi, of the portfolio,
18

‘/t = atSt + btﬂt. (1212)

Suppose time is partitioned as,
H:{O:to<t1<t2<"'<tn:T}

for some time T in the future. Let us suppose that (a,b;) is constant on the
intervals, [0,t1], (¢1,%2], - .., (tn—1,tn]. Let us write (as,b;) = (a;—1,b;—1) for
ti—1 <t <t;, see Figure[12.3]

5__..

“__--—"
o_______‘oh——f
>

1iwe,

1 )
tig ¥ Ein

Fig. 12.3. A possible graph of either a; or b;.

Therefore the value of the portfolio is given by
Vi=a;—15; + b1 for t; 1 <t <t

If our holding process is said to be self financing (i.e. we do not add any
external money to portfolio other than what was invested, Vy = agSy + bofo,
at the initial time ¢ = 0), then we must haveﬂ

2 Equation (12.13) may be written as
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a;—1St, + bi—18t, = Vi, = a;St, + b;f, for all 4. (12.13)

That is to say, when we rebalance our portfolio at time ¢;, we are only use the
money, V;,, dollars in the portfolio at time ¢;. Using Eq. (12.13) at ¢ and ¢ — 1
allows us to conclude,

Vi, = Viioy = aim1Sy, + bio1 By, — (aim1Se,_, + bic1B,_,)
= a;—1 (Stl - Sti—l) + bi—l (ﬂt,, — ﬂtm—l) for all i, (1214)
which states the change of the portfolio balance over the time interval, (¢;_1, ;]

is due solely to the gain or loss made by the investments in the portfolio. The
Equations (|12.13) and (12.14) are equivalent. Summing Eq. (12.14]) then gives,

J J
Vi, =Vo=> ai1 (S, = Se.,) + > _bica (B, — Br_y) (12.15)
=1 i=1
tj tj
= / a,dsS, —|—/ b,dg, for all j. (12.16)
0 0

More generally, if we throw any arbitrary point, ¢ € [0,7], into our partition
we may conclude that

t t
Vt:Vo+/ ads+/ bdg for all0 <t < T. (12.17)
0 0

The interpretation of this equation is that V; — V} is equal to the gains or losses
due to trading which is given by

t t
/ adS + / bdg.
0 0

Equation now makes sense even if we allow for continuous trading. The
previous arguments show that the integrals appearing in Eq. should
be taken to be Ito — integrals as defined in Definition [[2.10] Moreover, if the
investor does not have psychic abilities, we should assume that holding process

is adapted.

(a; —ai—1) St, + (bi — bi—1) B¢, = 0.
This explains why the continuum limit of this equation is not Sida: + 5:db: = 0 but
rather must be interpreted as Siiardar + Bitardby = 0. It is also useful to observe
that
d(XY), = XerarYigar — Xo Vs
= (Xttar — X¢) Yigar + Xe Yeqgar — Y2),

and hence there is not quadratic differential term when d (XY') is written out this
way.
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12.2.2 Pricing the Option

Now that we have set the stage we can now try to price the option. (We will
closely follow [1, p. 255-264.] here.) The guiding principle is:

Fundamental Principle: The price of the option, ¢ := f (So, T, K, ), should
be equal to the amount of money, V{, that an investor would have to put
into the bond-stock market at time ¢ = 0 so as there exists a self-financing
holding process (a¢, b;), such that

VTZGTST+bTﬁT=(ST—K)+.

Remark 12.19 (Free Money). If we price the option higher than Vy, i.e. ¢ > Vj,
we could make risk free money by selling one of these options at ¢ dollars,
investing V < ¢ of this money using the holding process (at, b:) to cover the
payoff at time T and then pocket the different, ¢ — Vj.

If the price of the option was less than V), i.e. ¢ < Vp, the investor should
buy the option and then pursue the trading strategy, (—a, —b) . At time zero the
investor has invested ¢+ (—agSo — bpBo) = q¢ — Vo < 0 dollars, i.e. he is holding
Vb — ¢ dollars in hand at time ¢ = 0. The value of his portfolio at time 7" is now
—Vr=—(Sr— K)Jr . If Sp > K, the investor then sells his option to pay off
the debt he as accrued in his portfolio and if Sp < K, he does nothing since
his portfolio is worth zero dollars. Either way, he still has the Vy — ¢ dollars in
hand.

If we have such a self-financing holding process (a, b;) , then {(as,bs)}, < <p
is a self-financing holding process on [t,T] such that Vo = arSr + brfBr =
(St — K, therefore if the stock price is S; at time ¢, the option price at this
time, f(S;, T —t, K), should be V4, i.e. we have

Vi=f(S,T—-1,K). (12.18)

By Itd’s lemma (dropping K from the notation),
1
dVe = fo (6, T = 1)dSe + 5 faa (S, T —t)dS? — fi (S, T —t)dt
1
= fa: (St,T — t) St (O'dBt + ,udt) -|- ifz T (St,T — t) St2 2 ft (St,T — t):| dt
= fx (St, T— t) StO'dBt

1
+ | fe (St,T—t)SerifwQE(S,g,T—t)S,E2 2—ft(St,T—t)] dt

On the other hand from Egs. (12.17) and (12.10), we know that
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dV, = a;dS + by Bore”tdt
= a;S; (0dBy + pdt) + by Bore™ dt
= a;SiodBy + [atSt,u + btﬁore”} dt.
Comparing these two equations implies,
at = fu (S, T — 1) (12.19)
and
ar S+ before™
= fo (St, T —t) Sep + %fx o (Se, T —t)S70® — f (Se, T —t).  (12.20)

Using Eq. and
F(Se, T —1t) =V, = a;Sy + b Soe"™
= fu (S, T —t) Sy + by Boe""
in Eq. allows us to conclude,
%fx o (Se, T —t)S20% — f, (S¢, T —t) = rb; fpe""
=rf(Sy, T —1t)—rfs (S;, T —t)S;.

Thus we see that the unknown function f should solve the partial differential
equations,

%JQﬁfm (@, T—1t)— fi(x,T—t)=rf(x, T —t)—raf, (x,T —1t)

or equivalently,
1
fi(x, T —1)= 502362]”90 (@, T—t)+refy (2, T—t)—rf(x,T—1t)
with f (2,0) = (v — K)_ .
Fact 12.20 The solution to this equation is given by;

f(z,t) =20 (g (2,t) — Ke "'® (h(z,t)), (12.21)
where,
_ In(z/K)+ (r+30%)t
g(z,t) = G —,
h(x,t) =g (z,t) —ovt,
and

d(z):=P(N <z

where N is a standard normal random variable.
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Theorem 12.21 (Option Price). Given the above setup, the “rational” price”
of the European call option is ¢ = f (So,T) where f is given as in Eq. (12.21).
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