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Math 180C Homework Problems

The problems from Karlin and Taylor are referred to using the conventions.
1) II.1: E1 refers to Exercise 1 of section 1 of Chapter II. While I1.3: P4 refers
to Problem 4 of section 3 of Chapter II.

0.1 Homework #1 (Due Monday, April 7)

Exercise 0.1 (2nd order recurrence relations). Let a, b, ¢ be real numbers
with @ # 0 # ¢ and suppose that {y,} - solves the second order homoge-

neous recurrence relation: ~
ayn+1 + by, + cyp—1 = 0. (0.1)
Show:
1. for any A € C,
a4 AT AT = A" p () (0.2)

where p (\) = aA\® + b + c.
2. Let A\ = —bEvbi-dac VQZLMC be the roots of p and suppose for the moment that
b? — 4ac # 0. Show
Yn = ALY F AN
solves Eq. for any choice of A, and A_.
3. Now suppose that b? = 4ac and A\ := —b/ (2a) is the double root of p (\).
Show that
Yn = (Ao + Aln) Ag

solves Eq. (0.1 for any choice of Ag and A;. Hint: Differentiate Eq. (0.2)
with respect to A and then set A = Aq.
4. Show that every solution to Eq. (0.1)) is of the form found in parts 2. and 3.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {X,,} 2 be
the Markov chain with values in Z with transition probabilities given by

P(Xpy1=7x1X,=j4)=1/2foralln € Ny and j € Z.

Further let a,b € Z with a < 0 < b and

Top :=min{n: X, € {a,b}} and T, :=inf {n : X,, = b}.

We know by Proposition that Eg [T,] < oo from which it follows that
P(Typ<oo)=1foralla<0<b.

Exercise 0.2. Let wj = Pj (XTu,b = b) =P (XTa,b = b‘XO = j) .

1. Use first step analysis to show for a < j < b that

1
wj = 5 (Wj+1 +wj-1) (0.3)

provided we define w, = 0 and w;, = 1.
2. Use the results of Exercise [0.1] to show

Pj (X1, =b) =w; = ﬁ (j—a). (0.4)

3. Let
min{n : X,, = b} if {X,} hits b
Tb = .
00 otherwise
be the first time {X,} hits b. Explain why, {Xr, , =b} C {T}, < oo} and
use this along with Eq. (0.4) to conclude that P; (T} < oo) = 1 for all j < b.
(By symmetry this result holds true for all j € Z.)

Exercise 0.3. The goal of this exercise is to give a second proof of the fact that
P; (T, < 00) = 1. Here is the outline:

1. Let w; := P; (T < 00). Again use first step analysis to show that w; satis-

fies Eq. (0.3) for all j with w, = 1.
2. Use Exercise to show that there is a constant, ¢, such that

w;=c(j—0b)+1forall jeZ

3. Explain why ¢ must be zero to again show that P; (T} < co) = 1 for all
Jj € L.

Exercise 0.4. Let T =T, ; and u; :=E;T:=E[T|X, = j].



ii 0 Math 180C Homework Problems
1. Use first step analysis to show for a < j < b that 0.2 Homework #2 (Due Monday, April 14)

1
wj = = (ujer +uj) + 1 (0.5) IV.1 (p. 208 -): E5, E8, P1, P5

2 o IV.3 (p. 243 -): El, E2, E3,
IV.4 (p.254 — ): E2

with the convention that u, = 0 = wuy.
2. Show that
uj = Ag + Arj — j° (0.6)

solves Eq. (0.5 for any choice of constants Ay and Aj;.
3. Choose Ap and A; so that u; satisfies the boundary conditions, ug = 0 = uy.
Use this to conclude that

E;jT,p=—ab+ (b+a)j—j*>=—a(b—7)+bj—j> (0.7)

Remark 0.1. Notice that T, 5, T T = inf {n : X,, = b} as a | —o0, and so passing
to the limit as a | —oc0 in Eq. shows

E;T, = oo for all j <b.

Combining the last couple of exercises together shows that {X,,} is null - re-
current.

Exercise 0.5. Let T' = Tj,. The goal of this exercise is to give a second proof of
the fact and u; := E;T = oo for all j # b. Here is the outline. Let u; := E;T" €
[0, 00] = [0, 00) U {00} .

1. Note that uy = 0 and, by a first step analysis, that u; satisfies Eq. for
all j # b — allowing for the possibility that some of the u; may be infinite.

2. Argue, using Eq. , that if u; < oo for some j < b then u; < oo for all
i < b. Similarly, if u; < oo for some j > b then u; < oo for all 7 > b.

3. If u; < oo for all j > b then u; must be of the form in Eq. for some Ag
and A; in R such that u, = 0. However, this would imply, u; = E;T — —oo
as j — oo which is impossible since E;T° > 0 for all j. Thus we must
conclude that E;T" = u; = oo for all j > b. (A similar argument works if we
assume that u; < oo for all j < b.)
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0.3 Homework #3 (Due Monday, April 21)

Exercises [0.6] - [0.9] refer to the following Markov matrix:

(0.8)

S T W N~

We will let {X,,},2, denote the Markov chain associated to P.

Exercise 0.6. Make a jump diagram for this matrix and identify the recurrent
and transient classes. Also find the invariant destitutions for the chain restricted
to each of the recurrent classes.

Exercise 0.7. Find all of the invariant distributions for P.

Exercise 0.8. Compute the hitting probabilities, hs = P5 (X, hits {3,4}) and
he = Ps (X, hits {3,4}).

Exercise 0.9. Find lim,, .o, Ps (X,, = j) for j =1,2,3,4,5,6.

Exercise 0.10. Suppose that {T}};_, are independent exponential random
variables with parameters {qy},_,, i.e. P (T} >t) = e~ %" for all ¢t > 0. Show
that T := min (71, T5,...,T,) is again an exponential random variable with

parameter ¢ = Y ;_, G-

Exercise 0.11. Let {T}};/_; be as in Exercise Since these are continuous
random variables, P (T}, = T;) = 0 for all k # j, i.e. there is no chance that any
two of the {T}},_, are the same.
Find
P(Ty <min(Ty,...,Ty)).
Hints: 1. Let S := min (T3,...,Ty), 2. write P (T} < min (Ts,...,T,)) =
E[l7, <s], 3. use Proposition above.

Exercise 0.12. Consider the “pure birth” process with constant rates, A > 0.
In this case S ={0,1,2,...} and if 7 = (7o, 71, 72, ...) is a given initial distri-
bution. In this case one may show that 7 (¢), satisfies the system of differential
equations:

Page: iii job: 180Notes

0.4 Homework #4 (Due Monday, April 28) iii
7'T0 (t) = —)\71'0 (f)
7-T1 (t) = )\71'0 (t) — )\7’(1 (t)
7:1'2 (t) = )\7‘1’1 (t) — /\71'2 (t)

fon () = M1 (£) — Ao (2)

Show that the solution to these equations are given by
7o (t) = moe™ M

71 (t) = e (moMt + mp)

2
m (1) = e~ M <7r0 ()\;‘) + At + 7r2>

[ At)*
T (t) = e (Zﬂn_k(k!) )

k=0

Note: There are two ways to do this problem. The first and more interesting
way is to derive the solutions using Lemma The second is to check that
the given functions satisfy the differential equations.

0.4 Homework #4 (Due Monday, April 28)

e VLI (p. 342 -): E1, E2, E5, P3, P5*, P&**
o VL2 (p. 353 -): E1, P2#**

* Please show that W1 and W2 - W1 are independent exponentially dis-
tributed random variables by computing P(W1 > t and W2 - W1 > s) for all
s,t>0.

**Hint: you can save some work using what we already have seen about two
state Markov chains, see the notes or sections VI.3 or VI.6 of the book.

*** Depending on how you choose to do this problem you may find Lemma
in the lecture notes useful.
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0.5 Homework #5 (Due Monday, May 5)

e VI2 (p. 353 —): P2.3 (Hint: look at the picture on page 345 to find an
expression for the area in terms of the {Sy}n_; .)
VL3 (p. 365 -): E3.1, 3.3, P3.3, P3.4
VL4 (p. 377 -):E4.2, PA.1



1

Independence and Conditioning

Definition 1.1. We say that an event, A, is independent of an event, B, iff
P (A|B) = P (A) or equivalently that
P(ANnB)=P(A)P(B).
We further say a collection of events {Aj}jeJ are independent iff
P(Njend;) =[] P(4))
Jj€Jo
for any finite subset, Jy, of J.
Lemma 1.2. If {Aj}jeJ is an independent collection of events then so is
{Aj’ A§}jgj :
Proof. First consider the case of two independent events, A and B. By
assumption, P (AN B) = P(A) P (B). Since
ANB*=A\B=A\(BNA4),
it follows that
PANB)=P(A)—P(BNA)=P(A)—P(A)P(B)
= P(A)(1-P(B)) =P (A) P(B).
Thus if {A, B} are independent then so is {A, B°}. Similarly we may show
{A°, B} are independent and then that {A°, B°} are independent. That is
P (A® N B%) = P(A°) P (B°) where ¢, is either “nothing” or “c.”

The general case now easily follows similarly. Indeed, if {4;,...,4,} C
{A;};c,; we must show that

P(AT*N---NA»)=P(AY) ... P(A:r)
where € = c or g5 = “ 7. But this follows from above. For example,
{41N---NA,_1,A,} are independent implies that {41 N---NA,_1, A%} are
independent and hence
PAN--NA,_1NAS)=P(AN---NA,_1)P(AS)
= P(A1)...P(Au1) P(AS).

Thus we have shown it is permissible to add A§ to the list for any j € J. ]

Lemma 1.3. If {A,},7 | is a sequence of independent events, then

0o N
P(M2An) = [ P(An) = Jim ] P(4n).
n=1 n=1

Proof. Since NY_, A, | N5, A, it follows that

N
P(Nili4,) = Nhinoop (ﬂrjyzlAn) = 1\}21100 P (An),
1

n=

where we have used the independence assumption for the last equality. [

1.1 Borel Cantelli Lemmas

Definition 1.4. Suppose that {A,} -, is a sequence of events. Let

{4,, i.0.}:= {i la, = oo}

denote the event where infinitely many of the events, A, occur. The abbrevia-
tion, “i.0.” stands for infinitely often.

For example if X,, is H or T depending on weather a heads or tails is flipped
at the n'® step, then {X,, = H i.0.} is the event where an infinite number of
heads was flipped.

Lemma 1.5 (The First Borell — Cantelli Lemma). If {A4,} is a sequence
of events such that Y~ P (A,) < oo, then

P ({A, i.0.}) = 0.

Proof. Since

(oo} oo
0> P(A) =) Els, =E
n=0 n=0

o
>
n=0



2 1 Independence and Conditioning

it follows that Y 14, < oo almost surely (a.s.), i.e. with probability 1 only
finitely many of the {A,} can occur. ]

Under the additional assumption of independence we have the following
strong converse of the first Borel-Cantelli Lemma.

Lemma 1.6 (Second Borel-Cantelli Lemma). If {A,}.. | are independent
events, then

Y P(A) =00 = P({A,io0})=1 (1.1)

Proof. We are going to show P ({4, i.0.}) = 0. Since,

{An i.O.}CZ{ilAn:OO} {ilAn<OO}

we see that w € {4, i.0.}° iff there exists n € N such that w ¢ A,, for all

m > n. Thus we have shown, if w € {4,, i.0.}° then w € B, := N>, AS, for

some n and therefore, {4,, i.0.}° = U, B,. As B, T {4, i.0.}° we have
P({A, i.0.}°) = lim P(B,).

But making use of the independence (see Lemmasand and the estimate,
1—2z < e 7, see Figure below, we find

P(B,) = P(Nm>nA%) = [[ P(4A5) = [] 1 - P(An)]

m>n m>n

< H e—P(A'm) —exp | — Z P(Am) — e ™ .

m>n m>n

]
Combining the two Borel Cantelli Lemmas gives the following Zero-One
Law.

Corollary 1.7 (Borel’s Zero-One law). If {A,} -, are independent events,
then
v JOou>  P(A,) <o
P (A, io.)= {1 IS P A = oo
Ezample 1.8. If {X,,}.-_, denotes the outcomes of the toss of a coin such that

n=1

P(X,=H)=p>0, then P(X,,=H io.)=1.

Page: 2 job: 180Notes
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Fig. 1.1. Comparing e”* and 1 — z.

Ezxample 1.9. If a monkey types on a keyboard with each stroke being indepen-
dent and identically distributed with each key being hit with positive prob-
ability. Then eventually the monkey will type the text of the bible if she
lives long enough. Indeed, let S be the set of possible key strokes and let
(81,...,8n) be the strokes necessary to type the bible. Further let {X,} ~
be the strokes that the monkey types at time n. Then group the monkey’s
strokes as Y} := (XkN-i-la e 7X(I<:+1)N) . We then have
N
P(Yi=(s1,...,58)) = HP(Xj =s;) = p>0.

j=1

Therefore,
oo
ZP(Y/C = (Sla"'sz)) =0
k=1

and so by the second Borel-Cantelli lemma,

P({Y = (s1,...,sn)} Lo. k) = L.

1.2 Independent Random Variables

Definition 1.10. We say a collection of discrete random variables, {X;}
are independent if

jeJ

P(le = Il,...,Xjn = In) = P(le = 1‘1) P(X]n = SCn) (12)

for all possible choices of {j1,...,jn} C J and all possible values xy, of X, .
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Proposition 1.11. A sequence of discrete random variables, {X;} s in-

dependent iff
Elfi (X50) - fo (X))l = Ef1 (X5,)] - E[fn (Xj,)] (1.3)

for all choices of {j1,...,jn} C J and all choice of bounded (or non-negative)
functions, fi,..., fn. Here n is arbitrary.

jeJ’

Proof. (=) If {X;},_;, are independent then

Elf (X, X))l = Y. flan..,2) P(Xj, =21,...,Xj, =)
T1yeeeyTp
= > fl@..z) P(Xj =m1) - P(X;, = ).
L1y Tn

Therefore,

Elf1 (X5,) - fo (X5,)] =

LlyeeesTp

- <Zf1 (‘Tl)P(le I1)> (Zf(xn)P(Xjn :ajn)

Tn

=E[fi (X;)].. . Elfn (Xj,)]-
(<=) Now suppose that Eq. (1.3)) holds. If f; := d,, for all j, then

Elfi (X5) . fo (X)) = E0g, (Xj,) .- 00, (X)) = P(Xj, = 21,..., X, =)

while
E [fi (X;,)] = E [0, (Xj,)] = P (Xj,, = z1) -

Therefore it follows from Eq. 1| that Eq. l} holds, i.e. {Xj}jeJ is an
independent collection of random variables. [
Using this as motivation we make the following definition.

are in-

Definition 1.12. A collection of arbitrary random variables, {X;},_;,

dependent iff

]E[fl (le)fn (Xjn)] = E[fl (Xj1)] ]E[fn (Xj )]

for all choices of {j1,...
functions, f1,..., fn-

,int C J and all choice of bounded (or non-negative)

Fact 1.13 7o check independence of a collection of real valued random vari-
ables, {X;},c ;. it suffices to show

P(X;, <t1,...,X;, <tp) =P(Xj, <t1)...P(Xj, <t,)
for all possible choices of {j1,...,4n} C J and all possible t;, € R. Moreover,
one can replace < by < or reverse these inequalities in the the above expression.
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Z fl(xl)“-fn(xn)P(XJ& :ml)"'P(Xjn:xn)

)

macro:

1.3 Conditioning 3

One of the key theorems involving independent random variables is the
strong law of large numbers. The other is the central limit theorem.

Theorem 1.14 (Kolmogorov’s Strong Law of Large Numbers). Suppose
that {Xn}ff=1 are i.i.d. random variables and let S, == X; + ---+ X,,. Then
there exists ;1 € R such that %Sn — p a.s. iff Xy, is integrable and in which
case EX,, = p.

Remark 1.15. T E | X;1| = oo but EX| < oo, then %Sn — oo a.s. To prove this,

for M > 0 let
X, if X, <M
MifX,>M

and SM :=Y"" | XM Tt follows from Theorem that L SM — M .= EXM
a.s.. Since S,, > S,]% we may conclude that

X

:= min (X,,, M) = {

S, 1
liminf = > lim inf —Sfy =M as.

Since pM — oo as M — oo, it follows that liminf,, .. i

= oo a.s. and hence

that lim,, ..o % = 00 a.8.

1.3 Conditioning

Suppose that X and Y are continuous random variables which have a joint
density, p(x,y) (#,%) . Then by definition of p(x y), we have, for all bounded or
non-negative, f, that

E[f(X,Y)] = / / f (@) Py () dady. (1.4)

The marginal density associated to Y is then given by

py (y) = /P(x,y) (z,y)dz. (1.5)

Using this notation, we may rewrite Eq. (1.4) as:

E[f (X,Y)] = / [ / f (a,y) de py (y) dy. (1.6)

The term in the bracket is formally the conditional expectation of f (X,Y)
given Y = y. (The technical difficulty here is the P (Y = y) = 0 in this contin-
uous setting. All of this can be made precise, but we will not do this here.) At
any rate, we define,

svmonob.cls date/time: 2-May-2008/10:12



X,Y) (z,y)

E[f (X,Y)[Y =] =E[f (X,5) |V =] :=/f<x,y> e
in which case Eq. may be written as
B(f (X.Y)) = [EIf (XYY =3l oy (0)d, (L.7)

This formula has obvious generalization to the case where X and Y are random
vectors such that (X,Y) has a joint distribution, p(x yy. For the purposes of
Math 180C we need the following special case of Eq. (1.7)).

Proposition 1.16. Suppose that X andY are independent random vectors with
densities, px (x) and py (y) respectively. Then

B(f (X)) = [El (X)) oy (5) d. (18)

Proof. The independence assumption is equivalent of pixy)(z,y) =
px (z) py (y) . Therefore Eq. (1.4) becomes

E[f(X,Y)] Z//f(w,y)px (z) py (y) dzdy
=/[/f(x,y)px(w)daf py (y)dy
Z/]E[f(X,y)]-py (y) dy.

Remark 1.17. Proposition [[.16]should not be surprising based on our discussion
leading up to Eq. (|1.8). Indeed, because of the assumed independence of X and
Y, we should have

Ef(X,V)Y =yl =E[f (X,y)|Y =y| =E[f (X,y)].

Using this identity in Eq. (1.7)) gives Eq. (1.8]).



2

Some Distributions

2.1 Geometric Random Variables

Definition 2.1. A integer valued random wvariable, N, is said to have a geo-
metric distribution with parameter, p € (0,1) provided,

P(N=k)=p(1—p)"" forkeN.
If |s| < +&, we find

1—p°
E[N = p(1—p) sk =psy (1—p)T s
k=1 k=1
_ bs
1—s(1-p)
Differentiating this equation in s implies,
d S
E [NsN_l] = gm and
E[N(N-1)s""2] = (d)2 B
ds) 1—s(1l—p)
For s =1+ ¢, we have
ps _ p(+e) p(l+e) 1

I—s(l—p) 1-(+e)(1-p) p+e—c 1-55
[eS) k 2
€ € €
=N 14 + +0 (&
kZ:()p’“(1+e)’“ p(l+e)  p2(1+e¢) )
e(l—e+. g2
=1+ ( )+7+O(53)
p p
1
=144 2<—>+O 3
p > p (=)
Therefore,
d 1
ls=1 ps = — and

Hence it follows that
EN =1/p and

EN21/p_IE[N(N1)]_2<p12;>

which shows,

and therefore ,

iS]
bS]

]
)Ew"—‘
SRR

2.2 Exponential Times

Much of what follows is taken from [3].

Definition 2.2. A random variable T > 0 has the exponential distribution
of parameter \ € [0,00) provided, P(T >t) = e * for all t > 0. We will
write T ~ E (X) for short.

If A > 0, we have
P(T>t)=e M= / e Mdr
t

from which it follows that P (T € (t,t+dt)) = Al;>pe *dt. Let us further
observe that

o d o d
ET = —AT _ = —AT _ _ -1 _ 1 2.1
/0 tAe Tdr )\( dA)/O e dr /\( d)\>)\ A (2.1)

and similarly,



6 2 Some Distributions

oo k 00 k
k _ k — AT _ _ d — AT _ _ d =1 _ )k
ET" = t*Ae”MdT = A —d)\ e dr = A I AT = kIR
0 0

In particular we see that
Var (T) =222 - X\ 2 = \72 (2.2)
For later purposes, let us also compute,

S|
14N 14N

E[e™"] :/ e A Mdr = (2.3)
0

Theorem 2.3 (Memoryless property). A random variable, T € (0,00] has
an exponential distribution iff it satisfies the memoryless property:
P(T>s+tT>s)=P(T>t) forall s,t>0.

(Note that T ~ E (0) means that P (T > t) = " =1 for allt > 0 and therefore
that T = 00 a.s.)

Proof. Suppose first that T'= E (\) for some A > 0. Then

P(T>s+t) e tD
P(T>s+tT>s)= P> ) =%

—eM=P(T>1).

For the converse, let g (t) := P (T > t), then by assumption,

g(t+s)

e =P(T>s+tT>s)=P(T>t)=g(t)

whenever g (s) # 0 and ¢ (¢) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (¢t) = 0 for all ¢ > s. Thus it follows that

gt+s)=g(t)g(s) forall s,t>0.

Since T > 0, we know that ¢g(1/n) = P (T >1/n) > 0 for some n and
therefore, g (1) = g (1/n)" > 0 and we may write g (1) = e~ for some 0 < \ <
00.

Observe for p,q € N, g(p/q) = g(1/q)" and taking p = ¢ then shows,
e =g (1) = g(1/q)?. Therefore, g (p/q) = e~ /9 so that g (t) = e~ * for all
t € Q. Given r,s € Q4 and t € R such that » < ¢t < s we have since g is
decreasing that

eV = g() > g(t) > g(s) = e

Hence letting s T ¢ and 7 | ¢ in the above equations shows that g (t) = e=** for
all t € Ry and therefore T~ E (X). |
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Theorem 2.4. Let I be a countable set and let {T}.}, o, be independent random
variables such that Ty ~ E (q) with q := Y, c;qx € (0,00). Let T := infy T},
and let K =k on the set where T; > Ty, for all j # k. On the complement of all
these sets, define K = x where  is some point not in I. Then P (K = x) =0,
K and T are independent, T ~ E(q), and P (K = k) = q/q.

Proof. Let k € I and ¢t € Ry and A,, Cy I such that A, T I\ {k}, then

P(K=kT>t) ZP(ﬁﬁ,gk{Tj > T}, T >t) = lim P(ﬁjeAn {Tj > T}, T > t)

= lim H 1tj>t,c “Liy>edpn ({tj}je/ln) le_qktkdtk
€A,

n—oo [0700)Anu{k} j

where p,, is the joint distribution of {7} . So by Fubini’s theorem,

JEAR

P(K=FkT>t)= lim qke—Qkfkdtk/ T te500 - Losedin ({tj}jeAn)

n—oo t [07(X1)A" jeAn
o
= lim P (ﬂjeAn {Tj > tk}) qke_qkt’“dﬁk
n—oo J,

o0
= / P (ﬂj#k {Tj > T}) qre” *Tdr
t
oo oo
:/ Heququcefq“dT :/ Hefq"TdeT
bj#k t el
oo

:/ efzioilqudeT:/ e Tqpdr = %kefqt- (2.4)
¢ t

Taking t = 0 shows that P (K =k) = % and summing this on k shows
P(K €I)=1so that P (K = %) = 0. Moreover summing Eq. on k now
shows that P (T > t) = e 9" so that T is exponential. Moreover we have shown
that

P(K=kT>t)=P(K =k P(T>t)

proving the desired independence. [

Theorem 2.5. Suppose that S ~ E (\) and R ~ E (u) are independent. Then
fort > 0 we have

puP(S<t<S+R)=AP(R<t<R+5).

Proof. We have
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t
uP(S§t<S+R):,u/ Ae P (t< s+ R)ds
0

t
:u)\/ e MemHE9) g
0

t —(A—p)t
— ,u)\eﬂ”/ e~ A—m)sge — pre Mt ﬁ

0 A—p
efp,t _ 67)\15
= u\-
which is symmetric in the interchanged of p and . [

Ezxample 2.6. Suppose 1T is a positive random variable such that
P(T>t+s|T>s)=P(T >t) for all s,t > 0, or equivalently

P(T>t+s)=P(T>t)P(T >s) forall s,t >0,

then P (T >t) = e~ for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
Fr(t):=P(T <t)=1—-e*V0 Since Fr (t) is piecewise differentiable, the
law of T, 1 := P o T~1, has a density,

dp (t) = Fp (t) dt = ae™ " 1;>odt.

Therefore,
(oo}
E iaT) _ —at i/\tdt: a =a(\).
[e"] /0 ae”%e — ()

Since a a

V(N =i———and i/ (\) = 2———

i’ (A) @ in? i (A) @ i)
it follows that

~7 ~ 11 2
ET = ©) =a ' and ET? = £ (0) =—
1 2 a?

and hence Var (T) = % — (1)2 =a 2

2.3 Gamma Distributions

Lemma 2.7. Suppose that {S; };.L:l are independent exponential random vari-

ables with parameter, 6. and W, =S, +---+ S,. Then
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2.3 Gamma Distributions 7

n—1 j
ot)’
PW,<t)=1-¢% ( ,,) (2.5)
im0 I
ot o (Ot)
— e etz (ﬂ) (2.6)
j=n 7
and the distribution function for W, is
_ 9t n—1
an (t) = fe gt(('n)—]_)!- (27)

Proof. Let W;, := S; +--- + S,. We then have,
PW,<t)=P(W,_1+5,<1t)

t

= / P (W1 +s <t)fe ds
0
t

= / PW,_1 <t—s) fe=%ds.
0

We may now use this expression to compute P (W,, <t) inductively starting
with
PWi<t)=P(S; <t)=1-¢"

For n = 2 we have,
t t
P(Wy <t)= / (1 — e*f’(H)) fe %% ds = 9/ (e7% — ™) ds
0 0
=1—e % —ote .

For the general case, we find, assuming that Eq. (2.5 is correct,
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8 2 Some Distributions

t n—1 j
0(t—
P (Wn_;,_l S t) = 0/ 1-— €70(tis) ((J'S)) €7esd8
0 ; :

j=0

t n—1 . J
_ 9/ 6795 _ 67(% Z (9 (t i S)) ds
0

|
- ]:0 J.
n—1 t pj AY)
=1—¢e % gt Z/ uds
j=0 0 J:
n—1 P
Qi¢i+1
=1—e 0 g Z
1 |
= G+
n—1 ,.; ; n j
gitigi+t (6t
— 1 _ e—@t _ e—Gt . — 1 _ e—Gt -
jz:;) (7 +1)! jz::o !

which completes the induction argument and proves Eq. (2.5). Since,

0 J

_ =0t 6t _ _—6t (Gt)
l=e""7"¢"=¢ g T
j=0

we also have,
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2.4 Beta Distribution

Lemma 2.8. Let

1
B (z,y) ::/ 71 (1 — )" dt for Rex,Rey > 0. (2.8)
0
Then @) ()
£ )
B(z,y) = —2 W
@)= Tty
Proof. Let u = 155 so that t = u(1 —t) or equivalently, ¢ = 3. and

1—t=-L and dt = (1+u) > du.

14+u
0o r—1 y—1 2
B(x,y):/ 4 ! ! du
0 14+u 1+u 1+u

o0 1 Tty
:/ u”! ) du.
0 14+u
o dt
I'(2) ::/ e .
O t
/ e*’\ttzﬁ :/ et Ty dt iI“(z),
0 t 0 A) ot N

1 1 &
— = / ef)‘ttzﬂ.
A? I (Z) 0 t

Taking A = (1 + u) and z = = + y shows

Recalling that

We find

i.e.

B(x,y)=/wuw*171 /Oo e~y @ g,
0 I'(z+y) Jo t

_ 1 /OO ﬂme—ttx-‘,—y /OO @uxe—ut
I (1’ + y) 0 t 0 u

— 1 /OO ﬁxefttm%»yl—1 (‘T)
0

I'(z+vy) t e
_ I'(x) /OO ﬁmeftty _ F(x)F(y)
'(z+y) Jo t I'(z+y)
]
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Fig. 2.1. Plot of t/ (1 —¢).

Definition 2.9. The 8 — distribution is

(1 — )Y dt
ditgy (t) = ( ) .

B (z,y)
Observe that
I(z+1)I(s
/1th w=BlEtly) T
oy = T@rw
0 B (z,y) F(H;; z+y
and
r(z+2)I'(y)
/u%m. (t):B(JH—Q,Z/):W: (@+1)z
o YT By T R T Gyt Dty

I'(z+y)






3

Markov Chains Basics

For this chapter, let S be a finite or at most countable state space and
p: S xS —][0,1] be a Markov kernel, i.e.

Zp(m,y) =1forallies. (3.1)
yeS

A probability on S is a function, 7 : S — [0,1] such that ) _om(z) = 1.
Further, let Ng = NU{0},

Q=% = {w=(s9,81,...):5; € S},
and for each n € Ny, let X,, : {2 — S be given by
X5 (80,81,--.) = Sn.

Definition 3.1. A Markov probabilit@,ﬂ P, on 2 with transition kernel, p,
is probability on §2 such that

P(Xn+1 = £Cn+1|X0 = .’ﬂo,Xl =T1,y... ,Xn = xn)
=P (Xn+1 = 2p1|Xn = 25) = p (T, Tnt1) (3.2)

where {x]}?:ll are allowed to range over S and n over No. The iden-

tity in Fq. is only to be checked on for those x; € S such that
P(XO :Io,Xl :SC17...,Xn :l’n) > 0.

If a Markov probability P is given we will often refer to {X,} ~, as a
Markov chain. The condition in Eq. (3.2]) may also be written as,

! The set £2 is sufficiently big that it is no longer so easy to give a rigorous definition
of a probability on (2. For the purposes of this class, a probability on (2 should
be taken to mean an assignment, P (A) € [0, 1] for all subsets, A C {2, such that
P(@)=0,P(£2)=1, and

P(A)=) P (An)

whenever A = U5 A, with A, N A, = 0 for all m # n. (There are technical
problems with this definition which are addressed in a course on “measure theory.”
We may safely ignore these problems here.)

E[f (Xns1) | Xo. X1, ..o, Xo] = E[f(Xng1) [ Xa] =D p(Xay) f(y)  (3.3)
yeS

for all n € Ny and any bounded function, f :.S — R.

Proposition 3.2. If P is a Markov probability as in Deﬁnition and 7 (x) :=
P(Xo =), then for alln € Ny and {z;} C S,

P(Xo=20,...,Xn=2pn) =7 (x0) 0 (T0,21) ... 0 (Tn_1,%n) - (3.4)

Conversely if = : S — [0,1] is a probability and {X,} _, is a sequence of
random variables satisfying Eq. for alln and {x;} C S, then ({X,.},P,p)
satisfies Definition [3.]]

Proof. ( = )We do the case n = 2 for simplicity. Here we have

P(Xo =120, X1 =21,Xo =22) = P(Xy = 22| Xo =20, X1 =21,) - P(Xog =20, X1 =2

=P (Xo =23 X1 =21,) - P(Xo =20, X1 = 21)
=p(z1,22) - P (X1 = 21|Xo = z0) P (X0 = 20)
= p(z1,22) - p (0, 71) 7 (20) -
(«<=) By assumption we have
P(Xn+1 = ’lj‘n+1|X0 = .IQ,Xl =T1y... ,Xn = Zn)

_ 7(330)]9(5507331)-~-p($n—17$n)p($n7$n+1) o
- _p(xnaxn+1)
7 (20) p (T0,21) - .. P (Tn—1, %)

provided the denominator is not zero. [ |

Fact 3.3 To each probability m on S there is a unique Markov probability, Py,
on 2 such that Py (Xo =x) = 7 (x) for all x € X. Moreover, Py is uniquely

determined by Eq. .
Notation 3.4 If

w =6 { o HE 20, 5)

we will write P, for P.. For a general probability, w, on S we have

P, = Z 7 (z) Py. (3.6)

zeS



12 3 Markov Chains Basics

Notation 3.5 Associated to a transition kernel, p, is a jump graph (or jump
diagram) gotten by taking S as the set of vertices and then for x,y € S, draw
an arrow from x to y if p(x,y) > 0 and label this arrow by the value p (x,y) .

Ezample 3.6. Suppose that S = {1,2,3}, then

123

01071
P=11/201/2]2

100 |3

has the jump graph given by

10_———%.2

Fig. 3.1. A simple jump diagram.

Ezxample 3.7. The transition matrix,

12 3

1/41/21/47] 1
P=1{1/2 0 1/2]2

1/31/31/3| 3

is represented by the jump diagram in Figure |3.2

If g : S x S — [0,1] is another probability kernel we let p-¢q: S x S — [0, 1]
be defined by

(p-q) (z,y) = Zp (x,2)q(z,y). (Matrix Multiplication!) (3.7)
zeS
n - times
We also let p" :=p-p----- p. If m: S — [0,1] is a probability we let (7 - q) :

S — [0,1] be defined by
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QO/iI\ -

| o >0 2 ,._4/‘___&_7\92
3 1 L
3 P 3

3

Vi
¢
L
3 o
©
1L
3

Fig. 3.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

(m-q) () == > _7(2)q(z,y)

eSS

which again is matrix multiplication if we view 7 to be a row vector. It is easy
to check that 7 - ¢ is still a probability and p - ¢ and p™ are Markov kernels.

A key point to keep in mind is that a Markov process is completely specified
by its transition kernel, p : S x S — [0, 1]. For example we have the following
method for computing P, (X, = y).

Lemma 3.8. Keeping the above notation, P, (X, =y) = p" (z,y) and more
generally,

Pr(Xp=y) =Y w(2)p" (z,y) = (-p") ().
zeS

Proof. We have from Eq. (3.4]) that

Pe(Xp=y)= Y, PeXo=w0,X1=21,...,Xn 1 =2n1,Xn=1)

= > S(@)p(@o,m1). P (@2, Tn1)p (Tn-1,y)

0,y Tn—1E€S

= Z p(xvl'l)~~~p(xn72vxn71)p(xn717y) :pn (l',y)
T1,e,Tn—1€S

The formula for P, (X,, = y) easily follows from this formula. [ ]

Definition 3.9. We say that 7 : S — [0,1] is a stationary distribution for p,

if
P.(X,=2z)=mn(z) forallz €S andn € N.
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Since P (X, =x) = (m-p™) (x), we see that 7 is a stationary distribution
for p iff wp™ = p for all n € N iff 7p = p by induction.

Ezxample 3.10. Consider the following example,

123
1/21/2 0 1
P=1|0 1/21/2]2
1/21/2 0 |3

with jump diagram given in Figure We have

2

1/21/2 0 % % %
PP=|0 1/21/2| = 131
1/21/2 0 151
and X
1/21/2 0 % % %
PP=10 1/21/2| = -
1/21/2 0 111
To have a picture what is going on here, imaging that 7 = (w1, 72, ms3)

represents the amount of sand at the sites, 1, 2, and 3 respectively. During
each time step we move the sand on the sites around according to the following
rule. The sand at site j after one step is ), m;p;;, namely site ¢ contributes p;;
fraction its sand, m;, to site j. Everyone does this to arrive at a new distribution.
Hence 7 is an invariant distribution if each m; remains unchanged, i.e. 7 = 7 P.
(Keep in mind the sand is still moving around it is just that the size of the piles
remains unchanged.)
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As a specific example, suppose m = (1,0, 0) so that all of the sand starts at
1. After the first step, the pile at 1 is split into two and 1/2 is sent to 2 to get
m = (1/2,1/2,0) which is the first row of P. At the next step the site 1 keeps
1/2 of its sand (= 1/4) and still receives nothing, while site 2 again receives
the other 1/2 and keeps half of what it had (= 1/4 + 1/4) and site 3 then gets
(1/2-1/2=1/4) so that w3 = [} 3 1| which is the first row of P2 It turns

421
out in this case that this is the invariant distribution. Formally,
1/21/2 0
[131]] 0 1/21/2| =[f351]
1/21/2 0

In general we expect to reach the invariant distribution only in the limit as
n — oo.

Notice that if 7 is any stationary distribution, then 7 P™ = 7 for all n and
in particular,

m=mP?= [7T1 2 7T3}

ENTEENEINTE
—
=
ol
=
[

Ll Lt L
(SIS NI

Hence H % H is the unique stationary distribution for P in this case.

Ezample 8.11 (§3.2. p108 Ehrenfest Urn Model). Let a beaker filled with a par-
ticle fluid mixture be divided into two parts A and B by a semipermeable
membrane. Let X,, = (# of particles in A) which we assume evolves by choos-
ing a particle at random from A U B and then replacing this particle in the
opposite bin from which it was found. Suppose there are N total number of
particles in the flask, then the transition probabilities are given by,

0 ifj¢{i—1i+1}

pij = P(Xnt1 =7 Xn=1)= ]\;L{z.lf J=i—-1
~voif  j=i+ 1L
For example, if N = 2 we have
012
01010
(pij) = [1/201/2 | 1
010 |2
and if N = 3, then we have in matrix form,
01 2 3
0 1 0 0|0
(ps;) = 1/3 0 2/3 0 |1
Pii) =10 2/3 0 1/3]2
0 0 1 0 |3
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14 3 Markov Chains Basics
In the case N = 2,

1
I
[
1

010 104

1/201/2| =1]010

010 1207 ]

0107 o107

1/201/2| =|503%

010 | 1010 ]
and when N = 3,

[0 1.0 071* [Lfo2o
1/302/30 | |0Z02
02/301/3 |[20Z%0

| 0 0 1 0 | 10203

[0 1.0 01> [oZIo2
1/302/30 | |4 020
0 2/3 0 1/3 020 £

2 7

0 0 1 0 20210

0 1 0 071 [0.0075 00 025]
1/3 0 2/3 0 - |0.25 0.0 0.75 0.0
0 2/3 0 1/3| ~ | 0.0 0.75 0.0 025

L0 0 1 0 | 10.25 0.0 0.75 0.0 |

0 1 0 071%° 7[02500075 00]
1/3 0 2/3 0 . | 0.0 0.75 0.0 0.25
0 2/3 0 1/3| ~ |0.25 0.0 0.75 0.0

|0 0 1 0 | | 0.0 0.75 0.0 0.25 |

01 0 071" T0.2500 075 0.0

1/3 0 2/3 0 - | 0.0 0.75 0.0 0.25
0 2/3 0 1/3 0.25 0.0 0.75 0.0
0 0 1 0 0.0 0.75 0.0 0.25

We also have
-11 0 07" [-11 0 0
L1209 1 -12 0
_n\fr— 1| 3 3 — 3
(PI)—0§—1§ |0 211
00 1 -1 00 % -1

and
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1

Nul((P—I)“): g

1

Hence if we take, m = % [1 33 1] then
0O 1 0 O
1 1/3 0 2/3 0 | 1 B
wP—§[1331] 0 2/3 0 1/3 _§[1331]_w

0O 0 1 O

is the stationary distribution. Notice that

0.0 0.75 0.0 0.25

1 (P% 4 P) =~ 11025 0.0 075 00 | 1
2

0.25 0.0 0.75 0.0
0.0 0.75 0.0 0.25
21 0.0 0.75 0.0 0.25 2 1025 0.0 0.75 0.0

0.25 0.0 0.75 0.0 0.0 0.75 0.0 0.25

0.125 0.375 0.375 0.125 m
0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125

SR

3.1 First Step Analysis

We will need the following observation in the proof of Lemma below. If T
is a Ng U {oco} — valued random variable, then

E,T =E, i lner = i Eolper = i P, (T >n). (3.8)
n=0 n=0

n=0

Now suppose that S is a state space and assume that S is divided into two
disjoint events, A and B. Let

T:=inf{n>0:X, € B}

be the hitting time of B. Let Q := (p(2,9)), yca and R := (p(2,Y)),ca. yeB
so that the transition “matrix,” P = ( (x,yﬁ ¢ may be written in the
following block diagonal form;

)m,ye

AB
21 =[5
pP= = .
* ok * % | B
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Remark 3.12. To construct the matrix @ and R from P, let P’ be P with the
rows corresponding to B omitted. To form @ from P’, remove the columns
of P’ corresponding to B and to form R from P’, remove the columns of P’
corresponding to A.

Ezample 8.13. Suppose that S = {1,2,...,7}, A ={1,2,4,5,6}, B = {3,7},
and
1 2 3 4 5 6 7

[0 1/2 0120 0 011
1/3 0 1/3 0 1/3 0 0 |2
0 1/20 0 0 1/2 0 |3
P=1{1/3 0 0 0 1/3 0 1/3]|4.
01/3 0 1/3 0 1/3 0 |5
0 0120 1/2 0 0 |6
L0 0 0 1 0 0 0]7
Following the algorithm in Remark leads to:
1 2 3 45 6 7
[0 1/2 0 1/20 0 01]1
1/3 0 1/3 0 1/3 0 0 |2
P=|1/30 0 0 1/3 0 1/3]4,
0 1/3 0 1/3 0 1/3 0 |5
| 0 0 1/201/20 0|6
1 2 4 5 6 3 7
[0 1/21/2 0 0 ]1 0 071
/3 0 0 1/3 0 |2 1/3 0 |2
Q=11/30 0 1/3 0 |4, andR=| 0 1/3|4
0 1/31/3 0 1/3|5 0 0|5
| 0 0 0 1/2 0 |6 1/2 0 |6
Lemma 3.14. Keeping the notation above we have
EZT:ZZQH (z,y) forallxz € A, (3.9)

n=0ycA
where E, T = oo is possible.
Proof. By definition of T' we have for x € A and n € Ny that,
P.(T>n)=P,(Xq,...,X,, € A)

= Z p(x,l‘l)p(l‘l,iEQ)--~p(xn—lazn)

1,0, €A

=> Q" (z,y). (3.10)

yeA
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3.1 First Step Analysis 15
Therefore Eq. (3.9) now follows from Eqgs. (3.8) and (3.10]). ]

Proposition 3.15. Let us continue the notation above and let us further as-
sume that A is a finite set and

P, (T < ) =P (X, € B for somen) >0V z € A. (3.11)

Under these assumptions, E,T < oo for all x € A and in particular
P, (T < 00) =1 for all x € A. In this case we may may write Eq. (@ as

(EIT)xeA = (I - Q)il 1 (3'12)
where 1 (z) =1 for all x € A.

Proof. Since {T'>n} | {T =00} and P, (T =00) < 1 for all z € A it
follows that there exists an m € N and 0 < o < 1 such that P, (T'>m) < «
for all z € A. Since P, (T'>m) =3 4, Q™ (z,y) it follows that the row sums
of @™ are all less than o < 1. Further observe that

DM@y = > QM@ 2)Q" (zy) =D Q" (z,2) Y Q" (zy)

yeA y,zEA z€EA yeA

< ZQm(x,z)a§a2.

z€EA

Similarly one may show that 3 _, QF™ (x,y) < oF for all k € N. Therefore

from Eq. (3.10) with m replaced by km, we learn that P, (T > km) < oF for
all £ € N which then implies that

ZQ"my (T>n)<atﬂ for all n € N,
yeA

where [t| =m € Ny if m <t <m+1, i.e. |t] is the nearest integer to ¢ which
is smaller than t. Therefore, we have

E,T = ZZQ"wy gz

o0
l 1
. E a =m——- < Q.
1—«
n=0ycA =0

So it only remains to prove Eq. (3.12)). From the above computations we see
that Y Q™ is convergent. Moreover,

T-Q> @ =3 - @=r
n=0 n=0 n=0

and therefore (I — Q) is invertible and $°°° Q" = (I — Q)" . Finally,
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16 3 Markov Chains Basics

I-Q) 1= Q1= > Q"@y) | =(ET),eq
n=0

n=0ye4 z€A

as claimed. [ ]

Remark 3.16. Let {X,,},° , denote the fair random walk on {0,1,2,...} with 0
being an absorbing state. Using the first homework problems, see Remark
we learn that E;T" = oo for all ¢ > 0. This shows that we can not in general
drop the assumption that A (A = {1,2,...} in this example) is a finite set the
statement of Proposition [3.15

For our next result we will make use of the following important version of
the Markov property.

Theorem 3.17 (Markov Property II). If f (zo, 1, ...) is a bounded random
function of {xn},— o C S and g (zo,...,x,) is a function on S™*1, then

Er [f (Xn, Xng1s ) 9 (Xo, o, Xo)] = Er [(Ex,, [f (Xo, X1, )]) 9 (Xo, - -, Xi))]

Eﬂ- [f (anXn+1; .. ) ‘XO =20, --- 7Xn = ,CCn] == ]Ewnf(Xo,Xl, .. ) (314)

for all xo,...,x, € S such that Py (Xo = zo,..., X = @) > 0. These results
also hold when f and g are non-negative functions.

Proof. In proving this theorem, we will have to take for granted that it
suffices to assume that f is a function of only finitely many {x, }. In practice,
any function, f, of the {z,}, -, that we are going to deal with in this course
may be written as a limit of functions depending on only finitely many of
the {x,}. With this as justification, we now suppose that f is a function of
(zo,-..,2m) for some m € N. To simplify notation, let F' = f (X, X1,...Xm),
0. F = f(Xn, Xnt1,- - Xntm), and G = g (Xo, ..., Xp).

We then have,

E, [0.F - G
= Z 7 (20) P (70, 21) -+ P (Tntm—1, Tmin) [ (Tns Tyt - Tnym) 9 (Tos - - -
{wJ}m+nCS
and
Z P(Tns Tng1) ... p (xn-i-m—la mm-&-n) f (xm Tn+ls--- mn-&-m) g (an ey Tp)
{lj};n:tﬁrlcs
p (l’n, anrl) ...p ($n+m717 mern) .
g( 05 9 ”L) 2 |: f(xn,mn+17.mn+m)
{Ij};n:nllcs
=g(xo,...,2n)Es, [ (Xoy.. ., Xm) =g (x0,...,2n)Ey, F.
Page: 16 job: 180Notes

Combining the last two equations implies,
E, [0nF - G]
= Z T (z0) p(zo, 1) ... p(Tn—1,2pn) g (20, ..., Tn)Ey F
{z;}jLCS

=E,[g(Xo,...,Xn) Ex, F]

as was to be proved.
Taking g (Yo, .-, Yn) = ag.yo - - - Oz . 15 Eq. (3.13]) implies that

Eﬂ— [f(Xn,Xn+1,...) : XO = $07...,Xn = l'n]
:}E%LF' Pﬂ- (XO = Zg, - ..,Xn = l‘n)
which implies Eq. (3.14). The proofs of the remaining equivalence of the state-
ments in the Theorem are left to the reader. [
Here is a useful alternate statement of the Markov property. In words it

states, if you know X,, = x then the remainder of the chain X, X;,41, Xn42, ...
forgets how it got to x and behave exactly like the original chain started at z.

Corollary 3.18. Letn € Ny, x € S and 7 be any probability on S. Then relative
to Pr (+|Xn =), {Xntrtyso is independent of {Xo, ..., Xn} and {Xnik}ys
has the same distribution as {X}7—, under Py.

Proof. According to Eq. (3.13),

Erlg (X0, Xn) f (X Xns1,...) : X =
E X,) 0, (X ) (X, Xng1, )]
Ew[g(Xm ,Xn) 6 (Xn)Ex, [f (X0, X1,...)]]

=Er [9(Xo,..., Xn) I(Xn) 2 f (X0, X1,..)]]
Er[9(Xo,. .., Xn) : Xp = 2] By [f (X0, X1,...)].

Dividing this equation by P (X,, = x) shows,

Ex [g (XOa~~~3Xn)f(Xn7Xn+17"') |Xn = .’K]
=Er[g(Xo,...,Xn) | Xy = 2] E; [f (X0, X1,...)]. (3.15)

Taking g = 1 in this equation then shows,
E:[f (Xn, Xnt1,.- )| Xn =2] =E, [f (X0, X1,...)]. (3.16)

This shows that {X,ix};>, under Pr(-[X,, =) has the same distribution

as {Xy},—, under P, and, in combination, Eqs. (3.15) and (3.16) shows

{Xntk}pso and {Xo,..., X, } are conditionally independent on {X,, =z}. m
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Theorem 3.19. Let us continue the notation and assumption in Proposition
and further let g : A — R and h : B — R be two functions. Let g :=
(9(2))zea and h:= (h(y)),cp to be thought of as column vectors. Then for all
T €A,

E, Z g(Xn)] = '™ component of (I — Q) 'g (3.17)
n<T
and for allz € A and y € B,
Pe(Xr=y) = [(I-Q)'R], . (3.18)
Taking g =1 (where 1 (x) =1 for all x € A) in Eq. shows that
E,T = the ' component of (I — Q)1 (3.19)

in agreement with Eq. . If we take g (z") = §, (2') for some x € A, then

E. [Z 9(X S 6,(x

n<T n<T

= E,, [number of visits to y before T

and by Fq. it follows that
E,. [number of visits to y before hitting B] = (I — Q)I_yl . (3.20)
Proof. Let

0<n<T

for z € A where G := Zogn<T9(Xn)' Then

=> playE

yeS

u(z) = Eq [E, [G]X0]] 2 (G X1 =y].

For y € A, by the Markov propertyﬂ in Theorem we have,

2 In applying Theorem we note that when Xo = z, T (Xo,X1,...) > 1,
T(X1,X2,...) =T (Xo,X1,...) — 1, and hence

01 Z 9(Xn)
0<n<T(X0p,X1,...)

= Z 9(Xny1) = Z 9(Xn+1)

0<n<T(X1,X2...) 0<n<T (X0, X1,...)—1

- Y X=X g(X)= Y g(x)

1<n+1<T(X0,X1,...) 1<n<T(X0,X1,...) 1<n<T

Page: 17 job: 180Notes

3.1 First Step Analysis 17

E,[GIXi=yl=g(2) +E; | Y g(Xa)|Xi=y

=g@) +Ey | Y 9(Xn)| =g(@)+uy)
0<n<T

and for y € B, E, [G| X1 = y] = g (z) . Therefore

)= paylg@ +u@]+ Y pl@y g
yEA yEB

x)—l—Zp(x,y)u

yeEA

In matrix language this becomes, u = Qu+g and hence we have u = (I—-Q)~*
which is precisely Eq. .

To prove Eq. (3.18), let w (z) := E, [k (X7)]. Since X is the location of
where {X, } 7, first hits B if we are given X € A, then X7 is also the location
where the sequence, {X, } _, first hits B and therefore X7 0 6; = X7 when
Xo € A. Therefore, working as before and noting now that,

=Y E (W(X7)| X1 = y)p (,y) + Y Eal

h(X7)| X1 =y)p(z,y)

yEA yEB

= Zp(x,y)E h(XT> © Hl‘Xl = y) + Zp(x’y) Ew<h<XT>|X1 = y)
yeA yeB

=Y p(@y E,(h(X7))+ > p(2,9) h(y)
yeEA yeEB

=> p@y)wy)+ > p,y)h

yeA yeB

= (Qw + Rh),.
Writing this in matrix form gives, w =Qw + Rh which we solve for w to find
that w = (I — Q)" 'Rh and therefore,
(B [A(X7)]),eq = 2 — component of (I —Q)™'R (h(y)),ep
Given yg € B, the taking h (y) = d,,,, in the above formula implies that
P, (X7 =1yo) = 2™ — component of (I —Q)~!
—[r-rH,,

R (5y07y)yeB
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18 3 Markov Chains Basics

Remark 3.20. Here is a story to go along with the above scenario. Suppose
that g (z) is the toll you have to pay for visiting a site x € A while h (y)
is the amount of prize money you get when landing on a point in B. Then

E. [Zogn <T g(Xn)} is the expected toll you have to pay before your first exit
from A while E, [h (X7)] is your expected winnings upon exiting B.

The next two results follow the development in Theorem 1.3.2 of Norris [3].

Theorem 3.21 (Hitting Probabilities). Suppose that A C S as above and
now let H := inf {n : X,, € A} be the first time that {X,} —, hits A with the
convention that H = oo if X, does not hit A. Let h; := P, (H < o0) be the
hitting probability of A given Xog = i, v; = ngAp(i,j) for alli ¢ A, and
{Qij =D (i,j)}i’ng . Then

hi=P;(H < 00) = Lica+ Liga y_[Q"]; (3.21)
n=0

and h; may also be characterized as the minimal non-negative solution to the
following linear equations;

hi=1i4fie€ A and
hi=Y_p@i,5)hj = > Qi,j)hj+vi for alli € A°. (3.22)

JjES JEA®

Proof. Let us first observe that P, (H = 0) =
any n € N

P, (Xo € A) = 1;c4. Also for

{H:n}:{X()¢A""7Xn71¢A7Xn€A}

and therefore,

Pi(H=n)=1Liga > > pli,j1)p(r.j2) P Gn-2:in-1) P (Jn-1,Jn)
J1yeesdn— 1€AL.7n€A

= Liga [Q"10],.

Since {H < oo} = U2 {H = n}, it follows that

o
Pi(H <o00)=lica+ Y _ liga [Q" 0],

n=1

which is the same as Eq. (3.21)). The remainder of the proof now follows from
Lemma below. Nevertheless, it is instructive to use the Markov property
to show that Eq. (3.22) is valid. For this we have by the first step analysis; if
1 ¢ A, then

Page: 18 job: 180Notes

h; = P;(H < c0) szy (H < 00| X1 =)
JES
=Y p(,5) P (H<o00)=> pli,j)hy
JjES jeS
as claimed. u

Lemma 3.22. Suppose that QQ;; and v; be as above. Then h = fozo Q™v is
the unique mon-negative minimal solution to the linear equations, x = Qx + v.

Proof. Let us start with a heuristic proof that h satisfies, h = Qh + v.
Formally we have 7 Q™ = (1 — Q) ' sothat h = (1 — Q)" v and therefore,
(1-Q)h = v, ie. h = Qh + v. The problem with this proof is that (1 — Q)
may not be invertible.

Rigorous proof. We simply have

thh:iQ"vfiQ"v:v.
n=0 n=1

Now suppose that x = v + Qx with x; > 0 for all 7. Iterating this equation
shows,

r=v+Q(Qr+v)=v+Qu+ Q%
r=v+Qu+Q*(Qr+v)=v+Qu+Q*+ Q%

x—ZQ"v+QN+1x>ZQ"

n=0

where for the last inequality we have used [QN 'HasL, >0 for all N and i € A°.
Letting N — oo in this last equation then shows that

N 00
r> lim Y Q=) Q"v=h
n=0 n=0

so that h; < z; for all 1. [ |

3.2 First Step Analysis Examples

To simulate chains with at most 4 states, you might want to go to:

http://people.hofstra.edu/Stefan_ Waner/markov/markov.html
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3.2 First Step Analysis Examples 19

Ezxample 3.23. Consider the Markov chain determined by

1 2 3 4 State Transition Matrix State Transition Diagram
0 1/31/31/3]| 1 TO
()]
p_ |3/41/81/8 0 |2 1 2 3 4 h @
0 0 1 03 - np [3 B [ N
0 0 0 1 |4 R 2[5 /e /e | @
0 N
Notice that 3 and 4 are absorbing states. Let h; = P; (X, hits 3) fori = 1,2, 3,4. ME I | | |
Clearly hs = 1 while hy = 0 and by the first step analysis we have [+ | I | \
hl _ th n lhg n 1h4 _ 1h2 4 1 Iterations: [1000 Start State:l Speed:[10 (1-10). .
. _gh +?h +?h _gh +‘I)h +1 Runl EraseEvery'mingl
2T TR TR TR
i.e. Results
1 1
hy = §h2 + § State 1 Hits | State 2 Hits | State 3 Hits | State 4 Hits
3 1 1 i [205 [ fi5s
h2 = Ehl + §h2 + é State 1 Prob. |State 2 Prob. |State 3 Prob. |State 4 Prob.
hich b I [o047053 [p2048 [o-17083 [p15385
which have solutions,
. B B 8 Fig. 3.3. In this run, rather than making sites 3 and 4 absorbing, we have made
Py (Xn hits 3) = hy = 15 0.533 33 them transition back to 1. I claim now to get an approximate value for P; (X, hits 3)
3 we should compute: (State 3 Hits)/(State 3 Hits + State 4 Hits). In this example we

Py (X, hits 3) = hy = 5 will get 171/(171 + 154) = 0.526 15 which is a little lower than the predicted value of

.. . . . . . 0.533. You can try your own runs of this simulator.
Similarly if we let h; = P; (X,, hits 4) instead, from the above equations with

hg =0 and h4 = 1, we find

hy = %hQ + é 3.2.1 A rat in a maze example Problem 5 on p.131.
_3 1 Here is the maze
he = Zhl + §h2 1 2 3(food)
which has solutions, 4 5 6
. 7(Shock)
Py (X, hits 4) = Iy = 15 and in which the rat moves from nearest neighbor locations probability being 1/D
) 2 where D is the number of doors in the room that the rat is currently in. The
Py (X, hits 4) = hy = 5 transition matrix is therefore,

Of course we did not really need to compute these, since

Py (X, hits 3) + P, (X, hits 4) = 1 and
Py (X,, hits 3) + Py (X,, hits 4) = 1.

The output of one simulation is in Figure [3.3] below.
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20 3 Markov Chains Basics

1 -2-20 o0
1 1
'\ 5 2 ~ 3 3L 050
I-Q=|-3 0 1 —3 0 |,
TR EERE
0 0 O —% 1
N —=5 7 6 12456
& 155117
4
! LT IF
7 I-Q) = gzzlg 4,
2112215
illli 6
Fig. 3.4. Rat in a maze. 3 2273
1 5511 1] 177 1
823,1 it
1 1 2
-1 844,13 iy
1 2 3 45 6 7 (]_Q)1:§ZZ1§1:?4,
[0 120 1/20 0 011 §112§ 1 215
/30 1/3 0 1/3 0 0 |2 s 3313]|1] $16
0120 0 0 1/2 0 |3
and
P=|130 0 0 1/3 0 1/3|4.
0 1/3 0 1/3 0 1/3 0 |5 1@1%;1% [0 0
0 0 1/2 0 1/2 0 0 |6 §§§1§ 1/3 0
00 0 1 0 0 0]7 I-Q 'R=|231111] 0 1/3
] ] S1123 0 0
and the corresponding jump diagram is given in Figure [3.4] 11 12 1/2 0
Given we want to stop when the rat is either shocked or gets the food, we -3 2280t
first delete rows 3 and 7 from P and form ) and R from this matrix by taking ) 37
columns 1,2,4,5,6 and 3,7 respectively as in Remark This gives, @ % 1
s 12
1 2 45 6 S
0 1/21/2 0 0 |1 ]%2%5
1/3 0 0 1/3 0 |2 | 5 516
Q=11/30 0 1/3 0 |4
0 1/31/3 0 1/3|5 Hence we conclude, for example, that E47 = 4 and Py (X7 = 3) = 5/12 and
0 0 01/2 0 |6 the expected number of visits to site 5 starting at 4 is 1.
d Let us now also work out the hitting probabilities,
an
37 h; = P; (X, hits 3 = food before 7 = shock),
0 0|1
1/3 0 |2 in this example. To do this we make both 3 and 7 absorbing states so the jump
R=1]0 1/3|4 diagram is in Figure [3.2.1] Therefore,
0 0 |5
1/2 0 |6
Therefore

)
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1
h6:§(1+h5)

1
h5:§(h2+h4+h6)

1
h4:§h1

1
h2:§(1+h1+h5>

1

The solutions to these equations are,

4 2 2 5 7

—  ho==, hy=—, hs ==, hg = —.
9 s 102 3 ; 14 9 s 15 9 y 16 9
Similarly if h; = P; (X,, hits 7 before 3) we have hy =1, h3 = 0 and

hy =

1

h6:§h5

1
h5:§(h2+h4+h6)

1
h4=*(h1+1)

2

1
hgzg(h1+h5)

1
hlzi(h2+h4)

whose solutions are

hy =

Page: 21 job: 180Notes

(3.23)

(3.24)

3.2 First Step Analysis Examples 21

Notice that the sum of the hitting probabilities in Egs. (3.23]) and (3.24) add
up to 1 as they should.

3.2.2 A modification of the previous maze

Here is the modified maze,

1 2 3(food)
4 )
6(Shock)

The transition matrix with 3 and 6 made into absorbing stateﬂ is:

1 2 3 4 5 6

T 0 1/2 0 1/20 0171
1/3 0 1/3 0 1/3 0 |2
p_ 0O 0 1 0 0 0 (3
“ 1130 0 0 1/31/3]4
01/201/20 0 |5
00 0 0 0 1 ]6
1 2 4 5 36
[0 1/21/2 0 |1 0 071
o_ Y30 0l b 130 2
=113 0 0 1/3|4 =10 1/3[4
0 1/21/2 0 |5 0 05
1 245
SHHF
-1 _
[1552]5
36
11
117
Lo BT
(- 'R=[11|2,
? 3
3215

3 Tt is not necessary to make states 3 and 6 absorbing. In fact it does matter at all
what the transition probabilites are for the chain for leaving either of the states 3
or 6 since we are going to stop when we hit these states. This is reflected in the
fact that the first thing we will do in the first step analysis is to delete rows 3 and
6 from P. Making 3 and 6 absorbing simply saves a little ink.
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(L—Q)"!
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6

So for example, Py(X7r = 3(food)) = 1/3, E4(Number of visits to 1) = 1,
Es(Number of visits to 2) = 3/2 and E1T = EsT = 6 and E;T = E,T = 5.

ot



4

Long Run Behavior of Discrete Markov Chains

For this chapter, X,, will be a Markov chain with a finite or countable state
space, S. To each state i € S, let

R;:=min{n >1: X,, =i} (4.1)

be the first passage time of the chain to site i, and

M; = Z Ix,=i (4.2)

n>1
be number of visits of {X,,},, to site i.

Definition 4.1. A state j is accessible from i (written ¢ — j) iff P;(R; <
o0) > 0 and i <« j (i communicates with j) iff i — j and j — i. No-
tice that i — j iff there is a path, i = x9,%1,...,Tn = Jj € S such that
p(zo,z1)p (21, 22) ... D (Tp_1,Ts) > 0.

Definition 4.2. For each i € S, let C; :=={j € S :i < j} be the communi-
cating class of i. The state space, S, is partitioned into a disjoint union of its
communicating classes.

Definition 4.3. A communicating class C C S is closed provided the proba-
bility that X, leaves C' given that it started in C is zero. In other words P;; = 0
for alli e C and j ¢ C. (Notice that if C is closed, then X, restricted to C is
a Markov chain.)

Definition 4.4. A state i € S is:

1. transient if P;(R; < 00) < 1,
2. recurrent if P;(R; < c0) = 1,
a) positive recurrent if 1/ (E;R;) > 0, i.e. E;R; < o0,
b) null recurrent if it is recurrent (P;(R; < 00) =1) and 1/ (E;R;) =0,
i.e. ER; = oo.

We let S¢, Sy, Spr, and Sy, be the transient, recurrent, positive recurrent,
and null recurrent states respectively.

The next two sections give the main results of this chapter along with some
illustrative examples. The remaining sections are devoted to some of the more
technical aspects of the proofs.

4.1 The Main Results

Proposition 4.5 (Class properties). The notions of being recurrent, positive
recurrent, null recurrent, or transient are all class properties. Namely if C C S
is a communicating class then either all i € C' are recurrent, positive recurrent,
null recurrent, or transient. Hence it makes sense to refer to C' as being either
recurrent, positive recurrent, null recurrent, or transient.

Proof. See Proposition [£.13] for the assertion that being recurrent or tran-
sient is a class property. For the fact that positive and null recurrence is a class
property, see Proposition below. [

Lemma 4.6. Let C C S be a communicating class. Then
C not closed = C is transient
or equivalently put,
C is recurrent = C' is closed.

Proof. If C is not closed and ¢ € C, there is a j ¢ C such that i — j, i.e.
there is a path i = zo, 21, ..., 2, = j with all of the {x; };.L:O being distinct such
that

Pi (XQ = i,Xl =T1,y... 7Xn—1 = .1‘7,_17X7, =Ty = ]) > O

Since j ¢ C' we must have j - C and therefore on the event,
A= {XO :i,Xl :$17...,Xn_1 :llin_l,Xn =Tn :j},

X, ¢ C for all m > n and therefore R; = oo on the event A which has positive
probability. [

Proposition 4.7. Suppose that C C S is a finite communicating class and
T=inf{n>0:X, ¢ C} be the first exit time from C. If C is not closed, then
not only is C transient but E;T < oo for alli € C. We also have the equivalence
of the following statements:

1. C is closed.
2. C 1is positive recurrent.
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3. C is recurrent.

In particular if # (S) < oo, then the recurrent (= positively recurrent) states
are precisely the union of the closed communication classes and the transient
states are what is left over.

Proof. These results follow fairly easily from Proposition Also see
Corollary [£:20] for another proof. [

Remark 4.8. Let {X,,}, denote the fair random walk on {0,1,2,...} with 0
being an absorbing state. The communication classes are {0} and {1,2,...}
with the latter class not being closed and hence transient. Using Remark [0.1] it
follows that E;T" = oo for all i > 0 which shows we can not drop the assumption
that # (C) < oo in the first statement in Proposition Similarly, using the
fair random walk example, we see that it is not possible to drop the condition
that # (C) < oo for the equivalence statements as well.

Ezxample 4.9. Let P be the Markov matrix with jump diagram given in Figure
In this case the communication classes are {{1,2},{3,4},{5}}. The latter
two are closed and hence positively recurrent while {1, 2} is transient.

- 5 05
L

]
VI 79 ™\ L

2 2
%

3

Warning: if C C S is closed and # (C) = oo, C could be recurrent or it
could be transient. Transient in this case means the walk goes off to “infinity.”
The following proposition is a consequence of the strong Markov property in

Corollary
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Proposition 4.10. If j € S, k € N, and v : S — [0,1] is any probability on S,
then
P,(M; >k)=P,(R; <o) P; (R; <o) ", (4.3)

Proof. Intuitively, M; > k happens iff the chain first visits j with proba-
bility P, (R; < oo) and then revisits j again k£ — 1 times which the probability
of each revisit being P; (R; < co0). Since Markov chains are forgetful, these
probabilities are all independent and hence we arrive at Eq. . See Propo-
sition below for the formal proof based on the strong Markov property in

Corollary [
Corollary 4.11. If j € S and v : S — [0,1] is any probability on S, then

P,(Mj=00)=P,(X,=7jto)=P,(Rj <0)ljes,, (4.4)
Pj (Mj = OO) = Pj (Xn :] ZO) = leSra (45)
= ) P, (R; < o0)
E,M; = v(i) P = J , (4.6)
J nz::l zEZS 1-— Pj (R] < OO)
and
= P;(R; < 0)
E;M;: = Pl = J 4.
7 ; 9T TZ P (R, < o0) (4.7)

where the following conventions are used in interpreting the right hand side of

Egs. (4.6) and ([4.7): a/0 := oo if a > 0 while 0/0 := 0.
Proof. Since
{M; >k} | {M; =00} ={X,, =jio. n}ask?T oo,
it follows, using Eq. (4.3), that
P, (Xp =jio.n)= lim P,(M; > k) = P,(R; < o) lim Pj(R; < o)kt

(4.8)
which gives Eq. . Equation follows by taking v = ¢; in Eq. and
recalling that j € S, iff P; (R; < oo) = 1. Similarly Eq. is a special case
of Eq. with v = §;. We now prove Eq. .

Using the definition of M; in Eq. (4.2),

E,M; =B, Y 1x,—j=> E,lx, -

n>1 n>1
o0
=2 PEa=0)=2 > v()Fj
n>1 n=1j€S
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which is the first equality in Eq. (4.6]). For the second, observe that
oo (oo} oo
S PM; > k) =) Eydazk =E, Y le<n, =E M.
k=1 k=1 k=1

On the other hand using Eq. (4.3]) we have

oo

S _ P,(R; < 00)
P,(M; > k) P,(R; < o0)Pj(R; < co)k™1 = 20 = =/
kzzl /; ’ Y 1= Pj(R; < o0)
provided a/0 := oo if @ > 0 while 0/0 := 0. |

It is worth remarking that if j € Sy, then Eq. (4.6) asserts that
E, M; = (the expected number of visits to j) < oo

which then implies that M, is a finite valued random variable almost surely.
Hence, for almost all sample paths, X,, can visit j at most a finite number of
times.

Theorem 4.12 (Recurrent States). Let j € S. Then the following are equiv-
alent;

1. j is recurrent, i.e. P; (R; < o00) =1,
2. Pj (X, =ji.0.n)=1,
3

Proof. The equivalence of the first two items follows directly from Eq. (4.5)
and the equivalent of items 1. and 3. follows directly from Eq. (4.7)) with ¢ = j.
|

Proposition 4.13. If i «—— j, then i is recurrent iff j is recurrent, i.e. the
property of being recurrent or transient is a class property.

Proof. Since ¢ and j communicate, there exists o and § in N such that
Pg >0 and P} > 0. Therefore

n+a+pG o pn pb
ZPM‘ EZPUPJJPN
n>1 n>1

which shows that > -, P/, = oo = }_ o, Pj} = ooc. Srmllarly Yo Pl =
00 =) 5 PJ; = 0. Thus using item 3. of Theorem it follows that iis
recurrent iff j is recurrent. ]
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Corollary 4.14. If C' C S, is a recurrent communication class, then
Pi(Rj <o0)=1 foralli,jeC (4.9)
and in fact
Pi(Njec{Xn=j i.0.n})=1 forallie C. (4.10)

More generally if v : S — [0,1] is a probability such that v (i) = 0 for i ¢ C,
then
P,(Njec{X,, =j i.0.n})=1 foralliecC. (4.11)

In words, if we start in C' then every state in C' is visited an infinite number of
times. (Notice that P; (R; < co) = Pi({X,},,~, hits j).)

Proof. Let i,j € C' C S, and choose m € N such that Pj > 0. Since
P;j(M; = 00) =1 and
{X,, =i and X,, = j for some n > m}

= Z {Xm:i7Xm+l #ja"anfl #]aXn:]}7

n>m
we have
P;;-L = Pj(Xm = Z) = Pj(Mj = OO7Xm = ’L)
< Pj(X,, =4 and X,, = j for some n > m)

— Z Pi(Xon =0, Xpng1 # Gy X1 # J, Xn = )

n>m
- Z PrP(X1# j, s Xnome1 # J, Xnem = j)
n>m
=D PPy =n—m)=Pjy Pi(R; = k)
n>m k=1
= Pji bi(R; < o0). (4.12)

Because P} > 0, we may conclude from Eq. that 1 < P;(R; < 00), i.e.
that P (R < oo) 1 and Eq. ( is proved Feedlng this result back into
Eq. with v = §; shows PZ(M =o0) =1forall 4,j € C and therefore

P(ﬁjec {M;=00}) = 1forallice C’ which is Eq. - Equation
follows by multiplying Eq. - 4.10)) by v (i) and then summing on i € C. ]

Theorem 4.15 (Transient States). Let j € S. Then the following are equiv-
alent;

1. j is transient, i.e. P; (R; < 00) < 1,
2. Pj (X, =] to. n)—O and
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26 4 Long Run Behavior of Discrete Markov Chains
oo
3. Eij = Zn:l PJZ < 0.

Moreover, if i € S and j € S, then

— limy, oo P} =0
Y P =EM; <oco = {R-(anji.o. n) = 0. (4.13)

and more generally if v: S — [0,1] is any probability, then

oo
lim,,— 00 Py (Xn Jj)=0
Z =E,M; <0 = {PV(X o m) =0, (4.14)
Proof. The equivalence of the first two items follows directly from Eq. (4.5)
and the equivalent of items 1. and 3. follows directly from Eq. (4.7)) with i = j.
The fact that E;M; < oo and E, M; < oo for all j € S; are consequences of Eqgs.

and ( respectlvely The remaining implication in Egs. and (4.6 .

follow from the first Borel Cantelli Lemma [1.5] and the fact that — term in
a convergent series tends to zero as n — 0. ]

Corollary 4.16. 1) If the state space, S, is a finite set, then S, # (. 2) Any
finite and closed communicating class C C S is a recurrent.

Proof. First suppose that #(S) < oo and for the sake of contradic-
tion, suppose S, = 0 or equivalently that S = S;. Then by Theorem [4.15]

limy, oo Pj; =0 for all 4,7 € S. On the other hand, des =1 so that
1= lim > P}=> lim Pi=>% 0=0,
nHOOjES e n—oo e

which is a contradiction. (Notice that if S were infinite, we could not interchange
the limit and the above sum without some extra conditions.)

To prove the first statement, restrict X, to C to get a Markov chain on a
finite state space C. By what we have just proved, there is a recurrent state
i € C. Since recurrence is a class property, it follows that all states in C' are
recurrent. [ |

Definition 4.17. A function, = : S — [0,1] is a sub-probability if
Yies™(J) < 1. We call 37, g7 (j) the mass of m. So a probability is a sub-
probability with mass one.

Definition 4.18. We say a sub-probability, = : S — [0,1], is invariant if
P =m, ie.

ZT{' i)pij =m(j) foralljeS. (4.15)

€S

An invariant probability, 7 : S — [0,1], is called an invariant distribution.
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Theorem 4.19. Suppose that P = (p;;) is an irreducible Markov kernel and
T = ﬁ for all j € S. Then:

1. For all i,j € S, we have

N
.1
ngnooﬁz_%un:j:nj P, — a.s. (4.16)
and
1 N
i, 2 P (Ko =) ZNIE%ONZ =m. (417)

2. If u: S —1[0,1] is an invariant sub-probability, then either y (i) > 0 for all
i or (i) =0 for all .

3. P has at most one invariant distribution.

4. P has a (necessarily unique) invariant distribution, p: S — [0,1], iff P is
positive recurrent in which case (i) = 7 (1) = ﬁ >0 forallieS.

(These results may of course be applied to the restriction of a general non-
irreducible Markov chain to any one of its communication classes.)

Proof. These results are the contents of Theorem and Propositions
[£.45] and [£.46] below. m

Using this result we can give another proof of Proposition [£.7}

Corollary 4.20. If C' is a closed finite communicating class then C' is positive
recurrent. (Recall that we already know that C is recurrent by Corollary )

Proof. For 7,5 € C, let

1 1
i i 5 R0 = gl
as in Theorem [4:21] Since C is closed,
jec
land therefore,
1 N
ST S SO DAL NS 3 Syte
jecC jeCn=1 n=1j€C

Therefore m; > 0 for some j € C and hence all j € C' by Theorem with S
replaced by C. Hence we have E;R; < 00, i.e. every j € C' is a positive recurrent
state. -
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Theorem 4.21 (General Convergence Theorem). Let v : S — [0,1] be
any probability, i € S, C be the communicating class containing i,

{X,, hits C'} :={X,, € C for some n},

and P, (X, hits C
M= (V) = ”(]E"_—RZ_S), (4.18)
where 1/00 := 0. Then:
1. P, —a.s.,
al 1
ngnooﬁ Z Xp=1i — E R {X" hits C'} (419)
2.
1 & 1<
NliinooNZZV(j)Pﬂ - JJEHOONZP” (X, =1i) =m, (4.20)
n=1j €S n=1

3. 7 is an invariant sub-probability for P, and
4. the mass of m is

> o= > P, (X, hits C) < 1. (4.21)
€S C': pos. recurrent

Proof. If ¢ € S is a transient site, then according to Eq. (4.14),
P, (M; < 00) =1 and therefore limy_, oo % EnNzl 1x,—; = 0 which agrees with

Eq. (4.19) for i € S;.

So now suppose that ¢ € S, and let C' be the communication class containing
i and
T=inf{n>0:X, €C}
be the first time when X, enters C. It is clear that {R; < oo} C {T < o0}.

On the other hand, for any j € C, it follows by the strong Markov property

(Corollary {4.41)) and Corollary that, conditioned on {T" < oo, X7 = j},
{X,} hits i i.0. and hence P (R; < oo|T < 00, X1 = j) = 1. Equivalently put,

P(Ri< o0, T<oo,Xpr=35)=P(T <o00,Xpr=4j) forall j€C.
Summing this last equation on j € C' then shows
P(R;<>)=P(R; <00, T<00)=P(T <)

and therefore {R; < o0} = {T < o0} modulo an event with P, — probability
zZero.

Another application of the strong Markov property (in Corollary ,
observing that Xp, = ¢ on {R; < oo}, allows us to conclude that the
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P, (-|R; < ) = P, (-|]T < 0) — law of (Xg,, Xg,+1, XRr,+2,...) is the same
as the P; — law of (X, X1, Xa,...). Therefore, we may apply Theorem to
conclude that

1
]\}gnooﬁzlxn_z = hm —ZIXR Wi = gR P, (|R; < ) — a.s.

On the other hand, on the event {R; = oo} we have limy_.oc & ij:l 1x, =i =
0. Thus we have shown P, — a.s. that

1 1
]\}EHOO N Z Ix,=i = E, R == 1lRr,<00 = mlT«m = ml{Xn hits C'}

which is Eq. (4.19)). Taking expectations of this equation, using the dominated
convergence theorem, gives Eq. (4.20)).
Since 1/E;R; = oo unless i is a positive recurrent site, it follows that

Zmaj = Z TPy = Z P, (X, hits C) ZE = (4.22)

€S 1€ Spr C': pos-rec. eC

As each positive recurrent class, C, is closed; if i € C and j ¢ C, then P;; = 0.
Therefore ZzEC’ ER R Pj is zero unless j € C’ So if j ¢ Spr wehave Y . o™i Pyj =
0=m;andif j € Spr, then by Theorem [I.19)

1
eCc .
; E; R Li EjRj
Using this result in Eq. (4.22)) shows that
. 1
€S C': pos-rec. )
so that 7 is an invariant distribution. Similarly, using Theorem [£.19] again,
. 1 .
Y mi= > P,(X,hits C) e = > P, (X, hits C).

€S C': pos-rec. iec C': pos-rec.

Definition 4.22. A state i € S is aperiodic if P} > 0 for all n sufficiently
large.

Lemma 4.23. If i € S is aperiodic and j < i, then j is aperiodic. So being
aperiodic is a class property.
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28 4 Long Run Behavior of Discrete Markov Chains
Proof. We have

Pn+m+k Z P’n Pm Pk > P’n PmPk‘

Jywt w,zt z, 5 = L gt dit i,y
w,z€S

Since j «— 1, there exists n,k € N such that PJ; > 0 and PlkJ > 0. Since

P > 0 for all large m, it follows that Pﬂ*m% > 0 for all large m and
therefore, j is aperiodic as well. [

Lemma 4.24. A state i € S is aperiodic iff 1 is the greatest common divisor
of the set,
{neN: P (X, =14 =P} >0}.

Proof. Use the number theory Lemma [£.47] below. [

Theorem 4.25. If P is an irreducible, aperiodic, and recurrent Markov chain,

then .
lim P=7; = ——. (4.23)
n—oo” E;(R;)

More generally, if C' is an aperiodic communication class, then

lim P, (X, =1):= lim Zy(j) Pji =P, (R; < 00) =%~ forallie C.

n—o0 £
jeSs

1
E;(R;)

Proof. I will not prove this theorem here but refer the reader to Norris |3,
Theorem 1.8.3] or Kallenberg |2, Chapter 8]. The proof given there is by a
“coupling argument” is given. ]

4.1.1 Finite State Space Remarks

For this subsection suppose that S = {1,2,...,n} and P;; is a Markov matrix.
Some of the previous results have fairly easy proofs in this setting.

Proposition 4.26. The Markov matriz P has an invariant distribution.
Proof. If 1:= [1 1... 1], then P1 = 1 from which it follows that
0=det(P —1)=det(P"—1).

Therefore there exists a non-zero row vector v such that P"v" = % or equiv-
alently that v P = v. At this point we would be done if we knew that v; > 0 for
all 4 — but we don’t. So let 7; := |v;| and observe that

n n
<D Ikl Pri < mPra.
k=1 k=1

7‘[‘2 = |I/’L| =
Page: 28 job: 180Notes

We now claim that in fact # = 7 P. If this were not the case we would have
T < ZZ:1 7, Pr; for some ¢ and therefore

0<z:71'1<§:§:71'k]%ﬂ ZZT(;@P;@Z‘:ZT(}C
k=1

i=1 k=1 k=1i=1
which is a contradiction. So all that is left to do is normalize 7; so Z?:l =1

and we are done. n

Proposition 4.27. Suppose that P is irreducible. (In this case we may use
Proposition to show that E; [R;] < oo for all i,j.) Then there is precisely
one invariant distribution, m, which is given by m; = 1/E;R; > 0 for alli € S.

Proof. We begin by using the first step analysis to write equations for
E; [R;] as follows:

E; | ZIE [Rj| X1 = k] Py = Y _Ei[Rj| X1 = k] Py, + Pij1
k#j
_Z Ey [R;] + 1) Pip + Pij1 _ZEk ] Py, + 1.
k#j k#j
and therefore,
1= PuBi[Ry] + 1. (4.24)
k£

Now suppose that 7 is any invariant distribution for P, then multiplying Eq.
(4.24) by m; and summing on ¢ shows

Zﬂ—i]Ei [Rj] - Zﬂ'i Z PikEk [RJ] + Zﬂ'zl
i=1 1=1

i=1  k#j
= Zﬂ'kEk: [R;]+1
k#j
from which it follows that m;E; [R;] = 1. |

We may use Eq. - to compute E; [R;] in examples. To do this, fix j and
set v; := E; ;. Then Eq. states that v = POy + 1 where P(J) denotes
P with the jth — column replaced by all zeros. Thus we have

W\ —1
(E:R))"_, = (I - PU)) 1, (4.25)
ie.
E,R; 1
o\ —1
| = (1-P0) ] (4.26)
E,R; 1
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4.2 Examples 29

4.2 Examples i

01 1

Ezample 4.28. Let S = {1,2} and P = [1 0 with jump diagram in Figure
In this case P?" = I while P?*t! = P and therefore lim,, . P™ does not

i 4
/\.
K_/ l
1 \ s

® ﬂ_‘-——d—ﬁiz
|

have a limit. On the other hand it is easy to see that the invariant distribution,

m, for Pis 7w = [1/2 1/2] . Moreover it is easy to see that Fig. 4.1. A simple jump diagram.

2111

P+P2+---+PN_)1 11
N 2

™
LT] . has the jump graph given by Notice that P > 0 and P, > 0 that P is

“aperiodic.” We now find the invariant distribution,

Let us compute
1

] - (3] [5a]) [0 R F

and Therefore the invariant distribution is given by

- (3B -

so that indeed, 71 = 1/E; Ry and 7 = 1/EaRs.

— N N

1
51
“10|=R
1
11

Let us now observe that

Ezample 4.29. Again let S = {1,2} and P = [(1) (1)] with jump diagram in '% 01
Figure In this case the chain is not irreducible and every = = [a b] with Pt=1330
a+b=1and a,b >0 is an invariant distribution. L1010
r 3 11
010 550
Ezample 4.30. Suppose that S = {1,2,3}, and = |1/201/2] = % ; %
123 L 100 3035
r 409 205 205
0.399 41 0.400 39 0.200 20
01071 o | WR M R | _
P=|1/201/2|2 P = 502 Igpd g | T 0.40039 0.399 41 0.200 20
100 |3 E e L 0.400 39 0.400 39 0.199 22
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30 4 Long Run Behavior of Discrete Markov Chains

Let us also compute Eq R3 via,

EqR3 100 010 1 4
EoRs| = 010 —1[1/200 1| =13
EsRs 001 1 00 1 5
so that
1 1
EsRs 5

Ezxample 4.31. The transition matrix,

12 3

1/41/21/47 1
P=1{1/2 0 1/2]2

1/31/31/3 |3

is represented by the jump diagram in Figure This chain is aperiodic. We

g
QO/iL\ =

]
Vi 28 2 | o ._4/1—.__&—) 2
% Vi %
L 4 an
3 o 3 Jj 3
o
) g

L
3

Fig. 4.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

find the invariant distribution as,

tr

[1/41/21/4 100]
Nul(P—I)"=Nul| [1/2 0 1/2| = |010
|1/31/31/3 001 ]

R 11 [

= Nul %-15 =R|2|=R|5

L1 3 3 1] 6

Page: 30 job: 180Notes

S [656] =[0.35294 0.29412 0.35294] .

17
In this case

(1/41/21/47"°  [0.35298 0.29404 0.352 98
PO =11/2 0 1/2| = |0.35289 0.29423 0.35289
11/31/31/3 ] 0.35295 0.2941 0.35295

Let us also compute
E1 R, ] 1001 T[1/401/47\ ' [1 %
EyRo| = | [010] —|1/201/2 1= |4
EsR; | 001 ] 1/301/3 1 2

so that
1/E2R2 = 5/17 = T9.

Ezxample 4.32. Consider the following Markov matrix,

12 3 4
1/41/41/41/47 1
1/4 0 0 3/4|2
1/21/2 0 0 |3
0 1/43/4 0

with jump diagram in Figure Since this matrix is doubly stochastic, we
know that m = i [1 11 1} . Let us compute E3zR3 as follows

P =

=~

-1

EiR;3 1000 1/41/401/4 1
EoRsz| 0100 1/4 0 03/4 1
EsRs| 0010 1/21/20 0 1
E4R3 0001 0 1/40 0 1

[ 50

3

— | 17

4

30

L 17

so that EsR3 = 4 = 1/m4 as it should. Similarly,

E1 R, 1000 1/401/41/47\ ' [1
EoRy| 0100 1/40 0 3/4 1
EsRo| 0010 1/20 0 0 1
EiRo 0001 0 03/4 0 1

54

17

| 4

— |4

30

L 17
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3

Fig. 4.3. The jump diagram for P.

L
Z

and again Eo Ry =4 = 1/ms.

Example 4.33 (Analyzing a non-irreducible Markov chain). In this example we
are going to analyze the limiting behavior of the non-irreducible Markov chain
determined by the Markov matrix,

12345
01/20 0 1/2]1
1/2 0 0 1/2 0 |2
P=|0 0 1/21/2 0 |3.
0 0 1/32/3 0 |4
00 0 0 1|5

Here are the steps to follow.

1. Find the jump diagram for P. In our case it is given in Figure

2. Identify the communication classes. In our example they are {1,2},
{5}, and {3,4} . The first is not closed and hence transient while the second
two are closed and finite sets and hence recurrent.

3. Find the invariant distributions for the recurrent classes. For {5}
it is simply 7rf{5} = [1] and for {3,4} we must find the invariant distribution
for the 2 x 2 Markov matrix,
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i
2

(JA

TEONG
—‘i

o/\>c
3 _J__ ’-j

Fig. 4.4. The jump diagram for P above.

34
Q= 1/21/2]3
- 11/32/3|4
We do this in the usual way, namely

(=)= ([o3] - [11]) -=[3]

so that 71'{{3’4} = % [2 3]

. We can turn 7} (3.4} and 77{5} into invariant distributions for P by padding

the row vectors with zeros to get

T343 =[002/53/50]
77{5}2 [00001].

The general invariant distribution may then be written as;

T = an(sy + Bz 4y with o, >0 and a + 3 = 1.

. We can now work out the lim,, ., P". If we start at site ¢ we are considering

the i*t — row of lim,, o, P™. If we start in the recurrent class {3,4} we will
simply get 73 4) for these rows and we start in the recurrent class {5} we
will get m(5). However if start in the non-closed transient class, {1,2} we
have
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32 4 Long Run Behavior of Discrete Markov Chains
first row of lim P" = P; (X,, hits 5) 75y + P1 (X, hits {3,4}) 734}

o (4.27)

and
second row of nllm P" = P, (X, hits 5) w5y + P> (X, hits {3,4}) mg3.43.
o (4.28)

6. Compute the required hitting probabilities. Let us begin by comput-
ing the fraction of one pound of sand put at site 1 will end up at site 5, i.e.
we want to find hy := P; (X, hits 5). To do this let h; = P; (X, hits 5) for
1=1,2,...,5. It is clear that hs = 1, and hg = hy = 0. A first step analysis
then shows

1
h1 = 5 - Py (X, hits 5) + 3 P5 (X, hits 5)

ha

N~ N —

1
- Py (X, hits 5) + §P4 (X, hits 5)

which leads tdl

1 1
hi = =h -
1 22+2
1 1
ho = =h =0.
2 21+20

The solutions to these equations are

2 1
P1 (Xn hits 5) = h1 = § and P2 (Xn hits 5) = h2 = g

Since the process is either going to end up in {5} or in {3,4}, we may also
conclude that

Example 4.34. Note: If we were to make use of Theorem we would have not
set hs = hy = 0 and we would have added the equations,

1 1
hs = §h3 + §h4

1 2
ha = ghs + §h47
to those above. The general solution to these equations is ¢ (1, 1) for some ¢ € R and
the non-negative minimal solution is the special case where ¢ = 0, i.e. hg = ha = 0.
The point is, since {3,4} is a closed communication class there is no way to hit 5
starting in {3,4} and therefore clearly hs = hs = 0.
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1 2
Py (X, hits {3,4}) = 3 and P (X, hits {3,4}) = 3
7. Using these results in Eqgs. (4.27) and (4.28)) shows,

2 1
first row of lim P" = 37{5} + 3734}

=[00% £2/3]
= [0.00.00.13333 0.2 0.666 67 |

and
. n 1 2
second row of lim P" = §7T{5} + §7T{3’4}

:1[00001“%[002/53/50]
(0015 5 5]
=[0.0 0.0 0.26667 0.4 0.33333] .

These answers already compare well with

9.7656 x 104 0.0 0.13276 0.200 24 0.666 02

0.0 9.7656 x 10~% 0.266 26 0.399 76 0.333 01
plo— 0.0 0.0 0.4 0.60000 0.0
0.0 0.0 0.40000 0.6 0.0
0.0 0.0 0.0 0.0 1.0

4.3 The Strong Markov Property

In proving the results above, we are going to make essential use of a strong form
of the Markov property which asserts that Theorem [3.17| continues to hold even
when n is replaced by a random “stopping time.”

Definition 4.35 (Stopping times). Let 7 be an Ng U {o0} - valued random
variable which is a functional of a sequence of random variables, {Xn}zozo which
we write by abuse of notation as, T = 7 (Xo, X1,...). We say that 7 is a stop-
ping time if for alln € Ny, the indicator random variable, 1.—,, is a functional of
(Xo,...,Xn). Thus for each n € Ny there should exist a function, o,, such that
lren = on (Xo,...,Xn). In other words, the event {T =n} may be described
using only (Xo, ..., Xn) for alln € N.

Remark 4.36. If 7 is an {X,,},, - stopping time then

Lispn=1-1rcn=1-Y on(Xo,..., Xg) = tn (Xo,..., Xn_1).
k<n
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That is for a stopping time 7, 1,>,, is a function of (X, ..., X,—1) only for all
n € Np.

The following presentation of Wald’s equation is taken from Ross [4, p.
59-60].

Theorem 4.37 (Wald’s Equation). Suppose that {X,},- is a sequence of
i.i.d. random variables, f(x) is a non-negative function of x € R, and 7 is a
stopping time. Then

=Ef(Xo)-Er. (4.29)

B> f(X
n=0

This identity also holds if f (X,,) are real valued but integrable and T is a stop-
ping time such that BT < co. (See Resnick for more identities along these lines.)

Proof. If f(X,) > 0 for all n, then the the following computations need no
justification,

E lz f(X0)
n=0

=E Zf( n n<7'] ZE n n<7']
n=0

’an Xo, e aXn—l)]

E
Z E [t (Xo, .. Xn_1)]

o0

Z [n<‘r] Ef XO ZE n<-r

n=0

Zln<‘r‘| E’f XO) ET.

IfE|f(X,)| < oo and ET < oo, the above computation with f replaced by
|f| shows all sums appearing above are equal E|f (Xo)| - ET < oo. Hence we
may remove the absolute values to again arrive at Eq. (4.29). ]

Ezample 4.38. Let {X,,},>_| be i.i.d. such that P (X, =0) =P (X, =1)=1/2
and let
T:=min{n: X3+ -+ X, =10}.

For example 7 is the first time we have flipped 10 heads of a fair coin. By Wald’s
equation (valid because X,, > 0 for all n) we find
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10=E

1
anl =EX; -Er = ;E7

n=1
and therefore ET = 20 < co.

Ezample 4.39 (Gambler’s ruin). Let {X,,},~_; beii.d. such that P (X, = —1) =
P(X, =1)=1/2 and let

T7:=min{n: X;+ -+ X, =1}.

So 7 may represent the first time that a gambler is ahead by 1. Notice that
EX; =0. If ET < oo, then we would have 7 < 0o a.s. and by Wald’s equation

would give,
=K lz X,
n=1

which can not hold. Hence it must be that

=EX; -Er=0-Er

Er = E [first time that a gambler is ahead by 1] = co

Here is the analogue of

Theorem 4.40 (Strong Markov Property). Let ({X,}" o, {P:},cq,p) be
Markov chain as above and 7 : £2 — [0,00] be a stopping time as in Definition

[£-35. Then

Er [f (Xrs Xoits-2) gr (Xoye vy Xo) 1rcoc]
—E, [Ex. f (X0, X1,..)] gr (X0, Xs) Lrcoc]. (4.30)

forall f,g={gn} >0 or f and g bounded.

Proof. The proof of this deep result is now rather easy to reduce to Theorem

[3:17 Indeed,

E'n' [f (XT7XT+17 s ) gr (X07 R 7XT) 1T<OO}

= Ex[f (Xn, Xng1,- ) gn (Xos -+ X)) Lry]

= Ex[f (Xn, Xng1,- ) gn (Xos - Xn) 00 (X0, ., X))

n=0

= Z]E [Ex, f (X0, X1,.. )] gn (Xo, ..., Xn)on (Xo, ..., Xn)]

= Z]Eﬂ [Ex. f (X0, X1,..)]gr (X0, .., Xn) 1r—y]
n=0

=E- [[EXTf (XOaXh cee )]gT (X07 cee 7X7') 17'<OO]
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34 4 Long Run Behavior of Discrete Markov Chains

wherein we have used Theorem in the third equality. [
The analogue of Corollary in this more general setting states; condi-
tionedon 7 < oo and X, =z, X+, X; 11, X;42,... is independent of Xo, ..., X

and is distributed as Xy, X1,... under P,.

Corollary 4.41. Let 7 be a stopping time, x € S and m be any probability
on S. Then relative to Py (|7 < o0, X; =), {Xryr}pso 95 independent of
{Xo,..., Xr} and { X741} 5¢ has the same distribution as {Xy.},—, under P.

Proof. According to Eq. (4.30),

Erlg(Xo,. ., X7) f (Xp, Xpp1,...) 1 7 < 00, X, = a
=Er[9(Xo,. ., X7) Lrcoos (Xr) f (X7, Xrp, . )]
=Er g (Xos- s X7) Lrcoods (X2) Ex, [f (X0, X1, ... )]]
=Er [9(Xo,. ., X7) Lrcocla (X7) Ep [f (X0, X1,...)]]
=Er[g(Xo,...,X7) : 7 <00, Xy =] B, [f (X0, X1,...)].

Dividing this equation by P (7 < oo, X, = z) shows,
Exlg(Xo,-- . Xo) f(Xr, Xrg1,...) |7 <00, X; =2]
=E;[g(Xo,...,.X,)|T <00, X; =2]|E, [f (X0, X1,...)]- (4.31)
Taking g = 1 in this equation then shows,
Exlf (Xr, Xri1,...) |7 < 00, X = 2] = By [f (X0, X1,...)]. (4.32)

This shows that {X;ik},>, under Pr (|7 < oo, X; = x) has the same distri-

bution as { X} },- , under P, and, in combination, Egs. ) and - shows

{Xr4r}p>o and {Xo,..., X} are conditionally, on {7’ < o0, Xr =z}, inde-

pendent. [
To match notation in the book, let

f0 = Pi(Ri=n) = P(X1 # .o, Xn1 # 0, Xy = )
and m;; := [E;(M;) — the expected number of visits to j after n = 0.

Proposition 4.42. Let i € S and n > 1. Then P]} satisfies the “renewal equa-
tion,”

ZP = k)Pr k. (4.33)

Alsoif j €S, k€N, and v : S — [0,1] is any probability on S, then Eq.
holds, i.e.
P,(M; >k)=P,(R; <o) P;(R; <o) !, (4.34)
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Proof. To prove Eq. (4.33) we first observe for n > 1 that {X,, =i} is the
disjoint union of {X,, =4, R; =k} for 1 <k <n and thereforeﬂ

Pl = zn:Pl X, = 1)

k=1

P,L(Xl #’L.7...,Xk,1 #7’7Xk:717Xn:71)

I
NE

x>
Il
—

I
M=

Pi(X1#4y, Xp1 # 0, Xp, =) P"

B
Il
—

Pl *P(R; = k).

[
NE

>
Il
—

For Eq. (4.34) we have {M; > 1} = {R; < oo} so that P;(M; >1) =
P; (R; < o0). For k > 2, since R; < oo if M; > 1, we have

Since, on R; < oo, Xp; = j, it follows by the strong Markov property (Corollary

4.41) that;
P; (M; > k|R; < 00) = P; (M; > k|R; < 00, Xg, = j)

=P 1+leRj+n:jZk|Rj<OO, XRj:j

n>1
:Pj 1+len:j2k :Pj(MjZk—l).
n>1
By the last two displayed equations,
P, (M; > k)=P;(M; >k—1)P;(R; < 00) (4.35)

2 Alternatively, we could use the Markov property to show,

n n
P = Pi( ZEz (Ir,=k - 1x,=:) = ZEZ (Ir,=k -Eilx, ,=i)
k=1 k=1

Ei(1r,=k)E; 1Xn o= z sz Pi(Xn—r =1)
1 k=1

[
M=

>
Il

P "P(R; = k).

I
hE

ES
Il

1
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Taking ¢ = j in this equation shows,
Py (M; = k) = P; (M; 2 k —1) P; (R; < o)
and so by induction,
P (M; > k)= P; (R; < c0)F. (4.36)

Equation (4.34) now follows from Eqgs. (4.35) and (4.36). ]

4.4 Irreducible Recurrent Chains

For this section we are going to assume that X, is a irreducible recurrent
Markov chain. Let us now fix a state, j € S and define,

7 = Rj =min{n > 1: X, =j},
To=min{n>1: X,y =7}

Ty = min{n >1: Xn+TT,,_1 = J}v

so that 7, is the time it takes for the chain to visit j after the (n — 1)’st visit
to j. By Corollary [£.14] we know that P; (1, < oo) =1 for all i € S and n € N.
We will use strong Markov property to prove the following key lemma in our
development.

Lemma 4.43. We continue to use the notation above and in particular assume
that X, is an irreducible recurrent Markov chain. Then relative to any P; with
i €8, {m},—, is a sequence of independent random variables, {1}, , are
identically distributed, and P; (1, = k) = P; (11 = k) for all k € Ny and n > 2.

Proof. Let Ty = 0 and then define T} inductively by, Tx41 =
inf {n > Ty : X,, = j} so that T,, is the time of the n’th visit of {X,,} 7, to
site j. Observe that T = 14,

Tl (Xo, X1,...) =71 (X100, X141, X T+ ) 5

and (711,...,7,) is a function of (Xo,..., X, ). Since P; (T,, < o0) = 1 (Corol-
lary |4.14) and X7, = j, we may apply the strong Markov property in the form
of Corollary to learn:

1. Tpy1 is independent of (Xy,...,Xr, ) and hence 7,41 is independent of
(T1,...,7n), and
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2. the distribution of 7,41 under P; is the same as the distribution of 7 under
P;.
The result now follows from these two observations and induction. ]

Theorem 4.44. Suppose that X,, is a irreducible recurrent Markov chain, and
let j € S be a fized state. Define

= (4.37)

N

. 1
J\}gIlw N ZO 1Xn:j =T Pz — a.s. (438)
forallie S and
1
Jim > Pl=nm;. (4.39)
n=0

Proof. Let us first note that Eq. @D follows by taking expectations of
Eq. . So we must prove Eq. @ .

By Lemma @ the sequence {7,}, -, is i.i.d. relative to P; and E;7,, =
E;7; = E;R; for all i € S. We may now use the strong law of large numbers
(Theorem to conclude that

g TR T
N —o0 N

=Ein=E;n =E;R; (P— a.s.). (4.40)
This may be expressed as follows, let R§N) =T+ 7+ -+ TN, be the time
when the chain first visits j for the N*" time, then

R

Let
N
vn=Y lx, =]
n=0

be the number of time X,, visits j up to time N. Since j is visited infinitely
often, vy — 0o as N — oo and therefore, limy_. o "1;;1 = 1. Since there were
vy Visits to j in the first N steps, the of the vx*™® time j was hit is less than or

equal to N, i.e. Rg.VN) < N. Similarly, the time, R;VNH), of the (vy + 1)™ visit
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36 4 Long Run Behavior of Discrete Markov Chains

to j must be larger than IV, so we have R§VN) <N < R(VNH) Putting these
facts together along with Eq. ( shows that

R;'VN) < N < R;'VN+1) . vn+l
VN  — VN — vNn+1 VN
1 ! ! N — oo,
E]‘Rj § hIIlN_,OO % S E]‘Rj -1
e limy oo N = = E,R; for P; — almost every sample path. Taking reciprocals
of this last set of 1nequaht1eb implies Eq. - [

Proposition 4. 45 Suppose that X, is a irreducible, recurrent Markov chain
and let m; = o (R for all j € S as in Eq. . Then either m; = 0 for all

i€ S (in which case Xy, is null recurrent) or m; > 0 for alli € S (in which case
X, is positive recurrent). Moreover if w; > 0 then

> mi=1and (4.42)

€S
ZmPij =m; forall j € S. (4.43)
€S
That is m = (7;)ies is the unique stationary distribution for P.

Proof. Let us define
1 n
T =~ ) P, 4.44
ki n ; ki ( )
which, according to Theorem [4.44] satisfies,
lim T}, =m; for all i,k € S.

Observe that,

1~ it 1
S ILET W R SR SR
Let a := ), gm. Since m; = lim, .o T}, Fatou’s lemma implies for all
i,j € S that
a:Zm th mf 17 <lim inf ZTkl—l
€S €S " OozeS
and
Zm = Z lim lePw < hmnglEOZTh 5 = hmnlilgoT”H 5
i€S €S €S
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where [ € S is arbitrary. Thus

Zﬂ'i = § 1 and Z,/Tipij § Uy for allj € s. (445)
i€S €S

By induction it also follows that

Zm i < mj forall j € S. (4.46)
i€S

So if m; = 0 for some j € S, then given any ¢ € S, there is a integer k such that
P > 0, and by Eq. 7_4_6[) we learn that 7m; = 0. This shows that either m; =0
foralleSorm>C orallieS.

For the rest of the proof we assume that m; > 0 for all i € S. If there were
some j € S such that ), _¢ 7 P;; < m;, we would have from Eq. that

a:Zm :ZZWiPij :ZZTFZ'PI']‘ <Z7Tj = q,

i€s i€S jes jesies jes

which is a contradiction and Eq. (4.43)) is proved.
From Eq. (4.43]) and induction we also have

> mPk=mforalljeS
€S
for all k£ € N and therefore,
> mTh =mjforalljeS. (4.47)
€S

Since 0 < Tj; < 1 and ZiGS m; = a < 1, we may use the dominated convergence
theorem to pass to the limit as k — oo in Eq. (4.47) to find

khm E 7T E hm 7T U E T = Q.
— 00

i€S zES €S
Since m; > 0, this implies that o = 1 and hence Eq. (4.42) is now verified. m

Proposition 4.46. Suppose that P is an irreducible Markov kernel which ad-
mits a stationary distribution p. Then P is positive recurrent and p; = m; =
o (R for all j € S. In particular, an irreducible Markov kernel has at most
one invariant distribution and it has exactly one iff P is positive recurrent.

Proof. Suppose that u = (u;) is a stationary distribution for P, i.e.
Diegti = land pj = g u; Py for all j € S. Then we also have
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i = Z,uiTi’;- forall ke N (4.48)
ics
where TZIE is defined above in Eq. || As in the proof of Proposition m
we may use the dominated convergence theorem to find,

— I Tk _ i Tk — e = 1T
by = i, DT = 3 Jm T = 3 iy =i
€S €S i€S

Alternative Proof. If P were not positive recurrent then P is either tran-
sient or null-recurrent in which case lim,, .o Tj; = W = 0 for all ¢,5. So
letting £ — o0, using the dominated convergence theorem, in Eq. allows
us to conclude that u; = 0 for all j which contradicts the fact that u was

assumed to be a distribution. ]

Lemma 4.47 (A number theory lemma). Suppose that 1 is the greatest
common denominator of a set of positive integers, I' := {ny,...,nx}. Then
there exists N € N such that the set,

A={mng + -+ mgng : m; >0 for all i},
contains alln € N with n > N.

Proof. (The following proof is from Durrett |1].) We first will show that A
contains two consecutive positive integers, a and a + 1. To prove this let,

k:=min{|b —a|:a,b € A with a # b}

and choose a,b € A with b=a+ k. If £ > 1, there exists n € I" C A such that
k does not divide n. Let us write n = mk +r withm > 0and 1 <r < k. It
then follows that (m + 1)b and (m + 1) a + n are in A,

m+)b=(m+1)(a+k)>(m+1)a+mk+r=(m+1)a+n,

and
(m+1)b—(m+Da+n=k—r<k.

This contradicts the definition of £ and therefore, £ = 1.
Let N = a?. If n > N, then n —a? = ma +r for some m > 0 and 0 < r < a.
Therefore,

n=a*+ma+r=(a+m)at+r=(a+m-—-riat+r(atl)c A






5

Continuous Time Markov Chain Notions

In this chapter we are going to begin out study continuous time homogeneous
Markov chains on discrete state spaces S. In more detail we will assume that

{Xi},5( is a stochastic process whose sample paths are right continuous and
have left hand limits, see Figures [5.1] and

— : :
Jo=0 J1 Jé -]:3 J:4 J:5
S S S Sy . S5 1 Se

Fig. 5.1. Typical sample paths of a continuous time Markov chain in a discrete state
space.

As in the discrete time Markov chain setting, to each i € S, we will write
P, (A) := P(A|Xo =1). That is P, is the probability associated to the scenario
where the chain is forced to start at site i. We now define, for i, j € S,

Pij (t) .= P (X (t) =) (5.1)

which is the probability of finding the chain at time ¢ at site j given the chain
starts at 1.

et -
Eabt N

S S 0 83 Sy D S5 Se

A
A

.‘r...-.-.

Fig. 5.2. A sample path of a birth process. Here the state space is {0,1,2,...} to be
thought of the possible population size.

Definition 5.1. The time homogeneous Markov property states for every
0 < s <t< oo and any choices of 0 = tg < t1 < -+ < t, = s < t and
Tlyeveyln € S that

P(X (1) =jIX (1) =d1,.... X (tn) =in) = B, ; (t = 5), (5.2)
and consequently,
P (X (t) = jIX (s) =in) = P, j (t —5). (5.3)

Roughly speaking the Markov property may be stated as follows; the
probability that X (¢) = j given knowledge of the process up to time s is
Px(s),; (t = s). In symbols we might express this last sentence as
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P (X (1) = JHX (D}e,) = PX (1) = J1X () = Pxgay (= 9).

So again a continuous time Markov process is forgetful in the sense what the
chain does for t > s depend only on where the chain is located, X (s), at time
s and not how it got there. See Fact below for a more general statement of
this property.

Definition 5.2 (Informal). A stopping time, T, for {X (t)}, is a random vari-
able with the property that the event {T < t} is determined from the knowledge
of {X (s):0< s <t}. Alternatively put, for each t > 0, there is a functional,
ft, such that

fi({X(s):0<s<t}).

Asin the discrete state space setting, the first time the chain hits some subset
of states, A C S, is a typical example of a stopping time whereas the last time
the chain hits a set A C S is typically not a stopping time. Similar the discrete
time setting, the Markov property leads to a strong form of forgetfulness of the
chain. This property is again called the strong Markov property which we
take for granted here.

lr<y =

Fact 5.3 (Strong Markov Property) If {X (t)},5, is a Markov chain, T is
a stopping time, and j € S, then, conditioned on {T < oo and Xt = j},

{X(5):0<s<T} and {X(t+T):t>0}
are {X (t+T) :t >0} has the same distribution as {X (t)},5, under P;.

We will use the above fact later in our discussions. For the moment, let us
go back to more elementary considerations.

Theorem 5.4 (Finite dimensional distributions). Let 0 < t; <ty <--- <
t, and ig,i1,12,...,i, € S. Then

F)io(th - i17Xt2 = i27 s

- Plo,ll (tl)Pil,iz (t2

7Xt = Zn)

n

—t)...P,

In—1,tn

(tn — tn_1). (5.4)

Proof. The proof is similar to that of Proposition [3.2] For notational sim-
plicity let us suppose that n = 3. We then have

P (Xt = i1, Xy, = 2, Xyy = i3) =

= Rz i3 (t3 )P (Xt1 = ,1’17Xt2 = 12)
- 1312713 (t3 )P (th = Z2|Xt1 = Z1) P)io (th = Zl)
= Py, 5 (t3 — t2) Py iy (t2 — 1) Pig iy (t1)

wherein we have used the Markov property once in line 2 and twice in line 4. m
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Pig(Xt3 = 7;3|th = Z.l, XtQ = 7’2)P’Lo (th = Z.1>Xt2 = /LQ)

Proposition 5.5 (Properties of P). Let P;; (t) := P; (X (t)
Then:

1. For each t > 0, P (t) is a Markov matriz, i.e.
> Py(t)
j€s

P;; (t) >0 foralli,j € S.

= j) be as above.

=1 forallie S and

2. limtlo Pl‘j (t) = (52‘j fOT‘ alli,5 € S.
3. The Chapman — Kolmogorov equation holds:

P(t+s) = P(t)P(s) for all s,t >0,

Zsz:

keS

(5.5)

i.€e.

P (t+s) s) Pyj (t) for all s,t > 0. (5.6)

We will call a matriz {P (t)},~, satisfying items 1. — 3. a continuous time
Markov semigroup. B

Proof. Most of the assertions follow from the basic properties of conditional
probabilities. The assumed right continuity of X, implies that lim, o P(t) =
P(0) = I. From Equation (5.4) with n = 2 we learn that

P7IO;12 t2 Z Plo Xt1 - /Ll7Xt2 - 22)
i1€S
= Z Piyi, (tl)Pi1,i2 (t2 - tl)
i1E€8
= [P(t1) P(t2 — t1)lig,ix-

]

At this point it is not so clear how to find a non-trivial (i.e. P (t) # I for all

t) example of a continuous time Markov semi-group. It turns out the Poisson
process provides such an example.

Ezample 5.6. In this example we will take S = {0,1,2,...} and then define, for

A >0,
01 2 3 45 6
[ a0 (A)® (w* (M)E’ )
1At o ()\P)t! ()3;3 ()\t)4 -lo
01 x QU 3 S| 1
Pit)y=e>[00 1 x O %C”.é
00 0o 1 x &Y
macro: svmonob.cls date/time: 2-May-2008/10:12



In components this may be expressed as,

MY T

Py (t ZB_M(. ~li<;

J ( ) <] _ Z)' =7

with the convention that 0! = 1. (See Exercise of this weeks homework

assignment to see where this example is coming from.)
If 4,5 € S, then Py, (t) Pyj (s) will be zero unless i < k < j, therefore we
have

Zsz ij —1z<j Z P (t ij s)

kes i<k<j

s AD)" (As) "
= li< e A(t+ )géj CEOIETE (5.7)

Let k =7+ m with 0 < m < j — 4, then the above sum may be written as

S

and hence by the Binomial formula we find,

—1

\)

0

3
I

()\t)kﬂ‘ ()\S)jfk - )
<Zk:<g G=0lG=R G Mt As)! ™

Combining this with Eq. (5.7) shows that

> Pi(8) Py (s) = Pij (s +1).
keS

Proposition 5.7. Let {X,},- is the Markov chain determined by P (t) of Ex-
ample . Then relative to Py, {Xi},>¢ is precisely the Poisson process on
[0, 00) with intensity . B

Proof. Let 0 < s < t. Since Py (X; =n|X; =k) = Pe (t —s) =0if n <k,
{Xt},>0 is a non-decreasing integer value process. Suppose that 0 = 59 < 51 <
Sg<---<s,=sandipcSfork=0,1,2,...,n, then

Py (X — X =ig|X,, =ij for 1 < j <n)
= Py (X; = in + i0| Xs, =i for 1 < j <n)
= PO (Xt = Zn + iO‘Xsn = Zn)

At
— e—)x(t—s)( )

io!
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Since this answer is independent of i1, ...,4, we also have

Py (X — X5 =)

= Y PR (Xi—X.=ig|X,, =ij for 1 < j <n)Py(X,, =i for 1 <j<n)

B1,eeey in€S
At)'o M)
— Z e—k(t—s)!pO (Xs> =i for1<j< n) - e—A(t—s)(li)
i1rin€S io! ’ io!

Thus we may conclude that X; — X is Poisson random variable with intensity
A which is independent of {X,}, . That is {X;},. is a Poisson process with
rate . [ |

The next example is generalization of the Poisson process example above.
You will be asked to work this example out on a future homework set.

Ezxample 5.8. In problems VI.6.P1 on p. 406, you will be asked to consider a
discrete time Markov matrix, p;;, on some discrete state space, S,with associate
Markov chain {Y,}. It is claimed in this problem that if {N (¢)},-, is Poisson
process which is independent of {Y;,}, then X; := Yy is a continuous time
Markov chain. More precisely the claim is that Eq. holds with

oo tm
— et —. otlp—=I)
P(t)y=e X:O m'p e ,
ie.
oo tm
— 1 m
Pj(t)=e §_0 ml (p )ij .

(We will see a little later, that this example can be used to construct all finite
state continuous time Markov chains.)

Notice that in each of these examples, P(t) = I + Qt + O (tz) for some
matrix Q. In the first example,

Qij = —Adij + Adiit1

while in the second example, @ = p — 1.

For a general Markov semigroup, P (), we are going to show (at least when
#(S) < o0) that P (t) = I + Qt + O (¢*) for some matrix @ which we call
the infinitesimal generator (or Markov generator) of P. We will see that
every infinitesimal generator must satisfy:

Qi <0 forall i # j, and (5.8)
ZQij = 07 ie. — Qii = Z Qij for all 3. (59)
J JFi
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Moreover, to any such @, the matrix

=t 12 13
P(t) = €@ ::ZEQ”:I+tQ+5Q2+§Q3+...

n=0 "

will be a Markov semigroup.

One useful way to understand what is going on here is to choose an initial
distribution, 7 on S and then define 7 (t) := 7P (t) . We are going to interpret
m; as the amount of sand we have placed at each of the sites, j € S. We are going
to interpret 7, (¢) as the mass at site j at a later time ¢ under the assumption
that 7 satisfies, 7 (t) = 7 (¢) Q, i.e.

() =Y mi () Qij — qjm; (t), (5.10)
i#]

where ¢; = —Q; ;. (See Example below.) Here is how to interpret each

term in this equation:

7j (t) = rate of change of the amount of sand at j at time ¢,
m; (t) Qij = rate at which sand is shoveled from site ¢ to j,

g;m; (t) = rate at which sand is shoveled out of site ¢ to all other sites.

With this interpretation Eq. has the clear meaning: namely the rate of
change of the mass of sand at j at time ¢ should be equal to the rate at which
sand is shoveled into site j form all other sites minus the rate at which sand is
shoveled out of site i. With this interpretation, the condition,

~Qji=¢=) Qi
k£

just states the total sand in the system should be conserved, i.e. this guarantees
the rate of sand leaving j should equal the total rate of sand being sent to all
of the other sites from j.

Warning: the book denotes @) by A but then denotes the entries of A by
gi;- 1 have just decided to write A = @) and identify, Q;; and g;;. To avoid some
technical details, in the next chapter we are mostly going to restrict ourselves
to the case where # (S) < oo. Later we will consider examples in more detail
where # (5) = 0.



6

Continuous Time M.C. Finite State Space Theory

For simplicity we will begin our study in the case where the state space is
finite, say S = {1,2,3,..., N} for some N < oo. It will be convenient to define,

be the column vector with all entries being 1.

Definition 6.1. An N x N matriz function P (t) for t > 0 is Markov semi-
group if

1. P (t) is Markov matriz for allt > 0, i.e. P;; (t) >0 for all i,j and
> Pj(t)=1forallics. (6.1)
JjES
The condition in Eq. may be written in matrix notation as,
P(t)1=1 forallt>0. (6.2)

(0) = Inxn,
(t+s)=P(t) P(s) for all s,t > 0 (Chapman - Kolmogorov),
lim; o P (t) = I, i.e. P is continuous at t = 0.

2. P
3. P
4.

Definition 6.2. An N x N matriz, Q, is an infinitesimal generator if Q;; >
0 for all i # j and

> Qij =0 forallics. (6.3)

JjES
The condition in Fq. may be written in matriz notation as,

Q1L=0. (6.4)

6.1 Matrix Exponentials

In this section we are going to make use of the following facts from the theory
of linear ordinary differential equations.

Theorem 6.3. Let A and B be any N X N (real) matrices. Then there exists
a unique N X N matriz function P (t) solving the differential equation,

P (t) = AP (t) with P(0) =B (6.5)
which is in fact given by
P(t)=¢"B (6.6)
where
tA — 1" n t2 2 t3 3
e :ZOEA =T +tA+ A%+ AT+ (6.7)
n—

The matriz function et® may be characterized as the unique solution Eq.
with B = I and it is also the unique solution to

P (t) = AP (t) with P (0) = I.

tA

Moreover, et satisfies the semi-group property (Chapman Kolmogorov equa-

tion),
eF)A = otAesA for all s,t > 0. (6.8)

Proof. We will only prove Eq. here assuming the first part of the
theorem. Fix s > 0 and let R (t) := e(*+*)4_ then

R(t) = Ae+94 = AR (t) with R(0) = P (s).
Therefore by the first part of the theorem

4 = R (t) = e R (0) = ete.
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Ezxample 6.4 (Thanks to Mike Gao!). IfAz[g(ﬂ,thenA":OfornZZ, SO
that
" CJ10 011 [1t
e IthA[Ol +1 ool =1lo1l-
. . 00
Similarly if B = 10 , then B" =0 for n > 2 and
B |10 00| (10
e —I—|—tB—{01 +1 _10l =121 |-

01

Now let C = A+ B = [_10

C® = C etc., so that
C?" = (-1)"I and C*"* = (-1)" C.

].In this case C? = -1, C® = -C, C* =1,

Therefore,
00 t2n 00 t2n+1
“ =3 Gt
7 |
— (2n)! oy (2n+1)!
o0 t2n e t2n+l
_ T —(-)"C
2o 2 G Y
) cost sint
= cos (t) [ +sin (t) C = |:—Sint cost}

which is the matrix representing rotation in the plan by ¢ degrees.

Here is another way to compute e/“ in this example. Since C? = —I, we
find
& o 2 tC tC
= (C*%e"™” = —e'™ with
dt?
d
oc tC
e~ =1and —e"™ |—g = C.
@ l=o

It is now easy to verify the solution to this second order equation is given by,
e!® = cost- I +sint-C
which agrees with our previous answer.

Remark 6.5. Warning: if A and B are two N X N matrices it is not generally
true that
e(A+B) — eAeB (6.9)

as can be seen from Example [6.4]
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However we have the following lemma.
Lemma 6.6. If A and B commute, i.e. AB = BA, then Eq. holds. In
particular, taking B = — A, shows that e~ = [e’ﬂ -

Proof. First proof. Simply verify Eq. using explicit manipulations
with the infinite series expansion. The point is, because A and B compute, we
may use the binomial formula to find;

n
A n_ n k nfk'
(A+B)"=>" <k)A B
k=0
(Notice that if A and B do not compute we will have
(A+B)=A?>4+ AB + BA + B®> # A> 4+ 2AB + B%)

Therefore,
e(A—O—B):il(A_i_B)n:ili: N\ gk gn—k
n! n! k

n=0 n=0 k=0

= Y L1 yepnet (let n—k =1

k! (n — k)!

0<k<n<oco

_Oooollkl_oolkoolz_AB
k=0 1=0 k=0 1=0

Second proof. Here is another proof which uses the ODE interpretation
of e, We will carry it out in a number of steps.

1. By Theorem and the product rule

d

%e*tABetA =e M (—A)Be! + e BA = ¢ (BA - AB) e =0
since A and B commute. This shows that e *4Bet4 = B for all t € R. )

2. Taking B = I in 1. then shows e~ e =T for all t ie. e ™ = [e'] .
Hence we now conclude from Item 1. that e 4B = Be 4 for all ¢.

3. Using Theorem Item 2., and the product rule implies

% [e—tBe—tAet(A-i-B)}

—tB (-B) e tAGHA+B) | —tB —tA (—A) et(A+B)
+ e~ tBo—tA (A + B) et(A+B)

—etBetA (LB etATB) | o~tB—tA (_ 1) ot(A+B)

+e tBe 4 (A + B) etA+B) —
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Therefore,

e Bt AMATE) — o mtB—tAHALE)| T for all ¢,

and hence taking ¢ = 1, shows

e BemAeAtB) — 1. (6.10)

Multiplying Eq. (6.10) on the left by e4e? gives Eq. (6.9).

]
The next two results gives a practical method for computing e’? in many
situations.

Proposition 6.7. If A is a diagonal matriz,

A1
A &
Am
then
et>\1
et)\g
old —
et)\n
Proof. One easily shows that
AT
n
|
A
for all n and therefore,
[e%e] tm
Zn 0 n! )\n o 4n
(oo} n
etA:ZﬁAnz Zn Onl)\
n! "
n=0 .
o 4n
Zn 0 n! >\n
et/\l
6t)\2
ethn
]
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Theorem 6.8. Suppose that Q is a diagonalizable matriz, i.e. there exists an
invertible matriz, S, such that ST'QS = A with A being a diagonal matriz. In
this case we have,

el@ = Seth g1 (6.11)

Proof. We begin by observing that
(571QS)° = 57'QSS QS = S71Q%S,
(57'QS)° = 57'Q*S5 QS = S'QS

(S7'QS)" =S57'Q"S foralln > 0.
Therefore we find that

S7lel9s = 51[S+Z SlQ”

n= O

—I+Ztn $71Qs)"

— n _ tA
n=0

Solving this equation for e!? gives the desired result. [

6.2 Characterizing Markov Semi-Groups

We now come to the main theorem of this chapter.

Theorem 6.9. The collection of Markov semi-groups is in one to one cor-
respondence with the collection of infinitesimal generators. More precisely we
have;

1. P(t) = e'? is Markov semi-group iff Q is an infinitesimal generator.
2. If P (t) is a Markov semi-group, then @ := %|O+P (t) exists, Q is an in-
finitesimal generator, and P (t) = e'@.

Proof. The proof is completed by Propositions - below. (You
might look at Example to see what goes wrong if @) does not satisfy the
properties of a Markov generator.) [

We are now going to prove a number of results which in total will complete
the proof of Theorem [6.9} The first result is technical and you may safely skip
its proof.
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46 6 Continuous Time M.C. Finite State Space Theory

Proposition 6.10 (Techinical proposition). Every Markov semi-group,
{P (t)}>¢ is continuously differentiable.

Proof. First we want to show that P (¢) is continuous. For ¢, h > 0, we have
P(t+h)—Pt)=P@t)P(h)—P({t)=P(t)(P(h)—1)—0ash]O.
Similarly if £ > 0 and 0 < h < t, we have

P(t)—P({t—h)=P(t—h+h)—P({t—h)=P(t—h)P(h)—P(t—h)
=P(t—h)[P(h)—1] —0ash |0

where we use the fact that P (¢ — h) has entries all bounded by 1 and therefore
< Palt—h)|(P ()= 1))
k

<> |Pm) -1, —0asn o
k

(P (t=h)[P(h)

Thus we have shown that P (¢) is continuous.
To prove the differentiability of P (t) we use a trick due to Garding. Choose
€ > 0 such that

e

H:—l/OEP(s)ds

is invertible. To see this is possible, observe that by the continuity of P,
%fOEP(s) ds — I as € | 0. Therefore, by the continuity of the determinant
function,

det <i P(s)ds) —det(I)=1ase 0.
0

With this definition of I1, we have

:i/OEP(t)P /Pt+s / P(s

So by the fundamental theorem of calculus, P (¢) IT is differentiable and

1
— [P(t) ] =—-(P(t —P(1)).
SIP ()] =~ (P(t+2) - P(1)
As IT is invertible, we may conclude that P (t) is differentiable and that
. 1
P(t):= - (P(t+e)—P(t) T .

Since the right hand side of this equation is continuous in ¢ it follows that P (t)
is continuous as well. ]
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Proposition 6.11. If {P (t)},-, is a Markov semi-group and Q := %[04 P (1),
then N

1. P (t) satisfies P (0) = I and both,
Pt)=P({t)Q (Kolmogorov’s forward Eq.)
and .
P(t)=QP(t) (Kolmogorov’s backwards Eq.)
hold.

2. P (t) = e!?.
3. Q is an infinitesimal generator.

Proof. 1.-2. We may compute P (t) using
P(t) = i| P(t+s)
~ s '

We then may write P (t + s) as P (t) P (s) or as P (s) P (¢) and hence
=P (t)Q and
—lo[P(s) P ()] = QP (t).

This proves Item 1. and Item 2. now follows from Theorem [6.3]
3. Since P (t) is continuously differentiable, P (t) = I 4+ tQ + O (t?), and so
for i # 7,
0< Pij (t) = (Sij + tQij +0 (tQ) = tQij +0 (tQ) .
Dividing this inequality by ¢ and then letting ¢ | 0 shows Q;; > 0. Differentiating
the Eq. 7P(t)1:17 at t = 04 to show Q1 =0. ]

Proposition 6.12. Let ) be any matriz such that Q;; > 0 for all i # j. Then
(etQ)ij >0 forallt >0 andi,j €S.

Proof. Choose A € R such that A > —Q; for all i € S. Then A\l + @ has
all non-negative entries and therefore e!(*/*@) has non-negative entries for all
t > 0. (Think about the power series expansion for ¢!(*+@)) By Lemma 6.6}
we know that e!M+Q) = M !@ and since e = eI (you verify), we havd!|

HOTHQ) _ A Q.
Therefore, '@ = et etM+Q) again has all non-negative entries and the proof
is complete. [

1 Actually if you do not want to use Lemma. 6.6, you may check that e HAIHQ) — tAet@

by simply showing both sides of this equation satisfy the same ordinary differential
equation.
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Proposition 6.13. Suppose that Q is any matriz such that ZjeS Qij =0 for
alli € S, i.e. Q1 = 0. Then e!?1 = 1.
Proof. Since
d

@eth :etQQl =0,

it follows that /9?1 = 6tQ1|t:0 =1L -

Lemma 6.14 (ODE Lemma). If h(t) is a given function and A € R, then
the solution to the differential equation,

7 () = A (t) + h (¢) (6.12)
rt)=eM|(n te*)‘s s)ds .
0= (04 [ nas) (6.13)
= Mg M9 b (5) ds. .
(O)+/O h(s)d (6.14)

Proof. If 7 (t) satisfies Eq. (6.12)), then

% (eMr @) =e M(=Ar(t)+7(t) =e Mh(t).

Integrating this equation implies,

Solving this equation for m (t) gives
¢
m (t) = M (0) +e”/ e h (s)ds (6.15)
0

which is the same as Eq. (6.13). A direct check shows that 7 (¢) so defined solves
Eq. (6.12)). Indeed using Eq. (6.15) and the fundamental theorem of calculus
shows,

7 (t) = AeMm (0) + NeM /t e h(s)ds + eMe Mh(t)
0
=Ar(t)+h(t).
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Corollary 6.15. Suppose A € R and 7 (t) is a function which satisfies, 7 (t) >
A7 (t), then
7 (t) > eMn (0) for allt > 0. (6.16)

In particular if w(0) > 0 then w (t) > 0 for all t. In particular if Q is a Markov
generator and P (t) = €9, then

Py (t) > e % forallt >0

where q; := —Qy;. (If we put all of the sand at site i at time 0, e~ %t represents
the amount of sand at a later time t in the worst case scenario where no one
else shovels sand back to site i.)

Proof. Let h (t) := 7 (t)—An (t) > 0 and then apply Lemmal6.14]to conclude
that

t
T (t) = M (0) + / =3 (5) dis. (6.17)
0
Since e**=*)} (s) > 0, it follows that fg eMt=9)h (s)ds > 0 and therefore if we

ignore this term in Eq. (6.17) leads to the estimate in Eq. (6.16)). ]

6.3 Examples

Example 6.16 (2 x 2 case I). The most general 2 x 2 rate matrix @ is of the

form
0 1

—-a a0
@=[g_41

with rate diagram being given in Figure We now find e*® using Theorem

Fig. 6.1. Two state Markov chain rate diagram.

To do this we start by observing that
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48 6 Continuous Time M.C. Finite State Space Theory
det (Q — M) = det ({O‘g _5_§D =(a+A)(B+A)—aB

=M HrA= (A +1).

Thus the eigenvalues of Q are {0, —7}. The eigenvector for 0 is [1 1 ]tr. More-
over,

Q—(—mz[gg:

which has [a —B]tr and therefore we let

We then have

So in our case

0t
-1 tQq __ _tA __ e 0 o 1 0
Se*S=e —[Oeﬁ}—[oeﬁ .

Hence we must have,

0 e—Tt

(1 « 1 0 8 «
18] [0e |11
[B+ae ™ a—ae™ ™

_5 _ ﬂe—-rt a —|—,3€_Tt

[ B4+ ae™™ a(l—eT)
_5(1 _ ef'rt) a +ﬁ677—t

e B B

Ezample 6.17 (2 x 2 case II). If P (t) = e!? and 7 (t) = 7 (0) P (t), then

# 0 =7 (0Q=lro(0)m (0] 5]
[ —amo (t) + B (t) amo () — B (1) ],
o (t) = —am (t) + B (1) (6.18)
7:(1 (t) = QT (t) — 67T1 (t) . (619)
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The latter pair of equations is easy to write down using the jump diagram and
the movement of sand interpretation. If we assume that 7o (0) + 71 (0) = 1 then
we know o () + 1 (t) = 1 for all later times and therefore we may rewrite Eq.
(6.18) as

7o (t) = —amo (t) + B (1 — 7o (2))
= —7mo (t) + 3

where 7 := a + 3. We may use Lemma [6.14] below to find

t
7o (t) = e Thm (0) + / e =% 3ds
0

=e 'y (0) + = (1 — 67”) .
We may also conclude that
mt)=1—m(t)=1—e "'m(0) — s (1—e")
T

=1—-e"(1-m(0)— b (1—e)

= Tm O+ (- ) = (1o

=e i (0) + & (1 - e*”) :
T
By taking 7o (0) = 1 and 71 (0) = 0 we get the first row of P (t) is equal to
1
e+ 81 —e ) 2(1-eT)] = = [ea+Ba(l—e)]

and similarly the second row of P () is found by taking 7 (0) = 0 and 71 (0) =1
to find

1 [B(l_e—m:) ﬁe_Tt—l—Oé].

T

[

Hence we have found

RISy

(1 _ e—‘rt) e Tt + % (1 _ e—Tt)] _

P(t)= [eTtaJrﬁ a(le'rt):|

1
B0 —eT) Be T+ a
_1f(eT" =1 a+ 8+« a(l—e™ )
T B(l—eT BleT™ =1)+a+p

1 | 0«
:I+;(1—e t)[ﬁ _ﬂ}

:I—i—%(l—e‘”)@.
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Let us verify that this is indeed the correct solution. It is clear that P (0) = I,

Pi)=e | & @ ]
W= 50
while on the other hand,

af+a? —af —a? a —a«
@ = e e | =7 s =

and therefore,
PQ=Q-(1-¢)Q=cTQ
as desired.
We also have

P(s)P(t) = <1+ % (1—e7) Q) <I+ % (1—e) Q)
1 1
=1+ % (2—e™—eT)Q+ - (1—e™) - (1-e™(-7)Q
=I+- [(2 —e 77— eiTt) —(1-e) (1 — e*”)] Q
—T+- [1 —e*ﬂsﬂ)] Q=P(s+1)
T
as it should be. Lastly let us observe that

lim P(f) =1+ lim (1—¢ ™) [a a }

t—o0 T t—o0

Moreover we have

lim P (t) = lim e ™" {—a @ ] =0.

t—o0 t—oo

Suppose that 7 is any distribution, then

. 1 8 «a 1
tlirgowP(t) == [mo 1] {ﬂa} == (8]

independent of 7. Moreover, since

1

—[Ba]P(s)= lim 7P (t) P(s) = lim 7P (t+ s)

T t—oo t—oo

) 1
= tlirgoﬂ'P(t) == (8 a]
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which shows that the limiting distribution is also an invariant distribution. If
m is any invariant distribution for P, we must have

7= lim wP(t):l[ﬁa]:[a’%ﬁ =25 | (6.20)

t—oo T

and moreover,

d d
0= ahﬂr = %|0’R’P (t) = Q.

The solutions of m1Q = 0 correspond to the null space of Q' which implies

Nul Q% = Nul {_O‘ A ] -R- {5]

a —f «
and hence we have again recovered m = [ﬂ oz] .

T

Ezample 6.18 (2% 2 case IIT). We now compute @ by the power series method
as follows. A simple computation shows that

af+a? —aff —a? a —«
@ = | =[] = e

Hence it follows by induction that Q" = (77')71_1 Q@ and therefore,

Pt)=e9 =TI+ i %n, (—n)"'Q
n=1

o0

:I—lzﬁ(—r)nQ:I—%(e_”—l)Q

=lot] —Femn 5]

B [f_(e”—l)—l—l —2 (e —1) ]
Tl -Let—1) Zet—1)+1

1 aem™+ 8 a(l—e'T)
7|81 —et) Be " +a

T
: Let us again verify that this answer is correct;
P (t) = e~ "'Q while
1 -7 —7 s
PHQ=Q- (™ =1)(-1)Q=Q+ (¢ -1)Q=P).

Ezample 6.19. Let S = {1,2,3} and
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50 6 Continuous Time M.C. Finite State Space Theory

123 up any of its sand while happily receiving sand from site 1 at rate 271 and from
-3 12]1 site 2 are rate 1mg. Solving Eq. (6.21)) gives,
Q=] 0-11]2 N
0 00]3 m (1) = e "'m (0)
which we represent by Figure Let m = (w1, T2, m3) be a given initial ( at and therefore Eq. (6.22)) becomes

7.T'2 = 6_3t7T1 (0) — T9

ﬂ" which, by Lemma below, has solution,

t
7o (t) = e tmy (0) + e_t/ eTe 3y (0) dr
0

Y
2 = % (e7" - 6*3’5) 71 (0) + e fmo (0).
2 A— Using this back in Eq. then shows
'i 3 = 2¢ 3ty (0) + % (e7" =) m (0) + e 'my (0)

1 3

=(ze "+ e ) m (0) + ety (0)
2 2

t = 0) distribution (of sand say) on S and let 7 (¢) := 7e’®@ be the distribution

which integrates to
at time ¢. Then &

7 (t) = 1e’?Q =7 (1) Q. 1 1 )
(® Q 73 (t) = < 1—e]+-(1- Gdt)) 71 (0) + (1 — e ") m2 (0) 4 73 (0)
In this particular example this gives, 2 2
1
-3 12 = (1 —5le e‘?’t]) m1(0) + (L —e™") w2 (0) + 735 (0) -
[7'1'1 7:(2 7%3}:[71'1 7T27T3} 0-11
0 00 Thus we have
= [—37T1 T — T 2 +7T2}, ™ (t) ()
. ()| = |3 (et —e ) 7 (0) + e tme (0)
lently, 7 - . -
or equivalently. 71'3(15) _(1—%[6 tye StDﬂ.l (O)+(1—e t)F2(0)+7T3(0)
7:r1 = 737T1 (621)
g = M — Ty (622) [e—3t 0 0 T (0)
3 = 2m; + . (6.23) =|3(et—e3) et 0 |m(0)
1—Zet+e ] 1-e"1] [m3(0)

Notice that these equations are easy to read off from Figure For example,
the second equation represents the fact that rate of change of sand at site 2 is From this we may conclude that
equal to the rate which sand is entering site 2 (in this case from 1 with rate
171) minus the rate at which sand is leaving site 2 (in this case 17y is the rate
that sand is being transported to 3). Similarly, site 3 is greedy and never gives
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e3¢ 0 01"
Pt)y=e9=|1(et—e® e’? 0
1-— % [e’t + eiSt} 1—et1

o3t (%e—t le—St) (1 1t le—St)
=10 et e t+1
0 0 1

6.4 Construction of continuous time Markov processes

Theorem 6.20. Let {p;;}, jes be a discrete time Markov matrix over a discrete

state space, S and {Y,}.~_, be the corresponding Markov chain. Also let {N;},~,
be a Poisson process with rate X > 0 which is independent of {Y,}. Then
X =Y, 15 a continuous time Markov chain with transition semi-group given

by,
P(t) — et)\(pfl) — 67)\156”;).

Proof. (To be supplied later.) STOP [

6.5 Jump and Hold Description

We would now like to make a direct connection between ) and the Markov
process X;. To this end, let 7 denote the first time the process makes a jump
between two states. In this section we are going to write x and y for typical
element in the state space, S.

Theorem 6.21. Let Q, := —Q, , > 0. Then P,(S > t) = e~ 9! which shows
that relative P, S is exponentially distributed with parameter Q.. Moreover,
X is independent of S and

Pm(XS = y) = Qm,y/Qx

Proof. For the first assertion we let

A, = {X (;nt) :mfori:l,Q,...,Q"—Lz”}.

Ap L {X (s) =z for s <t} ={5 >t}
and therefore, P, (A,,) | Py (S > t). Since,

Then
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P(A,) = [Poa(t/2)] = [1 -Sevo(u Wﬂ

— et agnp — 00,

n

we have shown P, (S > t) = e *Q=.

First proof of the second assertion. Let T be the time between the second
and first jump of the process. Then by the strong Markov property, for any
t >0 and A > 0 small, we have,

Po(t<S<t+A T<A)=> P(t<S<t+A T<A Xg=y)

yes
=Y P(t<S<t+A Xs=vy) Py (T <A)
yeSs
ZZPx(t<S§t—|—A,Xs:y)-(l—e_QyA)
yeSs
< mi — e @A . =
_21613(1 e )Y Pa(t<S<t+ A Xe=1y)
yeS

=min (1 —e @) P, (t<S<t+A)
yeSs

o,ay [T Q 2
= 1 1— Wy a:_ITd :OA .
mig (1—e™2) | Qe 7dr = 0 (47)

(Here we have used that the rates, {Qy}, . are bounded which is certainly the
case when # (S) < 00.) Therefore the probability of two jumps occurring in the
time interval, [t,t + A], may be ignored and we have,
P (Xs=y,t<S<t+A)=Py(Xiyn=y,5>1)+0(4Q)
= Paf:(Xt+A = ant = J?,S > t) + O(A)
t . n
1o
n

+0(n%)| Puy(4)+o0(4)

= lim
n—oo

=7t p, (A) 4 0(A).

Also
t+A

P,(t<S<t+A)= Que~Fe3ds = e @t _=Qe(t+A) — 9 =Pt Ato(A).

t

Therefore,

_ P(Xs=yt<S<t+A)
P(Xs=y|S=1t)=1
s =yl =0 == s <t+ a)
—tQq
A0 Qre=@tA+o(A) Qs Al0 A

= Q-L,y/Q.L
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52 6 Continuous Time M.C. Finite State Space Theory

I T . —0

P —o
}- ::': | >
t /tS\ SR IIN Fiwe,
'L"'-%A t+k:iA

This shows that S and Xg are independent and that Py(Xs =y) = Qqu,y/Qu-
Second Proof. For ¢t > 0 and § > 0, we have that

P.(S>t,Xir5 =v) :nlirrgoPm(Xt+5 =y and X (Q"t) =g fori=1,2,...,2")

= lim [Pyo(t/2")]%" Puy(6)

n—oo

gn
= Pyy(9) lim |1 - t?n" +0 (2—2")} = P, (0)e 9=,
With this computation in hand, we may now compute P, (Xgs =y,t < S <
t + A) using the Figure as our guide
So according Figure we must have Xg =y & t < S <t + A iff for all
large n there exists 0 < k < n such that S >t +kA/n & Xiy(r41)a/m =y and
therefore
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P Xs=y&t<S<t+A)

T S>t+kA/n&Xt+(k+1)A/n:y
- nh—{r;o Pr ( for some 0 < k <n
n—1
= lim Z Py(S>t+kA/n & Xiy(ky1)a/m =Y)
k=0
n—1
— lim Z Py (A/n)e (H5A/MQe
k=0

n—1

A
= lim » e FRA/MO(=Q,, 4 o(n))
n—oo n
k=0

t+A Q t+A
= me/ e Ferds = S5 Que~%ds
¢ Quz Ji

= %’ypx(t <S<t+ A).

Letting ¢t | 0 and A T oo in this equation we learn that

— Q(IJ,y
o

and hence
P Xs=y,t <S<t+A)=P,(Xsg=y) P(t<S<t+A).
This proves also that Xg and S are independent random variables. [

Remark 6.22. Technically in the proof above, we have used the identity,

{(Xs=y&t<S<t+A}
:U?=1 m?LZN U0§m<n {S>t+l€A/7’l & Xt+(k+1)A/n :y}

Using Theorem along with Fact leads to the following description
of the Markov process associated to (). Define a Markov matrix, P, by

~ Qaz,y
P,y = ~Quw ?f Ty for all x,y € S. (6.24)
0 ifx=y

The process X starting at x may be described as follows: 1) stay at = for an
exp(Q,) — amount of time, Sy, then jump to x; with probability ]Sgwl. Stay
at x1 for an exp(Q,,) amount of time, S, independent of S; and then jump
to zo with probability 15117:62. Stay at xo for an exp(Q.,) amount of time, Ss,
independent of S7 and S5 and then jump to xz3 with probability 15352,9;3, etc. ete.
etc. etc. The next corollary formalizes these rules.
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Corollary 6.23. Let Q be the infinitesimal generator of a Markov semigroup
P (t). Then the Markov chain, {X:}, associated to P (t) may be described
as follows. Let {Yi},—, denote the discrete time Markov chain with Markov

matriz P as in Eq. . Let {Sj};il be random times such that given

{Yj=a;:5<n}, S; L exp (Qu,_,) and the {Sj}?:1 are independent for
1 <5< nE| Now let Ny = max{j: 51+ ---+5; <t} (see Figure and
X = YNy Then {Xt}t > 0 is the Markov process starting at x with Markov
semi-group, P (t) = e'Q.

N
> —
2 —
| «—0
(o) + t { >

S, S S, S+, S, tve

Fig. 6.2. Defining N;.

In a manner somewhat similar to the proof of Example [5.8 one shows the
description in Corollary [6.23]is defines a Markov process with the correct semi-
group, P (t) . For the much more on the details the reader is referred to Norris |3}
See Theorems 2.8.2 and 2.8.4].

2 A concrete way to chose the {S;}2, is as follows. Given a sequence, {7},
of i.i.d. exp (1) — random variables which are independent of {Y'}, define S; :=
T;/Qv; -






7

Continuous Time M.C. Examples

7.1 Birth and Death Process basics

A birth and death process is a continuous time Markov chain with state
space being S = {0,1,2,...} and transitions rates of the form;

Ao A1 A2 An—2 An-1 An
0=1=2=23... 2 (n—-1) 2 n = (n+1)...
M1 M2 M3 Hn—1 Hn Hnt1

The associated @) matrix for this chain is given by

0 1 2 3 4
0 —Xo Ao
Lo — (A4 p) Al
Q=2 2 — (A2 + p2) A2
3 M3 — (A3 +p3) A3
4 .

If m, (t) = P(X (t) =n), then 7w (t) = (m,(t)),>, satisfies, 7(t) = 7 (t)Q
which written out in components is the system of differential equations;

7o () = —Aomo (1) + pam (1)
71 () = Aomo (t) — (A1 + pa) w1 (£) + pama ()

Tn (£) = An—1Tn—1 (t) — (Ao + ftn) T (£) + pnp1 o () -

The associated discrete time chain is described by the jump diagram,

A1 A BT B An
1 INE S Xo o An—1tHn_—1 An+pn
0 =21 =2 2 2 3---2(n-1) = n =
P na w3 bn K41
X1 FAa1 Xo+Ho A3 +u3 Antun N1 THnt1

In the jump hold description, a particle follows this discrete time chain. When
it arrives at a site, say n, it stays there for an exp (A, + p,,) — time and then

jumps to either n — 1 or n with probability Aﬂ’f:ﬂﬂ or /\n/\fun respectively. Given
your homework problem we may also describe these transitions by assuming at
each site we have a death clock D,, = exp (u,,) and a Birth clock B,, = exp (\,)
with B, and D,, being independent. We then stay at site n until either B,, or
D,, rings, i.e. for min (B,,, D,,) = exp (A, + 1n) — amount of time. If B,, rings
first we go to n + 1 while if D,, rings first we go to n — 1. When we are at 0 we
go to 1 after waiting exp (\g) — amount of time.

7.2 Pure Birth Process:

The infinitesimal generator for a pure Birth process is described by the following
rate diagram

A
0 =%

A1 A2 An—1 An—1 An
2= ... = h-1)—n"">

1
For simplicity we are going to assume that we start at state 0. We will examine
this model is both the sojourn description and the infinitesimal description. The
typical sample path is shown in Figure[7.2]

I]\Si”“k“-”
34 —
2 —
1T g o= ¢ . S
2yl g et ——
o 4’;‘ <~‘__, I \ >
W, Wo Wy Hme

7.2.1 Infinitesimal description

The matrix () is this case is given by
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Qiit1 =X and Q;; = —\; foralli =0,1,2,...

with all other entries being zero. Thus we have

012 3 ...
[—Xo Ao
0
1 -1 A
: X A
Q= 3 —A3 A3

If we now let
7 (t) = Po (X (1) = ) = [ (0) '],
then m; (t) satisfies the system of differential equations;
7:1'0 (t) = —/\07T0 (t)
7:1'1 (t) = )\07‘(0 (t) — )\17‘(1 (t)

o () = Ape17m1 (£) — Anrn (£)

The solution to the first equation is given by

o (t) = e 2l (0) = e Mot
and the remaining may now be obtained inductively, see the ODE Lemma
using

t
T (t) = An,le_A7Lt/O T,y (1) dr. (7.1)

So for example

t t
m () = /\oe”‘lt/ Mg (1) dr = )\Oeﬁ‘lt/ eMTe AT dr
0 0

Ao ait (a—ro)rpr=t _ A0

A — Ao 720_/\1on{
_ Ao —Xot _ =M1t
—/\1_)\0[6 0 e 1].

e~ Mte(Ai—Xo)t _ e—ht}

If \; = Mo, this becomes, m; (t) = (Agt) e~*°! instead. In principle one can
compute all of these integrals (you have already done the case where A; = A for
all j) to find all of the =, (¢) . The formula for the solution is given as
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T (t) = P (X (t) = n|X (0) = 0) = Ag... An_1

n
§ Bk,ne_kkt
k=0

where the By, ,, are given on p. 338 of the book.
To see that this form of the answer is reasonable, if we look at the equations
for n =0,1,2,3, we have

7o (t) = —Ao7o (t)
7:(1 (t) = )\071'0 (t) — )\171'1 (t
7:r2 (t) = )\17T1 (t) - )\2’/T2 (t
7.T'3 (t) = )\271'2 (t) )\371'3 (t
and the matrix associated to this system is
—Ao Ao
! _)\1 >\1
@ = —A2 A2
—\3

so that (mo (), ..., 7 (t)) = (1,0,0,0) e!Q". If all of the A; are distinct, then @’
has {\; }?:0 as its distinct eigenvalues and hence is diagonalizable. Therefore
we will have

e—t>\0
7t/\1
(70 (t) -3 (1) = (1,0,0,0) S C s

eft>\3

for some invertible matrix S. In particular it follows that 75 (t) must be a linear
combination of {e‘t’\f }j':o . Generalizing this argument shows that there must
be constants, {Ck.n}y_, such that

n
(1) = Z Chne” e,
k=0

We may now plug these expressions into the differential equations,
Tn (t) = Ap—17pn—1 () — A7 (1),

to learn
n n—1 n
- E )\kckne_w\k = A1 E Ck,nfle_tkk — A E Ckne_tkh
k=0 k=0 k=0

macro: svmonob.cls date/time: 2-May-2008/10:12



Since one may show {e‘t’\k }Z:o are linearly independent, we conclude that
*)\kckn = )\n—lck,n—l . 1k§n—1 - )\nckn for k = Oa 17 2> EEREN2

This equation gives no information for k£ = n, but for k£ < n it implies,

A
Cin = Mi_i\kam_l for k<n—1.
To discover the value of C,, ,, we use the fact that Y, Ci, = m, (0) = 0 for
n > 1 to learn,

n—1 n—1
Cpon = Cin = At g
nn — kn — — ﬁ kn—1-
n — Nk
k=0 k=0

One may determine all of the coefficients from these equations. For example,
we know that Cpg = 1 and therefore,

Ao Ao
Co1 = dCi1=-Ch1=— .
0,1 M — Ao al 1,1 0,1 M — o
Thus we learn that
Ao —Xot -\t
t) = ot _ 1
1 ( ) Al — )\0 (6 e )
as we have seen from above.
Remark 7.1. 1t is interesting to observe that
1 1
d 1 o d tQ/ 1
%(’”O(t),"wﬂg(t)) 1 *&(1707070)6 1
1 1
1
_ Q' oy |1
=(1,0,0,0)e"™ @ 1
1
where
1 —Xo Ao 1 0
o 1 _ - A1 1 _ 0
1 -2 Ao 1 0
1 —A3 1 —A3
and therefore,
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<0.

1
o (6), s () ||
1

This shows that Z?:o 7 (t) < Z?:o 7; (0) = 1. Similarly one shows that

Zﬂ'j (t) <1 forallt >0 and n.
3=0

Letting n — oo in this estimate then implies

iﬂ'j (t) S 1.

It is possible that we have a strict inequality here! We will discuss this below.

Remark 7.2. We may iterate Eq. (7.1) to find,
¢ t
T (t) = )\067)\1t\/ (3)\17'71.0 (7_) dr = )\067)\1t/ e)\l'ref,\ofrdT
0 0
t
mo (t) = )‘16_>\2t/ 6A2U7T1 (0)do
0
t (e
= )\167)\2t/ e>\20 |:)\0€)\10/ €>\17€>\on7':| do
0 0
t o
Z)\o)\1€_)‘2t/ daeo‘Q_Al)"/ e1=2o)T 710
0 0
— )\0)\16—)\215/ e()\Q—Al)a'+()\1_)\0)7-do_d7_
0<r<0o<t

and continuing on this way we find,

T (1) = XA . .. An_le**nt/ ei= N A-Di g, ds

0<s1<s2<--<s5,<t

ne

(7.2)
In the special case where \; = X for all j, this gives, by Lemma [7.3] below with
f(s)=1,
A"

() = A”eﬂ\t/ dsy...dsp = ——e . (7.3)
0<s1<s2<Ssp <t n!

Another special case of interest is when \; = §(j + 1) for all j > 0. This will
be the Yule process discussed below. In this case,
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T (t) _ n!ﬁne—(n-‘rl)ﬁt/

0<s51<s2<+ <5, <t

t n Bt n
_ pigre—nse L (/ eﬁsds> _ gre- e <6 1)
n! \ Jy 8

=e Pt (1—e )", (7.4)

ePri=1%ds, ... ds,

wherein we have used Lemma below for the the second equality.
Lemma 7.3. Let f (t) be a continuous function, then for all n € N we have

f(sl)...f(sn)dsl...dsn:;(/Otf(s)ds>n.

/(;§51S52S'“§571§t

Proof. Let F (i) := fotf(s) ds. The proof goes by induction on n. The
statement is clearly true when n = 1 and if it holds at level n, then

F(s1) - f(sn) f(Spx1)dsy...dspdsnir

/0<81 <2< <5 <sp41<t

t
:/ </ f(sl)...f(sn)dsl...dsn> f(sn+1) dSnt1
0 0<s1<s2<-<sp<snp+1

-[ (o (F )" ) P ) s = | " () au

B F(t)n+1
 (n+1)!

as required. ]

7.2.2 Yule Process

Suppose that each member of a population gives birth independently to one
offspring at an exponential time with rate §. If there are ¥ members of the
population with birth times, T7,...,7T%, then the time of the birth for this
population is min (71,...,7%) = Sk where Sk is now an exponential random
variable with parameter, Gk. This description gives rise to a pure Birth process
with parameters A\, = k. In this case we start with initial distribution, 7; (0) =
;1. We have already solved for 7 (t) in this case. Indeed from from Eq. (7.4))
after a shift of the index by 1, we find,

T (t) = e P (1 - e_ﬂt)n_1 for n > 1.
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7.2.3 Sojourn description

Let {S,},, be independent exponential random variables with P (S,, > t) =
e~*nt for all n and let
Wi =8+ -+ Sk_1

be the time of the k' — birth, see Figure where the graph of X (t) is shown
as determined by the sequence {S,},- . With this notation we have

P(X(t)=0)=P (S >t)=e !
P(X(t)=1)=P(So <t <Sy+51)=P (W, <t<Wy)
P(X(t)ZQ):P(W2§t<W3)

P(X(t) ZJ)': PW; <t <Wji)

where {W; <t < W,1} represents the event where the j*® — birth has occurred
by time ¢ but the j** — birth as not. Consider,

P(W1 <t< Wg) = /\0/\1/ eiAomoeiAlxldﬁbodJEl.

0<zo<t<zo+z1
Doing the z; -integral first gives,

P(X(t)=1)=P (W, <t< W)

oo

_ —Xoxo [__,—A1T1
= /\0/ e [ e ]Il:tizo dxg
0<zo<t<zo+x1

= o / e—Aoloe—)\l(t—wo)de
Oﬁf()ft

= )\Oe*/\lt/ eA1=20)To g0
0<zo<t

Ao —Art [ (A1 —=Xo)t
N /\Oe e

_ /\0 —Xot
RV [e

e*)‘lt] .

There is one point which we have not yet addressed in this model, namely
does it make sense without further information. In terms of the Sojourn de-

scription this comes down to the issue as to whether P (Z;’il S; = oo) = 1.
Indeed, if this is not the case, we will only have X (¢) defined for ¢ < Z;‘;l S

which may be less than infinity. The next theorem tells us precisely when this
phenomenon can happen.
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Theorem 7.4. Let {Sj};il be independent random variables such that S; 2
exp (A;) with 0 < \j < oo for all j. Then:

LI A < oo then P (307, S < o0) = 1.
2. If > At =00 then P(Y.)7 | S, =00) =1.

Proof. 1. Since

E

isnl :i]E[S,L] Y Al < oo
n=1 1

n=1 n=

it follows that Y.~ , S, < oo a.s.
2. By the DCT, independence, and Eq. (2.3)),

E[em ™8] = lim E[em =05 = Jim 1 E [e=5"]
n=1

N 1 N
i 1 () = oo (-;m (- W)
= exp (—Zln (1—}—)\;1)) .
n=1

If \,, does not go to infinity, then the latter sum is infinite and A\, — oo and
S ARt =00 then 307 In(1+ M%) =ocoasIn(1+A;1) =2 A for large

n. In any case we have shown that E [6’2?:1 S”] = 0 which can happen iff

|
5

e~ Xn=15" =0 a.s. or equivalently Yoo 1 Sy =00 as. ]

Remark 7.5.1f 72, 1/A\;, < oo so that P(> .2, S, <oo) = 1, one may
define X (t) = oo on {t>3>°,S,}. With this definition, {X (¢)},5, is
again a Markov process. However, most of the examples we study will satisfy
Zl?;l 1//\k = Q.

7.3 Pure Death Process

A pure death process is described by the following rate diagram,

0—1«—2«—3... — (N—-1)«—N.
M1 H2 M3 HN-—1 KN

If m; (t) = P (X (t) = j|X (0) = m; (0)) , we have that
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7.3 Pure Death Process 59

Tin (1) = —pnmy (t)
n-1(t) = unTN (t) — py—17N -1 (t)

Tn (t) = Un4+1Tn+1 (t) — HnTn (t)

1 (t) = pama (t) — pam ()
7.1'0 (t) = —U17T1 (t) .

Let us now suppose that 7; (t) = P (X (¢t) =j|X (0) = N). A little thought
shows that we may find 7; (¢) for j = 1,2,..., N by using the solutions for
the pure Birth process with 0 — N, 1 — (N—-1),2 — (N—2),..., and
(N —1) — 1. We may then compute

N
7o (t) := 1—Z7Tj (t).

The explicit formula for these solutions may be found in the book on p. 346 in
the special case where all of the death parameters are distinct.

7.3.1 Cable Failure Model

Suppose that a cable is made up of N individual strands with the life time
of each strand being a exp (K (1)) — random variable where K (I) > 0 is some
function of the load, [, on the strand. We suppose that the cable starts with NV
— fibers and is put under a total load of NL that L is the load applied per fiber
when all N fibers are unbroken. If there are k — fibers in tact, the load per fiber is
NL/k and the exponential life time of each fiber is now K (NL/k). Thus when
k - fibers are in tact the time to the next fiber breaking is exp (kK (NL/k)).
So if {S; };:N are the Sojourn times at state j, the time to failure of the cable

isT = Zjvzl S; and the expected time to failure is

SN D /I R SRS S SOy S
! S kK (NL/k) ~ N LK (%L)  Jo =K (L/x)

Jj=1

if K is a nice enough function and N is large. For example, if K (I) = 1%/A for
some 3 > 0 and A > 0, we find

1 1
ET = / Ldaz A 2P Yy =
0o z(

L/x)ﬁ B 0 L8g
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Where as the expected life, at the start, of any one strand is 1/K (L) = A/L".
Thus the cable last only % times the average strand life. It is actually better
to let Ly be the total load applied so that L = Ly/N, then the above formula
becomes,
A NP
ET = ——.
Ly B

7.3.2 Linear Death Process basics

Similar to the Yule process, suppose that each individual in a population has a
life expectancy, T' 4 exp («) . Thus if there are £ members in the population at
time ¢, using the memoryless property of the exponential distribution, we the
time of the next death is has distribution, exp (ka)) . Thus the i = ak in this
case. Using the formula in the book on p. 346, we then learn that if we start
with an population of size NN, then

T (1) = P (X (t) = n|X (0) = N)

N —n
- < >e”°‘f (1—e )" forn=0,1,2,...,N. (7.5)
n

So {m, (t)}flvzo is the binomial distribution with parameter e~*¢. This may be
understood as follows. We have {X (t) = n} iff there are exactly n members out
of the original N still alive. Let &; be the life time of the j*" member of the
population, so that {fj};—vzl are i.i.d. exp (u) — distributed random variables.
We then have the probability that a particular choice, A C {1,2,...,N} of n -
members are alive with the others being dead is given by
— n _ N—n
P((Njea{s >t 0 (Njea sy <83)) = (e7)" (1 —e™) ",

As there are ([r\[) — ways to choose such subsets, A C {1,2,...,N}, with n —
members, we arrive at Eq. ((7.5).

7.3.3 Linear death process in more detail

(You may safely skip this subsection.) In this subsection, we suppose
that we start with a population of size N with {; being the life time of the
4" member of the population. We assume that {Ej};.vzl
distributed random variables and let X (¢) denote the number of people alive

at time t, i.e.

are 1.i.d. exp (u) —

X()=#4i:& > 1),
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Theorem 7.6. The process, {X (t)},~ is the linear death Markov process with
parameter, o. -

We will begin with the following lemma.

Lemma 7.7. Suppose that B and {A; };”:1 are events such that: 1) {A; }?:1 are
pairwise disjoint, 2) P (A;) = P (A1) forallj, and 3) P(BNA;) =P (BNA)
for all j. Then

P (B|UYL, A;) = P(B|Ay). (7.6)

We also use the identity, that
P(B|ANC) =P (B|A) (7.7)
whenever C' is independent of {A, B}.

Proof. The proof is the following simple computation,

P (B To14; P(U"_ BNA;
P(BlUL, 4;) = (BN (Up_i4))) _ P(UiBNA;)

P (U, 4;) P(Ur_,A))
_ ?:1P(B0Aj)_ﬂP(BﬂA1)_
X PA) P (4) = P(BlA1).

For the second assertion, we have

P(BNANC) P(BNA)-P(C)

P(BIANC) = P(ANC) ~—  P(A)-P(C)
_P(BNA)

[
Proof. Sketch of the proof of Theorem@ LetO<u<v<tandk>1l>m
as in Figure(7.3.3] Given V C U C {1,2,..., N} with #V =1 and #U =k, let

W L =2 wm e (o) )N}
— t—
w v t

\V

T

Avy = Njev {& > uf NNjgu {& < up NNjev {&5 > v} NNjgy {§ < v}
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so that {X, =k, X, =} is the disjoint union of {Ay y} over all such choices
of V.C U as above. Notice that P (Ay,y) is independent of how U C V
as is P({X; =m} N Apy). Therefore by Lemma we have, with V =

{1,2,...,1} cU =1{1,2,...,k}, that
P(Xt :m|Xu =k, X, = l) = P(Xt :m|AU7v)
Exactly m of &,...,& >t >v,...,8 > 0,0 > 841 > u,...,0 > & > u)

7£l >t‘€1>va"'a€l>v)

(

(Exactly m of &, ...
l

)P(gl >t Em > 6my1 <t g <tHE >, 8 > )

l)P(gl >H" . Po<& <t)"
P(’U<fl)l

—at\m —vt —at\l-m —
_ (6 t) i (6 ‘e t) _ ! e—am(t—v) (1 _ e—(x(t—v))l
m e—avl m

Similar considerations show that X; has the Markov property and we have just
found the transition matrix for this process to be,

l —am(t—v —a(l—v
P(X,=m|X,=1) = 1l2m<m>e (t=v) (1 _emalt >)

z
g

m
m
l

l—m

So
l —m
le (t) = P (Xt = m‘Xo = l) — 1>77L< )eoémt (1 _ efat)l '
- m

Differentiating this equation at ¢ = 0 implies <[4 Pin (t) = 0 unless m = [ or
m=1—1 and

d
%|0+P” (t) = —al and

d l
— o+ By - = =al.
o+ Fri-1(t) (l_1>0< «

These are precisely the transition rate of the linear death process with parameter
a. ]
Let us now also work out the Sojourn description in this model.

Theorem 7.8. Suppose that {&; }jvzl are independent exponential random vari-
ables with parameter, o as in the above model for the life times of a popu-
lation. Let W1 < Wy < --- < Wy be the order statistics of {fj}évzl, i.e.
Wy < Wy < < Wy} = {fj};vzl Hence W is the time of the j™ — death.
Further let S; = Wy, So = Wo — W1,..., Sy = W — Wx_1 are times be-

tween successive deaths. Then {Sj};.vzl are exponential random variables with

;L exp (N —j)a).
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Proof. Since Wy = 57 = min (&, ... 4

exp (Na). Let

,EN), by a homework problem, S;

A= {& < min (&), } 0118 = 1}

We then have
Wy =t} = Uj‘V:1Aj

and
A0 {Wa > st} = {5+t < min (&), } N1E = 1}

By symmetry we have (this is the informal part)

P(A;) = P(4;) and
PANn{Wy >s+t})=PAN{Wy >s+t}),
and hence by Lemma 777}
P(Wy>s+tW, =t)=P

Now consider

Wy = P (AL N{Wy > s+ 1} A1)
= P ({& = 0 {min (6 > s+ ¢} [ min (60, > &1 = 1)
P(mm E)ppy > s+ & 7t)

P (min (€) > 1, &1 = 1)

P (min (&) 0 > 5+ 1)

= = e

P (min (€r)ppr > t)

—(N-1)as

since min (&), 21 4 exp ((N — 1) @) and the memoryless property of exponen-

tial random variables. This shows that Sy := Wy — Wy < exp (N —1)a).
Let us consider the next case, namely P (W3 — Wy > ¢t|W, = a,Wa =a+1).
In this case we argue as above that

P(Wg—W2>t|W1:(l,W2:a+b)

= P(min(&,...,6n) =& >t =a, & =a+b, min(&,...,En) > &)
_ P(min (&3,...,én) >t+a+b, & =a, & =a+b, min(&s,...,Ey) > &)
P& =a, &=a+b, min(&,...,Eny) > a+b)
_ P (min (&3,...,6n) >t+a+b) _ —(N-2)at
P (min (&,...,éN) > a+b) '
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62 7 Continuous Time M.C. Examples

We continue on this way to get the result. This proof is not rigorous, since E[lw,—wyst g (Wi, Wa)] = ZE Mwy—wyst g (Wi, Wa) 0 & < &k < T
P (& =t) = 0 but the spirit is correct. J#k
Rigorous Proof. (Probably should be skipped.) In this proof, let ¢ . _ e ‘
be a bounded function and T}, := min (& : [ # k). We then have that T}, and & - ;E (e 9 (6, 860) & < & < T
J
are independent, Ty 4 exp (N — 1) @), and hence B ZE [ eor 90660 1 & < &]
= k=& >t 7 Y]
E[lwy-wist ¢ (W)l = S E [Lwy—wise 9 (Wh) : & < Ti] 7t
k =Y Elexp(— (N —=2)a(t+&)) g (&, &) : & < &l
=Y Elln gt 9 (&) : & < Ti 7k
k =exp(— (N =2)at) Y Elexp (— (N = 2) a&s) g (§,&) : & <
= ZE [1Tk*§k>t g (516)} el
k = exp (_ (N - 2) at) ZE [1Tjk—5k>0 g (gjafk) : fj < fk]
=Y Elexp (= (N =1 a(t+&)) g (&) i#k
g =exp(— (N —2)at) Y Elg(Wi,W2) : & < & < Tl
—exp(— (N —1)at) Y Elexp (= (N — 1) atx) g ()] #k
F =exp (= (N —2)at) - E[g (Wi, Wy)].

=exp(— (N —1)at) Y E[ln, g0 9(&)]
k This again shows that W5 — W5 is independent of {W;, W5} and W3 — Wy

=exp (— (N —1)«at) ZE [I7 >0 g (W1)] exp ((N — 2)a) . We leave the general argument to the reader.

k
= exp(~ (N — 1)at) -E[g (W1)].

m =

It follows from this calculation that Wy — W7 and W; are independent, Wy —
Wi =exp(a(N—1)).

The general case may be done similarly. To see how this goes, let us show
that W5 — Wy £ exp ((N — 2)a) and is independent of W and Ws. To this end,
let Tj, := min{& : [ # j or k} for j # k in which case T} 2 exp (N —2) )
and is independent of {¢;, ¢} . We then have
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8

Long time behavior

In this section, suppose that {X (t)},-, is a continuous time Markov chain
with infinitesimal generator, @, so that

P(X(t+h)=jlX({t)=1) =0 +Qijh+o(h).
We further assume that @ completely determines the chain.

Definition 8.1. {X (¢)} is irreducible iff the underlymg discrete time jump
chain, {Y,}, determined by the Markov matriz, PZ] = Q‘ 1#]7 is irreducible,

where
g = —Qii = > Qij.
i

Remark 8.2. Using the Sojourn time description of X (¢) it is easy to see that
P (t) = (etQ)ij >0 forall ¢ >0 andd,j €S if X (¢) is irreducible. Moreover,

if for all ¢,j € S, P;; (t) > 0 for some ¢ > 0 then, for the chain {Y,,}, i — j and
hence X (t) is irreducible. In short the following are equivalent:

1. {X (t)} is irreducible,
2.oralli,j €S, Py(t) >0 for some t > 0, and
3. Py (t)>0forallt>0andijeS.

In particular, in continuous time all chains are “aperiodic.”

The next theorem gives the basic limiting behavior of irreducible Markov
chains. Before stating the theorem we need to introduce a little more notation.

Notation 8.3 Let Sy be the time of the first jump of X (t), and
R;:=min{t > 5 : X (t) =i},

is the first time hitting the site i after the first jump, and set

T = where q; := — Q.

q; - B R;

Theorem 8.4 (Limiting behavior). Let {X (t)} be an irreducible Markov
chain. Then

1. for all initial staring distributions, v (j) := P (X (0) = j) for all j € S, and

all j € S,
1 T
P, IEEOT/ Lx

2. limy_. o P;; (t) = m; independent of i.
3. = (ﬂ'j)jes is stationary, i.e. 0 = wQ, i.e.

—jdtzﬂ'j> =1. (81)

> Qi =0 for all j € S,
€S
which is equivalent to mP (t) = m for all t and to Py (X (t) = j) = 7 (j) for
allt>0 and j € 8S.
If i >0 for some i € S, then w; > 0 for alli € S and ),
. The m; are all positive iff there exists a solution, v; > 0 to

ZWQU =0 for all j € S with Zyi =1.

i€S €S

71'2':1.

G R~

If such a solution exists it is unique and v = T.

Proof. We refer the reader to [3| Theorems 3.8.1.] for the full proof. Let us
make a few comments on the proof taking for granted that lim, .., P;; (t) =: 7,
exists.

1. Suppose we assume that and that v is a stationary distribution, i.e.
vP (t) = v, then (by dominated convergence theorem),

tlgg)ZVl i (1) = Ztlirgo v, Py (t) = <Z I/i> T = Tj.

Thus v; = 7;. If m; = 0 for all j we must conclude there is not stationary
distribution.
2. If we are in the finite state setting, the following computation is justified:

Zﬂ'jpjk. (s) = Z lim Pw = hm ZPU

jES JES jES
= lim Py (t+ s) = 7g.
t—o0o



64 8 Long time behavior

This show that 7P (s) = « for all s and differentiating this equation at s = 0
then shows, 7@ = 0.
3. Let us now explain why

L /Tl dt L
1 b
T ), X7 q; - BjR;

The idea is that, because the chain is irreducible, no matter how we start the
chain we will eventually hit the site j. Once we hit j, the (strong) Markov
property implies the chain forgets how it got there and behaves as if it started
at j. Since what happens for the initial time interval of hitting j in computing
the average time spent at j, namely limp_. % fOT 1x)=;dt, we may as well
have started our chain at j in the first place.

Now consider one typical cycle in the chain staring at j jumping away at
time S; and then returning to j at time R;. The average first jump time is
ES: = 1/q; while the average length of such as cycle is ER;. As the chain
repeats this procedure over and over again with the same statistics, we expect
(by a law of large numbers) that the average time spent at site j is given by

ESl o l/q] o 1
]ERj ]EjRj qj EjRj '

8.1 Birth and Death Processes

We have already discussed the basics of the Birth and death processes. To have
the existence of the process requires some restrictions on the Birth and Death
parameters which are discussed on p. 359 of the book. In general, we are not able
to find solve for the transition semi-group, e’ in this case. We will therefore
have to ask more limited questions about more limited models. This is what we
will consider in the rest of this section. We will also consider some interesting
situations which one might model by a Birth and Death process.

Recall that the functions, m; (t) = P (X (t) = j), satisfy the differential
equations

7o (t) = —Xomo (1) + pam (t)
71 (t) = Moo (t) — (A1 + pa) w1 () 4 pama (1)
o (t) = Ay (t) — (A2 + p2) m2 (¢) + pams (1)

Tn (t) = An—1Tn—1 () — (Ao + ftn) T () + pnr1 o (1) -
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Hence if are going to look for a stationary distribution, we must set 7; (t) =0
for all ¢ and solve the system of algebraic equations:

0= —Xomo + p17m1
0= Xomo — (A1 + p1) m1 + poms
0=Mm — (A2 + p2) m2 + p3ms

0= )\n—lﬂ-n—l - (An + ,U/n) Tp + Un+1Tn+1-

We solve these equations in order to find,

Ao
T = — T,
H1
A1+ Ao A1+ 1 Ao Ao
My=——""M — —NMg=—"—T9g— —Tp
H2 2 M2 1 2
_ Ao
12
Ao + Lg A1 Ao + p2 Ao A1 Ao
m=——""MT——M=—""""~——"T9g— ——70
M3 u3 M3 12 M3 1
AoA1 A2
= 7'('0
H1p2 3
AoA1I A .. A1
Ty = ————————— .
H1f2ft3 - - - Hn

This leads to the following proposition.

Proposition 8.5. Let 0, := % forn=1,2,.... and 0y := 1. Then

the birth and death process, {X (t)} with birth rates {)\j};io and death rates
{/Lj};il has a stationary distribution, , iff © ==Y ° 60, < co in which case,

T = — for all n.

e

Lemma 8.6 (Detail balance). In general, if we can find a distribution,
satisfying the detail balance equation,

WiQij = ﬂiji fOT all 7 7& j, (82)

then 7 is a stationary distribution, i.e. m1Q = 0.
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Proof. First proof. Intuitively, Eq. states that sites ¢ and j are always
exchanging sand back and forth at equal rates. Hence if all sites are doing this
the size of the piles of sand at each site must remain unchanged.

Second Proof. Summing Eq. on ¢ making use of the fact that
> Qji = 0 for all j implies, . m;Q;; = 0. ]

We could have used this result on our birth death processes to find the
stationary distribution as well. Indeed, looking at the rate diagram,

)\g )\1 )\2 An72 >\n71 )\n
0=1=2=3... =2 (n—-1) 2 n = (n+1),
M1 M2 M3 Hn—1 Hn Hn+1

we see the conditions for detail balance between n and n =1 are,

7Tn)\n = Tp+1MUn+1

T

which implies Totl = Au_
Tn

o Therefore it follows that,
Hn+41
1 - )\()
T
Ty MW A1 Ao

b)
o 1 7o H2 1

ﬂ _ Tn Tn—1 E _ )\nfl ﬁ&
0 Tn—1 Tpn—2 o Hn M2 [
_Aoh A
- —Un
M2 - o - oy

as before.

Lemma 8.7. For |z| <1 and a € R we have,

(1_x)_a:Za(a+1)...(a—|—k—1) k (8.3)

il v
k=0

where w := 1 when k = 0.

Proof. This is a consequence of Taylor’s theorem with integral remainder.
The main point is to observe that
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di (1-2)*=a(-z)~ "
T

(C;‘DQ (1-2) =a(@+1)(1—z)

k
<;lx> (lfx)foé:a(a+1)...(a+kf1)(17@7(@%)

and hence,

k
<j:z:> 1-—2) " smo=ala+1)...(a+k—1). (8.4)

Therefore by Taylor’s theorem,

1o =3 k(&) 0w s

k=0
which combined with Eq. (8.4)) gives Eq. (8.3). [

Ezample 8.8 (Exercise 4.5 on p. 377). Suppose that A\, =0 < 1 and u,, = g

In this case,

971

Op = 15— =(n+1)0"
TR

N|—=
win

and we must have,
(n+1)0™
Tn = &S 7 1 15 on"
Zn:O (TL + 1) 9n

We can simplify this answer a bit by noticing that

Nt d & d 0 (1—-6)+06 1
E n+1 9":—5 gt = — = = .
n:O( ) do n=0 dg1—9 (1_9)2 (1_€>2

(Alternatively, apply Lemma with @ = 2 and « = 6. )Thus we have,
= (1-0)>n+1)0"

Ezample 8.9 (Ezercise 4.4 on p. 877). Two machines operate with failure rate
1 and there is a repair facility which can repair one machine at a time with rate
A. Let X (t) be the number of operational machines at time ¢. The state space
is thus, {0, 1,2} with the transition diagram,
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66 8 Long time behavior

)\0 )\1
0=12=2
M1 M2

where A\g = A\, A\; = A, p2 = 2p and g7 = p. Thus we find,

Ao A
T, — — T — —To

M1 K

A2 1\?
T - -
2 2M2 0 2N2 0

so that
A 1A
l=my+m+m=|14—+=-— | 7.
w H

So the long run probability that all machines are broken is given by
RNRPS -
Ty = —+ == .
0 poo2pf
If we now suppose that only one machine can be in operation at a time

(perhaps there is only one plug), the new rates become, A\g = A\, \y =\, po = i
and p; = p and working as above we have:

Ao A
T = —Tg = —T
H1
A2 A\?
o = —5Tg = —57Q-
I w2

so that
A A2
l=my+m +m = 1_’_7_;'_72 -
nop

So the long run probability that all machines are broken is given by
A\
T = (]. + — + 2) .
pnoop

Ezample 8.10 (Telephone Exchange). Consider as telephone exchange consist-
ing of K out going lines. The mean call time is 1/p and new call requests arrive
at the exchange at rate A. If all lines are occupied, the call is lost. Let X ()
be the number of outgoing lines which are in service at time ¢ — see Figure 8.1
We model this as a birth death process with state space, {0,1,2,..., K} and
birth parameters, A\, = A for k = 0,1,2,..., K — 1 and death rates, u = ku
for k=1,2,..., K, see Figure In this case,

A A\? A3 K
B—1, 0 =2, = 2 g =2 O —
sy V1 /147 2 2[1/2’ 3 3. /143, y VK K'MK
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N Calks pen Woun’ : l<

b ok lnes

Fig. 8.1. Schematic of a telephone exchange.

X\ \ N
d /ﬂ"/—ﬂ’ ,..--....?'-‘ ’]4
M M IN Y\

Fig. 8.2. Rate diagram for the telephone exchange.

so that
K 1 /\\*
O := g i () >~ M for large K.

1/ 1 /A
=0 1= (Z2) == (Z2) e M~
=0 (u) k! (u) ‘

For example, suppose A = 100 calls / hour and average duration of a connected
call is 1/4 of an hour, i.e. 4 = 4. Then we have

and hence

L (25)%
s = % = (.144.
ko 71 (25)

so the exchange is busy 14.4% of the time. On the other hand if there are 30 or
even 35 lines, then we have,

1 30
501 (25) ~

T30 = =30 7 =0.053
k=0 71 (25)
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and

~

35. (25)%°

iso 1 (25)"
and hence the exchange is busy 5.3% and 1.2% respectively.

T35 =

8.1.1 Linear birth and death process with immigration

Suppose now that A, = nA + a and u, = nu for some A, > 0 where A and u
represent the birth rates and deaths of each individual in the population and a
represents the rate of migration into the population. In this case,

ala+A)(a+2\)...(a+(n—1)N)
nlum
LAY EEED (D) (G )
1 n! '
Using Lemma with & = a/X and © = \/u which we need to assume is less

than 1, we find
00 A —a/A
O:=) 0, = (1—)
n=0 ©

0 =

and therefore,

o = (1_>\>a/A S(841)(242)... (44 (—1) (A>n

u n! I

In this case there is an invariant distribution iff A < p and a > 0. Notice that
if @ = 0, then 0 is an absorbing state so when A < p, the process actually dies
out.

Now that we have found the stationary distribution in this case, let us try
to compute the expected population of this model at time t.

Theorem 8.11. If

M(t):=RE[X ()] =) nP(X(t)=n)= > nm,(t)

be the expected population size for our linear birth and death process with im-
migration, then

M0 =55 (O -

which when A = p should be interpreted as

1) + M (0) etO—n)

M (t) = at + M (0).
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Proof. In this proof we take for granted the fact that it is permissible to
interchange the time derivative with the infinite sum. Assuming this fact we
find,

Emrn
n=1

= (a+A(n—1)m 1 (t)
53”( m+*n+MMWM®+uO%+meMﬂ>

n=1

p”qg

n(a+A(n—1) 71 (1)

3
Il

e

n(a+ An+ un) T, (t) + Z;m(n—l— 1) mpg (2)

(n+1) (a4 n)m, (1)

M85

S

=0

=Y n(a+An+pn)m, () + Y p(n—1)nm, (t)
n= n=2

=amo (t) + [2(a+A) = (a+ A+ p)]m ()

—1—2[(n—l—1)(a+)\n)+u(n—l)n—n(a—i—)\n—i—,un)]wn(t)

n=2
=amg (t) + [a + X — p] 71 ( +Z [(a+ An) — un] m, (¢)
=amy ( i [a+ An — pn]m, (t)
:i[aJr)\n—;m]wn(t) =a+A—p)M().
n=0
Thus we have shown that
M (t) = a+ (A —p) M (t) with M (0) = imn (0),

where M (0) is the mean size of the initial population. Solving this simple
differential equation gives the results. ]
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8 Long time behavior

8.2 What you should know for the first midterm

1. Basics of discrete time Markov chain theory.

You should be able to compute P (Xy =z, ..., X, = x,) given the
transition matrix, P, and the initial distribution as in Proposition [3.2}
You should be able to go back and forth between P and its jump dia-
gram.

Use the jump diagram to find all of the communication classes of the
chain.

Know how to compute hitting probabilities and expected hitting times
using the first step analysis.

Know how to find the invariant distributions of the chain.

Understand how to use hitting probabilities and the invariant distribu-
tions of the recurrent classes in order to compute the long time behavior
of the chain.

Mainly study the examples in Section and the related homework
problems. Especially see Example [£.33] and Exercises [0.6] -

2. Basics of continuous time Markov chain theory:

a)

b)

Page:

You should be able to compute P; (Xy, = i1, Xt, = i2,..., X, = in)
given the Markov semi-group, P (t), as in Theorem

You should understand the relationship of P (t) to its infinitesimal gen-
erator, Q. Namely P (t) = €' and

d
—|oP (t) =
LP ) =Q
For example, if
1 2 3
P(t)= 672t+3673t+§672t 75673t+§ 9
-3 -3
—3¢€ t+ 0 3€ t+§ 3
then
. 10 1
Q=P0)=|1 -2 1
2 0 -2

Note: you will not be asked to compute P (t) from @ but you should
be able to find @ from P (t) as in the above example.

You should know how to go between the generator () and its rate dia-
gram.
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You should understand the jump hold description of a continuous time
Markov chain explained in Section In particular in the example
above, if S; = inf {t > 0: X (t) # X (0)} is the first jump time of the
chain, you should know that, if the chain starts at sites 1,2, or 3, then
S1 is exponentially distributed with parameter ¢ = 1, g2 = 2, q3 = 2
respectively, i.e.

P(S; > /X (0) = i) = e %,

where q; = —Q“
You should also understand that

@iy
qi

so that in this example, P(Xg, = 3|X (0) = 2) = 1/2 in the above

example.

You should understand how to associate a rate diagram to @, see the

example section [6.3]

You should be familiar with the basics of birth and death processes.

i. Know how to compute the invariant distribution, Proposition 8.5

ii. Know the relationship of the invariant distribution to the long time
behavior of the chain, Theorem

iii. Understand the basics of the repairman models. In particular see
Example and homework Problem VI.4 (p. 377 —) P4.1.

P(Xs, = j|X(0) =1) =
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