Bruce K. Driver

Math 180C (Introduction to
Probability) Notes

April 14, 2008 File:180Notes.tex



Contents

Part Math 180C

0 Math 180C Homework Problems| .......................... i
0.1 Homework #1 (Due Monday, April 7)[................... ... i

0.2 Homework #2 (Due Monday, April 14)[..................... iv

0.3 Homework #3 (Due Monday, April 21)[..................... v

|IL  Independence and Conditioning| ........................... 1
L1 Borel Cantelli Lemmag . ........cooveiiii .. 2

[1.2 Independent Random Variables| ........................ ... 4

I3 Conditioning]. . . . ... 6

2 _Markov Chains Basics| ............... ... ... ... .. L 9
2.1 First Step Analysis| ... 16

2.2 First Step Analysis Examples| .......... ..o o i 24
[2.2.1 A rat in a maze example Problem 5 on p.131)......... 26

[2.2.2 A modification of the previous maze|................. 29

13 Long Run Behavior of Discrete Markov Chains|............ 31
B.1 The Main Resultsl ........... . 32
[3.1.1 Finite State Space Remarks| ..................... ... 41

B2 Examples|. . ... 42

[3-3 The Strong Markov Property] ..., 49
8.4 Irreducible Recurrent Chainsl. .......... ... ... ... ... ... 54

4 Continuous Time Markov Chain Notionsl .................. 59
[ Finite State Space Theory]................coviiiinnnnnnnnn. 67




0

Math 180C Homework Problems

The problems from Karlin and Taylor are referred to using the conventions.
1) I1.1: E1 refers to Exercise 1 of section 1 of Chapter II. While I1.3: P4 refers
to Problem 4 of section 3 of Chapter II.

0.1 Homework #1 (Due Monday, April 7)

Exercise 0.1 (2nd order recurrence relations). Let a,b, ¢ be real num-
bers with a # 0 # ¢ and suppose that {y,} - solves the second order

homogeneous recurrence relation: R
Yn+1 + byn + cyn—1 = 0. (0.1)
Show:
1. for any A € C,
aX™t DA + AT = A () (0.2)

where p (\) = aA\? + b + c.
2. Let Ay = =bEvbi—dac V;f_‘l“c be the roots of p and suppose for the moment that
b2 — 4ac # 0. Show
Yn = ALN} + A_NT

solves Eq. for any choice of A, and A_.
3. Now suppose that b* = 4ac and \g := —b/ (2a) is the double root of p ()).
Show that
Yp = (AO + A1n) )\8

solves Eq. (0.1]) for any choice of Ag and A;. Hint: Differentiate Eq. (0.2))
with respect to A and then set A = Ag.

4. Show that every solution to Eq. (0.1)) is of the form found in parts 2. and
3.

In the next couple of exercises you are going to use first step analysis
to show that a simple unbiased random walk on Z is null recurrent. We let
{X,},7 o be the Markov chain with values in Z with transition probabilities
given by

P(Xpy1=jx1|X,=j)=1/2foralln € Ny and j € Z.
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Further let a,b € Z with a < 0 < b and
Top :=min{n: X, € {a,b}} and T}, :=inf {n: X,, = b}.

We know by Proposition that Eq [Tg,5] < oo from which it follows that
P(Top <oo)=1forala<0<b.

Exercise 0.2. Let w; := P; (Xr1,, =b) := P (Xr,, = b/ X0 =) .
1. Use first step analysis to show for a < j < b that

1
wj = 5 (W1 +wj-1) (0.3)
provided we define w, = 0 and wy = 1.
2. Use the results of Exercise to show

1

Pj (Xr,, =b) =wj =

(U —a). (0.4)

3. Let
T - {min {n: X, =0b} if {X,} hits b
b=

00 otherwise

be the first time {X,} hits b. Explain why, { X7, , = b} C {T} < co} and
use this along with Eq. (0.4) to conclude that P; (T < 0c0) = 1 for all
J < b. (By symmetry this result holds true for all j € Z.)

Exercise 0.3. The goal of this exercise is to give a second proof of the fact
that P; (T, < oo) = 1. Here is the outline:

1. Let w; := P; (T} < 00). Again use first step analysis to show that w;
satisfies Eq. (0.3) for all j with w;, = 1.
2. Use Exercise to show that there is a constant, ¢, such that

w;j=c(j—0b)+1forall jeZ

3. Explain why ¢ must be zero to again show that P; (T < co) = 1 for all
jEZLL.
Exercise 0.4. Let T =T, and u; := E;T :=E[T|X, = j].

1. Use first step analysis to show for a < 7 < b that

1
U; = 5 (Uj+1 + ’U,jfl) +1 (05)

with the convention that u, = 0 = uy.
2. Show that
Uj :A0+A1j—j2 (06)

solves Eq. (0.5)) for any choice of constants Ay and A;.
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3. Choose Ay and A; so that u; satisfies the boundary conditions, u, =0 =
up. Use this to conclude that

EjTop=—ab+ (b+a)j—j*=—a(b—7)+bj—j>  (0.7)

Remark 0.1. Notice that T, 1 T, = inf{n: X, =50} as a | —oo, and so
passing to the limit as @ | —oo in Eq. (0.7)) shows

E;Ty = oo for all j <b.

Combining the last couple of exercises together shows that {X,} is null -
recurrent.

Exercise 0.5. Let T'=T;. The goal of this exercise is to give a second proof
of the fact and u; := E;T = oo for all j # b. Here is the outline. Let u; :=
E;T € [0, 00] = [0,00) U {c0}.

1. Note that uy = 0 and, by a first step analysis, that u; satisfies Eq. (0.5)
for all j # b — allowing for the possibility that some of the u; may be
infinite.

2. Argue, using Eq. , that if u; < oo for some j < b then u; < oo for all
1 < b. Similarly, if u; < co for some j > b then u; < oo for all i > b.

3.1f u; < oo for all j > b then u; must be of the form in Eq. for
some Ay and A; in R such that uw, = 0. However, this would imply,
u; = E;T — —o0 as j — oo which is impossible since E;T" > 0 for all
j. Thus we must conclude that E;T = u; = oo for all j > b. (A similar
argument works if we assume that u; < co for all j < b.)
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0.2 Homework #2 (Due Monday, April 14)

o IV.1(p. 208 -): E5, E8, P1, P5
o IV.3(p. 243 -): El, E2, E3,
o IV.4 (p.254 —): E2



0.3 Homework #3 (Due Monday, April 21) v

0.3 Homework #3 (Due Monday, April 21)

Exercises [0.6] - [0.9] refer to the following Markov matrix:

(0.8)

O U W N =

We will let {X,,},~, denote the Markov chain associated to P.

Exercise 0.6. Make a jump diagram for this matrix and identify the recur-
rent and transient classes. Also find the invariant destitutions for the chain
restricted to each of the recurrent classes.

Exercise 0.7. Find all of the invariant distributions for P.

Exercise 0.8. Compute the hitting probabilities, hs = Ps (X, hits {3,4})
and h6 = P6 (Xn hits {3,4}) .

Exercise 0.9. Find lim,, o, Ps (X,, = j) for j =1,2,3,4,5,6.

Exercise 0.10. Suppose that {T}},_, are independent exponential random
variables with parameters {q;},_, , i.e. P (T} >t) = e~ %' for all t > 0. Show
that T := min (71, T, ...,T,) is again an exponential random variable with
parameter ¢ = Y ;_, qk.

Exercise 0.11. Let {T}},_, be as in Exercise Since these are continuous
random variables, P (T, =T};) = 0 for all k # j, i.e. there is no chance that
any two of the {Ty},_, are the same.
Find
P(Th <min(Ty,...,T,)).

Hints: 1. Let S := min (T,...,Ty), 2. write P (T} < min (Ts,...,T;,)) =
E[1l7,<s], 3. use Proposition above.

Exercise 0.12. Consider the “pure birth” process with constant rates, A > 0.
In this case S = {0,1,2,...} and if 7 = (mp,m1,m2,...) is a given initial
distribution. In this case one may show that 7 (t), satisfies the system of
differential equations:
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7'1'0 (t) = —/\7T0 (t)
7'1'1 (t) = )\71'0 (t) — )\7‘(’1 (t)
’/:TQ (t) = )\7T1 (t) - )\7’(’2 (t)

fon () = MTn_1 (£) — Amrp (£)

Show that the solution to these equations are given by

0 (t) = 7T06_>\t

M)
o (t) = e M (’R’Q( 2|) + m At + 7r2>

= At)*
(1) =e A <];07rn_k(k:!) )

Note: There are two ways to do this problem. The first and more interesting
way is to derive the solutions using Lemma The second is to check that
the given functions satisfy the differential equations.
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Independence and Conditioning

Definition 1.1. We say that an event, A, is independent of an event, B, iff
P (A|B) = P (A) or equivalently that

P(ANB)=P(A)P(B).

We further say a collection of events {AJ}]’GJ are independent iff

P(Njend;) =[] P(4))

Jj€Jo
for any finite subset, Jy, of J.
Lemma 1.2. If {A;},.; is an independent collection of events then so is
{4, 45}, -
Proof. First consider the case of two independent events, A and B. By
assumption, P (AN B) = P(A)P(B). Since

ANB*=A\B=A\(BnA),
it follows that

P(AnB®)=P(A)—P(BNA)=P(A)—P(A)P(B)
=P(A)(1-P(B))=P(A)P(B°).
Thus if {A, B} are independent then so is {A, B¢}. Similarly we may show
{A¢, B} are independent and then that {A¢, B¢} are independent. That is
P (A®N B%) = P(A°) P (B°) where ¢,4 is either “nothing” or “c.”
The general case now easily follows similarly. Indeed, if {A;,...,A,} C
{A;};c; we must show that

P(AT*N---NAr) =P (AY) ... P(ASM)
where ¢; = c or €5 = “ 7. But this follows from above. For example,
{A1N---NA,_1,A,} are independent implies that {A; N--- N A, _1, AS } are
independent and hence
P(Ain---NA, 1NA)=P(A1N---NA,_1)P(AS)
=P(A))...P(A,_1) P(AS).

n

Thus we have shown it is permissible to add A§ to the list for any j € J. =
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Lemma 1.3. If {A,,L}Zo:l is a sequence of independent events, then
00 N

P 4) =[] P(An) = lJim ] P(An).

n=1

N—oo
n=1

Proof. Since NY_;A,, | N>, A, it follows that
N
o T N ERT
P(MZiAn) = Jim P (N30,4,) = ngnmgl P(A,),

where we have used the independence assumption for the last equality. [ ]

1.1 Borel Cantelli Lemmas

Definition 1.4. Suppose that {A,},~_, is a sequence of events. Let

{4, i.0.}:= {i la, = oo}

denote the event where infinitely many of the events, A,, occur. The abbrevi-
ation, “i.0.” stands for infinitely often.

For example if X,, is H or T depending on weather a heads or tails is
flipped at the n'™ step, then {X, = H i.0.} is the event where an infinite
number of heads was flipped.

Lemma 1.5 (The First Borell — Cantelli Lemma). If {A,} is a sequence
of events such that Y~ P (A,) < co, then

P({A, i.0.}) = 0.

Proof. Since

it follows that Y~ 14, < oo almost surely (a.s.), i.e. with probability 1 only
finitely many of the {A,} can occur. |

Under the additional assumption of independence we have the following
strong converse of the first Borel-Cantelli Lemma.

Lemma 1.6 (Second Borel-Cantelli Lemma). If {A,} ~, are indepen-
dent events, then

Y P(A)=00 = P({A,io})=1 (1.1)
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Proof. We are going to show P ({A,, i.0.}“) = 0. Since,

{A, 10} = {i 1a, = oo} = {i 1la, < oo}

n=1

we see that w € {A, i.0.}° iff there exists n € N such that w ¢ A, for all
m > n. Thus we have shown, if w € {4,, i.0.}° then w € B,, := N>, AS, for
some n and therefore, {A,, i.0.}* = U | B,. As B, 1 {4, i.o. } we have

P({A, i0.}%) = lim P (By).

But making use of the independence (see Lemmas [1.2] and and the esti-
mate, 1 —x < e~ 7, see Figure below, we find

P (By) :P(mm>n m) H P (A7) = H [1 =P (An)]

m>n m>n

<H —P(Am *exp ZP m) | =e > =0.

m>n m>n

x

Fig. 1.1. Comparing e™* and 1 — .

]
Combining the two Borel Cantelli Lemmas gives the following Zero-One
Law.

Corollary 1.7 (Borel’s Zero-One law). If {A,} ~, are independent

events, then
oy JOiY Y P(A,) <o
P (A, io.)= {1 IS P A = 0o
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Ezample 1.8. If {X,,} -, denotes the outcomes of the toss of a coin such that
P(X,=H)=p>0,then P(X,, =H io.)=1

Example 1.9. If a monkey types on a keyboard with each stroke being in-
dependent and identically distributed with each key being hit with positive
probability. Then eventually the monkey will type the text of the bible if she
lives long enough. Indeed, let S be the set of possible key strokes and let
(s1,...,sn) be the strokes necessary to type the bible. Further let {X,},~,
be the strokes that the monkey types at time n. Then group the monkey’s
strokes as Yy := (XkN+1, R X(k+1)N) . We then have

N
P(Yy=(s1,...,8Nn H X, =s;)=:p>0.
Jj=1
Therefore,
ZP (Y = (s51,...,8N)) = 0
k=1
and so by the second Borel-Cantelli lemma,

P{Y,=(s1,...,sn)} 1.o. k) =1.

1.2 Independent Random Variables

Definition 1.10. We say a collection of discrete random variables, {X;} . jeg
are independent if

P(Xj =x1,....X;, =x,) = P(Xj, =21) -+ P(Xj, = an) (1.2)
for all possible choices of {ji,...,jn} C J and all possible values xy, of X, .

Proposition 1.11. A sequence of discrete random variables, {Xj}jeJ, 18 in-
dependent iff

Elf1 (X5) - fo (X)) =ELf1 (X)) Efn (X5,)] (1.3)
for all choices of {j1,...,dn} C J and all choice of bounded (or non-negative)
functions, fi1,..., fn. Here n is arbitrary.

Proof. (=) If {X;} are independent then

jeJ >’

E[f(Xj,,...,X;.)] = Z f@y,. .2, P(Xj, =21,...,X;, =2,)

5$7L

Z f(@y,. . m,) P(Xj, =21) - P(Xj, = ).

L1yeeeyn
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Therefore,

E(fi (X5,) - fo (X)) = D fil@)... ful(@n) P(Xj, =21)-- P (X,

£ PR

= <Z fi (@) P (X, = 371)) <Zf($n)P(Xjn

=E[fi (X5)]. . Elfn (X;,)]
(<=) Now suppose that Eq. (I.3) holds. If f; := d,, for all j, then

=z,)

= gjn)>

Elfi (Xj5) - fo (X5)] = E0w, (Xj,) - 00, (X5,)] = P(Xy, = 21,..., Xj, = 20)

while

Therefore it follows from Eq. 1) that Eq. lb holds, i.e. {Xj}jGJ is an
independent collection of random variables. ]

Using this as motivation we make the following definition.

Definition 1.12. A collection of arbitrary random variables, {X;} are

independent iff

Elfr (X50) - o (X))l = E[f1 (X5 E[fa (X5,)]

for all choices of {j1,...,4n} C J and all choice of bounded (or non-negative)
functions, fi,..., fa-

jeJ’

Fact 1.13 To check independence of a collection of real valued random vari-
ables, {X;},c ;. it suffices to show
P(le <ty,...,X;, < ty) = P(le < tl)...P(Xjn <tn)

for all possible choices of {j1,...,jn} C J and all possible t; € R. More-
over, one can replace < by < or reverse these inequalities in the the above
expression.

One of the key theorems involving independent random variables is the
strong law of large numbers. The other is the central limit theorem.

Theorem 1.14 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {X,,},~, are i.i.d. random variables and let S, == X1 + - + X,,.
Then there exists p € R such that %Sn — u a.s. iff X, is integrable and in
which case EX,, = u.

Remark 1.15.1f E|X;| = oo but EX; < oo, then 1S5, — oo a.s. To prove
this, for M > 0 let

X, if X, <M

Mo —
X, .—mln(Xn,M)—{M X, > M
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and SM = > XM It follows from Theorem that %Sy — uM =
EXM as.. Since S,, > SM | we may conclude that

... S .1
liminf =2 > liminf 75’,]1\4 = ,uM a.s.
n—oo n n—oo M

Sn

Since pM — 0o as M — oo, it follows that liminf,,_ n = 00 a.s. and hence

that lim,,_, o 57" = 00 a.s.

1.3 Conditioning

Suppose that X and Y are continuous random variables which have a joint
density, p(x,y) (z,y). Then by definition of p x ), we have, for all bounded
or non-negative, f, that

B(F (V)] = [ [ @) oy (o) dody (1.4
The marginal density associated to Y is then given by
py (y) = /p(x,y> (z,y) du. (1.5)
Using this notation, we may rewrite Eq. as:
sl )= [ [ [ 1@ 228 o a0
py (y)

The term in the bracket is formally the conditional expectation of f (X,Y)
given Y = y. (The technical difficulty here is the P (Y =y) = 0 in this
continuous setting. All of this can be made precise, but we will not do this
here.) At any rate, we define,

B (6 Y =3l =EIf ()Y =4 = [ 7 @) de
in which case Eq. may be written as
E[f (X,Y)] = / E[f (X,Y)|Y = 4] py () dy. (L.7)

This formula has obvious generalization to the case where X and Y are random
vectors such that (X,Y’) has a joint distribution, p(x y). For the purposes of
Math 180C we need the following special case of Eq. (|1.7))

Proposition 1.16. Suppose that X and Y are independent random wvectors
with densities, px (x) and py (y) respectively. Then

E[f (X,V)] = / E[f (X)) oy (4) dy. (18)
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Proof. The independence assumption is equivalent of p(x y)(z,y) =
px (z) py (y) . Therefore Eq. (1.4) becomes

BIF Y = [ [ £ @) ox @) pr () dedy
:/Uf(z,y)px(w)dx py (y) dy
:/E[f()@y)]-py (y) dy.

Remark 1.17. Proposition [I.16] should not be surprising based on our discus-
sion leading up to Eq. (1.8). Indeed, because of the assumed independence of
X and Y, we should have

Ef (X, V)Y =yl =E[f (X,y)[Y =y] =E[f (X,y)].

Using this identity in Eq. (1.7) gives Eq. (L.8).
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Markov Chains Basics

For this chapter, let S be a finite or at most countable state space and
p:S xS —[0,1] be a Markov kernel, i.e.

Zp(x,y) =1forallies. (2.1)
yeS
A probability on S is a function, 7 : S — [0, 1] such that ) o7 (z) = 1.
Further, let Ng = NU{0},
.= SNO = {w: (S(),Sl,...) 185 € S},
and for each n € Ny, let X, : {2 — S be given by
X0 (50,81,...) = sp.

Definition 2.1. A Markov probabilitﬂ P, on (2 with transition kernel, p,
1s probability on §2 such that

P(Xn+1 = $n+1‘X0 = l’o,Xl = T1,... ,Xn = l’n)
=P (Xn+1 = $n+1|Xn = xn) = p(xnvxn—i-l) (22)
where {x]} + are allowed to range over S and n over Ng. The iden-

tity in Eq. (-) is only to be checked on for those x; € S such that
P(Xo—xo,Xl—xl,... anxn)>0

If a Markov probability P is given we will often refer to {X,} ~, as a
Markov chain. The condition in Eq. (2.2) may also be written as,

E[f(Xn+1) [ Xo, X1, ..., Xn] = E[f(Xn41) | Xn] ZP noy) f(y) (23)
yeS

for all n € Ny and any bounded function, f: S — R.

! The set §2 is sufficiently big that it is no longer so easy to give a rigorous definition
of a probability on 2. For the purposes of this class, a probability on {2 should
be taken to mean an assignment, P (A) € [0, 1] for all subsets, A C 2, such that
P(@)=0,P(£2)=1, and

=2 Pl

whenever A = Uy A, with A, N A, = (/) for all m # n. (There are technical
problems with this definition which are addressed in a course on “measure theory.”
We may safely ignore these problems here.)
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Proposition 2.2. If P is a Markov probability as in Definition and
m(x) = P (Xo=ux), then for alln € Ny and {z;} C S,
P(Xo=x0,...,Xpn =apn) =7 (x0)p (x0,21) ... 0 (Tpn—1,Tn) . (2.4)

Conversely if m : S — [0,1] is a probability and {X,},., is a sequence of
random variables satisfying Eq. foralln and {z;} C S, then ({X,}, P,p)
satisfies Definition [2-1]

Proof. ( = )We do the case n = 2 for simplicity. Here we have
P (Xo =20, X1 =21,X2 = 22) = P (X2 = 12| Xo = w0, X1 = 21,) - P (X0 =20, X1 = 71)
=P (Xo =22|Xy = 1,) - P (Xo = 20, X1 = 21)
:p(l‘l,mg) 'P(Xl = Z‘1|X0 = Qjo)P(Xo = .230)
= p (21, 22) - p (20, 1) 7 (T0) .
(«<=) By assumption we have
P(Xpt1 = 2n41|Xo = 20, X1 = 21,..., Xpy = T0)

o Tr(xo)p(x(]vxl)~~~p(mn717xn)p(xnuxn+1) o
- —p(xnvl'nqu)
7 (z0) p (€0, 1) .. P (Tn—1,Zn)

provided the denominator is not zero. [

Fact 2.3 To each probability m on S there is a unique Markov probability, Py,
on 2 such that P (Xo =x) = w () for all x € X. Moreover, Py is uniquely
determined by Eq. (2.4]).

Notation 2.4 If
_ _Jlifz=y
w) =0 ={ o 422, 25)
we will write P, for Py. For a general probability, m, on S we have
Pr=) n(z)Ps. (2.6)
resS

Notation 2.5 Associated to a transition kernel, p, is a jump graph (or
jump diagram) gotten by taking S as the set of vertices and then for x,y € S,
draw an arrow from x to y if p(x,y) > 0 and label this arrow by the value

p(z,y).
Ezample 2.6. Suppose that S = {1,2,3}, then

123
01071

P={1/201/2]2
100 |3

has the jump graph given by
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Fig. 2.1. A simple jump diagram.
L
|

o >0 2 "'/—7/7—;2
3

Vi
N
L
3 )
©
L
3

Fig. 2.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

Ezample 2.7. The transition matrix,

1 2 3
1/41/21/47 1

P=1]1/2 0 1/2]|2
1/31/31/3 3

is represented by the jump diagram in Figure

If ¢ : S xS — [0, 1] is another probability kernel we let p-¢q : S x .S — [0,1]
be defined by

(p-q)(z,y) = Zp (z,2)q(z,y). (Matrix Multiplication!) (2.7)
z€8
n - times
We also let p" :==p-p----- p. If m:5 —[0,1] is a probability we let (7 - ¢q) :
S — [0,1] be defined by
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() (y) =Y _m(@)q(z,y)

zeS

which again is matrix multiplication if we view 7 to be a row vector. It is easy
to check that 7 - ¢ is still a probability and p - ¢ and p™ are Markov kernels.

A key point to keep in mind is that a Markov process is completely specified
by its transition kernel, p : S x .S — [0,1]. For example we have the following
method for computing P, (X, = y).

Lemma 2.8. Keeping the above notation, P, (X, =y) = p" (x,y) and more
generally,

Pr(Xn=y)=> m(x)p"(z,y)=(7-p")(y).
zeS

Proof. We have from Eq. (2.4]) that
P,(Xn=y)= Y, P(Xo=wz,X1=21,...,Xp 1 =20 1,X, =)
T, Tn—1E€S

= > S(z0)p(@o,w1)...p(Tn-2,n1)p(Tn-1,9)

TO,-. s Tp—1E€S

= Z p($,131)~-~p($n—2a$n—1)p($n—1ay) :pn (fﬁay)-
T1,0.,Xn1E€S

The formula for P, (X,, = y) easily follows from this formula. [ ]
Definition 2.9. We say that m : S — [0,1] is a stationary distribution for
P, if

P, (X,=xz)=w(z) forallz €S and n € N.

Since Py (X,, = x) = (7 - p") (x) , we see that 7 is a stationary distribution
for p iff 7p™ = p for all n € N iff 7p = p by induction.

Ezample 2.10. Consider the following example,

12 3
1/21/2 0 71

P=1]0 1/21/2]|2
1/21/2 0 |3

with jump diagram given in Figure We have

2

1/21/2 0 L1l
PP=10 1/21/2| = tit
1/21/2 0 ;;;

and
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j‘Ji__Z.

¥/

3

1/21/2 0 134
PP=10 1/21/2| = 111
1/21/2 0 %;%

To have a picture what is going on here, imaging that = = (my,ma, 73)
represents the amount of sand at the sites, 1, 2, and 3 respectively. During
each time step we move the sand on the sites around according to the following
rule. The sand at site j after one step is >, mp;;, namely site ¢ contributes
pij fraction its sand, m;, to site j. Everyone does this to arrive at a new
distribution. Hence 7 is an invariant distribution if each 7; remains unchanged,
i.e. m = wP. (Keep in mind the sand is still moving around it is just that the
size of the piles remains unchanged.)

As a specific example, suppose m = (1,0,0) so that all of the sand starts
at 1. After the first step, the pile at 1 is split into two and 1/2 is sent to 2
to get m = (1/2,1/2,0) which is the first row of P. At the next step the site
1 keeps 1/2 of its sand (= 1/4) and still receives nothing, while site 2 again
receives the other 1/2 and keeps half of what it had (= 1/4 4 1/4) and site 3
then gets (1/2-1/2 = 1/4) so that w2 = [ 3 7| which is the first row of P2.
It turns out in this case that this is the invariant distribution. Formally,

111 1/21/2 O 111
[232]| 0 1/21/2| =[353]
1/21/2 0

In general we expect to reach the invariant distribution only in the limit as
n — 00.

Notice that if 7 is any stationary distribution, then 7 P™ = 7 for all n and
in particular,

111
7T:7TP2:[7T17727T3] %%% :[i%i]
424

Hence [i % %] is the unique stationary distribution for P in this case.
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Ezample 2.11 (§3.2. p108 Ehrenfest Urn Model). Let a beaker filled with a
particle fluid mixture be divided into two parts A and B by a semipermeable
membrane. Let X, = (# of particles in A) which we assume evolves by
choosing a particle at random from A U B and then replacing this particle in
the opposite bin from which it was found. Suppose there are N total number
of particles in the flask, then the transition probabilities are given by,

0 ifj¢{i—1,i+1}

pij =P(Xpp1 =7 Xy =1)= Aﬁif j=i—1
if j=i+ 1

For example, if N = 2 we have

012

01010
(pij)=11/201/2|1

010 |2

01 2 3

01 0 070

(i) = 1/3 0 2/3 0 |1
Pii) =10 2/3 0 1/3]2
0 0 1 0|3

In the case N = 2,

[0 107% [L021]
1/201/2| ={010
010 104
r0107% [o10]
1/201/2| =|301
| 010 (010 ]

and when N = 3,
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[\~]
1

[0 1 0 0] $020
1/302/30 | _(0Z02
02/301/3 |20%0

|0 0 1 0 | (0203

01 0 01 [oZIo 2
1/30 230 | _|£020
02/301/3  |02Z20L

|0 0 1 0 | 2 0Z0

[0 1 0 01% [0007500 025]
1/3 0 2/3 0 | . |0.25 0.0 0.75 0.0
02/3 0 1/3] ~ |00 07500 025

0 0 1 0 | 1025 0.0 0.75 0.0 |

[0 1 0 071* 0250007500 ]

1/3 0 2/3 0 | . |000.7500 025
02/3 0 1/3| ~ 025 0.0 0.75 0.0

0 0 1 0 | | 0.0 0.75 0.0 0.25 |
0 1 0 071" T[02500 075 0.0

1/3 0 2/3 0 ~ | 0.0 0.75 0.0 0.25
02/3 0 1/3] ~ [02500 075 0.0
0 0 1 0 0.0 0.75 0.0 0.25

We also have
110 07" [-11 00
1 2 2
. tr 3 —1 3 0 o 1 -1 3 0
(PI)*og—lg 10 211
00 1 -1 00 % -1
and
1
Nul((P—J)“): g
1
Hence if we take, m = % [1 33 1] then
01 0 0
1 1/3 0 2/3 0 | 1 B
P = [1331] |7 2/3 0 1/3 =c[1331] =
0 0 1 0

is the stationary distribution. Notice that

15
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0.0 0.75 0.0 0.25 0.25 0.0 0.75 0.0

1, a5 26\ ~ 1 |0.25 0.0 0.75 0.0 11 0.0 075 0.0 0.25
2 (P +r )_ 21 0.0 0.75 0.0 0.25 +§ 0.25 0.0 0.75 0.0
0.25 0.0 0.75 0.0 0.0 0.75 0.0 0.25

0.125 0.375 0.375 0.125 s

0.125 0.375 0.375 0.125

0.125 0.375 0.375 0.125
0.125 0.375 0.375 0.125

SIS

2.1 First Step Analysis

We will need the following observation in the proof of Lemma below. If
T is a Ny U {oo} — valued random variable, then

E,T =E, i lner = iEILKT = i P, (T >n). (2.8)
n=0

n=0 n=0

Now suppose that S is a state space and assume that S is divided into two
disjoint events, A and B. Let
T :=inf{n >0: X, € B}

be the hitting time of B. Let Q := (p (2,9)), yca and R := (p(2,¥))1ca, yen
so that the transition “matrix,” P = (p(z,y)), s may be written in the
following block diagonal form:;

AB
_|QR| _|QRA
P_[* *:|_|:>k *]B'

Remark 2.12. To construct the matrix @ and R from P, let P’ be P with the
rows corresponding to B omitted. To form @ from P’, remove the columns
of P’ corresponding to B and to form R from P’, remove the columns of P’
corresponding to A.

Ezample 2.13. Suppose that S ={1,2,...,7}, A={1,2,4,5,6}, B={3,7},
and
1 2 3 4 5 6 7

[0 1/2 0 1/2 0 0 0]
1/3 0 1/3 0 1/3 0 0
01/20 0 0 1/2 0
P=11/30 0 0 1/3 0 1/3
01/3 0 1/3 0 1/3 0
0 0120 1/2 0 0
1 00 01 0 0 0

N O O Wi
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Following the algorithm in Remark leads to:

1 23 4567
[0 1/2 0 1/20 0 011
1/3 0 1/3 0 1/3 0 0 |2
P=1(1/30 0 0 1/3 0 1/3]|4,
0 1/3 0 1/3 0 1/3 0 |5
| 0 01/201/20 0 |6

1 2 45 6 37

[0 1/21/2 0 0 ]1 0 071
1/3 0 0 1/3 0 |2 1/3 0 |2
Q=113 0 0 1/3 0 [4,andR=| 0 1/3]|4.
0 1/31/3 0 1/3|5 0 0|5
L0 0 01/20 |6 1/2 0 |6
Lemma 2.14. Keeping the notation above we have
E.T =YY Q"(z,y) forallze A, (2.9)

n=0ycA
where E,T = oo is possible.
Proof. By definition of T' we have for x € A and n € Ny that,
P.(T>n)=P,(Xq,....,.X,, € A)

= Z p(:c,l’l)p(xl,l'g)u~p(1'n717xn)

T1,...,LpnEA
yeA
Therefore Eq. (2.9) now follows from Egs. (2.8) and (2.10). ]

Proposition 2.15. Let us continue the notation above and let us further as-
sume that A is a finite set and

P, (T < ) =P (X, €B for somen) >0V x € A. (2.11)

Under these assumptions, E,T < oo for all x € A and in particular
P, (T <o) =1 for all x € A. In this case we may may write Eq. (@)
as

(ET)pen=0T-Q) "1 (2.12)
where 1 (z) =1 for all z € A.

Proof. Since {T' >n} | {T =00} and P, (T =o0) < 1 for all x € A it
follows that there exists an m € N and 0 < o < 1 such that P, (T >m) < «
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for all z € A. Since P, (T >m) = > ., Q™ (z,y) it follows that the row
sums of Q™ are all less than a < 1. Further observe that

DR ()= ) QM (1,2) QM (2,y) =D Q" (x,2) > Q™ (2,y)

yeA y,2€A zEA yeA

< ZQ’"(m,z)aSaQ.

z€A

Similarly one may show that ZyeA QF™ (x,y) < o for all k € N. Therefore

from Eq. ( with m replaced by km, we learn that P, (T > km) < o for
all ke N Wthh then implies that

ZQ” z,y) =P, (T >n) < < al®] for all n € N,
yeA

where [t] =m € Ny if m <t <m+1, ie. |t] is the nearest integer to ¢ which
is smaller than t. Therefore, we have

E. T = ZZQ x,y) ZaL J§m~ial:mﬁ<oo.

n=0ycA n=0 =0

So it only remains to prove Eq. (| . From the above computations we
see that > ° _o Q" is convergent. Moreover

QY =30 -3 g+ =1
n=0 n=0

n=0

and therefore (I — Q) is invertible and Y7 Q™ = (I — Q). Finally,

(I- 1—2@”1— ZZQ” (,y) = (EzT),en

n=0yeA z€A
as claimed. ]

Remark 2.16. Let {X,,},~ , denote the fair random walk on {0,1,2,...} with
0 being an absorbing state. Using the first homework problems, see Remark
[0:3] we learn that E; T = oo for all i > 0. This shows that we can not in general
drop the assumption that A (A = {1,2,...} in this example) is a finite set
the statement of Proposition [2.15

For our next result we will make use of the following important version of
the Markov property.

Theorem 2.17 (Markov Property II). If f (zg,21,...) is a bounded ran-
dom function of {z,},—, C S and g (xo,...,Ts) is a function on S" T, then
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E:[f (Xn, Xnt1,---)9(Xoy. ., Xn)] = Ex [(Ex,, [f (X0, X1,. ”)Dg(XO&m’)X”)]
2.13
Eﬂ— [f (Xn,Xn+1,. . ) |X0 =Zg,..- ,Xn = l’n] = Emnf(XO;X17~ . ) (214)

for all zg, ... x, € S such that P, (Xo = g, ..., X, = x,) > 0. These results
also hold when f and g are non-negative functions.

Proof. In proving this theorem, we will have to take for granted that it suf-
fices to assume that f is a function of only finitely many {x,,} . In practice, any
function, f, of the {z,} -, that we are going to deal with in this course may
be written as a limit of functions depending on only finitely many of the {z,} .
With this as justification, we now suppose that f is a function of (zg, ..., Zm)
for some m € N. To simplify notation, let F = f(Xo, X1,...Xpm), O F =
f(Xn, Xog1,- - Xngm), and G = g (Xo,..., X,).

We then have,

E, [0,F - G]

= > 7w(@)p@e, 1) .p@nim-1, Tmin) f (o, Tnits- . Tngm) g (T0, -

{z;}74"cs
and

Z P(Tn, Tng1) - P (Tngm—15Tmtn) [ (Tn, Tngts - Togm) g (Tos - -+ Tn)
{zj};n:tzllcs
p (l‘n, xn—&-l) ---D ($n+m—17 zm—&-n) :
=g(xg,...,Tp
g( 0 ) T;L |: f (xnyxn—i-l,-uwn—i-m)
{Ej}j:n+1cs
=g(xo,...,2n)Es, [ (X0, Xm) =g (x0,...,24) Ey, F.
Combining the last two equations implies,
E, [0,F - G
= Z (o) p (0, 21) - . D (Xn—1,2n) g (Tos ..., xn) By F
{xj};'n:ocs
=E;[g(Xo,...,Xn) Ex, F]
as was to be proved.
Taking g (Yo, - .- Yn) = dag.yo - - - O,y 15 Eq. (2.13)) implies that
EW [f(Xn,Xn+17...) ZXO = CC(],...,Xn = xn]
:]Ean'PTr (XO :$0,...7Xn :LEH)
which implies Eq. (2.14]). The proofs of the remaining equivalence of the state-
ments in the Theorem are left to the reader. ]
Here is a useful alternate statement of the Markov property. In words it

states, if you know X,, = = then the remainder of the chain X, X;,41, Xnt2,. ..
forgets how it got to = and behave exactly like the original chain started at x.
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Corollary 2.18. Let n € Ng, z € S and w be any probability on S. Then
relative to Py (| Xy =), {Xngr}pso 5 independent of {Xo,...,X,} and
{Xnsktiso has the same distribution as { Xy };—, under Py.

Proof. According to Eq. (2.13),
Erlg(Xoy. o, Xn) [ (Xny Xng1,.-.) : Xy = 12

=E,[9(Xo,-.-,Xn) 00 (X0) f (X, X1, -]
[9 (Xo, ..., Xn) 0s (Xn) Ex,, [f (X0, X1,...)]]
=Ex [g (X0, Xn) 0z (Xn) E [ (X0, X1,...)]]
(9 ( X0y, Xn) : Xy = 2] Ey [f (X0, X1,-..)]

Dividing this equation by P (X,, = x) shows,
E:lg(Xo,...,Xn) f (X0, Xng1,...) | Xy =z
=E;[g(Xo,...,Xn)|Xn = 2] E; [f (X0, X1,...)]- (2.15)
Taking g = 1 in this equation then shows,
E; [f (Xn, Xnt1,..) | Xn = 2] =E; [f (Xo, X1,...)]. (2.16)
This shows that { X4k}, under Py (-[X, = ) has the same distribution

as {Xy};o, under P, and, in combination, Egs. (2.15) and (2.16) shows
{Xotrt>o and {Xo,..., Xn} are conditionally independent on {X, = z}.
n

Theorem 2.19. Let us continue the notation and assumption in Proposition
and further let g : A — R and h : B — R be two functions. Let g :=
(gll(x))$zA and h := (h(y)),cp to be thought of as column vectors. Then for
alt x € A,

E, lz g(Xn)l = z™ component of (I — Q)" 'g (2.17)

n<T

and for all x € A and y € B,
P, (Xr=y)=[I-Q)" ]wy
Taking g =1 (where 1 (z) =1 for all x € A) in Eq. shows that
E,T = the ' component of (I — Q)™ '1 (2.19)
in agreement with Eq. . If we take g (2") = 6, (¢') for some x € A, then

Z 9(Xn)

n<T

(2.18)

E,

Z 5y(Xn)] = E, [number of visits to y before T)
n<T

and by Eq. it follows that
E,, [number of visits to y before hitting B] = (I — Q);y1 . (2.20)
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Proof. Let

IS
S
i
=

8
=2
D
I
=
8
Q

0<n<T

for x € A where G := 3, 7 9(Xn). Then

u(z) =B, [E. [G1X1]] = ) p(2,9)Ee [GI X1 =]

yeS

For y € A, by the Markov propertyP] in Theorem we have,

E, [GIX1 =yl =g@)+E, | Y g(Xn)|X1=y

=g@)+E, | Y 9Xn)| =g@) +u)

0<n<T

and for y € B, E, [G|X1 = y] = g (x). Therefore

=Y p@ylg@) +u@]+ > plz,y) g(@)

yeA yeB

D+ py)u

yeA

In matrix language this becomes, u = Qu + g and hence we have u = (I —
Q) 'g which is precisely Eq. (2.17).

To prove Eq. (2.18), let w(z) := E, [h(Xr)]. Since Xr is the location
of where {X,,} 7, first hits B if we are given X, € A, then Xy is also the
location where the sequence, { X, }n 1 » first hits B and therefore Xpo6; = X¢
when Xy € A. Therefore, working as before and noting now that,

2 In applying Theorem we note that when Xo = =z, T (Xo, X1,...) > 1,
T(Xl,Xz,...) = T(X()7X17...) — 17 and hence

01 ( > g(Xn))
0<n<T(X0,X1,...)
= > 9(Xny1) = > 9(Xn+1)

0<n<T(X1,X5...) 0<n<T(X0,X1,...)—1

= Z Q(Xn-H) = Z Q(Xn) = Z g(X")'

1<n+1<T(X0,X1,...) 1<n<T(Xo,X1,...) 1<n<T
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=Y E.(h(X7)| X1 = y)p (2, 9) + > Eo(W(X7)| X1 = y)p (2, )

yeA yeB
= > (@) Ea(h(Xr) 0 1|X1 =) + D p (@) Eo(h(X1)| X1 = )
yeA veB
=" p(@ 9 Ey(h(X7) + D p(2,y) h(y)
yeEA yeB
=Y p@y)wy) + Y ple,y) hy) = (Qw + Rh),.
yeA yeEB

Writing this in matrix form gives, w =Qw + Rh which we solve for w to find
that w = (I — Q)" ' Rh and therefore,

(Ey [h (XT)]);ceA = z'" — component of (- Q)*lR (h (y))yeB
Given yo € B, the taking h (y) = d,,, in the above formula implies that

P, (X1 =1yo) =2 - component of (I —Q)™* R (byo,y)yen

=[I-Q7'R], .

Remark 2.20. Here is a story to go along with the above scenario. Suppose
that g (z) is the toll you have to pay for visiting a site x € A while h (y)
is the amount of prize money you get when landing on a point in B. Then

E, [ZO <nm<T g(Xn)} is the expected toll you have to pay before your first exit
from A while E, [h (X7)] is your expected winnings upon exiting B.

The next two results follow the development in Theorem 1.3.2 of Norris
13].

Theorem 2.21 (Hitting Probabilities). Suppose that A C S as above and
now let H := inf {n : X,, € A} be the first time that {X,,},—, hits A with the
convention that H = oo if X,, does not hit A. Let h; := P, (H < c0) be the
hitting probability of A given Xo = i, v; := ngAp(z}j) foralli ¢ A, and
{Qij :=p (i7j)}i,j¢A - Then

n=0

and h; may also be characterized as the minimal non-negative solution to the
following linear equations;

hi=1ifie€ A and
hi=_p@i,5)hj = > Q(i,j)h; +vi for all i € A°. (2.22)

jeS jEAC
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Proof. Let us first observe that P; (H =0) = P; (Xo € A) = 1;ca. Also
for any n € N
{H=n}={Xo ¢ A,....X,, 1 ¢ A, X, € A}
and therefore,

Pi(H=n)=1iga > Y p5)pGd2) P n-2,Gn1)P (Gn1,n)
Jlseesn—1€AC jn €A

=1iga [Q" 0],
Since {H < oo} = U2y {H = n}, it follows that

oo
Pi(H < o0) = Liea+ ) liga [Q" 0],
n=1
which is the same as Eq. (2.21)). The remainder of the proof now follows from
Lemma below. Nevertheless, it is instructive to use the Markov property
to show that Eq. (2.22) is valid. For this we have by the first step analysis; if
i¢ A, then

hz H<OO Zp 7.7 H<OO‘X1*])
jES
—ZpZ] i (H < o0) Zp(@j)hj
Jjes jES
as claimed. n

Lemma 2.22. Suppose that Q;; and v; be as above. Then h:= " Q"v is
the unique non-negative minimal solution to the linear equations, x = Qx +v.

Proof. Let us start with a heuristic proof that h satisfies, h = Qh +
v. Formally we have Y ° Q" = (1— Q) ' sothat h = (1—Q) 'v and
therefore, (1 — Q) h = v, i.e. h = Qh + v. The problem with this proof is that
(1 — @) may not be invertible.

Rigorous proof. We simply have

h=Qh=Y Qw-> Qw=u.
n=0 n=1
Now suppose that x = v + Qx with x; > 0 for all <. Iterating this equation
shows,
r=v+Q(Qzr+v)=v+Qu+ Q%
r=v+Qu+Q*(Qr+v)=v+Qu+ Q%+ Q%

$_ZQnU+QN+1x>ZQn

n=0
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where for the last inequality we have used [QN +1xL >0 for all N and i € A°.
Letting N — oo in this last equation then shows that

N 00
x> A}i_r)nw;Q"v :,;)an =h

so that h; < z; for all 7. [ |

2.2 First Step Analysis Examples

To simulate chains with at most 4 states, you might want to go to:
http://people.hofstra.edu/Stefan_ Waner/markov/markov.hitml

Ezample 2.23. Consider the Markov chain determined by

12 3 4

0 1/31/31/3] 1
3/41/81/8 0 | 2
0 0 1 013
00 0 1|4

P =

Notice that 3 and 4 are absorbing states. Let h; = P; (X, hits 3) for i =
1,2,3,4. Clearly hg = 1 while hy = 0 and by the first step analysis we have

1 1 1 1 1

h, = -h —h —hys==h -

L=ghetghst gha =ghat 3
3 1 1 3 1 1
ho = —-h —h —hs=-h —h o~
2 41+82+83 41+82+8

i.e.
1 1
h —h —
1=3 2+ 3
3 1 1
ho 1h1 + ghg + g

which have solutions,

Py (X, hits 3) = hy = — 22 0.53333

&l oo

PQ (Xn hits 3) = h2 =

ot w

Similarly if we let h; = P; (X, hits 4) instead, from the above equations with
hs =0 and hy = 1, we find
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1 1
hi==h -
1 3 2+3
3 1
ho = -h —h
2 41-1-82

which has solutions,

7
P1 (Xn hits 4)=h1 = 1—5 and

2

Of course we did not really need to compute these, since

Py (X, hits 3) + P; (X, hits 4) = 1 and
Py (X, hits 3) + Py (X, hits 4) = 1.

The output of one simulation is in Figure [2.3] below.

State Transition Matrix State Transition Diagram

TO P @
1 2 3 4 i
v |TII1D B [ 3 N
RPpE__[m [ \ @
0 [3f \
0Bl [ [
4ff [ [
ITterations: [1000 Start State:l Speed:[10 (1-10). .
Run I Erase Every'mingl
Results
State 1 Hits | State 2 Hits | State 3 Hits | State 4 Hits
71 75 [71 i+
State 1 Prob. [State 2 Prob. |State 3 Prob. |State 4 Prob.
|D.4?053 |D.2048 |D.'I 7083 P.'I 5385

25

Fig. 2.3. In this run, rather than making sites 3 and 4 absorbing, we have made
them transition back to 1. I claim now to get an approximate value for Py (X, hits 3)
we should compute: (State 3 Hits)/(State 3 Hits + State 4 Hits). In this example we
will get 171/(171 + 154) = 0.526 15 which is a little lower than the predicted value
of 0.533. You can try your own runs of this simulator.
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Fig. 2.4. Rat in a maze.

2.2.1 A rat in a maze example Problem 5 on p.131.

Here is the maze

1 2 3(food)
4 5 6
7(Shock)

in which the rat moves from nearest neighbor locations probability being 1/D
where D is the number of doors in the room that the rat is currently in. The
transition matrix is therefore,

1 234567

[0 1/2 0 1/2 0 0 0 ]
/3 0 1/3 0 1/3 0 0
0 1/20 0 0 1/2 0
P=11/30 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
00 0 1 0 0 0

N O Ok W

and the corresponding jump diagram is given in Figure 2]

Given we want to stop when the rat is either shocked or gets the food, we
first delete rows 3 and 7 from P and form ) and R from this matrix by taking
columns 1,2,4,5,6 and 3,7 respectively as in Remark This gives,

1 2456
0 1/21/2 0 0
1/3 0 0 1/3 0

Q=1[1/30 0 1/3 0
0 1/31/3 0 1/3
0 0 01/20

SOk N

and
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37
0 0171
1/3 0 |2
R=1| 0 1/3|4.
0 0|5
1/2 0 |6
Therefore,
1 —2-20 0
—% 1 0 —% 0
o =1_1 1 _1
3 3 3
0 0 0 —1 1
12456
1557117
£34,1,
- 5447
(I-Q'= §111§ 4,
3 112§ 5
333136
155711 1 1771
S 2l Pl I Y
- 54471 1
3 1123 1 D15
33313] [1 )6
and
ril 5571 0
EEL T s
4
I-Q) 'R= g%glg 0 1/3
3 112§ 0 0
EEETRINRVN
37
r7 5
el
R Y
7y
L
L6 616

Hence we conclude, for example, that E4T = 1! and P, (X7 = 3) =5/12 and
the expected number of visits to site 5 starting at 4 is 1.
Let us now also work out the hitting probabilities,

h; = P; (X,, hits 3 = food before 7 = shock),
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'\ 5 2 53
(N T
Ll__——=)5"——7é

in this example. To do this we make both 3 and 7 absorbing states so the
jump diagram is in Figure Therefore,

1
h6:§(1+h5)

1
h5:§(h2+h4+h6)

1
h4:§h1

1
h2=§(1+h1+h5)

1
h1:§(h2+h4).

The solutions to these equations are,

4 2 2 5 7
- = =2 hi=Z he== hs=—. 2.23
hl 9a h2 37 4 97 5 97 6 9 ( )
Similarly if h; = P; (X, hits 7 before 3) we have hy =1, h3 = 0 and
1
hG = §h5
1
h5:§(h2+h4+h6)
1
hys = 5 (hl + 1)
1
hg - g (hl + h5)
1
hy = §(h2+h4)
whose solutions are
5 1 7 4 2
hi=—=, ho ==, hy = hs = -, hg = —. 2.24
1 97 2 37 4 97 5 97 6 9 ( )
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Notice that the sum of the hitting probabilities in Egs. (2.23) and (2.24) add
up to 1 as they should.

2.2.2 A modification of the previous maze

Here is the modified maze,

1 2 3(food)
4 5
6(Shock)

The transition matrix with 3 and 6 made into absorbing stated?] is:

1 2 3 4 5 6
[0 1/201/20 071
1/3 0 1/3 0 1/3 0 |2
p_ |0 01 00 03
(130 0 0 1/31/3|4’
01/201/20 05
10 0 0 0 0 1|6
1 2 4 5 36
[0 1/21/2 0 1 0 071
o— |13 0 0 1/3)2 po |13 0 |2
“l1/3 0 0 1/3|4 10 1/3|4
0 1/21/2 0 |5 0 05
1245
SHHE
-1 _
(14_Q) “ 112114
[1332]5

(Ii-@)7'R=

N[00 | L NN = Qo
SN PN e
U N

3 It is not necessary to make states 3 and 6 absorbing. In fact it does matter at all
what the transition probabilites are for the chain for leaving either of the states
3 or 6 since we are going to stop when we hit these states. This is reflected in
the fact that the first thing we will do in the first step analysis is to delete rows
3 and 6 from P. Making 3 and 6 absorbing simply saves a little ink.
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(I — Q)"

e
[S23<; I
oS N

6

So for example, Py(Xr = 3(food)) = 1/3, E4(Number of visits to 1) = 1,
Es(Number of visits to 2) = 3/2 and ENT = EsT = 6 and E;T = E,T = 5.

ot
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Long Run Behavior of Discrete Markov Chains

For this chapter, X,, will be a Markov chain with a finite or countable state
space, S. To each state i € S, let

R;:=min{n >1: X, =i} (3.1)

be the first passage time of the chain to site i, and

M= 1x,-i (3.2)

n>1
be number of visits of {X,}, -, to site .

Definition 3.1. A state j is accessible from i (written i — j) iff P;(R; <
o0) > 0 and i «— j (i communicates with j) iff i — j and j — i. No-
tice that i — j iff there is a path, i = xg,z1,...,2, = j € S such that
p (w0, 21)p(71,22) ... p(Tn_1,75) > 0.

Definition 3.2. For each i € S, let C; :== {j € S:i —— j} be the commu-
nicating class of i. The state space, S, is partitioned into a disjoint union
of its communicating classes.

Definition 3.3. A communicating class C C S is closed provided the prob-
ability that X, leaves C given that it started in C is zero. In other words
P;; =0 foralli e C and j ¢ C. (Notice that if C is closed, then X,, restricted
to C is a Markov chain.)

Definition 3.4. A statei € S is:

1. transient if P;(R; < 00) < 1,
2. recurrent if P;(R; < c0) =1,
a) positive recurrent if 1/ (E;R;) > 0, i.e. E;R; < o0,
b) null recurrent if it is recurrent (P;(R; < o0) =1) and 1/ (E;R;) =0,
i.e. ER; = o0.

We let S¢, Sy, Spr, and Sy, be the transient, recurrent, positive recurrent,
and null recurrent states respectively.

The next two sections give the main results of this chapter along with
some illustrative examples. The remaining sections are devoted to some of the
more technical aspects of the proofs.
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3.1 The Main Results

Proposition 3.5 (Class properties). The notions of being recurrent, posi-
tive recurrent, null recurrent, or transient are all class properties. Namely if
C C S is a communicating class then either all i € C' are recurrent, positive
recurrent, null recurrent, or transient. Hence it makes sense to refer to C' as
being either recurrent, positive recurrent, null recurrent, or transient.

Proof. See Proposition [3.13]for the assertion that being recurrent or tran-
sient is a class property. For the fact that positive and null recurrency is a
class property, see Proposition below. [

Lemma 3.6. Let C C S be a communicating class. Then
C not closed = C is transient
or equivalently put,
C is recurrent —> C' is closed.

Proof. If C is not closed and ¢ € C, there is a j ¢ C such that i — j, i.e.
there is a path i = xg,21,...,2, = j with all of the {mj};lzo being distinct
such that

P; (Xo =,X1=21,...,Xpn1=Tpn_1,Xn =2Tn :]) > 0.
Since j ¢ C' we must have j - C and therefore on the event,
A= {XO = iaXl = ‘Tla"'aXn—l == xn—laXn = Tp :]}’

Xm ¢ C for all m > n and therefore R; = oo on the event A which has
positive probability. ™

Proposition 3.7. Suppose that C C S is a finite communicating class and
T =inf{n >0: X, ¢ C} be the first exit time from C. If C is not closed,
then not only is C transient but E;T < oo for all i € C. We also have the
equivalence of the following statements:

1. C is closed.
2. C is positive recurrent.
3. C is recurrent.

In particular if # (S) < oo, then the recurrent (= positively recurrent)
states are precisely the union of the closed communication classes and the
transient states are what is left over.

Proof. These results follow fairly easily from Proposition Also see
Corollary [3:20] for another proof. [
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Remark 3.8. Let {X,,}.-, denote the fair random walk on {0,1,2,...} with
0 being an absorbing state. The communication classes are {0} and {1,2,...}
with the latter class not being closed and hence transient. Using Remark
it follows that E;T = oo for all ¢ > 0 which shows we can not drop
the assumption that # (C) < oo in the first statement in Proposition
Similarly, using the fair random walk example, we see that it is not possible
to drop the condition that # (C) < oo for the equivalence statements as well.

Ezample 3.9. Let P be the Markov matrix with jump diagram given in Figure
In this case the communication classes are {{1,2},{3,4},{5}}. The latter
two are closed and hence positively recurrent while {1, 2} is transient.

.y
V7 ™\ L

2 2
4

O

3 L 4
3

Warning: if C C S is closed and # (C') = oo, C could be recurrent or it
could be transient. Transient in this case means the walk goes off to “infinity.”
The following proposition is a consequence of the strong Markov property in

Corollary

Proposition 3.10. If j € S, k € N, and v : S — [0,1] is any probability on
S, then
P,(M; > k) =P, (R; <o) P; (R; <o0) ", (3.3)

Proof. Intuitively, M; > k happens iff the chain first visits j with proba-
bility P, (R; < 0o) and then revisits j again k— 1 times which the probability
of each revisit being P; (R; < c0). Since Markov chains are forgetful, these
probabilities are all independent and hence we arrive at Eq. (3.3). See Propo-
sition below for the formal proof based on the strong Markov property
in Corollary =

Corollary 3.11. If j € S and v : S — [0,1] is any probability on S, then
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P, (Mj =00) = P, (X, =j i.0.) = P, (R; <00)ljes,, (3.4)
Pj (MJ:OO):PJ (Xn—j i.O.):leST, ( 5)
= _ P,(R; < 0)
E,M; = v(i) P = J ) (3.6)
J nz—:lzze.; 7 1—Pj (R] <OO)
and
> P; (R; < o0)
E,M; = P = 7 .
I nz::l Y 1—Pj(Rj < 00) (37)

where the following conventions are used in interpreting the right hand side
of Egs. (3.6) and (3.7): a/0 := oo if a > 0 while 0/0 := 0.
Proof. Since
{M; >k} | {M; =0} ={X,, =ji0. n}ask?T oo,
it follows, using Eq. , that
P, (Xp =jio.n) = lim P,(M; > k)= P,(R; < o0)- lim P;(R; < co)k~1
(3.8)

which gives Eq. (3.4]). Equation (3.5) follows by taking v = 4; in Eq. (3.4)
and recalling that j € S, iff P; (R; < oo) = 1. Similarly Eq. (3.7)) is a special

case of Eq. (3.6) with v = ¢;. We now prove Eq. (3.6).
Using the definition of M; in Eq. (3.2,

E,M;=E, Y 1x,=j = » Elx,=

n>1 n>1
n>1 n=1j€8

which is the first equality in Eq. (3.6]). For the second, observe that

S P(M; > k)= Bydase =E, Y lp<n, =E M.
k=1 k=1 k=1

On the other hand using Eq. (3.3)) we have

= > _ P,(R; < )
P,(M; > k) =) P,(R; P;(R,; .
Z (M; = k) Z (R; < o0)Pj(R; < o) 1— P;(R; < o)
k=1 k=1
provided a/0 := oo if @ > 0 while 0/0 := 0. |

It is worth remarking that if j € S;, then Eq. (3.6) asserts that
E, M; = (the expected number of visits to j) < oo

which then implies that M is a finite valued random variable almost surely.
Hence, for almost all sample paths, X,, can visit j at most a finite number of
times.
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Theorem 3.12 (Recurrent States). Let j € S. Then the following are
equivalent;

1. j is recurrent, i.e. Pj (R; < 00) =1,
2. P;j(X,=jto. n)=1,
3. Eij = Zzozl P;; = Q.
Proof. The equivalence of the first two items follows directly from Eq.

(3.5) and the equivalent of items 1. and 3. follows directly from Eq. (3.7) with
1=7. ]

Proposition 3.13. If i «—— j, then i is recurrent iff j is recurrent, i.e. the
property of being recurrent or transient is a class property.

Proof. Since i and j communicate, there exists @ and § in N such that
P7 >0 and Pﬁ > 0. Therefore

> o pptet? > N papr P

iyt gitogi
n>1 n>1

which shows that 3, -, Pj; = 00 =}, P} = co. Similarly > -, Pj =

ji 2 2
00 == ), PJ; = co. Thus using item 3. of Theorem it follows that 4
is recurrent iff j is recurrent. [ |

Corollary 3.14. If C' C S, is a recurrent communication class, then
Pi(Rj <o0)=1 foralli,jeC (3.9
and in fact
Pi(Njec{Xn=j t.o. n}) =1 for alli e C. (3.10)

More generally if v : S — [0,1] is a probability such that v (i) =0 fori ¢ C,
then
Py(Njec{Xn=j i.0.n}) =1 forallie C. (3.11)

In words, if we start in C then every state in C' is visited an infinite number
of times. (Notice that P; (R; < 00) = Pi({Xn},,>, hits j).)

Proof. Let ¢, € C' C 5, and choose m € N such that P} > 0. Since
Pj(Mj = OO) =1 and

{X;m =i and X,, = j for some n > m}
= Z {Xm:i>Xm+1 #j?"'aanl 7&]7Xn:]}7

n>m

we have
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Pm_P(Xm—Z) Pj(Mj:OO,Xm:i)
< Pj(X,, =i and X,, = j for some n > m)

= ZPj(Xm:iaXerl #jv""X”*17éj’X":j)

n>m
=Y PIP(X1#, o Xnom1 # s Xn-m = J)
n>m
o0
Z P} Pi(R; —n—m)zP]TZPi(Rjzk)
n>m k=1
= PI"Py(R; < o). (3.12)

Because P > 0, we may conclude from Eq. that 1 < Pi(R; < c0), i.e.
that P (R < oo) =1 and Eq. (| is proved. Feedlng this result back into
Eq. with v = §; shows P; (M =o00) =1forall i, € C and therefore

P(ﬁjec {M; =00}) =1forallie C which is Eq. - Equation (3
follows by multiplying Eq. (| - 3.10)) by v (i) and then summing on i € C. [

Theorem 3.15 (Transient States). Let j € S. Then the following are equiv-
alent;

1. j is transient, i.e. P; (R; < 00) < 1,
2P(n—]zon)—0 and
9. M, = 32| Pl < oo,

Moreover, ifi € S and j € S, then

lim,, oo P2 =0
E — i VS _— n—00 % aj
PZJ ]E’LMJ =% { Pz (XTL .] 1.0. Tl) =0. (313)

and more generally if v : S — [0,1] is any probability, then

limy oo Py (X = 7) =0

ZP =E,M; <oco = {Pu(XnJ n) =

(3.14)

Proof. The equivalence of the first two items follows directly from Eq.
and the equivalent of items 1. and 3. follows directly from Eq. with
i = j. The fact that E;M; < oo and E, M; < oo for all j € S; are consequences
of E and respectively. The remaining implication in Egs.
and (3.6) follow from the first Borel Cantelli Lemma and the fact that n'
— term in a convergent series tends to zero as n — o0o. ]

Corollary 3.16. 1) If the state space, S, is a finite set, then S, # 0. 2) Any
finite and closed communicating class C C S is a recurrent.

Proof. First suppose that # (S) < oo and for the sake of contradic-
tion, suppose S, = 0 or equivalently that S = S;. Then by Theorem

lim,, . P =0 for all 4,5 € S. On the other hand, Z;es =1 so that
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1:n1Ln;OZP;; :anlnéopi? => 0=0,

jes jes jeSs

which is a contradiction. (Notice that if S were infinite, we could not inter-
change the limit and the above sum without some extra conditions.)

To prove the first statement, restrict X,, to C' to get a Markov chain on a
finite state space C. By what we have just proved, there is a recurrent state
1 € C. Since recurrence is a class property, it follows that all states in C' are
recurrent. ]

Definition 3.17. A function, = : S — [0,1] is a sub-probability if
Yjes™ () < 1. We call 32, g7 (j) the mass of m. So a probability is a
sub-probability with mass one.

Definition 3.18. We say a sub-probability, = : S — [0,1], is invariant if
TP =m, i.e.

Zw(i)pij =mx(j) forallje€Ss. (3.15)

€S
An invariant probability, © : S — [0,1], is called an invariant distribution.

Theorem 3.19. Suppose that P = (p;;) is an irreducible Markov kernel and
T = ﬁ forall 5 € S. Then:

1. For allv,j € S, we have

N
1
Jim = Y dx,=j=m Pi—as (3.16)
n=0
and
1 1 &
]\}EHOON;H(XTL:J):A}EHOON;PQ:Wj- (3.17)

2. If u: S — [0,1] is an invariant sub-probability, then either (i) > 0 for
all i or (i) =0 for all i.

3. P has at most one invariant distribution.

4. P has a (necessarily unique) invariant distribution, p: S — [0,1], iff P
is positive recurrent in which case p (i) = 7 (i) = ﬁ >0 forallicsS.

(These results may of course be applied to the restriction of a general non-
irreducible Markov chain to any one of its communication classes.)

Proof. These results are the contents of Theorem [3.44] and Propositions
[3.45] and [3.46] below. [

Using this result we can give another proof of Proposition

Corollary 3.20. If C is a closed finite communicating class then C' is positive
recurrent. (Recall that we already know that C' is recurrent by Corollary . )
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Proof. For i,j € C| let

1 & 1
™= g > P (X =) = E,R;
n=1
as in Theorem Since C' is closed,
Z Py (Xn = j) =
jec
land therefore,
1 N 1 X
Dom=dim 53 D A =g)= m YD P (X =4) = 1.
jec jeEC n=1 n=1jeC

Therefore m; > 0 for some j € C' and hence all j € C' by Theorem with
S replaced by C. Hence we have E;R; < oo, i.e. every j € C is a positive
recurrent state. ]

Theorem 3.21 (General Convergence Theorem). Let v : S — [0,1] be
any probability, i € S, C be the communicating class containing i,

{X,, hits C} .= {X,, € C for somen},

and
m=m (V) = %, (3.18)
where 1/00 := 0. Then:
1. P, - a.s.,
1Y 1
]\}Enm N ; Ix,=i = ml{xn hits C}» (3.19)
2.
1 S I .
]\}PWNT;KZSV(])Pji:A}EHOON;PV(XTL:Z):W, (3.20)

3. m is an invariant sub-probability for P, and
4. the mass of m is

> omi= > P, (X, hits C) < 1. (3.21)

€S C': pos. recurrent

Proof. If i € S is a transient site, then according to Eq. (3.14)),
P, (M; < 00) = 1 and therefore limy_, % 27]2121 1x = 0 which agrees

with Eq. (3.19)) for i € S;.

n=1
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So now suppose that ¢ € S, and let C be the communication class con-
taining ¢ and
T=inf{n>0:X, €C}
be the first time when X,, enters C. It is clear that {R; < co} C {T < o0}

On the other hand, for any j € C, it follows by the strong Markov property

(Corollary [3.41)) and Corollary that, conditioned on {T" < oo, X1 = j},
{X,} hits i i.0. and hence P (R; < oo|T < oo, X1 = j) = 1. Equivalently put,

P(R; <00, T <00, Xp=j)=P(T <oo,Xp=7) forall j€C.
Summing this last equation on j € C then shows
P(R; < ©0)=P(R; <00, T <0)=P(T < 0)

and therefore {R; < oo} = {T' < oo} modulo an event with P, — probability
Zero.

Another application of the strong Markov property (in Corollary ,
observing that Xgr, = 4 on {R; < oo}, allows us to conclude that the
P, (-|R; < ) = P, (-|]T < 00) — law of (Xg,, Xg,+1,XR,+2,...) is the same
as the P; — law of (Xo, X1, Xo,...). Therefore, we may apply Theorem
to conclude that

1 1 & 1
J\}E»noo N ngl Ix=i = 1\}E>noo N ngl 1XR'i+":i - E;R; Py (lRZ < OO) oA

On the other hand, on the event { R; = co} we have limy_, % 25:1 1x, =i =
0. Thus we have shown P, — a.s. that

1 & 1 1 1
i — 1 71‘:71»&:71 oozi]- its
NE&N; Xn= E,R; R;< E,R; T< E,R; {X, hits C}

which is Eq. (3.19)). Taking expectations of this equation, using the dominated

convergence theorem, gives Eq. (3.20).
Since 1/E;R; = oo unless i is a positive recurrent site, it follows that

Zmpij = _Z mPij= Y P,(X, hits C)Z ﬁpﬁ. (3.22)
€S 1€ Spr C': pos-rec. icC

As each positive recurrent class, C, is closed; if i € C and j ¢ C, then
P;; = 0. Therefore » ;- ﬁPij is zero unless j € C. So if j ¢ Sy we
have ), ¢ miPij = 0 = m; and if j € S, then by Theorem

1 1
=5 Pij = ljec =%
%Eim TS R R;

Using this result in Eq. (3.22)) shows that
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. 1
Z'fripij = Z P, (X, hits C) 1j¢c - TR =T

€S C': pos-rec.

so that 7 is an invariant distribution. Similarly, using Theorem [3.19| again,

dom= Y Py(thitsC)ZElR: > P,(X, hits C).

€S C': pos-rec. eC C': pos-rec.

Definition 3.22. A state i € S is aperiodic if P} > 0 for all n sufficiently
large.

Lemma 3.23. If i € S is aperiodic and j «— i, then j is aperiodic. So being
aperiodic 1s a class property.

Proof. We have

n+m+k __ n m k n pm pk
rr = Y P, Pr.PF > P PP

JywT W,z 2,7 2507 1,07 1,]°
w,z€S

Since j «— i, there exists n,k € N such that P}; > 0 and sz] > 0. Since

P > 0 for all large m, it follows that Pj’;*"”rk > 0 for all large m and
therefore, j is aperiodic as well. [

Lemma 3.24. A state i € S is aperiodic iff 1 is the greatest common divisor
of the set,
{neN:P(X,=1i)=DP;>0}.

Proof. Use the number theory Lemma below. [ |

Theorem 3.25. If P is an irreducible, aperiodic, and recurrent Markov chain,

then
1

E;(R;)

More generally, if C is an aperiodic communication class, then

lim Pvn-:’/Tj:

,
n—oo J

(3.23)

1
lim P, (X, =1) = nlingogu(j) Pl =P, (R; < ) E(R) foralli e C.

Proof. I will not prove this theorem here but refer the reader to Norris
[3, Theorem 1.8.3] or Kallenberg [2, Chapter 8]. The proof given there is by a
“coupling argument” is given. ]
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3.1.1 Finite State Space Remarks

For this subsection suppose that S = {1,2,...,n} and P;; is a Markov matrix.
Some of the previous results have fairly easy proofs in this setting.

Proposition 3.26. The Markov matrix P has an invariant distribution.

Proof. If 1:= [11... 1]", then P1 = 1 from which it follows that

0= det (P — I) = det (P —I).

Therefore there exists a non-zero row vector v such that P"v* = p¥ or
equivalently that vP = v. At this point we would be done if we knew that
v; > 0 for all 4 — but we don’t. So let 7; := |v;| and observe that

T, = |l/1" =

n n n
D> kP <> k| Pei <> kP
k=1 k=1 k=1

We now claim that in fact @ = «P. If this were not the case we would have
T < ZZ:1 7 Py; for some 7 and therefore

n n

n
0<Z7Tz<ZZ7TkP]m ZZ?TkPkiZZWk
k=1

=1 k=1 k=1 1i=1

which is a contradiction. So all that is left to do is normalize 7; so Z?:l =1
and we are done. ™

Proposition 3.27. Suppose that P is irreducible. (In this case we may use
Proposz'tion to show that E; [R;] < oo for alli,j.) Then there is precisely
one invariant distribution, m, which is given by m; = 1/E;R; > 0 for alli € S.

Proof. We begin by using the first step analysis to write equations for
E; [R;] as follows:

E; [ ZE [Rj| X1 = k] Pi = Y B [R;| X1 = k] Py, + Pyj1
k#j
72 (Ex [R;]+1) P + Pyl =Y B [Ry] Py + 1.
k#j k#j
and therefore,
k#j

Now suppose that 7 is any invariant distribution for P, then multiplying Eq.
(3.24) by m; and summing on ¢ shows
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n n n
Zﬂ'iEi [R]] = Zﬂ'i ZRI@EI@ [RJ] + Zﬂ'il
=1 1=1

i=1  kj
= Zﬂ'k]Ek [R]] +1
[y
from which it follows that m;E; [R;] = 1. ]

We may use Eq. (3.24) to compute E; [R;] in examples. To do this, fix j
and set v; := E;R;. Then Eq. (3.24) states that v = PWov 4 1 where PU)
denotes P with the j** — column replaced by all zeros. Thus we have

o\ —1
(E:R,)", = (I - PU)) 1, (3.25)
i.e.
E,R; 1
W\ —1
| = (1-P9) ] (3.26)
E.R; 1

3.2 Examples

Ezample 3.28. Let S = {1,2} and P = [(1)(1)

In this case P?" = I while P?"*! = P and therefore lim,,_,o, P™ does not

L8
/\.
K__/Q.
L

] with jump diagram in Figure

have a limit. On the other hand it is easy to see that the invariant distribution,
7, for Pis m = [1/2 1/2] . Moreover it is easy to see that

P+P2+--~—|—PN_>1 11] T
N 2 [11) '

Let us compute

] - (3] -[a]) [0
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] - (3] - a]) (-0

so that indeed, m; = 1/E1R; and 7o = 1/EsRs.

and

Ezample 3.29. Again let S = {1,2} and P = {1 0 with jump diagram in

01
Figure In this case the chain is not irreducible and every = = [a b] with

4
1

o @

a+b=1and a,b> 0 is an invariant distribution.

Ezample 3.30. Suppose that S = {1,2,3}, and

123
01071

P=1{1/201/2]2
100 |3

has the jump graph given by Notice that P34 > 0 and P{; > 0 that P is

-
i.___¢_$.2
) 2

®

3

Fig. 3.1. A simple jump diagram.

“aperiodic.” We now find the invariant distribution,

-13 1 2
-10|=R|2
-1 1

Nul (P —I)" =Nul | 1
o 1
2



44 3 Long Run Behavior of Discrete Markov Chains

Therefore the invariant distribution is given by

1
=—-1221]|.
= 1[221]
Let us now observe that
Tl
2 t12
PP=1530
(010
0107° % % 0
PP=11/201/2| = %5%
| 100 503
- 409 205 205
» R R g 0.39941 0.400 39 0.200 20
P = % % @ = 10.40039 0.39941 0.200 20
| 200 205 oL 0.400 39 0.400 39 0.199 22
Let us also compute Es R3 via,
ER; 100 0 107\ 'J1 4
EoR3| = 010 —1|(1/200 1] =13
EsRs3 001 1 00 1 5
so that
1 1
= - =T3.
EsRs 5 °
FEzample 3.31. The transition matrix,
1 2 3
1/41/21/47 1
P=1]1/2 0 1/2]|2

1/31/31/3 3

is represented by the jump diagram in Figure|3.2] This chain is aperiodic. We
find the invariant distribution as,

[1/41/21/4 100]
Nul(P—I)" =Nul | [1/2 0 1/2| —|010

1 1/31/31/3 001]

213 11 Te

L1 3 3 1] 6

™

In this case

_ L

17

[656] =[0.352940.29412 0.35294] .

tr
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A

[ Ay 4

loff?z Py
© 3

L
3

Fig. 3.2. The above diagrams contain the same information. In the one on the right
we have dropped the jumps from a site back to itself since these can be deduced by
conservation of probability.

10

1/41/21/4 0.35298 0.294 04 0.352 98
P =11/2 0 1/2| = [0.35289 0.29423 0.352 89
1/31/31/3 0.35295 0.2941 0.35295

Let us also compute

-1

E1 Ry 100 1/401/4 1 1?;
EsRy| = |010| —|1/201/2 1| =&
EsR» 001 1/301/3 1 is

so that
I/EQRQ = 5/17 = 2.

Ezxample 3.32. Consider the following Markov matrix,

12 3 4

1/41/41/41/47 1
1/4 0 0 3/4|2
1/21/2 0 0 |3
0 1/43/4 0 |4

P=

with jump diagram in Figure Since this matrix is doubly stochastic, we
know that = = % [1 11 1] . Let us compute E3R3 as follows
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-
\ 452
\y;f',;f/
A

A\ l‘a

3

Fig. 3.3. The jump diagram for P.

e
Z

-1

E1Rs 1000 1/41/401/4 1
ExR3| 0100 _ 1/4 0 03/4 1
EsRs| 0010 1/21/20 0 1
EsR3 0001 0 1/40 0 1

[ 50

32

— |17

4

30

17

so that E3R3 = 4 = 1/m4 as it should. Similarly,

E1 R, 1000 1/401/41/47\ ' [1
ExR| | |0100] |1/40 0 3/4 1
EsRy| 0010 1/20 0 0 1
E4R> 0001 0 03/4 0 1

54

7

= | 44

30

L 17

and again EoRy =4 = 1/m9.

Ezample 3.33 (Analyzing a non-irreducible Markov chain). In this example
we are going to analyze the limiting behavior of the non-irreducible Markov
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chain determined by the Markov matrix,

12345
01/2 0 0 1/2
1/2 0 0 1/2 0

P=|0 01/21/2 0
0 0 1/32/3 0
00 0 0 1

Tk W N~

Here are the steps to follow.

1. Find the jump diagram for P. In our case it is given in Figure
PRCY

71
ey
V7 ™\ L

2 2
-
® L 4
‘ﬂ-\/
3 _;é_ H

2. Identify the communication classes. In our example they are {1,2},
{5}, and {3,4}. The first is not closed and hence transient while the
second two are closed and finite sets and hence recurrent.

3. Find the invariant distributions for the recurrent classes. For {5}
it is simply 7} 5, = [1] and for {3,4} we must find the invariant distribution
for the 2 x 2 Markov matrix,

34

Q= |1/a )i

We do this in the usual way, namely

wai-a-sa(21]- [} ] -=[2

so that 7r’{3’4} = % [2 3] .
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4. We can turn 7rf{3 1 and 7rf{5} into invariant distributions for P by padding

the row vectors with zeros to get

Tizay =[002/53/50]
71'{5}: [00001]

The general invariant distribution may then be written as;

T =an(s) + Brzey with o, 8> 0and a+ 3= 1.

5. We can now work out the lim,,_,., P™. If we start at site ¢ we are consid-

ering the i*" — row of lim,,_.., P". If we start in the recurrent class {3,4}
we will simply get 73 4y for these rows and we start in the recurrent class
{5} we will get 7(5y. However if start in the non-closed transient class,
{1,2} we have

first row of lim P" = P (X,, hits 5) w5y + Py (X, hits {3,4}) m(3.4)

o (3.27)

and
second row of lim P" = P (X hits 5) w5y 4 P (X, hits {3,4}) 73,43
o (3.28)

6. Compute the required hitting probabilities. Let us begin by com-

puting the fraction of one pound of sand put at site 1 will end up at site 5,
i.e. we want to find h; := Py (X, hits 5). To do this let h; = P; (X, hits 5)
for i = 1,2,...,5. It is clear that hs = 1, and hy = hy = 0. A first step
analysis then shows

1

N = N =

1

which leads tdl

Ezample 3.34. Note: If we were to make use of Theorem we would have not
set hs = hs = 0 and we would have added the equations,

1 1
hs = —hs + =h
3= 5 5+2 4
1 2
h47 §h3+§h47

to those above. The general solution to these equations is ¢ (1,1) for some ¢ € R
and the non-negative minimal solution is the special case where ¢ = 0, i.e. hg =
ha = 0. The point is, since {3,4} is a closed communication class there is no way
to hit 5 starting in {3,4} and therefore clearly hs = hs = 0.
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1 1
h —h —
1= 5 2+2
1 1
ho = =h —0.
2= 1-|-2

The solutions to these equations are

1

2
Py (X, hits 5) = hy = 3 and Py (X, hits 5) = hy = 3

Since the process is either going to end up in {5} or in {3,4}, we may
also conclude that

1
Py (X, hits {3,4}) = 3 and P, (X, hits {3,4}) = =
7. Using these results in Eqgs. and (| - ) shows,

2 1
first row of lim P" = 571'{5} + 577{3’4}
=[002Z {2/3]
= [0.0 0.0 0.13333 0.2 0.666 67]

and

1
second row of nlirgo P" = f7r{5} + 3734}

L l00001] + %[002/53/50]

BE]
004 23]
-

000002666704033333]

These answers already compare well with

9.7656 x 10~4 0.0 0.13276 0.200 24 0.666 02

0.0 9.7656 x 10~* 0.266 26 0.399 76 0.333 01
plo— 0.0 0.0 0.4 0.60000 0.0
0.0 0.0 0.40000 0.6 0.0
0.0 0.0 0.0 0.0 1.0

3.3 The Strong Markov Property

In proving the results above, we are going to make essential use of a strong
form of the Markov property which asserts that Theorem continues to
hold even when n is replaced by a random “stopping time.”

Definition 3.35 (Stopping times). Let 7 be an Ng U {oo} - valued random
variable which is a functional of a sequence of random variables, {X,}o-,
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which we write by abuse of notation as, 7 = 7 (X, X1,...). We say that
T is a stopping time if for all n € Ny, the indicator random wvariable, 1,—,
is a functional of (Xo,...,Xn). Thus for each n € Ny there should exist a
function, o, such that 1,—, = o, (Xo,...,Xn). In other words, the event
{T = n} may be described using only (Xo, ..., X,) for alln € N.

Remark 3.36.1f 7 is an {X,,},, - stopping time then

Lsp=1-licn=1-Y o) (Xo,.... Xz) =t up (Xo,..., Xp_1).
k<n

That is for a stopping time 7, 1,>, is a function of (Xo,...,X,,—1) only for
all n € Ng.

The following presentation of Wald’s equation is taken from Ross [4], p.
59-60].

Theorem 3.37 (Wald’s Equation). Suppose that {X,} ", is a sequence of
i.i.d. random variables, f (x) is a non-negative function of v € R, and 7 is a
stopping time. Then

E [Zf(X =Ef(Xo)-Er. (3.29)
n=0
This identity also holds if f(X,) are real valued but integrable and T is a

stopping time such that BT < oo. (See Resnick for more identities along these
lines.)

Proof. If f(X,,) > 0 for all n, then the the following computations need
no justification,

n=0 n=0

_ZE un X07...,Xn71)]

= ZIE E [un (Xo, - .., Xn_1)]
= SCR[f (6)]Ellasr] = Ef (X0) 3 E[lucs]
n=0 n=0
Zln<7'

n=0

=Ef (Xo) - =Ef(Xo)-E

IFE|f(X,)| < oo and ET < oo, the above computation with f replaced
by |f| shows all sums appearing above are equal E |f (Xy)| - ET < co. Hence
we may remove the absolute values to again arrive at Eq. (3.29). ]
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Ezample 3.38. Let {X,,} -, be i.id. such that P (X, =0) = P(X, =1) =
1/2 and let
T:=min{n: X, +---+ X, =10}.

For example 7 is the first time we have flipped 10 heads of a fair coin. By
Wald’s equation (valid because X,, > 0 for all n) we find

>,

n=1

1
10=FE :]EXl'ETiEET

and therefore ET = 20 < oo.

Ezample 3.39 (Gambler’s ruin). Let {X,,} ~; beii.d.such that P (X, = —1) =
P(X,=1)=1/2and let

T:=min{n: X; + -+ X, =1}.

So 7 may represent the first time that a gambler is ahead by 1. Notice that
EX; =0. If ET < 00, then we would have 7 < 0o a.s. and by Wald’s equation
would give,

1=E

ZXR] =EX,-Er=0-Er
n=1

which can not hold. Hence it must be that
Er = E [first time that a gambler is ahead by 1] = cc.
Here is the analogue of

Theorem 3.40 (Strong Markov Property). Let ({Xn}oo o, {Po}tics:P)
be Markov chain as above and 7 : 2 — [0,00] be a stopping time as in Defi-
nition [3.38. Then

Er [f (XT7 XT+17 s ) gr (XOa v 7X‘r) 1T<oo]
=E; [[Ex, f(Xo,X1,..)]gr (Xo,.--, Xs) Lrcoo] - (3.30)

forall f,g={gn} >0 or f and g bounded.

Proof. The proof of this deep result is now rather easy to reduce to The-

orem Indeed,
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Eﬂ' [,f (XT) X7'+1a s ) gr (X07 cee ,X-,-) 1T<OO]

= Z Eﬂ' [f (XnaXn—i-l) o ) 9n (XO7 cee 7Xn) 1T:1’L]
n=0

= Z ]E‘n' [.f (XnaXn-i-l; ) ) In (X07 cee 7Xn) On (X()) R aXn)]
n=0

= Ex[[Ex, f (X0, X1,.. ) gn (X0, .., Xn) o (Xo, ..., Xn)]
n=0

= Z Er HEXTf (X07 D ST )] gr (XOv s »Xn) 1T:n]
n=0

= Eﬂ— H]Eer (X07X1, e )} gr (Xo, e ,XT) 1‘r<oo}

wherein we have used Theorem in the third equality. [

The analogue of Corollary in this more general setting states; con-
ditioned on 7 < oo and X, = =z, X,;, X;11, X;42,... is independent of
Xo,..., X, and is distributed as Xg, X1,... under P,.

Corollary 3.41. Let 7 be a stopping time, x € S and w be any probability
on S. Then relative to Pr (-|7 < oo, X; =x), {Xrik}ysq is independent of

{Xo,.... X} and {X;41}> has the same distribution as {Xi},., under
P,. =
Proof. According to Eq. (3.30)),
Ex[g(Xos .., X5) f(Xr, Xpi1,...): 7 < 00, Xy =2a]
=Ex [g (X07 T) ‘r<oo (Xr)f(XT,XT+1, .. )}
=Eq[g(Xo,--, X7) Lrcoods (X7) Ex, [f (X0, X1, .. )]]
=Er [9(Xo, ..., X7) Lrcools (X7 )IE [f (X0, X1,...)]]
=E.[9(Xo,...,X,): T <00, Xy =z]E, [f (X0, X1,...)].

Dividing this equation by P (7 < 0o, X, = ) shows,

Erlg(Xoy. .. X0) f (X7, Xrs1,...) |7 <00, X = 2]
=E.[g(Xo,...,.X;)|T < o0, X; =2]|E; [f (X0, X1,...)]. (3.31)
Taking g = 1 in this equation then shows,
E:[f (Xs Xrg1,...) |7 <00, Xr =] =E, [f (X0, X1,...)]- (3.32)

This shows that {X;ix},~, under P (:|7 < oo, X, =) hab the same dis-

tribution as {Xj},-, under P, and, in combination, Eqs. and (| -
shows {X; 11 },>o and {Xo,..., X} are conditionally, on {7‘ < oo, X,
independent.
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To match notation in the book, let

f(”) PZ(Rlzn):PZ<X17éZ,7Xn,175’L7Xn:7/)

k22

and m;; := E;(M;) — the expected number of visits to j after n = 0.

Proposition 3.42. Let i € S and n > 1. Then P} satisfies the “renewal
equation,”

ZP = k)P ", (3.33)
Alsoifje€ S, keN, andv: S — [O, 1] is any probability on S, then Eq.

holds, i.e.
P, (M; > k) =P, (R; <) - P; (R; <o0)"". (3.34)

Proof. To prove Eq. (3.33) we first observe for n > 1 that {X, =i} is the
disjoint union of {X,, =4, R; = k} for 1 <k <n and thereforeﬂ
n
P} =P(X,=i)=Y PR =k X, =1)

k=1

=2Pi(X1 Fiens Xp1 # 0, Xp = 0, Xy = 1)

=Y Pi(Xy#i,..., Xeo1 # 4, X =) P "

k=1
Z P FP(R; = k).
For Eq. (3.34) we have {M; > 1} = {R; < oo} so that P, (M; > 1) =
P;(Rj < o). For k > 2, since R; < oo if M; > 1, we have
P, (M; > k) =P, (M; > k|R; < c0) P, (R; < 00).

Since, on R; < oo, Xg, = j, it follows by the strong Markov property (Corol-
lary [3.41]) that;

2 Alternatively, we could use the Markov property to show,

Pl = Py( Z]Ez (Ir;=k - 1x,=4) ZZE 1=k - Eilx, ,=i)
k=1 k=1

Ei(1r,=1)Ei (1x, ,=i) = i Pi(Ri = k)Py(Xn_k =)

1 k=1

I
hE

S
Il

P *P(R; = k).

Il
hE

>
Il

1
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P; (Mj > k|Rj < 00) = P; (M; > k|R;j < 00, X, = j)

=P [ 14+ Ixy.= > k|R; <00, Xp, =

n>1
=P |1+ 1x,—j>k| =P (M;>k—1).
n>1
By the last two displayed equations,
P (Mj > k) = P; (M; > k — 1) P; (R; < o0) (3.35)
Taking ¢ = j in this equation shows,
Py (Mj > k) = P (Mj > k —1) Pj (R; < o0)
and so by induction,
P; (M, > k) = P; (R; < 00)". (3.36)

Equation (3.34) now follows from Egs. (3.35)) and (3.36]). ]

3.4 Irreducible Recurrent Chains

For this section we are going to assume that X, is a irreducible recurrent
Markov chain. Let us now fix a state, 7 € S and define,

TIZR] :min{nz 1:X7L:.]}7
o=min{n>1: X, =i},

o =min{n >1: Xy, , =7},

so that 7, is the time it takes for the chain to visit j after the (n — 1)’st visit
to 7. By Corollarywe know that P; (1, < oco) =1foralli € Sandn € N.
We will use strong Markov property to prove the following key lemma in our
development.

Lemma 3.43. We continue to use the notation above and in particular as-
sume that X, s an irreducible recurrent Markov chain. Then relative to any
P; withi € S, {1}, is a sequence of independent random variables, {T,},
are identically distributed, and P; (1, = k) = P;j (1 = k) for all k € Ny and
n > 2.
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Proof. Let Ty = 0 and then define Tj inductively by, Tipy1 =
inf {n > T} : X,, = j} so that T, is the time of the n’th visit of {X,} -,
to site j. Observe that 77 = 7,

Tt (Xos X1, -2) =71 (X1 X104, XD ins - -+ ) 5

and (71, ...,7,) is a function of (X, ..., X7, ). Since P; (T,, < o0) =1 (Corol-
lary[3.14) and X7, = j, we may apply the strong Markov property in the form
of Corollary [3:41] to learn:

1. Tpy1 is independent of (Xo,..., X7, ) and hence 7,41 is independent of
(T1,...,7n), and

2. the distribution of 7,41 under P; is the same as the distribution of 7
under P;.

The result now follows from these two observations and induction. [ |

Theorem 3.44. Suppose that X, is a irreducible recurrent Markov chain, and
let j € S be a fized state. Define

= (3.37)

with the understanding that m; = 0 if E;(R;) = co. Then

N
1
Jim Z; lx,—j =m; Pi—as. (3.38)
for alli € S and
1 N
Jim > Pl=m;. (3.39)
n=0

Proof. Let us first note that Eq. (3.39) follows by taking expectations of

Eq. (3.38). So we must prove Eq. (3.38]).
By Lemma the sequence {Tn}n22 is i.i.d. relative to P; and E;7,, =

E;m; = E;R; for all ¢ € S. We may now use the strong law of large numbers
(Theorem [1.14)) to conclude that

g LET2E TN
N—oo N

=Ein=E;n =E;R; (Pi* a.s.). (340)

This may be expressed as follows, let R§N) =T+ 72+ + TN, be the time
when the chain first visits j for the N** time, then
()
lim ]T = EjRj (Pi* a.s.) (341)

N—oo

Let
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N
=) lx, =]
n=0

be the number of time X, visits j up to time NN. Since j is visited infinitely

often, vny — 0o as N — oo and therefore, limy_, o ”ﬁ—;rl = 1. Since there were

v visits to j in the first N steps, the of the vx™ time j was hit is less than

or equal to NV, i.e. R;VN) < N. Similarly, the time, RéVNH), of the (vy +1)™

visit to 7 must be larger than IV, so we have R <N Ré"” ), Putting
these facts together along with Eq. (3.41]) shows that

R;"N) R(_“N+1)

< N Yo vnHl
UN — UN — vn+1 UN
l l N ! N — oo,

ie limy_ 00 % = E,;R; for P; — almost every sample path. Taking reciprocals
of this last set of inequalities implies Eq. (3.38). ]

Proposition 3.45. Suppose that X,, is a irreducible, recurrent Markov chain
and let m; = m for all j € S as in Eq. . Then either m; = 0 for all
i € S (in which case X, is null recurrent) or m; > 0 for all i € S (in which
case X, is positive recurrent). Moreover if w; > 0 then

> mi=1and (3.42)
€S
> miPy =m; forallj €S (3.43)
€S
That is m = (7;)ics 18 the unique stationary distribution for P.
Proof. Let us define
mn 1 .
T = > P, (3.44)
1=1
which, according to Theorem [3.44] satisfies,

lim T} = m; for all i,k € S.

n—oo
Observe that,
1o 1o 1
(TP = 3 SR = LS Pl L[ P s

=1

Let a := ) ;g m. Since m; = lim,, . T}, Fatou’s lemma implies for all
i,j € S that
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a=>» m= anniggoT,g; < limniBEOZT,?i =1

€S €S €S
and
> miPy =Y lim TPy <lim inf » TjIP; =lim inf 777" =m;
n—oo n—oo n—oo
i€S i€S i€S

where [ € S is arbitrary. Thus

Y m=ta<land » mPy;<mforalljes. (3.45)
i€S €S

By induction it also follows that

Zﬂ'iljil;- <m; forall j €S. (3.46)
€S
So if m; = 0 for some j € S, then given any ¢ € S, there is a integer k such
that PZ} > 0, and by Eq. 1} we learn that m; = 0. This shows that either
m; =0forallie Sorm>0toralliecls.

For the rest of the proof we assume that 7; > 0 for all ¢ € S. If there were
some j € S such that ), ¢ m;P;; < m;, we would have from Eq. (3.45) that

a= m=3 3 mPij=) > mP;<) m=a
€S €S jes jesies JjeS

which is a contradiction and Eq. (3.43)) is proved.
From Eq. (3.43) and induction we also have

ZmPZ’; =m;foralljes
€S

for all £ € N and therefore,
> mTl = for all j € S. (3.47)
€S

Since 0 < Tj; < 1 and ZieS m; = o < 1, we may use the dominated conver-
gence theorem to pass to the limit as k — oo in Eq. (3.47)) to find

T = lim E ’/TlTZI; = E lim WZTlI; = E T = QT .
k—o0 k—o0
i€S i€S i€S

Since m; > 0, this implies that o = 1 and hence Eq. (3.42)) is now verified. m

Proposition 3.46. Suppose that P is an irreducible Markov kernel which ad-

mits a stationary distribution p. Then P is positive recurrent and p; = m; =

W for all j € S. In particular, an irreducible Markov kernel has at most
J J

one invariant distribution and it has exactly one iff P is positive recurrent.
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Proof. Suppose that u = (u;) is a stationary distribution for P, i.e.
Yiegti =1land p; = g u; Py for all j € S. Then we also have

pi =Y wT} for all k € N (3.48)
i€S

where TF is defined above in Eq. 1} As in the proof of Proposition

ij
we may use the dominated convergence theorem to find,

— i . kE _ ] . kE _ . — .
pj = lim Y Tl =37 lim Tl =)y = .
i€S €S €S

Alternative Proof. If P were not positive recurrent then P is either
transient or null-recurrent in which case lim,,_, Ti’} = m = 0 for all 4, j.
So letting £ — oo, using the dominated convergence theorem, in Eq.
allows us to conclude that p; = 0 for all j which contradicts the fact that u

was assumed to be a distribution. ]

Lemma 3.47 (A number theory lemma). Suppose that 1 is the greatest
common denominator of a set of positive integers, I' := {ny,...,nr}. Then
there exists N € N such that the set,

A={miny +---+mgng : m; >0 for all i},
contains all n € N with n > N.

Proof. (The following proof is from Durrett [I].) We first will show that
A contains two consecutive positive integers, a and a + 1. To prove this let,

k:=min{|b —a|: a,b € A with a # b}

and choose a,b € A with b =a+k. If k > 1, there exists n € I' C A such that
k does not divide n. Let us write n = mk +r with m >0 and 1 <r < k. It
then follows that (m +1)b and (m + 1)a + n are in A,

(m+1)b=(m+1)(a+k)>(m+LDa+mk+r=(m+1)a+n,

and
(m+1)b—(m+1la+n=k—r<k.

This contradicts the definition of £ and therefore, k = 1.
Let N = a?. If n > N, then n—a? = ma+r for somem > 0and 0 < r < a.
Therefore,

n=a*+ma+r=(a+m)at+r=(a+m-r)a+r(a+l)cA.
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Continuous Time Markov Chain Notions

In this chapter we are going to begin out study continuous time homogeneous
Markov chains on discrete state spaces S. In more detail we will assume that
{X:},>0 is a stochastic process whose sample paths are right continuous and
have left hand limits, see Figures [{.1] and [£:2]

Xi(w) 5 S
— P
Jo=0 Jy Jo Js J:'4 ‘{5 t
T8 . S S Sy - S5 S

Fig. 4.1. Typical sample paths of a continuous time Markov chain in a discrete
state space.

As in the discrete time Markov chain setting, to each i € S, we will write
P;(A) := P(A|Xo =1). That is P, is the probability associated to the scenario
where the chain is forced to start at site i. We now define, for i,j € .5,

Bij (t) = P (X (1) = j) (4.1)

which is the probability of finding the chain at time ¢ at site j given the chain
starts at 1.
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X p s f :
Bl ..... ....................... ....... '.E’_"
Al ..... ....................... o—o ........
N S S b
T R
1l - : ............................................

0 it >

Jo=10 J1 J:rz J3 J4 st ¢

s L % S s 8 s

Fig. 4.2. A sample path of a birth process. Here the state space is {0,1,2,...} to
be thought of the possible population size.

Definition 4.1. The time homogeneous Markov property states for ev-
ery 0 < s <t < oo and any choices of 0 =tg <t1 < --- < t, =s <t and
i1,...,i, € 85 that

P; (X(t) :J|X(t1) = ilw--vX(tn) = Zn) = Pin,' (tf 5)7 (42)
and consequently,
P (X (8) = jIX (5) = in) = Pryj (t—5). (4.3)

Roughly speaking the Markov property may be stated as follows; the
probability that X (t) = j given knowledge of the process up to time s is
Px(s),; (t = s). In symbols we might express this last sentence as

Py (X () = X (D)} re,) = PX (0) = 41X () = Pxgey (= 9).

So again a continuous time Markov process is forgetful in the sense what
the chain does for ¢ > s depend only on where the chain is located, X (s),
at time s and not how it got there. See Fact below for a more general
statement of this property.

Definition 4.2 (Informal). A stopping time, T, for {X (1)}, is a random
variable with the property that the event {T < t} is determined from the knowl-
edge of {X (s) : 0 < s < t}. Alternatively put, for each t > 0, there is a func-
tional, f¢, such that
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lTStht({X(S)ZOSSSt}).

As in the discrete state space setting, the first time the chain hits some
subset of states, A C S, is a typical example of a stopping time whereas
the last time the chain hits a set A C S is typically not a stopping time.
Similar the discrete time setting, the Markov property leads to a strong form
of forgetfulness of the chain. This property is again called the strong Markov
property which we take for granted here.

Fact 4.3 (Strong Markov Property) If {X (t)},, is a Markov chain, T
is a stopping time, and j € S, then, conditioned on {T < oo and Xt = j},

{X(s):0<s<T} and {X(t+T):t>0}
are {X (t+7T) :t >0} has the same distribution as {X (t)},5, under P;.

We will use the above fact later in our discussions. For the moment, let us
go back to more elementary considerations.

Theorem 4.4 (Finite dimensional distributions). Let 0 < t; < t32 <
-oo < t, and ig, 41,102, ...,i, € S. Then

Py ( Xy, =11, X4, =d2,..., Xy, = iy)

n

= Pigiy (t1) Py iy (ta —t1) . Py, (B — ta1). (4.4)

Proof. The proof is similar to that of Proposition For notational
simplicity let us suppose that n = 3. We then have

Py (X, = i1, Xy, = i2, Xy, = i3) = Pi(Xy, = i3] Xy, = i1, Xy, = 12) Py (X, = i1, X,
=D, i, (t3 — t2) Py (X4, = 11, Xy, = i2)
= P, i, (t3 — t2) Py (X4, = 02| Xy, = i1) Py, (X, = i1)
= P, i, (t3 — t2) Py, 4, (t2 — t1) Py qy (1)

wherein we have used the Markov property once in line 2 and twice in line 4.
]

Proposition 4.5 (Properties of P). Let P (t) := P; (X (t) =j) be as
above. Then:

1. For each t > 0, P (t) is a Markov matriz, i.e.
ZPZ-]- (t)=1 forallie S and
j€S

P;j (t) >0 foralli,j€S.

2. hmtlo Pij (t) = (Sij for all 1,] € S.

= ip)
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3. The Chapman — Kolmogorov equation holds:
P(t+ s) = P(t)P(s) for all s,t >0, (4.5)

i.€.
(t+s) Z Pii, (s) Py (t) for all s,t > 0. (4.6)
kes

We will call a matriz {P (t)},~, satisfying items 1. — 3. a continuous
time Markov semigroup. B

Proof. Most of the assertions follow from the basic properties of con-
ditional probabilities. The assumed right continuity of X; implies that
lim; o P(t) = P(0) = I. From Equation (4.4) with n = 2 we learn that

Pigiy(t2) = Y Pig(Xy, = i, Xy, = in)
11ES

Z 10711 21 i2 (tQ - tl)

11 ES
= [P(t1)P(t2 — t1)lig in-

At this point it is not so clear how to find a non-trivial (i.e. P (t) # I
for all t) example of a continuous time Markov semi-group. It turns out the
Poisson process provides such an example.

Ezample 4.6. In this example we will take S = {0,1,2,...} and then define,
for A > 0,

01 2 3 4 5 6
r 2 3 4 5

1 M\ (>\2t!) (>\3t!) (/\t)3 (>\rt|)4
01 A Q02007 Oof

Pty=e ™[00 1 X “2?2 (W

00 0 1 X “2?2...

W N = O

In components this may be expressed as,

) .
(G-’

with the convention that 0! = 1. (See Exercise of this weeks homework
assignment to see where this example is coming from.)

If 1,7 € S, then Py (t) Py, (s) will be zero unless ¢ < k < j, therefore we
have

Pij(t)=e
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Zsz Pk_] —1z<_] szk Pk] )

kesS i<k<j
—1 ()\S)Jik
yaTe

= l;<je” (4.7)

Z<k<]

Let £ =14+ m with 0 < m < j — 4, then the above sum may be written as

Jj—i Jj—i—m .
) )‘S) j—ti—m
Z m! (j—i—m)! ]—Z'Z ")
and hence by the Binomial formula we find,

(/\t)k_i ()\s)j_k B 1
szk:gj (k=) (j—k)!  (j—1) (Xt + As)!~

Combining this with Eq. (4.7) shows that

> Puc(t) Py (s) = Pij (s +1).

kesS
Proposition 4.7. Let {X;},., is the Markov chain determined by P (t) of
Ezamplel4.6l Then relative to Py, {Xt}tZO is precisely the Poisson process on

[0,00) with wntensity A.

Proof. Let 0 < s < t. Since Py (X; =n|Xs=k) = Py, (t—s) = 0 if
n < k, {Xt},>, is a non-decreasing integer value process. Suppose that 0 =
50< 51 <83< <8, =sandi; €9 fork=0,1,2,...,n, then
Py (Xy — Xs =1ig|X,, =ij for 1 < j <n)
= Py (Xi = in +io|Xs, =i for 1 < j <n)
= PO (Xt = Zn + Z-0|)(s” = 'Ln)
0
_ A9 ()\’t)
Z()!
Since this answer is independent of iq,...,14, we also have
Py (X — X = io)

= > Po(Xi— X, =io|X,, =ij for 1 <j <n)Py(X,, =i for 1 <j<n)

i1,...,in €S
0
= Z e~ Mt=s) (At) —F (Xs,. =4, for1 <5< n) = e*)‘(tfs)%
) S io! / 1!
11,0 00n

Thus we may conclude that X; — X is Poisson random variable with intensity
A which is independent of {X,.}, ., . That is { X}, is a Poisson process with
rate . [

The next example is generalization of the Poisson process example above.
You will be asked to work this example out on a future homework set.



64 4 Continuous Time Markov Chain Notions

Ezample 4.8. In problems VI.6.P1 on p. 406, you will be asked to consider
a discrete time Markov matrix, p;;, on some discrete state space, S,with as-
sociate Markov chain {Y, }. It is claimed in this problem that if {IV (¢)},-,
is Poisson process which is independent of {Y,}, then X; := Ynw is a con-
tinuous time Markov chain. More precisely the claim is that Eq. holds
with

oo

tm

__—t m __, t(p—1I)

P(t)=e g_o—m!p =:e'\P
i.e.

o0 tm

- _ -t m

Pj(t)=e E poo (p )”

m=0

(We will see a little later, that this example can be used to construct all finite
state continuous time Markov chains.)

Notice that in each of these examples, P (t) = I + Qt + O (t*) for some
matrix @. In the first example,

Qij = —Adij + Adiit1

while in the second example, Q@ = p — 1.

For a general Markov semigroup, P (t), we are going to show (at least
when # (S) < 00) that P (t) = I + Qt + O (¢?) for some matrix @ which we
call the infinitesimal generator (or Markov generator) of P. We will
see that every infinitesimal generator must satisfy:

Qi; <0 for all i # j, and (4.8)
Z Qi =0, ie. —Qi = ZQH for all 7. (4.9)
J j#i

Moreover, to any such @, the matrix
o _ 1" £ ot s
Pt)=e ::ZEQ":IHQwLEQ + 5@+
n=0

will be a Markov semigroup.

One useful way to understand what is going on here is to choose an initial
distribution, 7 on S and then define 7 (t) := 7P (t) . We are going to interpret
m; as the amount of sand we have placed at each of the sites, j € S. We
are going to interpret 7, (¢) as the mass at site j at a later time ¢ under the
assumption that = satisfies, 7 () = 7 (¢) Q, i.e.

7y (8) = > (1) Qij — s (1), (4.10)
i#]
where ¢; = —Q; ;. (See Example below.) Here is how to interpret each
term in this equation:
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7; (t) = rate of change of the amount of sand at j at time ¢,
m; (t) Qij = rate at which sand is shoveled from site i to j,

g;m; (t) = rate at which sand is shoveled out of site ¢ to all other sites.

With this interpretation Eq. [£.10] has the clear meaning: namely the rate of
change of the mass of sand at j at time ¢ should be equal to the rate at which
sand is shoveled into site j form all other sites minus the rate at which sand
is shoveled out of site . With this interpretation, the condition,

Qi =q =Y Qi
ki

just states the total sand in the system should be conserved, i.e. this guaran-
tees the rate of sand leaving j should equal the total rate of sand being sent
to all of the other sites from j.

Warning: the book denotes Q by A but then denotes the entries of A by
gij- 1 have just decided to write A = @) and identify, @Q;; and g;;. To avoid
some technical details, in the next chapter we are mostly going to restrict
ourselves to the case where # (S) < oco. Later we will consider examples in
more detail where # (S5) = oc.
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Finite State Space Theory

For simplicity we will begin our study in the case where the state space is
finite, say S = {1,2,3,...,N} for some N < oco. It will be convenient to
define,

be the column vector with all entries being 1.

Definition 5.1. An N x N matriz function P (t) fort > 0 is Markov semi-
group if

1. P (t) is Markov matriz for allt >0, i.e. P;; (t) >0 for all i,j and

> Pyj(t)y=1forallics. (5.1)

JjES
The condition in Eq. may be written in matriz notation as,
P(t)1=1 forallt>0. (5.2)

2.P(0)=1Inxn,
3. P(t+s)=P(t)P(s) for all s,t >0 (Chapman - Kolmogorov),
4. limy o P (t) =1, i.e. P is continuous at t = 0.

Definition 5.2. An N x N matriz, Q, is an infinitesimal generator if
Qij >0 for alli # j and

> Qij=0forallics. (5.3)

JES
The condition in Eq. may be written in matrix notation as,
Q1=0. (5.4)

In this section we are going to make use of the following facts from the
theory of linear ordinary differential equations.
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Theorem 5.3. Let A and B be any N X N (real) matrices. Then there exists
a uniqgue N X N matriz function P (t) solving the differential equation,

P(t) = AP (t) with P(0) =B (5.5)
which is in fact given by
P(t)=e“B (5.6)
where
AN gy B B 5.7

The matriz function e* may be characterized as the unique solution Eq.

with B = I and it is also the unique solution to

P (t) = AP (t) with P (0) = I.
Moreover, et satisfies the semi-group property (Chapman Kolmogorov equa-
tion),

e(tH)A — tAesA for all s, ¢ > 0. (5.8)

Proof. We will only prove Eq. (5.8)) here assuming the first part of the
theorem. Fix s > 0 and let R (t) := e(T)4 then

R(t) = Ae"+94 = AR (t) with R(0) = P (s).
Therefore by the first part of the theorem

et+s)A — R (t) = e R (0) = etes4.

|
. 01
Ezample 5.4 (Thanks to Mike Gao!). It A = {00],then A" =0 for n > 2,
so that
A ~[10 01] [1¢
e —I+tA—{01 +t ool =lo1l:
. . 00
Similarly if B = 10 , then B™ =0 for n > 2 and
- [10 00] [10
e —I—i-tB—[Ol +t 1ol =121l
NowletC’—A+B—{_01(1)].InthiscaseC’Q——I,C3——C’,C’4—I,

C® = C etc., so that

C* = (=1)"I and C*"™! = (-1)" C.
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Therefore,
.°] t27l > t2n+1
1 2n 2ntl
_ c B¢
P P ISP Y

o th . [es) t2n+1 n

_ 1T — (=" C
2t T 2 Y

) cost sint
=cos(t) ] +sin(t)C = [_sint cost]

which is the matrix representing rotation in the plan by t degrees.

Here is another way to compute €’ in this example. Since C? = —I, we
find
& o 2 tC tC
— = C“e"™ = —e" with
dt?
d
oC tC
e’ =T and —e“|ig = C.
TR

It is now easy to verify the solution to this second order equation is given by,
e = cost - I +sint-C
which agrees with our previous answer.
Remark 5.5. Warning: if A and B are two N x N matrices it is not generally
true that
eA+B) — AeB (5.9)
as can be seen from Example [5.4]
However we have the following lemma.
Lemma 5.6. If A and B commute, i.e. AB = BA, then Eq. (@ holds. In
particular, taking B = —A, shows that e~ = [eA]fl .

Proof. First proof. Simply verify Eq. (5.9)) using explicit manipulations
with the infinite series expansion. The point is, because A and B compute,
we may use the binomial formula to find;

A+B"=3" (Z) AFBnk,
k=0
(Notice that if A and B do not compute we will have
(A+B)=A?+ AB + BA+ B> # A + 2AB + B?%)

Therefore,
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o0 1 o0 1 n n
(A+B) _ il n _ S k pn—k
D DIV S (k)AB

_ 1 1 k npn—k _
= Y HﬁAB (let n—k = 1)

_ |
0<k<n<oo n—Fk)
R N R N T N Ry
—ZZgﬁAB —ZgA 'ZﬁB =e’e”.
k=0 [=0 k=0 =0

Second proof. Here is another proof which uses the ODE interpretation
of e!4. We will carry it out in a number of steps.

1. By Theorem [5.3] and the product rule

%e_tABetA =e M (—A)Be 4 e 4 BA = e (BA— AB) et =0

since A and B commute. This shows that e *4Be!4 = B for all t € R.

2. Taking B = I in 1. then shows e ?e!4 =T for all t j.e. et = [etA] -
Hence we now conclude from Item 1. that e *4B = Be~*4 for all t.

3. Using Theorem Item 2., and the product rule implies

da [e_tBe_tAet(A+B)}
dt
:e—tB (—B) e—tAet(A-',-B) + e—tBe—tA (—A) et(A+B)

+e Bt (4 4+ B) et(A+B)

—e tBemtA (_B) tA+B) | o~tBe—tA (_ 4 (HA+B)
t e tBemtA (A 4 B)etATD) — g,
Therefore,
e tBetAGHA+B) — o—tB—tAMA+B)|, T for all ¢,
and hence taking t = 1, shows
e BemAeAtE) — 1. (5.10)

Multiplying Eq. (5.10)) on the left by e4e? gives Eq. (5.9).

The following is the main theorem of this chapter.

Theorem 5.7. The collection of Markov semi-groups is in one to one cor-
respondence with the collection of infinitesimal generators. More precisely we
have;

1. P (t) = €'? is Markov semi-group iff Q is an infinitesimal generator.
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2. If P(t) is a Markov semi-group, then Q := Lo P (t) exists, Q is an
infinitesimal generator, and P (t) = e'@.

Proof. The proof is completed by Propositions - below. (You
might look at Example to see what goes wrong if ) does not satisfy the
properties of a Markov generator.) [

We are now going to prove a number of results which in total will complete
the proof of Theorem The first result is technical and you may safely skip
its proof.

Proposition 5.8 (Techinical proposition). Every Markov semi-group,
{P(t)},>q is continuously differentiable.

Proof. First we want to show that P (¢) is continuous. For t,h > 0, we
have

P(t+h)—P@t)=P@{t)P(h)—P{t)=P(({t)(P(h)—I)—0ash 0.
Similarly if ¢ > 0 and 0 < h < ¢, we have

P(t)—P(t—h)=P(t—h+h)—P(t—h)=P({t—h)P(h)—P(t—h)
=P({t—h)[P(h)—I]—=0ash |0

where we use the fact that P (¢ — h) has entries all bounded by 1 and therefore

(P (¢t = h) [P (h) = 1]),;;

<Y Pu(t=n)|(P(h) - D),
k

< Z‘(P(h)—[)kj‘ ~0ash 0.
k

Thus we have shown that P (t) is continuous.
To prove the differentiability of P (t) we use a trick due to Géarding. Choose
€ > 0 such that

H::l/ P(s)ds
€Jo

is invertible. To see this is possible, observe that by the continuity of P,
%foa P(s)ds — I as ¢ | 0. Therefore, by the continuity of the determinant
function,

det <1/5P(s)ds> —det(I)=1ase | 0.
0

€
With this definition of II, we have

€ € t+e
P(t)H:f/O P(t)P(s)ds:l/O P(t+s)ds:l/t P (s)ds.

9 9

So by the fundamental theorem of calculus, P (¢) I is differentiable and
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d 1

—[P(t) ] =—-(P(t —P(t).

SIP(WI) == (P(t+e) = P(0)

As IT is invertible, we may conclude that P (¢) is differentiable and that

P(t):= % (P(t+e)—P(t) I "

Since the right hand side of this equation is continuous in ¢ it follows that
P (t) is continuous as well. ]

Proposition 5.9. If {P (t)},> is a Markov semi-group and Q := %[04+ P (1),
then -

1. P (t) satisfies P (0) = I and both,
P(t)=P(t)Q (Kolmogorov’s forward Eq.)

and
P(t)=QP(t) (Kolmogorov’s backwards Eq.)

hold.
2. P(t) = e!@.
3. Q is an infinitesimal generator.

Proof. 1.-2. We may compute P (t) using
P(t) = i\ P(t+s)
T ds '

We then may write P (t + s) as P (t) P (s) or as P (s) P (t) and hence

P(t) = o [P (1) P(5)] = P(1) Q and
P(1)= 510 [P(5) P ()] = QP (1),

This proves Item 1. and Item 2. now follows from Theorem [5.3

3. Since P (t) is continuously differentiable, P (t) = I +tQ + O (t*), and
so for i #£ 7,
Dividing this inequality by ¢ and then letting ¢ | 0 shows @Q;; > 0. Differenti-
ating the Eq. (5.2), P (t)1 =1, at ¢t = 04+ to show Q1 =0. [ ]

Proposition 5.10. Let Q) be any matriz such that Q;; > 0 for alli # j. Then
(etQ)ij >0 forallt >0 andi,j €S.
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Proof. Choose A € R such that A > —Q);; for all i € S. Then A\ + @ has
all non-negative entries and therefore e!*’+@) has non-negative entries for all
t > 0. (Think about the power series expansion for et(’\”Q).) By Lemma
we know that e!(M+Q) = ¢tMetQ and since et = eI (you verify), we havd|

tOIHQ) oA, tQ

Therefore, '@ = et M +Q) again has all non-negative entries and the proof
is complete. [

Proposition 5.11. Suppose that Q is any matriz such that ZjES Qij =0 for
alli € S, i.e. QL =0. Then e!?1 = 1.

Proof. Since

d
%eth :etQQl =0,

it follows that e/?1 = e!?1|,_, = 1. n

Ezample 5.12. Let S = {1,2,3} and

123
-3 1271

Q=] 0-11|2
0 00]3

which we represent by Figure Let m = (71,72, 73) be a given initial ( at

U
rr—\;

2 A

t = 0) distribution (of sand say) on S and let 7 (t) := 7e'? be the distribution
at time ¢. Then

! Actually if you do not want to use Lemma you may check that e!M+@) =
e e*? by simply showing both sides of this equation satisfy the same ordinary
differential equation.
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7 (t) = e'%Q = 7 (1) Q.

In this particular example this gives,

-3 12
[7:(1 7.1'27-7'3]2[7'(1 ’/T27T3] 0-11
0 00

= [—37T1 T — o 2m +7T2]a

or equivalently,

7-T1 = —37T1 (511)
7'1'2:7'(177'(2 (512)
T3 = 27y + mo. (513)

Notice that these equations are easy to read off from Figure[5.12] For example,
the second equation represents the fact that rate of change of sand at site 2
is equal to the rate which sand is entering site 2 (in this case from 1 with rate
1m1) minus the rate at which sand is leaving site 2 (in this case 1wy is the
rate that sand is being transported to 3). Similarly, site 3 is greedy and never
gives up any of its sand while happily receiving sand from site 1 at rate 2m
and from site 2 are rate 1ms. Solving Eq. gives,

m (t) = e 371, (0)
and therefore Eq. (5.12)) becomes
—3t

7:1'226 7T1(0)—7T2

which, by Lemma [5.13] below, has solution,

¢
7y (t) = ety (0) + e_t/ eTe 3y (0)dr
0
1

=5 (e —e ) w1 (0) + e 'm2 (0).
Using this back in Eq. then shows
73 = 2e 30y (0) + % (e7" — e ") w1 (0) + e 'ma (0)
= <;et + ;63t> 71 (0) + e "ma (0)

which integrates to

w3 (t) = (; [1—ef]+ % (1- e_3t)> 71 (0) + (1 — e ") 72 (0) + 73 (0)

_ <1 - % e~ + e3f]> 71 (0) + (1 — =) ma (0) + 3 (0).
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Thus we have

T _eigt’frl (0)
mo | = |2 (et—e ) m (0) + e tmy (0)
T3 L (1=2 (et +e3]) m (0) + (1 — e7") w2 (0) + 73 (0)

e3¢ 0 0 T (t)
=lz(et—e®) et 0] [m(t)
1-— % [e_t + e_3t] 1—et1 73 (1)

e3¢ 0 01"
P(t)=el? = % et — e_3t) et 0
1— % [e‘t + 6_3t] 1—et1

et (Lot — Lem3) (1— L=t — Le=31)
=0 et —e P41
0 0 1

Lemma 5.13 (ODE Lemma). If h(t) is a given function and X € R, then
the solution to the differential equation,

7 (t) = Aw (¢) + h (¢) (5.14)
Tt)=eM(n t e Mh(s)ds .
0= (x4 [ i) (5.15)
=eMr MR (s) ds. .
(0)+/0 h(s)d (5.16)

Proof. If = (t) satisfies Eq. (5.14)), then

d 2\t =)t . _ At
a(e Mr ) =e M(=An(t) +7 () =e Mh(t).

Integrating this equation implies,

e Mr e = tef)‘s s)ds.
0= = [ (s

Solving this equation for 7 (t) gives

7 (t) = M (0) + eM /Ot e h(s)ds (5.17)
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which is the same as Eq. (5.15). A direct check shows that m (¢) so defined
solves Eq. (5.14)). Indeed using Eq. (5.17) and the fundamental theorem of
calculus shows,

7 (t) = M7 (0) 4 AeM /t e h(s)ds 4+ eMe  Mh (1)
0
=Mt (t)+h(t).
[

Corollary 5.14. Suppose A € R and 7 (t) is a function which satisfies, 7 (t) >
A7 (t), then
7 (t) > eMn (0) for allt > 0. (5.18)

In particular if w(0) > 0 then w (t) > 0 for all t.
Proof. Let h(t) := 7 (t) — A (t) > 0 and then apply Lemma to

conclude that

¢

7 (t) = M (0) + / MR (s) ds. (5.19)
0

Since e**=%)h (s) > 0, it follows that fg e*Mt=3)h (s) ds > 0 and therefore if we

ignore this term in Eq. (5.19) leads to the estimate in Eq. (5.18). ]
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