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1

Preliminaries

1.1 The spectral theorem for symmetric matrices

Let A be a real N x N matrix,

ai;r a1 ... aiN
ag1 a9 ... AN
= , (1.1)
anN1 aN2 ... QNN
and
fl
f2
f=1".|erY

f'N

be a given vector. As usual we will let e; denote the vector in RY with all entries
being zero except for the " which is taken to be one.
We will write

N
(u,v) :==u-v= Zuivi = u""v and

i=1
2 _ 2 tr
|ul —(u,u)—Zui—u u.

Recall that {vi}fil C R¥ is said to be an orthonormal basis if

lifi=j
o) = b= { o1 5 (12)

The following proposition and its infinite dimensional analogue will be the basis
for much of this course.

Proposition 1.1. If {vl}N1 C RV satisfies Eq. (.) then {vz} _, 15 a basis
for RN and if u € RN we have

N
Z u, v;) v;. (1.3)
i=1

Proof. Suppose that u = Zf\il a;v; for some a; € R. Then

N N
(u,vy) E a;v;,v; | = E a; (v;,v5) = E a;0;; = aj.
i=1 i=1

In particular if u = 0 we learn that a; = (u,v;) = 0 and we have shown that
{vl} _, is a linearly independent set. Since dim (RN ) = N, it now follows
that {vl} _, is a basis for RY and hence every u € RY may be written in the
form u = vazl a;v;. By what we have just proved, we must have a; = (u,v;),

ie. Eq. (1.3) is valid. ]

Definition 1.2. A matriz A as in Eq. is symmetric A = A%, q.e. if
ai; = aj; for all i, j.

The following characterization of a symmetric matrix will be more useful
for our purposes.

Lemma 1.3. If A is a real N x N matriz then, for all u,v € RV,
(Au,v) = (u, A"v). (1.4)
Moreover A is symmetric iff
(Au,v) = (u, Av) for all u,v € RY. (1.5)
Proof. Eq. is a consequence of the following matrix manipulations
(Au,v) = (Au)" v = u'" A"y = (u, A"v)

which are based on the fact that (AB)" = B"A". Hence if A is symmetric,
then Eq. (1.5]) holds. Conversely, if Eq. (1.5)) holds, by taking v = e; and v = e,
in Eq. (1.5)) we learn that
@14 a1j
aj; = Dol | = (Aeiseg) = (e Aej) = [ e | = Qi

aN,; an,j



2 1 Preliminaries

Corollary 1.4. Suppose that A = A" and v,w € RN are eigenvectors of A
with eigenvalues A and p respectively. If u # X\ then v and w are orthogonal,
i.e. (v,w) =0.

Proof. If Av = Av and Aw = pw with X # p then
A(v,w) = (A, w) = (Av,w) = (v, Aw) = (v, pw) = p (v, w)

or equivalently, (A — p) (v,w) = 0. Sine A # u, we must conclude that (v, w) =
0. ]

The following important theorem from linear algebra gives us a method for
guaranteeing that a matrix is diagonalizable. Again much of this course is based
on an infinite dimensional generalization of this theorem.

Theorem 1.5 (Spectral Theorem). If A in Eq. is a symmetric ma-
triz, then A has an orthonormal basis of eigenvectors, {v1,...,on} and the
corresponding eigenvalues, {A1, A2, ..., An} are all real.

Ezxample 1.6. Suppose that
1_3
A= [_% %} , (1.6)
2 2

then

D=

p(A) =det (A — ) :det{

1 2
:(_A) _9
2 1

which we set equal to zero to learn

2
(1_A> _9
2 4

or equivalently, (A — 3) = £2 and hence A has eigenvalues,

ol
rol—
|
>
—_

A1 =—1and Ay = 2.

Since ) s 3 L
=] 371 = o]

e A—2I 23 L1
~a=[Z3 7] = o)
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we learn that
v = |:}:| <—>)\1:71

Vo = |:_11:| <—>>\2:2

Notice that (vi,v2) = 0 as is guaranteed by Corollary The normalized
eigenvectors are given by 271/2y; and 272y, Consequently if f € R?, we have

f = (2_1/2’01, f) 2_1/21]1 + (2_1/2’1}2, f) 2_1/21}2

1 1
:i(vlaf)vl+§(v27f)v2~ (17)
Remark 1.7. As above, it often happens that naturally we find a orthogonal but
not orthonormal basis {Ui}fv:l for RV, ie. (v;,v;) =01if i # j but (v;,v;) # 1.
We can still easily expand in terms of these vectors. Indeed, {|vi|71 vi} is

i=1
an orthonormal basis for RY and therefore if f € RY we have

3 L (fo0i)
f:Z(f, |v¢\71vi) |vi\71vi :Z » s v;.
i—1

2
i=1 ‘vi|

Ezxample 1.8. Working as above, one shows the symmetric matrix,

17 -2
A=|7 1 =2/, (1.8)
—2-210

has characteristic polynomial given by
p(A) =det (A— M) = — (X* — 127 — 36\ + 432)
=—A=6)(A=12)(A+6).

Thus the eigenvalues of A are given by Ay = —6, Ao = 6 and A3 = 12 and the
corresponding eigenvectors are

-1 1 -1
vy = 1 — =06, vpg:=|1]| <6, v3:=|—-1]| < 12.
0 1 2

Again notice that {v1, v2,v3} is an orthogonal set as is guaranteed by Corollary

Relative to this basis we have the expansion
U1
f={v)—

ot (frve) 2

v3
5 + (f,v3) —5
|vs]

|v1] |v2]

=%(f,vl)vl+é(f,v2)v2+é(f,v2)v3.
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For example if f = (1,2,3)", then

1 1
f= 51)1 + 2vg + 5’()3. (19)

Exercise 1.1. Verify that the vectors {v; } _, are eigenvectors of A in Eq.
which have the stated eigenvalues. Hint: you are only asked to verify not solve
from scratch.

Exercise 1.2. Find eigenvectors {vi}le and corresponding eigenvalues {/\i}?zl
for the symmetric matrix,

-2 1 1
A=|1 -21
1 1 =2

Make sure you choose them to be orthogonal. Also express the following vec-

tors,
f=1(1,0,2)" and g = (0,1,2)" and h = (=1,1,0)""

as linear combinations of the {vi}?zl that you have found.

Exercise 1.3. Suppose that A is a N x N symmetric matrix and {vi}ivzl is

a basis of eigenvectors of A with corresponding eigenvalues {)\i}ﬁvzl . Suppose
f € RY has been decomposed as

N
f = Z a;V;.
=1
Show:

1. Anf = Ef\il ai/\?vi.
2. More generally, suppose that

p()‘):&0+a1)\+a2)\2+...+an/\n

is a polynomial in A, then

N
A)f:Zaip(/\)v

and in particular p (4)v =p (A) v is Av = Av.
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1.2 Cylindrical and Spherical Coordinates 3
1.2 Cylindrical and Spherical Coordinates

Our goal in this section is to work out the Laplacian in cylindrical and spherical
coordinates. We will need these results later in the course. Our method is to
make use of the following two observations:

1. If {ui}?zl is any orthonormal basis for R then

3

Vf-Vg=) (Vfu) (Vg u) Za fOu,9

i=1

and
2. if g has compact support in a region {2, then by integration by parts

/Afngz—/ Vf-VgdV. (1.10)
2 2

The following theorem is a far reaching generalization of Eq. ((1.10).

Theorem 1.9 (Divergence Theorem). Let 2 C R" be an open bounded
region with smooth boundary, n : 92 — R™ be the unit outward pointing normal
to 2. If Z € C1(£2,R™), then

/Z(x) n(e)do(z) = /v 2(@) da. (1.11)
o (%}

Corollary 1.10 (Integration by parts). Let 2 C R™ be an open bounded
region with smooth boundary, n : 92 — R" be the unit outward pointing normal
to Q. If Z € CH(2,R") and f € f € C1(2,R), then

/f W Z(x /Vf (x)dx—l—/f(x)Zx
o0

Also if g € C*(§2,R), then

n(x)do(z). (1.12)

/f )Ag(x /Vf -Vy(z dx+/f )Vg(x) -n(x)do(z). (1.13)
2

Proof. Eq. (1.12)) follows by applying Theorem with Z replaced by fZ
making use of the fact that

V-(fZ)=Vf-Z+fV-Z

Eq. (1.13) follows from Eq. (1.12) by taking Z = Vg. |
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4 1 Preliminaries

Fig. 1.1. Cylindrical and polar coordinates.

1.2.1 Cylindrical coordinates
Recall that cylindrical coordinates, see Figures are determined by
(z,y,2) = R(p,0,2) = (pcosb, psinb, z).
In these coordinates we have dV = r? sin pdrdfdep.
dV = pdpdfdz.

Proposition 1.11 (Laplacian in Cylindrical Coordinates). The Laplacian
in cylindrical coordinates is given by

Af = 20, (00,) + 081 + 01 (1.14)

Proof. We further observe that

R,(p,0,z) = (cosb,sinb,0)

Ro(p,0,2) = (—psinb, pcosb,0)

Rz(p, 97 Z) = (07 07 1)
so that

{R,(p,0.2),p 'Ra(p,0,2),R(p,0,2)}
is an orthonormal basis for R3. Therefore,
(vf7 VQ) = (vf7 RP) (ng R[)) + (va PilRQ) (ngpilRé)) + (vf7 Rz) (Vga Rz)
_0fdg 10fdg  Of 9g

T 9pdp  p206000 " 0z 0z
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If g has compact support in a region {2, then by integration by parts,

/QAfng:—/QVﬁngV

__ [ |9f9g 10fdg  0f0yg
= /Q [5;) op F o600 " 92 82} pdpdidz

i 1
= /Q 9y (PO, f) + p3§f+p8§f} g - dpdfdz

1 1
= /Q 00 (00,1) + p23§f+5§f} gpdpdfdz

1 1
= [ 500 00,01+ 085 + 634 gdv.
QLp P
Since this formula holds for arbitrary g with small support, we conclude that

1 1
Af = ;ap (Papf) + pﬁagf +a§f~

1.2.2 Spherical coordinates

We will now work out the Laplacian in spherical coordinates by a similar
method. Recall that spherical coordinates, see Figures are determined by

Fig. 1.2. Defining spherical coordinates of a point in R?.

(x,y,2) = R(r,0,9) = (rsingcosf, rsinpsiné, r cos ).

In these coordinates systems we have

macro: svmono.cls date/time: 7-May-2004/7:09



SAB: rs\"‘P de

Fig. 1.3. A picture proof that dxdydz = r? sin ¢pdrdfdep, where r2 sin ¢pdrdfde should
be viewed as (rsin ¢df)(rde)dr.

dV = r%sin pdrdfde.

See Figure [1.3]

Proposition 1.12 (Laplacian in spherical coordinates). The Laplacian in
spherical coordinates is given by

1

1 9 1 . 1
Af = 2 8r(r arf) + 2 Singoap(snl(paﬂf) +

———0; f- (1.15)
r2sin” ¢
Proof. Since

R, (r,0,¢) = (sin pcos b, sin psin b, cos p)
Ry(r,0,9) = (—rsingsiné, rsinp cos 6, 0)
R, (r,0,¢) = (rcospcosb,rcos psinf, —rsin p)

it is easily verified that

1
{Rr(raea@v Re(p,@,Z),er(p,Q,Z)}

rsin @

is an orthonormal basis for R?. Therefore

(Vf, Vg) :(vaRr) (ngRT) + (vfa RG) (VgaRG)

r2sin? o
1
+ 7,,72 (Vf, ch) (v.gaRgo)
_0fag 1 0fog 1090f dg

~or or r%in%p%% 200 dp’
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1.2 Cylindrical and Spherical Coordinates 5

If g has compact support in a region {2, then

/QAfng:—/QVf-ngV

af dg 1 afdg 18fdg] .
- [\¢e, 2 999, 29T 99 drddd
/Q[3rar+r281n2¢3989+7’28gp8@ T sinpdrdy
= / 2 sin g@Jr ! ﬁ@+sin ﬁ@
-/, Yoror " sing 06 90 Y9, 0p

} - drdydf

= / Oy (r*0,9) sinp + ;63]‘ + 0, (sing - Qaf)] g - drdpdf
o sin

1 1
:/Q 30 (20,9) + ———— R f +

r2sin® r2sin g

O, (sin <p8¢f)] g - 72 sin pdrdedd

1 1
:/Q =0, (r?0,9) + 0 f +

Lr r2sin” ¢ r2sin @

0, (sin <p0¢f)] g-dV.
Since this formula holds for arbitrary g we conclude that

1 9 1 . 1 2
Af = T—Q(?T(T' Brf) + ma@(sln @awf) + maaf

1.2.3 Exercises

In the following two exercises, I am using the conventions in the Lecture notes
and not the book.

Exercise 1.4. Compute Af where f is given in cylindrical coordinates as:
f=p3cosf+ zp
Exercise 1.5. Compute Af where f is given in spherical coordinates as:

f=7r"14cosfsine.

date/time: 7-May-2004/7:09



2

PDE Examples

2.1 The Wave Equation

Ezample 2.1 (Wave Equation for a String). Suppose that we have a stretched
string supported at + = 0 and * = L and y = 0. Suppose that the string
only undergoes vertical motion (pretty bad assumption). Let u(¢, x) and T(¢, )
denote the height and tension respectively of the string at (¢,z), 6(z) denote
the density in equilibrium and 7 be the equilibrium string tension. Let J =

®x + Ax

Ay

1
t
1
!
|
I
|
t
B
+

X o ———

x + Ax

Fig. 2.1. A piece of displace string

[z, + Az] C [0, L], then
Py(¢) ::/Jut(t,x)é(a:)dx

is the momentum of the piece of string above J. (Notice that d(x)dx is the
weight of the string above x.) Newton’s equations state

dP;(t)
dt

= / ugt (t, 2)d(x)dx = Force on String.
J

Since the string is to only undergo vertical motion we require
T(t,x + Az) cos(azqnz) — T(t, x) cos(ay) =0

for all Az and therefore that T'(¢,z)cos(a,) =: H for some constant H, i.e.
the horizontal component of the tension is constant. Looking at Figure the

2
M/T it,a

? (ly=uktr) Tihe
g Ly xte)
Zion

v
i
'
)
\
\
§

A
7

b ba x

Fig. 2.2. Computing the net vertical force due to tension on the part of the string
above [a, b].

tension on the piece of string above J = [a, b] at the right endpoint b must be
given by H (1, u, (t,b)) while the tension at the left endpoint, a, must be given
by —H (=1, —uy, (t,a)). So the net tension force on the string above .J is

b
H [ug(t,b) — uz(t,a)] = H/ Uy (¢, ) da.
Finally there may be a component due to gravity and air resistance, say
b
gravity = —g/ d(x)dxz and
b
air resistance = —/ E(x)u(t, x)dz.
So Newton’s equations become
b b
/ ug (¢, 2)0(x)de = / [Hugy (t,2) — gd () — k(x)u(t, )] da.
a a

Differentiating this equation in b at b = x then shows



8 2 PDE Examples
ut (8, 2)0(2) = Uge (¢, ) — go(x) — k(x)us(t, x)

or equivalently that

1 k(z)

t = <7 N Uzx ta - Y-
Utt( ,$) (5(1))“ ( Z) g (5(.%')
Ezample 2.2 (Wave equation. for a drum head). Suppose that u (¢, ) represents
the height at time t of a drum head over a point x € 2 — (2 being the base of
the drum head, see Figure As for the string we will make the simplifying

ue(t, ). (2.1)

%nw,vuu)-nw)
21t #‘Lt\l\a“(_v\u),vuttpﬂ-b\kﬁ)\

|
3 Rno

Y
K mv e e

3

Fig. 2.3. A deformed membrane attached to a “wire” base. We are also compute the
tension density on a region of the membrane above a region V' in the plane.

assumption that the membrane only moves vertically or equivalently that the
horizontal component of tension/unit-length is a constant value, H.

Let V C {2 be a test region and consider the membrane which lie above V'
as in Figure 2.3] Then

Py (t) ::/Vut(t,x)é(x)d:c

is the momentum of the piece of string above V' where §(z)dz is the weight of
the membrane above x. Newton’s equations state
dPy (t)
dt

= / ugt(t, x)d(x)dx = Force on membrane.
v

To find the vertical force on the membrane above V| let « € dV, then

Page: 8 job: 110notes

d
(n(z), Vu(t,z) -n(z)) = —-lo

s
is a vector orthogonal to the boundary of the region above V' and by assumption
the tension/unit-length at x is H (n(z),Vu (t,z) - n(z)). Thus the vertical
component of the force on the membrane above V' is given by

(x4 sn(x),u(t,x + sn(x))

H 8VVu(t,ac)-n(x)d€(x):H/‘/V-Vu(t,x)dx:H/VAu(Lx)d:E.

Finally there may be a component due to gravity and air resistance, say
gravity = f/ go(z)dz and
1%
air resistance = 7/ k(x)ue(t, z)dx.
1%
So Newton’s equations become
/V w(t, )8 (x)dwr = /V [HAu (t,) — g3(x) — k(@)us(t, 2)) da.

Since V is arbitrary, this implies
0(x)uy(t,x) = HAu (t,x) — gé(x) — k(x)u(t, )

or equivalently that

H k(x
mAu (t,x) —g— 55363 w(t, ). (2.2)
Ezample 2.3 (Wave equation for a metal bar). Suppose that have a metal wire
which we is going to be deformed and then released. We would like to find the
equation that the displacement u (¢,x) of the section of the bar originally at
location z must solve, see Figure below.

To do this will write down Newton’s equation of motion. First off, the lon-
gitudinal force on the left face of the section which was originally between x
and x + Az is approximately,

Utt(t7 l’) =

u(t,z + Az) — u(t, z)

—AF
Az ’

where E is Young’s modulus of elasticity and A is the area of the bar. (The
minus represents the fact that we must pull to the left to get the current con-
figuration in the figure.) Letting Az — 0, we find the force of the section that
was originally at x is given by —AFu, (¢,2). Now suppose that Az is not nec-
essarily small. Then we have the momentum of the region of the bar originally
between x and z + Ax is given by

macro: svmono.cls date/time: 7-May-2004/7:09



Undeformed bar

x T+AL

I‘\ [ I

I I I

I I 1

(] Vg i

\I/ \I/ \
1 . 1
|y(t7x): ' y(t#]}}A[L‘) i
1 1 1 1
f\ /I \ /,
I I I
|| [ |
\ \ g \
\ / \/ N

Deformed bar

Fig. 2.4. The picture represents an elastic bar in its un-deformed state and then in a
deformed state. The quantity y (¢, z) represents the displacement of the section that
was originally at location z in the un-deformed bar. In the above figure y (¢,2) < 0
which y (t,z + Az) > 0.

x+Ax
/ ug (t,2) 0 () dz

where § (x) is the linear mass density. Therefore,

r+Ax

d rz+Ax
Mass x acceleration = pn / ug (t,2) 0 (x) doe = / ug (t, ) 0 () de

x

= the net force on this section of the bar
= —AFu, (t,x) + AFEu, (t,z + Ax)

where —AFu, (t,z) is the force on left end and AFu, (t,z + Azx) is the force
on the right end. Hence we have

x+Ax
/ ug (t, ) § (x) de = ABu, (t,x + Az) — AEu, (t,x)

which upon differentiating in Az at Az = 0 shows

uge (t,2) 0 () = ABug, (¢, 2) .

2.1.1 d’Alembert’s solution to the 1-dimensional wave equation

Here we are going to try to find solutions to the wave equation, ¥y = @Y.
Since this equation may be written as

Page: 9 job: 110notes
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(02 - 02) y = 0 (2.3

and

(0} — a®92) = (0y — ady) (0y + ady)

we are lead to consider the wave equation in the new variables,
u=2x+ at and v = x — at.

In these variables we have

ou ov

O = Eau + aav = a0, — ad, and
ou ov

from which it follows that
Oy — a0, = —2a0, and 0 + a0, = 2ad,
and hence the wave equation in (u,v) — coordinates becomes,
0 = (0; — ady) (0 + ady) y = —2a0,2a0,y = —4a* Yy,

i.e. yup = 0. Integrating this equation in v shows y,, = F' (u) and then integrating
in u shows

y= [ Fdutv ) =+ 0).
Thus we have shown if y solves the wave equation then
y(t,x) = ¢ (z+ at) + ¥ (z — at) (2.4)
for some functions ¢ and .

Exercise 2.1. Show that if y (¢,2) has the form given in Eq. (2.4) with ¢ and
1) being twice continuously differentiable functions, then y solves the wave Eq.

23).

To get a unique solution to Eq. (2.3) we must introduce some initial condi-
tions. For example, let us further assume that

Yy (0,.17) = f (.TI) and Yt (O,J}) =0.
This then implies that

f(x)=¢(x)+¢(x) and
0=ay (z)—ay (z),

macro: svmono.cls date/time: 7-May-2004/7:09



10 2 PDE Examples

The latter equation shows that i (z) = ¢ (z) + C and using this in the first
equation implies that
f(@)=2p()+C

or
1

¢(@)=5(f(2) = C) and ¢ (2) =

Thus we have found the solution to be given by

(f (2) +C).

| =

y(t.) = 5 {f (o at) + f (e — at)}.

In the homework you are asked to generalize this result to prove the following
theorem.

Theorem 2.4 (d’Alembert’s solution). If f (z) is twice continuously dif-
ferentiable and g (x) is continuously differentiable for x € R, then the unique
solution to

Yt = > Yo with (2.5)
y(0,2) = f(z) and y, (0,2) = g (x) (2.6)
is given by
x+at
y(t,z) = % [f(x +at) + f(z—at)] + % /_ t g(s)ds. (2.7)

Ezxample 2.5. Here we wish to solve for z > 0 and ¢ > 0,
02y = 0%y with y (0,2) = f (z) and g (0,z) = 0 with y (¢,0) = 0.

As before we know that y (¢, z) = ¢ (z +t)+9 (¢ — t) . We must now implement
all of the boundary conditions,

f) =y (0,2) = ¢ () + ¢ (z)
0=y(0,2) =¢ (z) - ¢/ (z) and
0=y(t,0) =) +¢(-1).

This suggests that we define ¢ (—t) := —p (¢) for ¢ > 0, and also that

p(@) = (2)+C
f(2) = 20 () + C

or
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Thus our answer is given by

[f (@ +8)+ f(z—1)]

N | =

y(tvx) =

where by above,

and thus

Thus we have

y(tr) = 3 [f (et 0)+ f (@)

where f is extend to all of R to be an odd function.

2.2 Heat Equations

Ezample 2.6 (Heat or Diffusion Equation in 1-dimension). Let us consider the
temperature in a rod 2. We will let

1. 6 (z) denote the linear density of the rod

2. ¢(x) denote the heat capacity of the rod per unit mass at x

3. k(z) be the thermal conductivity of the rod at x. By Newton’s Law of
cooling, the heat flow from left to right in the rod at location x should be
approximately equal to

K (x)
A (u(z) —u(x+ A4)). (2.8)

Notice the A appearing in the denominator represents the fact that the
thicker the insulation in your house the less heat transfer that you have.
Passing to the limit in Eq. then gives Fourier’s law, namely the heat
flow from left to right in the rod at location x is given by

—k(z)u (x). (2.9)
(In the book, it is typically assumed that § (z) = §, k(x) = K and

¢ (z) = o are all constant.)
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4. u (t,x) be the temperature of the rod at time ¢ and location x.

5. H (t,x) represent heat source at x and time ¢. For example we may be
passing a current through the wire and the resistance of the wire is both
spatially and time dependent. Alternatively we may be heating the wire
with an external source.

Let B = [a,b] be a sub-region of the rod, see Figure Then

/@Es-".ﬂoﬂ Scupplys heat
e T o B,
- b

Fig. 2.5. Part of a rod with a test region B = [a, b] being examined.

b
E(t):/ w(t,7) 6 (z) ¢ (2) d

represents the heat energy in B at time ¢. Hence

b
E(t):/ ug (t,2) 0 (z) ¢ () dz

is the rate of change of heat energy in B. This may alternatively be computed
as the rate at which heat enters the system which is given by

b
()= [ H(t.o)do+ () (6) - 5 (0) s (6,0)
b

_ / [H (t,x)—l—%(ﬁ(x}u@» (t,a:))] d.

Hence we conclude that

/ab u (t,2) 6 (z) c(z)de = /ab {H (t, ) + % (k (%) ug (t,x))} da

for all sub-intervals {2 in the rod and therefore (again just differentiate in
b) that
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2.2 Heat Equations 11

0(x)c(x)ug (t,z) = % (k(z)ug (t,2)) + H (¢, ). (2.10)

This equation may be written as

ug (t, ) = Lu (t,x) + h (t,x)

where
1 d d
Lf @)= s (00 /@),
=60 (z)c(z) an T :H(t,z)
p(z)=6(z)c(x) and h(t,z): p@)

If we further assume that the rod in not perfectly insulated along its length
and the ambient temperature is not constant, we may end up with another
terms in computing E (¢) of the form

b
[ @@t -1 @)
and we would then arrive at a heat equation of the form
ug (t,x) = Lu (t,x) + h(t,x)

where
1 d d 1
Lf (@)= st (R@ o f @) e @ f@) @)

for some function ¢ (z) and a modified function h (¢, ).

Example 2.7 (Heat or Diffusion Equation in d - dimensions). Suppose that {2 C
R? is a region of space filled with a material, () is the density of the material
at © € 2 and ¢(x) is the heat capacity. Let u(t,z) denote the temperature at
time ¢ € [0,00) at the spatial point 2 € (2. Now suppose that B C R? is a
“little” volume in R? OB is the boundary of B, and FEp(t) is the heat energy
contained in the volume B at time ¢. Then

EB(t):/Bé(x)c(x)u(t,:c)dz.

So on one hand,
En(t) = /B 5(x)e(z)alt, z)do (2.12)

while on the other hand,

Ep(t) = /aB (k(x)Vu(t,z) - n(x)) do(x), (2.13)
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12 2 PDE Examples

Fig. 2.6. A test volume B in {2 centered at x with outward pointing normal, n.

where k() is a d x d—positive definite matrix representing the conduction prop-
erties of the material, n(z) is the outward pointing normal to B at € B, and
do denotes surface measure on 9B.

In order to see that we have the sign correct in , suppose that z € 0B
and Vu(x) - n(xz) > 0, then the temperature for points near = outside of B are
hotter than those points near x inside of B and hence contribute to a increase
in the heat energy inside of B. (If we get the wrong sign, then the resulting
equation will have the property that heat flows from cold to hot!)

Comparing Eqs. (2.12) to (2.13) after an application of the divergence the-
orem shows that

/5 u(t, x) dm—/ V- t,)(z)dx. (2.14)

Since this holds for all volumes B C {2, we conclude that the temperature
functions should satisfy the following partial differential equation.

d(z)e(x)u(t,z) =V - (k(-)Vu(t,-))(x). (2.15)
or equivalently that

u(t,x) = V - (k(z)Vu(t,x)). (2.16)

d(z)e(x)

Setting ¢ (z) := ki;(z)/(6(z)c(x)) and

the above equation may be written as:

u(t,x) = Lu(t, x), (2.17)
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where

=S @ O+ DA @19

The operator L is a prototyplcal example of a second order “elliptic” differential
operator.

Ezample 2.8 (Laplace and Poisson Equations). Laplace’s Equation is of the
form Lu = 0 and solutions may represent the steady state temperature distri-
bution for the heat equation. Equations like Au = —p appear in electrostatics
for example, where u is the electric potential and p is the charge distribution.

2.3 Other Equations

Ezample 2.9 (Shrodinger Equation and Quantum Mechanics).

0

A .
iyt w) = =5 (tw) + V(e o) with [9(,0)]l, =1

Interpretation,

/ [(t, 1:)|2 dt = the probability of finding the particle in A at time ¢.
A

(Notice similarities to the heat equation.)

Ezample 2.10 (Mazwell Equations in Free Space).

OE

g B
5 V x
0B

g0 _ E
5 V x

V-E=V-B=0.
Notice that

0’E 0B

— =V X =-VxXx(VXE)=AE -V (V-E)=AE

or2 ot X (VxE) V-B)
and similarly, 2 at2 = AB so that all the components of the electromagnetic
fields satisfy the wave equation.

Ezample 2.11 (Traffic Equation). Consider cars travelling on a straight road
with coordinate z € R, let u(¢, z) denote the density of cars on the road at time
t and location z € R, and v(t,x) be the velocity of the cars at (¢,z). Then for
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J=la,b] CR, Ny(t) := f: u(t, z)dz is the number of cars in the set J at time
t. We must have

b
/ At 2)dz = Ny (1) = u(t, a)o(t, a) — ult, bYo(t, b)

e
_ / = [u(t,)olt, 7)) do.
Since this holds for all intervals [a, b], we must have
u(t,z) = _9 [u(t, z)v(t, )] .
Ox

To make life more interesting, we may imagine that wv(t,z) =
—F(u(t, z),u,(t,x)), in which case we get an equation of the form

0 0
Frike %G(u,ug;) where G(u,u;) = —u(t, x)F(u(t, x), uz (¢, z)).

A simple model might be that there is a constant maximum speed, v, and
maximum density u,,, and the traffic interpolates linearly between 0 (when
U = Up,) 10 Uy when (u = 0), i.e. v = v, (1 — w/uy,) in which case we get

0 0

U= —Upo— (u(l —u/uy)).
Ezample 2.12 (Burger’s Equation). Suppose we have a stream of particles trav-
elling on R, each of which has its own constant velocity and let u(¢,z) denote
the velocity of the particle at x at time ¢. Let 2(¢) denote the trajectory of the
particle which is at g at time t5. We have C' = &(t) = u(t, (t)). Differentiating
this equation in ¢ at ¢ = ty implies

0 = [ue(t, 2(t) + ua (b, 2() 2 (@) [e=t, = ue(to, To) + ta(to, zo)u(to, xo)
which leads to Burger’s equation
0=wus + u ug.

Example 2.13 (Minimal surface Equation). Let D C R? be a bounded region
with reasonable boundary, ug : 9D — R be a given function. We wish to find
the function u : D — R such that u = up on 0D and the graph of u, I'(u) has
least area. Recall that the area of I'(u) is given by

A(u):Area(F(u)):/[)\/1+|Vu|2dx.

Assuming u is a minimizer, let v € C*(D) such that v = 0 on D, then
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2.3 Other Equations 13

_d _d 2
0—£|0A(u+sv)— d$|0/D\/1+|V(u+sv)| dx
:/Dd%b 1+ |V (u+ sv)|de
_/ 1
Dy /1 4 |Vul?
1
:f/v ——=Vu |vdx
D 1+ |[Vul?

from which it follows that

Vu - Vo dx

1
V| ———=Vu| =0.

1+ |Vaul?

Ezample 2.14 (Navier — Stokes). Here u(t, z) denotes the velocity of a fluid ad
(t,x), p(t, x) is the pressure. The Navier — Stokes equations state,

% + Oyu = vAu — Vp + f with u(0,z) = ug(z) (2.19)

V -u =0 (incompressibility) (2.20)

where f are the components of a given external force and ug is a given divergence
free vector field, v is the viscosity constant. The Euler equations are found by
taking v = 0. Equation is Newton’s law of motion again, F' = ma.
See http://www.claymath.org for more information on this Million Dollar
problem.
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3

Linear ODE

3.1 First order linear ODE

We would like to solve the ordinary differential equation

0 (t) = Au (t) with (3.1)
u(0) = f.

The method of separation of variables or eigenvector expansions pro-
posed to begin by looking for solutions of the form u (t) = T (¢) v to Eq. (3.1]).
Here v is a fixed vector in € RVand T (t) is some unknown function of ¢. Sub-
stituting u (t) = T (t) v into Eq. gives

T (t)v =T (t) Av

or equivalently that )
T(t)

T(t) v.

Since the left side of this equation is independent of ¢t we must have

Av =

T() _
T~ (3.3)

for some A € R. The solution to Eq. (3.3) is of course T (t) = €T (0) and
therefore we have shown the following lemma.

Lemma 3.1. Ifu(t) = T (t) v solves Eq. , then v is an eigenvector of A
and if X is the corresponding eigenvalue (i.e. Av = \v) then

u(t) = eMT (0)v.
Conversely if Av = v then u(t) = e*v solves Eq. (3.1)).

Proposition 3.2 (Principle of superposition). If u (t) and v (t) solves Eq.
then so does u (t) + cv (t) for any ¢ € R.

Proof. This is a simple consequence of the fact that matrix multiplication
and differentiation are linear operations. In detail,

Lt + ev () = 1 (8) + cb () = Au (8) + cAv (8)

dt
=A(u(t)+cv(t)).
Consequently if Av; = \;v; for i =1,2,...,k, then
u(t) = Ze”‘ivi.
solves Eq. (3.1]).

Theorem 3.3. Suppose the matriz A is diagonalizable, i.e. there exists a basis
{vi}ivzl for RN consisting of eigenvectors A. Then to any f € RN there is a
unique solution, u(t), to Egs. and . Moreover, if we expand f in
terms of the basis {vi}f;l as

N
f= Z a;Vq,
i=1
then the unique solution to Fqs. and 18 given by
N
u(t) =Y aev;. (3.4)
i=1

Proof. The fact that Eq. (3.4) solves Egs. (3.1) and (3.2)) follows from the
principle of superposition and the fact that e**: = 1 when t = 0.

Conversely, suppose that u solves Egs. (3.1) and (3.2, then

N
u(t) = Z a; (t) v; (3.5)

for some functions a; (t) with a; (0) = a;. Now on one hand

N
W(t) = a; (t)v;
i=1



16 3 Linear ODE
while on the other hand

N N N
a(t) = Au(t) = AZai (t)v; = Za (t) Av; = Za (t) Aivi.

Subtracting these two equation shows

N N N
0= Za (t)v; — Za ) hivi = > (aq (1) — a; (£) Xi) v;.

i=1
Since {vi}ivzl is a basis for R it follows, for all 4, that
a; (t) = a; (t) A; with a; (0) =1
and therefore, a; (t) = e**ia;. Putting this result back into Eq. gives Eq.
B9). .
Definition 3.4. If f € RN we will write e!Af for the solution, u (t), to Egs.

and (73)

Fact 3.5 Ejgs. and have a unique solution independent as to whether
A has a basis of eigenvectors or not. Moreover we may compute e!* using the
matrix power series erpansion,

etf=>" %An f. (3.6)
n=0

Notice that formula in Eq. (3.6) is consistent with our previous results. For
example if v € RY and Av = \v, then A”v = A"v and therefore,

X in > tn
— A" = E L\ = ey = et
n! n!

n=0 n=0

More generally, if u = Zle a;v; with Av; = \;v;, then

k k
ety = g aiemivi: E aietAivi.
i=1 i=1

Remark 3.6. As the notation suggests, it is true that

etAesA _ e(t-l—s)A

as you are asked to prove in Exercise below. However, it is not generally

true that

(A+B) — (AB _ (BoA

see Proposition [3.8] below.
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Example 3.7. Let us find ¢4 when

110
A=1022
003

The eigenvalues of A are given as the roots of the characteristic polynomial,
pA)=det(A—A)=(1-XN)(2-XN)(3=]N).

These roots are A = 1, A = 2, and A = 3. As usual we find the correspond-
ing eigenvectors as solutions to the equation (A — AI)u = 0. The result is,
eigenvectors:

1 1 1
v1: =0 1, v=[1]«<2 v3:=1]2| «<3
0 1 0] 1
Since _ o ~
0 1 1
1{=1]1]—-1]0
0] 1 0] K
and _ -
0 1 1 1
Ol =|2|-2|1]+10
1 |1 0] 0

it follows that the columns of ¢4 are given by

(17 1
e 1ol =€ |0
1 0| 0
(0] 1 1 1 1
et 1 A1 —etr o]l = |1 =€t |0
1 0| 0 0 0 0
and
0 1 1 