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1

Preliminaries

1.1 The spectral theorem for symmetric matrices

Let A be a real N ×N matrix,

A =


a11 a12 . . . a1N

a21 a22 . . . a2N

...
. . .

...
aN1 aN2 . . . aNN

 , (1.1)

and

f =


f1

f2

...
fN

 ∈ RN

be a given vector. As usual we will let ei denote the vector in RN with all entries
being zero except for the ith which is taken to be one.

We will write

(u, v) := u · v =
N∑

i=1

uivi = utrv and

|u|2 = (u, u) =
N∑

i=1

u2
i = utru.

Recall that {vi}Ni=1 ⊂ RN is said to be an orthonormal basis if

(vi, vj) = δij :=
{

1 if i = j
0 if i 6= j

. (1.2)

The following proposition and its infinite dimensional analogue will be the basis
for much of this course.

Proposition 1.1. If {vi}Ni=1 ⊂ RN satisfies Eq. (1.2) then {vi}Ni=1 is a basis
for RN and if u ∈ RN we have

u =
N∑

i=1

(u, vi) vi. (1.3)

Proof. Suppose that u =
∑N

i=1 aivi for some ai ∈ R. Then

(u, vj) =

(
N∑

i=1

aivi, vj

)
=

N∑
i=1

ai (vi, vj) =
N∑

i=1

aiδij = aj .

In particular if u = 0 we learn that aj = (u, vj) = 0 and we have shown that
{vi}Ni=1 is a linearly independent set. Since dim

(
RN
)

= N, it now follows
that {vi}Ni=1 is a basis for RN and hence every u ∈ RN may be written in the
form u =

∑N
i=1 aivi. By what we have just proved, we must have ai = (u, vi) ,

i.e. Eq. (1.3) is valid.

Definition 1.2. A matrix A as in Eq. (1.1) is symmetric A = Atr, i.e. if
aij = aji for all i, j.

The following characterization of a symmetric matrix will be more useful
for our purposes.

Lemma 1.3. If A is a real N ×N matrix then, for all u, v ∈ RN ,

(Au, v) =
(
u,Atrv

)
. (1.4)

Moreover A is symmetric iff

(Au, v) = (u,Av) for all u, v ∈ RN . (1.5)

Proof. Eq. (1.4) is a consequence of the following matrix manipulations

(Au, v) = (Au)tr v = utrAtrv =
(
u,Atrv

)
which are based on the fact that (AB)tr = BtrAtr. Hence if A is symmetric,
then Eq. (1.5) holds. Conversely, if Eq. (1.5) holds, by taking u = ei and v = ej

in Eq. (1.5) we learn that

aji =


 a1i

...
aN,i

 , ej

 = (Aei, ej) = (ei, Aej) =

ei,

 a1j

...
aN,j


 = aij .



2 1 Preliminaries

Corollary 1.4. Suppose that A = Atr and v, w ∈ RN are eigenvectors of A
with eigenvalues λ and µ respectively. If µ 6= λ then v and w are orthogonal,
i.e. (v, w) = 0.

Proof. If Av = λv and Aw = µw with λ 6= µ then

λ (v, w) = (λv,w) = (Av,w) = (v,Aw) = (v, µw) = µ (v, w)

or equivalently, (λ− µ) (v, w) = 0. Sine λ 6= µ, we must conclude that (v, w) =
0.

The following important theorem from linear algebra gives us a method for
guaranteeing that a matrix is diagonalizable. Again much of this course is based
on an infinite dimensional generalization of this theorem.

Theorem 1.5 (Spectral Theorem). If A in Eq. (1.1) is a symmetric ma-
trix, then A has an orthonormal basis of eigenvectors, {v1, . . . , vN} and the
corresponding eigenvalues, {λ1, λ2, . . . , λN} are all real.

Example 1.6. Suppose that

A :=
[

1
2 −

3
2

− 3
2

1
2

]
, (1.6)

then

p (λ) = det (A− λI) = det
[

1
2 − λ −

3
2

− 3
2

1
2 − λ

]
=
(

1
2
− λ
)2

− 9
4

which we set equal to zero to learn(
1
2
− λ
)2

=
9
4

or equivalently,
(
λ− 1

2

)
= ± 3

2 and hence A has eigenvalues,

λ1 = −1 and λ2 = 2.

Since

A+ I :=
[

3
2 −

3
2

− 3
2

3
2

]
∼=
[

1 −1
0 0

]
and

A− 2I =
[
− 3

2 −
3
2

− 3
2 −

3
2

]
∼=
[

1 1
0 0

]

we learn that

v1 =
[

1
1

]
←→ λ1 = −1

v2 =
[

1
−1

]
←→ λ2 = 2.

Notice that (v1, v2) = 0 as is guaranteed by Corollary 1.4. The normalized
eigenvectors are given by 2−1/2v1 and 2−

1
2 v2. Consequently if f ∈ R2, we have

f =
(
2−1/2v1, f

)
2−1/2v1 +

(
2−1/2v2, f

)
2−1/2v2

=
1
2

(v1, f) v1 +
1
2

(v2, f) v2. (1.7)

Remark 1.7. As above, it often happens that naturally we find a orthogonal but
not orthonormal basis {vi}Ni=1 for RN , i.e. (vi, vj) = 0 if i 6= j but (vi, vi) 6= 1.

We can still easily expand in terms of these vectors. Indeed,
{
|vi|−1

vi

}N

i=1
is

an orthonormal basis for RN and therefore if f ∈ RN we have

f =
N∑

i=1

(
f, |vi|−1

vi

)
|vi|−1

vi =
N∑

i=1

(f, vi)
|vi|2

vi.

Example 1.8. Working as above, one shows the symmetric matrix,

A :=

 1 7 −2
7 1 −2
−2 −2 10

 , (1.8)

has characteristic polynomial given by

p (λ) = det (A− λI) = −
(
λ3 − 12λ2 − 36λ+ 432

)
= − (λ− 6) (λ− 12) (λ+ 6) .

Thus the eigenvalues of A are given by λ1 = −6, λ2 = 6 and λ3 = 12 and the
corresponding eigenvectors are

v1 :=

−1
1
0

↔ −6, v2 :=

1
1
1

↔ 6, v3 :=

−1
−1
2

↔ 12.

Again notice that {v1, v2, v3} is an orthogonal set as is guaranteed by Corollary
1.4. Relative to this basis we have the expansion

f = (f, v1)
v1

|v1|2
+ (f, v2)

v2

|v2|2
+ (f, v3)

v3

|v3|2

=
1
2

(f, v1) v1 +
1
3

(f, v2) v2 +
1
6

(f, v2) v3.

Page: 2 job: 110notes macro: svmono.cls date/time: 7-May-2004/7:09



1.2 Cylindrical and Spherical Coordinates 3

For example if f = (1, 2, 3)tr , then

f =
1
2
v1 + 2v2 +

1
2
v3. (1.9)

Exercise 1.1. Verify that the vectors {vi}3i=1 are eigenvectors of A in Eq. (1.8)
which have the stated eigenvalues. Hint: you are only asked to verify not solve
from scratch.

Exercise 1.2. Find eigenvectors {vi}3i=1 and corresponding eigenvalues {λi}3i=1

for the symmetric matrix,

A :=

−2 1 1
1 −2 1
1 1 −2

 .
Make sure you choose them to be orthogonal. Also express the following vec-
tors,

f = (1, 0, 2)tr and g = (0, 1, 2)tr and h = (−1, 1, 0)tr ,

as linear combinations of the {vi}3i=1 that you have found.

Exercise 1.3. Suppose that A is a N × N symmetric matrix and {vi}Ni=1 is
a basis of eigenvectors of A with corresponding eigenvalues {λi}Ni=1 . Suppose
f ∈ RN has been decomposed as

f =
N∑

i=1

aivi.

Show:

1. Anf =
∑N

i=1 aiλ
n
i vi.

2. More generally, suppose that

p (λ) = a0 + a1λ+ a2λ
2 + · · ·+ anλ

n

is a polynomial in λ, then

p (A) f =
N∑

i=1

aip (λi) vi

and in particular p (A) v = p (λ) v is Av = λv.

1.2 Cylindrical and Spherical Coordinates

Our goal in this section is to work out the Laplacian in cylindrical and spherical
coordinates. We will need these results later in the course. Our method is to
make use of the following two observations:

1. If {ui}3i=1 is any orthonormal basis for R3 then

∇f · ∇g =
3∑

i=1

(∇f, ui) (∇g, ui) =
3∑

i=1

∂uif∂uig

and
2. if g has compact support in a region Ω, then by integration by parts∫

Ω

∆fgdV = −
∫

Ω

∇f · ∇gdV. (1.10)

The following theorem is a far reaching generalization of Eq. (1.10).

Theorem 1.9 (Divergence Theorem). Let Ω ⊂ Rn be an open bounded
region with smooth boundary, n : ∂Ω → Rn be the unit outward pointing normal
to Ω. If Z ∈ C1(Ω̄,Rn), then∫

∂Ω

Z(x) · n(x)dσ(x) =
∫
Ω

∇ · Z(x) dx. (1.11)

Corollary 1.10 (Integration by parts). Let Ω ⊂ Rn be an open bounded
region with smooth boundary, n : ∂Ω → Rn be the unit outward pointing normal
to Ω. If Z ∈ C1(Ω̄,Rn) and f ∈ f ∈ C1(Ω̄,R), then∫

Ω

f(x)∇ ·Z(x) dx = −
∫
Ω

∇f(x) ·Z(x) dx+
∫

∂Ω

f (x)Z(x) ·n(x)dσ(x). (1.12)

Also if g ∈ C2(Ω̄,R), then∫
Ω

f(x)∆g(x) dx = −
∫
Ω

∇f(x) ·∇g(x) dx+
∫

∂Ω

f (x)∇g(x) ·n(x)dσ(x). (1.13)

Proof. Eq. (1.12) follows by applying Theorem 1.9 with Z replaced by fZ
making use of the fact that

∇ · (fZ) = ∇f · Z + f∇ · Z.

Eq. (1.13) follows from Eq. (1.12) by taking Z = ∇g.
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4 1 Preliminaries

Fig. 1.1. Cylindrical and polar coordinates.

1.2.1 Cylindrical coordinates

Recall that cylindrical coordinates, see Figures 1.1, are determined by

(x, y, z) = R(ρ, θ, z) ≡ (ρ cos θ, ρ sin θ, z).

In these coordinates we have dV = r2 sinϕdrdθdϕ.

dV = ρdρdθdz.

Proposition 1.11 (Laplacian in Cylindrical Coordinates). The Laplacian
in cylindrical coordinates is given by

∆f =
1
ρ
∂ρ (ρ∂ρf) +

1
ρ2
∂2

θf + ∂2
zf. (1.14)

Proof. We further observe that

Rρ(ρ, θ, z) = (cos θ, sin θ, 0)
Rθ(ρ, θ, z) = (−ρ sin θ, ρ cos θ, 0)
Rz(ρ, θ, z) = (0, 0, 1)

so that {
Rρ(ρ, θ, z), ρ−1Rθ(ρ, θ, z),Rz(ρ, θ, z)

}
is an orthonormal basis for R3. Therefore,

(∇f,∇g) = (∇f,Rρ) (∇g,Rρ) +
(
∇f, ρ−1Rθ

) (
∇g, ρ−1Rθ

)
+ (∇f,Rz) (∇g,Rz)

=
∂f

∂ρ

∂g

∂ρ
+

1
ρ2

∂f

∂θ

∂g

∂θ
+
∂f

∂z

∂g

∂z
.

If g has compact support in a region Ω, then by integration by parts,∫
Ω

∆fgdV = −
∫

Ω

∇f · ∇gdV

= −
∫

Ω

[
∂f

∂ρ

∂g

∂ρ
+

1
ρ2

∂f

∂θ

∂g

∂θ
+
∂f

∂z

∂g

∂z

]
· ρdρdθdz

=
∫

Ω

[
∂ρ (ρ∂ρf) +

1
ρ
∂2

θf + ρ∂2
zf

]
g · dρdθdz

=
∫

Ω

[
1
ρ
∂ρ (ρ∂ρf) +

1
ρ2
∂2

θf + ∂2
zf

]
gρdρdθdz

=
∫

Ω

[
1
ρ
∂ρ (ρ∂ρf) +

1
ρ2
∂2

θf + ∂2
zf

]
gdV.

Since this formula holds for arbitrary g with small support, we conclude that

∆f =
1
ρ
∂ρ (ρ∂ρf) +

1
ρ2
∂2

θf + ∂2
zf.

1.2.2 Spherical coordinates

We will now work out the Laplacian in spherical coordinates by a similar
method. Recall that spherical coordinates, see Figures 1.2, are determined by

Fig. 1.2. Defining spherical coordinates of a point in R3.

(x, y, z) = R(r, θ, ϕ) ≡ (r sinϕ cos θ, r sinϕ sin θ, r cosϕ).

In these coordinates systems we have
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1.2 Cylindrical and Spherical Coordinates 5

Fig. 1.3. A picture proof that dxdydz = r2 sin φdrdθdφ, where r2 sin φdrdθdφ should
be viewed as (r sin φdθ)(rdφ)dr.

dV = r2 sinϕdrdθdϕ.

See Figure 1.3.

Proposition 1.12 (Laplacian in spherical coordinates). The Laplacian in
spherical coordinates is given by

∆f =
1
r2
∂r(r2∂rf) +

1
r2 sinϕ

∂ϕ(sinϕ∂ϕf) +
1

r2 sin2 ϕ
∂2

θf. (1.15)

Proof. Since

Rr(r, θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)
Rθ(r, θ, ϕ) = (−r sinϕ sin θ, r sinϕ cos θ, 0)
Rϕ(r, θ, ϕ) = (r cosϕ cos θ, r cosϕ sin θ,−r sinϕ)

it is easily verified that{
Rr(r, θ, ϕ),

1
r sinϕ

Rθ(ρ, θ, z),
1
r
Rϕ(ρ, θ, z)

}
is an orthonormal basis for R3. Therefore

(∇f,∇g) = (∇f,Rr) (∇g,Rr) +
1

r2 sin2 ϕ
(∇f,Rθ) (∇g,Rθ)

+
1
r2

(∇f,Rϕ) (∇g,Rϕ)

=
∂f

∂r

∂g

∂r
+

1
r2 sin2 ϕ

∂f

∂θ

∂g

∂θ
+

1
r2
∂f

∂ϕ

∂g

∂ϕ
.

If g has compact support in a region Ω, then∫
Ω

∆fgdV = −
∫

Ω

∇f · ∇gdV

= −
∫

Ω

[
∂f

∂r

∂g

∂r
+

1
r2 sin2 ϕ

∂f

∂θ

∂g

∂θ
+

1
r2
∂f

∂ϕ

∂g

∂ϕ

]
· r2 sinϕdrdϕdθ

= −
∫

Ω

[
r2 sinϕ

∂f

∂r

∂g

∂r
+

1
sinϕ

∂f

∂θ

∂g

∂θ
+ sinϕ

∂f

∂ϕ

∂g

∂ϕ

]
· drdϕdθ

=
∫

Ω

[
∂r

(
r2∂rg

)
sinϕ+

1
sinϕ

∂2
θf + ∂ϕ (sinϕ · ∂ϕf)

]
g · drdϕdθ

=
∫

Ω

[
1
r2
∂r

(
r2∂rg

)
+

1
r2 sin2 ϕ

∂2
θf +

1
r2 sinϕ

∂ϕ (sinϕ∂ϕf)
]
g · r2 sinϕdrdϕdθ

=
∫

Ω

[
1
r2
∂r

(
r2∂rg

)
+

1
r2 sin2 ϕ

∂2
θf +

1
r2 sinϕ

∂ϕ (sinϕ∂ϕf)
]
g · dV.

Since this formula holds for arbitrary g we conclude that

∆f =
1
r2
∂r(r2∂rf) +

1
r2 sinϕ

∂ϕ(sinϕ∂ϕf) +
1

r2 sin2 ϕ
∂2

θf.

1.2.3 Exercises

In the following two exercises, I am using the conventions in the Lecture notes
and not the book.

Exercise 1.4. Compute ∆f where f is given in cylindrical coordinates as:

f = ρ3 cos θ + zρ

Exercise 1.5. Compute ∆f where f is given in spherical coordinates as:

f = r−1 + cos θ sinϕ.
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2

PDE Examples

2.1 The Wave Equation

Example 2.1 (Wave Equation for a String). Suppose that we have a stretched
string supported at x = 0 and x = L and y = 0. Suppose that the string
only undergoes vertical motion (pretty bad assumption). Let u(t, x) and T (t, x)
denote the height and tension respectively of the string at (t, x), δ(x) denote
the density in equilibrium and T0 be the equilibrium string tension. Let J =

Fig. 2.1. A piece of displace string

[x, x+∆x] ⊂ [0, L], then

PJ(t) :=
∫

J

ut(t, x)δ(x)dx

is the momentum of the piece of string above J. (Notice that δ(x)dx is the
weight of the string above x.) Newton’s equations state

dPJ(t)
dt

=
∫

J

utt(t, x)δ(x)dx = Force on String.

Since the string is to only undergo vertical motion we require

T (t, x+∆x) cos(αx+∆x)− T (t, x) cos(αx) = 0

for all ∆x and therefore that T (t, x) cos(αx) =: H for some constant H, i.e.
the horizontal component of the tension is constant. Looking at Figure 2.2, the

Fig. 2.2. Computing the net vertical force due to tension on the part of the string
above [a, b].

tension on the piece of string above J = [a, b] at the right endpoint b must be
given by H (1, ux (t, b)) while the tension at the left endpoint, a, must be given
by −H (−1,−ux (t, a)) . So the net tension force on the string above J is

H [ux(t, b)− ux(t, a)] = H

∫ b

a

uxx (t, x) dx.

Finally there may be a component due to gravity and air resistance, say

gravity = −g
∫ b

a

δ(x)dx and

air resistance = −
∫ b

a

k(x)ut(t, x)dx.

So Newton’s equations become∫ b

a

utt(t, x)δ(x)dx =
∫ b

a

[Huxx (t, x)− gδ (x)− k(x)ut(t, x)] dx.

Differentiating this equation in b at b = x then shows
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utt(t, x)δ(x) = uxx(t, x)− gδ(x)− k(x)ut(t, x)

or equivalently that

utt(t, x) =
1

δ(x)
uxx(t, x)− g − k(x)

δ(x)
ut(t, x). (2.1)

Example 2.2 (Wave equation. for a drum head). Suppose that u (t, x) represents
the height at time t of a drum head over a point x ∈ Ω — Ω being the base of
the drum head, see Figure 2.3. As for the string we will make the simplifying

Fig. 2.3. A deformed membrane attached to a “wire” base. We are also compute the
tension density on a region of the membrane above a region V in the plane.

assumption that the membrane only moves vertically or equivalently that the
horizontal component of tension/unit-length is a constant value, H.

Let V ⊂ Ω be a test region and consider the membrane which lie above V
as in Figure 2.3. Then

PV (t) :=
∫

V

ut(t, x)δ(x)dx

is the momentum of the piece of string above V where δ(x)dx is the weight of
the membrane above x. Newton’s equations state

dPV (t)
dt

=
∫

V

utt(t, x)δ(x)dx = Force on membrane.

To find the vertical force on the membrane above V, let x ∈ ∂V, then

(n (x) ,∇u (t, x) · n (x)) =
d

ds
|0(x+ sn (x) , u(t, x+ sn (x))

is a vector orthogonal to the boundary of the region above V and by assumption
the tension/unit-length at x is H (n (x) ,∇u (t, x) · n (x)) . Thus the vertical
component of the force on the membrane above V is given by

H

∫
∂V

∇u (t, x) · n (x) d` (x) = H

∫
V

∇ · ∇u (t, x) dx = H

∫
V

∆u (t, x) dx.

Finally there may be a component due to gravity and air resistance, say

gravity = −
∫

V

gδ(x)dx and

air resistance = −
∫

V

k(x)ut(t, x)dx.

So Newton’s equations become∫
V

utt(t, x)δ(x)dx =
∫

V

[H∆u (t, x)− gδ(x)− k(x)ut(t, x)] dx.

Since V is arbitrary, this implies

δ(x)utt(t, x) = H∆u (t, x)− gδ(x)− k(x)ut(t, x)

or equivalently that

utt(t, x) =
H

δ (x)
∆u (t, x)− g − k(x)

δ(x)
ut(t, x). (2.2)

Example 2.3 (Wave equation for a metal bar). Suppose that have a metal wire
which we is going to be deformed and then released. We would like to find the
equation that the displacement u (t, x) of the section of the bar originally at
location x must solve, see Figure 2.4 below.

To do this will write down Newton’s equation of motion. First off, the lon-
gitudinal force on the left face of the section which was originally between x
and x+∆x is approximately,

−AEu (t, x+∆x)− u(t, x)
∆x

,

where E is Young’s modulus of elasticity and A is the area of the bar. (The
minus represents the fact that we must pull to the left to get the current con-
figuration in the figure.) Letting ∆x→ 0, we find the force of the section that
was originally at x is given by −AEux (t, x) . Now suppose that ∆x is not nec-
essarily small. Then we have the momentum of the region of the bar originally
between x and x+∆x is given by
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2.1 The Wave Equation 9

Fig. 2.4. The picture represents an elastic bar in its un-deformed state and then in a
deformed state. The quantity y (t, x) represents the displacement of the section that
was originally at location x in the un-deformed bar. In the above figure y (t, x) < 0
which y (t, x + ∆x) > 0.

∫ x+∆x

x

ut (t, x) δ (x) dx

where δ (x) is the linear mass density. Therefore,

Mass× acceleration =
d

dt

∫ x+∆x

x

ut (t, x) δ (x) dx =
∫ x+∆x

x

utt (t, x) δ (x) dx

= the net force on this section of the bar
= −AEux (t, x) +AEux (t, x+∆x)

where −AEux (t, x) is the force on left end and AEux (t, x+∆x) is the force
on the right end. Hence we have∫ x+∆x

x

utt (t, x) δ (x) dx = AEux (t, x+∆x)−AEux (t, x)

which upon differentiating in ∆x at ∆x = 0 shows

utt (t, x) δ (x) = AEuxx (t, x) .

2.1.1 d’Alembert’s solution to the 1-dimensional wave equation

Here we are going to try to find solutions to the wave equation, ytt = a2yxx.
Since this equation may be written as

(
∂2

t − a2∂2
x

)
y = 0 (2.3)

and (
∂2

t − a2∂2
x

)
= (∂t − a∂x) (∂t + a∂x)

we are lead to consider the wave equation in the new variables,

u = x+ at and v = x− at.

In these variables we have

∂t =
∂u

∂t
∂u +

∂v

∂t
∂v = a∂u − a∂v and

∂x =
∂u

∂x
∂u +

∂v

∂x
∂v = ∂u + ∂v

from which it follows that

∂t − a∂x = −2a∂v and ∂t + a∂x = 2a∂u

and hence the wave equation in (u, v) – coordinates becomes,

0 = (∂t − a∂x) (∂t + a∂x) y = −2a∂v2a∂uy = −4a2yuv,

i.e. yuv = 0. Integrating this equation in v shows yu = F (u) and then integrating
in u shows

y =
∫
F (u) du+ ψ (v) = ϕ (u) + ψ (v) .

Thus we have shown if y solves the wave equation then

y (t, x) = ϕ (x+ at) + ψ (x− at) (2.4)

for some functions ϕ and ψ.

Exercise 2.1. Show that if y (t, x) has the form given in Eq. (2.4) with ϕ and
ψ being twice continuously differentiable functions, then y solves the wave Eq.
(2.3).

To get a unique solution to Eq. (2.3) we must introduce some initial condi-
tions. For example, let us further assume that

y (0, x) = f (x) and yt (0, x) = 0.

This then implies that

f (x) = ϕ (x) + ψ (x) and
0 = aϕ′ (x)− aψ′ (x) ,
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10 2 PDE Examples

The latter equation shows that ψ (x) = ϕ (x) + C and using this in the first
equation implies that

f (x) = 2ϕ (x) + C

or
ϕ (x) =

1
2

(f (x)− C) and ψ (x) =
1
2

(f (x) + C) .

Thus we have found the solution to be given by

y (t, x) =
1
2
{f (x+ at) + f (x− at)} .

In the homework you are asked to generalize this result to prove the following
theorem.

Theorem 2.4 (d’Alembert’s solution). If f (x) is twice continuously dif-
ferentiable and g (x) is continuously differentiable for x ∈ R, then the unique
solution to

ytt = a2yxx with (2.5)
y (0, x) = f (x) and yt (0, x) = g (x) (2.6)

is given by

y(t, x) =
1
2

[f(x+ at) + f(x− at)] +
1
2a

∫ x+at

x−at

g(s)ds. (2.7)

Example 2.5. Here we wish to solve for x ≥ 0 and t ≥ 0,

∂2
t y = ∂2

xy with y (0, x) = f (x) and ẏ (0, x) = 0 with y (t, 0) = 0.

As before we know that y (t, x) = ϕ (x+ t)+ψ (x− t) . We must now implement
all of the boundary conditions,

f (x) = y (0, x) = ϕ (x) + ψ (x)
0 = ẏ (0, x) = ϕ′ (x)− ψ′ (x) and
0 = y (t, 0) = ϕ (t) + ψ (−t) .

This suggests that we define ψ (−t) := −ϕ (t) for t > 0, and also that

ϕ (x) = ψ (x) + C

f (x) = 2ψ (x) + C

or

ψ (x) =
1
2

(f (x)− C)

ϕ (x) =
1
2

(f (x) + C) .

Thus our answer is given by

y (t, x) =
1
2

[f (x+ t) + f (x− t)]

where by above,

1
2

(f (−x)− C) = ψ (−x) = −ϕ (x) = −1
2

(f (x) + C)

and thus
f (−x) := −f (x) .

Thus we have
y (t, x) =

1
2

[f (x+ t) + f (x− t)]

where f is extend to all of R to be an odd function.

2.2 Heat Equations

Example 2.6 (Heat or Diffusion Equation in 1-dimension). Let us consider the
temperature in a rod Ω. We will let

1. δ (x) denote the linear density of the rod
2. c (x) denote the heat capacity of the rod per unit mass at x
3. κ (x) be the thermal conductivity of the rod at x. By Newton’s Law of

cooling, the heat flow from left to right in the rod at location x should be
approximately equal to

κ (x)
∆

(u (x)− u (x+∆)) . (2.8)

Notice the ∆ appearing in the denominator represents the fact that the
thicker the insulation in your house the less heat transfer that you have.
Passing to the limit in Eq. (2.8) then gives Fourier’s law, namely the heat
flow from left to right in the rod at location x is given by

− κ (x)u′ (x) . (2.9)

(In the book, it is typically assumed that δ (x) = δ, κ (x) = K and
c (x) = σ are all constant.)
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2.2 Heat Equations 11

4. u (t, x) be the temperature of the rod at time t and location x.
5. H (t, x) represent heat source at x and time t. For example we may be

passing a current through the wire and the resistance of the wire is both
spatially and time dependent. Alternatively we may be heating the wire
with an external source.

Let B = [a, b] be a sub-region of the rod, see Figure 2.5. Then

Fig. 2.5. Part of a rod with a test region B = [a, b] being examined.

E (t) =
∫ b

a

u (t, x) δ (x) c (x) dx

represents the heat energy in B at time t. Hence

Ė (t) =
∫ b

a

ut (t, x) δ (x) c (x) dx

is the rate of change of heat energy in B. This may alternatively be computed
as the rate at which heat enters the system which is given by

Ė (t) =
∫ b

a

H (t, x) dx+ (κ (b)ux (t, b)− κ (a)ux (t, a))

=
∫ b

a

[
H (t, x) +

d

dx
(κ (x)ux (t, x))

]
dx.

Hence we conclude that∫ b

a

ut (t, x) δ (x) c (x) dx =
∫ b

a

[
H (t, x) +

d

dx
(κ (x)ux (t, x))

]
dx

for all sub-intervals Ω in the rod and therefore (again just differentiate in
b) that

δ (x) c (x)ut (t, x) =
d

dx
(κ (x)ux (t, x)) +H (t, x) . (2.10)

This equation may be written as

ut (t, x) = Lu (t, x) + h (t, x)

where

Lf (x) :=
1

p (x)
d

dx

(
κ (x)

d

dx
f (x)

)
,

p (x) = δ (x) c (x) and h (t, x) :=
H (t, x)
p (x)

.

If we further assume that the rod in not perfectly insulated along its length
and the ambient temperature is not constant, we may end up with another
terms in computing Ė (t) of the form∫ b

a

Q (x) [u (t, x)− T (x)] dx

and we would then arrive at a heat equation of the form

ut (t, x) = Lu (t, x) + h (t, x)

where

Lf (x) :=
1

p (x)
d

dx

(
κ (x)

d

dx
f (x)

)
+

1
p (x)

q (x) f (x) (2.11)

for some function q (x) and a modified function h (t, x) .

Example 2.7 (Heat or Diffusion Equation in d - dimensions). Suppose that Ω ⊂
Rd is a region of space filled with a material, δ(x) is the density of the material
at x ∈ Ω and c(x) is the heat capacity. Let u(t, x) denote the temperature at
time t ∈ [0,∞) at the spatial point x ∈ Ω. Now suppose that B ⊂ Rd is a
“little” volume in Rd, ∂B is the boundary of B, and EB(t) is the heat energy
contained in the volume B at time t. Then

EB(t) =
∫

B

δ(x)c(x)u(t, x)dx.

So on one hand,

ĖB(t) =
∫

B

δ(x)c(x)u̇(t, x)dx (2.12)

while on the other hand,

ĖB(t) =
∫

∂B

(κ(x)∇u(t, x) · n(x)) dσ(x), (2.13)

Page: 11 job: 110notes macro: svmono.cls date/time: 7-May-2004/7:09



12 2 PDE Examples

Fig. 2.6. A test volume B in Ω centered at x with outward pointing normal, n.

where κ(x) is a d×d–positive definite matrix representing the conduction prop-
erties of the material, n(x) is the outward pointing normal to B at x ∈ ∂B, and
dσ denotes surface measure on ∂B.

In order to see that we have the sign correct in (2.13), suppose that x ∈ ∂B
and ∇u(x) · n(x) > 0, then the temperature for points near x outside of B are
hotter than those points near x inside of B and hence contribute to a increase
in the heat energy inside of B. (If we get the wrong sign, then the resulting
equation will have the property that heat flows from cold to hot!)

Comparing Eqs. (2.12) to (2.13) after an application of the divergence the-
orem shows that∫

B

δ(x)c(x)u̇(t, x)dx =
∫

B

∇ · (κ(·)∇u(t, ·))(x) dx. (2.14)

Since this holds for all volumes B ⊂ Ω, we conclude that the temperature
functions should satisfy the following partial differential equation.

δ(x)c(x)u̇(t, x) = ∇ · (κ(·)∇u(t, ·))(x) . (2.15)

or equivalently that

u̇(t, x) =
1

δ(x)c(x)
∇ · (κ(x)∇u(t, x)). (2.16)

Setting gij(x) := κij(x)/(δ(x)c(x)) and

zj(x) :=
d∑

i=1

∂(κij(x)/(δ(x)c(x)))/∂xi

the above equation may be written as:

u̇(t, x) = Lu(t, x), (2.17)

where

(Lf)(x) =
∑
i,j

gij(x)
∂2

∂xi∂xj
f(x) +

∑
j

zj(x)
∂

∂xj
f(x). (2.18)

The operator L is a prototypical example of a second order “elliptic” differential
operator.

Example 2.8 (Laplace and Poisson Equations). Laplace’s Equation is of the
form Lu = 0 and solutions may represent the steady state temperature distri-
bution for the heat equation. Equations like ∆u = −ρ appear in electrostatics
for example, where u is the electric potential and ρ is the charge distribution.

2.3 Other Equations

Example 2.9 (Shrodinger Equation and Quantum Mechanics).

i
∂

∂t
ψ(t, x) = −∆

2
ψ(t, x) + V (x)ψ(t, x) with ‖ψ(·, 0)‖2 = 1.

Interpretation,∫
A

|ψ(t, x)|2 dt = the probability of finding the particle in A at time t.

(Notice similarities to the heat equation.)

Example 2.10 (Maxwell Equations in Free Space).

∂E
∂t

= ∇×B

∂B
∂t

= −∇×E

∇ ·E = ∇ ·B = 0.

Notice that

∂2E
∂t2

= ∇× ∂B
∂t

= −∇× (∇×E) = ∆E−∇ (∇ ·E) = ∆E

and similarly, ∂2B
∂t2 = ∆B so that all the components of the electromagnetic

fields satisfy the wave equation.

Example 2.11 (Traffic Equation). Consider cars travelling on a straight road
with coordinate x ∈ R, let u(t, x) denote the density of cars on the road at time
t and location x ∈ R, and v(t, x) be the velocity of the cars at (t, x). Then for
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J = [a, b] ⊂ R, NJ(t) :=
∫ b

a
u(t, x)dx is the number of cars in the set J at time

t. We must have∫ b

a

u̇(t, x)dx = ṄJ(t) = u(t, a)v(t, a)− u(t, b)v(t, b)

= −
∫ b

a

∂

∂x
[u(t, x)v(t, x)] dx.

Since this holds for all intervals [a, b], we must have

u̇(t, x) = − ∂

∂x
[u(t, x)v(t, x)] .

To make life more interesting, we may imagine that v(t, x) =
−F (u(t, x), ux(t, x)), in which case we get an equation of the form

∂

∂t
u =

∂

∂x
G(u, ux) where G(u, ux) = −u(t, x)F (u(t, x), ux(t, x)).

A simple model might be that there is a constant maximum speed, vm and
maximum density um, and the traffic interpolates linearly between 0 (when
u = um) to vm when (u = 0), i.e. v = vm(1− u/um) in which case we get

∂

∂t
u = −vm

∂

∂x
(u(1− u/um)) .

Example 2.12 (Burger’s Equation). Suppose we have a stream of particles trav-
elling on R, each of which has its own constant velocity and let u(t, x) denote
the velocity of the particle at x at time t. Let x(t) denote the trajectory of the
particle which is at x0 at time t0. We have C = ẋ(t) = u(t, x(t)). Differentiating
this equation in t at t = t0 implies

0 = [ut(t, x(t)) + ux(t, x(t))ẋ(t)] |t=t0 = ut(t0, x0) + ux(t0, x0)u(t0, x0)

which leads to Burger’s equation

0 = ut + u ux.

Example 2.13 (Minimal surface Equation). Let D ⊂ R2 be a bounded region
with reasonable boundary, u0 : ∂D → R be a given function. We wish to find
the function u : D → R such that u = u0 on ∂D and the graph of u, Γ (u) has
least area. Recall that the area of Γ (u) is given by

A(u) = Area(Γ (u)) =
∫

D

√
1 + |∇u|2dx.

Assuming u is a minimizer, let v ∈ C1(D) such that v = 0 on ∂D, then

0 =
d

ds
|0A(u+ sv) =

d

ds
|0
∫

D

√
1 + |∇(u+ sv)|2dx

=
∫

D

d

ds
|0
√

1 + |∇(u+ sv)|2dx

=
∫

D

1√
1 + |∇u|2

∇u · ∇v dx

= −
∫

D

∇ ·

 1√
1 + |∇u|2

∇u

 v dx

from which it follows that

∇ ·

 1√
1 + |∇u|2

∇u

 = 0.

Example 2.14 (Navier – Stokes). Here u(t, x) denotes the velocity of a fluid ad
(t, x), p(t, x) is the pressure. The Navier – Stokes equations state,

∂u

∂t
+ ∂uu = ν∆u−∇p+ f with u(0, x) = u0(x) (2.19)

∇ · u = 0 (incompressibility) (2.20)

where f are the components of a given external force and u0 is a given divergence
free vector field, ν is the viscosity constant. The Euler equations are found by
taking ν = 0. Equation (2.19) is Newton’s law of motion again, F = ma.
See http://www.claymath.org for more information on this Million Dollar
problem.
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3

Linear ODE

3.1 First order linear ODE

We would like to solve the ordinary differential equation

u̇ (t) = Au (t) with (3.1)
u (0) = f. (3.2)

The method of separation of variables or eigenvector expansions pro-
posed to begin by looking for solutions of the form u (t) = T (t) v to Eq. (3.1).
Here v is a fixed vector in ∈ RNand T (t) is some unknown function of t. Sub-
stituting u (t) = T (t) v into Eq. (3.1) gives

Ṫ (t) v = T (t)Av

or equivalently that

Av =
Ṫ (t)
T (t)

v.

Since the left side of this equation is independent of t we must have

Ṫ (t)
T (t)

= λ (3.3)

for some λ ∈ R. The solution to Eq. (3.3) is of course T (t) = etλT (0) and
therefore we have shown the following lemma.

Lemma 3.1. If u (t) = T (t) v solves Eq. (3.1), then v is an eigenvector of A
and if λ is the corresponding eigenvalue (i.e. Av = λv) then

u (t) = eλtT (0) v.

Conversely if Av = λv then u (t) = eλtv solves Eq. (3.1).

Proposition 3.2 (Principle of superposition). If u (t) and v (t) solves Eq.
(3.1) then so does u (t) + cv (t) for any c ∈ R.

Proof. This is a simple consequence of the fact that matrix multiplication
and differentiation are linear operations. In detail,

d

dt
(u (t) + cv (t)) = u̇ (t) + cv̇ (t) = Au (t) + cAv (t)

= A (u (t) + cv (t)) .

Consequently if Avi = λivi for i = 1, 2, . . . , k, then

u (t) =
∑

i

etλivi.

solves Eq. (3.1).

Theorem 3.3. Suppose the matrix A is diagonalizable, i.e. there exists a basis
{vi}Ni=1 for RN consisting of eigenvectors A. Then to any f ∈ RN there is a
unique solution, u (t) , to Eqs. (3.1) and (3.2). Moreover, if we expand f in
terms of the basis {vi}Ni=1 as

f =
N∑

i=1

aivi,

then the unique solution to Eqs. (3.1) and (3.2) is given by

u (t) =
N∑

i=1

aie
tλivi. (3.4)

Proof. The fact that Eq. (3.4) solves Eqs. (3.1) and (3.2) follows from the
principle of superposition and the fact that etλi = 1 when t = 0.

Conversely, suppose that u solves Eqs. (3.1) and (3.2), then

u (t) =
N∑

i=1

ai (t) vi (3.5)

for some functions ai (t) with ai (0) = ai. Now on one hand

u̇ (t) =
N∑

i=1

ȧi (t) vi
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while on the other hand

u̇ (t) = Au (t) = A
N∑

i=1

ai (t) vi =
N∑

i=1

ai (t)Avi =
N∑

i=1

ai (t)λivi.

Subtracting these two equation shows

0 =
N∑

i=1

ȧi (t) vi −
N∑

i=1

ai (t)λivi =
N∑

i=1

(ȧi (t)− ai (t)λi) vi.

Since {vi}Ni=1 is a basis for RN it follows, for all i, that

ȧi (t) = ai (t)λi with ai (0) = 1

and therefore, ai (t) = etλiai. Putting this result back into Eq. (3.5) gives Eq.
(3.4).

Definition 3.4. If f ∈ RN we will write etAf for the solution, u (t) , to Eqs.
(3.1) and (3.2).

Fact 3.5 Eqs. (3.1) and (3.2) have a unique solution independent as to whether
A has a basis of eigenvectors or not. Moreover we may compute etA using the
matrix power series expansion,

etAf =
∞∑

n=0

tn

n!
Anf. (3.6)

Notice that formula in Eq. (3.6) is consistent with our previous results. For
example if v ∈ RN and Av = λv, then Anv = λnv and therefore,

∞∑
n=0

tn

n!
Anv =

∞∑
n=0

tn

n!
λnv = etλv = etAv.

More generally, if u =
∑k

i=1 aivi with Avi = λivi, then

etAu =
k∑

i=1

aie
tλivi =

k∑
i=1

aie
tAivi.

Remark 3.6. As the notation suggests, it is true that

etAesA = e(t+s)A

as you are asked to prove in Exercise 3.1 below. However, it is not generally
true that

e(A+B) = eAeB = eBeA,

see Proposition 3.8 below.

Example 3.7. Let us find etA when

A =

1 1 0
0 2 2
0 0 3

 .
The eigenvalues of A are given as the roots of the characteristic polynomial,

p (λ) = det (A− λI) = (1− λ) (2− λ) (3− λ) .

These roots are λ = 1, λ = 2, and λ = 3. As usual we find the correspond-
ing eigenvectors as solutions to the equation (A− λI)u = 0. The result is,
eigenvectors:

v1 :=

1
0
0

↔ 1, v2 :=

1
1
0

↔ 2, v3 :=

1
2
1

↔ 3.

Since 0
1
0

 =

1
1
0

−
1

0
0


and 0

0
1

 =

1
2
1

− 2

1
1
0

+

1
0
0


it follows that the columns of etA are given by

etA

1
0
0

 = et

1
0
0


etA

0
1
0

 = etA

1
1
0

− etA

1
0
0

 = e2t

1
1
0

− et

1
0
0


and

etA

0
0
1

 = etA

1
2
1

− 2etA

1
1
0

+ etA

1
0
0


= e3t

1
2
1

− 2e2t

1
1
0

+ et

1
0
0


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3.2 Solving for etA using the Spectral Theorem 17

and therefore,

etA =

 et −et + e2t et − 2e2t + e3t

0 e2t −2e2t + 2e3t

0 0 e3t

 .
Proposition 3.8. Let A and B be two N ×N matrices. Then the following are
equivalent:

1. 0 = [A,B] := AB −BA.
2. etAB = BetA for all t ∈ R,
3. etAesB = esBetA for all s, t ∈ R.

Moreover if [A,B] = 0 then e(A+B) = eAeB and in particular

etAesA = e(t+s)A for all s, t ∈ R. (3.7)

Proof. If [A,B] = 0, then

d

dt
etABe−tA = etA [A,B] e−tA = 0

and therefore, etAB = BetA for all t ∈ R. It now follows that

d

ds
etAesB = etABesB = BetAesB

d

ds
esBetA = BesBetA

and so by uniqueness of solutions to these ODE we conclude etAesB = esBetA

for all s, t ∈ R. If etAesB = esBetA for all s, t ∈ R then

AB =
d

dt
|0etAB =

d

dt
|0
d

ds
|0etAesB =

d

dt
|0
d

ds
|0esBetA =

d

dt
|0BetA = BA.

For the last assertion, let T (t) := etAetB , then

d

dt
T (t) = AetAetB + etABetB = AetAetB +BetAetB

= (A+B)T (t) with T (0) = I.

So again by uniqueness of solutions,

etAetB = T (t) = et(A+B).

3.2 Solving for etA using the Spectral Theorem

Example 3.9. Let

A :=
[

1
2 −

3
2

− 3
2

1
2

]
as in Example 1.6 with eigenvectors/eigenvalues given by

v1 =
[

1
1

]
←→ λ1 = −1

and

v2 =
[

1
−1

]
←→ λ2 = 2.

Recall that
f =

1
2

(v1, f) v1 +
1
2

(v2, f) v2

and hence

etAf =
1
2

(v1, f) etAv1 +
1
2

(v2, f) etAv2

=
1
2

(v1, f) e−tv1 +
1
2

(v2, f) e2tv2. (3.8)

Taking f = e1 and f = e2 then implies

etAe1 =
1
2
etAv1 +

1
2
etAv2 =

1
2
e−tv1 +

1
2
e2tv2

=
1
2
e−t

[
1
1

]
+

1
2
e2t

[
1
−1

]
=

1
2

[
e−t + e2t

e−t − e2t

]
.

and

etAe2 =
1
2
etAv1 −

1
2
etAv2 =

1
2
e−tv1 −

1
2
e2tv2

=
1
2
e−t

[
1
1

]
− 1

2
e2t

[
1
−1

]
=

1
2

[
e−t − e2t

e−t + e2t

]
.

Thus we may conclude that

etA =
[
etAe1 e

tAe2
]

=
1
2

[
e−t + e2t e−t − e2t

e−t − e2t e−t + e2t

]
.
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18 3 Linear ODE

Alternatively, from Eq. (3.8)

etAf =
1
2

(v1, f) e−tv1v
tr
1 f +

1
2
e2tv2v

tr
2 f

and therefore

etA =
1
2

(v1, f) e−tv1v
tr
1 +

1
2
e2tv2v

tr
2

=
1
2
e−t

[
1
1

] [
1 1
]
+

1
2
e2t

[
1
−1

] [
1 −1

]
=

1
2

[
e−t + e2t e−t − e2t

e−t − e2t e−t + e2t

]
.

Example 3.10. The matrix

A =
[
−2 1

1 −2

]
has eigenvectors/eigenvalues given by

v1 :=
[

1
1

]
↔ −1 and v2 :=

[
−1
1

]
↔ −3

As usual, if f ∈ R2 then

f =
1
2

(v1, f) v1 +
1
2

(v2, f) v2.

It then follows that

etAf =
1
2

(v1, f) etAv1 +
1
2

(v2, f) etAv2

=
1
2

(v1, f) e−tv1 +
1
2

(v2, f) e−3tv2.

Taking f = e1 and then f = e2 gives

etAe1 =
1
2

(v1, e1) e−tv1 +
1
2

(v2, e1) e−3tv2

=
1
2
e−tv1 −

1
2
e−3tv2

=
1
2

[
e−t + e−3t

e−t − e−3t

]
and similarly

etAe2 =
1
2

[
e−t − e−3t

e−t + e−3t

]
.

Therefore,

etA =
[
etAe1 e

tAe2
]

=
1
2

[
e−t + e−3t

e−t − e−3t
e−t − e−3t

e−t + e−3t

]
.

Example 3.11. Continuing the notation and using the results of Example 1.8,

A :=

 1 7 −2
7 1 −2
−2 −2 10


with eigenvectors/eigenvalues given by

v1 :=

−1
1
0

↔ −6, v2 :=

1
1
1

↔ 6, v3 :=

−1
−1
2

↔ 12.

and
f =

1
2

(f, v1) v1 +
1
3

(f, v2) v2 +
1
6

(f, v2) v3.

For example if f = (1, 2, 3)tr , then

f =
1
2
v1 + 2v2 +

1
2
v3

and hence

etA (1, 2, 3)tr =
1
2
etAv1 + 2etAv2 +

1
2
etAv3

=
1
2
e−6tv1 + 2e6tv2 +

1
2
e12tv3.

A straightforward but tedious computation shows

etA =
1
6

 3e−6t + 2e6t + e12t −3e−6t + 2e6t + e12t 2e6t − 2e12t

−3e−6t + 2e6t + e12t 3e−6t + 2e6t + e12t 2e6t − 2e12t

2e6t − 2e12t 2e6t − 2e12t 2e6t + 4e12t

 .
This can alternatively be done using a computer algebra package, which is what
I did.

3.3 Second Order Linear ODE

We would like to solve the ordinary differential equation
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3.3 Second Order Linear ODE 19

ü (t) = Au (t) with (3.9)
u (0) = f and u̇ (0) = g (3.10)

for some f, g ∈ RN and A a N ×N matrix. Again we might begin by trying to
find solutions to Eq. (3.9) by considering functions of the form u (t) = T (t) v.
In order for u (t) = T (t) v to be a solution we must have

T̈ (t) v = T (t)Av

and working as above we concluded that there must exists λ such that

T̈ (t) = λT (t) and Av = λv.

The general solution to the equation

T̈ (t) = λT (t)

is
T (t) = cλ (t)T (0) + sλ (t) Ṫ (0)

where

cλ (t) :=
{

cos
√
−λt if λ ≤ 0

cosh
√
λt if λ ≥ 0

and

sλ (t) :=


sin

√
−λt√
−λ

if λ < 0
t if λ = 0

sinh
√

λt√
λ

if λ > 0.

Theorem 3.12. Suppose the matrix A is diagonalizable, i.e. there exists a ba-
sis {vi}Ni=1 for RN consisting of eigenvectors A with corresponding eigenvalues
{λi}Ni=1 ⊂ R. Then for any f, g ∈ RN there is a unique solution, u (t) , to Eqs.
(3.9) and (3.10). Moreover, if we expand f and g in terms of the basis {vi}Ni=1

as

f =
N∑

i=1

aivi and g =
N∑

i=1

bivi

then the unique solution to Eqs. (3.9) and (3.10) is given by

u (t) =
N∑

i=1

[aicλi (t) + bisλi (t)] vi. (3.11)

Proof. It is easy to check that u defined as in Eq. (3.11) solves Eqs. (3.9)
and (3.10) which proves the existence of solutions. The uniqueness of solutions

may also be proved similarly to what was done in Theorem 3.3. Indeed, suppose
that

u (t) =
N∑

i=1

αi (t) vi

then the equation, ü = Au, is equivalent to

N∑
i=1

α̈i (t) vi = ü (t) = Au (t) =
N∑

i=1

αi (t)Avi =
N∑

i=1

αi (t)λivi

and since {vi}Ni=1 is a basis for RN we must have

α̈i (t) = λiαi (t) for all i. (3.12)

Moreover,

N∑
i=1

aivi = f = u (0) =
N∑

i=1

αi (0) vi and

N∑
i=1

bivi = g = u̇ (0) =
N∑

i=1

α̇i (0) vi

implies that
αi (0) = ai and α̇i (0) = bi for all i. (3.13)

This completes the proof, since the unique solution to Eqs. (3.12) and (3.13) is
given by

αi (t) = aicλi (t) + bisλi (t) .

Notation 3.13 From now on, let us agree that

cos
√
−λt := cosh

√
λt if λ ≤ 0

sin
√
−λt√
−λ

:=
sinh
√
λt√
λ

if λ < 0 and

sin
√
−λt√
−λ

:= t if λ = 0.

With the above notation it is natural to write the general solution Eqs. (3.9)
and (3.10) as

u (t) =
(
cos
√
−At

)
f +

sin
√
−At√
−A

g

with the understanding that
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20 3 Linear ODE

1. cos
√
−At and sin

√
−At√
−A

are linear (i.e. matrices) and
2. if Av = λv then (

cos
√
−At

)
v :=

(
cos
√
−λt

)
v and

sin
√
−At√
−A

v :=
sin
√
−λt√
−λ

v.

Example 3.14. Continuing the notation and using the results of Example 1.8,

A :=

 1 7 −2
7 1 −2
−2 −2 10


with eigenvectors/eigenvalues given by

v1 :=

−1
1
0

↔ −6, v2 :=

1
1
1

↔ 6, v3 :=

−1
−1
2

↔ 12.

We will solve,

ü (t) = Au (t) with

u (0) = f = (1, 2, 3)tr and u̇ (0) = g = (1,−1, 1)tr .

As above we have

f =
1
2

(f, v1) v1 +
1
3

(f, v2) v2 +
1
6

(f, v2) v3

=
1
2
v1 + 2v2 +

1
2
v3

and
g = 0v1 +

1
3
v2 +

2
6

(f, v2) v3 =
1
3

(2v2 + v3) .

Therefore,

cos
(√
−At

)
f =

1
2

cos
(√

3t
)
v1 + 2 cosh

(√
3t
)
v2 +

1
2

cosh
(√

12t
)
v3

and
sin
(√
−At

)
√
−A

g =
1
3

(
2
sinh

(√
3t
)

√
3

v2 +
sinh

(√
12t
)

√
12

v3

)
and the solution is given by

u (t) = cos
(√
−At

)
f +

sin
(√
−At

)
√
−A

g

=
1
2

cos
(√

3t
)
v1

+

[
2 cosh

(√
3t
)

+
2
3

sinh
(√

3t
)

√
3

]
v2

+

[
1
2

cosh
(√

12t
)

+
1
3

sinh
(√

12t
)

√
12

]
v3.

3.4 ODE Exercises

Exercise 3.1. Here you are asked to give another proof of Eq. (3.7). Let A be
an N ×N, matrix, f ∈ RN and s, t ∈ R. Show

etAesAf = e(t+s)Af.

Outline: Let u (t) := etAesAf and v (t) = e(t+s)Af and show both u and v
solve the differential equation,

ẇ (t) = Aw (t) with w (0) = esAf

and then use uniqueness of solutions of this equation (see Fact 3.5) to conclude
that u (t) = v (t) .

Exercise 3.2. Let

A =
(

0 1
−1 0

)
.

Show

etA =
(

cos t sin t
− sin t cos t

)
using the following three methods.

1. Showing
d

dt

(
cos t sin t
− sin t cos t

)
= A

(
cos t sin t
− sin t cos t

)
and (

cos t sin t
− sin t cos t

)∣∣∣∣
t=0

= I =
(

1
0

0
1

)
and
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3.4 ODE Exercises 21

2. by explicitly summing the series

etA =
∞∑

n=0

tn

n!
An.

3. Show d2

dt2 e
tA = −etA and then solve this equation using etA|t=0 = I and

d
dt |0e

tA = A.

Exercise 3.3. Combine Exercises 3.1 and 3.2 to give a proof of the trigono-
metric identities:

cos(s+ t) = cos s cos t− sin s sin t (3.14)
and

sin (s+ t) = cos s sin t+ cos t sin s. (3.15)

Exercise 3.4. Let a, b, c ∈ R and

A =

0 a b
0 0 c
0 0 0

 .

Show

etA =

1 at bt+ 1
2act

2

0 1 ct
0 0 1


by summing the matrix power series. Also find et(λI+A) where λ ∈ R and I is
the 3× 3 identity matrix.

Exercise 3.5. Let

A :=

−2 1 1
1 −2 1
1 1 −2


and

f = (1, 0, 2)tr and g = (0, 1, 2)tr .

be as in Exercise 1.2. Solve the following equations

u̇ (t) = Au (t) with u (0) = f and
ü (t) = Au (t) with u (0) = f and u̇ (0) = g.

Write your solutions in the form

u (t) =
3∑

i=1

ai (t) vi

where the functions ai are to be determined.
Hint: Recall from Exercise 1.2 (you should have shown) that

v1 =

1
1
1

↔ 0, v2 =

−1
0
1

↔ −3, v3 =

−1
2
−1

↔ −3.

is an orthogonal basis of eigenvectors (with corresponding eigenvalues) for A.
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Linear Operators and Separation of Variables

Definition 4.1. A linear combination of the vectors {vi}ni=1 ⊂ R3 (or
{vi}ni=1 ⊂ V with V being any vector space) is a vector of the form,

c1v1 + c2v2 + · · ·+ cnvn,

with {ci}ni=1 being real (or complex) constants.

We are going to be interested in the case that the vector space V consists
of a class of functions on some domain, Ω ⊂ Rn. If u1 and u2 are functions on
Ω ⊂ Rn, and c1, c2 ∈ R we write (c1u1 + c2u2) =: u for the function, u : Ω → R
such that

u (x) = c1u1 (x) + c2u2 (x) for all x ∈ Ω.
For example we may consider, u1 + u2, u1 + 3u2, and 0 = 0u1 + 0u2.

Definition 4.2. A linear space of functions, V, is a class of functions with
common domain so that if u1, u2 are in the class then so is c1u1 + c2u2 for all
c1, c2 ∈ R, i.e. the space of functions V is closed under taking linear combina-
tions.

Example 4.3.

D = {f : R→ R : f is differentiable on R}

or
C = {f : R→ R : f is continuous on R}.

Consider operator, L : D → {all functions on R} defined by Lf = f ′. This
operator is linear, namely, we have

L(c1f1 + c2f2) = (c1f1 + c2f2)′ = c1f
′
1 + c2f

′
2 = c1L(f1) + c2L(f2).

It is interesting to note that L does not map D to C. For example, let

f(x) =
{
x2 sin 1

x x 6= 0
0 x = 0

then

f ′(x) =

{
2x sin 1

x − cos 1
x x 6= 0

lim
x→0

x2 sin 1
x

x = 0 x = 0

so that ϕ ∈ D however f ′ /∈ C.

Definition 4.4. A Linear operator, is a mapping, L, of one linear space of
functions to another such that

L(c1u1 + c2u2) = c1L(u1) + c2L(u2)

for all u1, u2 in the domain function space and c1, c2 ∈ R.

An induction argument shows the linearity condition in Definition 4.4 im-
plies

L

(
n∑

i=1

ciui

)
=

N∑
i=1

ciL(ui)

for all ui in the domain function space and ci ∈ R.

Example 4.5. Let Ω be some open subset of R2, for example Ω = R2 or Ω ={
x ∈ R2|x2

1 + x2
2 < 5

}
and let D denote those functions u : Ω → R such that u

and all of its partial derivatives up to order two exist and are continuous. (In
the future we denote this class of functions by C2 (Ω) .) Then the following are
example of linear operators taking D to the class of continuous functions on Ω :

1. Lu = ∂2u
∂x2

2. Lu = ∂2u
∂x ∂y

3. (Lu) (x, y) = x∂u
∂y (x, y) + y ∂u

∂x (x, y) .

Whereas, the following operator is an example of a non-linear operator;
Lu = ∂

∂xu+ u2. To see this operator is not linear, notice that

L(u1 + u2) =
∂

∂x
u1 +

∂

∂x
u2 + (u1 + u2)2

6= ∂

∂x
u1 + u2

1 +
∂

∂x
u2 + u2

2 = Lu1 + Lu2.

For example, let u1 = 1
x and u2 = 1

x+5 (also see Exercise 13.9), then

L(u1) = − 1
x2

+
1
x2

= 0

L(u2) = − 1
(x+ 5)2

+
1

(x+ 5)2
= 0
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while

L(u1 + u2) = L

(
1
x

+
1

x+ 5

)
=
−1
x2
− 1

(x+ 5)2
+
(

1
x

+
1

x+ 5

)2

= − 1
x2
− 1

(x+ 5)2
+

1
x2

+
1

(x+ 5)2
+

2
x+ 5)

=
2

x(x+ 5)
6= 0.

Definition 4.6. If L,M are two linear operators on the same class of functions
we define L+M

(L+M)(u) := Lu+Mu.

If M is a linear operator on the range-space of L we also define LM by
((LM)u) = L(Mu).

These new operators are still linear, for example,

(LM)(c1u1 + c2u2) = L(c1M(u1) + c2M(u2))
= c1L(M(u1)) + c2L(M(u2)))
= c1(LM)(u1) + c2(LM)(c2).

However, it is in general not true (see Exercise 13.2) that LM = ML, in fact
LM may be defined while ML is not defined. For example, let Lu = x2u and
Mu = ∂

∂xu then taking u = exy we find

LM(u) = L

(
∂

∂x
exy

)
= L(y exy) = x2yexy

while
M(Lu) =

∂

∂x
(x2exy) = 2xexy + yx2exy 6= LM (u) .

In general, in this class we will be interested in linear differential operators
of the form

Lu = Auxx +Buxy + Cuyy +Dux + Euy + Fu

where A,B,C,D,E, F are functions of x and y. The homogeneous partial dif-
ferential equations, Lu = 0 is shorthand notation for u solving the equation,

Auxx +Buxy + Cuyy +Dux + Euy + Fu = 0.

Lemma 4.7 (Principle of Superposition). If L is a linear differential opera-
tor as above and u1 and u2 solve the homogeneous partial differential equations,
Lu1 = 0 and Lu2 = 0, then any linear combination, c1u1 + c2u2 also satisfies
the same equation, namely,

L (c1u1 + c2u2) = 0.

Example 4.8 (Homogeneous Wave Equation ). The wave equation utt = a2uxx,

is equivalent to writing Lu = 0 where L = ∂2

∂t2 − a
2 ∂2

∂x2 . So if u1, . . . , uM are
solutions to the wave equation, (i.e., Lun = 0), then any linear combination,

c1u1 + · · ·+ cnuM ,

is another solution as well. (See Exercises 13.4, 13.6, 13.8 for more on this and
the issue of boundary conditions.) To be more explicit let us notice that

1. Show that un (t, x) := sin(nx) sin(ant) for n ∈ N all solve the equation,
Lu = 0. Indeed,

Lun =
∂2

∂t2
[sin(nx) sin(ant)]− a2 ∂

2

∂x2
[sin(nx) sin(ant)]

=
∂

∂t
(sin(nx)an cos(ant))− a2 ∂

∂x
(n cos(nx) sin(ant))

= −a2n2 sin(nt) sin(ant)− a2[−n2 sin(nx) sin(ant)] = 0.

2. So by the superposition principle,

u(x, y) =
N∑

n=1

cn sin(nx) sin(ant)

with c1, . . . , cM ∈ R also satisfies the wave equation. (Later we will allow
for infinite linear combinations and we will then choose the constants, ci,
so that certain boundary conditions are satisfied.)

4.1 Introduction to Fourier Series

In this section, I would like to explain how certain functions like sinnx and
cosnx are going to appear in our study of partial differential equations. Suppose
L is the differential operator, L = d2

dx2 , acting on functions on Ω = [a, b] . Define
the inner product,

(f, g) :=
∫

Ω=[a,b]

f (x) g (x) dx,

for functions f, g : Ω → R. Two integration by parts now shows,

(Lf, g) =
∫

Ω

f ′′ (x) · g (x) dx = −
∫

Ω

f ′ (x) · g′ (x) dx+ f ′ (x) g (x) |ba

=
∫

Ω

f (x) · g′′ (x) dx+ [f ′ (x) g (x)− f (x) · g′ (x)] |ba

= (f, Lg) + [f ′ (x) g (x)− f (x) · g′ (x)] |ba.
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4.1 Introduction to Fourier Series 25

There are now a number of boundary conditions that may be imposed on f
and g so that boundary terms in the previous equation are zero. For example
we may assume f, g ∈ Dper where Dper denotes those twice continuously dif-
ferentiable functions such that f (b) = f (a) and f ′ (b) = f ′ (a) . Or we might
assume f, g ∈ DDirichlet or f, g ∈ DNeumann where DDirichlet (DNeumann) consists
of those twice continuously differentiable functions such that f (a) = 0 = f (b)
(f ′ (a) = 0 = f ′ (b)). In any of these cases, we will have

(Lf, g) = (f, Lg)

and so in analogy with the Spectral Theorem 1.5 we should expect that L has
an orthonormal basis of eigenvectors. Let us find these eigenvectors in a few
examples. Before doing this it is useful to record a few integrals.

Lemma 4.9. Let n be a positive integer, then∫ π

0

sin2 nxdx =
∫ π

0

cos2 nxdx =
π

2
, (4.1)∫ π

−π

sin2 nxdx =
∫ π

−π

cos2 nxdx = π, (4.2)

and∫ π

−π

sinnx cosnxdx = 0. (4.3)

Proof. Recall that

cos 2θ = cos2 θ − sin2 θ = 1− 2 sin2 θ = 2 cos2 θ − 1.

Therefore, taking θ = nx and integrating we find,

0 =
1
2n

sin 2nx|π0 =
∫ π

0

cos 2nxdx

=
∫ π

0

[
1− 2 sin2 nx

]
dx =

∫ π

0

[
2 cos2 nx− 1

]
dx

= π − 2
∫ π

0

sin2 nxdx = 2
∫ π

0

cos2 nxdx− π

which gives Eq. (4.1). Similarly, replacing
∫ π

0
by
∫ π

−π
above shows Eq. (4.2) is

valid as well. Finally,∫ π

−π

sinnx cosnxdx =
1
2n

sin2 nx|π−π = 0− 0 = 0.

Example 4.10 (Fourier Series). Let a = −π and b = π, L = d2

dx2 and D = Dper

so that

(f, g) =
∫ π

−π

f (x) g (x) dx (4.4)

and

(Lf, g) = − (f ′, g′) = −
∫ π

−π

f ′ (x) g′ (x) dx = (f, Lg).

Thus if Lf = λf with f ∈ D we have

λ (f, f) = (Lf, f) = −
∫ π

−π

[f ′ (x)]2 dx ≤ 0

from which it follows that λ ≤ 0. So we need only look for negative eigenvalues.
If λ = 0 the eigenvalue equation becomes f ′′ = 0 and hence f (x) = Ax + B.
We will only have f ∈ D if A = 0 and therefore let f0 = 1.

We may now suppose that λ = −ω2 < 0 in which case the eigenvalue
equation becomes

f ′′ = −ω2f

which has
f (x) = A cosωx+B sinωx

as the general solution. We still must enforce the boundary values. For example
f (π) = f (−π) implies

A cos (−ωπ) +B sin (−ωπ) = A cosωπ +B sinωπ

or B sinωπ = 0. Similarly, f ′ (π) = f ′ (−π) implies

−ωA sin (−ωπ) + ωB cos (−ωπ) = −ωA sinωπ + ωB cosωπ

that A sinωπ = 0. Hence we either have A = B = 0 (in which case f ≡ 0 which
is not allowed) or sinωπ = 0 from which it follows that ω = n ∈ Z. Hence we
have

β := {cosnx, sinnx : n ∈ N} ∪ {1}

as our possible eigenvectors. The eigenvalue associated to cosnx and sinnx is
λn = −n2. By Lemma 4.9, (cosnx, sinnx) = 0, so that β is an orthogonal set
and moreover,

(cosnx, cosnx) = (sinnx, sinnx) = π and
(1, 1) = 2π.

Thus we expect that any reasonable function f on [−π, π] may be written as
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26 4 Linear Operators and Separation of Variables

f (x) =
1
2π

(f, 1) 1 +
1
π

∞∑
n=1

[(f, cosn (·)) cosnx+ (f, sinn (·)) sinnx] . (4.5)

See Theorem 5.8, Theorem 5.17 and Theorem 6.2 below for more details on this
point.

Example 4.11 (Fourier Sine Series / Dirichlet boundary conditions). Suppose
a = 0 and b = π, L = d2

dx2 and D = DDirichlet so if f, g ∈ D then f (0) = 0 =
f (π) . We now take

(f, g) =
∫ π

0

f (x) g (x) dx

and working as in the previous example we find

un (x) = sinnx with λn = −n2 for n ∈ N.

By Lemma 4.9,
(sinn (·) , sinn (·)) =

π

2
and so by Theorem 6.2,

f (x) =
2
π

∞∑
n=1

(f, sinn (·)) sinnx

for any “reasonable” function f on [0, π] .

Example 4.12 (Fourier Cosine Series / Neumann boundary conditions.). Sup-
pose a = 0 and b = π, L = d2

dx2 and D = DNeumann so if f, g ∈ D then
f ′ (0) = 0 = f ′ (π) .

Again we take

(f, g) =
∫ π

0

f (x) g (x) dx

and we find the eigenfunctions and eigenvalues to be

un (x) = cosnx with λn = −n2 for n ∈ N∪{0} .

By Lemma 4.9,

(cosn (·) , cosn (·)) =
π

2
for n ∈ N

and (1, 1) = π,

Thus Theorem 6.2 asserts that any “reasonable” function f on [0, π] may be
written as

f (x) =
1
π

(f, 1) 1 +
2
π

∞∑
n=1

(f, cosn (·)) cosnx.

4.2 Application / Separation of variables

Example 4.13. Use “separation of variables” to solve the heat equation,

ut (t, x) = uxx (t, x) with u (t, 0) = u (t, 5) = 0 (4.6)
and u (0, x) = f (x) .

The technique is to first ignore the nonhomogeneous condition u (0, x) = f (x)
and look for any solutions to the Eq. (4.6) of the form

u (t, x) = T (t)X (x) .

From this we get,
Ṫ (t)X (x) = T (t)X ′′ (x)

or equivalently that
Ṫ (t)
T (t)

=
X ′′ (x)
X (x)

= λ

where λ is a constant. Thus we require that

X ′′ (x) = λX (x) with X (0) = 0 and X (5) = 0.

The solutions to this Sturm-Liouville problem are given by

Xn (x) = sin
nπx

5
with λ = λn = −

(nπ
5

)2

.

This then forces Tn (t) = e−t(nπ
5 )2

. Thus we find that

un (t, x) = e−t(nπ
5 )2

sin
nπx

5

are all solutions to Eq. (4.6). We then look for a general solution to our problem
in the form

u (t, x) =
∞∑

n=1

bnun (t, x)

where we wish to choose the constants, bn such that

f (x) = u (0, x) =
∞∑

n=1

bnun (0, x) =
∞∑

n=1

bn sin
nπx

5
.

Letting

(f, g) =
∫ 5

0

f (x) g (x) dx
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we have (
sin

nπx

5
, sin

mπx

5

)
= δmn

5
2

and therefore,

bn =

(
f, sin nπx

5

)(
sin nπx

5 , sin nπx
5

) =
2
5

∫ 5

0

f (x) sin
nπx

5
dx.

Example 4.14. Use separation of variables to solve Laplace’s equation,

uxx (x, y) + uyy (x, y) = 0 for 0 ≤ x ≤ 5 and 0 ≤ y ≤ 2

with boundary conditions,

u (0, y) = u (5, y) = 0,
u (x, 0) = 0 and u (x, 2) = f (x) .

To do this we will work as above and begin by ignoring the non-homogeneous
boundary condition and solve the rest by separation of variables. So we write
u (x, y) = X (x)Y (x) and require that

X ′′

X
+
Y ′′

Y
= 0 with X (0) = X (5) = 0 = Y (0) .

As before we must have X ′′ = λX and we know the solutions are given by

Xn (x) = sin
nπx

5
with λ = λn = −

(nπ
5

)2

.

It them implies that

Y ′′ (y) =
(nπ

5

)2

Y (y) with Y (0) = 0.

From this we concluded that

Yn (y) = sinh
nπy

5

and we find that
un (x, y) = sin

nπx

5
sinh

nπy

5
in this case. So working as above we try to find a solution of the form

u (x, y) =
∞∑

n=1

bnun (x, y) .

All the boundary conditions are now satisfied except for

f (x) = u (x, 2) =
∞∑

n=1

bnun (x, 2) =
∞∑

n=1

bn sinh
2nπ
5

sin
nπx

5
.

By the same logic as above we must have

bn sinh
2nπ
5

=
2
5

∫ 5

0

f (x) sin
nπx

5
dx

and thus that

u (x, y) =
∞∑

n=1

bn sinh
2nπ
5

sin
nπx

5

with

bn =
2

5 sinh 2nπ
5

∫ 5

0

f (x) sin
nπx

5
dx.

Example 4.15. Solve the wave equation, for 0 ≤ x ≤ 5 and t ∈ R,

utt (t, x) = ux x (t, x) with u (t, 0) = u (t, 5) = 0
and u (0, x) = f (x) and ut (0, x) = 0.

We could go through separation of variables here to answer this question, but
this is getting tedious. I will just write down the answer as

u (t, x) = cos
(√
−∂2

xt
)
f (x) .

As we have seen,

f (x) =
∞∑

n=1

bn sin
nπx

5

with

bn =
2
5

∫ 5

0

f (x) sin
nπx

5
dx

and hence

u (t, x) =
∞∑

n=1

bn cos
(√
−∂2

xt
)

sin
nπx

5

=
∞∑

n=1

bn cos
(
nπt

5

)
sin

nπx

5
.

It is interesting to notice that since

sin (A+B) = cosA sinB + sinA cosB
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we have
sin (A+B) + sin (A−B) = 2 sinA cosB.

Thus we may write,

sin
nπx

5
cos
(
nπt

5

)
=

1
2

[
sin
(
nπ (x+ t)

5

)
+ sin

(
nπ (x− t)

5

)]
and thus

u (t, x) =
1
2

∞∑
n=1

bn

[
sin
(
nπ (x+ t)

5

)
+ sin

(
nπ (x− t)

5

)]
=

1
2

[F (x+ t) + F (x− t)]

where

F (x) =
∞∑

n=1

bn sin
(nπx

5

)
= the 5− periodic extensions of f (x) .



5

Orthogonal Function Expansions

5.1 Generalities about inner products on function spaces

Let Ω be a region in Rd (most of the time d will be one for us) and p : Ω →
(0,∞) be a positive function. For functions f, g : Ω → R define

(f, g) :=
∫

Ω

f (x) g (x) p (x) dx.

This is an example of a inner product, i.e. something that behaves like the
dot product on RN . For example we still have the following properties:

(f1 + cf2, g) = (f1, g) + c (f2, g)
(f, g) = (g, f)

‖f‖2 := (f, f) = 0 implies f = 0.

The following computation will be used frequently in this class:

‖f + g‖2 = (f + g, f + g) = ‖f‖2 + ‖g‖2 + (f, g) + (g, f)

= ‖f‖2 + ‖g‖2 + 2(f, g). (5.1)

Definition 5.1. Two functions f, g : Ω → R are orthogonal and we write
f ⊥ g iff (f, g) = 0. More generally, a collection of functions, {ϕi}ni=1 , is an
orthogonal set if ϕi ⊥ ϕj (i.e. (ϕi, ϕj) = 0) for i 6= j. If we further have
‖ϕi‖ = 1 then we say {ϕi}ni=1 is an orthonormal set.

Exercise 5.1. Put in some exercise on orthogonal sets from the book here.

Theorem 5.2 (Schwarz Inequality). For all f, g : Ω → R,

|(f, g)| ≤ ‖f‖‖g‖

and equality holds iff f and g are linearly dependent.

Proof. If g = 0, the result holds trivially. So assume that g 6= 0 and observe;
if f = αg for some α ∈ C, then (f, g) = α ‖g‖2 and hence

|(f, g)| = |α| ‖g‖2 = ‖f‖‖g‖.

Fig. 5.1. The picture behind the proof of the Schwarz inequality.

Now suppose that f ∈ H is arbitrary, let h := f − ‖g‖−2(f, g)g. (So z is the
“orthogonal projection” of f onto g, see Figure 5.1.) Then

0 ≤ ‖h‖2 =
∥∥∥∥f − (f, g)

‖g‖2
g

∥∥∥∥2

= ‖f‖2 +
(f, g)2

‖g‖4
‖g‖2 − 2

(
f,

(f, g)
‖g‖2

g

)
= ‖f‖2 − (f, g)2

‖g‖2

from which it follows that 0 ≤ ‖g‖2‖f‖2 − (f, g)2 with equality iff h = 0 or
equivalently iff f = ‖g‖−2(f, g)g.

Corollary 5.3 (Triangle inequality). Let f, g : Ω → R be functions and
a ∈ R, then

‖f + g‖ ≤ ‖f‖+ ‖g‖ and (5.2)
‖af‖ = |a| ‖f‖ . (5.3)

Proof.

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2(f, g)

≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖ = (‖f‖+ ‖g‖)2.

Taking the square root of this inequality shows Eq. (5.2) holds. Taking the
square root of the identity,
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‖af‖2 =
∫

Ω

|a|2 |f (x)|2 dx = |a|2
∫

Ω

|f (x)|2 dx = |a|2 ‖f‖2,

proves Eq. (5.3).

Proposition 5.4 (Pythagorean’s Theorem). Suppose that {ϕi}ni=1 is an or-
thogonal set, then ∥∥∥∥∥

n∑
i=1

ϕi

∥∥∥∥∥
2

=
n∑

i=1

‖ϕi‖2. (5.4)

Proof. Let s :=
∑n

i=1 ϕi, then

‖s‖2 = (s, s) =

(
n∑

i=1

ϕi, s

)
=

n∑
i=1

(ϕi, s)

and

(ϕi, s) =

ϕi,
n∑

j=1

ϕj

 =
n∑

j=1

(ϕi, ϕj) = (ϕi, ϕi) = ‖ϕi‖2 .

The last two equations proves Eq. (5.4).

Theorem 5.5 (Best Approximation Theorem). Suppose {ϕi}ni=1 is an or-
thonormal set and ai ∈ R, then∥∥∥∥∥f −

n∑
i=1

aiϕi

∥∥∥∥∥
2

=

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

+
n∑

i=1

|(f, ϕi)− ai|2 (5.5)

and therefore the best approximation to f by functions of the form
∑n

i=1 aiϕi

occurs when ai = (f, ϕi) .

Proof. The function (vector),

h := f −
n∑

i=1

(f, ϕi)ϕi,

is orthogonal to {ϕi}ni=1 since

(h, ϕj) =

(
f −

n∑
i=1

(f, ϕi)ϕi, ϕj

)
= (f, ϕj)−

n∑
i=1

(f, ϕi) (ϕi, ϕj)

= (f, ϕj)−
n∑

i=1

(f, ϕi) δij = (f, ϕj)− (f, ϕj) = 0.

Since

f −
n∑

i=1

aiϕi = f −
n∑

i=1

(f, ϕi)ϕi +
n∑

i=1

[(f, ϕi)− ai]ϕi

= h+
n∑

i=1

[(f, ϕi)− ai]ϕi,

it follows by Pythagorean’s Theorem, Proposition 5.4, that∥∥∥∥∥f −
n∑

i=1

aiϕi

∥∥∥∥∥
2

= ‖h‖2 +
n∑

i=1

‖[(f, ϕi)− ai]ϕi‖2

= ‖h‖2 +
n∑

i=1

|(f, ϕi)− ai|2

=

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

+
n∑

i=1

|(f, ϕi)− ai|2 .

Definition 5.6. Let f be a function such that
∫

Ω
|f (x)|2 p (x) dx < ∞ and

{ϕi}∞i=1 be an orthonormal set, we will write f ∼
∑∞

i=1 (f, ϕi)ϕi to mean

lim
n→∞

∫
Ω

∣∣∣∣∣f (x)
n∑

i=1

(f, ϕi)ϕi (x)

∣∣∣∣∣
2

p (x) dx

= lim
n→∞

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

= 0.

We say {ϕi}∞i=1 is complete (or closed in the book’s terminology) if f ∼∑∞
i=1 (f, ϕi)ϕi whenever ‖f‖2 <∞.

Corollary 5.7 (Bessel’s (In)equality ). Suppose {ϕi}ni=1 is an orthonormal
set, then

n∑
i=1

|(f, ϕi)|2 ≤ ‖f‖2 for all f, (5.6)

Moreover we get equality iff f =
∑n

i=1 (f, ϕi)ϕi. These statements remain true
even when n = ∞ provided we interpret, f =

∑∞
i=1 (f, ϕi)ϕi to mean f ∼∑∞

i=1 (f, ϕi)ϕi. So we have f ∼
∑∞

i=1 (f, ϕi)ϕi iff Pythagorean’s theorem holds,
i.e. iff

∞∑
i=1

|(f, ϕi)|2 = ‖f‖2.
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Proof. Taking ai = 0 in Eq. (5.5) shows

‖f‖2 =

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

+
n∑

i=1

|(f, ϕi)|2

and hence that

n∑
i=1

|(f, ϕi)|2 = ‖f‖2 −

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

≤ ‖f‖2

with equality iff f =
∑n

i=1 (f, ϕi)ϕi. Letting n → ∞ in the previous equation
shows,

∞∑
i=1

|(f, ϕi)|2 = ‖f‖2 − lim
n→∞

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

≤ ‖f‖2

with equality iff

lim
n→∞

∥∥∥∥∥f −
n∑

i=1

(f, ϕi)ϕi

∥∥∥∥∥
2

= 0,

i.e. iff f ∼
∑∞

i=1 (f, ϕi)ϕi.

5.2 Convergence of the Fourier Series

For this section it will be convenient to define

(f, g) =
∫ π

−π

f (y) g (y)
1
π
dy

Recall from Example 4.10, if f : R→ R is “reasonable” 2π - periodic function
(i.e. f (x+ 2π) = f (x) for all x ∈ R), we expect by analogy with the finite
dimensional spectral theorem that

f (x) =
1
2
a0 +

∞∑
n=1

[an cosnx+ bn sinnx] (5.7)

where

an := (f, cosn (·)) =
1
π

∫ π

−π

f (y) cosny dy for n = 0, 1, 2, . . .

and

bn := (f, sinn (·)) =
1
π

∫ π

−π

f (y) sinny dy for n = 1, 2, . . . .

The following theorem gives a precise version of this statement.

Theorem 5.8 (Fourier Convergence Theorem). Let f : R→ R be a 2π
- periodic function which is piecewise continuous on (−π, π). Then at points
x ∈ X where f ′ (x±) exist we have

1
2
a0 +

∞∑
n=1

[an cosnx+ bn sinnx] =
f (x+) + f (x−)

2
.

Fact 5.9 If f : [−π, π]→ R is any function such that
∫ π

−π
|f (x)|2 dx <∞, we

may still define

fN (x) =
1
2
a0 +

N∑
n=1

[an cosnx+ bn sinnx]

with an and bn as above. With this definition we will always have,

1
π

lim
N→∞

∫ π

−π

|f (x)− fN (x)|2 dx = lim
N→∞

‖f − fN‖2 = 0,

i.e. that

f (x) ∼ 1
2
a0 +

∞∑
n=1

[an cosnx+ bn sinnx] .

5.3 Examples

Remark 5.10. We will use the following identities repeatedly.

sin (A+B) = cosA sinB + sinA cosB, (5.8)
cos (A+B) = cosA cosB − sinA sinB, (5.9)

sinA cosB =
1
2

(sin (A+B) + sin (A−B)) (5.10)

cosA cosB =
1
2

(cos (A+B) + cos (A−B)) (5.11)

sinA sinB =
1
2

(cos (A−B) + cos (A+B)) . (5.12)

Example 5.11. Suppose

f (x) =
{

1 if 0 < x < π
−1 if −π < 0 < x

,

then an := (f, cosn (·)) = 0 because f is odd while
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bn = (f, sinn (·)) =
2
π

∫ π

0

sinny dy = − 2
πn

cosny|π0

=
2
πn

(1− cosnπ) =
{

0 if n is even
4

πn if n is odd.

Thus we conclude that

f (x) ∼
∑

n odd

4
πn

sinnx =
∞∑

n=1

4
π (2n− 1)

sin (2n− 1)x.

The series converges for every x ∈ R and x ∈ (−π, π) \ {0} it converges to f (x)
and at x = 0 it converges to 0. By the way, by Bessel’s equality we have

∞∑
n=1

(
4

π (2n− 1)

)2

= ‖f‖2 =
1
π

∫ π

−π

|f (x)|2 dx

=
1
π

∫ π

−π

1dx = 2

and hence we conclude that

1 +
1
9

+
1
25

+
1
49

+ · · · =
∞∑

n=1

1
(2n− 1)2

=
π2

8
.

Here are some related graphs wherein fN (x) :=
∑N

n=1:n odd
4

πn sinnx.

Fig. 5.2. A plot of f5 (x) = 4
π

(
sin x + 1

3
sin 3x + 1

5
sin 5x

)
. which is approximating

f (x) .

Fig. 5.3. A plot of f11 (x) .
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Fig. 5.4. A plot of f19 (x) . These last few picture illustrate what is known as the
Gibb’s effect; namely the convergence is not uniform. There is always the pesky little
bump appearing near 0 (and ±π).

Fig. 5.5. A plot (at t = 1/2) of 4
π

(
e−t sin x + 1

3
e−9t sin 3x + 1

5
e−25t sin 5x

)
which is

approximating the solution to the heat equation with periodic boundary condtions
and with initial condition, u (0, x) = f (x) .

The following lemma will be useful in simplifying the computations in some
of the examples below.

Lemma 5.12. Suppose f : [a, b] → R is a continuous function and p (x) =∑n
k=0 pkx

k is a polynomial, then∫
fpdx = pF1 − p′F2 + p′′F3 − · · ·+ (−1)n

p(n)Fn+1 + C

where

F1 =
∫
fdx and Fk+1 =

∫
Fkdx.

Proof. This is simply a matter of repeated integration by parts. Explicitly,∫
fpdx =

∫
F ′1pdx = F1p−

∫
F1p

′dx+ C.∫
F1p

′dx = F2p
′ −
∫
F2p

′′dx+ C

and hence ∫
fpdx =

∫
F ′1pdx = F1p− F2p

′ +
∫
F2p

′′dx+ C

= F1p− F2p
′ + F2p

′′dx−
∫
F3p

(3)dx+ C,

etc.
Using this fact we may now compute the Fourier series of a number of

functions.

Example 5.13. Let (f, g) = 1
π

∫ π

−π
f (x) g (x) dx, then

1.

(x, 1) = 0, (x, cosnx) = 0 by symmetry and

(x, sinnx) =
1
π

∫ π

−π

x sinnxdx =
[
x

(
− 1
n

cosnx
)
− 1
n2

sinnx
]π

−π

=
1
n

[−2 cosnπ] =
2
n

(−1)n+1

wherein we have used

F1 =
∫

sinnxdx = − 1
n

cosnx and

F2 = − 1
n

∫
cosnxdx =

1
n2

sinnx.

Thus we expect that

x =
∞∑

n=1

2
n

(−1)n+1 sinnx = 2
(

1
1

sinx− 1
2

sin 2x+
1
3

sin 3x− 1
4

sin 4x+ . . .

)
.
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Plot of x and

2
1

sinx− 2
2

sin 2x+
2
3

sin 3x− 2
4

sin 4x

.

2. f (x) = x2 – expansion.(
x2, sinnx

)
= 0 by symmetry and(

x2, cosnx
)

=
1
π

∫ π

−π

x2 cosnxdx

=
[
x2

(
1
n

sinnx
)

+ 2x
1
n2

cosnx− 2
sinnx
n3

]π

−π

=
1
π

2π
1
n2

[cosnπ + cosn (−π)] = 4
1
n2

(−1)n

wherein we have used

F1 =
∫

cosnxdx =
1
n

sinnx,

F2 =
∫

1
n

sinnxdx = − 1
n2

cosnx and

F3 =
∫
− 1
n2

cosnxdx = − 1
n3

sinnx.

We also have (
x2, 1

)
=

1
π

∫ π

−π

x2dx =
x3

3
|π−π =

2π2

3

Thus we expect from Eq. (4.5) that

x2 =
1
2
(
x2, 1

)
1 +

∞∑
n=1

[(
x2, cosn (·)

)
cosnx+

(
x2, sinn (·)

)
sinnx

]
=

1
2

2π2

3
1 +

∞∑
n=1

4
1
n2

(−1)n cosnx

=
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx

=
π2

3
+ 4

[
− cosx+

1
22

cos 2x− 1
32

cos 3x+ . . . .

]
.

Plot of x2 (in red) and

π2

3
+ 4

[
− cosx+

1
22

cos 2x− 1
32

cos 3x+ . . .

]
.

3. Integrating the equation,

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx,

one expects,
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x3

3
=
π2

3
x+ 4

∞∑
n=1

(−1)n

n2

sinnx
n

=
π2

3

[
2
∞∑

n=1

(−1)n+1

n
sinnx

]
− 4

∞∑
n=1

(−1)n+1

n3
sinnx

=
∞∑

n=1

[
2π2

3
(−1)n+1

n
− 4

(−1)n+1

n3

]
sinnx

= 2
∞∑

n=1

(−1)n+1

[
(πn)2 − 6

3n3

]
sinnx

and hence that

x3 = 2
∞∑

n=1

(−1)n+1

[
(πn)2 − 6

n3

]
sinnx

also see top of page 77 of the book
4. The expansions for functions of the form f (x) = ax + bx2 + cx3 are now

easily found. For example, if

x2 − πx =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx− π

∞∑
n=1

2
n

(−1)n+1 sinnx.

The plots of this function and the following approximation,

S2 (x) =
π2

3
+ 4

(
−1
12

cosx+
1
22

cos 2x
)
− 2π

(
1
1

sinx− 1
2

sin 2x
)
,

S3 (x) =
π2

3
+ 4

(
−1
12

cosx+
1
22

cos 2x+
1
32

cos 3x
)

− 2π
(

1
1

sinx− 1
2

sin 2x+
1
3

sin 3x
)

and

S4 (x) =
π2

3
+ 4

(
−1
12

cosx+ · · ·+ 1
42

cos 4x
)

− 2π
(

1
1

sinx− 1
2

sin 2x+
1
3

sin 3x− 1
4

sin 4x
)

are given in Figure 5.6 below.

Fig. 5.6. Plot of x2 − πx and the approximats, S2, S3, and S4. Notice that the
approximations are not doing to well at the end points. This is because they are
convergeing to π2 at x = π and x = −π.

Example 5.14. Suppose that f (x) is a function defined for 0 ≤ x ≤ π. Suppose
we extend f to be an odd function by setting

F (x) :=
{

f (x) if 0 < x < π
−f (−x) if −π < x < 0,

see Figure 5.7. Then computing the Fourier series of F, we learn

Fig. 5.7. The function f with its extension to an odd function on [−π, π].
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an := (F, cosn (·)) =
1
π

∫ π

−π

F (y) cosny dy = 0 for n = 0, 1, 2, . . .

and

bn := (F, sinn (·)) =
1
π

∫ π

−π

F (y) sinny dy =
2
π

∫ π

−π

f (y) sinny dy.

From this we learn that

f (x) =
∞∑

n=1

(
2
π

∫ π

−π

f (y) sinny dy
)

sinnx.

Notice that {sinny : n ∈ N} form an orthonormal set relative to the inner prod-
uct,

(f, g) :=
2
π

∫ π

0

f (x) g (x) dx.

As an explicit example, let us consider the sin - series expansion of cosx for
0 < x < π. For this we have

bn =
2
π

∫ π

0

cos y sinny dy

=
1
π

∫ π

0

(sin ((n+ 1) y) + sin ((n− 1) y)) dy

= − 1
π

(
cos ((n+ 1) y)

n+ 1
+

cos ((n− 1) y)
n− 1

)π

0

= − 1
π

(
(−1)n+1

n+ 1
+

(−1)n−1

n− 1
− 1
n+ 1

− 1
n− 1

)

= −1n-even
−2
π

(
1

n+ 1
+

1
n− 1

)
= 1n-even

2
π

2n
n2 − 1

= 1n-even
4
π

n

n2 − 1

and we conclude that

cosx =
4
π

∑
n=2,4,6,...

n

n2 − 1
sinnx

=
4
π

∞∑
n=1

2n
4n2 − 1

sin 2nx.

Here is a plot of cosx along with 4
π

(
2

22−1 sin 2x+ 4
42−1 sin 4x+ 6

62−1 sin 6x
)

and 4
π

(
2

22−1 sin 2x+ · · ·+ 12
122−1 sin 12x

)
Example 5.15. Suppose that f (x) is a function defined for 0 ≤ x ≤ π. Suppose
we extend f to be an even function by setting

F (x) :=
{
f (x) if 0 < x < π
f (−x) if −π < x < 0,

see Figure 5.8. Then computing the Fourier series of F, we learn

Fig. 5.8. The function f with its extension to an even function on [−π, π].

an := (F, cosn (·)) =
1
π

∫ π

−π

F (y) cosny dy =
2
π

∫ π

0

f (y) cosny dy

and

bn := (F, sinn (·)) =
1
π

∫ π

−π

F (y) sinny dy = 0.

From this we learn that
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f (x) =
a0

2
+

∞∑
n=1

an cosnx

where
an :=

2
π

∫ π

0

f (y) cosny dy.

Notice that {cosny : n ∈ N} ∪
{

1√
2

}
form an orthonormal set relative to the

inner product,

(f, g) :=
2
π

∫ π

0

f (x) g (x) dx.

As an explicit example, let us consider the cos - series expansion of sinx for
0 < x < π. For this we have

an :=
2
π

∫ π

0

sin y cosny dy

=
1
π

∫ π

0

(sin ((n+ 1) y) + sin ((1− n) y)) dy

= − 1
π

(
cos ((n+ 1) y)

n+ 1
+

cos ((1− n) y)
1− n

)π

0

= 2 · 1n-even
1
π

(
1

1 + n
+

1
1− n

)
=

4
π

1n-even
1

1− n2
= − 4

π
1n-even

1
n2 − 1

.

So we conclude that

sinx =
2
π
− 4
π

∑
n=2,4,6,...

1
n2 − 1

cosnx

=
2
π
− 4
π

∞∑
n=1

1
4n2 − 1

cos 2nx

=
2
π

(
1− 2

22 − 1
cos 2x− 2

42 − 1
cos 4x− 2

62 − 1
cos 6x− . . .

)
.

Plot of sinx and the function

2
π

(
1− 2

22 − 1
cos 2x− 2

42 − 1
cos 4x

)
which consists of the first 3 terms in the cosine expansion of sinx.

5.4 Proof of Theorem 5.8

Before giving the proof of Theorem 5.8, we will need the following simple con-
sequence of Bessel’s inequality in Corollary 5.7.

Lemma 5.16. Suppose f is a continuous function on [−π, π] or more generally
any function such that

∫ π

−π
|f (x)|2 dx < ∞ and an and bn are given as above,

then
1
2
a2
0 +

∞∑
n=1

[
|an|2 + |bn|2

]
≤ 1
π

∫ π

−π

|f (x)|2 dx <∞. (5.13)

Moreover we also have

lim
N→∞

∫ π

−π

f (y) sin
((

N +
1
2

)
y

)
dy = 0. (5.14)

Proof. Since
{

1√
2
, cosnx, sinnx : n ∈ N

}
forms an orthonormal set, it fol-

lows from Corollary 5.7 that
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1
2
a2
0 +

∞∑
n=1

[
|an|2 + |bn|2

]
=
(
f,

1√
2

)2

+
∞∑

n=1

(f, cosn (·))2 + (f, sinn (·))2

≤ (f, f) =
1
π

∫ π

−π

|f (x)|2 dx <∞.

In particular this implies that

lim
n→∞

∫ π

−π

f (y) cosny dy = π lim
n→∞

bn = 0 and

lim
n→∞

∫ π

−π

f (y) sinny dy = π lim
n→∞

an = 0.

Since

sin
((

N +
1
2

)
y

)
= cos

(
1
2
y

)
sin (Ny) + sin

(
1
2
y

)
cos (Ny) ,

Eq. (5.14) now follows from the previous limit formulas with f replaced by
f (y) cos 1

2y and f (y) sin 1
2y respectively.

Proof of the Fourier Convergence Theorem 5.8.. To concentrate on
the basic ideas of the argument, I am only going to give the proof under the
additional assumption that f is continuously differentiable. The full proof may
be found in the book.

Let

fN (x) =
1
2
a0 +

N∑
n=1

[an cosnx+ bn sinnx] . (5.15)

We begin by deriving a more tractable form for the function fN (x) . To do this
notice that

an cosnx+ bn sinnx

=
1
π

(∫ π

−π

f (y) cosny dy
)

cosnx+
1
π

(∫ π

−π

f (y) sinny dy
)

sinnx

=
1
π

∫ π

−π

f (y) (cosny cosnx+ sinny sinnx) dy

=
1
π

∫ π

−π

f (y) cosn(x− y)dy

wherein the last equality we have used Eq. (3.14) with t = nx and s = −ny.
Using this observation in Eq. (5.15) shows

fN (x) =
1
2π

∫ π

−π

f (y) dy +
1
π

N∑
n=1

∫ π

−π

f (y) cosn(x− y)dy

=
1
π

∫ π

−π

f (y)DN (x− y)dy, (5.16)

where

DN (θ) =
1
2

+
N∑

n=1

cosnθ =
sin
((
N + 1

2

)
θ
)

2 sin
(

1
2θ
) , (5.17)

the second equality being Problem 14 of Section 32 of the book. (Also see
Remark 5.18 below.)

To see what DN (θ) looks like, see Figure 5.9.

Fig. 5.9. This is a plot D1 and D10.

Making the change of variables, z = x − y in Eq. (5.16) and using the fact
that f and DN are 2π - periodic, we have

fN (x) =
1
π

∫ π

−π

f (y)DN (x− y)dy = − 1
π

∫ x−π

x+π

f (x− z)DN (z)dz

=
1
π

∫ π+x

π−x

f (x− z)DN (z)dz =
1
π

∫ π

π

f (x− z)DN (z)dz.

Also notice that it follows from Eq. (5.17) that
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1
π

∫ π

−π

DN (y)dy = (1, DN )

=

(
1,

1
2

+
N∑

n=1

cosn (·)

)
=

1
2

(1, 1) = 1.

Hence we may write

fN (x)− f (x) =
1
π

∫ π

π

[f (x− z)− f (x)]DN (z)dz

=
1
π

∫ π

π

f (x− z)− f (x)
2 sin 1

2z
sin
((

N +
1
2

)
z

)
dz

=
1
π

∫ π

π

g (z) sin
((

N +
1
2

)
z

)
dz (5.18)

where

g (z) :=

{
f(x−z)−f(x)

2 sin 1
2 z

if z 6= 0
−f ′ (z) if z = 0.

Notice that, by l’Hopital’s rule, g is continuous and hence

1
π

∫ π

π

|g (z)|2 dz <∞

and so we may let N →∞ in Eq. (5.18) with the aid of Lemma 5.16 to find

lim
N→∞

fN (x)− f (x) =
1
π

lim
N→∞

∫ π

π

g (z) sin
((

N +
1
2

)
z

)
dz = 0.

The following strengthens the convergence of the sum in Eq. (5.7) when
: R→ R is piecewise C1.

Theorem 5.17 (Uniform Convergence of Fourier Series). If f : R→ R
is piecewise C1 – the convergence in Eq. (5.7) is uniform. To be explicit, if we
let fN (x) be as in Eq. (5.15), i.e.

fN (x) =
1
2π
a0 +

1
π

N∑
n=1

[an cosnx+ bn sinnx] ,

then
max

x
|f (x)− fN (x)| → 0 as N →∞. (5.19)

Proof. We have

max
x
|f (x)− fN (x)| = 1

π
max

x

∣∣∣∣∣
∞∑

n=N+1

[an cosnx+ bn sinnx]

∣∣∣∣∣
≤ 1
π

max
x

∞∑
n=N+1

|an cosnx+ bn sinnx|

≤ 1
π

∞∑
n=N+1

|an|+
1
π

∞∑
n=N+1

|bn| . (5.20)

By the Cauchy-Schwarz inequality,

∞∑
n=1

|an| =
∞∑

n=1

n |an| ·
1
n
≤

√√√√ ∞∑
n=1

(n |an|)2 ·

( ∞∑
n=1

1
n2

)
. (5.21)

Finally, by an integration by parts (where the boundary terms vanish using the
2π - periodicity of the function f) we find

nan =
1
π

∫ π

−π

f (y)n cosny dy =
1
π

∫ π

−π

f (y)
d

dy
cosny dy

= − 1
π

∫ π

−π

f ′ (y) cosny dy = − (f ′, cos (n (·)))

Therefore by Bessel’s inequality, with f replaced by f ′, it follows that∑∞
n=1 (n |an|)2 < ∞ and so by Eq. (5.21),

∑∞
n=1 |an| < ∞. Similarly we may

also show that
∑∞

n=1 |bn| <∞ and hence it Eq. (5.19) follows from Eq. (5.20).

Remark 5.18 (The Dirichlet kernel for those who know complex variables). Re-
call Euler’s formula which states, eiθ = cos θ + i sin θ. With this notation we
have

DN (θ) =
1
2

+
N∑

n=1

cosnθ

=
1
2

+
N∑

n=1

1
2
(
einθ − e−inθ

)
=

1
2

N∑
n=−N

einθ.

Letting α = eiθ/2, we have

2DN (θ) =
N∑

n=−N

α2n =
α2(N+1) − α−2N

α2 − 1
=
α2N+1 − α−(2N+1)

α− α−1

=
2i sin(N + 1

2 )θ
2i sin 1

2θ
=

sin(N + 1
2 )θ

sin 1
2θ

.
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and therefore

DN (θ) :=
1
2

N∑
n=−N

einθ =
sin(N + 1

2 )θ
2 sin 1

2θ
, (5.22)

with the understanding that the right side of this equation is N + 1
2 whenever

θ ∈ 2πZ.

5.5 Fourier Series on Other Intervals

Suppose f (x) is defined for −c < x < c. By setting F (y) := f
(

c
πy
)
, we get a

function defined for −π < y < π. This function may be expanded into a Fourier
series as

f
( c
π
y
)

= F (y) =
1
2
a0 +

∞∑
n=1

[an cosny + bn sinny]

where

an :=
1
π

∫ π

−π

f
( c
π
y
)

cosny dy and

bn :=
1
π

∫ π

−π

f
( c
π
y
)

sinny dy.

Making the change of variables, x = c
πy (or y = π

c x) in the above equations
gives

f (x) =
1
2
a0 +

∞∑
n=1

[
an cosn

π

c
x+ bn sinn

π

c
x
]

where

an :=
1
c

∫ c

−c

f (x) cosn
π

c
x dx

bn :=
1
c

∫ c

−c

f (x) sinn
π

c
x dx.

The convergence properties of these sum are the same as those for the Fourier
series on (−c, c). Similarly if f (x) is defined on 0 < x < c then we have the sine
and cosine series expansions

f (x) =
∞∑

n=1

bn sinn
π

c
x for 0 < x < c, and

f (x) =
1
2
a0 +

∞∑
n=1

an cosn
π

c
x for 0 < x < c,

where now

an :=
2
c

∫ c

0

f (x) cosn
π

c
x dx

bn :=
2
c

∫ c

0

f (x) sinn
π

c
x dx.

Example 5.19. We have seen

y =
∞∑

n=1

2
n

(−1)n+1 sinny for − π < y < π.

By letting y = π
c x in the above formula, we conclude that

π

c
x =

∞∑
n=1

2
n

(−1)n+1 sinn
π

c
x for − c < x < c,

i.e.

x =
∞∑

n=1

2c
πn

(−1)n+1 sinn
π

c
x for − c < x < c.

Suppose that we want the cosine expansion of x on the interval, 0 < x < c. In
this case we will have

x =
1
2
a0 +

∞∑
n=1

an cosn
π

c
x

with

an =
2
c

∫ c

0

x cosn
π

c
x dx =

2
c

∫ c

0

x
( c

πn

) d

dx
sinn

π

c
x dx

=
2
c
x
( c

πn

)
sinn

π

c
x|c0 −

2
c

( c

πn

)∫ c

0

sinn
π

c
x dx

=
2
c

( c

πn

)2

cosn
π

c
x|c0 =

2
c

( c

πn

)2

((−1)n − 1)

for n 6= 0 and

a0 =
2
c

∫ c

0

x dx =
x2

c
|c0 = c

Thus we have
x =

c

2
− 4c
π2

∑
n=1,3,5,...

1
n2

cosn
π

c
x.

For example if c = 1, we have

x =
1
2
− 4
π2

(
cosπx+

1
32

cos 3πx+
1
52

cos 5πx+ . . .

)
,

see Figure 5.19 below.
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A plot of x and its Fourier cosine series approximation,
1
2 −

4
π2

(
cosπx+ 1

32 cos 3πx+ 1
52 cos 5πx

)
.

This series is convergent for all 0 ≤ x ≤ c. Taking x = 0 in this expansion we
may conclude that

0 =
1
2
− 4
π2

(
1 +

1
32

+
1
52

+ . . .

)
or that (

1 +
1
32

+
1
52

+ . . .

)
=
π2

8

and taking x = 1 in this expansion we find

1 =
1
2
− 4
π2

(
−1− 1

32
cos 3πx− 1

52
cos 5πx+ . . .

)
which again gives (

1 +
1
32

+
1
52

+ . . .

)
=
π2

8
.



6

Boundary value generalities

6.1 Linear Algebra of the Strurm-Liouville Eigenvalue
Problem

Suppose L is a differential operator on functions on Ω = [a, b] of the form

Lf (x) :=
1

p (x)
d

dx

(
κ (x)

d

dx
f (x)

)
+

1
p (x)

q (x) f (x) . (6.1)

Define the inner product,

(f, g) :=
∫

Ω=[a,b]

f (x) g (x) p (x) dx,

for functions f, g : Ω → R. With this notation we find

(Lf, g) =
∫

Ω

[
d

dx

(
κ (x)

d

dx
f (x)

)
+ q (x) f (x)

]
· g (x) dx

=
∫

Ω

[
−κ (x)

d

dx
f (x) · d

dx
g (x) + q (x) f (x) g (x)

]
dx+ κ (x) f ′ (x) g (x) |ba

=
∫

Ω

f (x) ·
[
d

dx

(
κ (x)

d

dx
g (x)

)
+ q (x) g (x)

]
dx

+ [κ (x) (f ′ (x) g (x)− f (x) g′ (x))]|ba . (6.2)

Hence we see that

(Lf, g)− (f, Lg) = [κ (x) (f ′ (x) g (x)− f (x) g′ (x))]|ba . (6.3)

Let (a1, a2) and (b1, b2) be two non-zero vectors in R2 and define

Bf (a) = a1f (a) + a2f
′ (a) and

Bf (b) = b1f (b) + b2f
′ (b) .

In the sequel we will be interested on imposing the boundary conditions
on Bf (a) = 0 = Bf (b) . If we assume that f and g satisfy these boundary
conditions in Eq. (6.3) then it follows that (f (a) , f ′ (a)) and (g (a) , g′ (a)) line
on the same line and therefore

f ′ (a) g (a)− f (a) g′ (a) = det
[
g (a) g′ (a)
f (a) f ′ (a)

]
= 0.

Similar reasoning shows

f ′ (b) g (b)− f (b) g′ (b) = det
[
g (b) g′ (b)
f (b) f ′ (b)

]
= 0

and therefore it follows from Eq. (6.3) that L satisfies the symmetry condition,

(Lf, g) = (f, Lg) if Bf = 0 = Bg on ∂Ω = {a, b} .

It also worth noting that if κ (a) = κ (b) and f and g satisfy periodic bound-
ary conditions; i.e.

f (a) = f (b) and f ′ (a) = f ′ (a) (6.4)

then we still have
(Lf, g) = (f, Lg) .

As we will see we are going to be interested in the following eigenvalue
problem, namely we will be interested in finding solutions to the eigenfunction
equation,

Lf = −λf with Bf = 0 on ∂Ω.

This may be rewritten as

d

dx

[
κ (x)

d

dx
f (x)

]
+ [q (x) + λp (x)] f (x) = 0 with Bf = 0 on ∂Ω.

This is the general form of the Sturm-Liouville eigenvalue problem as in
Chapter 6 of the book. There κ (x) = r (x) .

Let DB denote those functions f : Ω → R with are twice continuously
differentiable and satisfy the boundary conditions, Bf = 0 on ∂Ω and if κ (a) =
κ (b) let Dper denote those functions f : Ω → R with are twice continuously
differentiable and satisfy periodic boundary conditions in Eq. (6.4).

The next result is the formal analogue of Corollary 1.4.

Proposition 6.1. If f, g ∈ DB or κ (a) = κ (b) and f, g ∈ Dper such that
Lf = −λf and Lg = −µg with µ 6= λ, then (f, g) = 0.
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Proof. The same proof as that given for Corollary 1.4 work here without
change.

The next theorem is an analogue of the spectral theorem for the operator
L.

Theorem 6.2 (Strurm-Liouville Spectral Theorem). Let L be as above,
assume κ > 0 on [a, b] and let D = DB or D = Dper (in which case we assume
additionally that κ (b) = κ (a)), then there exists un ∈ D and λn ∈ R such that:

1. −Lun = λnun for all n,
2. the eigenvalues are increasing, i.e.

λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

3. limn→∞ λn =∞ (in fact # {n : λn ≤ a} ∼ a1/2 or equivalently λn ∼ n2).
4. Every “nice” function f on [a, b] may be expanded as

f (x) =
∞∑

n=1

(f, un)un (x)

=
∞∑

n=1

[∫ b

a

f (x)un (x) p (x) dx

]
un (x) .

6.2 General Elliptic PDE Theory

In this section we will state the generalization of theorem 6.2 to higher di-
mensional situations. Let Ω be a “nice” open bounded region in Rd (typically
we have in mind d = 1, 2, 3 here). Suppose that κi,j (x) and p (x) be smooth

Fig. 6.1. A region represnting some material of some region in space.

functions on Ω such that matrix κ (x)

κ (x) :=


κ11 (x) κ12 (x) . . . κ1d (x)
κ21 (x) κ22 (x) . . . κ2d (x)

...
. . .

...
κd1 (x) κd2 (x) . . . κdd (x)


is positive definite, i.e. κtr = κ and κv · v > 0 for all v ∈ Rd. We now form the
inner product

(u, v) :=
∫

Ω

u (x) v (x) p (x) dV

for function u, v on Ω and let

Lu :=
d∑

i,j=1

1
p
∂i (κij∂ju) + γu. (6.5)

Example 6.3. Look at the formula for the Laplacian in polar, cylindrical, and
spherical coordinates to find natural operators written in this form. (There are
some singularities involved here which are artifices of these coordinates system.
We will have to deal with them later.) The general form of the heat equation
also produced such operators L as in Eq. (6.5) above.

By the divergence Theorem 1.9,

(Lu, v) =
∫

Ω

 d∑
i,j=1

1
p
∂i (κij∂ju) + γu

 vpdV
=
∫

Ω

 d∑
i,j=1

∂i (κij∂ju) · v + γuvp

 dV
=
∫

Ω

− d∑
i,j=1

κij∂ju∂iv + γuvp

 dV +
∫

∂Ω

d∑
i,j=1

(κij∂ju)nivdσ

=
∫

Ω

[−κ∇u · ∇v + γuv] p · dV +
∫

∂Ω

(κ∇u · n) v dσ

where n (x) is the outward pointing normal and dσ is the surface measure on
∂Ω. By interchanging the roles of u and v in the above formula, it follows that

(u, Lv) = −
∫

Ω

[∇u · κ∇v + γuv] dV +
∫

∂Ω

(κ∇v · n)u dσ

= −
∫

Ω

[κ∇u · ∇v + γuv] dV +
∫

∂Ω

(κ∇v · n)u dσ

and therefore,
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(Lu, v)− (u, Lv) =
∫

∂Ω

[(κ∇u · n) v − (κ∇v · n)u] dσ. (6.6)

Let us now further suppose λ is a given function on ∂Ω and u and v satisfy the
boundary conditions,

Bu (x) := κ (x)∇u (x) · n (x) + α (x)u (x) set= 0

where we allow for α (x) =∞ by which we mean u (x) = 0 at such points. Then
using these boundary condition in Eq. (6.6) shows that

[(κ∇u · n) v − (κ∇v · n)u] = αvu− αuv = 0 on ∂Ω

and hence we have

(Lu, v) = (u, Lv) whenever Bu = Bv = 0.

The following is an analogue of the spectral theorem for matrices in this context.

Theorem 6.4. Keeping the above set up, there exists an orthonormal set
{un}∞n=1 of eigenvectors for (−L,B) , i.e. Bun = 0 on ∂Ω and −Lun = λnun.
Moreover these may be chosen so that:

1. the eigenvalues are increasing, i.e.

λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

2. limn→∞ λn =∞ (in fact # {n : λn ≤ a} ∼ ad/2 or equivalently λn ∼ n2/d).
3. Every “nice” function f on Ω may be expanded as

f (x) =
∞∑

n=1

(f, un)un (x)

=
∞∑

n=1

[∫
Ω

f (x)un (x) p (x) dV
]
un (x) .
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PDE Applications and Duhamel’s Principle

7.1 Interpretation of d’Alembert’s solution to the 1-d
wave equation

Example 7.1. We may use d’Alembert’s solution to the wave equation to for-

mally work out the meaning of cos
(
t
√
−a2∂2

x

)
and

sin
(

t
√
−a2∂2

x

)
√
−a2∂2

x

. To see what

we should get, let A2 = −a2∂2
x and A =

√
−a2∂2

x then

y (t, x) = cos
(
t
√
−a2∂2

x

)
f (x) +

sin
(
t
√
−a2∂2

x

)
√
−a2∂2

x

g (x) for −∞ < x <∞

should solve Eqs. (2.5) and (2.6). By comparing this with Eq. (2.7), d’Alembert’s
solution which I recall here,

y(t, x) =
1
2

[f(x+ at) + f(x− at)] +
1
2a

∫ x+at

x−at

g(s)ds,

we conclude that

cos
(
t
√
−a2∂2

x

)
f(x) =

1
2

[f(x+ at) + f(x− at)] and (7.1)

sin
(
t
√
−a2∂2

x

)
√
−a2∂2

x

g(x) =
1
2a

∫ x+at

x−at

g(s)ds. (7.2)

We will use these results and the results of the next section to allow of to solve
the forced wave equation.

7.2 Solving 1st - order equations using 2nd - order
solutions

Lemma 7.2 (A Key Fourier Transform Formula). For all λ ∈ R and
t > 0, ∫ ∞

−∞

e−
1
4t s2

√
4πt

cos (λs) ds = e−tλ2
. (7.3)

Proof. Fix t > 0 and let

g (λ) :=
∫ ∞

−∞

e−
1
4t s2

√
4πt

cos (λs) ds.

Then

g′ (λ) = −
∫ ∞

−∞

e−
1
4t s2

√
4πt

s sin (λs) ds

= 2t
∫ ∞

−∞

d

ds

e−
1
4t s2

√
4πt

· sin (λs) ds

= −2t
∫ ∞

−∞

e−
1
4t s2

√
4πt

· d
ds

sin (λs) ds

= −2tλ
∫ ∞

−∞

e−
1
4t s2

√
4πt

· cos (λs) ds = −2tλg (λ) .

Solving this ODE for g gives,

g (λ) = e−tλ2
g (0) .

This completes the proof since g (0) = 1 as we now show. Letting s =
√
tx,

g2 (0) =

(∫ ∞

−∞

e−
1
4t s2

√
4πt

ds

)2

=

(∫ ∞

−∞

e−
1
4 x2

√
4π

dx

)2

=
∫ ∞

−∞

e−
1
4 x2

√
4π

dx

∫ ∞

−∞

e−
1
4 y2

√
4π

dy =
∫∫

R2

e−
1
4 (x2+y2)

4π
dxdy

=
∫ ∞

0

∫ 2π

0

e−
1
4 r2

4π
rdrdθ =

1
2

∫ ∞

0

e−
1
4 r2
rdr = −e− 1

4 r2
|∞0 = 1.

wherein the fifth equality we have gone to polar coordinates.

Theorem 7.3 (Solving for etA via cos
(√
−At

)
). Suppose A is a N × N

symmetric matrix with all non-positive eigenvalues. Then

etA =
∫ ∞

−∞

e−
1
4t s2

√
4πt

cos
(√
−As

)
ds for all t > 0. (7.4)
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Proof. Formally we are taking λ =
√
−A in Eq. (7.3). To rigorously prove

Eq. (7.4), let {vi}Ni=1 be an orthonormal basis of eigenvectors for A. By assump-
tion we may write eigenvalue for vi as −λ2

i , i.e. Avi = −λ2
i vi.

Then ∫ ∞

−∞

e−
1
4t s2

√
4πt

cos
(√
−As

)
vids =

∫ ∞

−∞

e−
1
4t s2

√
4πt

cos (λis) vids

= e−tλ2
i vi = etAvi

and the result follows since both sides of Eq. (7.4) are linear.

7.2.1 The Solution to the Heat Equation on R

Example 7.4 (Heat Equation). Let us try to formally use Theorem 7.3 to solve
the heat equation,

ut (t, x) = ∂2
xu (t, x) with u (0, x) = f (x) .

According to theorem 7.3 and Example 7.1 with a = 1, the solution should be
given by

u (t, x) =
(
et∂2

xf
)

(x) =
∫ ∞

−∞

e−
1
4t s2

√
4πt

cos
(√
−∂2

xs
)
f (x) ds

=
∫ ∞

−∞

e−
1
4t s2

√
4πt

1
2

[f(x+ s) + f(x− s)] ds

=
∫ ∞

−∞
f(x− s)e

− 1
4t s2

√
4πt

ds =
∫ ∞

−∞
f(y)

e−
1
4t (x−y)2

√
4πt

dy.

Exercise 7.1. Suppose f is a bounded continuous function, show

u (t, x) :=
∫ ∞

−∞
f(y)

e−
1
4t (x−y)2

√
4πt

dy =
∫ ∞

−∞
f(y)p (t, x− y) dy (7.5)

solves the heat equation, ut (t, x) = ∂2
xu (t, x) for t > 0 where

p (t, x) :=
e−

1
4t x2

√
4πt

. (7.6)

Hint: first show p (t, x) solves the heat equation for t > 0. Then check u solves
the heat equation by differentiating past the integral, which you should assume
to be valid here.

Fig. 7.1. Plots of x → p (t, x) for t = 2, t = 1
4
, t = 1

32
and t = 1

64
. Notice that p (t, x)

is being more and more concentrated near x = 0 as t ↓ 0 while always keeping the
total area under x → p (t, x) equal to one.

It is a fact that we will discuss later that

lim
t↓0

u (t, x) = f (x) . (7.7)

This is based on the idea that p (t, x) is approximating a “δ – function,” see
Figure 7.1

We will abbreviate all this by the suggestive formula,(
et∂2

xf
)

(x) =
∫ ∞

−∞
f(y)p (t, x− y) dy. (7.8)

7.3 Duhamel’s Principle

Theorem 7.5 (Duhamel’s Principle I). Suppose A is an N × N, f ∈ RN

and h (t) ∈ RN be given. Then the ordinary differential equation,

u̇ (t) = Au (t) + h (t) with (7.9)
u (0) = f (7.10)

has a unique solution given by

u (t) = etAf +
∫ t

0

e(t−τ)Ah (τ) dτ. (7.11)

Page: 48 job: 110notes macro: svmono.cls date/time: 7-May-2004/7:09
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In words, u (t) is constructed by “adding” together the solutions to a bunch of
initial value problems where h ≡ 0. Namely, etAf is the solution to

u̇ (t) = Au (t) with u (0) = f

while e(t−τ)Ah (τ) is the solution to

u̇ (t) = Au (t) with u (τ) = h (τ) .

Hence we have

u (t) =
(

solution at time t to
u̇ (t) = Au (t) & u (0) = f

)
+
∫ t

0

(
solution at time t to

u̇ (t) = Au (t) & u (τ) = h (τ)

)
dτ.

Proof. Suppose u solves Eq. (7.9), then by the product rule

d

dt

[
e−tAu (t)

]
= −Ae−tAu (t) + e−tAu̇ (t)

= −e−tAAu (t) + e−tA (Au (t) + h (t))

= e−tAh (t) .

Integrating this equation then shows

e−tAu (t) = u (0) +
∫ t

0

e−τAh (τ) dτ = f +
∫ t

0

e−τAh (τ) dτ.

Multiplying this equation by etA on the left shows that if u exists it must be
given by Eq. (7.11).

To prove existence, let u now be defined by Eq. (7.11) and notice that we
may write it as

u (t) = etA

[
f +

∫ t

0

e−τAh (τ) dτ
]
.

Thus u (0) = f and, by the product rule and the fundamental theorem of
calculus,

u̇ (t) = AetA

[
f +

∫ t

0

e−τAh (τ) dτ
]

+ etA
[
e−tAh (t)

]
= Au (t) + h (t) .

Example 7.6. Continuing the notation and using the results of Example 1.8,

A :=

 1 7 −2
7 1 −2
−2 −2 10


with eigenvectors/eigenvalues given by

v1 :=

−1
1
0

↔ −6, v2 :=

1
1
1

↔ 6, v3 :=

−1
−1
2

↔ 12.

We wish to solve,
u̇ (t) = Au (t) + tf with u (0) = 0

where
f = (1, 2, 3)tr =

1
2
v1 + 2v2 +

1
2
v3

The solution is

u (t) =
∫ t

0

τe(t−τ)Afdτ

=
∫ t

0

τ

(
1
2
e−6(t−τ)v1 + 2e6(t−τ)v2 +

1
2
e12(t−τ)v3

)
dτ.

To work this out we notice that∫ t

0

τe−λτdτ = − d

dλ

∫ t

0

e−λτdτ = − d

dλ

[
e−λτ

−λ
|τ=t
τ=0

]
=

d

dλ

e−λt − 1
λ

=
1
λ2

(
1− (tλ+ 1) e−tλ

)
and therefore, ∫ t

0

τeλ(t−τ)dτ = eλt 1
λ2

(
1− (tλ+ 1) e−tλ

)
=

1
λ2

(
eλt − (1 + tλ)

)
.

Hence the answer is given by

u (t) =
(

1
2·62

(
e−6t − 1 + 6t

)
v1 + 2

62

(
e6t − 1− 6t

)
v2

+ 1
2·122

(
e12t − 1− 12t

)
v3

)
.
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Theorem 7.7 (Duhamel’ s Principle II). Suppose A is an N×N, f, g ∈ RN

and h (t) ∈ RN be given. Then the ordinary differential equation,

ü (t) = Au (t) + h (t) with (7.12)
u (0) = f and u̇ (0) = g (7.13)

has a unique solution given by

u (t) =
(
cos
√
−At

)
f +

sin
√
−At√
−A

g +
∫ t

0

sin
√
−A (t− τ)√
−A

h (τ) dτ. (7.14)

Again, in words, u (t) is constructed by “adding” the solutions to a bunch of
initial value problems where h ≡ 0. Namely,(

cos
√
−At

)
f +

sin
√
−At√
−A

g

is the solution to

ü (t) = Au (t) with u (0) = f and u̇ (0) = g

while sin
√
−A(t−τ)√
−A

h (τ) is the solution to

ü (t) = Au (t) with u (τ) = 0 and u̇ (τ) = h (τ)

so

u (t) =

 solution at time t to
ü (t) = Au (t) with
u (0) = f & u̇ (0) = g


+
∫ t

0

 solution at time t to
ü (t) = Au (t) with

u (τ) = 0 & u̇ (τ) = h (τ)

 dτ.

Proof. The best way to understand this theorem is to reduce it to the first
version of Duhamel’s principle in Theorem 7.5. To this end, let v (t) = u̇ (t) ,

then the pair
(
u (t)
v (t)

)
∈ RN × RN solves the equation,

d

dt

(
u (t)
v (t)

)
=
(
u̇ (t)
v̇ (t)

)
=
(
v (t)
ü (t)

)
=
(

v (t)
Au (t) + h (t)

)
=
(

0 I
A 0

)(
u (t)
v (t)

)
+
(

0
h (t)

)
.

Let

B :=
(

0 I
A 0

)
– a 2N × 2N matrix. Then by Theorem 7.5, we have(

u (t)
v (t)

)
= etB

(
f
g

)
+
∫ t

0

e(t−τ)B

(
0

h (τ)

)
dτ. (7.15)

When h ≡ 0, we know that

u (t) =
(
cos
√
−At

)
f +

sin
√
−At√
−A

g

from which we deduce

etB

(
f
g

)
=

((
cos
√
−At

)
f + sin

√
−At√
−A

g

∗

)
. (7.16)

The second component of etB

(
f
g

)
is easily found as well (just differentiate the

first component) but we will not need it. Because of Eq. (7.16),

e(t−τ)B

(
0

h (τ)

)
=

(
sin

√
−A(t−τ)√
−A

h (τ)
∗

)
. (7.17)

Hence taking the first component of Eq. (7.15), using Eqs. (7.16) and (7.17),
gives Eq. (7.14).

Example 7.8. Continuing the notation and using the results of Example 1.8,

A :=

 1 7 −2
7 1 −2
−2 −2 10


with eigenvectors/eigenvalues given by

v1 :=

−1
1
0

↔ −6, v2 :=

1
1
1

↔ 6, v3 :=

−1
−1
2

↔ 12.

We wish to solve,

ü (t) = Au (t) + h with u (0) = 0 = u̇ (0)

where
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h = (1, 2, 3)tr =
1
2
v1 + 2v2 +

1
2
v3.

The solution is given by

u (t) =
∫ t

0

sin
√
−A (t− τ)√
−A

hdτ

=
∫ t

0

sin
√
−A (t− τ)√
−A

(
1
2
v1 + 2v2 +

1
2
v3

)
dτ

=
∫ t

0

 sin
√

6(t−τ)√
6

1
2v1 + sinh

√
6(t−τ)√
6

2v2

+ sinh
√

12(t−τ)√
12

1
2v3

 dτ.

Now ∫ t

0

sin a (t− τ)
a

dτ =
cos a (t− τ)

a2
|τ=t
τ=0 =

1− cos at
a2

and similarly,∫ t

0

sinh a (t− τ)
a

dτ = −cosh a (t− τ)
a2

|τ=t
τ=0 = −1− cosh at

a2

so that

u (t) =
1− cos

√
6t

6
1
2
v1 +

cosh
√

6t− 1
6

2v2 +
cosh

√
12t− 1

12
1
2
v3.

Let us do a quick check that this solution is correct. For example let us check
that

u (t) =
1− cos

√
6t

6
v1

solves ü (t) = Au (t) + v1. This is the case since,

ü (t)−Au (t) = cos
√

6t · v1 −Au (t)

= cos
√

6t · v1 −
1− cos

√
6t

6
Av1

= cos
√

6t · v1 +
(
1− cos

√
6t
)
v1 = v1

as desired.

Exercise 7.2. Let

A :=

−2 1 1
1 −2 1
1 1 −2


and h = (−1, 1, 0)tr . Solve the following equations for u,

u̇ (t) = Au (t) + h with u (0) = 0 = (0, 0, 0)tr and
ü (t) = Au (t) + h with u (0) = 0 and u̇ (0) = 0.

Write your solutions in the form

u (t) =
3∑

i=1

ai (t) vi

where the functions ai are to be determined.

7.4 Application of Duhamel’s principle to 1 - d wave and
heat equations

Using the formulas for cos
(
t
√
−∂2

x

)
and

sin
(

t
√
−∂2

x

)
√
−∂2

x

in Eqs. (7.1) and (7.2)

respectively we are now in a position to formally apply Duhamel’s principle in
order to solve the forced wave equation;

utt = uxx + h with u(0, ·) = f and ut(0, ·) = g. (7.18)

Theorem 7.9. If f ∈ C2(R,R) and g ∈ C1(R,R), and h ∈ C(R2,R) such that
hx exists and hx ∈ C(R2,R), then Eq. (7.18) has a unique solution u(t, x) given
by Eq. (7.19).

Proof. By a formal application of Theorem 7.5 with A = ∂2
x suggest that

u(t, ·) = cos(t
√
−∂2

x)f +
sin(t

√
−∂2

x)√
−∂2

x

g +
∫ t

0

sin((t− τ)
√
−∂2

x)√
−∂2

x

h(τ, ·)dτ.

Moreover using the formulas in Eqs. (7.1) and (7.2) then implies

u(t, x) =
1
2

[f(x+ t) + f(x− t)]+ 1
2

∫ t

−t

g(x+s)ds+
1
2

∫ t

0

dτ

∫ x+t−τ

x−t+τ

dy h(τ, y).

(7.19)
To verify that u defined in Eq. (7.19) satisfies Eq. (7.18) it suffices (by what we
have already done) to assume f = g = 0 so that

u(t, x) =
1
2

∫ t

0

dτ

∫ x+t−τ

x−t+τ

dy h(τ, y).

Now
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ut =
1
2

∫ t

0

[h(τ, x+ t− τ) + h(τ, x− t+ τ)] dτ,

utt =
1
2

∫ t

0

[hx(τ, x+ t− τ)− hx(τ, x− t+ τ)] dτ + h(t, x)

ux(t, x) =
1
2

∫ t

0

dτ [h(τ, x+ t− τ)− h(τ, x− t+ τ)] and

uxx(t, x) =
1
2

∫ t

0

dτ [hx(τ, x+ t− τ)− hx(τ, x− t+ τ)]

so that utt − uxx = h and u(0, x) = ut(0, x) = 0.
The only thing left to prove is the uniqueness assertion. For this suppose

that v is another solution, then (u − v) solves the wave equation (7.18) with
f = g = 0 and hence by the uniqueness assertion in Theorem 2.4 (with a = 1),
u− v ≡ 0.

Similarly we may solve the forced heat equation as well.

Theorem 7.10 (The Forced Heat Equation). Suppose that f : R→ R and
h : R2 → R are bounded continuous functions, then the function

u (t, x) =
∫ ∞

−∞
p (t, x− y) f (y) dy +

∫ t

0

dτ

∫ ∞

−∞
p (t− τ, x− y)h (τ, y) dy

(7.20)
solves the heat equation

ut = uxx + h with lim
t↓0

u(t, x) = f (x) . (7.21)

Proof. Formally applying Theorem 7.5 with A = ∂2
x suggests that

u (t, x) = et∂2
xf (x) +

∫ t

0

[
e(t−τ)∂2

xh (τ, ·)
]
(x) dτ.

In light of Eq. (7.8), this equation then gives rise to Eq. (7.20). It is of course
possible to directly check that Eq. (7.20) solves Eq. (7.21), however I will not
stop to do it here.



A

Some Complex Variables Facts

Here we suppose w (t) = c (t)+id (t) where c (t) and d (t) are two real valued
functions of t. An important example of such a complex valued function is found
in the next definition.

Definition A.1 (Euler’s Formula). For t ∈ R let

eit := cos t+ i sin t (A.1)

and for z = x+ iy let

ez := exeiy = ex (cos y + i sin y) . (A.2)

Notice that any complex number, z = x + iy, may be written as z = reiθ

where (r, θ) are the polar coordinates of the point (x, y) ∈ R2.

Definition A.2. If c (t) and d (t) are differentiable, then we define

ẇ (t) := ċ (t) + iḋ (t)

and ∫ β

α

w (t) dt :=
∫ β

α

c (t) dt+ i

∫ β

α

d (t) dt

Example A.3. If w (t) = et + i sin t, then

ẇ (t) = et − i cos t and∫ π/2

0

w (t) dt =
∫ π/2

0

(
et + i sin t

)
dt = e

1
2 π − 1 + i.

Example A.4. Suppose w (t) = eit, then

d

dt
eit =

d

dt
(cos t+ i sin t) = − sin t+ i cos t

= i (cos t+ i sin t) = ieit

and ∫ b

a

eitdt =
∫ b

a

(cos t+ i sin t) dt =
∫ b

a

cos tdt+ i

∫ b

a

sin tdt

= (sin t− i cos t) |ba =
eit

i
|ba.

Example A.6 below, generalizes this result.

Theorem A.5 (These definitions work just as in real variables). If
z (t) = a (t) + ib (t) and w (t) = c (t) + id(t) and λ = u+ iv ∈ C then

1. d
dt (w (t) + z (t)) = ẇ (t) + ż (t)

2. d
dt [w (t) z (t)] = wż + ẇz

3.
∫ β

α
[w (t) + λz (t)] dt =

∫ β

α
w (t) dt+ λ

∫ β

α
z (t) dt

4.
∫ β

α
ẇ(t)dt = w(β)− w(α) In particular if ẇ = 0 then w is constant.

5. ∫ β

α

ẇ(t)z(t)dt = −
∫ β

α

w(t)ż(t)dt+ w (t) z (t) |βα.

6. ∣∣∣∣∣
∫ β

α

w (t) dt

∣∣∣∣∣ ≤
∫ β

α

|w (t)| dt.

Proof. 1. and 4. are easy.
2.

d

dt
[wz] =

d

dt
(ac− bd) + i

d

dt
(bc+ ad)

= (ȧc− ḃd) + i(ḃc+ ȧd)

+ (aċ− bḋ) + i(bċ+ aḋ)
= ẇz + wż.

3. The only interesting thing to check is that∫ β

α

λz (t) dt = λ

∫ β

α

z (t) dt.

Again we simply write out the real and imaginary parts:

∫ β

α

λz (t) dt =
∫ β

α

(u+ iv) (a (t) + ib (t)) dt

=
∫ β

α

(ua(t)− vb(t) + i [ub(t) + va(t)]) dt

=
∫ β

α

(ua(t)− vb(t)) dt+ i

∫ β

α

[ub(t) + va(t)] dt
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while ∫ β

α

λz (t) dt = (u+ iv)
∫ β

α

[a (t) + ib (t)] dt

= (u+ iv)

(∫ β

α

a (t) dt+ i

∫ β

α

b (t) dt

)

=
∫ β

α

(ua(t)− vb(t)) dt+ i

∫ β

α

[ub(t) + va(t)] dt.

Shorter Alternative: Just check it for λ = i, this is the only new thing
over the real variable theory.

5.

w (t) z (t) |βα =
∫ β

α

d

dt
[w (t) z (t)] dt =

∫ β

α

ẇ(t)z(t)dt+
∫ β

α

w(t)ż(t)dt.

6. (Skip this one!) Let ρ ≥ 0 and θ ∈ R be chosen so that∫ β

α

w (t) dt = ρeiθ,

then ∣∣∣∣∣
∫ β

α

w (t) dt

∣∣∣∣∣ = ρ = e−iθ

∫ β

α

w (t) dt =
∫ β

α

e−iθw (t) dt

=
∫ β

α

Re
[
e−iθw (t)

]
dt ≤

∫ β

α

∣∣Re
[
e−iθw (t)

]∣∣ dt
≤
∫ β

α

∣∣e−iθw (t)
∣∣ dt =

∫ β

α

|w (t)| dt.

Example A.6. Suppose z = x+ iy, then

ezt := exteiyt := ext cos yt+ iext sin yt

and so, again by definition,

d

dt
ezt =

d

dt

(
ext cos yt+ iext sin yt

)
= ext (x cos yt− y sin yt) + iext (x sin yt+ y cos yt)

= (x+ iy)
(
ext cos yt+ iext sin yt

)
= zezt.

A better proof. By the product rule and Example A.4,

d

dt
etz =

d

dt

[
etxeity

]
= xetxeity + etxiyeity = zetxeity = zetz.

Using this fact and item 4. of Theorem A.5 we may conclude,∫ b

a

eztdt =
ezt

z
|ba.

If we write out what this means by comparing the real and imaginary parts of
both sides we find∫ b

a

eztdt =
∫ b

a

ext cos (yt) dt+ i

∫ b

a

ext sin (yt) dt

while

ezt

z
=
ext cos yt+ iext sin yt

x+ iy

x− iy
x− iy

=
ext

x2 + y2
[x cos yt+ y sin yt+ i (x sin yt− y cos yt)]

from which we may conclude that∫ b

a

ext cos (yt) dt =
ext

x2 + y2
[x cos yt+ y sin yt]

∣∣∣∣b
a

and∫ b

a

ext sin (yt) dt =
ext

x2 + y2
[x sin yt− y cos yt]

∣∣∣∣b
a

.

Theorem A.7 (Addition formula for ez). The function ez defined by Eq.
(A.2) satisfies

Proposition A.8. 1. e−z = 1
ez and

2. ew+z = ewez.

Proof. By the previous example we know

d

dt
etz = zetz with e0z = e0+i0 = 1.

Similarly, using the chain rule or by direct computation, one shows

d

dt
e−tz = −zetz with e0z = e0+i0 = 1.

1. By the product rule,
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d

dt

[
e−tzetz

]
= −ze−tzetz + e−tzzetz = 0

and therefore e−tzetz is independent of t and hence e−tzetz = e−0ze0z = 1.
Taking t = 1 proves 1.

2. Again by the product rule shows

d

dt

[
e−t(w+z)etwetz

]
=
[

− (w + z) e−t(w+z)etwetz

+e−t(w+z)wetwetz + e−t(w+z)etwzetz

]
= 0

and so e−t(w+z)etwetz = e−t(w+z)etwetz|t=0 = 1. Taking t = 1 then shows
e−(w+z)ewez = 1 and then using Item 1. we get item 2.

Corollary A.9 (Addition formulas cos and sin). For α, β ∈ R we have

cos (α+ β) = cosα cosβ − sinα sinβ
sin (α+ β) = cosα sinβ + cosβ sinα.

Proof. These follow by comparing the real and imaginary parts of the iden-
tity

eiαeiβ = ei(α+β) = cos (α+ β) + i sin (α+ β)

while

eiαeiβ = (cosα+ i sinα) · (cosβ + i sinβ)
= cosα cosβ − sinα sinβ + i (cosα sinβ + cosβ sinα) .
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