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1

Preliminaries

1.1 The spectral theorem for symmetric matrices

Let A be a real N x N matrix,

a1 a12 ... aQ1N
a1 a22 ... QA2N
- : (1.1)
ani1 an2 aGNN
and )
f
f2
f=1".|erRY
f}v

be a given vector. As usual we will let e; denote the vector in RY with all
entries being zero except for the " which is taken to be one.
We will write
N
(u,v) :=u-v= Zuivi = u'"v and
i=1
N

> = (u,u) = Zuf = u'"u.

Recall that {vi}fil C RY is said to be an orthonormal basis if

Lifi=j
o) = b= { o1 5 (12)

The following proposition and its infinite dimensional analogue will be the
basis for much of this course.



2 1 Preliminaries

Proposition 1.1. If {vz} _, C RV satisfies Eq. then {vl} _, is a basis
for RN and if u € RN we have

N
Z (u, v;) v;. (1.3)

i=1

Proof. Suppose that u = vazl a;v; for some a; € R. Then

N N
(u,vj) E a;v;,v; | = g a; (vi,v;) = E a;0;; = aj;.
i=1 i=1

In particular if w = 0 we learn that a; = (u,v;) = 0 and we have shown that
{v;}Y, is a linearly independent set. Since dim (RY) = N, it now follows
that {vz} _, is a basis for RV and hence every u € R" may be written in the
form u = Zf\;l a;v;. By what we have just proved, we must have a; = (u,v;),

ie. Eq. (1.3) is valid. ]

Definition 1.2. A matriz A as in Eq. is symmetric A = A%, i.e. if
ai; = aj; for all i,j.

The following characterization of a symmetric matrix will be more useful
for our purposes.

Lemma 1.3. If A is a real N x N matriz then, for all u,v € RV,
(Au,v) = (u, A"v) . (1.4)
Moreover A is symmetric iff
(Au,v) = (u, Av) for all u,v € RV, (1.5)
Proof. Eq. is a consequence of the following matrix manipulations
(Au,v) = (Auw)" v = u" A" = (u, A")

which are based on the fact that (AB)" = B" A", Hence if A is symmetric,
then Eq. (1.5) holds. Conversely, if Eq. (1.5) holds, by taking v = e; and
v =e; in Eq. (1.5) we learn that
ai; aiyj
aj; = Sl | = (Aeeg) = (e, Aej) = [ ey | = ayj.
AN anN,j
]
Corollary 1.4. Suppose that A = A" and v,w € RN are eigenvectors of A

with eigenvalues \ and p respectively. If u # X\ then v and w are orthogonal,
i.e. (v,w)=0.
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1.1 The spectral theorem for symmetric matrices 3
Proof. If Av = Av and Aw = pw with X\ # u then
A (v,w) = (A, w) = (Av,w) = (v, Aw) = (v, pw) = p (v, w)

or equivalently, (A — ) (v, w) = 0. Sine A # p, we must conclude that (v, w) =
0. ]

The following important theorem from linear algebra gives us a method
for guaranteeing that a matrix is diagonalizable. Again much of this course is
based on an infinite dimensional generalization of this theorem.

Theorem 1.5 (Spectral Theorem). If A in Eq. is a symmetric ma-
triz, then A has an orthonormal basis of eigenvectors, {vi,...,vn} and the
corresponding eigenvalues, {A1, A2, ..., AN} are all real.

FEzxample 1.6. Suppose that

1 _3
A= {% %] , (1.6)
2 2
then
1\ =3
p(A)=det(A—A)=det |2 3~ 2
—3 37A
(Y9
2 4
which we set equal to zero to learn
Lo\ _9
2 4
or equivalently, ()\ — %) = :I:% and hence A has eigenvalues,

A1 = —1and Ay = 2.
~|1-1
|00
~ |11
— |00

Since

and

we learn that
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4 1 Preliminaries

Notice that (vi,v2) = 0 as is guaranteed by Corollary [1.4] The normalized

1/2

eigenvectors are given by 27'/%v; and 27 30y, Consequently if f € R?, we

have

= (2720, 1) 27 20 4 (27 20, £) 27 20,

L g, ). (L.7)

21(01,f)v1+2

2

Remark 1.7. As above, it often happcns that naturally we find a orthogonal

but not orthonormal basis {vl} | for RV ie. (v;,v;) = 0if i # j but

(vi,v;) # 1. We can still easily expand in terms of these vectors. Indeed,
N

{|vi\71 vi} is an orthonormal basis for R and therefore if f € RY we
i=1

have
N

f= Z(f,m o) o o = i%_”;)m.

i1 Jvil

Ezample 1.8. Working as above, one shows the symmetric matrix,

17 -2
A= |7 1 =2/, (1.8)
—2-210

has characteristic polynomial given by

p(A) =det (A— ) =—(A* — 12)% — 36\ + 432)
~(A=6)(A—12) (A +6).

Thus the eigenvalues of A are given by A\; = —6, Ay = 6 and A3 = 12 and the
corresponding eigenvectors are

-1 1 -1
V1 = ]_ > —6’ Vg = ]_ <~ 6’ V3 = —]_ < 12
0 1 2

Again notice that {v1, ve, v3} is an orthogonal set as is guaranteed by Corollary
Relative to this basis we have the expansion

f (fa 1) (fa 2) (fa )
|U1| |U2| |U3|
(fvvl)vl + 5 (f7v2)v2 + = (f7v2)

For example if f = (1,2, 3)“, then

1 1
=501+ 2v+ Sus. (1.9)
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1.2 Cylindrical and Spherical Coordinates 5

Exercise 1.1. Verify that the vectors {’Ui}?:l are eigenvectors of A in Eq.
(1.8) which have the stated eigenvalues. Hint: you are only asked to verify
not solve from scratch.

Exercise 1.2. Find eigenvectors {vi}le and corresponding eigenvalues {)\i}f:l
for the symmetric matrix,

-2 1 1
A=|1 -2 1
1 1 -2

Make sure you choose them to be orthogonal. Also express the following
vectors,

f=1(1,0,2)" and g = (0,1,2)" and h = (—1,1,0)",
as linear combinations of the {U,‘}?Zl that you have found.

Exercise 1.3. Suppose that A is a N x N symmetric matrix and {vi}fil is

a basis of eigenvectors of A with corresponding eigenvalues {)\i}fvzl . Suppose
f € RN has been decomposed as

N
f = Z a;v;.
=1

Show:

LAY =N ai\iu;.
2. More generally, suppose that

p(A) =ag+aiA+ax\? + -+ a, \"

is a polynomial in A, then
N
p(4) f= Zaip (i) vi
i=1
and in particular p (A)v =p (\) v is Av = lw.

1.2 Cylindrical and Spherical Coordinates

Our goal in this section is to work out the Laplacian in cylindrical and spher-
ical coordinates. We will need these results later in the course. Our method
is to make use of the following two observations:
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6 1 Preliminaries

1. If {ui}?:l is any orthonormal basis for R? then

3

VI-Vg=> (Vfu)(Vg,u) = Zaulfaul

i=1

and
2. if g has compact support in a region {2, then by integration by parts

/Afng:—/ Vf-VgdV. (1.10)
(9] (9]

The following theorem is a far reaching generalization of Eq. ([1.10).

Theorem 1.9 (Divergence Theorem). Let 2 C R™ be an open bounded
region with smooth boundary, n : 02 — R"™ be the unit outward pointing
normal to 2. If Z € CY(£2,R"), then

/Z(x) -n(z)do(x) = /V - Z(x) dx. (1.11)

o9 (e}

Corollary 1.10 (Integration by parts). Let 2 C R"™ be an open bounded
region with smooth boundary, n : 02 — R™ be the unit outward pointing
normal to 2. If Z € C*(2,R") and f € f € C1(,R), then

/f W Z(x /Vf dx+/f (z)do(z). (1.12)

Also if g € C%(£2,R), then
/f ) Ag(z /Vf( ) Vg(a das+/f ) V(@) n(z)do(x). (1.13)

Proof. Eq. (1.12)) follows by applying Theoremwith Z replaced by fZ
making use of the fact that

V-(fZ)=Vf-Z+fV-Z

Eq. (1.13)) follows from Eq. (1.12) by taking Z = Vg. [ ]

1.2.1 Cylindrical coordinates

Recall that cylindrical coordinates, see Figures are determined by
(z,9,2) =R(p,0,2) = (pcosb, psinb, z).

In these coordinates we have

dV = pdpdfdz.
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1.2 Cylindrical and Spherical Coordinates 7

Fig. 1.1. Cylindrical and polar coordinates.

Proposition 1.11 (Laplacian in Cylindrical Coordinates). The Lapla-
cian in cylindrical coordinates is given by

Af = %6,3 (0o f) + éazf o2, (1.14)

Proof. We further observe that

R,(p,0,z) = (cosb,sind,0)
Ry(p,0,2) = (—psiné, pcosb,0)
R.(p,0,2) =(0,0,1)
so that
{Rp(p7 €7 Z)a P_lRQ(Pa 97 Z), Rz(p7 9, Z)}

is an orthonormal basis for R3. Therefore,

(Vf,.Vg) = (Vf.R,) (Vg,R,) + (Vf.p 'Ry) (Vg.p 'Ry) + (Vf,R.) (Vg.R.)
_ 0fog 1 0f dg af@

T Opdp  p2 0000 ' 0z 0z

If g has compact support in a region {2, then by integration by parts,
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8 1 Preliminaries

AfgdV = —/ Vf-VgdV
Q Q

_ [ [, oo s
N Opdp p200 00 0z 0z
-,

),
),

Since this formula holds for arbitrary g with small support, we conclude that

] - pdpdfdz

1
8y (09, f) + ;3§f + paff] g - dpdfdz

1 1
;3/3 (P8, f) + ﬁagf + 354 gpdpdfdz

1 1
20, (00,1) + 5081 + aif} gdV.

1 1
Af = ;ap (Papf) + ?5§f+8ff.

1.2.2 Spherical coordinates

We will now work out the Laplacian in spherical coordinates by a similar
method. Recall that spherical coordinates, see Figures are determined by

A

Fig. 1.2. Defining spherical coordinates of a point in R3.

(z,9,2) = R(r,0,¢) = (rsinpcosf, rsinpsin, r cos p).
In this coordinate systems we have
dV = r%sin pdrdfdy.

See Figure [[.3]
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1.2 Cylindrical and Spherical Coordinates 9

Fig. 1.3. A picture proof that dedydz = r? sin ¢pdrdfde, where r2 sin ¢drdddé should
be viewed as (rsin ¢d0)(rd¢)dr.

Proposition 1.12 (Laplacian in spherical coordinates). The Laplacian
in spherical coordinates is given by

%agf. (1.15)

r2sin” ¢

1 9 1 .
Af = ﬁar(r orf) + m@,(sm ©0, f) +
A simple computation shows (as will be needed later) that

1 1
50,20, 1) = ~0(r ). (1.16)
Proof. Since

R, (r,0,0) = (sinpcosf,singsin b, cos )
Ry(r,0,¢) = (—rsinpsin b, rsin p cos b, 0)
R, (r,0,¢) = (rcospcosf,rcosgsinf, —rsin )

it is easily verified that

{erew, Ry (p,0,2) 1R¢<p,9,z>}

rsin ‘r

is an orthonormal basis for R®. Therefore

(V£.Vg) = (VL.R,) (Vo.R,) + TQ;% (Vf.Ro) (Vg, Ry)
+ 5 (VIR,) (Vo R,)

_8f@+ 1 8fag+18fag

TOrdr | r2sinp 90 00 12 0p o’

If g has compact support in a region {2, then
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10 1 Preliminaries

/QAfng=—/QVf~ngV

a1 o 1oro
B r dr ' r2sin® 90 00 ' 1299 d

of dg 1 0fog . 0Of0
— 2 ZJ ZJ ZJZI .
B /Q {T Slwar or + sin ¢ 06 00 + Slmp&p 8@ drdipdf

} -2 sin pdrdpdd

[ 1
= / 0, (7"28,,9) sing + ——05f + 9, (sinp - 8¢f)} g - drdpdf
ol sin
f1 )
:/Q _ﬁar (r*0,9)

(1 1 1 .
= /Q T—28T (7"2@9) + _728(%” + ——0, (sin gp(%f)} g-dv.

r2sin” ¢ r2sin

1, 1 . ).
+ magf + maw (Sln go@wf)} g-Tr- s (pdegOdg

Since this formula holds for arbitrary g we conclude that

1 1 .
Af = 50(P0 )+ g 0psin@0of) + g 05

21ngp

1.2.3 Exercises

In the following two exercises, I am using the conventions in the Lecture notes
and not the book.

Exercise 1.4. Compute Af where f is given in cylindrical coordinates as:
f=p3cosf+zp
Exercise 1.5. Compute Af where f is given in spherical coordinates as:

f=r"1+cosfsinp.
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2

PDE Examples

2.1 The Wave Equation

Ezample 2.1 (Wave Equation for a String). Suppose that we have a stretched
string supported at z = 0 and x = L and y = 0. Suppose that the string only
undergoes vertical motion (pretty bad assumption). Let u(t,x) and T'(¢,x)
denote the height and tension respectively of the string at (¢,z), é(x) denote
the density in equilibrium and 7 be the equilibrium string tension. Let J =

Oy + Ax

Qe

|
I
i
!
I
I
|
t
J
+

S I

x + Ax

Fig. 2.1. A piece of displace string

[z,z + Az] C [0, L], then
Py(t) := /Jut(t,x)é(x)dx

is the momentum of the piece of string above J. (Notice that §(x)dx is the
weight of the string above x.) Newton’s equations state

dpPy(t)
dt

= / ut (¢, )0 (x)dx = Force on String.
J

Since the string is to only undergo vertical motion we require



12 2 PDE Examples

T(t,x + Az) cos(graz) — T(t, z) cos(ay) =0

for all Az and therefore that T'(¢,x) cos(a,) =: H for some constant H, i.e.
the horizontal component of the tension is constant. Looking at Figure 2.2
the tension on the piece of string above J = [a, b] at the right endpoint b must

Y
WT a

? (ly=Utn) TLh )
4 (yUx )
Zion

)
!
)
\
\
i

Wiy
s —p >
a\ A * L ba x

Fig. 2.2. Computing the net vertical force due to tension on the part of the string
above [a, b].

be given by H (1,u, (t,b)) while the tension at the left endpoint, a, must be
given by H (=1, —u, (t,a)). So the net tension force on the string above J is

b
H [ug(t,0) — ug(t,a)] = H/ Uge (t,2) da.

Finally there may be a component due to gravity and air resistance, say

b
gravity = fg/ 0(z)dx and

b
air resistance = —/ k(z)ui(t, z)dz.

a

So Newton’s equations become

b b
/ ug(t, )0 (x)de = / [Hugg (t,x) — g0 (z) — k(x)u(t, z)] de.
Differentiating this equation in b at b = = then shows
wue (8, 2)0(2) = Hugy (t, ) — gd(x) — k(x)us(t, x)

or equivalently that

uy (t, ) = %um(t,x) —g- ?Ei; ut(t, x). (2.1)
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2.1 The Wave Equation 13

Ezample 2.2 (Wave equation. for a drum head). Suppose that wu (¢, z) repre-
sents the height at time ¢ of a drum head over a point x € 2 — (2 being the
base of the drum head, see Figure As for the string we will make the sim-

%nw,vuw-nw)
N TN 3 KAL), DAl o)

1]
3 HAngs

Fig. 2.3. A deformed membrane attached to a “wire” base. We are also compute
the tension density on a region of the membrane above a region V' in the plane.

plifying assumption that the membrane only moves vertically or equivalently
that the horizontal component of tension/unit-length is a constant value, H.

Let V' C {2 be a test region and consider the membrane which lie above V
as in Figure Then

Py (t) ::/Vut(t,x)é(:p)dx

is the momentum of the piece of string above V' where §(z)dz is the weight
of the membrane above x. Newton’s equations state

dPy(t
%ﬁ - / ugt (¢, )0 (x)dx = Force on membrane.
v

To find the vertical force on the membrane above V, let z € 9V, then

(n(z),Vu(t,z) n(x)) = dii\o(x + sn(z),u(t,z + sn(x))

is a vector orthogonal to the boundary of the region above V and by as-
sumption the tension/unit-length at z is H (n (z), Vu (t,z) - n(x)) . Thus the
vertical component of the force on the membrane above V is given by

H 8VVu(t,x)~n(a:)d€(m)zH/VV-Vu(t,a:)dx:H/‘/Au(t,m)dx.
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14 2 PDE Examples

Finally there may be a component due to gravity and air resistance, say
gravity = —/ go(z)dx and
v
air resistance = —/ E(x)us(t, x)dx.
v
So Newton’s equations become

/ up(t, )0 (x)de = / [HAu (t,z) — gd(x) — k(z)us(t, z)] d.
v

v

Since V is arbitrary, this implies
d(x)upe(t,x) = HAu (t,x) — g6(x) — k(x)uw (¢, x)

or equivalently that

k(x)

5(x)

Ezample 2.3 (Wave equation for a metal bar). Suppose that have a metal wire
which we is going to be deformed and then released. We would like to find the
equation that the displacement w (¢, z) of the section of the bar originally at
location x must solve, see Figure below.

ug(t, ) = iAu (t,z) —g—

507 ug(t, ). (2.2)

Undeformed bar

T THAT

I‘\ [\ I

Iy I I

I (| 1

\ g \ g \

\I/ \I/ \
1 1 1
|y(t7x): ' y(t;{}kAl‘) '
1 1 1 1
r I\ ’
I I !
|| [ 1
\ \ g \
N/ \/ A

Deformed bar

Fig. 2.4. The picture represents an elastic bar in its un-deformed state and then in a
deformed state. The quantity y (¢, z) represents the displacement of the section that
was originally at location z in the un-deformed bar. In the above figure y (t,z) < 0
which y (¢, + Az) > 0.

Page: 14 job: 110notes macro: svmono.cls date/time: 25-May-2004/11:28



2.1 The Wave Equation 15

To do this will write down Newton’s equation of motion. First off, the
longitudinal force on the left face of the section which was originally between
x and x + Az is approximately,

u(t,z + Az) — u(t, x)
Az ’

—AE

where E is Young’s modulus of elasticity and A is the area of the bar. (The
minus represents the fact that we must pull to the left to get the current
configuration in the figure.) Letting Az — 0, we find the force of the section
that was originally at z is given by —AFu, (¢,z). Now suppose that Az is
not necessarily small. Then we have the momentum of the region of the bar
originally between x and = + Ax is given by

z+Ax
/ ug (t, ) 0 (z) dx

where 6 (z) is the linear mass density. Therefore,

d x+Ax T+ Ax
Mass x acceleration = 7 / ug (t, )0 (z) de = / ug (¢, ) 0 (v) de
= the net force on this section of the bar

= —AFEu, (t,z) + AEu, (t,x + Ax)

€T

where —AEwu, (t,x) is the force on left end and AFu, (t,z + Ax) is the force
on the right end. Hence we have

r+Ax
/ ug (t,2) 0 (x) de = AEu, (t,x + Azx) — AEu, (t, )

which upon differentiating in Az at Az = 0 shows

uge (L, ) 0 () = ABEuy, (t, ).

2.1.1 d’Alembert’s solution to the 1-dimensional wave equation

Here we are going to try to find solutions to the wave equation, ¥y = ayus.
Since this equation may be written as

(07 —a*d2)y=0 (2.3)

and

(07 — a?02) = (0r — ady) (01 + ady)

we are lead to consider the wave equation in the new variables,

u=x-+at and v =z — at.
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16 2 PDE Examples

In these variables we have

ou ov
8t = Eau + a@v = a@u — a@v and
ou ov

from which it follows that
Oy — a0y = —2a0, and 0; + a0, = 2a0,
and hence the wave equation in (u,v) — coordinates becomes,
0= (0; — ady) (01 + ady) y = —2a0,2a0,y = —4a Yy,
i.e. yup = 0. Integrating this equation in v shows y,, = F (u) and then inte-

grating in u shows

y= [ Fl)dutv ) =@+ 0).
Thus we have shown if y solves the wave equation then
y(t,x) = ¢ (r+at) + 9 (v — at) (2.4)
for some functions ¢ and 1.

Exercise 2.1. Show that if y (¢, z) has the form given in Eq. (2.4]) with ¢ and
1 being twice continuously differentiable functions, then y solves the wave Eq.

23).

To get a unique solution to Eq. (2.3) we must introduce some initial con-
ditions. For example, let us further assume that

y(oax) = f (l‘) and Yt (0,$) =0.
This then implies that
f(@)=¢(z)+¢(z) and
0= a¢' (2) - av (),

The latter equation shows that ¢ (z) = ¢ (z) + C and using this in the first
equation implies that

f (@) =2p(@)+C

(f () +C).

DN =

o) = 5 (f (1)~ C) and v (x) =

Thus we have found the solution to be given by

y(tx) = 5 {f o+ at) + f (e~ an)}.

In the homework you are asked to generalize this result to prove the following
theorem.
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2.1 The Wave Equation 17

Theorem 2.4 (d’Alembert’s solution). If f (x) is twice continuously dif-
ferentiable and g (x) is continuously differentiable for x € R, then the unique
solution to

Yt = 0 Ypgp With (2.5)
y(0,2) = f(z) andy, (0,2) = g (x)
s given by
1 1 z+at
=— — — ds. 7
) = 5 UG +a) + fa—anl+ g [ gds(27)

Ezxample 2.5. Here we wish to solve for z > 0 and ¢ > 0,
0y = 0%y with y (0,2) = f (z) and (0, z) = 0 with y (¢,0) = 0.

As before we know that y (¢,2) = ¢ (x +t) + ¢ (x — t) . We must now imple-
ment all of the boundary conditions,

1 @) =y (0,2) = ¢ (2) + ()

0=4(0,2) = ¢ () — ¢ (x) and
0=y (t,0) = (1) + ¥ (~1).
(

@)=y @) +C
f (@) = 206 (1) + C
1

Y =5 (f (@)~ 0)

pla) =5 (f (#) +C).
Thus our answer is given by

y(ta)= 31 (@ +0)+ (o 1)
where by above,
S () O = (~2) = —p (@) = 3 (F (1) + O)

and thus

f(=z):=—f(2)

Thus we have

y(t2) = 3 1f (o 0)+ f (=)

where f is extend to all of R to be an odd function.
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18 2 PDE Examples

2.2 Heat Equations

Ezample 2.6 (Heat or Diffusion Equation in 1-dimension). Let us consider the
temperature in a rod 2. We will let

1. 6 (x) denote the linear density of the rod

2. ¢(x) denote the heat capacity of the rod per unit mass at «

3. k(x) be the thermal conductivity of the rod at . By Newton’s Law of
cooling, the heat flow from left to right in the rod at location x should be
approximately equal to

K (x

% (u(z) —u(z+A4)). (2.8)
Notice the A appearing in the denominator represents the fact that the
thicker the insulation in your house the less heat transfer that you have.
Passing to the limit in Eq. (2.8) then gives Fourier’s law, namely the heat
flow from left to right in the rod at location x is given by

-k (z)u (z). (2.9)

(In the book, it is typically assumed that ¢ (z) = §, x(z) = K and
¢(x) = o are all constant.)

4. u (t,z) be the temperature of the rod at time ¢ and location x.

5. H (t,x) represent heat source at x and time ¢. For example we may be
passing a current through the wire and the resistance of the wire is both
spatially and time dependent. Alternatively we may be heating the wire
with an external source.

Let B = [a, b] be a sub-region of the rod, see Figure Then

/'Rﬁsisrae Sepplys heat
~ A S f—
o b

Fig. 2.5. Part of a rod with a test region B = [a, b] being examined.

b
E(t):/ w(t,z) 6 (x) ¢ (z) da

represents the heat energy in B at time t. Hence
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2.2 Heat Equations 19

b
E(t):/ ws (t2) 8 (2) ¢ () da

is the rate of change of heat energy in B. This may alternatively be computed
as the rate at which heat enters the system which is given by

. b
E() :/ H (1, 2) da + ( (b) ua (£,b) — 5 (a) us (£, a))

_ / ' {H (1) + o (5 () e (t,x))} da.

Hence we conclude that

/ab i (t,2) 3 (2) ¢ () do = /ab [H (1) + (s () s (t,x))] i

for all sub-intervals 2 in the rod and therefore (again just differentiate
in b) that

0 (z)c(x)uy (t,x) = % (K (z)uy (t,x)) + H (t,x). (2.10)

This equation may be written as

ug (t,x) = Lu (t,x) + h (t, )

where
1 d d
L @)=~ (w0 7 @)
p(z) =0 (z)c(x) and h (¢, z) := " ((t;)x)

If we further assume that the rod in not perfectly insulated along its
length and the ambient temperature is not constant, we may end up with
another terms in computing E (t) of the form

b
[ @) -1 @)
a
and we would then arrive at a heat equation of the form
ut (t,x) = Lu (t,x) + h (¢, x)

where
1 d d 1
Lf @)=~ (ko) @)+ a@ f @)

p(z)

for some function ¢ (z) and a modified function h (¢, x).
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20 2 PDE Examples

Fig. 2.6. A test volume B in {2 centered at x with outward pointing normal, n.

Ezample 2.7 (Heat or Diffusion Equation in d - dimensions). Suppose that
2 ¢ R? is a region of space filled with a material, §(x) is the density of
the material at « € {2 and c(z) is the heat capacity. Let u(t,z) denote the
temperature at time ¢ € [0,00) at the spatial point = € 2. Now suppose that
B c R?is a “little” volume in R, 9B is the boundary of B, and Ep(t) is the
heat energy contained in the volume B at time ¢. Then

Eu(t) = /B 5(x)elx)ult, z)dz.

So on one hand,
Ent) = /B 5(x)e(x)i(t, 7)dz (2.12)

while on the other hand,
Ep(t) = /a (K@) Vu(t.) - n(a)) doa). (2.13)

where k(z) is a d x d—positive definite matrix representing the conduction
properties of the material, n(x) is the outward pointing normal to B at = €
0B, and do denotes surface measure on 0B.

In order to see that we have the sign correct in , suppose that x € 0B
and Vu(z)-n(xz) > 0, then the temperature for points near = outside of B are
hotter than those points near x inside of B and hence contribute to a increase
in the heat energy inside of B. (If we get the wrong sign, then the resulting
equation will have the property that heat flows from cold to hot!)

Comparing Eqs. (2.12) to (2.13]) after an application of the divergence
theorem shows that

/ 5(2)e(x)ilt, v)dz / V- (k(-)Vult, )(x) da. (2.14)
B B

Since this holds for all volumes B C {2, we conclude that the temperature
functions should satisfy the following partial differential equation.
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2.3 Other Equations 21
d(z)c(x)u(t,z) =V - (k(-)Vu(t,))(x). (2.15)

or equivalently that

u(t,z) = MV - (k(z)Vu(t, x)). (2.16)
Setting ¢/ (z) := ki (z)/(6(x)c(z)) and
d
A (x) = Za(% (x)/(8(x)c(x)))/ 0"

the above equation may be written as:
u(t,z) = Lu(t, x), (2.17)
where

(L1)@) = Y 09 @) g f@) + Y @) f@). (218)

J

The operator L is a prototypical example of a second order “elliptic” differ-
ential operator.

Ezample 2.8 (Laplace and Poisson Equations). Laplace’s Equation is of the
form Lu = 0 and solutions may represent the steady state temperature distri-
bution for the heat equation. Equations like Au = —p appear in electrostatics
for example, where u is the electric potential and p is the charge distribution.

2.3 Other Equations

Ezample 2.9 (Shrodinger Equation and Quantum Mechanics).

0 A
59t 2) = =59t ) + V(2)y(t,2) with [[¥(,0)]|, = 1.

Interpretation,

/ li(t,x)|> dt = the probability of finding the particle in A at time ¢.
A

(Notice similarities to the heat equation.)

Ezample 2.10 (Mazwell Equations in Free Space).

OE

= _ B
o V x
oB

= E
5 V x

V-E=V -B=0.
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22 2 PDE Examples

Notice that

0’E 0B
W:VxEz—Vx(VxE):AE—V(V-E):AE
and similarly, %?3 = AB so that all the components of the electromagnetic

fields satisfy the wave equation.

Ezample 2.11 (Traffic Equation). Consider cars travelling on a straight road
with coordinate = € R, let u(t,x) denote the density of cars on the road at
time ¢ and location € R, and v(t,z) be the velocity of the cars at (¢,z).

Then for J = [a,b] C R, Ny(t) := fab u(t, z)dx is the number of cars in the set
J at time ¢t. We must have

b
/ At 2)dz = N () = u(t, a)o(t, a) — ult, bo(t,b)

b9
__ / o [ult, 2)olt, )] dr.

Since this holds for all intervals [a, b], we must have

it 2) = 2t 2)o(t, )]
To make life more interesting, we may imagine that v(t, ) = —F (u(t, x), u. (¢, x)),

in which case we get an equation of the form
gu = EG(u ug) where G(u, uy) = —u(t, z)F(u(t, z), us (¢, x))
at - 81’ y Uz ) W y ) — 9 ) sy LT\ .

A simple model might be that there is a constant maximum speed, v,, and
maximum density w,,, and the traffic interpolates linearly between 0 (when
U = Up,) 10 vy, when (u = 0), i.e. v = v, (1 — u/uy,) in which case we get

13} 0
U= TUmy, (u(l —u/up)).

Ezample 2.12 (Burger’s Equation). Suppose we have a stream of particles
travelling on R, each of which has its own constant velocity and let u(¢,x)
denote the velocity of the particle at x at time ¢. Let x(¢) denote the trajec-
tory of the particle which is at z¢ at time to. We have C = &(t) = u(t, z(¢)).
Differentiating this equation in ¢ at ¢ = ty implies

0 = [ut(t, x(t)) + ug (b, ()2 ()] |t=t, = ut(to, xo) + ux(to, o)u(to, zo)
which leads to Burger’s equation

0=wu;+ u ug.
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2.4 Worked Examples 23

Ezample 2.13 (Minimal surface Equation). Let D C R? be a bounded region
with reasonable boundary, ug : 9D — R be a given function. We wish to find
the function u : D — R such that u = up on 9D and the graph of u, I'(u) has
least area. Recall that the area of I'(u) is given by

A(u) = Area(I'(u)) = /D 1+ [Vul|*dz.

Assuming u is a minimizer, let v € C*(D) such that v = 0 on 9D, then

_d _d 2
O—$|0A(u+sv)— dS|O/D\/1+|V(u+SU)| dx
:/D%|O\/1+|V(u+sv)|2dx

1
=/7Vu-Vvdx
D\ /14 |Vul?
/V L \% d
= - | ——=Vu | vdzx
D 1+ |[Vul?

from which it follows that

1
V| ———=Vu | =0.

/14 |Vul?

Ezample 2.14 (Navier — Stokes). Here u(t,z) denotes the velocity of a fluid
ad (t,x), p(t,z) is the pressure. The Navier — Stokes equations state,
ou .
m + Oyu =vAu — Vp+ f with u(0,2) = ug(x) (2.19)
V - u = 0 (incompressibility) (2.20)

where f are the components of a given external force and ug is a given di-
vergence free vector field, v is the viscosity constant. The Euler equations
are found by taking v = 0. Equation is Newton’s law of motion again,
F = ma. See http://www.claymath.org for more information on this Mil-
lion Dollar problem.

2.4 Worked Examples

Ezample 2.15 (6.3 in book). Slab / wire along [0, ¢] with surface conductance
at the end being H and K being the thermal conductivity along the rod.
Assume outside temperature at 0 is 0 and at ¢ is T, Find the steady state
temperature of the rod. The relevant heat equation is:
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24 2 PDE Examples

oouy = Ky, with
Ku' (0) = H (u(0) — outside temp) = H (u (0) — 0) and
Ku' (¢) = —H (u(c) — outside temp) = H (T — u(c)).

Notice the signs used here. Recall that Ku’ (z) represents the heat movement
(or Flux) from right to left in the bar at location x, therefore,

Ku' (0) = rate of heat leaving bar at 0 while

H (u (0) — outside temp) = rate of heat leaving bar at 0 do surface conductance
Similarly,

Ku' (¢) = rate of heat entering bar at ¢ while

H (u(c) — T) = rate of heat leaving bar at 0 do surface conductance

and hence
Ku'(¢)=—-H (u(c)—T)=H(T —u(c)).

So in steady state we have u; = 0 and so
u’ () =0 of u(z) = mx +b.
Now

Km = Ku' (0) = Hu (0) = Hb and
Km=Ku' (¢c)=H(T —u(c))=H (T —mc—10)

and so if we let h := H/K, then

m = hb and
m=h(T —mc—0b) =hT — hmc— hb = hT — hmc —m

from which it follows that (2 + hc) m = hT or

ab m T
frd 1 = — = .
T 9 he ® h ~ 2+ he
Thus the solution is given by
= 1.
u(z) = 5o the +1]

Example 2.16 (10.1b in book.). Solve ug, = 2z for ,y > 0 and v (0,y) =0
and u (z,0) = 2. Ans.,
uy =22y + C (x)

and so
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2.4 Worked Examples

u(z,y) =2’y + K (z) + F (y)

Since

u(z,0) = 2% = K (z) + F (0)
and

0=u(0,y) =K (0)+F(y)
we have
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3

Linear ODE

3.1 First order linear ODE

We would like to solve the ordinary differential equation

U (t) = Au (t) with (3.1)

uw(0) = f.
The method of separation of variables or eigenvector expansions
proposed to begin by looking for solutions of the form w (¢t) = T (t) v to Eq.

. Here v is a fixed vector in € R¥and T (t) is some unknown function of
t. Substituting u (t) = T (¢) v into Eq. gives
T (t)v =T (t) Av
or equivalently that .
T(t
Av = TEt;v'

Since the left side of this equation is independent of ¢ we must have

() _

for some A € R. The solution to Eq. (3.3) is of course T (t) = 2T (0) and
therefore we have shown the following lemma.

Lemma 3.1. If u(t) = T (t) v solves Eq. , then v is an eigenvector of
A and if X is the corresponding eigenvalue (i.e. Av = Av) then

u(t) = eMT (0)v.

Conversely if Av = \v then u (t) = e*v solves Eq. (3.1]).



28 3 Linear ODE

Proposition 3.2 (Principle of superposition). If u (t) and v (t) solves Eq.
then so does u (t) + cv (t) for any c € R.

Proof. This is a simple consequence of the fact that matrix multiplication
and differentiation are linear operations. In detail,

d

7 (u(t)+cv(t) =u0(t)+co(t) = Au(t) + cAv (t)

=Au(t)+cv(t)).

Consequently if Av; = \ju; for i =1,2,...,k, then
u(t) = Z iy,
solves Eq. (3.1)).

Theorem 3.3. Suppose the matriz A is diagonalizable, i.e. there exists a basis
{“i}ij\; for RN consisting of eigenvectors A. Then to any f € RN there is a

unique solution, u (t), to Egs. and . Moreover, if we expand f in
terms of the basis {vi}fvzl as

N
=) aw,
i=1
then the unique solution to Egs. and is given by
N
u(t) = Z ae™v;. (3.4)
i=1

Proof. The fact that Eq. (3.4)) solves Egs. (3.1)) and (3.2)) follows from the
principle of superposition and the fact that e!* = 1 when t = 0.

Conversely, suppose that u solves Egs. (3.1) and (3.2), then

u(t) = Z a; (t) v; (3.5)

for some functions a; (t) with a; (0) = a;. Now on one hand

U (t) = Zaz (t) V;

while on the other hand

N N

N
() =Au(t) =AY a;(t)vi=Y  a;(t) Av; = Za () Aivi.

i=1 i=1
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3.1 First order linear ODE 29

Subtracting these two equation shows

N N
0= Zdi (t) v — Zai (t) Aiv; =
=1 =1

Since {vi}ﬁil is a basis for RY it follows, for all i, that

(di (t) — a; (t) /\1) V;.

N
=1

i

and therefore, a; (t) = e/*a;. Putting this result back into Eq. (3.5)) gives Eq.
(3.4). n

Definition 3.4. If f € RN we will write et f for the solution, u (t), to Egs.
nd (53)

Fact 3.5 FEjgs. and have a unique solution independent as to
whether A has a basis of eigenvectors or not. Moreover we may compute e”
using the matriz power series expansion,

SEDY n::A"f. (3.6)
n=0 "

Notice that formula in Eq. (3.6) is consistent with our previous results.
For example if v € RY and Av = Av, then A"v = A\"v and therefore,

oo n oo tn
— A" = E L\ = ety = et
n! n!

n=0

n=0

More generally, if © = Ele a;v; with Av; = \jv;, then

k k
ety = E aiet)‘ivi = E aiemivi.
i=1 i=1

Remark 3.6. As the notation suggests, it is true that

etAesA — 6(t+s)A

as you are asked to prove in Exercise below. However, it is not generally
true that

A+B) _ JA_B _ _B_A

el =ec“e e’e”,

see Proposition [3.9] below.
Example 3.7. Let us find e!* when

110
A=1(022
003
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30 3 Linear ODE

The eigenvalues of A are given as the roots of the characteristic polyno-
mial,
p(A)=det(A=X)=(1-X)(2-XN)(B-A).

These roots are A = 1, A = 2, and A = 3. As usual we find the correspond-
ing eigenvectors as solutions to the equation (A — AI)u = 0. The result is,
eigenvectors:

1 1 1
v1:= (0] 1, vg:=]1] <2, v3:=1]2]| <3
0 1 0] 1
Since _ o ~
0 1 1
1{=11]-10
0] 1 0] K
and _ ;
0 1 1 1
Ol=12|—-2|1|+]0
1 |1 0] 0

it follows that the columns of e*4 are given by

R
ol =et
_O_
0 1
1 1
0 0

1
0
0

1 1 1
el —eth ol =X |1 —€t |0
0 0 0
and
0 1 1 1
Ao =t 2] =2 1]+ 0
1 1 0 0
1 1 1
=¥ 2] =2 | 1] +¢ |0
1 0 0
and therefore,
el —et 4 e2t ot — 92t 4 3t
etA — 0 e2t 26215 4 26315
0 0 e3t
Example 3.8. Let
1 7 =2
A=1|7 1 =2
-2 -210
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3.1 First order linear ODE 31
Solve the equation

4 (t) = Au (t) with

-1 1 -1
w(0)=vy +2v3+3v3=| 1 | +2|1]| +3|-1
0 1 2
i.e.
-2
u@=f=1]0
8

Answer. Recall from Example [I.§| that A has eigenvectors

-1 1 -1
V1 = 1 > —6, Vg = 1 d 6, V3 = -1 — 12.
0 1 2
Therefore,
1
(f,'l);) :17 (f?vg) — § :2 and (f?vg) — 78 :3
|v1] |v2] 3 |vs] 6
so that
f =v1 + 2vy 4 3vs.
Therefore,

u(t) = e %y + 2e% vy + 3!

solves the ODE.

Proposition 3.9. Let A and B be two N x N matrices. Then the following
are equivalent:

1.0=[A,B]:= AB — BA.
2. "B = Be” for allt € R,
3. ethesB = esBetd for all s,t € R.
Moreover if [A, B] = 0 then eAtB) = e4eB and in particular

etes = eI for all s,t € R. (3.7)

Proof. If [A, B] = 0, then
%etABeftA = [A,Ble =0

and therefore, e!*B = Be! for all t € R. It now follows that
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32 3 Linear ODE

d ) ) i
el tAebB _ etABesB — BetAeéB
ds

d sB _tA sB _tA

— e = Be®Pe

ds

and so by uniqueness of solutions to these ODE we conclude et4e*B = esBet4

for all s,t € R. If e!4e°B = esBet4 for all s,t € R then

d

AB =~
dt

d, d d, d d
|OetAB: @‘OE OetAesB _ %|O£|OesBetA _ %loBetA — BA.

For the last assertion, let T (t) := e!4e!B, then

d

&T (t) — AetAetB + etABetB — AetAetB + BetAetB

=(A+ B)T (t) with T (0) = I.
So again by uniqueness of solutions,

e15AetB -7 (t) _ 6t(A+B).

]
3.2 Solving for et/ using the Spectral Theorem
Ezample 3.10. Let
1_3
4]
2 2
as in Example with eigenvectors/eigenvalues given by
1
v = L} — A =-1
and
Vg = |:_11:| <—>)\2—2
Recall that ) 1
= B (v1, flor + §(U2af)v2
and hence
tA 1 tA 1 tA
et f= §(Ul7f)€ v1 +§(Uz,f)€ V2
1 1
=5 (v, f) e oy + 3 (v2, f) €*tvs. (3.8)

Taking f = e; and f = ey then implies
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1 1 1 1
etAel = §€tAU + 56“‘1}2 ie_tvl + 56%’02
. 1 |1 1 o2t 1
— 2 [1] A
1 e*t + e2t
= 5 et — g2t |-
and
1 1 1 1
etAeg = §6tAU1 — §6tAU2 26 ’U1 262t’l)2
1

Thus we may conclude that

—e —1‘ + 621‘,

1 —t+e2t —t _ g2t
et = [etle; etes] = 3 ot :

Alternatively, from Eq. (3.8

tAf = (Ulaf) 6ﬂtUlUlrJvJF *e ‘v UQrf
and therefore

etA

1 1
3 (v1, f) e orof + §€2tU2U§r
1,1 1, [1
3¢ [1][11]+2 -1
1 {e—t_,_em e—t_€2t]

€

5 | et — 2t o=t 4 2t

Ezample 3.11. The matrix

has eigenvectors/eigenvalues given by

= [1] — —1 and vy := {_11] — =3

As usual, if f € R? then

1 (v2, f)va.

1(1117f)U1-i- 5

=3

33
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34 3 Linear ODE

It then follows that

1 1
et = B} (vi, f) eoy + = (v, f) ey

2
1 —t 1 -3t
= 5(0171")6 v + 5(”27f)€ V2.
Taking f = e; and then f = ey gives
tA 1 —t —3t
efer =3 (v1,e1) e vy + 3 (v, e1) e vy
1 1 _.
= §€7t1}1 - 567‘%’02
1 67t + efSt
= 5 et — =3t
and similarly
1 [e—t_ 3t
tA, _ L
€ e = 2 |:€—t+e—3t:| .
Therefore,
otA — [etAel etAez}

et — 3t o=t 4 o3t

1 {et 43t gt — eSt]
~ 39

Ezample 3.12. Continuing the notation and using the results of Example [T.8]

1 7 =2
A=|T7 1 =2
-2 -210

with eigenvectors/eigenvalues given by

-1 1 -1
V1 = 1 > —6, Vg = 1 d 6, V3 = -1 — 12.
0 1 2
and
1 1 1
f= i(favl)vl+g(fav2)v2+6(fav2)v3-

1 1
f = 51}1 +2’02 + 5’03

and hence

Page: 34 job: 110notes macro: svmono.cls date/time: 25-May-2004/11:28



3.3 Second Order Linear ODE 35
1 1
etA (1’ 27 3)tr — §€tAU1 + 2€tA7)2 + 5etA,U3

1 1
= 56_&’1}1 + Zeﬁtvg + 5612%3.

A straightforward but tedious computation shows

367615 + 26615 + 612t 73676t + 266t + 612t 266t _ 2612t
etA —— _367615 + 266t + e1215 367615 + 266t + 612t 26615 _ 2612t
26675 _ 2612t 266t _ 261225 2€6t + 4el2t

This can alternatively be done using a computer algebra package, which is
what I did.

3.3 Second Order Linear ODE

We would like to solve the ordinary differential equation

i (t) = Au (t) with (3.9)
u(0)=fand 4 (0) =g (3.10)

for some f,g € RN and A a N x N matrix. Again we might begin by trying to
find solutions to Eq. (3.9)) by considering functions of the form u (t) = T (¢) v.
In order for u (t) = T (t) v to be a solution we must have

T (t)v =T (t) Av
and working as above we concluded that there must exists A such that
T (t) = AT (t) and Av = \v.

The general solution to the equation

T(t) = ex (1) T (0) + s () T'(0)

where
o (£) = cosvV—=Atif A<0
A ) cosh VAt if A >0

and ‘
LQifMO
t ifA=0
%ifAﬂ).

sx (t)
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36 3 Linear ODE

Theorem 3.13. Suppose the matrixz A is diagonalizable, i.e. there exists a
basis {vi}f\il for RN consisting of eigenvectors A with corresponding eigen-

values {)\i}fvzl C R. Then for any f,g € RY there is a unique solution, u (t),
to Eqgs. (@) and . Moreover, if we expand f and g in terms of the basis

{Ui}i]\il as
N N
f= Zaivi and g = Zbivi
i=1 i=1

then the unique solution to Egs. (@) and is given by
N
u(t) = Z [aica, (t) + bisa,; (t)] vi. (3.11)

i=1

Proof. It is easy to check that u defined as in Eq. solves Eqs.
and which proves the existence of solutions. The uniqueness of
solutions may also be proved similarly to what was done in Theorem |3.3
Indeed, suppose that

N
w(t) =Y o (t)v;
=1

then the equation, i = Au, is equivalent to

N

N N
Zdi (t)v; =1 () = Au(t) = Z a; (t) Av; = Zai (t) Aivi

i=1
and since {vi}éil is a basis for RV we must have
(3(1' (t) = /\iai (t) for all 3. (312)

Moreover,
N N
Zawi =f=u(0)= Z%‘(O)W and
i=1 i=1

N N
=1 =1

implies that
5 (0) = Q; and di (0) = b,’ for all 3. (313)

This completes the proof, since the unique solution to Egs. (3.12)) and (3.13)
is given by
a; (t) = aien, (8) + bisa, (2).
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3.3 Second Order Linear ODE 37

Notation 3.14 From now on, let us agree that

cos V—\t := cosh VMt ifA>0
sin v/ — A\t ) sinh v\t

= if A >0 and
v Noud
inv/—At
VA i a=o.
vV=A
With the above notation it is natural to write the general solution Egs.

and (B10) as

u(t) = (COS \/jt) fr Sin\/\i;ZAtg

with the understanding that

1. cosv/—At and S”‘f V__AAt are linear (i.e. matrices) and
2. if Av = lv then

(cos \/jt> RES (cos \/jt> v and

sin \/—Atv _siny —)\tv
\/:;q T VC:X ’
Ezxample 3.15. Continuing the notation and using the results of Example
1 7 =2
A=17 1 =2
-2 -2 10

with eigenvectors/eigenvalues given by

-1 1 -1
'Ul = 1 > —67 ’(}2 = 1 “— 6’ ’()3 = —1 Aad 12
0 1 2

We will solve,

i (t) = Au (t) with
w(0) = f=(1,2,3)" and 4 (0) =g = (1,-1,1)*.

As above we have

f %(favl)vlJré(favz)UQJr%(fv'Uz)Us

! +2 +1
—v vg + —v
S 21 53
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38 3 Linear ODE

and ) L
( (21}2 + 123) .

1
g=0v1 + vy + = 3

3 f,UQ)U3

Therefore,
cos (Ft) 5 cos (\/{ﬁ) v1 + 2 cosh (\/ét) Vg + % cosh (\/ﬁt) V3

and

sin (\/qt) 1 2sinh (\/&) sinh (\/ﬁt)
ﬁg =3 NG vg + D) V3

and the solution is given by

u()—cos(Ft)f%— 1n\(/\/7?t)9
= %cos (\@t) U1
sinh (V6
4+ |2 cosh (\/6t) + ;\%Gt)l Vg
sinh (V12
+ %cosh (\ﬁt) 1 }ﬁ t)] V3.

3.4 ODE Exercises

Exercise 3.1. Here you are asked to give another proof of Eq. (3.7). Let A
be an N x N, matrix, f € RY and s,t € R. Show

etAesAf — 6(t+S)Af.

Outline: Let u (t) := e*esAf and v (t) = T4 f and show both u and v
solve the differential equation,

W (t) = Aw (t) with w (0) = e*4f

and then use uniqueness of solutions of this equation (see Fact to conclude
that u (t) = v ().
01
A= (_1 0) |

‘A cost sint
e = .
—sint cost

using the following three methods.

Exercise 3.2. Let

Show
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3.4 ODE Exercises 39

1. Showing
d ( cost sint) _ [ cost sint
dt \ —sint cost | — —sint cost
and
( cost sint) —I—<10>
—sint cost =0 01
and

2. by explicitly summing the series

n
tA _ § L n
|
“— nl
2 . . .
3. Show 4 et4 = —et4 and then solve this equation using e*4|;—g = I and
d| tA _
E|0€ = A

Exercise 3.3. Combine Exercises [3.1] and [3.2] to give a proof of the trigono-
metric identities:

cos(s +t) = cosscost — sin ssint (3.14)
and
sin (s +t) = cos ssint + costsin s. (3.15)

Exercise 3.4. Let a,b,c € R and

Oab
A=|00c
000

Show
1 at bt + %act2

=101 ct
00 1

by summing the matrix power series. Also find e!M+4) where XA € R and I is
the 3 x 3 identity matrix.

Exercise 3.5. Let
-2 1 1

A=|1-21
1 1 -2

and
f=1(1,0,2)" and g = (0,1,2)" ,

be as in Exercise Solve the following equations

4 (t) = Au (t) with w (0) = f and
i (t) = Au (t) with w(0) = f and @ (0) = g.
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40 3 Linear ODE

Write your solutions in the form

3
w(t) =Y a;(t)v;
=1

where the functions a; are to be determined.
Hint: Recall from Exercise (you should have shown) that

1 -1 -1
vn=|1<0,vv=|0]|< -3 v3=| 2 [ < —3.
1 1 -1

is an orthogonal basis of eigenvectors (with corresponding eigenvalues) for A.
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4

Linear Operators and Separation of Variables

n

Definition 4.1. A linear combination of the vectors {v;};_, C R (or
{vi}!_, CV with V being any vector space) is a vector of the form,

C1V1 + C2V2 + -+ + CpUn,
with {c;};_, being real (or complex) constants.

We are going to be interested in the case that the vector space V' consists
of a class of functions on some domain, 2 C R". If u; and uy are functions
on 2 C R, and ¢1,c2 € R we write (ciu; + coug) =: u for the function,
u : {2 — R such that

u(z) = crug (x) + cous (x) for all z € 2.
For example we may consider, u; + ug, u1 + 3ug, and 0 = Ouy + Ous.

Definition 4.2. A linear space of functions, V, is a class of functions
with common domain so that if uy,us are in the class then so is ciuy + cous
for all c¢1,co € R, i.e. the space of functions V is closed under taking linear
combinations.

Ezxample 4.5.
D={f:R—R: fis differentiable on R}

or
C={f:R—R: fis continuous on R}.

Consider operator, L : D — {all functions on R} defined by Lf = f’. This
operator is linear, namely, we have

L(cifr+ caf2) = (1 fr + cafo) = ei fi + cafy = et L(f1) + c2L( f2).

It is interesting to note that L does not map D to C. For example, let
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f(x){02Sin91” x#0

x=0
then

2xsinl—cos% x#0
f'z) =

. 2 sin +
_r — —
gljnr%) -~ =0 x=0

so that ¢ € D however f' ¢ C.

Definition 4.4. A Linear operator, is a mapping, L, of one linear space of
functions to another such that

L(ciur + coug) = c1 L(u1) + caL(u2)
for all uy,us in the domain function space and cq,co € R.

An induction argument shows the linearity condition in Definition [{.4] im-

plies
n N
L <Z ciui> = ZCZL(UZ)
i=1 i=1

for all u; in the domain function space and ¢; € R.

Example 4.5. Let {2 be some open subset of R?, for example 2 = R? or
2 = {z € R*[z} + 23 < 5} and let D denote those functions u : 2 — R such
that u and all of its partial derivatives up to order two exist and are continuous.
(In the future we denote this class of functions by C? (£2).) Then the following
are example of linear operators taking D to the class of continuous functions
on 2:

_ 9%
1. Lu = 22

_ _O%u
2. Lu = a0y

3. (Lu) (2,y) = 232 (z,y) + y 52 (2,y) .

Whereas, the following operator is an example of a non-linear operator;
Lu = a%u + u?. To see this operator is not linear, notice that

0 0
L(u1 + Uz) = —U; + —uz + (U1 + uz)2

ox ox
9 2, O 2
#+ %ul + uj + %Ug + uj = Luy + Lus.
For example, let u; = % and ug = %—&-5 (also see Exercise 13.9), then
1 1
1 1
L(UQ) = — 0

@+572 (@52
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4 Linear Operators and Separation of Variables 43

while
1 1
L =L|-
(u1 + uz) (x+x+5>
I SR SR £ B B
22 (z+5)2 x x+5
1 1 1 1 2 2
= — —_— - 0
x2 (a:+5)2+x2+(x+5)2+x+5) m(m+5)7£

Definition 4.6. If L, M are two linear operators on the same class of func-
tions we define L + M

(L+ M)(u) := Lu + Mu.

If M is a linear operator on the range-space of L we also define LM by
((LM)u) = L(Mu).

These new operators are still linear, for example,

(LM) (clul + CQUQ) (ClM(Ul) + CQM(UQ))
= alL(M(uw)) + c2L(M (uz2)))
= cl(LM)(ul) + CQ(LM)(CQ).
However, it is in general not true (see Exercise 13.2) that LM = ML, in fact

LM may be defined while ML is not defined. For example, let Lu = z2u and
Mu = B%u then taking u = e*¥ we find

0
= e | = Y)Y — 2%V
LM (u) L<axe > L(y e™) = z*ye

while 9
M(Lu) = e —(z%e™) = 22e™ + yxe™ # LM (u).

In general, in this class we will be interested in linear differential operators
of the form

Lu = Augy + Bugy + Cuyy + Duy + Euy + Fu

where A, B,C, D, E, F are functions of  and y. The homogeneous partial
differential equations, Lu = 0 is shorthand notation for u solving the equation,

Augy + Bugy + Cuyy + Dug + Euy + Fu = 0.

Lemma 4.7 (Principle of Superposition). If L is a linear differential op-
erator as above and uy and us solve the homogeneous partial differential equa-
tions, Lu; = 0 and Lus = 0, then any linear combination, ciuy + cous also
satisfies the same equation, namely,

L (clul + CQUQ) =0.
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44 4 Linear Operators and Separation of Variables

Ezample 4.8 (Homogeneous Wave FEquation ). The wave equation uy =
a*ug,, is equivalent to writing Lu = 0 where L = 5922 a? aaxz Soifuy,...,un
are solutions to the wave equation, (i.e., Lu, = 0), then any linear combina-
tion,

Clu1 + -+ cplUpg,

is another solution as well. (See Exercises 13.4, 13.6, 13.8 for more on this and
the issue of boundary conditions.) To be more explicit let us notice that

1. Show that w,, (t,z) := sin(nz) sin(ant) for n € N all solve the equation,
Lu = 0. Indeed,

02 0?

Lu, = ) [sin(nx) sin(ant)] — a ﬁ[sm(nm) sin(ant)]
. 2 0 .
=5 (sin(nx)an cos(ant)) — a %(n cos(nx) sin(ant))

= —a*n?sin(nt) sin(ant) — a*[—n? sin(nz) sin(ant)] = 0.

2. So by the superposition principle,

N
uw(z,y) = Z ¢p sin(nx) sin(ant)
n=1
with ¢1,...,cp € R also satisfies the wave equation. (Later we will allow

for infinite linear combinations and we will then choose the constants, ¢;,
so that certain boundary conditions are satisfied.)
4.1 Introduction to Fourier Series
In this section, I would like to explain how certain functions like sinnz and
cos nx are going to appear in our study of partial differential equations. Sup-

pose L is the differential operator, L = %, acting on functions on 2 = [a,b].
Define the inner product,

(fo)= [ f@g)ds
2=[a,b]
for functions f, g : {2 — R. Two integration by parts now shows,
(Lf.9) /f” —— [ r@)d @+ @),

/f ) do+[f (5)g (@) — £ () - o' (@)][2
=(f.Lg) +[f' (x)g(z) — f(2)- ¢ (x)] %
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4.1 Introduction to Fourier Series 45

There are now a number of boundary conditions that may be imposed on f
and g so that boundary terms in the previous equation are zero. For example
we may assume f,g € Dpe, where Dy, denotes those twice continuously
differentiable functions such that f(b) = f(a) and f'(b) = f'(a). Or we
mlght assume f7 g€ DDirichlet or f7 g e DNeumann where DDirichlet (DNeumann)
consists of those twice continuously differentiable functions such that f (a) =
0=f() (f (a) =0= f"(b)). In any of these cases, we will have

(Lf7g) = (f7 Lg)

and so in analogy with the Spectral Theorem [I.5 we should expect that L has
an orthonormal basis of eigenvectors. Let us find these eigenvectors in a few
examples. Before doing this it is useful to record a few integrals.

Lemma 4.9. Let n be a positive integer, then

/Tr sin® nxdr = /Tr cos® nxdr = z, (4.1)
0 0 2
/F sin® nxdr = /Tr cos? nxdr =, (4.2)
: and .
/7r sin nx cos nadx = 0. (4.3)

Proof. Recall that
c0s20 = cos?0 —sin20 =1 — 2sin% 0 = 2cos? 0 — 1.

Therefore, taking § = nx and integrating we find,

1 T
0= —sin2nz|j = / cos 2nxdx
2n 0

:/ [1—25in2nx}d:c:/ [QCOSQHIL‘—l}da)‘
0 0

e T
=7 — 2/ sin? nzdr = 2/ cos® nxdr —
0 0

which gives Eq. 1} Similarly, replacing [ by [”_above shows Eq. 1} is
valid as well. Finally,

" 1 .9
sin nx cos nxdr = 5, Sin nx|T, =0-0=0.
n

—T

Ezample 4.10 (Fourier Series). Leta = —mandb=m7, L = j—; and D = Dy,
so that
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46 4 Linear Operators and Separation of Variables

(fo)= [ 7@owd (4.4
and
Lho)=- ()=~ [ '@ @dz= (Lo

Thus if Lf = A\f with f € D we have

s

N f) = (Lf.f) = — / [ ()2 dw < 0

—T

from which it follows that A < 0. So we need only look for negative eigenvalues.
If A = 0 the eigenvalue equation becomes f” = 0 and hence f (z) = Az + B.
We will only have f € D if A =0 and therefore let fy = 1.

We may now suppose that A\ = —w? < 0 in which case the eigenvalue
equation becomes

f// — —w2f
which has
f(z) = Acoswzx + Bsinwzx

as the general solution. We still must enforce the boundary values. For example
f(m) = f(—m) implies

Acos (—wm) + Bsin (—wn) = Acoswrm + Bsinwrn
or Bsinwr = 0. Similarly, f/ (7) = f’ (—) implies
—wAsin (—wr) + wB cos (—wn) = —wAsinwr + wB cosw

that Asinwm = 0. Hence we either have A = B = 0 (in which case f = 0
which is not allowed) or sinwm = 0 from which it follows that w = n € Z.
Hence we have

B := {cosnz,sinnx :n € N} U {1}

as our possible eigenvectors. The eigenvalue associated to cosnz and sinnz is
An = —n?. By Lemma (cosnz,sinnz) = 0, so that § is an orthogonal set
and moreover,

(cosnx,cosnz) = (sinnx,sinnz) = 7 and
(1,1) = 2m.

Thus we expect that any reasonable function f on [—m, 7] may be written as

f(x)= % (f,H)1+ % Z [(f,cosn(:))cosnx + (f,sinn(-))sinnz]. (4.5)

See Theorem Theorem [5.17] and Theorem below for more details on
this point.
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4.2 Application / Separation of variables 47

Ezample 4.11 (Fourier Sz'ne Series / Dirichlet boundary conditions). Suppose
a=0andb=m, L =7 2 and D = Dpjyichlet S0 if f,g € D then f(0) =0 =

f (). We now take
0= [ r@aa) i

and working as in the previous example we find
up () = sinnz with A, = —n? for n € N,
By Lemma
(sinn(-),sinn () = g
and so by Theorem [7:2]

2 o
— Z fysinn (+)) sinnz
7

for any “reasonable” function f on [0,7].

Ezample 4.12 (Fourier Cosine Sem’es / Neumann boundary conditions.). Sup-
pose a = 0and b =7, L = 2 and D = Dyeumann S0 if f,g € D then

f0)=0=f"(m).
Again we take i
0= [ 1@
and we find the eigenfunctions and eigenvalues to be
uy, (z) = cosnz with \, = —n? for n € NU{0}.
By Lemma [£.9]
(cosn (), cosn () = g forn e N

and (1,1) =,

Thus Theorem asserts that any “reasonable” function f on [0, 7] may be
written as

2 o0
fx)= ; ; fycosn () cosnz.

4.2 Application / Separation of variables

Ezxzample 4.13. Use “separation of variables” to solve the heat equation,
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48 4 Linear Operators and Separation of Variables
g (£, 2) = Uy (6, ) with w (£,0) =u (¢,5) =0 (4.6)
and u (0,2) = f (x).

The technique is to first ignore the nonhomogeneous condition u (0, z) = f ()
and look for any solutions to the Eq. (4.6]) of the form

u(t,z) =T (t) X (z).

From this we get,

or equivalently that .
T  X"(z) _

Tt X(z)

where A is a constant. Thus we require that

X" (z) = AX (z) with X (0) =0 and X (5) = 0.

The solutions to this Sturm-Liouville problem are given by

2
X, (z) = sinn% with A = A, (%T) .

nm 2
This then forces T,, (t) = ¢ '(5°)" Thus we find that
nm 2
Up (L) = e t(F) gin 1

are all solutions to Eq. (4.6). We then look for a general solution to our

problem in the form
= Z bpuy, (t,x)
n=1

where we wish to choose the constants, b,, such that

f(x)=u(0,z) ZbunOx i i 77,71'.')3.

5
9>=/O f (@) g (x) du

Letting

we have

and therefore,

by, = (,sin 25%) /f sm—d:c

(sm n‘gm , sin n‘n’x
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4.2 Application / Separation of variables 49
FEzxzample 4.14. Use separation of variables to solve Laplace’s equation,
Uze (T,y) +Uuyy (2,y) =0for 0 <z <5and 0 <y <2
with boundary conditions,

u(0,y) = u(5,y) =0,
u(z,0) =0 and u(z,2) = f (z).
To do this we will work as above and begin by ignoring the non-homogeneous

boundary condition and solve the rest by separation of variables. So we write
u(z,y) = X ()Y (x) and require that

X/I Y// .
7+7—0w1thX(0)—X(5)—0—Y(0).
As before we must have X" = AX and we know the solutions are given by
2
X, (z) :sin$ with A = A\, = — (%) .

It them implies that

2
Y (y) = (@) Y (y) with Y (0) = 0.
5
From this we concluded that
Y, (y) = sinh %

and we find that nnx nm
Un, (,113, y) = sin T sinh ?y

in this case. So working as above we try to find a solution of the form

u(z,y) = Z b (z,y) .
n=1
All the boundary conditions are now satisfied except for
= = 2nm nwT
= 2) = bpun (z,2) = by, sinh — sin —.
f(x)=u(z,2) 7;1 Uy (2,2) ; sinh —— sin —
By the same logic as above we must have
2 2 [°
bn, sinh 7 — f/ f (z)sin Ll
5 5 Jo 5

and thus that
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50 4 Linear Operators and Separation of Variables

nmwe
g by, h— in —
sin sin —

with
= e 2om 27”7 / f(z)sin —dw
Ezxample 4.15. Solve the wave equation, for 0 <z <5 and t € R,

uge (8, ) = ug o (¢, 2) with w(¢,0) =u(¢,5) =0
and v (0,2) = f (z) and u; (0,2) = 0.

We could go through separation of variables here to answer this question, but
this is getting tedious. I will just write down the answer as

u (t,z) = cos ( —8%t) f ().

As we have seen,

nwr
= bn _—
f(z) 7; sin —
with
2 5
= 3/ f(z)sin —dz
0
and hence
> nwT
u(t,x) = Z by, cos ( 8225) sin e
n=1
> nmt nmwx
= ancos — | sin —
o 5 5

It is interesting to notice that since
sin (A 4+ B) = cos Asin B + sin A cos B

we have
sin (A + B) +sin (A — B) = 2sin A cos B.

Thus we may write,

sin 2+ cos (";t) = % [sin (W) +sin (’”(”35_’5))]

and thus
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4.2 Application / Separation of variables 51

where

F(z)= i by, sin (?)

= the 5 — periodic extensions of f (z),

ie.ifz=5n+ywith0<y<5andne€Z, then F(z)=f(y).
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5

Orthogonal Function Expansions

5.1 Generalities about inner products on function spaces

Let 2 be a region in R? (most of the time d will be one for us) and p : 2 —
(0,00) be a positive function. For functions f, g : {2 — R define

(f.9) = /Qf(m)g(af)p(x) dz.

This is an example of a inner product, i.e. something that behaves like the
dot product on RY. For example we still have the following properties:

(fi +ef2,9) = (f1,9) + c(f2,9)
(fvg) = (gv f)
11 := (f. f) = 0 implies f = 0.

The following computation will be used frequently in this class:

If+ 9l = (f +9.f+9) = 11>+ gll* + (£.9) + (9, f)
= 17+ llg1* +2(f, 9). (5.1)

Definition 5.1. Two functions f,g : 2 — R are orthogonal and we write
I Lgiff(f,g) =0. More generally, a collection of functions, {p;}._, , is an
orthogonal set if ; L ¢; (i.e. (pi,p;) = 0) for i # j. If we further have
llgill =1 then we say {¢;};_, is an orthonormal set.

Exercise 5.1. Put in some exercise on orthogonal sets from the book here.
Theorem 5.2 (Schwarz Inequality). For all f,g: 2 — R,

[(F )l < £ IHlgll

and equality holds iff f and g are linearly dependent.
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Proof. If g = 0, the result holds trivially. So assume that g # 0 and
observe; if f = ag for some o € C, then (f,g) = a||g]|* and hence

(£,9) = lalllgl* = £l llgll-

Now suppose that f € H is arbitrary, let h := f — ||g|| ~2(f, 9)g- (So z is the
“orthogonal projection” of f onto g, see Figure ) Then

Fig. 5.1. The picture behind the proof of the Schwarz inequality.

912 ?
(f,9)?
l9]I2

from which it follows that 0 < ||g||?||f]|? — (f,g)? with equality iff A = 0 or
equivalently iff f = ||g]|=*(f, 9)g. L

2 2
o< P =7 = g | gy L pgp2 2 (1. 005

lglI* g1l

= I£1I* -

Corollary 5.3 (Triangle inequality). Let f,g : 2 — R be functions and
a € R, then

If+ gl <IIfIl+ gl and (5-2)
lafll = lalll£1- (5:3)

Proof.

1F +gl* = 117 + llgll* +2(f, 9)
< I+ lgll* + 20 £ gl = (L1 + gl

Taking the square root of this inequality shows Eq. (5.2) holds. Taking the
square root of the identity,

laf|? = / a2 |f ()] dz = |af? / f @) dz = |af? | £].
(9] (9]
proves Eq. (5.3)). [
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5.1 Generalities about inner products on function spaces 55

Proposition 5.4 (Pythagorean’s Theorem). Suppose that {p;};—, is an
orthogonal set, then

n

e

=1

2 n
=D leill* (5.4)
i=1

Proof. Let s := > | ¢;, then

Isl|* = <Z% >=i(%8)

i=1
and
2
(pi8) = | 20> 05 | =D (0in03) = (i, 00) = llpill* -
j=1 j=1
The last two equations proves Eq. (5.4]). [

Theorem 5.5 (Best Approximation Theorem). Suppose {p;}\, is an
orthonormal set and a; € R, then

n 2 n
Hf - Zai%‘ = Hf— Z(fa ©i) Pi
i=1 i=1

and therefore the best approzimation to f by functions of the form Y 1 | a;p;
occurs when a; = (f, i) .

+Z|(f’%‘)—ai\2 (5.5)

Proof. The function (vector),

==Y (%) i,
=1

is orthogonal to {p;};_, since

1=1 1=1

= (fr05) = > (fr0i) 615 = (f.05) = (fr05) = 0.

i=1

Since

f*Zai%‘:f*Z(fAOi)SOHFZ[(fa%)*az‘]%'
i=1 ' i=1
= Z fa@l - ‘sz
=1
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56 5 Orthogonal Function Expansions

it follows by Pythagorean’s Theorem, Proposition that

n 2
Hf - Z i Pi
i=1

= ||n)* + Z I[(f, ¢i) — ai] @il®
=1
= IR+ 21 0) — il

:Hf Z f7901 Pi +Z| fa‘;oz - z
=1

Definition 5.6. Let f be a function such that [, 1f (@) p(x)dz < oo and
{@i}ic; be an orthonormal set, we will write f ~ Y .2, (f,¢:) i to mean

n 2
Jim | (@) (frpi) ¢i (2)| p(x)de
i=1
n 2
= lim |If =) (fy91) eil| =0.
i=1

We say {@i}ie, is complete (or closed in the book’s terminology) if f ~
zi:l (fa %) ; whenever ||f|| < Q.

Corollary 5.7 (Bessel’s (In)equality ). Suppose {¢;};_, is an orthonor-
mal set, then

n
D _(F )P < ISP for all f, (5.6)
i=1
Moreover we get equality iff f = >y (f, i) pi. These statements remain
true even when n = oo provided we interpret, f = Y .o (f, )i to mean

302, (f, i) @i Sowe have f~ > 2 (f, i) i iff Pythagorean’s theorem
holds, i.e. iff

S0P = IFIP
i=1
Proof. Taking a; = 0 in Eq. (5.5) shows
IF11? = || || =Y (e i +Z| frenl?
i=1
and hence that
n n 2
DI e =117 - Hf =Y (Lo <P
i=1 i=1
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5.2 Convergence of the Fourier Series 57

with equality iff f =", (f,%:) ¢i. Letting n — oo in the previous equation
shows,

2

iw,mf = |71 nl;rg@”fi(f,sa»wi <1
i=1 =1
with equality iff ,
Jim | f — Zn: (fsei) wif| =0,
i=1
Le. iff f~ 3702 (f,¢:) wi- u

5.2 Convergence of the Fourier Series

For this section it will be convenient to define

(f,9) = j f(W)a(y) %dy

Recall from Example4.10} if f : R — R is “reasonable” 27 - periodic function
(ie. f(xz+2m) = f(z) for all x € R), we expect by analogy with the finite
dimensional spectral theorem that

N | =

[(z) = sao+ Z [an, cosnz + b, sinnz (5.7)
n=1

where

1 T
ap 1= (f,cosn(-)):; f(y)cosny dy for n =0,1,2,...

and

1 ™
by = (f,sinn(-)):; fy)sinny dy forn=1,2,....

The following theorem gives a precise version of this statement.

Theorem 5.8 (Fourier Convergence Theorem). Let f : R — R be a 27
- periodic function which is piecewise continuous on (—m, 7). Then at points
x € X where f' (zx) exist we have

flat)+f @)

1 o0
500 + Z [an cosnx + by, sinnx] = 5

n=1
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58 5 Orthogonal Function Expansions

Fact 5.9 If f : [-m, 7] — R is any function such that [”_ |f (@)|° dz < oo,
we may still define

In(z) =

N
ao + E [an, cos nz 4 b, sin nz)
n=1

N =

with a,, and b, as above. With this definition we will always have,

—dim [ 1f @)~ fy @) de = Jim |f - P =0,

T N—oo -

i.e. that

1 i )
flx)~ 500 + Z [an cos nx + by, sinnz] .

n=1

5.3 Examples

Remark 5.10. We will use the following identities repeatedly.

sin (A + B) = cos Asin B + sin A cos B, (5.8)
cos (A + B) = cos A cos B — sin Asin B, (5.9)
sin Acos B — % (sin (A + B) + sin (A — B)) (5.10)
cos Acos B = % (cos (A + B) + cos (A — B)) (5.11)
sin Asin B = % (cos(A—B) —cos(A+ B)). (5.12)

FEzample 5.11. Suppose

1if O<z<m
f(z)_{—lif—w<0<x’

then a,, := (f,cosn (-)) = 0 because f is odd while

2 [T 2
b, = (f,sinn (-)) = ;/ sinny dy = - cosny|f
0

{ 0 if niseven

= — (1 —cosnm) = A if  is odd.

™

Thus we conclude that

oo

4 . 4 .
f(x) ~ Z %smn:c:;msm@nfl)x.

n odd
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5.3 Examples 59

The series converges for every € R and = € (—m,7) \ {0} it converges to
f(z) and at = 0 it converges to 0. By the way, by Bessel’s equality we have

i (com) =1 =1 [ s

-7

I
8-
L3
—
QU
8
I

and hence we conclude that

1 1 1 > 1 T
14+ -4+ — 4 — ... = - - =
to T T Z

N 4 .
— SINNI.

Here are some related graphs wherein fy (z) :== > 1., cqq =
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60 5 Orthogonal Function Expansions

Fig. 5.2. A plot of f5 (z) = 2 (sinz + § sin3z + £ sin5z) . which is approximating

/(). -

Fig. 5.3. A plot of fi1 (x).
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5.3 Examples 61

|||| v Y"I\'q FAV

Fig. 5.4. A plot of fig (z). These last few picture illustrate what is known as the
Gibb’s effect; namely the convergence is not uniform. There is always the pesky little
bump appearing near 0 (and £7).

Fig. 5.5. A plot (at t = 1/2) of % (eft sinx + %6791& sin 3z + éef%t sin Sx)which is
approximating the solution to the heat equation with periodic boundary condtions
and with initial condition, u (0,z) = f (z).

The following lemma will be useful in simplifying the computations in
some of the examples below.

Lemma 5.12. Suppose f : [a,b] — R is a continuous function and p(x) =
ZZ:O prx® is a polynomial, then

/ fpde =pFy —p'Fy+p"Fs— -+ (=1)"p" Fp1 + C

where

F1 Z/fdx and Fk+1 = /deaz
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62 5 Orthogonal Function Expansions

Proof. This is simply a matter of repeated integration by parts. Explicitly,
/fpda; = /Fl’pda? =Fip— /Flp’dx +C.
/F1p’da: = Fyp — /ng"dx +C
and hence
/fpdx = /F{pdm =Fp— Fp + /ng”dx +C
= Fip— Fyp + Fyp'dr — /ng(?’)dx +C,
etc. |

Using this fact we may now compute the Fourier series of a number of
functions.

Ezample 5.13. Let (f,g) =+ [T f(2) g (x)dz, then

1.

(z,1) =0, (x,cosnz)=0 by symmetry and

. Lo 1 1 . "
(z,sinnz) = = zsinnzdr = |z | ——cosnx | — — sinnx
n
—T

T J) n
1 2 n+1
S ) =221
- [—2 cos nr] - (-1)
wherein we have used
. 1
F, = | sinnzdx = —— cosnz and
n

1 1
Fy = —— [ cosnxdr = — sinnz.
n n

Thus we expect that

n=1

Sl

1 1 1 1
(=1)" ' sinnz =2 (lsinx— §sin2x+ gsin?)a: - 4sin4x+...> .
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5.3 Examples

Plot of x and

2 2 2 2
—sinx — —sin 2z + gsin3x — Zsinélx

2. f(z) = 2% — expansion.

(xQ, sin nm) = 0 by symmetry and

™
( 2 _ 1 2
I, COos TL.T) = — x“ cosnxdx

TJ—x

. ™
sSmmnx

n3

1 1
= [1’2 < sin nx) + 230—2 cosnr — 2
n n

1 1
= —2m— [cosnm + cosn (—
T n

1
=4—(-1)"
m] = 4oz (1)
wherein we have used
/ 1
cosnxdr = — sm nx,
1
sm nxdr = —— COSNT and
n

——5 cos nrdr = ——; sinnx.
n3

We also have 5 )
1 [" T 27

2 2 T
71 = — d = —|_ = —
(@) / e =2y, =2

—T

Thus we expect from Eq. (4.5) that
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64 5 Orthogonal Function Expansions

== (2% 1)1+ Z [(2®,cosn (-)) cosnz + (2*,sinn () sinnz|

n=1

Il
| =
[N}
E
[\v]
—_
+
]
\
—_
S—
3
o
o
wn
3
8

Plot of 22 (in red) and

1 1
+4 [—cos:r:—i—QQcost—gzcosSx—i—...

72
3
3. Integrating the equation,

2 st -1 n
22 = % +4nz::1 ( n2) cos ne,

one expects,
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5.3 Examples 65

AR = (—1)" sinnz
s _ 0 4
3 3 T nz::l n? n
2 [ee] 1 n+1 [e’e] n+1
= % |?Z (=1) sinnx| — Z sin nx
n=1 n=1
00 ) 2 1 n+1 -1 n+1
Z[ﬂ( ) —4( )3 sin nx
= 3 n n
[e%e} 2
=2 Z (=)t l(m??,(i] sin nx
n
n=1

3 =2 i (=)™t [Wl sinnx

also see top of page 77 of the book
4. The expansions for functions of the form f (z) = ax + bx? + cx?® are now
easily found. For example, if

2

= (—1
xQ—Wm:%—i—élz( )" cosnx—ﬂz "'Hsmnx.

The plots of this function and the following approximation,

2 1 1 1 1
Sy (x) = % +4 <cosx+ 22cos2x> — 27 <1sinx 2sin2a:) ,

2 1 1 1
S3(z) = T +4 (cosx—i— — cos 2z + cos3x>

3 12 22 32
1 1 1
— 27 (1 sinx — 3 sin 2x + 3 sin3x>
and
2 1 1
Sy (x) = 7;—!—4(12 cosz + - +42cos4m>

2 L% 1'2—i—1'3 1'4
T 151111‘ 2stc 3smgc 4smac

are given in Figure [5.6] below.

Ezample 5.14. Suppose that f (x) is a function defined for 0 < 2 < 7. Suppose
we extend f to be an odd function by setting
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66 5 Orthogonal Function Expansions

Fig. 5.6. Plot of 2 — 7z and the approximats, Sa, Ss, and Ss. Notice that the
approximations are not doing to well at the end points. This is because they are
convergeing to mlatc=mand x = —m7.

Fig. 5.7. The function f with its extension to an odd function on [—, 7].

. f@) if 0<z<m

see Figure Then computing the Fourier series of F, we learn

1 ™
ap, == (F,cosn(-)) = f/ F(y)cosny dy =0forn=0,1,2,...

T™J-n
and
. L [7 . 2 [T .
by, == (F,sinn () = 7/ F (y)sinny dy = — f (y) sinny dy.
T ) T )

From this we learn that

f(x)= Z (i _Tr f (y) sinny dy> sinnz.
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5.3 Examples 67

Notice that {sinny:n € N} form an orthonormal set relative to the inner
product,

(f,9) ii/()ﬂf(a?)g(x)dx.

As an explicit example, let us consider the sin - series expansion of cosx for
0 < 2 < 7. For this we have

2 s
b, = 7/ cosysinny dy
T Jo

= ;/OW (sin ((n+1)y) +sin((n —1)y)) dy

(cos (fln:—ll) Y) , cos (iln_—ll) Y) ) T

0

(_1)n+1 N (_1)n—1 1 1
n+1 n—1 n+l n-—1

o, oom2n 1N 2 2m
- n-even T n + 1 n — 1 - n—evenﬂ_ n2 _ 1

1
m
1
m

4 n

= 1n—e en _
Y rn2 -1

and we conclude that

4
cosT = —
™

Here is a plot of cosz along with% (% sin 2z + ﬁ sindx + 6%1 sin 63:)

and % (%sin?x—k-%— %sinl&v)
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68 5 Orthogonal Function Expansions

Ezample 5.15. Suppose that f (x) is a function defined for 0 < & < 7. Suppose
we extend f to be an even function by setting

_ fl@) if O<z<7
F<x)'{f(—:c)if—7r<x<0,

see Figure 5.8] Then computing the Fourier series of F, we learn

| > | >

Fig. 5.8. The function f with its extension to an even function on [—, 7].

1 T 2 T
an = (F,cosn () = — F (y) cosny dy = 7/ f (y) cosmy dy
T™J_x ™ Jo
and
. [ .
by := (F,sinn () = f/ F (y)sinny dy = 0.
™ —T

From this we learn that
a o0
0
flx)= 2 + ng_l @y, COSNT

where

2 s
Ay = f/ f (y) cosny dy.
™ Jo

Notice that {cosny :n € N} U {%} form an orthonormal set relative to the

inner product,
(f,9) = %/O f(x)g(x)d.

As an explicit example, let us consider the cos - series expansion of sinx for
0 < z < 7. For this we have
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5.3 Examples 69

2
—/ siny cosny dy
™ Jo

i/oﬂ sin((n+1)y) +sin((1 —n)y)) dy

= 1(005((n+ 1y )+COS((1_n)y))7r

n+1 1—n 0
1 1 1
=21y cven—
<1 +n * 1- n)
4 1 4 1
= —lpevenT™ 5 = ——lpeven—5—-
1—n?2 T n2—1

So we conclude that

2 4 1
sinx:;—; Z n2_1cosmc

2
= — — = E 5 cos 2nx
T 4n
1
2 2 4 6
= — — cos2x — cosdxr — cos b6x —
T 22 -1 2-1 6% —1
¥ 1
0TE T
"
05T i B!
[ L
’ s
I'\\
D28
] t
0 0.5 1 1.5 2 25 2
x

Plot of sinx and the function

2 1 2 2 2 4
- 2271(?05:10 427100590

which consists of the first 3 terms in the cosine expansion of sinz.
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70 5 Orthogonal Function Expansions

5.4 Proof of Theorem [5.8|

Before giving the proof of Theorem [5.8] we will need the following simple
consequence of Bessel’s inequality in Corollary [5.7}

Lemma 5.16. Suppose f is a continuous function on [—m, 71| or more gener-
ally any function such that ["_|f (x)\2da? < o0 and a, and b, are given as
above, then

T

@+ [l bl <2 [ f@Pd<o (513
n=1

—T

N| =

Moreover we also have

Jim /7; f (y)sin <<N + ;) y) dy = 0. (5.14)

Proof. Since {%, cosnx,sinnx :n € N} forms an orthonormal set, it fol-
lows from Corollary [5.7] that

o

ad+ 3 [lanl? + foul?]

n=1

1\ & 5 . 2
_ (fﬂ> #3 (reomn (O + (fsinn ()

DN | =

< (f,f)Z%[ f ()| dz < 0.

In particular this implies that

lim f(y)cosny dy =m lim b, =0 and
lim f(y)sinny dy = 7 lim a, = 0.
n—oo

—
n—oo [

sin (343 ) ) = cos ( 5)sin v9) - sin () cos V).

Eq. now follows from the previous limit formulas with f replaced by
J (y) cos 3y and f (y)sin %y respectively. ]

Proof of the Fourier Convergence Theorem [5.8.. To concentrate
on the basic ideas of the argument, I am only going to give the proof under
the additional assumption that f is continuously differentiable. The full proof
may be found in the book.

Since
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5.4 Proof of Theorem [5.8] 71

Let

N
fn(z) = zao+ Z [an, cos nx + by, sinna] . (5.15)
n=1

| —

We begin by deriving a more tractable form for the function fy (x). To do
this notice that

a,, cosnx + b, sinnx

1 i 1 4
= — ( f (y) cosny dy) cosnx + — ( f (y)sinny dy> sinnx
T

Tr —Tr —T

1 s

=— f (y) (cosmy cos nx + sin ny sin nx) dy
T™J -7
1 ™

== f (y) cosn(z —y)dy

wherein the last equality we have used Eq. (3.14) with ¢ = nz and s = —ny.
Using this observation in Eq. (5.15) shows

us N us
i@ =5 [ fwdy+ =3 [ f@)cosniz —y)iy
- n=1/""7
= [ 1) Date =y, (5.16)
where N
1 sin ((N + %) 9)
Dy (6) = = g=_ "2/ 5.17
w(0) =5+ D com == 1) (517

the second equality being Problem 14 of Section 32 of the book. (Also see
Remark below.)

To see what Dy () looks like, see Figure

Making the change of variables, z = ¢ — y in Eq. and using the fact
that f and Dy are 2w - periodic, we have

@ =1 [ 1@ Dya-piy=-1 [ e -2 Dy
-7 T+
1

™

T+x T
:*/ f(a:—z)DN(z)dz:%/ f(z —2) Dn(2)dz.

—X

Also notice that it follows from Eq. (5.17) that
1 ™
— | Dn(ydy=(1,Dn)

= 11+§: J=tan=1
=(Lg Xm0 =50 =1,
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72 5 Orthogonal Function Expansions

Fig. 5.9. This is a plot D1 and Dp.

Hence we may write

Iy @ =1 @) =1 [ @=2) - f @) Dule)a:

i[Wm((NJFD z) dz
_ jr/:g(z) sin <<N+ ;) z> dz (5.18)

f@=2)—f(z) .
g(Z) e— QSin%z le#O
—f'(z) ifz=o0.

where

Notice that, by 'Hopital’s rule, ¢ is continuous and hence

1 U
—/ |g(z)\2dz < 00

™

and so we may let N — oo in Eq. (5.18]) with the aid of Lemma to find

i fy (2) — ] (2) = ! m Wg(z)sin((N—l—;) z) dz =0,

T N—oo .

]
The following strengthens the convergence of the sum in Eq. (5.7) when
:R — R is piecewise C.

Theorem 5.17 (Uniform Convergence of Fourier Series). If f : R — R
is piecewise C' — the convergence in Eq. is uniform. To be explicit, if

we let fn (x) be as in Eq. (5.15), i.e.
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5.4 Proof of Theorem [5.8] 73

1
fn(x) = 390 + - Z ap, cos nx + by, sinnz],
then
max |f (z) — fn (z)| = 0 as N — oc. (5.19)

Proof. We have

1 o0
max |f (z) — fn (z)| = — max Z [ar, cos nx + by, sin na
‘ T n=N+1
S bosi
— ma
S —max ap, €8 NT + by, sin nz|
n=N+1
1 = 1 &
<= D aalt— Y bl (5.20)
n=N+1 n=N+1

By the Cauchy-Schwarz inequality,

Z\an\—z an] -+ <

n=1

132> . (5.21)

Finally, by an integration by parts (where the boundary terms vanish using
the 27 - periodicity of the function f) we find

1 /" 1 d
na, = — [ f(y)ncosny dy = — f( )*Cosnydy
Vs ™

—T

=17ty cosny dy = — (¢ cos (n ()
Therefore by Bessel’s inequality, with replaced by f’, it follows that
S (n]an])? < oo and so by Eq. (5.21), 32°°, |an| < oo. Similarly we
may also show that Y ° | |b,| < co and hence it Eq. (5.19) follows from Eq.
(520). .

Remark 5.18 (The Dirichlet kernel for those who know complex variables).
Recall Euler’s formula which states, e’ = cos# + isinf. With this notation
we have

Dy (0) = cos nf

l\')\»—l

N

1
zn@ —zn@
—3 2

l\')\»—l
l\.')\r—l

X
23
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74 5 Orthogonal Function Expansions

Letting o = €*%/2, we have
N 2(N+1) _ , —2N 2N+1 _ , —(2N+1)
_ on « (0% _ (0% «
2Dn(0) = Z “= a?—1 N a—al
n=—N
_ 2isin(N +$)0  sin(N + 3)6
~ 26sindf  sinlf
and therefore N
1 . sin(N + 2)0
Dn(6) === m - T 277 5.22
~(0) 2n;Ne 25in 20 (5.22)

with the understanding that the right side of this equation is N + % whenever
0 € 277

5.4.1 Gibb’s Phenomenon

Problem 38.7: This problems deals with the Fourier expansion of the func-
tion

fla) =

The expansion is given by
sin((2n — 1)x)
=2
Z 2n —1

_ 9 sinx n sin 3x n sin bx n sin 7x n sin 9x n sinllx
N 1 3 5 7 9 1m0

(1_r<z<0 + loca<n) -

wm

whose plots are The goal of this problem is to show how that convergence is
not uniform which is referred to as Gibb’s phenomenon in this setting.
(a) We have

2sinz cos((2n — 1)z) = sin 2nz — sin((2n — 2)x).

So summing both sides of the above equation on n,

N N
2sinz Z cos((2n — 1)x) = Z[sin 2nx —sin((2n — 2)z)]
n=1 n=1
=sin2z +sindx + - - - +sin((2N — 2)z) +sin 2Nz
—sin 2z — sinda — - - —sin((2N — 2)z)
=sin2Nz.
Thus,
al sin2Nzx
2 2n —1 = 5.23
3 cos((2n — 1)a) = 122 (5.23)
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Fig. 5.10.

Plot of ss.

2Nz = 0,£m, +27, .. ..

Fig. 5.11. A plot of Se.

for x # km, k an integer. Since for 0 < z < T,

sin((2n — 1)x)
y=2
Z 2n—1 7

we may then write

2N
—2ZCOS 2n —1) )_sm ‘.

n=1

: 110notes macro: svmono.cls date/time:
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(b) To find local extrema in 0 < = < m, we of course must find the
points in the interval at which s’y (z) = 0. This occurs when sin2Nz = 0, at
So the extrema of sy () on the interval 0 < z < 7
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76 5 Orthogonal Function Expansions

occur when
_7m 27 3w (2N — )7
2N’2N’2N’7°7 2N

Thus the first extremum on the relevant interval occurs at x = ﬁ and since

" (sinx)(2N cos 2N z) — (sin2Nx)(cos x)
swlw) = sin? 2

T )= 2N cosm B 2N <0
2N’ sin(Fy)  osin(Fy)

we know a relative maximum occurs at this point.
(¢ & d) Integrating Eq. (5.23)) implies

sin((2n — 1)/ (2N))
2n —1

sn (5w

-

N(m/(2N)) =

3
I
—

sin((2n — 1)x) x/(2N)
om—1

I
] =

3
Il
-

w/(2N)
cos((2n — 1)x)dx

I
AiM=
\

) sin 2Nz
dz
sin x

Tr/(QN) IN ©/2N) (. _ g
/ sin xdm + / w sin 2N xdx
0

rsmax

sin 2Nzdx (5.24)

smx / ™/CN) (g — sin )
rsinT

wherein we have used

1 1 (xr—sinx)

sinx «x rsinx
Because ( ) ( )
T —sinz) . T —sinz
= sin2Nzg| < |———=
Tsinx rsinx

is bounded near 0, we may let N — oo in Eq. (5.24)) to find,

T T sinx
i ( ) dz =: o = 1.8510.
Nl—rgo SN 2N /0 T . g

5.5 Fourier Series on Other Intervals
Suppose f (z) is defined for —c < z < ¢. By setting F' (y) := f (ﬁy) , we get

a function defined for —m < y < 7. This function may be expanded into a
Fourier series as
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5.5 Fourier Series on Other Intervals 77

1 o0
f (EZ/) =F(y) = 300 + Z [y, cos ny + by, sin ny|

n=1

where

p =

/7T f( y) cosny dy and

= [ I

Making the change of variables, x = £y (or y = Zx) in the above equations
gives

3
o Ao

y) sinny dy.

1 o0
f(z)= 5ao + Z [an cos n%x + by sinn%x
n=1
where

1 c

ap, == — f(x) cos nZz dz
CcJ_¢ cC
1 C

by = — f () sin nZz d.
c c

—C

The convergence properties of these sum are the same as those for the Fourier
series on (—c, c). Similarly if f (z) is defined on 0 < = < ¢ then we have the
sine and cosine series expansions

o0
.o
f(x)= ansmnzx for 0 < z < ¢, and

n=1

1 o0
f(z)= §ao+2ancosn%x for 0 <z <c,

n=1

where now

2 c
ap, = 7/ f (z) cos nZe de
cJo C

2 Cc
by, : 7/ f(x) sinn’a d.
¢ Jo c

Ezample 5.19. We have seen

2
Z(=D)"sinny for —7 <y <.
n

ol

Il
-

n

By letting y = Zx in the above formula, we conclude that

™
—r =
c

[M]8
SN

.
(=1)" M sinn=z for —c<z <e,
c

3
Il
—
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78 5 Orthogonal Function Expansions
ie.

o0
2c . T
T = E = (—1)"sinn—z for —c<z<ec
= mm c

Suppose that we want the cosine expansion of x on the interval, 0 < = < c.
In this case we will have

1 oo
x = §a0+7?=1an cosn%x
with
2 [€ 2 [€ c\Nd . w
ap = — rcosn—x dr = — T ( ) sinn—x dx
cJo cJo mn/ dx c
2 . 2/c .7
=-z ( ) sinn—z|g — — (—) sinn—z dz
c n c\mn/ J, c
2 2 2/ c\2
= Talg=2(—=) (-1)" -1
c (wn) cosn- -l c (7TTL> (=1) )
for n # 0 and

=)
S
\

o N
O\Q
8
ISH
8

[
oo
o

Thus we have

For example if ¢ = 1, we have

4 1 1
xzi—p (coswx—i—?’Qcos?)mc—l—5200557rm+...>,

see Figure below.

f x and its Fourier cosine series approximation,
— % (cos T + 3% cos 3mx + 5% cos 577:5) .
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5.5 Fourier Series on Other Intervals 79

This series is convergent for all 0 < x < ¢. Taking = 0 in this expansion we
may conclude that

or that
1 1 72
1+732+752+”_ = —

and taking z = 1 in this expansion we find

= — — | —-1— —cos — COS
2 72 32 B ™

which again gives

RIS P
ptmt)=%
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6

Boundary value problem examples

We will begin in this chapter by solving three problems related to the operator
2
L = -, on [0, —7] with Neumann boundary conditions and the function

f@)=z(r—z) =21 —2°

Recall that the eigenfucntions/eigenvalues to this problem are

X, (x) = cosnx with \,, = —n?

for n € NU{0}. Also we have and we have

F@)~ T+ anXa (@)
n=1

where



82 6 Boundary value problem examples

2 [T 2 [T
an:,/ f(a:)Xn(m)de*/ x (m — x) cos nxdx
s 0 U 0
2 T d2
:_W/o x(w—x)@cosmcdx

2 d . T d
=-— [(x (m —x) o cosmc) |6 — /0 (m — 2x) . cosnwda:]
_ 2 / (m —2z) 4 cos mcdx]
0 d

el | .
2 [( 2x) cosnz] |§ /7T (—2) cos nzdzx
—_= — 7'[- —_— —_— —
™m? | o Jy

=—3 [(m — 22) cosnx] |] + 2

2 sinnx
—10

= —r (1) 1] =~

= -1+ 1

n2
and

2 s
aozf/ x(m—a)de = -7,
T Jo

Therefore we have

2 e 1
z(m—x) % — 22 s [(=1)" + 1] cos nw
n=1

1 1
71-6—4(2260821‘4—42(308437—}—...)

Plot of %2 —4 (2% cos 2 + 4% cos 4z) which is approximating x (7 — x) .
Ezample 6.1.

Upt = Uz With ug (¢,0) = 0 = u, (¢t,7) and

uw(0,2) =0 and u; (0, 2) = z7w — x°.
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6 Boundary value problem examples

The answer is given by

sinv/—Lt sinv—=Lt { ag >
u(t,x) = ﬁf (z) = V=L <2X0 (z) + ;aan (35)>

ag > sinnt
<2t+2aan (z) - )

n=1
2 =1
= Ft - 2; —3 [(—=1)" + 1] cos nw sin nt

1 1
_T t—4 (230052:13811121%4— 43cos4xsin4t+...>

Ezample 6.2.

Up = Ugzy With

Uy (¢,0) =0 = wu, (¢, 7) and

u(0,2) = 7 — 22

Answer is given by

u (t,lL’) _ 6th (CE) — otL (aOXO (x) + Z an Xy (CU)>

2
n=1
@0 L S tL
= ( 5 Xo (z) + nz::l ane” X, (x))
— (%4 ia et X (x)
2 — n n
2

7.(.2

1 1
_T —4(6_t22 cos 2z + 426_t420054a:+...) — 6

Notice that
4 1
/ z(m—x)de = ~7°
0 6
because heat is conserved with Neumann boundary conditions.
Ezxample 6.3. Here we take 0 < z < 7 and 0 < y < 3 and we wish to solve

Ugg + Uyy = 0,
Uy (O7y) :OZU’Z‘ (7T7y)7
u(z,3) =0 and u(z,0) =z (7 —x).
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84 6 Boundary value problem examples

In this case we use the separation of variables mantra and look for Y (y)
such that Y (3) = 0 and so that u, (z,y) = X, ()Y (y) solves Laplace’s
equation. To do this we have

0= Aun = _nQXn (l‘) Y (y) + Xn (l‘) YN (y)
from which we must demand that
Y (y) —=n®Y (y) =0

so that
Y (y) = Ae™ 4+ Be™™

and then requiring
shows that
and thus that
Y (y) = Ae™ — Aefme™™,
Taking A = —%6_3" gives
Y (y) =sinhn (3 —vy).

For n = 0 we have Y” (y) = 0, so that Y (y) = Ay + B and to match the
boundary condition we should take Y (y) = 3 —y. Thus we look for a solution
of the form

u(z,y) = 6;70 3-1y) —|—;ancosnmsinhn(3 —y)
with
w2 =1
n J
f(x)= i 2; " [(=1)" + 1] cosnz
=u(z,0) = %3 + ; @y, cos nx sinh n3
and so
2 2
%3:%orao:%and
. 1 n 1 n
Qp, sinhn3 = 72? [(71) + 1] or a, = 72m [(71) + 1] .
Thus the solution is given by
w2 =1 n sinhn (3 —y)
=By -2y = [(-)"+1 ekl . 2
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6 Boundary value problem examples 85

Ezample 6.4. Suppose now 0 < z < 7w and 0 < y < 1 and we wish to solve
Laplace’s equation,

Au(z,Y) = Ugy (2,Y) + Uyy (2,y) = 0 with (6.1)
u(0,y) =u(my) =0, u(z,1)=0 .
and u (z,0) = f (z). (6.3)

Solution: By separation of variable, one finds the functions
Uy (z,y) = sinnz - sinhn (1 — y)

solve Egs. (6.1]) and (6.2]) for all n € N. By the superposition principle,

u(z,y) = Z bpun, (2,y) = Z by, sinnx - sinhn (1 — y) (6.4)
n=1

n=1

will also solve Egs. (6.1)) and (6.2)). Finally we wish to chose the b,, so that

f(z)= Z by sinna - sinhn (1 —y) |[y—o = Z b, sin na - sinh n.

n=1 n=1

But from the theory of the Fourier sine series, we know that
2 ™
b, sinhn = — / f (z) sinnxzdx
T Jo

and therefore we must choose

bn = 2 /f(y)sinnydy~
0

msinhn

We thus find the solution to our problem is

e 2 T
= E i i -sinhn (1 —y).
u (96, y) P ( sinh /0 f (y) s nydy) Sin nx - sin n( y)

For example if f () = sin 2z — sin 5z, then we want

o
sin2x — wsin bx = E by, sinnx - sinhn

n=1

and hence that bs sinh2 = 1 and bssinh 5 = —7 with all of the other b,, = 0.
Thus we find

u(z,y) = sin2x - sinh 2 (1 — y) — - 5sin5x~sinh5(1 —y).

sinh 2 sin
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Ezample 6.5 (Example 39.2 on p. 122). Here we wish to solve,
up = kg, with u (¢,0) =0, u(t,7) = up and u(z,0) = 0.

Notice that the boundary condition is not homogeneous. To take care of this
we begin by finding the equilibrium solution, ¢ (z) to the problem. Namely,
@" () = 0 with @ (0) = 0 and & (7) = up. The answer is of course, & (x) =
%UO-
We now write
u(t,z) =U (t,z) + D (z)

and notice that

U () = i (t,2) = Ktigy = k (Ups (£,2) + B (2)) = kUog (£, 2)
and U now has the boundary conditions,

U(t,0)=0, U(t,m)=0and U(z,0) = —P(z) = ——o.
Hence the solution to our problem now is

Ult,z) = —e"td (z) = _ U0 gktLy,
7r

Recalling that
o 2 ntl . 1 . 1. 1 . 1 .
= — (-1 =2 - — —sin?2 —sin3z — —sin4 e
x ngzln( )" sinna <1smx 5 sin x+3sm @ — 7 sin T+ >

it now follows that

oo
(') 2

Ut,z) = —e"dp (z) = —— Z (=)™ et sinna
T f=n
_— i 2 (-1t e Fn” ginnx
v n
n=1
and the full solution is given by
x Uy o= 2 2
0 n+l —ktn® -
u(t,x)zfuo——zf(—l) e sinnz
™ T f=n
o0 n
Uo (_1) ktn? _:
=— [z+2 Z e sin nw
T — n
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7

Boundary value generalities

7.1 Linear Algebra of the Strurm-Liouville Eigenvalue
Problem

Suppose L is a differential operator on functions on {2 = [a, b] of the form

1 d d 1
Lf @)= s (ko) @) b @ @), )
Define the inner product,

o= [ f@owpn

for functions f, g : {2 — R. With this notation we find

w19 = [ |5 (s s @ >) 0(@) £ @) -5 ) o
/[ <>d—f<> L0(0) + () (@)9 @) do () @090
o[£l )
<>< (#)g f(x)g’(x))]lii. (7.2)

Hence we see that

(Lf,9) = (f,Lg) = [5 (@) (f (@) g (2) = f () ¢’ (@)]],- (7.3)

Let (a1,az) and (by,bs) be two non-zero vectors in R? and define

Bf(a) =aif (a) +azf' (a) and
Bf(b) =bif (b) +baf (b).



88 7 Boundary value generalities

In the sequel we will be interested on imposing the boundary conditions
on Bf (a) =0 = Bf(b). If we assume that f and g satisfy these boundary
conditions in Eq. then it follows that (f (a), f’(a)) and (g(a), g (a))
line on the same line and therefore

Y . / _ g(a) g'(a) _
W (£.9) (@) i= £ (@9 ()~ f(a)g (@) = et |41 400 o,
(W (f,g) is called the Wronskian of f and g.) Similar reasoning shows
) B oy g(b) g (b)] _
P - 05 0) =det | 40040 —o
and therefore it follows from Eq. that L satisfies the symmetry condition,

It also worth noting that if x (a) = « (b) and f and g satisfy periodic bound-
ary conditions; i.e.

f(a)=f(b) and f'(a) = f'(a) (7.4)

then we still have
(Lf,g) = (f;Lg).

As we will see we are going to be interested in the following eigenvalue
problem, namely we will be interested in finding solutions to the eigenfunction
equation,

Lf =—-\f with Bf =0 on 0f2.

This may be rewritten as

% {n(x) jxf(x)] +[q(z)+ Ap(z)] f (x) =0 with Bf =0 on 9f2.
This is the general form of the Sturm-Liouville eigenvalue problem as in
Chapter 6 of the book. There « (z) =r ().

Let Dp denote those functions f : 2 — R with are twice continuously
differentiable and satisfy the boundary conditions, Bf = 0 on 92 and if
k(a) = k(b) let Dpe, denote those functions f : 2 — R with are twice
continuously differentiable and satisfy periodic boundary conditions in Eq.
).

The next result is the formal analogue of Corollary

Proposition 7.1. If f,g € D or k(a) = k(b) and f,g € Dper such that
Lf=—-\f and Lg = —pg with u # X, then (f,g) = 0.

Proof. The same proof as that given for Corollary work here without
change. [

The next theorem is an analogue of the spectral theorem for the operator
L.
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7.1 Linear Algebra of the Strurm-Liouville Eigenvalue Problem 89

Theorem 7.2 (Strurm-Liouville Spectral Theorem). Let L be as above,
assume k > 0 on [a,b] and let D = Dp or D = Dpe, (in which case we
assume additionally that x (b) = k (a)), then there exists up, € D and A\, € R
such that:

1. —Luy, = Myuy for all n,
2. the etgenvalues are increasing, i.e.

AM< A <A<,

3. limy, oo Ap = 00 (in fact # {n : X\, < a} ~ a'’? or equivalently \, ~ n?).
4. Bvery “nice” function f on |a,b] may be expanded as

o0

F@)=>" (f un)un (2)

Ezample 7.3 (Problem 53.2 on p. 173). Consider the eigenfunction problem,
X"+ XX =0with X (0)=0and hX (1)+ X' (1) =0

with h > 0. Notice again that
1
X, X) = (X7, X) = / X" () X (2) da
0

:_/0 X' (2) X' (z) dzx + X' (z) X (z) |}
=— (X', X') = hX (1)? (7.5)

from which it follows that A > 0. Moreover if A = 0, then X’ = 0 and hence
X' is constant. But since hX (1) + X’ (1) = 0 it follows that X = 0, hence
we must have A > 0. Therefore, X (x) = sin ax for some a. Implementing the
last boundary condition then gives,

hsina+ acosa =0

or equivalently that
tana = —a/h.

Let «, denote the solutions to this equation, see Figure below.
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90 7 Boundary value generalities

The = — coordinates of the points of intersection of the line with the curves
gives the values of & when h = 1.

So we have
X, (z) = C, sin a,z where tana,, = —a,,/h with a,, > 0 and \,, = a?.

Let us now choose C, so that (X,,, X,,) = 1. To this end we have
1
(X0, Xpn) = CZ/ [sin 2] da.
0

Now recall that cos20 = 1 — 2sin? 6, and therefore,

1 — cos26

sin? 6 =
2

Using this above gives

1 1
1
/ [sin an ) do = = / (1 = cos2a,x)dx
0 2 Jo
1 sin 20, |
=5 (1- Ty
2 20,
1 1 sin2ap, \ 1 sin a, cos o,
2 20, ) 2 n '
Since tan «;,, = —a, /h, we have
sin v, = —a—hn Cos (7.6)

and therefore,

1 2
. 9 1 CcoS” Qi 1 9
/0 [sin ] da: 2( + - ) Qh( + cos” o)

So we need to choose C,, so that
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7.2 General Elliptic PDE Theory 91

h + cos? «
Cl———" =1
" 2h ’
i.e.
2h
h + cos? o,

and hence the final answer is given by

/ 2h
X, (x) = - sin a,x where tan o, = —ay, /h.

Here «,, > 0 and A\, = a%.
. 1. 2
Alternative way to compute [, [sina,z]” dz. From Eq. l)

Cn =

1 1
—a? / [sin oznx]Q dr = — / [cv, cos oznx]Q dr — hsin® o,
0 0

and therefore

1 1
h
/ [sin anz)? da = / [cos avz)? da + — sin? oy,
0 0

n

! h
= / [1 — sin? anm] dr + — sin? au,.
0

n

From this equation and Eq. (|7.6)) it follows that

1
h h " 2
2/ [sinanx]2dx =1+ —2$in2 anp =1+ — (—% Cosan)
0

n n

cos? ay, h + cos? oy,

-1 —
T 7
and therefore that
/ s 2 h + cos? ay,
in =
| anx|” dr o%

as before.

7.2 General Elliptic PDE Theory

In this section we will state the generalization of theorem to higher di-
mensional situations. Let {2 be a “nice” open bounded region in R¢ (typically
we have in mind d = 1, 2,3 here). Suppose that «; ; (x) and p (z) be smooth
functions on {2 such that matrix & (x)

K11 Ezg K12 EI; .. Kid Ez;
o (z) = 21 22 .. Kad
Ka1 (@) Kaz () ... Kqq (@)
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92 7 Boundary value generalities

n(z)

Fig. 7.1. A region represnting some material of some region in space.

is positive definite, i.e. K" = x and kv -v > 0 for all v € R?. We now form the
inner product

(u,v) == / u(z)v(x)p(x)dV
2
for function u,v on {2 and let

d

2,j=1

Ezample 7.4. Look at the formula for the Laplacian in polar, cylindrical, and
spherical coordinates to find natural operators written in this form. (There
are some singularities involved here which are artifices of these coordinates
system. We will have to deal with them later.) The general form of the heat
equation also produced such operators L as in Eq. above.

By the divergence Theorem (1.9

d
1
(Lu,v) = / E 58,» (kijOju) + yu | vpdV
2

ij=1

d
= / Z 0; (KijOju) - v+ yuvp | dV
7

[i.=1
[ a d
:/ — Z Ki;0;ud;v + Yuvp dV+/ Z (ki;0ju) nyvdo
2 =t 992 j=1

:/ [*HVU'VI]+’}/U’U}p'dV+/ (kVu-n)v do
7 o9

where n (z) is the outward pointing normal and do is the surface measure on
0{2. By interchanging the roles of u and v in the above formula, it follows that
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7.2 General Elliptic PDE Theory 93

(u, Lv) = —/ [Vu - kVv + yuv] dV + / (kVv-n)u do
Q o0
[

= —/ KVU'VU—F’YUU]CZV—F/ (kVv-n)u do
Q a0
and therefore,
(Lu,v) — (u, Lv) = / [(kVu-n)v — (kVv-n)u] do. (7.8)
BYe;

Let us now further suppose A is a given function on 92 and u and v satisfy
the boundary conditions,

Bu(z) :=k (2) Vu(z) -n(2) + o (@)u(z) 20

where we allow for «(z) = oo by which we mean u (z) = 0 at such points.
Then using these boundary condition in Eq. (7.8) shows that

[(kVu-n)v— (kVv-n)u] = avu — auv = 0 on 912
and hence we have
(Lu,v) = (u, Lv) whenever Bu = Bv = 0.

The following is an analogue of the spectral theorem for matrices in this
context.

Theorem 7.5. Keeping the above set up, there exists an orthonormal set
{un},— of eigenvectors for (—L, B), i.e. Bu, =0 on 82 and —Lu,, = Ay uy,.
Moreover these may be chosen so that:

1. the eigenvalues are increasing, i.e.

M A<,
2. HI;}ZHOO A = 00 (in fact #{n: X, <a} ~ a¥? or equivalently \, ~
3. %Uegy- “nice” function f on {2 may be expanded as

oo

n=1

:g Ugf(x)un(x)p(x)dv un ().

Ezample 7.6. Let us find the eigenfunctions u : 2 = [0,a] x [0,b] — R such
that
Au = Au and v = 0 on 02.
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94 7 Boundary value generalities
As usual, let us try to find solutions of the form
u(z,y) =X ()Y (y).

In order for this to work we must have

ot _du_ X'() Y'(y

and therefore,

X// (x) B an Y/I (y)
X " Yy
X(0)=0=X(a) and Y (0) = 0 =Y (b)

=\ — k with

for some constant k. The solutions to these one-dimensional Strum-Liouville
problems are already known, namely we must have

X (z) = sinm~_z and Y (y) = sinn%y
a
for some integers m,n. The functions,

N
Um,n (2,y) := sin m—zsinnyy

satisfy
At = A pUmm,n With u,, , =0 on 042

pe (2 G

All of these functions are orthogonal and in fact normalized if we define

where

a b
(f.9) =§%/O dw/o dyf (z,y) g (z,y)

and we may expand f as

f: i Bmmum,n

m,n=1

where

92 9 a b
Bm,n = (f7 um,n) = a . 5/0 dmA dyf ($7y) Um,n (mvy) .

To see this is correct, notice that

flay) ="

n=1

9 b
(b/ fx,9) sinnZﬂdzj) sinn%y (7.9)
0
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7.2 General Elliptic PDE Theory 95

and

=Y (2 /Oaf(j,gj) sianidi) sinmgx. (7.10)

m=1

Formally inserting Eq. (7.10) into Eq. shows

(2 I~=(2/( . . 7 \N. 7| w\. o7
f(z,y) Z(b/o dy [Z (a/o f(x,y)smmaxdx)smmaxl smnby>smnby

m=1
e} e} b a
2 2
=S (5 [ v [ dof@gsimmTasinn Ty ) snmTasinngy
bJo “alo a b a b

= Z Bm,num,n (I,y)

m,n=1

It also interesting to observe that if Au = Au with u = 0 on 0f2 and we
let

2 a
U (y) = f/ u(x,y) sinm%xdw,
0

a
then
2 [ .7 2 [ .
Mg, (y) = A= | w(z,y)sinm—zde =— [ Au(z,y)sinm—zdz
a Jo a a Jo a
2 @ 2 . ™ 2 @ 2 . ™
= - Ozu (x,y)sinm—adx + — O, u (z,y) sinm—zdz
a Jo a a Jo a
29 a ) a
=— (mﬁ> - | ul(zx,y) sinm_wdz + 765/ u(z,y) sinm = zdz
a a Jo a a 0 a
2 9
== (M) vn () + B2vm (v)
and hence

ajvm (y) = [)\ + (m2)1 Um (y) with v, (0) = vy, (b) = 0.

Since vy, (y) is an eigenfunction of 8; with Dirichlet boundary conditions, we
must have vy, (y) = Cy, sinny, 3y for some constant Cy,, and some integer n,,

such that ) )
2 @) _ 2 "J)
At (a T (b ’

i.e. we must have

From all of this it follows that
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u(z,y) =

hE

.7
Um (y) sinm—zx
a

m=1

. T . 7
Cyp sin nmgy sin mgx,

M

1

3
Il

with only a finite number of non-zero terms in the above sum. This shows that
the functions {upm, » : m,n € N} forms a basis for all of the eigenfunctions of
A with Dirichlet boundary conditions on 2.
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8

PDE Applications and Duhamel’s Principle

8.1 Interpretation of d’Alembert’s solution to the 1-d
wave equation

Example 8.1. We may use d’Alembert’s solution to the wave equation to for-
53 tr/—a202
mally work out the meaning of cos (t —a?@%) and M To see what
Vo
we should get, let A2 = —a292 and A = \/—a20? then
sin (t fa23§)
—a?0?

should solve Egs. (2.5) and (2.6). By comparing this with Eq. (2.7),
d’Alembert’s solution which I recall here,

y (t,x) = cos (t —a26%)f(x)—|— g(x) for —oo <z < 00

r+at
) = g o+ an) + S —at) + 50 [ go)ds

we conclude that
cos (t —aza,%) flz) =
sin (t —a23%> 1 fotat

\/ —a28§ g(x) - % r—at

We will use these results and the results of the next section to allow of to
solve the forced wave equation.

[f(z+at)+ f(z — at)] and (8.1)

N | =

g(s)ds. (8.2)

8.2 Solving 1% - order equations using 2”9 - order
solutions

Lemma 8.2 (A Key Fourier Transform Formula). For all A € R and
t>0,
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/ € 2 cos (As)ds = et (8.3)

Then

8

_Llg
e 1’

oo Vmt

g\ = ssin (\s) ds

—Qt/oo R
N ,oodS VArt
2

o0

ﬁi\H

-sin (As) ds

e"ms  d
\/éﬁ s sin (\s) ds

e 4z
= —2t\ -cos (As)ds = —2tAg ().
/ i eon () gV

— 00

=2t

Solving this ODE for g gives,

g(N) =e g (0).

This completes the proof since g (0) = 1 as we now show. Letting s = /tz,

9(0)_< \/E >=<_ mdaz)

:/ o / N3 - = // eiz o) — g dxdy
0o R2
2 1
i’ 1
:/ / R f/ e i rdr = —ei" oo =1.

wherein the fifth equality we have gone to polar coordinates. [

Theorem 8.3 (Solving for ¢4 via cos (\/ —At)). Suppose A is a N x N
symmetric matrix with all non-positive eigenvalues. Then

2

oo —Ls
et = / € = cos (\/ fAs) ds for all t > 0. (8.4)
oo VATt

Proof. Formally we are taking A\ = v/—A in Eq. (8.3). To rigorously
prove Eq. 1) let {”i}zjil be an orthonormal basis of eigenvectors for A. By
assumption we may write eigenvalue for v; as —\?, i.e. Av; = —\2v;.

Then
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8.2 Solving 1°* - order equations using 2™® - order solutions 99

co —Lg

o0 —LSQ
e 4t at
cos [ V—As ) v;ds = ———— cos (\;8) v;ds
/_Oo VAt ( ) V4 (Ass)

_ t)\f v = etAvl
and the result follows since both sides of Eq. (8.4)) are linear. ]

8.2.1 The Solution to the Heat Equation on R

Ezample 8./ (Heat Equation). Let us try to formally use Theoremto solve
the heat equation,

ug (t, ) = 0%u (t,x) with u(0,2) = f (x).

According to theorem and Example with @ = 1, the solution should
be given by

i 2

4t

u(t,x) = (etaif) (z) = \/7 cos (\/778%5) f(x)ds

o0 e 4LS

1

/T
6_582 oo 6—417(1—?/)2

=/_wf(x—8)\/mds=/_wf(y)7\/m dy.

Exercise 8.1. Suppose f is a bounded continuous function, show

u(t,x) == / fly %wy)2 y—/ fypt,z—y)dy (8.5)

solves the heat equation, u; (t,z) = 8§u (t,z) for t > 0 where

[f(@+s) + f(z —s)]ds

p(tx) = —. (8.6)

Hint: first show p(¢,x) solves the heat equation for ¢ > 0. Then check u
solves the heat equation by differentiating past the integral, which you should
assume to be valid here.

It is a fact that we will discuss later that
li t = . .
imu (t,z) = f () (8.7)
This is based on the idea that p (¢, ) is approximating a “§ — function,” see

Figure 8]

We will abbreviate all this by the suggestive formula,

etarf / f@)p (t,z —y)dy. (8.8)
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100 8 PDE Applications and Duhamel’s Principle

2] W 2]

Fig. 8.1. Plots of z — p (t,x) fort =2, ¢ = §,t = 35 and ¢t = ;. Notice that p (¢, z)
is being more and more concentrated near z = 0 as t | 0 while always keeping the
total area under x — p (¢, x) equal to one.

8.3 Duhamel’s Principle

Theorem 8.5 (Duhamel’s Principle I). Suppose A is an N x N, f € RN
and h (t) € RN be given. Then the ordinary differential equation,

W (t) = Au(t) + h(t) with (8.9)
w(0) = f (8.10)

has a unique solution given by
t
u(t) =ef+ / AR (1) dr. (8.11)
0

In words, u (t) is constructed by “adding” together the solutions to a bunch of
initial value problems where h = 0. Namely, et f is the solution to

U (t) = Au(t) with u(0) = f
while e*=7AR (1) is the solution to
w(t) = Au (t) with u () =h(r).
Hence we have

solution at time t to

u(t) = (u(t) = Au@ & ur(o) = f)
+/o <u ® i & & a0 20(7)) dr.
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8.3 Duhamel’s Principle 101

or equivalently that

solution at time t to
u(t) = ( (1) = Au () & u (0) f>

/t solution at time t to

+ . dr.
o \u(t)=Au(t) & u(r) =h(r)
Proof. Suppose u solves Eq. (8.9), then by the product rule

d

pn [e_tAu ()] = —Ae M (t) + e (t)

= — MM Au(t) + e (Au () + h (1))
— eftAh (t) .

Integrating this equation then shows

e Mut)=u te*TA T)dr = te*TA T)dr.
(t) <o>+/0 h(r)d f+/0 h(r)d

Multiplying this equation by e!4 on the left shows that if u exists it must be

given by Eq. (8.11).
To prove existence, let u now be defined by Eq. (8.11) and notice that we
may write it as

w(t) = et [f+/0te_”‘h(r) dT} .

Thus « (0) = f and, by the product rule and the fundamental theorem of
calculus,

. _ 6tA tef'rA Vdr etA eftA
w(t)=A {f+/0 h()d}qL [ h(t)]
= Au(t)+h(t).
|

Ezample 8.6. Continuing the notation and using the results of Example [T.8]

1 7 =2
A= 7 1 =2
-2 -210

with eigenvectors/eigenvalues given by

—1 1 —1
e 1 > —6, Vg = 1 d 6, V3 = -1 «— 12.
0 1 2

We wish to solve,
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102 8 PDE Applications and Duhamel’s Principle
i (t) = Au (t) + tf with u (0) = 0
where

o1 1
f = (17273)t = 5“1 +2U2 + 5”3

The solution is

t
u (t) z/ Te(th)Ade
0
t
= / T (16_6(t_T)U1 + 266(t_T)U2 + 1612(t_T)U3> dr.
0 2 2

To work this out we notice that

t t —AT
/ e Ndr = _4 e Mdr = 4 [e :fé}
0 —

A )
7ie’>‘t—1
T dA A

1 —t
=z (= (A +1)e )

and therefore,
! )\(t—‘r)d At 1 (1 (A +1 —t)\)
; Te T=e"3 (th+1)e

1
= (M- ).
Hence the answer is given by

1 (e’ﬁt—1+6t)111—0—3(e6t—1—6t)vg
— .62 2
we= (7 R, )

Theorem 8.7 (Duhamel’ s Principle IT). Suppose A is an N X N, f.g €
RY and h(t) € RN be given. Then the ordinary differential equation,

i (t) = Au (t) + h (t) with (8.12)
w(0)=fandu(0)=g (8.13)

has a unique solution given by

u(t) = (Cosmt) f+ Sm_/;}ugjt/o Sm\_/’%t_ﬂh(ﬂ dr. (8.14)

Again, in words, u (t) is constructed by “adding” the solutions to a bunch of
initial value problems where h = 0. Namely,

(cos \/jt) f+ sin\/{;ZAtg
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8.3 Duhamel’s Principle 103

is the solution to
i (t) = Au(t) withu(0) = f and 1 (0) =g

. siny/—A(t—7)
while W}l

(1) is the solution to
ii (t) = Au (t) with u(r) =0 and @ (1) = h (1)

S0

solution at time t to
u(t)=[ 4(t)=Au(t) with
u(0)=f&u(0)=yg

solution at time t to

+ /t i (t) = Au (t) with dr.
O \u(r)=0& a(r) =h(7)

Proof. The best way to understand this theorem is to reduce it to the first
version of Duhamel’s principle in Theorem To this end, let v () = u (¢),

then the pair (u (t)> € RN x RY solves the equation,

v (t)

a (v) = (36) = (

Let

—a 2N x 2N matrix. Then by Theorem [B:5] we have

() - () fer () o

When h = 0, we know that

u(t) = (cosV=At) f + m/_;f“g

from which we deduce

B (g) _ <(COS \/jt)i”+ MQQ> , (8.16)
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104 8 PDE Applications and Duhamel’s Principle

is easily found as well (just differentiate

The second component of et (ch

the first component) but we will not need it. Because of Eq. (8.16)),

Jemp (0 _ (A ()
(Mﬂ>_< v . (8.17)

Hence taking the first component of Eq. (8.15)), using Eqs. (8.16]) and (8.17)),

gives Eq. (8.14]).
We may also directly check that Eq. (8.14) works. Indeed, for simplicity
assume f =0 = g so that

B Psiny—A(t—1)
u(t)f/o Th(ﬂdﬁ
Then « (0) = 0,
o siny/=A(t—1) " d siny—A(t—r1)
i) = AT ) o+ [ A D e
= [ cosvV—A(t—7)h(r)dr
0

(so 4 (0) = 0) and similarly,

i (t) = cos —A(t—7‘)h(7‘)|T:t+/0 %COSM(t—T)h(T)dT

—h(t)+/0tmsinm(t7)h(7)d7

=h(t)— (M>2At Wh(r)dr

=h(t) + Au(t)
as desired. =

Ezxample 8.8. Continuing the notation and using the results of Example

1 7 =2
A=|7 1 =2
-2 -2 10

with eigenvectors/eigenvalues given by

-1 1 -1
vp:=| 1] =6, vp:=|1]| <6, v3:=|—-1]| < 12.
0 1 2
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8.3 Duhamel’s Principle

We wish to solve,
i (t) = Au (t) + h with v (0) = 0 = 4 (0)

where

L1 1
h=(1,2,3)" = U1+ 20+ Svs.

The solution is given by
to _
u(t):/ sinyv—A(t—71)
0o VA
B /t siny—A(t—71) <
0

hdr

1 1
—v1 + 2v9 + ’03) dr

105

vV—A 2 2
B t sin \/5%15—7’) %Ul + sinh \/\/66(25—7') 2”02 ;
- +sinh V12(t—7) 1, 7
0 vz 2%
Now
Psina (t — 1) cosa(t—7),._, 1—cosat
dr =Ty 17 cosal
0 a a a
and similarly,
! sinha (t —7) cosha(t —7) ._, 1 — coshat
——dr=———— [y =5 —
0 a a a
so that
1 — cos 6t 1 cosh V6t — 1 coshv12t —11
u(t)=———-v+ ——— 200+ —————— —vs.
6 2 6 12 2
Let us do a quick check that this solution is correct. For example let us check
that NG
1-— 6t
u(t) = %1}1

solves i (t) = Au (t) + v1. This is the case since,
i (t) — Au (t) = cos V6t - v1 — Au (1)

1-— t
= cos V6t - v; — %\/EAM

= COS\/ét"Ul + (1 —cosx@t) v =1
as desired.

Exercise 8.2. Let
-2 1 1

A=|1-21
1 1 =2
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106 8 PDE Applications and Duhamel’s Principle
and h = (—1,1,0)" . Solve the following equations for u,

(t) = Au(t) + h with u (0) = 0 = (0,0,0)"" and
i (t) = Au (t) + h with v (0) = 0 and % (0) = 0.

Write your solutions in the form

3
t) = Z a; (t) V;
i=1

where the functions a; are to be determined.

8.4 Application of Duhamel’s principle to 1 - d wave and
heat equations

sm(t

7 2

2
a:

Using the formulas for cos (t 782) and in Eqgs. 1 ) and 1

respectively we are now in a position to formally apply Duhamel’s principle
in order to solve the forced wave equation;

Ut = Uy + h with w(0,-) = f and u:(0,-) = g. (8.18)

Theorem 8.9. If f € C?*(R,R) and g € C*(R,R), and h € C(R* R) such
that h, exists and h, € C(R?,R), then Eq. has a unique solution u(t, )

given by Eq. .

Proof. By a formal application of Theorem with A = 92 suggest that

u(t, ) = cos(tn/—02)f + 78111“?(;28%)9 + /0 sin((t 7;)6; ) h(r,-)dr.

Moreover using the formulas in Egs. (8.1]) and (8.2]) then implies

[f(x+t)+f(zft)]+%/i (x+s)ds+= / dr/:+2£ TdyhT Y).

t+71
(8.19)
To verify that u defined in Eq. (8.19)) satisfies Eq. ( it suffices (by what
we have already done) to assume f =g =0 so that

x+t—T
/ dT/ dy h(r,y).
x—t+T1

|~

u(t,x) =

Now
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8.4 Application of Duhamel’s principle to 1 - d wave and heat equations 107

t
ut:%/ [h(r,z+t—7)+ h(t,z —t+7)]dr,
0
1t
utt=§/ [ho (.2 +t = 7) — ha(r, @ — t + )] dr + h(t,2)
0
1t
um(t,x):i/ dr[h(r,z+t—7)— h(r,z —t+7)] and
0

1t
um(t,x)zi/o drlhy(r,x +t —7) — hy(T,2 — t + 7))

so that uy — gy = h and u(0,2) = u(0,z) = 0.

The only thing left to prove is the uniqueness assertion. For this suppose
that v is another solution, then (u — v) solves the wave equation with
f = g = 0 and hence by the uniqueness assertion in Theorem (witha = 1),
u—v=0. [ |

Similarly we may solve the forced heat equation as well.

Theorem 8.10 (The Forced Heat Equation). Suppose that f : R — R
and h : R? — R are bounded continuous functions, then the function

e} t [e%s}
u(ta)= [ pto-ns@dy+ [ dr [ pe-re-phdy
—00 0 —00
(8.20)
solves the heat equation

Ut = Ugy + h with ltilrgu(t,x) = f(z). (8.21)
Proof. Formally applying Theorem m with A = 92 suggests that

u(t,z) = etazf () + /Ot [e(th)aih (7, )} (z)dr.

In light of Eq. (8.8]), this equation then gives rise to Eq. (8.20). It is of course
possible to directly check that Eq. (8.20)) solves Eq. (8.21)), however I will not
stop to do it here. [

Ezample 8.11 (Problem 40.4 on p. 128). Solve the following problem on 0 <
T < T,

Uy = kg, with w (0,z) =0 and
u(t,0) =0and u(t,m) = F ().
where F'(0) = 0.

To do this, let ¢ (t,7) = ZF (t) and then let U (t,x) = u(t,x) — ¢ (t,x).
We then have
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108 8 PDE Applications and Duhamel’s Principle

(0, — kO2) U = (8) — k?) [u(t,x) — o (t,)] = —gF (t) with
U(0,z2) =—p(0,z) =0

Hence the solution to the problem is

t
Ut x) =—/ e=IELE (1) dr
0 m
IEEE (1) | +/tF< ) Loty
=— YF(r oL T
m o dr 7r
t
1 (t) —/ F (1) Let-mLE 40
™ 0 ™
and therefore,
t
u(t,z) = EF(t) — EF(t) _/ F(T)Le(t—T)LEdT
T & 0 T
! x
= _/ F (1) Le®t—LZ gr
0 T

Recalling that

n=1
we have
Let=mly = Z (=)™ Le® DT sinna
n=1
oo 9 .
= Z 2 (=t (—kn?) e~ =Tk gin na
n=1 n
we get

(—=1)" (—kn?) (/t e~ (=R (1) dT) sinnz

0

nm
2k ! 2
_ 2 Z (=)™t (/ e~ (=" P (1) dT) nsinna.
™

0

Ezample 8.12 (Problem 40.4 on p. 128). Solve the following problem on 0 <
T <m,

Uy = kg, with v (0,2) =0 and
u(t,0) =0and u(t,m) = F ().

where F (0) = 0.
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To do this, let ¢ (t,7) = ZF (t) and then let U (t,x) = u(t,x) — ¢ (t,x).
We then have

(0 — kD) U = () — k?) [u(t,z) — @ (t,2)] = —%F (t) with

U(0,2) =—p(0,z) =0
U(t,0)=0=U(t,n).

Hence the solution to the problem is

t
Ul(t,z) = —/0 e(t_T)L%F(T) dr

t
d

= —et-"LIp (M) 6+ [ F(r) d—e(t_T)Lde

m T m

and therefore,

t
ulta) = ZF (1) - ZF (1) 7/0 F(r) Lt gy

Recalling that

n=1
we have
o 2
L (t—7)L _ < 1 71+1L (t—7)L
e x TLZ::I n( ) e sin nx
0o 9 .
= — (-1 +1( kn?) e (t=m)kn” gin na
n=1 n
we get

Ezample 8.13 (Forced Wave Equation problem). Consider the forced wave
equation,
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Upp = Ugy + Sing with u (¢,0) = u, (¢, 7) =0
u(0,z) = f(x) and u, (0,2) = g (x).

Letting L = d% acting on functions satisfying h (0) =0 = b’ (7), the formal
solution to our problems is given by

u (t,x) = cos (tr)f(x)+51nf/t§)g(x)
tsin((t—7)v—L
+A (t\/i )(sm )dr

In order to work this out we need to recall (see Problem 53.1 on p. 173) that
the eigenfunctions

-1
forne N

©n (x) = sin a, @ where «a, =

and Ly, = —a? ¢, and

s T .
. 9 1 — cos2a,x m  lsin2a,7 .
sin® a, xdx = ——dr=——-———F =
0 0

s
2 2 2 2a 2°

Thus we have
Z fasina,z and g (x Z Jn Sin apx
n=1

where

2 [T 2 [T
= 7/ f (x)sina,zdz and g, = 7/ g (z) sin apzd.
T Jo 0

s

The solution to our problem is thus
sin t\/
Z fncos (t\/ ) sin ., + Z gn———F—F ) sin i,

Ny
+ /0 Sm((a;;) /2) (sin g) dr

sin (apt) |
g n €08 (apt) sin a,x + E Gn———=SIn &
«

n=1 n=1 n

—4dcos((t—1)/2) ]} (Sing)

n

> 2. sin(ant) t x
= Z fr cos (ant) sinapx + Z Gn————L sina,x + 4 [1 — cos } sin —.
n=1 n=1 o 2 2
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8.4 Application of Duhamel’s principle to 1 - d wave and heat equations 111

Let us check that

t
v(t,z) =4 [1—(;052} sing

does satisfy the correct equation. It is easily seen that v (0,2) = v (0,2) =0
and

i (Leostan® 4 L] t] .z
Vg — U = — COS — Ss1n — — — COS — | SIn —
e Vrx R R N 2| %M3

.z

= Sin —

2

as required.

Ezample 8.14 (Ressonance in the Wave Equation). Consider now the forced
equation with a time dependent forcing, namely

t
Ut = Ugpy + Sin 3 sing with u (¢,0) = u, (t,7) =0
uw(0,z) =0 and u, (0,z) = 0.

The solution is given by
t o _ —
wen = [ DD (7t i
/t st =7)3) (t=7)5) (sin T sin E) dr
0

1
1 27 2

¢
1
= 2/0 sin(t—T)gsin%deing

=2 (Sin 1ﬁ — 1tcos 1t) sin z
2 2 2 2

1 1 .z

= <2 sin §t — tcos 2t> sin 5

wherein we have computed this integral using the identity,
1
sin Asin B = 3 (cos (A — B) — cos (A + B))

with A= (¢t —7) 5 and B =7/2 to find

t t— t ¢ "
L5 i) ()
(o (57 -vems)
=(—sin|-—7)]g—tcos=
2 2

94 t ; t
= 2sin - —tcos -.
2 2

This is an example the phenomenon of resonance, namely, the amplitude of
u (t,x) can be arbitrarily large for most values of large t.
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Proposition 8.15. The solution to

Upp = kg, with w(0,2) =0 = (0,z) and
uw(t,0) =0, and u(t,7) = F (1),

where 0 < x < 7 and (0) = 0 is given by

x _ ! 3 —1)"*t tsin —7)n) F (1) drsinnz
w(tr) = 2320 [ (e rn) P dr s

Moreover if F (1) = sinT, then

1/1 1
u(t,x) = —~ (2 sint — §t cos t) sinnz + (Terms remaining bounded) .

Notice that t cost can be arbitrarily large, another manifestation of resonance.

Proof. To prove this, let ¢ (t,) = £F (t) and then let U (t,2) = u (t,x) —
¢ (t,) . We then have

(97 = kO2) U = (97 = kd2) [u (t,2) — o (t,0)] = == F (¢) with
U(0,2) =—p(0,z) =0
U, (0,2) = —F (0) % and
Ut,0)=0=U(t,m).
Hence the solution to the problem is

sin (tv/—L) T _/t sin((t—7)vV=L) x .
v-L « 0

Integrating the last term by parts shows,

U(t,z) = —F (0)

tsin((t—T)\/i)f-- N dr = sin((t—T)\/i)E~ . =
/O N 7TF()d—[ = WF()T:0
B tisin((t—ﬂﬁ)g () dr
o dr V-L ™
B sin(t\/j)w-
=~ 0

+ /Ot cos ((t —7) \/i) %F (1)dr.

Combining the last two equations then implies that

s

U(t,x) = —/Ot Cos ((t —7) \/j) EF(T) dr.
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8.4 Application of Duhamel’s principle to 1 - d wave and heat equations 113

We now integrate by parts one more time to find,

U (t,z) = — cos ((t—r)\/j) z B +/t;_cos((tr)ﬁ) %F(T)dr

:—fF /ﬁsm (t—7’)x/7> EF(T)dT.

s

and therefore,

u(t,x):gF()——F /Fsm (t—T)ﬁ) F(r)dr

. /Otmsm (=) VL) ZF () ar
— /t V—Lsin ((t —7) m) % (i % (="t sinmc) F(r)dr

l S l n+1 tnsin —T)n 7)dT (sinnx
3 (0" [nsin (e =y F (r) dr i)

>1

EZ "H/ sin ((t —7)n) F (1) dr sinna.

:1

To be more explicit, let us suppose that F' (7) = sin 7, in this case

t ' 1
/051n((t—7)n)51n7'd7'—§/0 (cos((n+1)7 —nt) —cos(nt+ (1 —n)7)) dr

_ 1 {sin (n+1)7—nt) sin(nt+(1—-n)7)]"""
2

2 n+1 B (1—-mn) 0

for n # 1 and for n = 1 we have
- . 1. 1
sin ((¢t — 7)) sinTdr = —sint — —tcost.
o 2 2
Therefore

1/1 1
u(t,z) = - (2 sint — 515 cos t) sinx + Z (Terms remaining bounded) .
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9

Problems In other Coordinates Systems

9.1 A Heat equation in spherical coordinates

Ezample 9.1 (Ezample 40.3 on p. 126 (Spherical Coordinates)). Let x € R3,

|z = /z -z and
Q={zeR®:|z[<a}.

We wish to solve

ug (t,2) = Au (t,x) for x € 2 with
u(t,z) =01if |z| =a and u (0,2) = f (|z]) for z € 2

We will look for a solution which only depends on r = |z|, where r is the
radial variable in spherical coordinates. Recalling from Egs. (1.15) and (1.16)

that

2

1 .
Ag = ;33 (rg) + Oy (sin dy,g) + 039

r2sin r2sin? ¢

our equations becomes
ug (t,1) = %83(7"11 (t,r)) = % (ru),.,. (t,r) with
u(t,a) =0and u(0,r) = f(r) for 0 <r <a.
Hence if we let v (¢,7) := ru (t,r), we find that
ve (8,7) = U (¢,7) With v (¢,a) =0 =0 (¢,0) and v (0,r) =rf (r) for 0 <r < a.

We can now solve this equation for v by the standard means, namely,
r
rf(r)= by, sin nm—
7r) =Y businnrs

with 5 o
by, = f/ rf (r)sinnar dr.
0

a
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Fig. 9.1. The region (2.

Then we have, with L = 6?—:2 with Dirichlet boundary conditions, that

. r . r
v(t,r) = el g b, sinnm— = E bpetl sinnm—
a a

n2m? . r
= an exp |t | —— sin nmw—
a a

1 2.2
u(t,r)=— E by, exp (t <n 72r >> sinnm_.
r a a

and so

9.2 Problems with cylindrical symmetries

Ezample 9.2 (Example 43.1 on p. 137 (Harmonic functions in cylindrical co-
ordinates)). In this example, {2 denotes those points which may be written in
polar coordinates (p,6) with 1 < p < b and 0 < 0 < 7, see Figure below.
We wish to solve

Au = 0 with (9.1)
u(p,0) =0=wu(p,m) for 1 < p < band .
u(1,0) = f(0) and u (b,0) = g (0) for 0 < 0 < 7. (9.3)

Recalling that A in polar coordinates is given by
1 1,
Au = ;8p (pO,u) + ?%u (9.4)

we look for some solutions to Eq. (9.1) and Eq. (9.2) of the form w (p,0) =
R (p) © (0) . To short cut things, from experience we know that © (6) = sinné
for some n € N and hence

un (p,0) = R(p) sinnd.

Plugging this into Eq. (9.1) then implies

Page: 116 job: 110notes macro: svmono.cls date/time: 25-May-2004/11:28



9.2 Problems with cylindrical symmetries 117

1 n?
0=-0,(pd,R) — —=R.
p P( P ) pg

This is an Euler type equation which may be solved by looking for solution of
the form R (p) = p®. This happens iff

and hence we must have a2 = n? for & = +n. Thus we find
U (p,0) = (Anp”™ + Bypp ") sinnd.

So we now look for solutions of the form

oo

u(p,0) = Z (App”™ + Bnp~™) sinnd

n=1

and we wish to choose A, and B,, so that Eq. (9.3)) is satisfied. If we write

i )sinnd and g (0) = Z ) sinnfd

with
- 2 (7 .
f(n)= f/ f(0) sinnddf and
T Jo
- 2 (" .
g(n)= f/ g (0) sinnddf
T Jo
then we must have
Z f(n)sinnb = Z (A, + B,,)sinnf and
n=1 n=1
Z g (n)sinnf = Z (Apb™ + Bpb™") sinnf
n=1 n=1

which implies that

An + B, = f(n)
A"+ B,b " =g (n).

Solving these equations gives

B, (b"=b7") =b"f(n) =g (n)
An(b*"—b")z "f(n)—g(n)

or
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118 9 Problems In other Coordinates Systems

Fig. 9.2. The unit disk in R?.

g, i) =g

bn _ b—n
L b —gm) g —b"f(n)
n b—n _ bn - bn — b—n

and we find

b b — b

0-3
i_o: ( n) (p" —p ')+f(n)((z>n—(Z)n»sinne.

Ezample 9.3 ( Laplace’s equation on the disk). We wish to solve Laplace’s
equation,

(g )b i) +f<n>b“—g<n>p_n> -

Ay =0 on {2 with u = f on 912

where 2 = {(z,y) € R? : 22 + y? < 1} is the unit disk as in the Figure below.
The usual separation of variables arguments shows that

un, (p,0) = (Acosnb + Bsinnb) (ap™" + bp"™) forn=1,2,3,...

and for n = 0 we have 0 = 78 (p0,R), which implies p0,R = a and R =
alnp+ b so that

o (p,0) =1+ (alnp + b)
all solve Au = 0. However, we want our solution to be continuous and hence

bounded near (0,0) which requires us to take a = 0. Thus we look for a
solution of the form

Ay

5 +Z (A, cosnf + B, sinnb) p"

n=1

u(p,0) =
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9.3 Strum Liouville problem in cylindrical coordinates 119

To satisfy the boundary condition we must require,

o0

Ay )
f(0)= > +; (A, cosnb + B, sinnb),

ie.
1 /" 1 [
A, == f(0) cosnbdd and B, = — £ (0) sinnddb.
T T ) .
You are asked to show in Problem 48.7 that the solution may be written as
u( 9)—i/w L/ F () d for p <1
PO = on . 1—=2pcos (0 — ) + p? p==

This is called the Poisson integral formula.

9.3 Strum Liouville problem in cylindrical coordinates

In this section we will consider problems with symmetry about the z - axis.
We will, for simplicity, restrict ourselves the region,

Q={(z,y) eR*:2? +y* <’} CR?

and consider problems with associated to Dirichlet boundary conditions. That
is we wish to solve the heat and wave equations,

u; = Au with v = 0 on 942 and
uyy = Au with ©w = 0 on 942.

Following the strategy used throughout this course we first will look for
solutions to the eigenfunction problem,

Ap = —Ap on 2 with ¢ = 0 on 912. (9.5)

As above we will let

(F):= [ 1 (@0)g () dody. (9.6)
Let us recall that if ¢ is a solution to Eq. (9.5), then
=A@, ) = (=2, 0) = (Ap,p) = — /Q V| dudy

and hence it follows that A > 0. Moreover, if A = 0, then fQ |V90\2 dxdy =0
which implies Vi = 0. This condition along with the Dirichlet boundary
conditions implies that ¢ = 0.
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120 9 Problems In other Coordinates Systems
Conclusion: When looking for solutions to Eq. (9.5)) we may restrict our
attention to the case where A > 0.

Because of the symmetry of the domain, we will view ¢ as a function of
polar coordinate, (p,6) in which case Eq. (9.5) may be written as

1 1 .
0 (pDpp) + ?6%@ = —Xp with ¢ (c,0) =0, (9.7)
see Eq. (1.14). Moreover in polar coordinates, Eq. becomes

27 c
(f.9) = /0 /0 £ (p.6) g (p. ) pdpdo. (9.8)

The structure of Eq. (9.7)), suggests we look for solutions of the form, ¢ (p, 6) =
R (p) © () . Plugging this into Eq. (9.7)) implies

1 R
=0, (p0,R) © + ;0 = —ARO
p p

and then multiplying by Il%i@ gives

926
%@ (pO,R) + \p* = 79? =

for some constant k. We begin by recalling the solutions to

036 = —k6O with O (0) = 6 (2r) and 6’ (0) = O’ (27)

k

are of the form
O, (0) = A,, cosnb + B, sinnf

for somen = 0,1,2,... and constants A and B. For such a ©,, we have k = n?2.
Fixing such an n, we must now solve

205 (p0,R) + Mp? = n with R (c) = 0.
Multiplying this equation through by R, we get
pd, (pd,R) + (Ap* —n®) R =0 with R(c) =0
or equivalently that

p*R" + pR' + (A\p> —=n*) R =0 with R (c) = 0.

9.4 Bessel Equation and Functions

Before proceeding, we will need to understand better the solutions to the
ordinary differential equation,

p0, (p9,R) + (Ap* —n?) R = 0 with A > 0. (9.9)
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9.4 Bessel Equation and Functions 121

Lemma 9.4. If R solves FEq. , z:=\\p and

v =re =1 (7).

then y solves Bessel’s equation of order n,

a( d .
Ozm% (xdxy> —I—(J; —-n )y
=2y (z) + zy () + (2° —n®) y (2). (9.10)

Alternatively put, if y solves Bessel’s equation of order n, then R(p) :=
y (ﬁp) will solve Eq. .

Proof. By the chain rule,
d dr d x d d

_ = r—

pdip:pdip%_ V) dx dx

and hence in this new variable, Eq. becomes

and hence we have eliminate the A from the equation. ]
The previous results show that if y solves Bessel’s equation of order n and

Y (ﬁc) = 0, then

u(p,0) = (A cosnb + B, sinnf)y (\f)\p) (9.11)

satisfies
Au = —Au with u =0 on 012. (9.12)

To understand this better we need to understand the solution to Eq. (9.10)
better. We will do this in the next few results.

Theorem 9.5. Fvery solution to Bessel’s Fq. of order m which is
bounded near x = 0 is a multiple the Bessel function of the first kind of
order n defined by

T ) n+2k

I () = kZ:O FRCER (5 (9.13)

Page: 121 job: 110notes macro: svmono.cls date/time: 25-May-2004/11:28



122 9 Problems In other Coordinates Systems

Fig. 9.3. A plot of Jo, J3 and Jio. Notice that Jo (0) = 1 whereas J, (0) = 0 for all
n > 1.

Proof. This solution can be found by the usual power series method for
solving such equations, namely plugging in the series expansion of the form

o0
y (CL‘) — Zakxk-‘m,
k=0

into Eq. (9.10) and then finding relations that r and the coefficients ay have to
satisfy. This method produces the solution in Eq. (9.13]) above. Moreover, it
can be verified by straightforward computation that J,, (z) does indeed solve

Eq. (9.10).
To find more solutions one may use the method of “reduction of order” to
show that the general solution to Eq. (9.13)) is of the form

y(m):A/%(x)%dx—i—B

for some constants A and B. Since J,, (x) ~ 2™ for z near zero we learn that

1
u(z) ~ /de ~ 7" for z near 0 if n > 1,

w(z) ~In|z| for z near 0 if n > 1

and therefore, we find u (x) J,, (x) ~ =™ for x near zero if n > 1 or In|z| Jo (z)
if n = 0. At any rate, J,, (z) is the only solution to Bessel’s equation which is
bounded near x = 0. ]

Theorem 9.6. The functions J, (x) behave as shown in Figure . More
precisely, there are constants ¢, and 0, such that

Jn(z) = cpz Y2 sin(z + 6,) as z — oc. (9.14)
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9.4 Bessel Equation and Functions 123
In particular each Bessel function J, has an infinite number of zeros
0<Otn’1 <Op2<...0p; <...

and lim;_. o % = . (By convention, when n = 0 we let ap1 denote the first
zero of Jo which is positive.)

Proof. We give the idea for the proof without giving the full proof which
would take us to far afield. We begin by writing a solution to Bessel’s Eq.
in the form y () = 2"u () where r is to be determined so that u solves
a second order differential equation where v’ (z) does not appear. Since

ra" u 4+ 2"’ and

=r(r—1) 2" 2u+2ra" ' + 2"

!
Y
y//
we have

0=2y"+ay + (2> —n?)y

=r(r—1)2z"u+2ra" M + 2" 2
+rz"u+ 2" + (22 — n?) 2"u
=2 4+ 2r + 1) 2" + (r® + 2° — n?) 2" u.

So we choose r = f% and then divide the above result by z"+2 to learn u

solves,
1/4 —n?
u” + <1+/2n)u0.
x

For z large this equation looks like u” + u = 0 (the spring “constant,” 1 +
(1 —n?)2z72 — 1 as # — o0), and thus we expect u(z) ~ csin(z + ) for
x >> 1. Thus we are lead to expect that J,(z) = 2~'/?u (z) should behave

as described in Eq. (9.14). ]
Corollary 9.7 (Eigenfunctions). The functions,

Un,j (p,0) == (Ap cosnd + B, sinnb) J, (anng) , (9.15)
satisfy
2
o .
Auy, ;= —%Um]‘ with u, j =0 on 0f2. (9.16)

Proof. This is a consequence of Eqgs. (9.11]), (9.12)), Lemma Theorem
[9.5] and Theorem [9.6] =

Theorem 9.8 (Recurrence relations for Bessel functions). Let J, (z)
be Bessel function of the first kind of order n in FEq. , then:
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124 9 Problems In other Coordinates Systems

d
e (27", ()] = =2 " Jnq1 (@) or equivalently
x
xJ) (z) = nd, (x) — xJyy1 (x), forn=0,1,2,3,...,
. [" T, (z)] = 2" T (x) or equivalently
x

xJ) (z) = —nd, (z) + xJp_1 (x), forn=1,2,3,...,

and
TIpt1 (x) = 2nd, () —xJy_1 (z) forn=1,2,3,...

In particular from Eq. with n =0,

Ty (@) = Ty (x)

(9.21)

(9.22)

and form Eq. with n = 1, aJj (x) = —J1 (x) + xJy (z) which may be

written as

d
xJy (z) = e (zJy (x)).
Proof. Computing

d -n _ —nd - <_1)k z\ 2k
g [ @)] =2 dxkz_om-(n+k)!<2)

e _1)k N 2k—1
ﬁ”;M(g) k

= 2—"1

NE

(1) N 2k—1
= (k—=1)!- (n+k)! (5)
= (=

2 2k+1
o i e ES
El-(n+k+1)\2

el
Il

0

s —1)F 2k+14n
_— (-1 (f)
=kl (n+k+1)1\2
=—x "Jpt1 ().
This relation also implies

—Jpt1 (z) = x"% (27", (2)] = —na™ " J, (x) + J), (z)

(9.23)

which his equivalent to Eq. (9.18]). Eq. (9.20) is proved similarly, see Problems
69.1 from Brown and Churchill. Subtracting Eq. (9.20) from Eq. (9.18]) gives

Eq. (020,
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9.4 Bessel Equation and Functions 125

Theorem 9.9 (Bessel function normalizations). Let o, ; denote the j™
zero of Jp, (x). Then

1
1 2 1
/0 J’rZz (an,jp) pdp = 5 (J;L (a7z,j)) = 5 (']n—H (O‘n,j))2 (924)
More generally, if pn ; (p) = (an]p) where &y, j = au, j/c is the j™ - zero
of the function o — Jp (car),
© ., 2 2 2
[ 00 = G U Gnyl) = 5 U u) (029
When n = 0, this may be written as
R e 2 oy
(53 Goin) () i = 5 U (@030))* = G Gnge). (0260

Proof. To prove Eq. (9.24) we begin by recalling that R (p) := J, (ap)
where o = a5, solves the differential equation,

1 2
-0, (pO,R) + (a —Z)R:
P P
or equivalently that
n2
0, (PO, R) + (pa2 - ) R=0.
Therefore,

1 2
0= / {89 (pO,R) + (pa2 - np) R] pR'dp
0

1
= 1/0 [6,) (p&,)R)2 + (p2a2 — n2) apRQ} d

2
1 /1
= (pa R b+ 5/0 (p*a® —n?) 9,R*dp
1
[(p@ R)® + (p*a® —n?) RQ} lo — %/ 9y (p*a® —n*) R*dp
0

l\D\»—l l\.’)\»—l DO |

1
=5 [0, + (20 =) 2]~ o | Rodp
0
and we have shown,
Yoo 1 2 2 2 2\ p2] |1
/0 R pdp:ﬁ {(pﬁpR) + (p’a* —=n*) R } lo-
Thus we have shown,
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1
1
/0 T2 (ngp) pdp = 55— | (pan T} (an3p))* + (s> =) 2 (n )| I§
n,J
1 2 2 9\ 72 Lo 2
= g [(ena T (@) + (0 =) T (ans1)] = 5 (U 0.

To get the second equality in Eq. , set * = o, ; in recursion relation,
zJ) (z) = ndy, () — xJpi1 (2),
to find
an,j Iy, (Qng) =y (an5) = anjIn1 () = —anjdnt1 (anj)

which implies that [.J), (ozn,j)]2 = [Jn+1 (an, j)]2 .
More generally, if ¢, ; (p) = J,, (an iE ) then letting z = 2 or p = cx we
find
2 2

| s @odo= [ 2 (ans2) pap
O 0
1
= 02/0 J,ZL (Oén,jx) rdr = % (‘]7/1 (amj))z - %J'?H—l (anvj) :

Notice that @, ; = ay, j/c is the j*" — zero of the function o — J,, (cr) . With
this notation we have

Pn.j (P) = Jn (G, jp) and

‘9 ST 2 &
0 Pn,j (P) ,de = 5 (Jn (OénJ‘C)) = E'Jn—i-l (an,j) .

Corollary 9.10 (Eigenfunction Expansions). Any “reasonable function”,
F (p,0), may be expressed as

F(p,0) = %ZAO,]‘JO (Oéo,gg)

j=1
oo oo ) p
+ Z Z (A, cosnd + B, sinnd) J, (an_,jf) (9.27)
c
n=1j=1
where
2 (& ™ p
A= 7/ / F(p,0)J, |an;—)cosnfpdpdd (9.28
e A AR GO G (9.28)
and
2 C T p .
B, ;= 7/ / F(p,0)J, |a, ;= )sinnBpdpdd. (9.29
= @) ooy F 00 (ans2) sinnbpdpdo. (9.29)
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Proof. The existence of an expansion in Eq. is to be expected
from our previous experience with expansions related to symmetric eigenvalue
problems. (We will have to take this one on faith.) Given such an expansion
exists, the usual orthogonality arguments shows that the coefficients must be

given as in Eqgs. (9.28]) and (9.29). ]

Corollary 9.11 (Heat and Wave Eq. Solutions). The solution to the heat
equation,

uy = Au with u =0 on 02 and
u(t,p,0)=F(p,0)

is given by

1 2
u (t, P, 0) = 5 Z AO,je_tQO,j JO (ao,j g)

j=1

o0 o0
+ Z Z e ton I, (O‘n,jg) (A, cosnb + B, sinnb).

n=1j=1
The solution to the wave equation,

uyy = Au with w =0 on 912 and
u(t,p,0) =F (p,0) and us (t,p,0) =0

s given by

1 o0
u (t, P, 9) = 5 Z AQJ COS (aoﬁjt) JO (aoﬁjg)

j=1

+ i i cos (o ;t) Jp (an,jg) (A, cosnd + By, sinnf) .

n=1 j=1
The following result will enable us to work out some explicit examples.

Theorem 9.12 (Reduction formula, Problem 69.3).
/ §"Jp_1(8)ds = 2" J, (x) forneN (9.30)
0
/ sdo (s)ds = xJy (x) (9.31)
0

/gC §"Jo (s)ds = a™Jy (z) + (n— 1) 2" o (z) — (n — 1) /x s""2Jy (s) ds
0 0
(9.32)

The scaled version of Eq. 18
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128 9 Problems In other Coordinates Systems

x n _ 1
/0 t"Jo (at) dt = %Jl (ax) + na2 "1y (ax)

_ @ / "2 1, (at) dt. (9.33)
0

(0%

Proof. Equation (9.30) is an easy consequence of the fundamental theorem
of calculus and Eq. (9.19)). The proof of Eq. (9.32)) is Problem 69.3, see Solution
?77. Making the change of variables, s = at, we find

/ thO (Oét) dt :/ %JO (3) @ = a‘(n—i—l)/ SnJO (S) ds
0 0o @ o 0

(1) [(am)n Ji (axz) + (n—1) (04315)"_1 Jo (am)}
—(n—1)° 0 Esm2 g (s) ds

:%Jl (azx) + n

(ﬂ— 1)2 n— ‘ n—
— WQ 1 o t 2J0 (Oét) dt

n—1 n—1 (TL — 1)2 ¢ n—2
2" Jo (ax) — T/o t" < Jo (at) dt.

-1
o2 2" 1 Jp (o)

n

x
:Ejl (azx) +

9.5 Examples

Example 9.13. We want to expand 1 in terms of the functions ¢; (z) =
Jo (o) where a; is the j* — root of Jy (z). To this end we have

where

(f,9):= [ f(2)g(z)zdz.
Now, using Eq. (9.23) shows

—
\.H
AS)
.
Il
\_.
8
AS)
<.
—
8
S~—
QU
3
Il
S—
>
&
S
—~
o}
<
5
S~—
QU
53

1 [ 1 [ d 1
= —2/ sdo(s)ds = — — [sJ1(s)]ds = ;Jl (o).
0

Hence we find
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Solution to Exercise (76.1). We want to expand x in terms of the func-
tions ¢; (z) = Jo (a;x) where «; is the j' — root of Jy (). To this end we
have

where

0
Using the reduction formula in Eq. (9.33) we with = 1 and ¢ replaced by z,

1 1
1 —1 —1
/ " Jo (agz) de = —Jy () + "5 Jo (aj)—g/ a2 Jo (aj) da,
0 Q@ aj aj 0

with n = 2, we find

1 1
(x,05) = / 2?p; (v)dx = / 2?Jy (ajz) dw
0 0

1 1 1 !
= —J1 (o)) + —Jo (o) 2/ Jo (ojz) do
ij Oé] 3 0
1 1 [t
=—J () — —2/ Jo (ajx) dx
J aj Jo

B > B 1 ! Jo (a;x)

_2; {1 ;1 (O‘J)/o Yo (Oz]x)dx} ajJ1 (o))
> 1 i Jo (o

22 ll T, hEd ] e

Solution to Exercise (76.3). We want to expand

lifo<z <1
f@ﬂ{0ﬁ1<x<2
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We will begin by first expanding f (2z) instead, and for this we have

ﬂ%)}ji@é—— }jl wﬂ)
~—2

j:l (90]7(;0])

Z Jz aJ pj (z)

where, using Eq. (9.31)), we have,
1 1/2
(F20) ) = [ f(20) Talasa)ado = [ (ase) ads
0 0
Otj/2 o
:aj_Q/o JO()sds—a] ]J<2)

1 Q;
- (%)
2a; '\ 2

Therefore,

where Jy (2&;) = 0 for each j.
Solution to Exercise (77.2). In this problem we are asked to solve

Au=0on 2:={(p,0,2) : 0< p,z <1} with
w(1,60,2) =0, u,(p,0,0) =0 and u(p,0,1) =1.

Given the symmetry of this problem, the solution we are looking for should
only depend on (p, z) and we should begin by looking for solutions of the form
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u(p,z) = Jo (ao,p) Z (2).
Since 1
;5p (P9 Jo (0,5p)) = =i ;Jo (@0,5p)
we have
0=Au= %8,, (pO,u) + %%u + 0%u

- _a(Q),j']O (O(odp) Z (Z) + JO (O‘OJP) z" (Z)

and we conclude that
Z"(2) = aajZ (2).

The solutions to this equation are given by
Z (z) = Acosh oy jz + Bsinh oy ;2.

Because of the boundary condition, u, (p,#,0) = 0, we must require B = 0
and we will look for a solution of the form

u(p,z) = Z AjJo (ap,p) coshayg ;2.
j=1

To fix the constants A; we must require that
o0
1= Z AjJO (aoyjp) cosh @Q,j-

Jj=1

Recalling from Example that

1=2
Z Oéng a;) Jo (@;p)

we must require that
1

A;coshog ;i =2————
J 0.7 Oéle (Oéj)

and hence our solution is given by

22 Jo (e jp) coshayg ;2
ale a;) coshay ;

Solution to Exercise (77.7). Here we are to solve,

u=Au—bu=(A-b)u
on 2:={(t,p,0) :0<p<1andt>0} with
u(t,1,0) =0 and u (0, p,0) = 1.
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In this case we have

U(t7p) — et(A—b)l — e—tbetAl

7tb tA
= 2 E «
oszl a;) Jo (ap)

_ —tb}: Jo(ajp) ot
oz]Jl a;)
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Some Complex Variables Facts

Here we suppose w (t) = ¢(t) + id (t) where ¢ (t) and d (t) are two real valued
functions of ¢. An important example of such a complex valued function is
found in the next definition.

Definition A.1 (Euler’s Formula). Fort € R let

%

e :=cost +isint (A1)

and for z =x + iy let

z

e == e%e" = ¢” (cosy +isiny). (A.2)
Notice that any complex number, z = z + iy, may be written as z = re®’
where (r,6) are the polar coordinates of the point (z,y) € R2.

Definition A.2. If ¢ (t) and d (t) are differentiable, then we define

W (t) = ¢ (t) +id ()

/aﬁw(t)dt:_/jc(t)dtnhi/jd(t)dt

Ezample A.3. If w (t) = €' + isint, then

and

W (t) = €' —icost and
w/2 /2 L
/ w(t)dt:/ (e"+isint)dt = 3™ —1+i.
0 0
Example A.4. Suppose w (t) = €', then
d et = d (cost+isint) = —sint + i cost
dt~  dt B
=i (cost +isint) = ie'
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and

b b b b
/eitdt:/ (cost—i—isint)dt:/ costdt—i—i/ sin tdt

eit
= (sint —icost) | = —°.
i
Example below, generalizes this result.
Theorem A.5 (These definitions work just as in real variables). If
z(t)=a(t)+ib(t) and w(t) = c(t) +id(t) and A = u+ iv € C then
14 (w () + 2 (0) = (1) + £ (1)
2. L jw(t)z(t)] = wi+wz
3 [ Tw (t) + Az ()] dt = [Pw(t)dt+ A [z (¢) dt
4. fﬁ (t)dt = w(B) — w( ) In particular if w = 0 then w is constant.
.
B B
/ w(t)z(t)dt = —/ w(t)2(t)dt +w (t) z (t) 2.

/jw(t)dt g/j|w(t)dt.

Proof. 1. and 4. are easy.
2.

d .d
— [wz] = %(ac —bd) + za(bc + ad)
= (ac — bd) + i(be + ad)
+ (a¢ — bd) + i(bé + ad)
=wz +wsz.

3. The only interesting thing to check is that

/j)\z(t)dt:)\/jz(t)dt.

Again we simply write out the real and imaginary parts:

B B
/ Az (t)dt = / (u+v) (a(t) +1db(t))dt
B
= / (ua(t) — vb(t) + i [ub(t) + va(t)]) dt

B

B
_ / (ualt) — vb(t)) dt + i / [ub(t) + va(t)] dt

(03
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B B
/)\z(t) u+zv/ t) 4+ ib(t)] dt

(u+iv) </ﬁa dt+z/jb(t)dt>
J

B
= / (ua(t) — vb(t)) dt + i [ub(t) + va(t)] dt.

while

[e3%

Shorter Alternative: Just check it for A = 4, this is the only new thing
over the real variable theory.
5.

B B B
w(t) 2 (t) |§:/ %[w(t)z(t)] dt:/ u';(t)z(t)dt—k/ w(t):(t)dt.

[e%

6. (Skip this one!) Let p > 0 and § € R be chosen so that

B
/ w(t)dt = pe'?

=p= e_w/ﬂw(t)dt = /ﬁe_iew (t)dt
s , B .
= / Re [e "w ()] dt < / Re le®w (t)] | dt

[ 8
g/a ]e_“gw(t)‘dt:/a o (8)] dt.

Ezxample A.6. Suppose z = x + iy, then

then

/jw(t)dt

e*t = el := e* cosyt + ie™! sin yt

and so, again by definition,

d zt _

D ert —

dt  dt (e
=" (zcosyt — ysinyt) + ie™ (xsinyt + y cos yt)

zt

e’ cosyt + ie” tsin yt)

= (x +iy) (e” cos yt + ie™! sin yt) = ze
A better proof. By the product rule and Example [A24]
d tz

—e"* = —

dt dt [

etuL ezty] _ xetw elty + etwiyezty — Zeta: elty — zetz .
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Using this fact and item 4. of Theorem we may conclude,

b e?t
/ e*tdt = —|Z
@ z

If we write out what this means by comparing the real and imaginary parts
of both sides we find

b b b
/ e*tdt = / e* cos (yt) dt + i / e sin (yt) dt

while
et e cosyt +ie™ sinyt x — iy
z T+ 1y T — 1y
e:ct
= ——— |xcosyt +ysinyt + 1 (xsinyt — ycosyt
x2+y2[ yt +ysinyt + i (zsinyt — ycos yt)]

from which we may conclude that

b

xt
e
and

b
xt .
t)dt = —— t t
/ae cos (yt) e [z cos yt + ysin yt]

a

xt b

b
rt 3 .
t)dt = —— t — t
/ae sin (yt) pEay [ sinyt — y cos yt]

a

Theorem A.7 (Addition formula for e*). The function e* defined by Eq.
satisfies
—z 1

Proposition A.8. 1.e7* = = and
2. eWt? = eWeZ,

Proof. By the previous example we know

%etz = ze" with % = 070 = 1.

Similarly, using the chain rule or by direct computation, one shows

d

ae_tz = —ze'? with %% = 0190 = 1.

1. By the product rule,

d _ _ _
el [6 tzetz] = —zse tzetz +e tzzetz =0
dt
and therefore e *?¢e'? is independent of t and hence e *?e'* = ¢ 07¢0% = 1.

Taking ¢t = 1 proves 1.
2. Again by the product rule shows
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_ (’U) + Z) e—t(w-i—z)etwetz
- |€ +e—t(w+z)wetwetz + e—t(w+z)ethetz
0

T 7t(w+z)etw6tz:| _

and so e tWtaetwetz — e—tlwtz)ptwetz|  — 1. Taking t = 1 then shows
e~ (wt2)ewez — 1 and then using Item 1. we get item 2. [

Corollary A.9 (Addition formulas cos and sin). For a, 8 € R we have

cos (a4 (8) = cosacos B — sinasin 8

sin (o + () = cos asin § + cos fsin .

Proof. These follow by comparing the real and imaginary parts of the
identity o ‘
eeP = e @t0) = cos (a4 ) +isin (o + )

while

ee = (cosa + isina) - (cos B + isin )

= cosacos 8 — sinasin 8 + i (cos asin 8 + cos Bsin ) .
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Assigned Homework Problems:

1. Exercises from Lecture notes:

Exercises from the Book: 6.1, 6.2, 7.1, 10.1, 10.4, 10.5
2. Exercises from Lecture notes:

Exercises from the Book: 6.4, 6.5, 8.1, 10.6, 10.7
6.4-6.5, 8.1, 8.4, 10.6, 10.7

3. Exercises from Lecture notes:

Exercises from the Book: 13.2, 13.4, 13.6, 13.7, 13.9
4. Exercises from the Book: 15.1, 15.2, 15.4a, 17.3, 17.4, 17.6, 22.2

5. Exercises from the Book: 22.3, 22.4, 24.3, 24.4, 24.5, 24.6, 28.1, 28.2

6. Exercises from the Book: 28.4, 28.5 32.1, 32.2, 32.3, 32.5, 32.6a, (32.14
optional), 33.2, 33.5

7. Exercises from the Book: 33.15, 40.1, 40.2, 40.3, 43.1, 43.4, 53.1

8. Exercises from Lecture notes:
From book: 40.6, 40.7, 41.1, 41.2, 41.8, 43.2, 43.5, 45.7a (Read b only)

9. Exercises from the Book: 45.2, 45.5, 48.1, 53.7, 69.1, 69.3, 76.4
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