
Contents

Part I Algebra Homeworks

0 Math 103B Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.1 Homework #1 (Due Thursday, April 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Homework #2 (Due Thursday, April 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Homework #3 (Due Thursday, April 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Homework #4 (Due Thursday, April 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.5 Homework #5 (Due Thursday, April 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.6 Homework #6 (Due Thursday, May 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.7 Homework #7 (Due Thursday, May 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.8 Homework #8 (Due Thursday, May 21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.9 Homework #9 (Due Thursday, May 28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.10 Homework #10 (Due Thursday, June 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part II Math 103B Lecture Notes

1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Definition of Rings and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Appendix: Facts about finite sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Polynomial Ring Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Subrings and Ideals I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Lecture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Some simple ring facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The R [S] subrings I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Appendix: R [S] rings II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



4 Contents

4 Lecture 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 (Zero) Divisors and Integral Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Lecture 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Characteristic of a Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Lecture 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1 Square root field extensions of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Lecture 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Lecture 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9 Lecture 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1 Factor Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 Lecture 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.1 First Isomorphism Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Lecture 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Lecture 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.1 Higher Order Zeros (Not done in class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.2 More Example of Factor Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.3 II. More on the characteristic of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13 Lecture 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.1 Ideals and homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.2 Maximal and Prime Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 Lecture 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 Lecture 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
15.1 The rest this section was not covered in class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

16 Lecture 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
16.1 The Degree of a Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
16.2 The evaluation homomorphism (review) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
16.3 The Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
16.4 Appendix: Proof of the division algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Page: 4 job: 103bs macro: svmonob.cls date/time: 1-Jun-2009/17:40



Contents 5

17 Lecture 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17.1 Roots of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17.2 Roots with multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

18 Lecture 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
18.1 Irreducibles and Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

19 Lecture 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
19.1 Irreducibles Polynomials I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

20 Lecture 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.1 Two more homomorphisms involving polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.2 Gauss’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

21 Lecture 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
21.1 mod p Irreducibility Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

22 Lecture 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
22.1 Eisenstein’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
22.2 Summary of irreducibility tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

23 Lecture 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
23.1 Irreducibles and Primes II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

24 Lecture 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
24.1 Unique Factorization Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
24.2 Extra Topics (not covered in class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

24.2.1 Greatest Common Divisors (not covered in class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
24.2.2 Partial Fractions (not covered in class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
24.2.3 Factorizing Polynomials in finite time (not covered in class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
24.2.4 Fields of fractions (not covered in class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

25 Lecture 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
25.1 Vector Spaces & Review of Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

26 Lecture 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
26.1 Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

27 Lecture 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
27.1 Ruler and Compass Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Page: 5 job: 103bs macro: svmonob.cls date/time: 1-Jun-2009/17:40



6 Contents

28 Lecture 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
28.1 Geometric Consequences for the Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
28.2 Splitting fields over Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
28.3 More practice on understanding field extensions of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

29 Lecture 29 (Review Day) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
29.1 Definitions you should know: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
29.2 Examples of Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
29.3 Important theorems and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

30 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
30.1 Algebraic Coding Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
30.2 Hamming Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Page: 6 job: 103bs macro: svmonob.cls date/time: 1-Jun-2009/17:40



Part I

Algebra Homeworks





0

Math 103B Homework Problems

The problems are from Contemporary Abstract Algebra by Gallian, 6th Edi-
tion [2] unless otherwise noted. We will label the problems via Chapter.Number,
so that 4.12 will refer to exercise 12 in Chapter 4.

0.1 Homework #1 (Due Thursday, April 2)

Hand in Problems:

• Chapter 12: #2, 6, 7, 18, 22, 26, 42, 44*, 46 (∗Hint: consider (−a)n).

Extra problems for practice (do not hand in):

• Chapter 12: # 14, 19, 29, 31, 37, 39, 41, 47

0.2 Homework #2 (Due Thursday, April 9)

Hand in Problems:

• Chapter 13: #4, 6, 13, 14, 16, 22, 44, 54
Chapter 14: #2, 4, 10, 12

Extra problems for practice (do not hand in):

• Chapter 13, #5, 15, 21, 25, 29, 33, 39, 45, 53.
Chapter 14, #1, 5, 7, 11, 17, 19.

Hints:
13.54: Use Lagrange’s theorem from last quarter.

0.3 Homework #3 (Due Thursday, April 16)

Hand in Problems:

• Chapter 14, #18, 40
Chapter 15, #6, 12, 14, 16, 28, 30

Exercise 0.1. Let R be an integral domain with characteristic zero and ϕ,ψ :
Q→ R be two ring homomorphisms such that ϕ (1) = ψ (1) . Show ϕ (a) = ψ (a)
for all a ∈ Q. Thus ϕ is uniquely determined by its value on 1 ∈ Q.

Hints:
14.18: In other words, find all possible choices of a pair of ideals I and J of

Z which satisfy, 〈35〉 ( J ( I.
15.28: Consider the relationship mod 3.
Extra problems for practice (do not hand in):

• Chapter 14, #25, 27, 59
Chapter 15, #11, 13

0.4 Homework #4 (Due Thursday, April 23)

Hand in Problems:

• Chapter 14, #24, 34, 37, 54
• Chapter 15, #20, 26, 36, 40.
• Chapter 16, #2, 4, 6, 14

Hints:

15.26: The 1st - isomorphism theorem for rings may help.
15.36. Use Exercise 0.1 to see that any homomorphism ϕ : Q→ Q is

determined uniquely by the value, a = ϕ (1) . Now use the multiplicativity
property of ϕ to determine the allowed values for a.

15.40. Think about the first isomorphism theorem and make use of Exercise
25 of Chapter 14.

Extra problems for practice (do not hand in):

• Chapter 14, #29, 33
• Chapter 15, #39, 45, 51.



4 0 Math 103B Homework Problems

0.5 Homework #5 (Due Thursday, April 30)

Hand in Problems:

Exercise 0.2 (This problem is to be handed in!). Let R be a commutative
ring with identity. Then R is a field iff R has no non-trivial proper ideals. (Recall
that I ⊂ R is the trivial ideal if I = {0} and is a proper ideal if I  R.)

• Chapter 14, #28, 32, 36, 52
• Chapter 15, #58, 60

Hints:
14.36: Let S := {a+ bi : a ∈ Z4 and b ∈ Z2} . To count the number of ele-

ment in Z [i] / 〈2 + 2i〉 you might show

S 3 (a+ bi)
ψ−→ [a+ bi] ∈ Z [i] / 〈2 + 2i〉

is a bijection.
14.52: One way is to prove that Z [i] / 〈1− i〉 is isomorphic to Z2.
Extra problems for practice (do not hand in):

• Chapter 14, #31
• Chapter 15, #27, 29, 42, 62

0.6 Homework #6 (Due Thursday, May 7)

Hand in Problems:

• Chapter 16, #12, 18, 20, 24, 30, 36, 38, 48.
Hint:

16.20. Think about the roots of the polynomial h = f − g.
Extra problems for practice (do not hand in):

• Chapter 16, #1, 11, 13, 15, 19, 41

0.7 Homework #7 (Due Thursday, May 14)

Hand in Problems:

• Chapter 17, #2, 4, 6, 8, 12, 14, 25 (17.4 is a special case of 17.25!)

Extra problems for practice (do not hand in):

• Chapter 17, #1, 3, 5, 7, 21

0.8 Homework #8 (Due Thursday, May 21)

Hand in all problems below:

• Chapter 17, #10a, c, e, l0 b & d, 32

Exercise 0.3. Prove Proposition 20.4.

Exercise 0.4. Let ψ : R→ T be an onto ring homomorphism of commutative
rings, R and T and I := ker (ψ) .

1. Explain why ψ̄ : R [x]→ T [x] is onto.
2. Show ker

(
ψ̄
)

= I [x] .
3. Use the first isomorphism theorem to conclude R [x] /I [x] is isomorphic
T [x] .

Exercise 0.5. Let R be a commutative ring and I ⊂ R be an ideal. Use the
results of Exercise 0.4 to show R [x] /I [x] is isomorphic to (R/I) [x] .

Exercise 0.6. Use Exercise 0.5 to give another proof Exercise 16.38 on page
300 of the book. This proof should be very short and similar in spirit to the
proof of Gauss’ Lemma on p. 305 of the book.

Exercise 0.7. Prove Proposition 18.7.

Exercise 0.8. Prove Proposition 23.3

Exercise 0.9. Show x8 − 20/9 ∈ Q [x] is irreducible over Q. Conclude that
8
√

20/9 /∈ Q.

Hints:
17.10b & d. Try the mod p irreducibility test, using some small prime p.

Follow the method of examples 7 and 8 in the book.
17.32. One (but not the only) possibility is to show Z [x] /

〈
x2 + 1

〉
is iso-

morphic to a ring we have studied frequently. Then use Theorems 14.3 and 14.4
of the book.

0.9 Homework #9 (Due Thursday, May 28)

Hand in Problems:

• Chapter 18, #4, 12, 28, 30.
• Chapter 19, #8, 22, 26.

Page: 4 job: 103bs macro: svmonob.cls date/time: 1-Jun-2009/17:40



Exercise 0.10. Let f (x) := 6x3 − 14x2 − 2x + 2 ∈ Z [x] . Factor f (x) into
irreducible polynomials; 1) over R, 2) over Q, and 3) over Z. (The answers are
different in each case.) Hint: first find the rational roots of f (x) .

Extra problems for practice (do not hand in):

• Chapter 18, #1, 5, 27
• Chapter19, #7, 13, 14.

0.10 Homework #10 (Due Thursday, June 4)

Hand in Problems:

• Chapter 20, #1, 3, 5
• Chapter 21, #10, 14

• Chapter 23, #14

Exercise 0.11. Let g(x) = x3 + 2x+ 1 ∈ Q [x] . Let α ∈ C be a root of g over
the complex numbers (do not try to find α explicitly; you don’t need to in order
to do this problem.)

1. Show g (x) is irreducible.
2. What is the minimal polynomial of α over Q.
3. Explain how you know that

K = Q [α] = Q+Qα+Qα2 = {a+ bα+ cα2 : a, b, c ∈ Q}

is a subfield of C.
4. Find explicit a, b, c ∈ Q such that α−1 = a + bα + cα2. (Note that some

such expression must exist since K is a field.)
5. Find the degree, [Q (α) : Q] of the field extension Q ⊂ Q (α) . Recall that

this is defined to be the dimension of Q (α) as a vector space over Q.

Hints:
20.1: The hint in the back is useless. One way to “describe the elements”

is to find a basis for the given field as a Q-vector space. (Hint: it has dimension
3.)

21.14: See Examples 28.17 and 28.18.
23.14: Use Exercise 17.25 to show the relevant polynomial is irreducible.





Part II

Math 103B Lecture Notes





1

Lecture 1

1.1 Definition of Rings and Examples

A ring will be a set of elements, R, with both an addition and multiplication
operation satisfying a number of “natural” axioms.

Axiom 1.1 (Axioms for a ring) Let R be a set with 2 binary operations
called addition (written a + b) and multiplication (written ab). R is called a
ring if for all a, b, c ∈ R we have

1. (a+ b) + c = a+ (b+ c)
2. There exists an element 0 ∈ R which is an identity for +.
3. There exists an element −a ∈ R such that a+ (−a) = 0.
4. a+ b = b+ a.
5. (ab)c = a(bc).
6. a(b+ c) = ab+ ac and (b+ c)a = ba+ bc.

Items 1. – 4. are the axioms for an abelian group, (R,+) . Item 5. says mul-
tiplication is associative, and item 6. says that is both left and right distributive
over addition. Thus we could have stated the definition of a ring more succinctly
as follows.

Definition 1.2. A ring R is a set with two binary operations “+” = addition
and “·”= multiplication, such that (R,+) is an abelian group (with identity
element we call 0), “·” is an associative multiplication on R which is both left
and right distributive over addition.

Remark 1.3. The multiplication operation might not be commutative, i.e., ab 6=
ba for some a, b ∈ R. If we have ab = ba for all a, b ∈ R, we say R is a
commutative ring. Otherwise R is noncommutative.

Definition 1.4. If there exists and element 1 ∈ R such that a1 = 1a = a for all
a ∈ R, then we call 1 the identity element of R [the book calls it the unity.]

Most of the rings that we study in this course will have an identity element.

Lemma 1.5. If R has an identity element 1, then 1 is unique. If an element
a ∈ R has a multiplicative inverse b, then b is unique, and we write b = a−1.

Proof. Use the same proof that we used for groups! I.e. 1 = 1 · 1′ = 1′ and
if b, b′ are both inverses to a, then b = b (ab′) = (ba) b′ = b′.

Notation 1.6 (Subtraction) In any ring R, for a ∈ R we write the additive
inverse of a as (−a). So at a + (−a) = (−a) + a = 0 by definition. For any
a, b ∈ R we abbreviate a+ (−b) as a− b.

Let us now give a number of examples of rings.

Example 1.7. Here are some examples of commutative rings that we are already
familiar with.

1. Z= all integers with usual + and ·.
2. Q= all mn such that m,n ∈ Z with n 6= 0, usual + and ·. (We will generalize

this later when we talk about “fields of fractions.”)
3. R= reals, usual + and ·.
4. C= all complex numbers, i.e. {a+ ib : a, b ∈ R} , usual + and · operations.

(We will explicitly verify this in Proposition 3.7 below.)

Example 1.8. 2Z = {. . . ,−4,−2, 0, 2, 4, . . . } is a ring without identity.

Example 1.9 (Integers modulo m). For m ≥ 2, Zm = {0, 1, 2, . . . ,m− 1} with

+ = addition modm
· = multiplication modn.

Recall from last quarter that (Zm,+) is an abelian group and we showed,

[(ab) modm · c] modm = [abc] = [a (bc) modm] modm (associativity)

and

[a · (b+ c) modm] modm = [a · (b+ c)] modm
= [ab+ ac] modm = (ab) modm+ (ac) modm

which is the distributive property of multiplication modm. Thus Zm is a ring
with identity, 1.
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Example 1.10. M2(F ) = 2 × 2 matrices with entries from F , where F = Z, Q,
R, or C with binary operations;[

a b
c d

]
+
[
a′ b′

c′ d′

]
=
[
a+ a′ b+ b′

c+ c′ d+ d′

]
(addition)

[
a b
c d

] [
a′ b′

c′ d′

]
=
[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
. (multiplication)

That is multiplication is the usual matrix product. You should have checked in
your linear algebra course that M2 (F ) is a non-commutative ring with identity,

I =
[

1 0
0 1

]
.

For example let us check that left distributive law in M2(Z);[
a b
c d

]([
e f
g h

]
+
[
p q
r s

])
=
[
a b
c d

] [
p+ e f + q
g + r h+ s

]
=
[
b (g + r) + a (p+ e) a (f + q) + b (h+ s)
d (g + r) + c (p+ e) c (f + q) + d (h+ s)

]
=
[
bg + ap+ br + ae af + bh+ aq + bs
dg + cp+ dr + ce cf + dh+ cq + ds

]
while [

a b
c d

] [
e f
g h

]
+
[
a b
c d

] [
p q
r s

]
=
[
bg + ae af + bh
dg + ce cf + dh

]
+
[
ap+ br aq + bs
cp+ dr cq + ds

]
=
[
bg + ap+ br + ae af + bh+ aq + bs
dg + cp+ dr + ce cf + dh+ cq + ds

]
which is the same result as the previous equation.

Example 1.11. We may realize C as a sub-ring of M2 (R) as follows. Let

I =
[

1 0
0 1

]
∈M2 (R) and i :=

[
0 −1
1 0

]
and then identify z = a+ ib with

aI+bi := a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
=
[
a −b
b a

]
.

Since

i2 =
[

0 −1
1 0

] [
0 −1
1 0

]
= I

it is straight forward to check that

(aI+bi) (cI+di) = (ac− bd) I + (bc+ ad) i and
(aI+bi) + (cI+di) = (a+ c) I + (b+ d) i

which are the standard rules of complex arithmetic. The fact that C is a ring
now easily follows from the fact that M2 (R) is a ring.

In this last example, the reader may wonder how did we come up with the

matrix i :=
[

0 −1
1 0

]
to represent i. The answer is as follows. If we view C as R2

in disguise, then multiplication by i on C becomes,

(a, b) ∼ a+ ib→ i (a+ ib) = −b+ ai ∼ (−b, a)

while

i
(
a
b

)
=
[

0 −1
1 0

](
a
b

)
=
(
−b
a

)
.

Thus i is the 2× 2 real matrix which implements multiplication by i on C.

Theorem 1.12 (Matrix Rings). Suppose that R is a ring and n ∈ Z+. Let
Mn (R) denote the n× n – matrices A = (Aij)

n
i,j=1 with entries from R. Then

Mn (R) is a ring using the addition and multiplication operations given by,

(A+B)ij = Aij +Bij and

(AB)ij =
∑
k

AikBkj .

Moreover if 1 ∈ R, then

I :=

1 0 0

0
. . . 0

0 0 1


is the identity of Mn (R) .

Proof. I will only check associativity and left distributivity of multiplication
here. The rest of the proof is similar if not easier. In doing this we will make
use of the results about sums in the Appendix 1.2 at the end of this lecture.

Let A, B, and C be n× n – matrices with entries from R. Then
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1.2 Appendix: Facts about finite sums 11

[A (BC)]ij =
∑
k

Aik (BC)kj =
∑
k

Aik

(∑
l

BklClj

)
=
∑
k,l

AikBklClj

while

[(AB)C]ij =
∑
l

(AB)il Clj =
∑
l

(∑
k

AikBkl

)
Clj

=
∑
k,l

AikBklClj .

Similarly,

[A (B + C)]ij =
∑
k

Aik (Bkj + Ckj) =
∑
k

(AikBkj +AikCkj)

=
∑
k

AikBkj +
∑
k

AikCkj = [AB]ij + [AC]ij .

Example 1.13. In Z6, 1 is an identity for multiplication, but 2 has no multi-
plicative inverse. While in M2(R), a matrix A has a multiplicative inverse if
and only if det(A) 6= 0.

Example 1.14 (Another ring without identity). Let

R =
{[

0 a
0 0

]
: a ∈ R

}
with the usual addition and multiplication of matrices.[

0 a
0 0

] [
0 b
0 0

]
=
[
0 0
0 0

]
.

The identity element for multiplication “wants” to be
[
1 0
0 1

]
, but this is not in

R.
More generally if (R,+) is any abelian group, we may make it into a ring

in a trivial way by setting ab = 0 for all a, b ∈ R. This ring clearly has no
multiplicative identity unless R = {0} is the trivial group.

1.2 Appendix: Facts about finite sums

Throughout this section, suppose that (R,+) is an abelian group, Λ is any set,
and Λ 3 λ→ rλ ∈ R is a given function.

Theorem 1.15. Let F := {A ⊂ Λ : |A| <∞} . Then there is a unique function,
S : F → R such that;

1. S (∅) = 0,
2. S ({λ}) = rλ for all λ ∈ Λ.
3. S (A ∪B) = S (A) + S (B) for all A,B ∈ F with A ∩B = ∅.

Moreover, for any A ∈ F , S (A) only depends on {rλ}λ∈A .

Proof. Suppose that n ≥ 2 and that S (A) has been defined for all A ∈ F
with |A| < n in such a way that S satisfies items 1. – 3. provided that |A ∪B| <
n. Then if |A| = n and λ ∈ A, we must define,

S (A) = S (A \ {λ}) + S ({λ}) = S (A \ {λ}) + rλ.

We should verify that this definition is independent of the choice of λ ∈ A. To
see this is the case, suppose that λ′ ∈ A with λ′ 6= λ, then by the induction
hypothesis we know,

S (A \ {λ}) = S ([A \ {λ, λ′}] ∪ {λ′})
= S (A \ {λ, λ′}) + S ({λ′}) = S (A \ {λ, λ′}) + rλ′

so that

S (A \ {λ}) + rλ = [S (A \ {λ, λ′}) + rλ′ ] + rλ

= S (A \ {λ, λ′}) + (rλ′ + rλ)
= S (A \ {λ, λ′}) + (rλ + rλ′)
= [S (A \ {λ, λ′}) + rλ] + rλ′

= [S (A \ {λ, λ′}) + S ({λ})] + rλ′

= S (A \ {λ′}) + rλ′

as desired. Notice that the “moreover” statement follows inductively using this
definition.

Now suppose that A,B ∈ F with A∩B = ∅ and |A ∪B| = n. Without loss
of generality we may assume that neither A or B is empty. Then for any λ ∈ B,
we have used the inductive hypothesis, that

S (A ∪B) = S (A ∪ [B \ {λ}]) + rλ = (S (A) + S (B \ {λ})) + rλ

= S (A) + (S (B \ {λ}) + rλ) = S (A) + (S (B \ {λ}) + S ({λ}))
= S (A) + S (B) .
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12 1 Lecture 1

Thus we have defined S inductively on the size of A ∈ F and we had no
choice in how to define S showing S is unique.

Notation 1.16 Keeping the notation used in Theorem 1.15, we will denote
S (A) by

∑
λ∈A rλ. If A = {1, 2, . . . , n} we will often write,

∑
λ∈A

rλ =
n∑
i=1

ri.

Corollary 1.17. Suppose that A = A1 ∪ · · · ∪ An with Ai ∩ Aj = ∅ for i 6= j
and |A| <∞. Then

S (A) =
n∑
i=1

S (Ai) i.e.
∑
λ∈A

rλ =
n∑
i=1

(∑
λ∈Ai

rλ

)
.

Proof. As usual the proof goes by induction on n. For n = 2, the assertion
is one of the defining properties of S (A) :=

∑
λ∈A rλ. For n ≥ 2, we have used

the induction hypothesis and the definition of
∑n
i=1 S (Ai) that

S (A1 ∪ · · · ∪An) = S (A1 ∪ · · · ∪An−1) + S (An)

=
n−1∑
i=1

S (Ai) + S (An) =
n∑
i=1

S (Ai) .

Corollary 1.18 (Order does not matter). Suppose that A is a finite subset
of Λ and B is another set such that |B| = n = |A| and σ : B → A is a bijective
function. Then ∑

b∈B

rσ(b) =
∑
a∈A

ra.

In particular if σ : A→ A is a bijection, then∑
a∈A

rσ(a) =
∑
a∈A

ra.

Proof. We again check this by induction on n = |A| . If n = 1, then B = {b}
and A = {a := σ (b)} , so that∑

x∈B
rσ(x) = rσ(b) =

∑
a∈A

ra

as desired. Now suppose that N ≥ 1 and the corollary holds whenever n ≤ N.
If |B| = N + 1 = |A| and σ : B → A is a bijective function, then for any b ∈ B,
we have with B′ := B′ \ {b} that

∑
x∈B

rσ(x) =
∑
x∈B′

rσ(x) + rσ(b).

Since σ|B′ : B′ → A′ := A \ {σ (b)} is a bijection, it follows by the induction
hypothesis that

∑
x∈B′ rσ(x) =

∑
λ∈A′ rλ and therefore,∑

x∈B
rσ(x) =

∑
λ∈A′

rλ + rσ(b) =
∑
λ∈A

rλ.

Lemma 1.19. If {aλ}λ∈Λ and {bλ}λ∈Λ are two sequences in R, then∑
λ∈A

(aλ + bλ) =
∑
λ∈A

aλ +
∑
λ∈A

bλ.

Moreover, if we further assume that R is a ring, then for all r ∈ R we have the
right and left distributive laws;,

r ·
∑
λ∈A

aλ =
∑
λ∈A

r · aλ and(∑
λ∈A

aλ

)
· r =

∑
λ∈A

aλ · r.

Proof. This follows by induction. Here is the key step. Suppose that α ∈ A
and A′ := A \ {α} , then∑

λ∈A

(aλ + bλ) =
∑
λ∈A′

(aλ + bλ) + (aα + bα)

=
∑
λ∈A′

aλ +
∑
λ∈A′

bλ + (aα + bα) (by induction)

=

(∑
λ∈A′

aλ + aλ+

)(∑
λ∈A′

bλ + bα

) (
commutativity

and associativity

)
=
∑
λ∈A

aλ +
∑
λ∈A

bλ.

The multiplicative assertions follows by induction as well,

r ·
∑
λ∈A

aλ = r ·

(∑
λ∈A′

aλ + aα

)
= r ·

(∑
λ∈A′

aλ

)
+ r · aα

=

(∑
λ∈A′

r · aλ

)
+ r · aα

=
∑
λ∈A

r · aλ.
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Lecture 2

Recall that a ring is a set, R, with two binary operations “+” = addition
and “·”= multiplication, such that (R,+) is an abelian group (with identity
element we call 0), (·) is an associative multiplication on R which is left and right
distributive over “+.” Also recall that if there is a multiplicative identity, 1 ∈ R
(so 1a = a1 = a for all a), we say R is a ring with identity (unity). Furthermore
we write a − b for a + (−b) . This shows the importance of distributivity. We
now continue with giving more examples of rings.

Example 2.1. Let R denote the continuous functions, f : R→ R such that
limx→±∞ f (x) = 0. As usual, let f + g and f · g be pointwise addition and
multiplication of functions, i.e.

(f + g) (x) = f (x) + g (x) and (f · g) (x) = f (x) g (x) for all x ∈ R.

Then R is a ring without identity. (If we remove the restrictions on the functions
at infinity, R would be a ring with identity, namely 1 (x) ≡ 1.)

Example 2.2. For any collection of rings R1, R2, . . . , Rm, define the direct sum
to be

R = R1 ⊕ · · · ⊕Rn = {(r1, r2, . . . , rn) : ri ∈ Ri all i}

the set of all m-tuples where the ith coordinate comes from Ri. R is a ring if
we define

(r1, r2, . . . , rm) + (s1, s2, . . . , sm) = (r1s1, r2s2, . . . , rmsm),

and

(r1, r2, . . . , rm) + (s1, s2, . . . , sm) = (r1 + s1, r2 + s2, . . . , rm + sm).

The identity element 0 is (0, 0, . . . , 0). (Easy to check)

2.1 Polynomial Ring Examples

Example 2.3 (Polynomial rings). Let R = Z, Q, R, or Z and let R [x] denote the
polynomials in x with coefficients from R. We add and multiply polynomials in
the usual way. For example if f = 3x2 − 2x+ 5 and g = 5x2 + 1, then

f + g = 8x2 − 2x+ 6 and

fg = (5x3 + 1)(3x2 − 2x+ 5)

= 5− 2x+ 3x2 + 25x3 − 10x4 + 15x5.

One may check (see Theorem 2.4 below) that R [x] with these operations is a
commutative ring with identity, 1 = 1.These rules have been chosen so that
(f + g) (α) = f (α) + g (α) and (f · g) (α) = f (α) g (α) for all α ∈ R where

f (α) :=
∞∑
i=0

aiα
i.

Theorem 2.4. Let R be a ring and R [x] denote the collection of polynomials
with the usual addition and multiplication rules of polynomials. Then R [x] is
again a ring. To be more precise,

R [x] =

{
p =

∞∑
i=0

pix
i : pi ∈ R with pi = 0 a.a.

}
,

where we say that pi = 0 a.a. (read as almost always) provided that
|{i : pi 6= 0}| <∞. If q :=

∑∞
i=0 qix

i ∈ R [x] , then we set,

p+ q :=
∞∑
i=0

(pi + qi)xi and (2.1)

p · q :=
∞∑
i=0

( ∑
k+l=i

pkql

)
xi =

∞∑
i=0

(
i∑

k=0

pkqi−k

)
xi. (2.2)

Proof. The proof is similar to the matrix group examples. Let me only say
a few words about the associativity property of multiplication here, since this
is the most complicated property to check. Suppose that r =

∑∞
i=0 rix

i, then
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p (qr) =
∞∑
n=0

 ∑
i+j=n

pi (qr)j

xn

=
∞∑
n=0

 ∑
i+j=n

pi

 ∑
k+l=j

qkrl

xn

=
∞∑
n=0

( ∑
i+k+l=n

piqkrl

)
xn.

As similar computation shows,

(pq) r =
∞∑
n=0

( ∑
i+k+l=n

piqkrl

)
xn

and hence the multiplication rule in Eq. (2.2) is associative.

2.2 Subrings and Ideals I

We now define the concept of a subring in a way similar to the concept of
subgroup.

Definition 2.5 (Subring). Let R be a ring. If S is subset of R which is itself
a ring under the same operations +, · of R restricted to the set S, then S is
called a subring of R.

Lemma 2.6 (Subring test). S ⊂ R is a subring if and only if S is a subgroup
of (R,+) and S is closed under multiplication. In more detail, S is a subring
of R, iff for all a, b ∈ S, that

a+ b ∈ S, − a ∈ S, and ab ∈ S.

Alternatively we may check that

a− b ∈ S, and ab ∈ S for all a, b ∈ S.

Put one last way, S is a subring of R if (S,+) is a subgroup of (R,+) which is
closed under the multiplication operation, i.e. S · S ⊂ S.

Proof. Either of the conditions, a + b ∈ S, −a ∈ S or a − b ∈ S for all
a, b ∈ S implies that (S,+) is a subgroup of (R,+) . The condition that (S, ·)
is a closed shows that “·” is well defined on S. This multiplication on S then
inherits the associativity and distributivity laws from those on R.

Definition 2.7 (Ideals). Let R be a ring. A (two sided) ideal, I, of R is a
subring, I ⊂ R such that RI ⊂ R and IR ⊂ R. Alternatively put, I ⊂ R is an
ideal if (I,+) is a subgroup of (R,+) such that RI ⊂ R and IR ⊂ R. (Notice
that every ideal, I, of R is also a subring of R.)

Example 2.8. Suppose that R is a ring with identity 1 and I is an ideal. If 1 ∈ I,
then I = R since R = R · 1 ⊂ RI ⊂ I.

Example 2.9. Given a ring R, R itself and {0} are always ideals of R. {0} is the
trivial ideal. An ideal (subring) I ⊂ R for which I 6= R is called a proper ideal
(subring).

Example 2.10. If R is a commutative ring and b ∈ R is any element, then the
principle ideal generated by b, denoted by 〈b〉 or Rb, is

I = Rb = {rb : r ∈ R}.

To see that I is an ideal observer that if r, s ∈ R, then rb and sb are generic
elements of I and

rb− sb = (r − s)b ∈ Rb.

Therefore I is an additive subgroup of R. Moreover, (rb) s = s (rb) = (sr) b ∈ I
so that RI = IR ⊂ I.

Theorem 2.11. Suppose that R = Z or R = Zm for some m ∈ Z+. Then the
subgroups of (R,+) are the same as the subrings of R which are the same as
the ideals of R. Moreover, every ideal of R is a principle ideal.

Proof. If R = Z, then 〈m〉 = mZ inside of Z is the principle ideal generated
by m. Since every subring, S ⊂ Z is also a subgroup and all subgroups of Z are
of the form mZ for some m ∈ Z, it flows that all subgroups of (Z,+) are in fact
also principle ideals.

Suppose now that R = Zn. Then again for any m ∈ Zn,

〈m〉 = {km : k ∈ Z} = mZn (2.3)

is the principle ideal in Zn generated by m. Conversely if S ⊂ Zn is a sub-ring,
then S is in particular a subgroup of Zn. From last quarter we know that this
implies S = 〈m〉 = 〈gcd (n,m)〉 for some m ∈ Zn. Thus every subgroup of
(Zn,+) is a principle ideal as in Eq. (2.3).

Example 2.12. The set,

S =
{[
a b
0 d

]
: a, b, d ∈ R

}
,

is a subring of M2(R). To check this observe that;
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2.2 Subrings and Ideals I 15[
a b
0 d

]
−
[
a′ b′

0 d′

]
=
[
a− a b− b′

0 d− d′
]
∈ S

and [
a b
0 d

] [
a′ b′

0 d′

]
=
[
a′a ab′ + bd′

0 dd′

]
∈ S.

S is not an ideal since,[
0 0
1 0

] [
a b
0 d

]
=
[
0 0
a b

]
/∈ S if a 6= 0.

Example 2.13. Consider Zm and the subset U(m) the set of units in Zm. Then
U(m) is never a subring of Zm, because 0 /∈ U(m).

Example 2.14. The collection of matrices,

S =
{[

0 a
b c

]
: a, b, c ∈ R

}
,

is not a subring of M2(R). It is an additive subgroup which is however not
closed under matrix multiplication;[

0 a
b c

] [
0 a′

b′ c′

]
=
[
ab′ ac′

cb′ ba+ cc′

]
/∈ S

Definition 2.15. Let R be a ring with identity. We say that S ⊂ R is a unital
subring of R if S is a sub-ring containing 1R. (Most of the subrings we will
consider later will be unital.)

Example 2.16. Here are some examples of unital sub-rings.

1. S in Example 2.12 is a unital sub-ring of M2 (R) .
2. The polynomial functions on R is a unital sub-ring of the continuous func-

tions on R.
3. Z [x] is a unital sub-ring of Q [x] or R [x] or C [x] .
4. The Gaussian integres, Z [i] := {a+ ib : a, b ∈ Z} is a unital subring of
C. (For some number theoretic applications of the Gaussian integers see [1,
Sections 12.3, p. 364 – 371.].)

Example 2.17. Here are a few examples of non-unital sub-rings.

1. nZ ⊂ Z is a non-unital subring of Z for all n 6= 0 since nZ does not even
contain an identity element.

2. If R = Z8, then every non-trivial proper subring, S = 〈m〉 , of R has no
identity. The point is if k ∈ Z8 is going to be an identity for some sub-ring
of Z8, then k2 = k. It is now simple to check that k2 = k in Z8 iff k = 0
or 1 which are not contained in any proper non-trivial sub-ring of Z8. (See
Remark 2.18 below.)

3. Let R := Z6 and S = 〈2〉 = {0, 2, 4} is a sub-ring of Z6. Moreover, one sees
that 1S = 4 is the unit in S (42 = 4 and 4 · 2 = 2) which is not 1R = 1.
Thus again, S is not a unital sub-ring of Z6.

4. The set,

S =
{[
a 0
0 0

]
: a ∈ R

}
⊂ R = M2(R),

is a subring of M2 (R) with

1S =
[
1 0
0 0

]
6=
[
1 0
0 1

]
= 1R

and hence is not a unital subring of M2 (R) .
5. Let v be a non-zero column vector in R2 and define,

S := {A ∈M2 (R) : Av = 0} .

Then S is a non-unital subring of M2 (R) which is not an ideal. (You should
verify these assertions yourself!)

Remark 2.18. Let n ∈ Z+ and S := 〈m〉 be a sub-ring of Zn. It is natural to
ask, when does S have an identity element. To answer this question, we begin
by looking for m ∈ Zn such that m2 = m. Given such a m, we claim that m is
an identity for 〈m〉 since

(km)m = km2 = k1m for all km ∈ 〈m〉 .

The condition that m2 = m is equivalent to m (m− 1) = 0, i.e. n|m (m− 1) .
Thus 〈m〉 = 〈gcd (n,m)〉 is a ring with identity iff n|m (m− 1) .

Example 2.19. Let us take m = 6 in the above remark so that m (m− 1) =
30 = 3 · 2 · 5. In this case 10, 15 and 30 all divide m (m− 1) and therefore 6
is the identity element in 〈6〉 thought of as a subring of either, Z10, or Z15, or
Z30. More explicitly 6 is the identity in

〈6〉 = 〈gcd (6, 10)〉 = 〈2〉 = {0, 2, 4, 6, 8} ⊂ Z10,

〈6〉 = 〈gcd (6, 15)〉 = 〈3〉 = {0, 3, 6, 9, 12} ⊂ Z15, and
〈6〉 = 〈gcd (6, 30)〉 = {0, 6, 12, 18, 24} ⊂ Z30.

Example 2.20. On the other hand there is no proper non-trivial subring of Z8

which contains an identity element. Indeed, if m ∈ Z8 and 8 = 23|m (m− 1) ,
then either 23|m if m is even or 23| (m− 1) if m is odd. In either the only
m ∈ Z8 with this property is m = 0 and m = 1. In the first case 〈0〉 = {0} is
the trivial subring of Z8 and in the second case 〈1〉 = Z8 is not proper.

Page: 15 job: 103bs macro: svmonob.cls date/time: 1-Jun-2009/17:40





3

Lecture 3

3.1 Some simple ring facts

The next lemma shows that the distributive laws force 0, 1, and the symbol
“−” to behave in familiar ways.

Lemma 3.1 (Some basic properties of rings). Let R be a ring. Then;

1. a0 = 0 = 0a for all a ∈ R.
2. (−a)b = − (ab) = a(−b) for all a, b ∈ R
3. (−a)(−b) = ab for all a, b ∈ R. In particular, if R has identity 1, then

(−1)(−1) = 1 and
(−1)a = −a for all a ∈ R.

(This explains why minus times minus is a plus! It has to be true in any
structure with additive inverses and distributivity.)

4. If a, b, c ∈ R, then a (b− c) = ab− ac and (b− c) a = ba− ca.

Proof. For all a, b ∈ R;

1. a0 + 0 = a0 = a(0 + 0) = a0 + a0, and hence by cancellation in the abelian
group, (R,+) , we conclude that , so 0 = a0. Similarly one shows 0 = 0a.

2. (−a)b+ab = (−a+a)b = 0b = 0, so (−a)b = − (ab). Similarly a(−b) = −ab.
3. (−a)(−b) = − (a(−b)) = −(−(ab)) = ab, where in the last equality we have

used the inverting an element in a group twice gives the element back.
4. This last item is simple since,

a (b− c) := a (b+ (−c)) = ab+ a (−c) = ab+ (−ac) = ab− ac.

Similarly one shows that (b− c) a = ba− ca.

In proofs above the reader should not be fooled into thinking these things
are obvious. The elements involved are not necessarily familiar things like real
numbers. For example, in M2(R) item 2 states, (−I)A = −(IA) = −A, i.e.[

−1 0
0 −1

] [
a b
c d

]
=
[
−a −b
−c −d

]
X

The following example should help to illustrate the significance of Lemma 3.1.

Example 3.2. Consider R = 〈2〉 = {0, 2, 4, 6, 8} ⊂ Z10. From Example 2.19 we
know that 1R = 6 which you can check directly as well. So −1R = −6 mod 10 =
4. Taking a = 2 let us write out the meaning of the identity, (−1R) · a = −a;

(−1R) · a = 4 · 2 = 8 = −a.

Let us also work out (−2) (−4) and compare this with 2 · 4 = 8;

(−2) (−4) = 8 · 6 = 48 mod 10 = 8.

Lastly consider,

4 · (8− 2) = 4 · 6 = 24 mod 10 = 4 while
4 · 8− 4 · 2 = 2− 8 = −6 mod 10 = 4.

3.2 The R [S] subrings I

Here we will construct some more examples of rings which are closely related
to polynomial rings. In these examples, we will be given a commutative ring R
(usually commutative) and a set S equipped with some sort of multiplication,
we then are going to define R [S] to be the collection of linear combinations of
elements from the set, ∪∞n=0RS

n. Here RSn consists of formal symbols of the
form rs1 . . . sn with r ∈ R and si ∈ S. The next proposition gives a typical
example of what we have in mind.

A typical case will be where S = {s1, . . . , sn} is a finite set then

Proposition 3.3. If R ⊂ R̄ is a sub-ring of a commutative ring R̄ and S =
{s1, . . . , sn} ⊂ R̄. Let

R [S] = R [s1, . . . , sn] =

{∑
k

aks
k : ak ∈ R with ak = 0 a.a.

}
,

where k = (k1, . . . kn) ∈ Nn and sk = sk11 . . . skn
n with a0s

0 := a0 ∈ R. Then
R [s1, . . . , sn] is a sub-ring of R̄.
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Proof. If f =
∑
k aks

k and g =
∑
k bks

k, then

f + g =
∑
k

(ak + bk) sk ∈ R [S] ,

−g =
∑
k

−bksk ∈ R [S] , and

f · g =
∑
k

aks
k ·
∑
l

bls
l

=
∑
k,l

akbls
ksl =

∑
k,l

akbls
k+l

=
∑
n

( ∑
k+l=n

akbl

)
sn ∈ R [S] .

Example 3.4 (Gaussian Integers). Let i :=
√
−1 ∈ C. Then Z [i] =

{x+ yi : x, y ∈ Z} . To see this notice that i2 = −1 ∈ Z, and therefore

∞∑
k=0

ak (i)k =
∞∑
l=0

[
a4l (i)

4l + a4l+1 (i)4l+1 + a4l+2 (i)4l+2 + a4l+3 (i)4l+3
]

=
∞∑
l=0

[a4l + a4l+1i− a4l+2 − a4l+3i]

=
∞∑
l=0

[a4l − a4l+2] +

( ∞∑
l=0

[a4l+1 − a4l+3]

)
i

= x+ yi

where

x =
∞∑
l=0

[a4l − a4l+2] and y =
∞∑
l=0

[a4l+1 − a4l+3] .

Example 3.5. Working as in the last example we see that

Z
[√

2
]

=
{
a+ b

√
2 : a, b ∈ Z

}
is a sub-ring of R.

Example 3.6 (Gaussian Integers mod m). For any m ≥ 2, let

Zm [i] = {x+ yi : x, y ∈ Zm}

with the obvious addition rule and multiplication given by

(x+ yi) (u+ vi) = ux− vy + (uy + vx) i in Zm.

The next proposition shows that this is a commutative ring with identity, 1.

Proposition 3.7. Let R be a commutative ring with identity and let

R [i] := {a+ bi : a, b ∈ R} ∼= {(a, b) : a, b ∈ R} = R2.

Define addition and multiplication of R [i] as one expects by,

(a+ bi) + (c+ di) = (a+ c) + (b+ d) i

and
(a+ bi) · (c+ di) = (ac− bd) + (bc+ ad) i.

Then (R [i] ,+, ·) is a commutative ring with identity.

Proof. This can be checked by brute force. Rather than use brute force lets
give a proof modeled on Example 1.11, i.e. we will observe that we may identify
R [i] with a unital subring of M2 (R) . To do this we take,

i :=
[

0 −1
1 0

]
∈M2 (R) and 1 := I =

[
1 0
0 1

]
∈M2 (R) .

Thus we take,

a+ ib←→ aI + bi =
[
a −b
b a

]
∈M2 (R) .

Since

(aI + bi) + (cI + di) =
[
a −b
b a

]
+
[
c −d
d c

]
=
[
a+ c −b− d
b+ d a+ c

]
= (a+ c) I + (b+ d) i

and

(aI + bi) (cI + di) =
[
a −b
b a

] [
c −d
d c

]
=
[
ac− bd −ad− bc
ad+ bc ac− bd

]
= (ac− bd) I + (bc+ ad) i

we see that

S :=
{[

a −b
b a

]
= aI + bi : a, b ∈ R

}
is indeed a unital sub-ring of M2 (R) . Moreover, the multiplication rules on S
and R [i] agree under the identification; a + ib ←→ aI + bi. Therefore we may
conclude that (R [i] ,+, ·) satisfies the properties of a ring.
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3.3 Appendix: R [S] rings II

You may skip this section on first reading.
Definition 3.8. Suppose that S is a set which is equipped with an associative
binary operation, ·, which has a unique unit denoted by e. (We do not assume
that (S, ·) has inverses. Also suppose that R is a ring, then we let R [S] consist
of the formal sums,

∑
s∈S ass where {as}s∈S ⊂ R is a sequence with finite

support, i.e. |{s ∈ S : as 6= 0}| <∞. We define two binary operations on R [S]
by, ∑

s∈S
ass+

∑
s∈S

bss :=
∑
s∈S

(as + bs) s

and ∑
s∈S

ass ·
∑
s∈S

bss =
∑
s∈S

ass ·
∑
t∈S

btt

=
∑
s,t∈S

asbtst =
∑
u∈S

(∑
st=u

asbt

)
u.

So really we R [S] are those sequences a := {as}s∈S with finite support with the
operations,

(a+ b)s = as + bs and (a · b)s =
∑
uv=s

aubv for all s ∈ S.

Theorem 3.9. The set R [S] equipped with the two binary operations (+, ·) is
a ring.

Proof. Because (R,+) is an abelian group it is easy to check that (R [S] ,+)
is an abelian group as well. Let us now check that · is associative on R [S] . To
this end, let a, b, c ∈ R [S] , then

[a (bc)]s =
∑
uv=s

au (bc)v =
∑
uv=s

au

∑
αβ=v

bαcβ


=
∑
uαβ=s

aubαcβ

while

[(ab) c]s =
∑
αβ=s

(ab)α cβ =
∑
αβ=s

∑
uv=α

aubvcβ

=
∑
uvβ=s

aubvcβ =
∑
uαβ=s

aubαcβ = [a (bc)]s

as desired. Secondly,

[a · (b+ c)]s =
∑
uv=s

au (b+ c)v =
∑
uv=s

au (bv + cv)

=
∑
uv=s

aubv +
∑
uv=s

aucv

= [a · b]s + [a · c]s = [a · b+ a · c]s

from which it follows that a · (b+ c) = a · b + a · c. Similarly one shows that
(b+ c) · a = b · a+ c · a.

Lastly if S has an identity, e, and es := 1s=e ∈ R, then

[a · e]s =
∑
uv=s

auev = as

from which it follows that e is the identity in R [S] .

Example 3.10 (Polynomial rings). Let x be a formal symbol and let S :={
xk : k = 0, 1, 2 . . .

}
with xkxl := xk+l being the binary operation of S. No-

tice that x0 is the identity in S under this multiplication rule. Then for any
ring R, we have

R [S] =

{
p (x) :=

n∑
k=0

pkx
k : pk ∈ R and n ∈ N

}
.

The multiplication rule is given by

p (x) q (x) =
∞∑
k=0

 k∑
j=0

pjqk−j

xk

which is the usual formula for multiplication of polynomials. In this case it is
customary to write R [x] rather than R [S] .

This example has natural generalization to multiple indeterminants as fol-
lows.

Example 3.11. Suppose that x = (x1, . . . , xd) are d indeterminants and k =
(k1, . . . , kd) are multi-indices. Then we let

S :=
{
xk := xk11 . . . xkd

d : k ∈ Nd
}

with multiplication law given by

xkxk
′

:= xk+k
′
.
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Then

R [S] =

{
p (x) :=

∑
k

pkx
k : pk ∈ R with pk = 0 a.a.

}
.

We again have the multiplication rule,

p (x) q (x) =
∑
k

∑
j≤k

pjqk−j

xk.

As in the previous example, it is customary to write R [x1, . . . , xd] for R [S] .

In the next example we wee that the multiplication operation on S need not
be commutative.

Example 3.12 (Group Rings). In this example we take S = G where G is a
group which need not be commutative. Let R be a ring and set,

R [G] := {a : G→ R| |{g :∈ G} : a (g) 6= 0| <∞} .

We will identify a ∈ R [G] with the formal sum,

a :=
∑
g∈G

a (g) g.

We define (a+ b) (g) := a (g) + b (g) and

a · b =

∑
g∈G

a (g) g

(∑
k∈G

b (k) k

)
=
∑
g,k∈G

a (g) b (k) gk

=
∑
h∈G

∑
gk=h

a (g) b (k)

h =
∑
h∈G

∑
g∈G

a (g) b
(
g−1h

)h.

So formally we define,

(a · b) (h) :=
∑
g∈G

a (g) b
(
g−1h

)
=
∑
g∈G

a (hg) b
(
g−1

)
=
∑
g∈G

a
(
hg−1

)
b (g)

=
∑
gk=h

a (g) b (k) .

We now claim that R is a ring which is non – commutative when G is non-
abelian.

Let us check associativity and distributivity of ·. To this end,

[(a · b) · c] (h) =
∑
gk=h

(a · b) (g) · c (k)

=
∑
gk=h

[∑
uv=g

a (u) · b (v)

]
· c (k)

=
∑
uvk=h

a (u) · b (v) · c (k)

while on the other hand,

[a · (b · c)] (h) =
∑
uy=h

a (u) · (b · c) (y)

=
∑
uy=h

a (u) ·

∑
vk=y

b (v) · c (y)


=
∑
uvk=h

a (u) · (b (v) · c (y))

=
∑
uvk=h

a (u) · b (v) · c (k) .

For distributivity we find,

[(a+ b) · c] (h) =
∑
gk=h

(a+ b) (g) · c (k) =
∑
gk=h

(a (g) + b (g)) · c (k)

=
∑
gk=h

(a (g) · c (k) + b (g) · c (k))

=
∑
gk=h

a (g) · c (k) +
∑
gk=h

b (g) · c (k)

= [a · c+ b · c] (h)

with a similar computation showing c · (a+ b) = c · a+ c · b.
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4.1 Units

Definition 4.1. Suppose R is a ring with identity. A unit of a ring is an
element a ∈ R such that there exists an element b ∈ R with ab = ba = 1. We
let U (R) ⊂ R denote the units of R.

Notice that in fact a = b in this definition since,

a = a · 1 = a (ub) = (au) b = 1 · b = b.

Moreover this argument shows that a satisfying au = 1 = ua is unique if it
exists. For this reason we will write u−1 for a.

Proposition 4.2. The set U (R) equipped the multiplication law of R is a group.

Proof. This is a straight forward verification – see the homework assign-
ment. The main point is to observe that u, v ∈ U (R) , then a := v−1u−1

satisfies, a (uv) = 1 = (uv) a, showing U (R) is closed under the multiplication
operation of R.

Example 4.3. In M2(R), the units in this ring are exactly the elements in
GL(2,R), i.e.

U (M2 (R)) = GL(2,R) = {A ∈M2 (R) : detA 6= 0} .

If you look back at last quarters notes you will see that we have already
proved the following theorem. I will repeat the proof here for completeness.

Theorem 4.4 (U (Zm) = U (m)). For any m ≥ 2,

U (Zm) = U (m) = {a ∈ {1, 2, . . . ,m− 1} : gcd (a,m) = 1} .

Proof. If a ∈ U (Zm) , there there exists r ∈ Zm such that 1 = r · a =
ramodm. Equivalently put, m| (ra− 1) , i.e. there exists t such that ra − 1 =
tm. Since 1 = ra− tm it follows that gcd (a,m) = 1, i.e. that a ∈ U (m) .

Conversely, if a ∈ U (m) ⇐⇒ gcd (a,m) = 1 which we know implies there
exists s, t ∈ Z such that sa + tm = 1. Taking this equation modm and letting
b := smodm ∈ Zm, we learn that b · a = 1 in Zm, i.e. a ∈ U (Zm) .

Example 4.5. In R, the units are exactly the elements in R× := R \ {0} that is
U (R) = R×.

Example 4.6. Let R be the non-commutative ring of linear maps from R∞ to
R∞ where

R∞ = {(a1, a2, a3, . . . ) : ai ∈ R for all i} ,

which is a vector space over R. Further let A,B ∈ R be defined by

A (a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ) and
B (a1, a2, a3, . . . ) = (a2, a3, a4, . . . ) .

Then BA = 1 where

1 (a1, a2, a3, . . . ) = (a1, a2, a3, . . . )

while
AB (a1, a2, a3, . . . ) = (0, a2, a3, . . . ) 6= 1 (a1, a2, a3, . . . ) .

This shows that even though BA = 1 it is not necessarily true that AB = 1.
Neither A nor B are units of R∞.

4.2 (Zero) Divisors and Integral Domains

Definition 4.7 (Divisors). Let R be a ring. We say that for elements a, b ∈ R
that a divides b if there exists an element c such that ac = b.

Note that if R = Z then this is the usual notion of whether one integer
evenly divides another, e.g., 2 divides 6 and 2 doesn’t divide 5.

Definition 4.8 (Zero divisors). A nonzero element a ∈ R is called a zero
divisor if there exists another nonzero element b ∈ R such that ab = 0, i.e. a
divides 0 in a nontrivial way. (The trivial way for a|0 is; 0 = a ·0 as this always
holds.)

Definition 4.9 (Integral domain). A commutative ring R with no zero di-
visors is called an integral domain (or just a domain). Alternatively put,
R should satisfy, ab 6= 0 for all a, b ∈ R with a 6= 0 6= b.
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Example 4.10. The most familiar rings to you, Z, Q, R, and C have no zero-
divisors and hence are integral domains.. In these number systems, it is a fa-
miliar fact that ab = 0 implies either a = 0 or b = 0. Another integral domain
is the polynomial ring R [x] , see Proposition 4.13 below.

Example 4.11. The ring, Z6, is not an integral domain. For example, 2 · 3 = 0
with 2 6= 0 6= 3, so both 2 and 3 are zero divisors.

Lemma 4.12. The ring Zm is an integral domain iff m is prime.

Proof. If m is prime we know that U (Zm) = U (m) = Zm \ {0} . Therefore
if a, b ∈ Zm with a 6= 0 and ab = 0 then b = a−1ab = a−10 = 0.

If m = a · b with a, b ∈ Zm \ {0} , then ab = 0 while both a and b are not
equal to zero in Zm.

Proposition 4.13. If R is an integral domain, then so is R [x] . Conversely if
R is not an integral domain then neither is R [x] .

Proof. If f, g ∈ R [x] are two non-zero polynomials. Then f = anx
n+ l.o.ts.

(lower order terms) and g = bmx
m+ l.o.ts. with an 6= 0 6= bm and therefore,

fg = anbmx
n+m + l.o.ts. 6= 0 since anbm 6= 0.

The proof of the second assertion is left to the reader.

Example 4.14. All of the following rings are integral domains; Z [x] , Q [x] , R [x] ,
and C [x] . We also know that Zm [x] is an integral domain iff m is prime.

Example 4.15. If R is the direct product of at least 2 rings, then R has zero
divisors. For example if R = Z⊕ Z, then (0, b)(a, 0) = (0, 0) for all a, b ∈ Z.

Example 4.16. If R is an integral domain, then any unital subring S ⊂ R is also
an integral domain. In particular, for any θ ∈ C, then Z [θ] , Q [θ] , and R [θ] are
all integral domains.

Remark 4.17. It is not true that if R is not an integral domain then every sub-
ring, S ⊂ R is also not an integral domain. For an example, take R := Z ⊕ Z
and S := {(a, a) : a ∈ Z} ⊂ R. (In the language of Section 5.1 below, S =
{n · (1, 1) : n ∈ Z} which is the sub-ring generated by 1 = (1, 1) . Similar to
this counter example, commutative ring with identity which is not an integral
domain but has characteristic being either 0 or prime would give a counter
example.)

Domains behave more nicely than arbitrary rings and for a lot of the quarter
we will concentrate exclusively on domains. But in a lot of ring theory it is very
important to consider rings that are not necessarily domains like matrix rings.

Theorem 4.18 (Cancellation). If R is an integral domain and ab = ac with
a 6= 0, then b = c. Conversely if R is a commutative ring with identity satisfying
this cancellation property then R has no zero divisors and hence is an integral
domain.

Proof. If ab = ac, then a(b − c) = 0. Hence if a 6= 0 and R is an integral
domain, then b− c = 0, i.e. b = c.

Conversely, if R satisfies cancellation and ab = 0. If a 6= 0, then ab = a · 0
and so by cancellation, b = 0. This shows that R has no zero divisors.

Example 4.19. The ring, M2(R) contains many zero divisors. For example[
0 a
0 0

] [
0 b
0 0

]
=
[
0 0
0 0

]
.

So in M2 (R) we can not conclude that B = 0 if AB = 0 with A 6= 0, i.e.
cancellation does not hold.

4.3 Fields

If we add one more restriction to a domain we get a familiar class of objects
called fields.

Definition 4.20 (Fields). A ring R is a field if R is a commutative ring with
identity and U(R) = R \ {0}, that is, every non-zero element of R is a unit, in
other words has a multiplicative inverse.

Lemma 4.21 (Fields are domains). If R is a field then R is an integral
domain.

Proof. If R is a field and xy = 0 in R for some x, y with x 6= 0, then

0 = x−10 = x−1xy = y.

Example 4.22. Z is an integral domain that is not a field. For example 2 6= 0
has no multiplicative inverse. The inverse to 2 should be 1

2 which exists in Q
but not in Z. On the other hand, Q and R are fields as the non-zero elements
have inverses back in Q and R respectively.

Example 4.23. We have already seen that Zm is a field iff m is prime. This
follows directly form the fact that U (Zm) = U (m) and U (m) = Zm \ {0} iff m
is prime. Recall that we also seen that Zm is an integral domain iff m is prime
so it follows Zm is a field iff it is an integral domain iff m is prime. When p is
prime, we will often denote Zp by Fp to indicate that we are viewing Zp is a
field.
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In fact, there is another way we could have seen that Zp is a field, using the
following useful lemma.

Lemma 5.1. If R be an integral domain with finitely many elements, then R
is a field.

Proof. Let a ∈ R with a 6= 0. We need to find a multiplicative inverse for
a. Consider a, a2, a3, . . . . Since R is finite, the elements on this list are not all
distinct. Suppose then that ai = aj for some i > j ≥ 1. Then ajai−j = aj · 1.
By cancellation, since R is a domain, ai−j = 1. Then ai−j−1 is the inverse for
a. Note that ai−j−1 ∈ R makes sense because i− j − 1 ≥ 0.

For general rings, an only makes sense for n ≥ 1. If 1 ∈ R and a ∈ U (R) ,
we may define a0 = 1 and a−n =

(
a−1

)n for n ∈ Z+. As for groups we then
have anam = an+m for all m,n ∈ Z. makes sense for all n ∈ Z, but in generally
negative powers don’t always make sense in a ring. Here is another very inter-
esting example of a field, different from the other examples we’ve written down
so far.

Example 5.2. Lets check that C is a field. Given 0 6= a + bi ∈ C, a, b ∈ R,
i =
√
−1, we need to find (a+ ib)−1 ∈ C. Working formally; we expect,

(a+ ib)−1 =
1

a+ bi
=

1
a+ bi

a− bi
a− bi

a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i ∈ C,

which makes sense if N (a+ ib) := a2 + b2 6= 0, i.e. a+ ib 6= 0. A simple direct
check show that this formula indeed gives an inverse to a+ ib;

(a+ ib)
[

a

a2 + b2
− b

a2 + b2
i

]
=

1
a2 + b2

(a+ ib) (a− ib) =
1

a2 + b2
(
a2 + b2

)
= 1.

So if a+ ib 6= 0 we have shown

(a+ bi)−1 =
a

a2 + b2
− b

a2 + b2
i.

Example 5.3. I claim that R := Z3 [i] = Z3 + iZ3 is a field where we use the
multiplication rule,

(a+ ib) (c+ id) = (ac− bd) + i (bc+ ad) .

The main point to showing this is a field beyond showing R is a ring (see
Proposition 3.7) is to show (a+ ib)−1 exists in R whenever a+ ib 6= 0. Working
formally for the moment we should have,

1
a+ ib

=
a− ib
a2 + b2

.

This suggest that
(a+ ib)−1 =

(
a2 + b2

)−1
(a− ib) .

In order for the latter expression to make sense we need to know that a2+b2 6= 0
in Z3 if (a, b) 6= 0 which we can check by brute force;

a 0 0 0 1 1 1 2 2 2
b 0 1 2 0 1 2 0 1 2
N (a+ ib)
= a2 + b2

0 1 1 1 2 2 1 2 2
.

Alternatively we may show Z3 [i] is an integral domain and then use Lemma
5.1. Notice that

(a+ ib) (c+ id) = 0 =⇒ (a− ib) (a+ ib) (c+ id) = 0 i.e.(
a2 + b2

)
(c+ id) = 0.

So using the chart above, we see that a2 + b2 = 0 iff a + ib = 0 and therefore,
if a+ ib 6= 0 then c+ id = 0.

5.1 Characteristic of a Ring

Notation 5.4 Suppose that a ∈ R where R is a ring. Then for n ∈ Z we define
n · a ∈ R by, 0Z · a = 0R and
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n · a =


n times︷ ︸︸ ︷

a+ · · ·+ a if n ≥ 1

−

|n| times︷ ︸︸ ︷
(a+ · · ·+ a) = |n| · (−a) if n ≤ −1

.

So 3 · a = a+ a+ a while −2 · a = −a− a.

Lemma 5.5. Suppose that R is a ring and a, b ∈ R. Then for all m,n ∈ Z we
have

(m · a) b = m · (ab) , (5.1)
a (m · b) = m · (ab) . (5.2)

We also have

− (m · a) = (−m) · a = m · (−a) and (5.3)
m · (n · a) = mn · a. (5.4)

Proof. If m = 0 both sides of Eq. (5.1) are zero. If m ∈ Z+, then using the
distributive associativity laws repeatedly gives;

(m · a) b =

m times︷ ︸︸ ︷
(a+ · · ·+ a)b

=

m times︷ ︸︸ ︷
(ab+ · · ·+ ab) = m · (ab) .

If m < 0, then

(m · a) b = (|m| · (−a)) b = |m| · ((−a) b) = |m| · (−ab) = m · (ab)

which completes the proof of Eq. (5.1). The proof of Eq. (5.2) is similar and
will be omitted.

If m = 0 Eq. (5.3) holds. If m ≥ 1, then

− (m · a) = −
m times︷ ︸︸ ︷

(a+ · · ·+ a) =

m times︷ ︸︸ ︷
((−a) + · · ·+ (−a)) = m · (−a) = (−m) · a.

If m < 0, then

− (m · a) = − (|m| · (−a)) = (− |m|) · (−a) = m · (−a)

and

− (m · a) = − (|m| · (−a)) = (|m| · (− (−a))) = |m| · a = (−m) · a.

which proves Eq. (5.3).
Letting x := sgn(m)sgn(n)a, we have

m · (n · a) = |m| · (|n| · x) =

|m| times︷ ︸︸ ︷
(|n| · x+ · · ·+ |n| · x)

=

|m| times︷ ︸︸ ︷
|n| times︷ ︸︸ ︷

(x+ · · ·+ x) + · · ·+

|n| times︷ ︸︸ ︷
(x+ · · ·+ x)

= (|m| |n|) · x = mn · a.

Corollary 5.6. If R is a ring, a, b ∈ R, and m,n ∈ Z, then

(m · a) (n · b) = mn · ab. (5.5)

Proof. Using Lemma 5.5 gives;

(m · a) (n · b) = m · (a (n · b)) = m · (n · (ab)) = mn · ab.

Corollary 5.7. Suppose that R is a ring and a ∈ R. Then for all m,n ∈ Z,

(m · a) (n · a) = mn · a2.

In particular if a = 1 ∈ R we have,

(m · 1) (n · 1) = mn · 1.

Unlike the book, we will only bother to define the characteristic for rings
which have an identity, 1 ∈ R.

Definition 5.8 (Characteristic of a ring). Let R be a ring with 1 ∈ R. The
characteristic, chr (R) , of R is is the order of the element 1 in the additive
group (R,+). Thus n is the smallest number in Z+ such that n · 1 = 0. If no
such n ∈ Z+ exists, we say that characteristic of R is 0 by convention and write
chr (R) = 0.

Lemma 5.9. If R is a ring with identity and chr (R) = n ≥ 1, then n · x = 0
for all x ∈ R.

Proof. For any x ∈ R, n · x = n · (1x) = (n · 1)x = 0x = 0.

Lemma 5.10. Let R be a domain. If n = chr (R) ≥ 1, then n is a prime
number.
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Proof. If n is not prime, say n = pq with 1 < p < n and 1 < q < n, then

(p · 1R) (q · 1R) = pq · (1R1R) = pq · 1R = n · 1R = 0.

As p · 1R 6= 0 and q · 1R 6= 0 and we may conclude that both p · 1R and q · 1R
are zero divisors contradicting the assumption that R is an integral domain.

Example 5.11. The rings Q, R, C, Q
[√

d
]

:= Q+Q
√
d, Z [x] , Q [x] , R [x] , and

Z [x] all have characteristic 0.
For each m ∈ Z+, Zm and Zm [x] are rings with characteristic m.

Example 5.12. For each prime, p, Fp := Zp is a field with characteristic p. We
also know that Z3 [i] is a field with characteristic 3. Later, we will see other
examples of fields of characteristic p.
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Lecture 6

6.1 Square root field extensions of Q

Recall that
√

2 is irrational. Indeed suppose that
√

2 = m/n ∈ Q and, with out
loss of generality, assume that gcd (m,n) = 1. Then m2 = 2n2 from which it
follows that 2|m2 and so 2|m by Euclid’s lemma. However, it now follows that
22|2n2 and so 2|n2 which again by Euclid’s lemma implies 2|n. However, we
assumed that m and n were relatively prime and so we have a contradiction
and hence

√
2 is indeed irrational. As a consequence of this fact, we know that{

1,
√

2
}

are linearly independent over Q, i.e. if a+ b
√

2 = 0 then a = 0 = b.

Example 6.1. In this example we will show,

R = Q
[√

2
]

= {a+ b
√

2 : a, b ∈ Q} (6.1)

is a field. Using similar techniques to those in Example 3.4 we see that Q
[√

2
]

may be described as in Eq. (6.1) and hence is a subring of Q by Proposition
3.3. Alternatively one may check directly that the right side of Eq. (6.1) is a
subring of Q since;

a+ b
√

2− (c+ d
√

2) = (a− c) + (b− d)
√

2 ∈ R

and

(a+ b
√

2)(c+ d
√

2) = ac+ bc
√

2 + ad
√

2 + bd(2)

= (ac+ 2bd) + (bc+ ad)
√

2 ∈ R.

So by either means we see that R is a ring and in fact an integral domain by
Example 4.16. It does not have finitely many elements so we can’t use Lemma
5.1 to show it is a field. However, we can find

(
a+ b

√
2
)−1

directly as follows.

If ξ =
(
a+ b

√
2
)−1

, then
1 = (a+ b

√
2)ξ

and therefore,

a− b
√

2 = (a− b
√

2)(a+ b
√

2)ξ =
(
a2 − 2b2

)
ξ

which implies,

ξ =
a

a2 − 2b2
+

−b
a2 − 2b2

√
2 ∈ Q

[√
2
]
.

Moreover, it is easy to check this ξ works provided a2−2b2 6= 0. But if a2−2b2 =
0 with b 6= 0, then

√
2 = |a| / |b| showing

√
2 is irrational which we know to be

false – see Proposition 6.2 below for details. Therefore, Q
[√

2
]

is a field.

Observe that Q ( R := Q
[√

2
]
( R. Why is this? One reason is that

R := Q
[√

2
]

is countable and R is uncountable. Or it is not hard to show that
an irrational number selected more or less at random is not in R. For example,
you could show that

√
3 /∈ R. Indeed if

√
3 = a+ b

√
2 for some a, b ∈ Q then

3 = a2 + 2ab
√

2 + 2b2

and hence 2ab
√

2 = 3 − a2 − 2b2. Since
√

2 is irrational, this can only happen
if either a = 0 or b = 0. If b = 0 we will have

√
3 ∈ Q which is false and if

a = 0 we will have 3 = 2b2. Writing b = k
l , this with gcd (k, l) = 1, we find

3l2 = 2k2 and therefore 2|l by Gauss’ lemma. Hence 22|2k2 which implies 2|k
and therefore gcd (k, l) ≥ 2 > 1 which is a contradiction. Hence it follows that√

3 6= a+ b
√

2 for any a, b ∈ Q.
The following proposition is a natural extension of Example 6.1.

Proposition 6.2. For all d ∈ Z \ {0} , F := Q
[√

d
]

is a field. (As we will see
in the proof, we need only consider those d which are “square prime” free.

Proof. As F := Q
[√

d
]

= Q+Q
√
d is a subring of R which is an integral

domain, we know that F is again an integral domain. Let d = εpk11 . . . pkn
n

with ε ∈ {±1} , p1, . . . , pn being distinct primes, and ki ≥ 1. Further let δ =
ε
∏
i:ki is odd pi, then

√
d = m

√
δ for some integer m and therefore it easily

follows that F = Q
[√

δ
]
. So let us now write δ = εp1 . . . pk with ε ∈ {±1} ,

p1, . . . , pk being distinct primes so that δ is square prime free.
Working as above we look for the inverse to a+ b

√
δ when (a, b) 6= 0. Thus

we will look for u, v ∈ Q such that

1 =
(
a+ b

√
δ
)(

u+ v
√
δ
)
.

Multiplying this equation through by a− b
√
δ shows,
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a− b
√
δ =

(
a2 − b2δ

) (
u+ v

√
δ
)

so that
u+ v

√
δ =

a

a2 − b2δ
− b

a2 − b2δ
√
δ. (6.2)

Thus we may define,(
a+ b

√
δ
)−1

=
a

a2 − b2δ
− b

a2 − b2δ
√
δ

provided a2 − b2δ 6= 0 when (a, b) 6= (0, 0) .
Case 1. If δ < 0 then a2 − b2δ = a2 + |δ| b2 = 0 iff a = 0 = b.
Case 2. If δ ≥ 2 and suppose that a, b ∈ Q with a2 = b2δ. For sake of

contradiction suppose that b 6= 0. By multiplying a2 = b2δ though by the
denominators of a2 and b2 we learn there are integers, m,n ∈ Z+ such that
m2 = n2δ. By replacing m and n by m

gcd(m,n) and n
gcd(m,n) , we may assume that

m and n are relatively prime.
We now have p1|

(
n2δ
)

implies p1|m2 which by Euclid’s lemma implies that
p1|m. Thus we learn that p2

1|m2 = n2p1, . . . , pk and therefore that p1|n2. An-
other application of Euclid’s lemma shows p1|n. Thus we have shown that p1 is
a divisor of both m and n contradicting the fact that m and n were relatively
prime. Thus we must conclude that b = 0 = a. Therefore a2 − b2δ = 0 only if
a = 0 = b.

Later on we will show the following;

Fact 6.3 Suppose that θ ∈ C is the root of some polynomial in Q [x] , then Q [θ]
is a sub-field of C.

Recall that we already know Q [θ] is an integral domain. To prove that Q [θ]
is a field we will have to show that for every nonzero z ∈ Q [θ] that the inverse,
z−1 ∈ C, is actually back in Q [θ] .

6.2 Homomorphisms

Definition 6.4. Let R and S be rings. A function ϕ : R→ S is a homomor-
phism if

ϕ(r1r2) = ϕ(r1)ϕ(r2) and
ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)

for all r1, r2 ∈ R. That is, ϕ preserves addition and multiplication. If we further
assume that ϕ is an invertible map (i.e. one to one and onto), then we say
ϕ : R→ S is an isomorphism and that R and S are isomorphic.

Example 6.5 (Conjugation isomorphism). Let ϕ : C→ C be defined by ϕ (z) =
z̄ where for z = x + iy, z̄ := x − iy is the complex conjugate of z. Then it is
routine to check that ϕ is a ring isomorphism. Notice that z = z̄ iff z ∈ R. There
is analogous conjugation isomorphism on Q [i] , Z [i] , and Zm [i] (for m ∈ Z+)
with similar properties.

Here is another example in the same spirit of the last example.

Example 6.6 (Another conjugation isomorphism). Let ϕ : Q
[√

2
]
→ Q

[√
2
]

be
defined by

ϕ
(
a+ b

√
2
)

= a− b
√

2 for all a, b ∈ Q.

Then ϕ is a ring isomorphism. Again this is routine to check. For example,

ϕ
(
a+ b

√
2
)
ϕ
(
u+ v

√
2
)

=
(
a− b

√
2
)(

u− v
√

2
)

= au+ 2bv − (av + bu)
√

2

while

ϕ
((
a+ b

√
2
)(

u+ v
√

2
))

= ϕ
(
au+ 2bv + (av + bu)

√
2
)

= au+ 2bv − (av + bu)
√

2.

Notice that for ξ ∈ Q
[√

2
]
, ϕ (ξ) = ξ iff ξ ∈ Q.

Example 6.7. The only ring homomorphisms, ϕ : Z→ Z are ϕ (a) = a and
ϕ (a) = 0 for all a ∈ Z. Indeed, if ϕ : Z→ Z is a ring homomorphism and
t := ϕ (1) , then t2 = ϕ (1)ϕ (1) = ϕ (1 · 1) = ϕ (1) = t. The only solutions to
t2 = t in Z are t = 0 and t = 1. In the first case ϕ ≡ 0 and in the second ϕ = id.
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Example 7.1. Suppose that g ∈ M2 (R) is a unit, i.e. g−1 exists. Then ϕ :
M2 (R)→M2 (R) defined by,

ϕ (A) := gAg−1 for all A ∈M2 (R) ,

is a ring isomorphism. For example,

ϕ (A)ϕ (B) =
(
gAg−1

) (
gBg−1

)
= gAg−1gBg−1 = gABg−1 = ϕ (AB) .

Observe that ϕ−1 (A) = g−1Ag and ϕ (I) = I.

Proposition 7.2 (Homomorphisms from Z). Suppose that R is a ring and
a ∈ R is an element such that a2 = a. Then there exists a unique ring ho-
momorphism, ϕ : Z → R such that ϕ (1) = a. Moreover, ϕ (k) = k · a for all
k ∈ Z.

Proof. Recall from last quarter that, ϕ (n) := n · a for all n ∈ Z is a group
homomorphism. This is also a ring homomorphism since,

ϕ (m)ϕ (n) = (m · a) (n · a) = mn · a2 = mn · a = ϕ (mn) ,

wherein we have used Corollary 5.6 for the second equality.

Corollary 7.3. Suppose that R is a ring with 1R ∈ R. Then there is a unique
homomorphism, ϕ : Z→ R such that ϕ (1Z) = 1R.

Proposition 7.4. Suppose that ϕ : R→ S is a ring homomorphism. Then;

1. ϕ (0) = 0,
2. ϕ (−r) = −ϕ (r) for all r ∈ R,
3. ϕ(r1 − r2) = ϕ(r1)− ϕ(r2) for all r1, r2 ∈ R.
4. If 1R ∈ R and ϕ is surjective, then ϕ (1R) is an identity in S.
5. If ϕ : R → S is an isomorphism of rings, then ϕ−1 : S → R is also a

isomorphism.

Proof. Noting that ϕ : (R,+)→ (S,+) is a group homomorphism, it follows
that items 1. – 3. were covered last quarter when we studied groups. The proof
of item 5. is similar to the analogous statements for groups and hence will be
omitted. So let me prove item 4. here.

To each s ∈ S, there exists a ∈ R such that ϕ (a) = s. Therefore,

ϕ (1R) s = ϕ (1R)ϕ (a) = ϕ (1Ra) = ϕ (a) = s

and
sϕ (1R) = ϕ (a)ϕ (1R) = ϕ (a1R) = ϕ (a) = s.

Since these equations hold for all s ∈ S, it follows that ϕ (1R) is an (the) identity
in S.

Definition 7.5. As usual, if ϕ : R→ S is a ring homomorphism we let

ker (ϕ) := {r ∈ R : ϕ (r) = 0} = ϕ−1 ({0S}) ⊂ R.

Lemma 7.6. If ϕ : R→ S is a ring homomorphism, then ker (ϕ) is an ideal of
R.

Proof. We know from last quarter that ker (ϕ) is a subgroup of (R,+) . If
r ∈ R and n ∈ ker (ϕ) , then

ϕ (rn) = ϕ (r)ϕ (n) = ϕ (r) 0 = 0 and
ϕ (nr) = ϕ (n)ϕ (r) = 0ϕ (r) = 0,

which shows that rn and nr ∈ ker (ϕ) for all r ∈ R and n ∈ ker (ϕ) .

Example 7.7. Let us find all of the ring homomorphisms, ϕ : Z→ Z10 and their
kernels. To do this let t := ϕ (1) . Then t2 = ϕ (1)ϕ (1) = ϕ (1 · 1) = ϕ (1) = t.
The only solutions to t2 = t in Z10 are t = 0, t = 1, t = 5 and t = 6.

1. If t = 0, then ϕ ≡ 0 and ker (ϕ) = Z.
2. If t = 1, then ϕ (x) = xmod 10 and kerϕ = 〈10〉 = 〈0〉 = {0} ⊂ Z.
3. If t = 5, then ϕ (x) = 5xmod 10 and x ∈ kerϕ iff 10|5x iff 2|x so that

ker (ϕ) = 〈2〉 = {0, 2, 4, 8} .
4. If t = 6, then ϕ (x) = 6xmod 10 and x ∈ kerϕ iff 10|6x iff 5|x so that

ker (ϕ) = 〈5〉 = {0, 5} ⊂ Z.

Proposition 7.8. Suppose n ∈ Z+, R is a ring, and a ∈ R is an element such
that a2 = a and n · a = 0. Then there is a unique homomorphism, ϕ : Zn → R
such that ϕ (1) = a and in fact ϕ (k) = k · a for all k ∈ Zn.
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Proof. This has a similar proof to the proof of Proposition 7.2.

Corollary 7.9. Suppose that R is a ring, 1R ∈ R, and chr (R) = n ∈ Z+. Then
there is a unique homomorphism, ϕ : Zn → R such that ϕ (1Zn

) = 1R which is
given by ϕ (m) = m · 1R for all m ∈ Zn. Moreover, ker (ϕ) = 〈0〉 = {0} .

Example 7.10. Suppose that ϕ : Z10 → Z10 is a ring homomorphism and t :=
ϕ (1) . Then t2 = ϕ (1)2 = ϕ (1) = t, and therefore t2 = t. Moreover we must
have 0 = ϕ (0) = ϕ (10 · 1) = 10 · t which is not restriction on t. As we have
seen the only solutions to t2 = t in Z10 are t = 0, t = 1, t = 5 and t = 6. Thus
ϕ must be one of the following; ϕ ≡ 0, ϕ = id, ϕ (x) = 5x, or ϕ (x) = 6x for all
x ∈ Z10. The only ring isomorphism is the identity in this case. If ϕ (x) = 5x

Example 7.11. Suppose that ϕ : Z12 → Z10 is a ring homomorphism and let
t := ϕ (1). Then as before, t2 = t and this forces t = 0, 1, 5, or 6. In this case
we must also require 12 · t = 0, i.e. 10|12 · t, i.e. 5|t. Therefore we may now only
take t = 0 or t = 5, i.e.

ϕ (x) = 0 for all x ∈ Z12 or
ϕ (x) = 5xmod 10 for all x ∈ Z12

are the only such homomorphisms.

Theorem 7.12 (Not covered in class). If ϕ : R→ R is a ring homomor-
phism, then ϕ is either the zero or the identity homomorphism.

Proof. If t = ϕ (1) , then as above, t2 = t, i.e. t (t− 1) = 0. Since R is a
field this implies that t = 0 or t = 1. If t = 0, then for all a ∈ R,

ϕ (a) = ϕ (a · 1) = ϕ (a)ϕ (1) = ϕ (a) · 0 = 0,

i.e. ϕ is the zero homomorphism. So we may now assume that t = 1.
If t = 1,

ϕ (n) = ϕ (n · 1) = n · ϕ (1) = n · 1 = n

for all n ∈ Z. Therefore for n ∈ N \ {0} and m ∈ Z,

m = ϕ (m) = ϕ
(
n · m

n

)
= ϕ (n)ϕ

(m
n

)
= nϕ

(m
n

)
from which it follows that ϕ (m/n) = m/n. Thus we now know that ϕ|Q is the
identity.

Since ker (ϕ) 6= R, we must have ker (ϕ) = {0} so that ϕ is injective. In
particular ϕ (b) 6= 0 for all b 6= 0. Moreover if a > 0 in R and b :=

√
a, then

ϕ (a) = ϕ
(
b2
)

= [ϕ (b)]2 > 0.

So if y, x ∈ R with y > x, then ϕ (y) − ϕ (x) = ϕ (y − x) > 0, i.e. ϕ is order
preserving.

Finally, let a ∈ R and choose rational numbers xn, yn ∈ Q such that xn <
a < yn with xn ↑ a and yn ↓ a as n→∞. Then

xn = ϕ (xn) < ϕ (a) < ϕ (yn) = yn for all n.

Letting n → ∞ in this last equation then shows, a ≤ ϕ (a) ≤ a, i.e. ϕ (a) = a.
Since a ∈ R was arbitrary, we may conclude that ϕ is the identity map on R.
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Remark 8.1 (Comments on ideals). Let me make two comments on ideals in a
commutative ring, R.

1. To check that a non-empty subset, S ⊂ R, is an ideal, we should show
(S,+) is a subgroup of R and that RS ⊂ S. Since R is commutative, you
do not have to also show SR ⊂ S. This is because RS = SR in when R is
commutative.

2. If a ∈ R, the principle ideal generated by a is defined by;

〈a〉 := Ra = {ra : r ∈ R} .

It is easy to check that this is indeed an ideal. So for example if R = R [x]
then 〈x〉 = R [x] ·x which is the same as the polynomials without a constant
term, i.e. p (x) = a1x+ a2x

2 + · · ·+ anx
n. The coefficient a0 = 0. Similarly,〈

x2 + 1
〉

= R [x]
(
x2 + 1

)
is the collection of all polynomials which contain(

x2 + 1
)

as a factor.

Recall from last time:

1. If a ∈ R satisfies a2 = a, then ϕ (k) := k · a is a ring homomorphism from
Z→ R.

2. If we further assume that n · a = 0 for some n ∈ Z+, then ϕ (k) := k · a also
defines a ring homomorphism from Zn → R.

Example 8.2. For any m > 1, ϕ : Z → Zm given by ϕ (a) = a · 1Zm = amodm
is a ring homomorphism. This also follows directly from the properties of the
(·) modm – function. In this case ker (ϕ) = 〈m〉 = Zm.

Example 8.3. If n ∈ Z+ and m = kn with k ∈ Z+, then there is a unique ring
homomorphisms, ϕ : Zm → Zn such that ϕ (1m) = 1n. To be more explicit,

ϕ (a) = ϕ (a · 1m) = a · ϕ (1m) = a · 1n = (amodn) · 1n = amodn.

Example 8.4. In Z10, the equation, a2 = a has a solutions a = 5 and a = 6.
Notice that |5| = 2 and |6| = |gcd (10, 6)| = |2| = 5. Thus we know that for any
k ≥ 1 there are ring homomorphisms, ϕ : Z5k → Z10 and ψ : Z2k → Z10 such
that

ϕ (15k) = 6 and ψ (12k) = 5.

As before, one shows that

ϕ (m) = m · 6 = (6m) mod 10 and ψ (m) = m · 5 = (5m) mod 10.

Example 8.5 (Divisibility tests). Let n = akak−1 . . . a0 be written in decimal
form, so that

n =
k∑
i=0

ai10i. (8.1)

Applying the ring homomorphism, mod 3 and mod 9 to this equation shows,

nmod 3 =
k∑
i=0

ai mod 3 · (10 mod 3)i

=

(
k∑
i=0

ai

)
mod 3

and similarly,

nmod 9 =
k∑
i=0

ai mod 9 · (10 mod 9)i =

(
k∑
i=0

ai

)
mod 9.

Thus we learn that nmod 3 = 0 iff
(∑k

i=0 ai

)
mod 3 = 0 i.e. 3|n iff

3|
(∑k

i=0 ai

)
. Similarly, since 10 mod 9 = 1, the same methods show 9|n iff

9|
(∑k

i=0 ai

)
. (See the homework problems for more divisibility tests along

these lines. Also consider what this test gives if you apply mod 2 to Eq. (8.1).)

Theorem 8.6. Let R be a commutative ring with 1 ∈ R. To each a ∈ R with
a2 + 1 = 0, there is a unique ring homomorphism ϕ : Z [i] → R such that
ϕ (1) = 1 and ϕ (i) = a.

Proof. Since Z [i] is generated by i, we see that ϕ is completely determined
by a := ϕ (i) ∈ R. Now we can not choose a arbitrarily since we must have

a2 = ϕ (i)2 = ϕ
(
i2
)

= ϕ (−1) = −1R,



i.e. a2 + 1 = 0.
Conversely given a ∈ R such that a2 + 1 = 0, we should define

ϕ (x+ iy) = x1 + ya for all x, y ∈ Z,
where ya = a + a + · · · + a – y times. The main point in checking that ϕ is a
homomorphism is to show it preserves the multiplication operation of the rings.
To check this, let x, y, u, v ∈ Z and consider;

ϕ ((x+ iy) (u+ iv)) = ϕ (xu− yv + i (xv + yu)) = (xu− yv) 1R + (xv + yu) a.

On the other hand

ϕ (x+ iy)ϕ (u+ iv) = (x1R + ya) (u1R + va)
= (x1R + ya) (u1R + va)

= xu1R + yva2 + yua+ xva

= (xu− yv) 1R + (yu+ xv) a
= ϕ ((x+ iy) (u+ iv)) .

Thus we have shown ϕ (ξη) = ϕ (ξ)ϕ (η) for all ξ, η ∈ Z [i] . The fact that
ϕ (ξ + η) = ϕ (ξ) + ϕ (η) is easy to check and is left to the reader.

Remark 8.7. This could be generalized by supposing that a, b ∈ R with b2 = b
and a2 + b = 0. Then we would have ϕ (x+ yi) = x · b + y · a would be the
desired homomorphism. Indeed, let us observe that

ϕ (x+ iy)ϕ (u+ iv) = (xb+ ya) (ub+ va)
= (xb+ ya) (ub+ va)

= xub2 + yva2 + yua+ xva

= (xu− yv) b+ (yu+ xv) a
= ϕ ((x+ iy) (u+ iv)) .

Example 8.8. Let ϕ : Z [i] → Z3 [i] be the unique homomorphism such that
ϕ (1) = 1 and ϕ (i) = i, i.e.

ϕ (a+ ib) = a · 1 + b · i = amod 3 + (bmod 3) i ∈ Z3 [i] .

Notice that

ker (ϕ) = {a+ bi : a, b ∈ 〈3〉 ⊂ Z} = 〈3〉+ 〈3〉 i.
Here is a more interesting example.

Example 8.9. In Z10 we observe that 32 = 9 = −1 and also 7 = −3 has this
property, namely 72 = (−3)2 = 32 = 9 = −1. Therefore there exists a unique
homomorphism, ϕ : Z [i] → Z10 such that ϕ (1) = 1 and ϕ (i) = 7 = −3. The
explicit formula is easy to deduce,

ϕ (a+ bi) = a · 1 + b · 7 = (a− 3b) mod 10.
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Lemma 9.1. If ϕ : R→ S is a ring homomorphism, then ker (ϕ) is an ideal of
R.

Proof. We know from last quarter that ker (ϕ) is a subgroup of (R,+) . If
r ∈ R and n ∈ ker (ϕ) , then

ϕ (rn) = ϕ (r)ϕ (n) = ϕ (r) 0 = 0 and
ϕ (nr) = ϕ (n)ϕ (r) = 0ϕ (r) = 0,

which shows that rn and nr ∈ ker (ϕ) for all r ∈ R and n ∈ ker (ϕ) .

Example 9.2. If ϕ : Z→ Zm is the ring homomorphism defined by ϕ (a) :=
amodm, then

kerϕ = {a ∈ Z : amodm = 0} = Zm = 〈m〉 .

We will see many more examples of Lemma 9.1 below.

9.1 Factor Rings

Definition 9.3. Let R be a ring, I ⊂ R an ideal. The factor ring R/I is defined
to be

R/I := {r + I : r ∈ R}

with operations

(a+ I) + (b+ I) := (a+ b) + I and
(a+ I)(b+ I) := (ab) + I.

We may also write [a] for a+ I in which cases the above equations become,

[a] + [b] := [a+ b] and [a] [b] := [ab] .

Theorem 9.4. A factor ring really is a ring.

Proof. The elements of R/I are the left cosets of I in the group (R,+).
There is nothing new here. R/I is itself a group with the operation + defined
by (a + I) + (b + I) = (a + b) + I. This follows from last quarter as I ⊂ R is
a normal subgroup of (R,+) since (R,+) is abelian. So we only need really to
check that the definition of product makes sense.

Problem: we are multiplying coset representatives. We have to check that
the resulting coset is independent of the choice of representatives. Thus we
need to show; if a, b, a′, b′ ∈ R with

a+ I = a′ + I and b+ I = b′ + I,

then ab + I = a′b′ + I. By definition of cosets, we have i := a − a′ ∈ I and
j := b− b′ ∈ I. Therefore,

ab = (a′ + i) (b′ + j) = a′b′ + ib′ + a′j + ij ∈ a′b′ + I

since ib′+a′j+ ij ∈ I because I is an ideal. So indeed, ab+ I = a′b′+ I and we
have a well defined product on R/I. Checking that product is associative and
the distributive laws is easy and will be omitted.

Example 9.5. Suppose that I = 〈4〉 = Z · 4 ⊂ Z. In this case, if a ∈ Z then
a− amod 4 ∈ I and therefore,

[a] = a+ I = amod 4 + I = [amod 4] .

Moreover if 0 ≤ a, b ≤ 3 with a + I = b + I then a − b ∈ I, i.e. a − b is a
multiple of 4. Since |a− b| < 4, this is only possible if a = b. Thus if we let
S = {0, 1, 2, 3} , then

Z/ 〈4〉 = {[m] = m+ 〈4〉 : m ∈ S} = [S] .

Moreover, we have
[a] [b] = [ab] = [(ab) mod 4]

and
[a] + [b] = [a+ b] = [(a+ b) mod 4] .

Thus the induced ring structure on S is precisely that of Z4 and so we may
conclude;

Z4 3 a→ [a] = a+ 〈4〉 ∈ Z/ 〈4〉
is a ring isomorphism.
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Remark 10.1. Roughly speaking, you should think of R/I being R with the
proviso that we identify two elements of R to be the same if they differ by an
element from I. To understand R/I in more concrete terms, it is often useful
to look for subset, S ⊂ R, such that the map,

S 3 a→ a+ I ∈ R/I

is a bijection. (We will call such an S a slice.) This allows us to identify R/I
with S and this identification induces a ring structure on S. We will see how
this goes in the examples below. Warning: the choice of a slice S is highly
non-unique although there is often a “natural” choice in a given example. The
point is to make S we need only choose one element from each of the cosets in
R/I.

Example 9.5 easily generalizes to give the following theorem. We will give
another proof shortly using the first isomorphism theorem, see 10.4 below.

Theorem 10.2 (Zm ∼= Z/ 〈m〉). For all m ≥ 2, the map,

Zm 3 a→ [a] = a+ 〈m〉 ∈ Z/ 〈m〉 (10.1)

is a ring isomorphism.

Proof. The distinct cosets of Z/ 〈m〉 are given by

{[k] = k + 〈m〉 : k = 0, 1, 2 . . . ,m− 1}

and therefore we may take S = Zm. Since [a] = [amodm] , it is easy to see that
the map in Eq. (10.1) is a ring isomorphism.

10.1 First Isomorphism Theorem

Recall that two rings, R and S (written R ∼= S) are isomorphic, if there is a
ring isomorphism, ϕ : R → S. That is ϕ should be a one-to-one and onto ring
homomorphism.

Theorem 10.3 (First Isomorphism Theorem). Let R and S be rings and
ϕ : R→ S be a homomorphism. Let

ϕ(R) = Ranϕ = {ϕ(r) : r ∈ R} ⊂ S

and recall that I = kerϕ := {r ∈ R : ϕ(r) = 0} is an ideal in R. Then ϕ(R) is
a subring of S and ϕ̄ : R/I → ϕ(R) defined by

ϕ̄ ([r]) = ϕ̄ (r + I) := ϕ (r) for all r ∈ R

is a ring isomorphism.

Proof. We have seen last quarter that ϕ̄ : R/ kerϕ→ ϕ(R) is an (additive)
group isomorphism. So it only remains to show ϕ̄ preserves the multiplication
operations on ϕ (R) and R/I which goes as follows;

ϕ̄ ([a]) ϕ̄ ([b]) = ϕ (a)ϕ (b)
= ϕ (ab) = ϕ̄ ([ab]) = ϕ̄ ([a] [b]) .

Example 10.4 (Z/ (Zm) ∼= Zm). Let m ∈ Z+ and ϕ : Z → Zm be the ring
homomorphism, ϕ (x) = xmodm. Since ϕ (Z) = Zm and ker (ϕ) = 〈m〉 = Zm,
the first isomorphism theorem implies, ϕ̄ : Z/ (Zm)→ Zm is a ring isomorphism
where ϕ̄ ([a]) = ϕ (a) = amodm for all a ∈ Z.

Example 10.5. Let us consider R := Z [i] / 〈i− 2〉 . In this ring [i− 2] = 0 or
equivalently, [i] = [2] . Squaring this equation also shows,

[−1] =
[
i2
]

= [i]2 = [2]2 =
[
22
]

= [4]

from which we conclude that [5] = 0, i.e. 5 ∈ 〈i− 2〉 . This can also be seen
directly since 5 = − (i+ 2) (i− 2) ∈ 〈i− 2〉 . Using these observations we learn
for a+ ib ∈ Z [i] that

[a+ ib] = [a+ 2b] = [(a+ 2b) mod 5] .

Thus, if we define S = {0, 1, 2, 3, 4} , we have already shown that



R = {[a] : a ∈ S} = [S] .

Now suppose that a, b ∈ S with [a] = [b] , i.e. 0 = [a− b] = [c] where
c = (a− b) mod 5. Since c ∈ 〈i− 2〉 we must have

c = (i− 2) (a+ bi) = − (2a+ b) + (a− 2b) i

from which it follows that a = 2b and

c = − (2a+ b) = −5b.

Since 0 ≤ c < 5, this is only possible if c = 0 and therefore,

a = amod 5 = bmod 5 = b.

Finally let us now observe that

[a] + [b] = [a+ b] = [(a+ b) mod 5] and
[a] · [b] = [ab] = [(ab) mod 5]

so that the induced ring structure on S is the same a the ring structure on Z5.
Hence we have proved,

Z5 3 a→ [a] = a+ 〈i− 2〉 ∈ Z [i] / 〈i− 2〉

is an isomorphism of rings.
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Example 11.1 (Example 10.5 revisited). In Z5, we see that 22 = 4 = −1 and
therefore there is a ring homomorphism, ϕ : Z [i]→ Z5 such that ϕ (1) = 1 and
ϕ (i) = 2. More explicitly we have,

ϕ (a+ bi) = a · 1 + b · 2 = (a+ 2b) mod 5.

Moreover, (a+ ib) ∈ ker (ϕ) iff a+ 2b = 5k for some k ∈ Z and therefore,

ker (ϕ) = {−2b+ 5k + ib : b, k ∈ Z} = Z (2− i) + Z · 5.

Since (2 + i) (2− i) = 5 and 2− i ∈ ker (ϕ) , we have, and

〈2− i〉 ⊂ ker (ϕ) = Z (2− i) + Z · 5 ⊂ 〈2− i〉

from which it follows that ker (ϕ) = 〈2− i〉 . Thus by the first isomorphism
theorem, ϕ̄ : Z [i] / 〈2− i〉 → Z5 defined by

ϕ̄ ([a+ ib]) = ϕ (a+ bi) = (a+ 2b) mod 5

is a ring isomorphism. Notice that the inverse isomorphism is given by ϕ̄−1 (a) =
[a] for all a ∈ Z5 which should be compared with Example 10.5 above.

For what follows recall that the evaluation maps are homomorphisms.

Theorem 11.2 (Evaluation homomorphism). Let R be a subring of a
commutative ring, R̄, and t ∈ R̄. Then there exists a ring homomorphism,
ϕt : R [x]→ R̄ such that

ϕt (p) =
n∑
k=0

akt
k when p (x) =

n∑
k=0

akx
k ∈ R [x] .

We will usually simply write p (t) for ϕt (p) .

The hole point of how we define polynomial multiplication is to make this
theorem true. We will give the formal proof of this theorem a bit later in the
notes.

Example 11.3. Let I := 〈x〉 = R [x]x ⊂ R [x] from which it follows that [x] =
0 ∈ R [x] / 〈x〉 . Therefore if p (x) = a0 + a1x+ · · ·+ anx

n, then

[p (x)] = [a0 + a1x+ · · ·+ anx
n] = [a0] .

Alternatively put, p (x) + I = a0 + I since a1x + · · · + anx
n ∈ I. Moreover, if

[a0] = [b0] , then a0 − b0 ∈ I which can happen iff a0 = b0. Therefore we may
identify R [x] / 〈x〉 with S = R thought of as the constant polynomials inside of
R [x] . In fact it is easy to check that

R 3 a→ a+ I ∈ R [x] / 〈x〉

is a ring isomorphism.
Alternatively we may use the first isomorphism theorem as follows. Let

ϕ (p) := p (0) , then ϕ : R [x]→ R is a ring homomorphism onto R with ker (ϕ) =
〈x〉 . Therefore, ϕ̄ : R [x] / 〈x〉 → R is a ring isomorphism.

Theorem 11.4 (Division Algorithm). Let F [x] be a polynomial ring where
F is a field. Given f, g ∈ F [x] both nonzero, there exists a unique q, r ∈ F [x]
with f = qg + r such that either r = 0 or deg r < deg g.

Interpretation. We are dividing f by g and so g goes into f, q times
with remainder r. This is really high school polynomial division which we
will discuss in more detail a bit later. In the sequel we will sometimes denote
the remainder, r by f mod g.

Corollary 11.5. Suppose that F is a field, p (x) = c0 + · · ·+ cnx
n ∈ F [x] is a

polynomial with cn 6= 0, and let

S :=
{
a0 + a1x+ · · ·+ an−1x

n−1 : ai ∈ F for i = 0, 1, . . . , n− 1
}
.

Then the map, ϕ : S → F [x] / 〈p〉 defined by

ϕ (f) = [f ] := f + 〈p〉 for all f ∈ S

is a bijection. Moreover, S becomes a ring and ϕ a ring homomorphism provided
we define

f (x) · g (x) := [f (x) g (x)] mod p

and f + g as usual polynomial addition.
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Proof. 1. If f ∈ F [x] , then by the division algorithm

f = qp+ r = qp+ f mod p

and therefore,

[f ] = [qp+ r] = [q] [p] + [r] = [q] 0 + [r] = [r] .

Thus we have shown

[f ] = [f mod p] for all f ∈ F [x] . (11.1)

2. Equation (11.1) shows ϕ : S → F [x] / 〈p〉 is onto. To see ϕ is injective,
suppose that f, g ∈ S and ϕ (f) = ϕ (g) . Then [f − g] = 0, i.e. f − g ∈ 〈p〉 , i.e.
f − g = q · p for some q ∈ F [x] . However this is impossible unless q = 0 and
f = g since otherwise,

n− 1 ≥ deg (f − g) = deg (q) + deg (p) = deg (q) + n.

Thus we have shown ϕ is injective as well, i.e. ϕ : S → F [x] / 〈p〉 is a bijection.
3. Making use of Eq. (11.1) and the fact that ϕ is a bijection shows,

ϕ (f)ϕ (g) = [f ] [g] = [fg] = [(fg) mod p] = ϕ ((fg) mod p) and
ϕ (f) + ϕ (g) = [f ] + [g] = [f + g] = ϕ (f + g)

for all f, g ∈ S. Thus S equipped with the operations described in the theorem
makes S into a ring for which ϕ is a ring isomorphism.

Theorem 11.6 (C as a factor ring). C ∼= R [x] /
〈
x2 + 1

〉
=: R. The maps,

C3 (a+ ib)→ [a+ bx] ∈ R [x] /
〈
x2 + 1

〉
and

R [x] /
〈
x2 + 1

〉
3 [p (x)] = p (x) +

〈
x2 + 1

〉
→ p (i) ∈ C

are ring isomorphisms which are inverses to one another.

Proof. We are going to give two proofs that C ∼= R [x] /
〈
x2 + 1

〉
. Our first

proof gives rise to the first map while our second gives rise to the second map.
First Proof. Let S = {a+ bx : x, b ∈ R} so that

S 3 (a+ bx)→ [a+ bx] ∈ R [x] /
〈
x2 + 1

〉
is a bijection. Since

[
x2 + 1

]
= 0, we have

[
x2
]

= [−1] and therefore,

[a+ bx] [c+ dx] =
[
ac+ (bc+ ad)x+ bdx2

]
= [ac+ (bc+ ad)x+ bd (−1)]
= [ac− bd+ (bc+ ad)x] .

Moreover one easily shows,

[a+ bx] + [c+ dx] = [(a+ c) + (b+ d)x] .

From these two facts it is now easy to check that

C 3 (a+ ib)→ [a+ bx] ∈ R

is an isomorphism of rings.
Second Proof. Let ϕ : R [x] → C be the evaluation homomorphism,

ϕ (p) = p (i) where i =
√
−1 ∈ C. We then have ϕ (R [x]) = R [i] = C and so

by the first isomorphism theorem, R [x] / ker (ϕ) ∼= C. So to finish the proof we
must show,

ker (ϕ) =
〈
x2 + 1

〉
= R [x]

(
x2 + 1

)
. (11.2)

Suppose that p ∈ ker (ϕ) and use the division algorithm to write,

p (x) = q (x)
(
x2 + 1

)
+ r (x) where

r (x) = a+ bx for some a, b ∈ R.

As p (i) = 0 and i2 + 1 = 0, it follows that r (i) = a+ bi = 0. But this happens
iff a = 0 = b, and therefore we see that r ≡ 0 an hence that p (x) ∈

〈
x2 + 1

〉
.

Thus we have shown ker (ϕ) ⊂
〈
x2 + 1

〉
and since x2 + 1 ∈ ker (ϕ) we must

have ker (ϕ) =
〈
x2 + 1

〉
which completes the second proof of the theorem.

Alternative method for computing ker (ϕ) .
If p ∈ ker (ϕ) , then p (i) = 0. Taking the complex conjugates of this equation

(using z + w = z̄ + w̄ and zw = z̄ · w̄ for all z, w ∈ C) we learn that p (−i) = 0
as well. As we will see in detail later, p (i) = 0 implies p (x) = (x− i)u (x) for
some u ∈ C [x] . Moreover since,

0 = p (−i) = −2i · u (−i)

we learn that u (−i) = 0 and therefore, u (x) = (x+ i) q (x) with q ∈ C [x] .
Therefore,

p (x) = (x− i) (x+ i) q (x) =
(
x2 + 1

)
q (x) .

It is not too hard to see (use complex conjugation again) that in fact q ∈ R [x] .
Conversely if p (x) =

(
x2 + 1

)
q (x) with q ∈ R [x] , then p (i) = 0. Therefore we

have again proved Eq. (11.2).
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Example 12.1. Let R := Q [x] /
〈
x2 − 2

〉
so that

[
x2
]

= [2] now. Again we take
S = {a+ bx : a, b ∈ Q} and observe that

[a+ bx] [c+ dx] =
[
ac+ (bc+ ad)x+ bdx2

]
= [ac+ (bc+ ad)x+ bd2]
= [ac+ 2bd+ (bc+ ad)x] .

Recalling that, in Q
[√

2
]
, that(

a+ b
√

2
)(

c+ d
√

2
)

= ac+ 2bd+ (bc+ ad)
√

2

it follows that

Q
[√

2
]
3 a+ b

√
2→ [a+ bx] ∈ Q [x] /

〈
x2 − 2

〉
is a ring isomorphism.

Example 12.2 (Example 12.1 revisited). Let ϕ : Q [x] → Q
[√

2
]

be the eval-
uation map, ϕ (p) = p

(√
2
)
. Then by the first isomorphism theorem, ϕ̄ :

Q [x] / ker (ϕ)→ Q
[√

2
]

is an isomorphism of rings. We now claim that

ker (ϕ) =
〈
x2 − 2

〉
. (12.1)

Since x2−2 ∈ ker (ϕ) we know that
〈
x2 − 2

〉
⊂ ker (ϕ) . Conversely, if p ∈ ker (ϕ)

and p (x) = q (x)
(
x2 − 2

)
+ r (x) for some r (x) = a+ bx with a, b ∈ Q, then

0 = p
(√

2
)

= q
(√

2
)
· 0 + r

(√
2
)

= a+ b
√

2.

As
√

2 is irrational, this is only possible if a = b = 0, i.e. r (x) = 0. Thus we
have shown p ∈

〈
x2 − 2

〉
and therefore Eq. (12.1) is valid.

Example 12.3. Let I :=
〈
x2
〉

= R [x]x2 ⊂ R [x] . If p (x) = a0 +a1x+ · · ·+anxn,
then p + I = a0 + a1x + I since a2x

2 + · · · + anx
n ∈ I. Alternatively, we now

have
[
x2
]

= 0 in R [x] /
〈
x2
〉
, so that

[p (x)] = [a0 + a1x+ · · ·+ anx
n] = [a0 + a1x] .

Moreover [a0 + a1x] = 0 iff a0 = a1 = 0, so we may take S =
{a0 + a1x : a0, a1 ∈ R} – the polynomials of degree less than or equal to 1.
Thus it follows that

R [x] /
〈
x2
〉

= {(a0 + a1x) + I : a0, a1 ∈ R} ∼ R2.

This induces a ring multiplication on R2 determined as follows;

[a0 + a1x] [b0 + b1x] = [(a0 + a1x) (b0 + b1x)]

=
[
a0b0 + (a1b0 + a0b1)x+ a1b1x

2
]

= [a0b0 + (a1b0 + a0b1)x] .

Thus the multiplication rule on S should be defined by

(a0 + a1x) (b0 + b1x) = a0b0 + (a1b0 + a0b1)x.

Alternatively, if we identify S with R := R2 and equip R with the multiplication
and addition rules,

(a0, a1) · (b0, b1) = (a0b0, a1b0 + a0b1) and (12.2)
(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1) ,

then
R 3 (a0, a1)→ a0 + a1x+ I ∈ R [x] /

〈
x2
〉

is a ring isomorphism.

An important point to observe for later is that R in Example 12.3 is not a
field and in fact not even an integral domain. For example, (0, 1)·(0, 1) = (0, 0) =
0. Alternatively, notice that [x] · [x] =

[
x2
]

= 0, so that 0 6= [x] ∈ R [x] /
〈
x2
〉

is
a zero divisor.

Example 12.4 (Example 12.3 revisited). We let R be the ring, R2, with usual
addition and the multiplication rule in Eq. (12.2). Let ϕ : R [x]→ R be the map
define by, ϕ (p) = (p (0) , p′ (0)) where p′ (x) is the derivative of p (x) computed
as usual for polynomials. Then one easily checks that ϕ is a ring homomorphism.
Moreover if p ∈ ker (ϕ) , then p (0) = 0 and therefore p (x) = xg (x) for some
polynomial g (x) . Since
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0 = p′ (0) = g (0) + 0 · g′ (0)

it follows that g (x) = xq (x) for some polynomial q (x) . Thus p (x) =
x2q (x) . Conversely if p (x) = x2q (x) , then p (0) = 0 and p′ (0) =[
2xq (x) + x2q′ (x)

]
x=0

= 0. Therefore we have shown, ker (ϕ) =
〈
x2
〉

and
so by the first isomorphism theorem, it follows that R [x] /

〈
x2
〉
3 [p (x)] →

(p (0) , p′ (0)) ∈ R is a ring isomorphism.

12.1 Higher Order Zeros (Not done in class)

Remark 12.5. Example 12.4 generalizes in the following way. Let n ∈ Z+ and
λ ∈ R and define ϕ : R [x]→ R := Rn+1 by

ϕ (p) :=
(
p (λ) , p′ (λ) , . . . , p(n) (λ)

)
∈ R. (12.3)

We wish to define + and · on R so that his map is a homomorphism. Since
the derivative operation is linear we should use the ordinary vector addition
on Rn+1 in which case ϕ will be an additive group homomorphism. For the
multiplication rule we have to use the product rule of differentiation in the
following form,

(pq)(k) (λ) =
k∑
j=0

(
k

j

)
p(j) (λ) q(k−j) (λ) .

Thus if a = (a0, . . . , an) and b = (b0, . . . , bn) , we should define

a · b := ((a · b)0 , . . . , (a · b)n) (12.4)

where

(a · b)k :=
k∑
j=0

(
k

j

)
aj · bk−j . (12.5)

Theorem 12.6. Suppose that R = Rn+1 with the addition and multiplication
operations described in Remark 12.5. Then;

1. R is a ring with identity, 1 = (1, 0, . . . , 0) .
2. ϕ : R [x]→ R defined in Eq. (12.3) is a ring homomorphism.
3. ker (ϕ) =

〈
(x− λ)n+1

〉
= R [x] (x− λ)n+1

.

Proof. Item 1. can be proved by a straight forward but tedious verification.
However there is a better way! Consider the bijective map,

R 3 (a0, . . . , an)
ϕ−→

[
n∑
k=0

ak
k!
xk

]
:=

n∑
k=0

ak
k!
xk +

〈
xn+1

〉
⊂ R [x] /

〈
xn+1

〉
.

Since, [
n∑
k=0

ak
k!
xk

][
n∑
l=0

bl
l!
xl

]
=

 2n∑
k=0

 k∑
j=0

aj
j!

bk−j
(k − j)!

xk


=

 n∑
k=0

1
k!

 k∑
j=0

(
k

j

)
ajbk−j

xk

 ,
that ϕ becomes a ring homomorphisms provided we use the multiplication rule
in Eqs. (12.4) and (12.5).

Item 2. is easy since we defined the ring multiplication on R so that ϕ would
be a homomorphism.

For item 3. let me only explain the case where n = 1 here. If p ∈ ker (ϕ) ,
then

0 = (0, 0) = ϕ (p) = (p (λ) , p′ (λ)) .

Since p (λ) = 0, we know p (x) = (x− λ)u (x) for some u ∈ R [x] .Differentiating
this equation at x = λ then implies, 0 = p′ (λ) = u (λ) and therefore u (x) =
(x− λ) q (x) for some q ∈ R [x] . Therefore p (x) = (x− λ)2 q (x) for some q ∈
R [x] . Conversely if p (x) = (x− λ)2 q (x) , then

ϕ (p) = ϕ ((x− λ))ϕ ((x− λ))ϕ (q) = (0, 1) (0, 1)ϕ (q) = (0, 0)ϕ (q) = 0.

Thus we have shown, ker (ϕ) = R [x] (x− λ)2 as claimed when n = 1. (We have
also shown that (0, 1) is a zero divisor in R and hence R is not an integral
domain.)

12.2 More Example of Factor Rings

Example 12.7. Here is another example similar to Example 11.1. In R :=
Z [i] / 〈3 + i〉 , we have [i] = [−3] and therefore [−1] = [9] or equivalently
[10] = 0. Therefore for a, b ∈ Z,

[a+ ib] = [a− 3b] = [(a− 3b) mod 10] .

Thus we should take S = {0, 1, 2, . . . , 9} . If a, b ∈ S and [a] = [b] , then [c] = 0
where c = (b− a) mod 10. Since [c] = 0, we must have

c = (3 + i) (a+ ib) = (3a− b) + (a+ 3b) i

from which it follows that a = −3b and 3 (−3b)−b = −10b = c. Since 0 ≤ c ≤ 9,
this is only possible if c = 0 and so as above if a = b. Therefore
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S 3 a→ [a] = a+ 〈3 + i〉 ∈ Z [i] / 〈3 + i〉

is a bijection. Moreover it is easy to see that thinking of S as Z10, the above
map is in fact a ring isomorphism.

Example 12.8 (Example 12.7 revisited). From Example 8.9 we have seen that
ϕ : Z[i]→ Z10 defined by ϕ (a+ bi) = (a− 3b) mod 10 is a ring homomorphism
– recall that 32 = (−3)2 = 9 = −1. In this case,

a+ ib ∈ ker (ϕ) ⇐⇒ a− 3b = 0 in Z10,

i.e. a = 3b+ 10k for some k ∈ Z. Therefore,

ker (ϕ) = {3b+ 10k + ib : b, k ∈ Z} = Z (3 + i) + Z · 10.

In particular it follows that 3 + i ∈ ker (ϕ) and therefore

〈3 + i〉 ⊂ kerϕ = Z (3 + i) + Z · 10.

Moreover, since (3− i) (3 + i) = 10, we see that

Z (3 + i) + Z · 10 ⊂ Z (3 + i) + Z [i] (3 + i) = Z [i] (3 + i) = 〈3 + i〉 .

Hence we have shown,

〈3 + i〉 ⊂ kerϕ = Z (3 + i) + Z · 10 ⊂ 〈3 + i〉

and therefore

kerϕ = Z (3 + i) + Z · 10 = 〈3 + i〉 = Z [i] (3 + i) .

Consequently, by the first isomorphism theorem, ϕ̄ : Z[i]/ 〈3 + i〉 → Z10, given
by

ϕ̄ ([a+ bi]) = ϕ (a+ bi) = (a− 3b) mod 10

is a ring isomorphism. Again, by taking b = 0, we see that ϕ̄−1 (a) = [a] =
a+ 〈3 + i〉 is the inverse isomorphism, compare with Example 12.7.

Theorem 12.9. Let ρ ∈ Z+ and a, b ∈ Z such that a+ib 6= 0 and 1 = gcd (a, b) .
Further let

S := Zρ(a2+b2) + iZρ =
{
x+ iy : x ∈ Zρ(a2+b2) and y ∈ Zρ

}
where Z1 := {0} and in this case we may take S := Zρ(a2+b2). Then the map,

S 3 (x+ iy)
ϕ−→ [x+ iy] ∈ Z [i] / 〈ρ (a+ ib)〉 (12.6)

is a bijection of sets. If we further assume that ρ = 1, then

Z(a2+b2) 3 x→ [x] ∈ Z [i] / 〈a+ ib〉 (12.7)

is an isomorphism of rings.

Proof. The proof is carried out in a number of steps.

1. First observe that

〈ρ (a+ ib)〉 = {ρ (a+ ib) (s+ it) : s, t ∈ Z}
= {ρ [as− bt+ i (bs+ at)] : s, t ∈ Z} . (12.8)

2. There exists s, t ∈ Z such that bs+ at = 1 and so from Eq. (12.8) it follows
that [ρi] = [bt− as] . Therefore every element of Z [i] / 〈ρ (a+ ib)〉 may be
represented in the form [x+ iy] where x ∈ Z and y ∈ Zρ. Notice that

ρ = min {β ∈ Z+ : α+ iβ ∈ 〈ρ (a+ ib)〉 for some α ∈ Z} .

3. If s, t ∈ Z such that bs + at = 0, then (s, t) = λ (a,−b) for some λ ∈ Q. In
fact λ can not be a fraction. If it were, since both s, t ∈ Z, the denominator
(in reduced form) of λ would have to divide both a and b and hence λ = ±1
as gcd (a, b) = 1. Thus we have λ ∈ Z.
For such (s, t) = λ (a,−b) with λ ∈ Z we have

ρ [as− bt+ i (bs+ at)] = λρ
(
a2 + b2

)
.

So the smallest positive number this expression can take is ρ
(
a2 + b2

)
which

occurs when λ = 1.
4. From item 3. it follows that

[
ρ
(
a2 + b2

)]
= 0. Combining this observation

with item 2. shows that the map, ϕ, in Eq. (12.6) is onto.
5. The last main thing to prove is that the map ϕ is one to one. Suppose that
x+ iy and x′ + iy′ are in S with [x+ iy] = [x′ + iy′] . This happens iff

[x− x′ + i (y − y′)] = [0] ⇐⇒ x− x′ + i (y − y′) ∈ 〈ρ (a+ ib)〉 . (12.9)

Since |y − y′| < ρ, it follows form item 2. that if Eq. (12.9) holds then
y− y′ = 0. Since |x− x′| < ρ

(
a2 + b2

)
, it now follows from item 3. that we

must have x − x′ = 0. Thus we have shown x + iy = x′ + iy′ and hence ϕ
is one to one.

6. The assertion that when ρ = 1 the map in Eq. (12.7) is a ring isomorphism
is left to the reader.

Example 12.10. In this example, we wish to consider, Z [x] / 〈2x− 1〉 . In this
ring we have

[1] = [2x] = [2] [x]

which suggests that roughly speaking, “ [x] = 1/2.” Thus we might guess that

Z [x] / 〈2x− 1〉 ∼= Z [1/2] . (12.10)
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The general element of Z [1/2] is a rational number which has a denominator of
the form 2n for some n ∈ N. In order to try to prove this, let ϕ : Z [x]→ Z [1/2]
be the evaluation map, ϕ (p) = p (1/2) . Since ϕ (Z [x]) = Z [1/2] to prove Eq.
(12.10) we need to show

ker (ϕ) = 〈2x− 1〉 . (12.11)

On one hand it is clear that 2x− 1 ∈ ker (ϕ) and therefore 〈2x− 1〉 ⊂ ker (ϕ) .
For the opposite inclusion, suppose that p ∈ ker (ϕ) , i.e. p (1/2) = 0. By the
division algorithm, we may write p (x) = q (x) (x− 1/2) + r where r ∈ Q. Since
p (1/2) = 0 it follows that r = 0. Let g (x) := 1

2q (x) , then g (x) ∈ Q [x] satisfies,

p (x) = g (x) (2x− 1) .

I claim that g (x) ∈ Z [x]. To see this look at the expressions,

p (x) =
n∑
k=0

akx
k =

n−1∑
j=0

bjx
j

 (2x− 1)

where ak ∈ Z and bk ∈ Q. By looking at the coefficient of the xk term we learn,
ak = −bk + 2bj−1 with the convention that b−1 = 0 = bn. So for k = 0 we learn
that b0 = −a0 ∈ Z, and for general k, that bk = −ak + 2bj−1. Thus it follows
inductively that bk ∈ Z for all k.

Hence we have shown if p ∈ ker (ϕ) , then p ∈ 〈2x− 1〉 , i.e. ker (ϕ) ⊂
〈2x− 1〉 which completes the proof of Eq. (12.11).

12.3 II. More on the characteristic of a ring

Let R be a ring with 1. Recall: the characteristic of R is the minimum n > 1 (if

any exist) such that n·1 =

n︷ ︸︸ ︷
1 + ·+ 1 = 0. If no such n exists, we call chr (R) = 0.

Theorem 12.11 (Characteristic Theorem). Let R be a ring with 1. Then
ϕ (a) := a · 1R is a homomorphism from Z → R and kerϕ = 〈m〉 where m =
chr (R) . Moreover, R contains a copy of Z/ 〈m〉 as a subring.

Proof. Since 12
R = 1R, we have already seen that ϕ (a) = a · 1R defines a

homomorphism Moreover it is clear that a · 1R = 0 iff chr (R) |a, i.e. ker (ϕ) =
〈m〉 . The remaining statement follows by an application of the first isomorphism
theorem; i.e. Z/ 〈m〉 ∼= ϕ(Z) = Ranϕ. So Ranϕ is a subring of R, and it is
isomorphic to Z/ 〈m〉.

So the rings Z and Z/ 〈m〉 ∼= Zm are the “simplest” rings in the sense that
every ring with 1 has a copy of one of these sitting inside of it.

Example 12.12. Let m ≥ 2 and

R = M2(Zm) =
{[
a b
c d

]
: a, b, c, d ∈ Zm

}
.

Then the homomorphisms above is ϕ : Z→M2(Zm) by

a 7→ a ·
[
1 0
0 1

]
=
[
a 0
0 a

]
kerϕ = 〈m〉, and R has the subring{[

a 0
0 a

]
: a, b, c, d ∈ Zm

}
which is isomorphic is Zm.

Example 12.13. If R = Zm the homomorphism ϕ : Z → Zm constructed above
is just the natural one a 7→ amodm that we have been looking at all along and
chr (Zm) = m.

Example 12.14. If R = Z[i] = {a+ bi : a, b ∈ Z}. Then ϕ : Z→ Z[i], a 7→ a · 1 =
a+0i has kernel kerϕ = 〈0〉. So chr (Z [i]) = 0 and Z[i] has a copy of Z/ 〈0〉 ∼= Z
inside it, namely {a+ 0i : a ∈ Z}.

12.4 Summary

Let us summarize what we know about rings so far and compare this to the
group theory of last quarter.
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Group Ring

Definition
G with · ,associative,
identity,multiplicative
inverse.

R with (+, ·) 3 (R,+) is
an abelian group (can add
and subtract). Associative,
distributive laws
a(b+ c) = ab+ ac,
(b+ c)a = ba+ ca.

Sub
-structure

H ⊂ G is a subgroup
if h1h

−1
2 ∈ H for all

h1, h2 ∈ H,
i.e. H is closed under the
group operations

S ⊂ R is a subring if
a− b ∈ S, ab ∈ S
∀ a, b ∈ S.

Factor
Structure

If H C G is a normal
subgroup of G, then
G/H := {gH : g ∈ G}
is the factor group of
G by H.

If I ⊂ R is an ideal, then
R/I = {r + I : r ∈ R} is
the factor ring of R by I.

Homo-
morphisms:
Functions
Preserving
Structure

ϕ : G→ H a function
between groups, G, and
H is a homomorphism if
ϕ(g1g2) = ϕ(g1)ϕ(g2)
for all g1, g2 ∈ G.

ϕ : R→ S is a function
between two rings R and
S is a homomorphism if
ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)
and ϕ(r1r2) = ϕ(r1)ϕ(r2)
for all r1, r2 ∈ R.
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Lecture 13

13.1 Ideals and homomorphisms

Example 13.1. Let R = Z. We have already seen that the ideals of Z are exactly
〈0〉 = {0}, 〈1〉 = Z, 〈2〉 , 〈3〉 , . . . , i.e., every ideal is a principle ideal of the form
〈m〉 for some m ≥ 0. We already know that the ideal 〈m〉 is the kernel of the
homomorphism Z→ Z/ 〈m〉 ∼= Zm.

Theorem 13.2 (Kernels are ideals). Let R be a ring and I ⊂ R be an ideal.
Then the that map, π : R→ R/I, defined by

π (a) := [a] = a+ I for all a ∈ R,

is a homomorphism of rings called that natural homomorphism. In particu-
lar as subset, S ⊂ R is an ideal iff S is the kernel of some ring homomorphism.

Proof. We have already seen in Lemma 7.6 that kernels of ring homo-
morphisms are ideals. We leave it to the reader to verify π : R → R/I is a
homomorphism with kerπ = I. Once this is done, it follows that every ideal is
also the kernel of some homomorphism – namely π.

Lemma 13.3. Let ϕ : R → R̄ be a surjective homomorphism of rings and
J ⊂ R be an ideal. Then ϕ−1 (ϕ (J)) = J + ker (ϕ) .

Proof. Unwinding all the definitions implies;

a ∈ ϕ−1 (ϕ (J)) ⇐⇒ ϕ (a) ∈ ϕ (J) ⇐⇒ ϕ (a) = ϕ (j) for some j ∈ J
⇐⇒ ϕ (a− j) = 0 for some j ∈ J
⇐⇒ a− j ∈ ker (ϕ) for some j ∈ J
⇐⇒ a ∈ J + ker (ϕ) .

Proposition 13.4. Let ϕ : R→ R̄ be a surjective homomorphism of rings and
I := ker (ϕ) . Then the two sided ideals of R which contain I are in one to one
correspondence with the two sided ideals of R̄. The correspondence is given by,

{J : I ⊂ J ⊂ R} 3 J → ϕ (J) ⊂ R̄ and (13.1)

{J : I ⊂ J ⊂ R} 3 ϕ−1
(
J̄
)
←− J̄ ⊂ R̄. (13.2)

Proof. Let us begin by showing that ϕ (J) and ϕ−1
(
J̄
)

are ideals whenever
J and J̄ are ideals. First off it is easy to verify that ϕ (J) and ϕ−1

(
J̄
)

are
sub-rings if J and J̄ are subrings. Moreover, for r ∈ R, we have

ϕ
(
rϕ−1

(
J̄
))

= ϕ (r)ϕ
(
ϕ−1

(
J̄
))

= ϕ (r) J̄ ⊂ J̄

and similarly,

ϕ
(
ϕ−1

(
J̄
)
r
)

= ϕ
(
ϕ−1

(
J̄
))
ϕ (r) = J̄ϕ (r) ⊂ J̄

wherein we have used ϕ is surjective to conclude that ϕ
(
ϕ−1

(
J̄
))

= J̄ . Simi-
larly, if r̄ ∈ R̄, there exists r ∈ ϕ−1 ({r̄}) and therefore,

r̄ϕ (J) = ϕ (r)ϕ (J) = ϕ (rJ) ⊂ ϕ (J) and
ϕ (J) r̄ = ϕ (J)ϕ (r) = ϕ (Jr) ⊂ ϕ (J)

which shows that ϕ (J) is an ideal as well.
Lastly we show that the maps in Eqs. (13.1) and (13.2) are inverses to one

another. Indeed,

ϕ
(
ϕ−1

(
J̄
))

= J̄ and

ϕ−1 (ϕ (J)) = J + I = J.

In the first line we have used that fact that ϕ is surjective while in the second we
used Lemma 13.3 and the assumption that I = ker (ϕ) ⊂ J so that I + J = J.

Example 13.5. Let ϕ : Z [x]→ Z be the evaluation homomorphism, ϕ (f (x)) =
f (0) so that

ker (ϕ) = 〈x〉 = {f (x) ∈ Z [x] : f (0) = 0} .

For any m ∈ Z, 〈m〉 ⊂ Z is an ideal and therefore,

ϕ−1 (〈m〉) = {f (x) ∈ Z [x] : f (0) ∈ 〈m〉}

is an ideal in Z [x] which contains 〈x〉 . In fact this is the list of all ideals of Z [x]
which contain 〈x〉 = ϕ−1 ({0}) .



Corollary 13.6. If I ⊂ R is an ideal than the ideals of R/I are in one to one
correspondence with the ideals of R containing I. The correspondence is given
by J ⊂ R with I ⊂ J is sent to π (J) = {[a] = a+ I : a ∈ J} .
Example 13.7. Let us find all of the ideals of Z/ 〈10〉 . Since that ideals of Z
containing 〈10〉 are;

Z = {0,±1,±2, . . . }, 〈2〉 = 0,±2,±4, . . . },
〈5〉 = {0,±5,±10, . . . }, and 〈10〉 = {0,±10,±20, . . . },

it follows by Corollary 13.6 that the ideals of Z/ 〈10〉 are given by

Z/ 〈10〉 = {0, 1, 2, . . . , 9}+ 〈10〉 ,
〈2〉 / 〈10〉 = {0, 2, 4, 6, 8}+ 〈10〉 ,
〈5〉 / 〈10〉 = {0, 5}+ 〈10〉 , and
〈10〉 / 〈10〉 = {0}+ 〈10〉 .

13.2 Maximal and Prime Ideals

Let R be a ring, and I an ideal. How do we tell if R/I has properties we like?
For example, when is R/I a domain or when is R/I a field? It turns out that
this has nothing to do with R itself but rather only depends on properties of the
ideal, I. We explore these connections in the context where R is a commutative
ring with 1 ∈ R.
Definition 13.8. Let R be a commutative ring with identity 1. An ideal I is
called prime if given any a, b ∈ R with ab ∈ I, either a ∈ I or b ∈ I. An ideal
I is called maximal if given an ideal J with I ⊂ J ⊂ R either I = J or J = R.

Example 13.9. In Z, the ideal 〈m〉 is neither prime nor maximal when m is
composite. For example, 〈6〉 is not prime. We see that 2 · 3 = 6 ∈ 〈6〉, but
2 6∈ 〈6〉 , and 3 6∈ 〈6〉. Moreover 〈6〉  〈2〉  Z and 〈6〉  〈3〉  Z which shows
that 〈6〉 is not prime. On the other hand, if p is prime, then the ideal 〈p〉 is
both prime and maximal. Let us also observe that 〈0〉 = {0} is prime, but
not maximal. To see that it is not maximal simply observe, for example, that
〈0〉 ( 〈2〉 ( Z. The fact that 〈0〉 is prime is equivalent to the statement that Z
is an integral domain, see the next lemma.

Example 13.10. Consider the ideal, I := 〈x〉 ⊂ Z [x] . This ideal is prime. Indeed,
if p, q ∈ Z [x] , then

p (x) q (x) ∈ I =⇒ p (0) q (0) = 0
=⇒ p (0) = 0 or q (0) = 0 =⇒ p (x) ∈ I or q (x) ∈ I.

On the other hand, because of Example 13.5 we know that 〈x〉 is not a maximal
ideal.
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Lemma 14.1. Let R be a commutative ring with identity 1 = 1R. Then R is
an integral domain iff 〈0〉 = {0} is a prime ideal and R is a field iff 〈0〉 = {0}
is a maximal ideal.

Proof. Suppose that a, b ∈ R. Then ab ∈ 〈0〉 iff ab = 0. If 〈0〉 is a prime
ideal then a ∈ 〈0〉 or b ∈ 〈0〉 , i.e. either a = 0 or b = 0. This shows that R is an
integral domain. Similarly if R is an integral domain and ab ∈ 〈0〉 , then ab = 0
and hence either a = 0 or b = 0, i.e. either a ∈ 〈0〉 or b ∈ 〈0〉 . Thus 〈0〉 is a
prime ideal.

You are asked to prove on your homework that R is a field iff the only ideals
of R are {0} and R. Now {0} is maximal iff the only other ideal of R is R itself.

Theorem 14.2. Suppose that R and R̄ are commutative rings with identities
and ϕ : R→ R̄ is a surjective homomorphism. Then an ideal, J ⊂ R such that
ker (ϕ) ⊂ J is prime (maximal) iff ϕ (J) is prime (maximal) in R̄. Similarly,
an ideal J̄ ⊂ R̄ is prime (maximal) iff ϕ−1

(
J̄
)

is prime (maximal) in R.

Proof. We begin by proving the statements referring to J. In what follows
below J will always be an ideal of R containing ker (ϕ) .

1. Suppose that J ⊂ R is prime and let ā = ϕ (a) and b̄ = ϕ (b) are generic
elements of R̄. Then āb̄ ∈ ϕ (J) iff ϕ (a)ϕ (b) = ϕ (j) for some j ∈ J which
happens iff ab − j ∈ ker (ϕ) , i.e. ab ∈ J + ker (ϕ) = J. Since J is prime it
follows that either a or b ∈ J and therefore either ā or b̄ in ϕ (J) .
Now suppose that ϕ (J) is prime. If a, b ∈ R such that ab ∈ J, then
ϕ (a)ϕ (b) = ϕ (ab) ∈ ϕ (J) . Since ϕ (J) is prime it follows that either
ϕ (a) or ϕ (b) is in ϕ (J) , i.e. either a or b ∈ ϕ−1 (ϕ (J)) = J + ker (ϕ) = J.

2. If J ⊂ R is not a maximal ideal then there exists an ideal K such that
J  K  R. Since ϕ−1 (ϕ (J)) = J, ϕ−1 (ϕ (K)) = K, ϕ−1

(
R̄
)

= R,
it follows that ϕ (J)  ϕ (K)  R̄ which shows ϕ (J) is not maximal.
Conversely if ϕ (J) is not maximal, there exists an ideal, K̄ of R̄, such that
ϕ (J)  K̄  R̄. Then K := ϕ−1

(
K̄
)

is an ideal of R that J ⊂ K ⊂ R.
Since ϕ (J)  K̄ = ϕ (K)  R̄, it follows that J  K  R and hence J is
not maximal.

The statements referring to J̄ now follow from what we have already proved.
Indeed, let J̄ ⊂ R̄ be an ideal and J := ϕ−1

(
J̄
)

which is an ideal of R containing

ker (ϕ) . By what we have already proved we know that ϕ−1
(
J̄
)

= J is prime
(maximal) in R iff J̄ = ϕ

(
ϕ−1

(
J̄
))

= ϕ (J) is prime (maximal) in R̄.
The following theorem is now an easy corollary of Lemma 14.1 and Theorem

14.2.

Theorem 14.3. Let R be commutative with 1, I a prime ideal. Then

1. R/I is an integral domain ⇔ I is a prime.
2. R/I is a field ⇔ I is maximal.

Proof. Easy Proof. As usual we will write [a] for a + I and recall from
your homework that R/I is a commutative ring with identity, [1] = 1 + I.
Let π : R → R/I be the natural homomorphism, π (a) = [a] = a + I. Then
I = ker (π) = π−1 ({0}) . Therefore, by Theorem 14.2, I ⊂ R is prime (maximal)
iff {0} ⊂ R/I is prime (maximal). But by Lemma 14.1 we know that {0} ⊂ R/I
is prime iff R/I is an integral domain and {0} ⊂ R/I is maximal iff R/I is a
field.

Second Proof. To help the reader understand this theorem better, let us
also give a second more direct proof of the theorem.

1. Suppose I is prime and [ab] = [a] [b] = [0] in R/I, then ab ∈ I. Since I is
prime it follows that a ∈ I or b ∈ I, i.e. [a] = 0 or [b] = 0. Therefore R/I
has no zero divisors, i.e. R/I is an integral domain.
Conversely, if I is not prime there exists a, b ∈ R \ I with ab ∈ I. Therefore
[a] 6= 0 6= [b] while [a] [b] = [ab] = 0 which shows that R/I has zero divisors
and hence is not an integral domain.

2. Suppose that I is maximal and let 0 6= [a] ∈ R/I so that a ∈ R but a /∈ I.
Let J be the ideal generated by a and I, i.e.

J := Ra+ I = {ra+ b : r ∈ R, b ∈ I}.

(You should check that J is an ideal.) Since a ∈ J it follows that I ( J
and since I was maximal we may conclude that J = R. In particular 1 ∈ J
and hence there exists r ∈ R and b ∈ I such that 1 = ra + b. Therefore,
1 = [1] = [ra] = [r] · [a] which shows [a]−1 exists and is equal to [r] .
Therefore U (R/I) = (R/I) \ {0} which shows R/I is a field.
Conversely if I is not maximal, then there exists another ideal, J, of R such
that I & J & R. Let b ∈ J \ I so that [b] = b + I 6= 0. If [b]−1 exists, then
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there exist a ∈ R such that [a] [b] = 1 = [1] , i.e. i := ab− 1 ∈ I. Solving for
1 gives,

1 = i+ ab ∈ I + J ⊂ J.
This however contradicts the fact that J is proper since R = R·1 ⊂ RJ = J.
Thus [b] is not invertible for all b ∈ J \ I.

Corollary 14.4. In a commutative ring R with 1, every maximal ideal is also
a prime ideal.

Proof. First Proof. This follows from the Theorem 14.3 since a field is
always an integral domain.

Second Proof. Suppose I is a maximal ideal that a /∈ I and let J :=
I + Ra = J + 〈a〉 . Then J is an ideal in R which properly contains I and
therefore we must have J = R. Hence it follows that 1 = ra+ i for some r ∈ R
and i ∈ I. So if ab ∈ I then

b = rab+ ib ∈ I

showing I is a prime ideal.

Example 14.5 (Example 13.9 revisited). Since Z/ 〈m〉 ∼= Zm and Zm is an inte-
gral domain (field) iff m is prime, we see that the following are equivalent,

1. m is prime,
2. 〈m〉 is a prime ideal of Z, and
3. 〈m〉 is a maximal ideal of Z.

Example 14.6. In Z6 = {0, 1, 2, 3, 4, 5}, I = {0, 3} is a maximal ideal. To see this
let ϕ : Z6 → Z3 be the homomorphism, ϕ (x) = xmod 3. Then ker (ϕ) = I and
since Z3 is a field it follows that 〈0〉 is a maximal ideal and hence ϕ−1 ({0}) =
ker (ϕ) is a maximal ideal.

Example 14.7. In R [x], 〈x〉 is maximal since R [x] / 〈x〉 ∼= R. Notice also that
〈0〉 is prime since R [x] is an integral domain but not maximal since R [x] is not
a field.

Example 14.8. 〈2− i〉 is maximal inside of Z[i]. This is hard to see without our
earlier result that Z[i]/ 〈2− i〉 ' Z5, which is a field.

Example 14.9. Let I := 〈2, x〉 = Z [x] · 2 + Z [x] · x – an ideal of Z [x] . Let ϕ :
Z [x]→ Z be the evaluation homomorphism, ϕ (p (x)) = p (0) with kerϕ = 〈x〉 .
Notice that kerϕ ⊂ I and that ϕ (I) = 2Z = 〈2〉 . Since 〈2〉 is maximal in Z we
know that I = 〈2, x〉 is a maximal ideal of Z [x] . In fact for any prime, p ∈ N,
the same argument shows that 〈p, x〉 is a maximal ideal of Z [x] and these are
precisely all of the maximal ideals of Z [x] which contain 〈x〉 .

Example 14.10. 〈x〉 ⊂ Z [x] is a prime ideal which is not maximal. Indeed from
the previous example, 〈x〉  〈2, x〉  Z [x] which implies 〈x〉 is not maximal. To
see that it is prime observe that Z [x] / 〈x〉 ∼= Z is an integral domain. Moreover
since Z is not a field it again follows that 〈x〉 is not a maximal ideal.

Alternative 1. Observe that ϕ (〈x〉) = {0} and {0} is prime but not max-
imal in Z.

Alternative 2. If f ∈ Z [x] , we have f (x) = xq (x) + a0 and using [x] =
0 = [2] we find

[f (x)] = [x] [q (x)] + [a0] = [a0 mod 2] .

Moreover if a, b ∈ Z2 and [a] = [b] , then a− b ∈ 〈2, x〉 which is only possible if
a − b = 0. Thus it follows that we may take S = Z2. We may now work as we
have done many times before to see that Z [x] / 〈2, x〉 ∼= Z2.

Definition 14.11 (Principle ideal domains). A principle ideal domain
(PID for short) is an integral domain, R, such that every ideal I ⊂ R is a
principle ideal.

Example 14.12. Z and Zm for all m ∈ Z+ are principle ideal domains. We will
also see later that F [x] is a principle ideal domain for every field F.

Example 14.13. In this example we show that Z [x] is not a principle ideal
domain. For example, consider that ideal generated by 〈2, x〉 , i.e.

〈2, x〉 = Z [x] · 2 + Z [x] · x
= {2a+ xq (x) : a ∈ Z and q (x) ∈ Z [x]} (14.1)
= {f (x) ∈ Z [x] : f (0) ∈ 〈2〉} . (14.2)

If 〈2, x〉 = 〈p (x)〉 for some p ∈ Z [x] , then 2 = q (x) p (x) for some q (x) ∈ Z [x] .
However, this is only possible if both q (x) and p (x) are constant polynomials
in which case we must have p (x) = a0 ∈ {±1,±2} . We can rule out a0 = ±1
since 〈2, x〉 is a proper ideal and hence we may assume that p (x) = 2. Noting
that x /∈ 〈2〉 we learn that 〈2〉 $ 〈2, x〉 and therefore 〈2, x〉 is not a principle
ideal in Z [x] .
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Lecture 15

• We first went over Quiz #4 in class.

Lemma 15.1. Suppose that R is an integral domain and a, b ∈ R with a 6= 0 6=
b. Then 〈a〉 = 〈b〉 iff a and b are associates, i.e. a = ub for some u ∈ U (R) .

Proof. If 〈a〉 = 〈b〉 then a ∈ 〈b〉 and b ∈ 〈a〉 and therefore there exists
u1, u2 ∈ R such that a = u1b and b = u2a. Thus we may conclude that b =
u2u1b and hence by cancellation that u2u1 = 1. This shows that a = ub with
u = u1 ∈ U (R) . Conversely if a = ub with u ∈ U (R) then a ∈ 〈b〉 and b ∈ 〈a〉
since b = u−1a. Therefore, 〈a〉 ⊂ 〈b〉 and 〈b〉 ⊂ 〈a〉 , i.e. 〈a〉 = 〈b〉 .

Proposition 15.2 (maximal ⇐⇒ prime in PIDs). If R is a principle ideal
domain and I ⊂ R be a non-zero ideal. Then I is maximal iff I is prime.

Proof. By Corollary 14.4, we know in general that maximal ideals are prime
ideals. So we need only show that if I is a prime ideal then I is a maximal ideal.
Suppose that I = 〈a〉 ⊂ R (with a 6= 0) is a prime ideal and J = 〈b〉 is another
ideal such that I ⊂ J. We will finish the proof by showing either J = I or
J = R.

As a ∈ 〈b〉 , we have a = bc for some c ∈ R. Since bc ∈ I = 〈a〉 and I
is prime, we must have either b ∈ 〈a〉 or c ∈ 〈a〉 . Case 1: if b ∈ 〈a〉 , then
J = 〈b〉 ⊂ 〈a〉 = I and hence J = I. Case 2: if c ∈ 〈a〉 , then c = au for some
u ∈ R and we then have a = bc = bau. Cancelling a (here is where we use a 6= 0)
from this equation shows that 1 = bu and therefore b and 1 are associates and
so, by Lemma1 15.1, J = 〈1〉 = R.

15.1 The rest this section was not covered in class

Lemma 15.3. Suppose that R1 and R2 are two commutative rings with iden-
tities.. Then every ideal, J ⊂ R1 ⊕R2, is of the form J = I1 ⊕ I2 where I1 and
I2 are ideals of R1 and R2 respectively.

Proof. It is easy to check that J := I1⊕ I2 ⊂ R1⊕R2 is an ideal whenever
I1 and I2 are ideals of R1 and R2 respectively. So let us concentrate on the
converse assertion.
1 More directly, 1 = bu implies b−1 exists and therefore 1 = b−1b ∈ 〈b〉 = J and

hence that J = R.

Suppose that J ⊂ R1 ⊕ R2. If (a, b) ∈ J, then (a, 0) = (1, 0) (a, b) and
(0, b) = (0, 1) (a, b) are in J. It is now a simple matter to check that

I1 := {a ∈ R1 : (a, 0) ∈ J} and I1 := {b ∈ R2 : (0, b) ∈ J}

are ideals of R1 and R2 respectively. If a ∈ I1 and b ∈ I2, then (a, b) = (a, 0) +
(0, b) ∈ J showing I1⊕I2 ⊂ J. Similarly if (a, b) ∈ J, then as noted above a ∈ I1
and b ∈ I2 which implies J ⊂ I1 ⊕ I2.

Corollary 15.4. Let R1, R2, be as in Lemma 15.3. Then the maximal ideals
of R1 ⊕R2 are of the form J = I1 ⊕R2 or J = R1 ⊕ I2 where I1 is a maximal
ideal of R1 and I2 is a maximal ideal of R2.

Example 15.5 (Book problem 14.30). Find the maximal ideals, I, in R := Z8 ⊕
Z30 and for each maximal ideal find size of the field, R/I. The only maximal
ideal of Z8 is 〈2〉 and the maximal ideals of Z30 are 〈2〉 , 〈3〉 , and 〈5〉 . Thus the
maximal ideals of R are

〈2〉 ⊕ Z30, Z8 ⊕ 〈2〉 , Z8 ⊕ 〈3〉 , and Z8 ⊕ 〈5〉 .

The respective fields have size, by Lagrange’s theorem or other means, 2 =
8/ 8

gcd(2,8) , 2 = 30/ 30
gcd(2,30) , 3 = 30/ 30

gcd(3,30) , and 5 = 30/ gcd (5, 30) .
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Lecture 16

16.1 The Degree of a Polynomial

Recall the following definition of being a polynomial.

Definition 16.1. Let R be any commutative ring with identity. The polynomial
ring R [x] is defined to be

R [x] = {anxn + an−1x
n−1 + · · ·+ a1x+ a0 : ai ∈ R and n ≥ 0}

equipped with the usual rules for addition and multiplication of polynomials.

Recall that the multiplicative identity in R [x] is 1, and the additive identity
is 0.

Notation 16.2 Suppose that

f = anx
n + · · ·+ a1x+ a0 ∈ R [x]

is a polynomial with an 6= 0. The we say an is the leading coefficient and
f has degree n, written deg (f) = n. (It is convenient to use the convention
that deg (0) = −∞.) If an = 1, then f is called monic. When deg f = 0, i.e.
f = a0, we say f is a constant polynomial.

Example 16.3. In C [x], deg(4x2 + (i + 3)x + 5) = 2. The coefficient of the
largest power of x is called the leading coefficient. The leading coefficient of
4x2 + (i + 3)x + 5 is 4. The polynomial 4x2 + (i + 3)x + 5 is not monic while
g = x2 + 6 is monic. f = 5 is constant, but g = x+ 5 is not.

Example 16.4. Let R = Z6 = {0, 1, . . . , 5},

f = x2 + 5, g = 2x+ 1, and h = 3x.

Then

fg = (2x3 + x2 + 10x+ 5) = 2x3 + x2 + 4x+ 5,

f + g = x2 + 2x+ 6 = x2 + 2x, and

gh = 6x2 + 3x = 3x.

In this example, deg f = 2, deg g = 1, deg h = 1, and deg (gh) = 1 (6= 2) . So
it is not always true in a polynomial ring that deg(fg) = deg g + deg h. Let us
compute the “values” of g (x) ;

x 0 1 2 3 4 5
g (x) 0 3 0 3 0 3

.

Thus we see that deg (g) = 1 yet g (x) has three roots over Z6.

Theorem 16.5. Let R be an integral domain. Then for any f, g ∈ R [x],

deg(fg) = deg(f) + deg(g),

and R [x] is an integral domain.

Proof. If f = 0 then fg = 0 and we will have deg (fg) = −∞ and deg (f)+
deg (g) = −∞ + deg (g) = −∞. So we may now assume that f and g are
non-zero polynomials which we write as,

f = anx
n + · · ·+ a1x+ a0, and

g = bmx
n + · · ·+ b1x+ b0

with ai, bi ∈ R, an 6= 0, and bm 6= 0. Then deg f = n and deg g = m. So

fg = anbmx
n+m + · · ·+ (a1b0 + a0b1)x+ a0b0,

and anbm 6= 0 so that fg is not the zero polynomial and deg (fg) = m + n =
deg f + deg g.

Lemma 16.6. If R is an integral domain, then U (R [x]) = U (R) . In particular
if R = F is a field and F× := F \ {0} , then U (F [x]) = F×.

Proof. If p (x) ∈ U (R [x]) then there exists q (x) ∈ R [x] such that
p (x) q (x) = 1. Therefore, 0 = deg (p) + deg (q) , showing deg (p) = 0 = deg (q) .
Thus p (x) = p0 ∈ R and p0 is invertible in R [x] iff it is invertible in R because
we have seen above that deg (q) = 0 where q (x) is the inverse to p (x) = p0.
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16.2 The evaluation homomorphism (review)

Theorem 16.7 (Evaluation homomorphism). Let R be a subring of a
commutative ring, R̄, and t ∈ R̄. Then there exists a ring homomorphism,
ϕt : R [x]→ R̄ such that

ϕt (p) =
n∑
k=0

akt
k when p (x) =

n∑
k=0

akx
k ∈ R [x] .

We will usually simply write p (t) for ϕt (p) .

Proof. Let q (x) =
∑n
l=0 blx

l, then

ϕt (p+ q) = ϕt

(
n∑
l=0

(al + bl)xl
)

=
n∑
l=0

(al + bl) tl

=
n∑
l=0

(
alt

l + blt
l
)

=
n∑
l=0

alt
l +

n∑
l=0

blt
l

= ϕt (p (x)) + ϕt (q (x)) .

Similarly,

ϕt (pq) = ϕt

(∑
m

( ∑
l+k=m

albk

)
xm

)

=
∑
m

( ∑
l+k=m

albk

)
tm =

∑
m

( ∑
l+k=m

albkt
m

)

=
∑
m

( ∑
l+k=m

alt
lbkt

k

)
=
∑
l,k

alt
lbkt

k

=

(∑
l

alt
l

)(∑
k

bkt
k

)
= ϕt (p) · ϕt (q) .

The point is that the multiplication and addition rules for polynomials was
chosen precisely so as to make this theorem true.

Example 16.8. Suppose that ϕ := ϕ1 : R [x] → R is the evaluation homomor-
phism, ϕ (p) = p (1) . Then

ϕ(fg) = fg(1) = f(1)g(1) and
ϕ(f + g) = [f + g](1) = f(1) + g(1).

For example suppose that

f = x2 + 5 and g = 2x3 − 5x+ 2.

Then

f + g = 2x3 + x2 − 5x+ 7,

fg = 2x5 + 5x3 + 2x2 − 25x+ 10,
f(1) = 6, g(1) = −1,

and so

(f + g)(1) = 5 = f(1) + g(1) and
(fg) (1) = −6 = f(1) · g(1).

Example 16.9 (Evaluation example). Suppose that R = Z6 = {0, 1, 2, 3, 4, 5},
a = 3, and ϕ : R [x] → R is the evaluation map, f 7→ f(3). For example, if
f = 3x2 + 5x+ 2, and g = x+ 3, then

ϕ(f) = f(3) = 3(3)2 + 5(3) + 2 = 44 = 2 and
ϕ(g) = g(3) = 3 + 3 = 6 = 0,

from which it follows that f /∈ ker (ϕ) while g ∈ ker (ϕ) .

Example 16.10. Suppose that λ ∈ R and ϕ = evalλ : R [x] → R, i.e. ϕ (p) =
p (λ) . Then p ∈ kerϕ iff p (λ) = 0 which happens (as we will see shortly) iff
p (x) = (x− λ) q (x) for some q ∈ R [x] . Therefore,

ker (ϕ) = 〈x− λ〉 = R [x] (x− λ)

for this homomorphism.

16.3 The Division Algorithm

Definition 16.11. Let R be an integral domain and f, g ∈ R [x] . We say that
g divides f if f = kg for some k ∈ R [x] . We also say that g is a factor of f.

Example 16.12. In Z [x] , (2x− 4) does not divide
(
x2 − 4

)
. Indeed, if it did

then
x2 − 4 = (a+ bx) (2x− 4) = −4a+ (2a− 4b)x+ 2bx2

which would imply 2b = 1 which is impossible in Z. On the other hand, working
in Q [x] , we have

x2 − 4 = (x− 2) (x+ 2) = (2x− 4)
(

1
2
x+ 1

)
which shows that (2x− 4) is a factor of x2 − 4 in Q [x] .
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Theorem 16.13 (Division Algorithm). Let F [x] be a polynomial ring where
F is a field. Given f, g ∈ F [x] both nonzero, there exists a unique q, r ∈ F [x]
with f = qg+ r such that either r = 0 or deg r < deg g. (We will give the proof
of this theorem later.)

Interpretation. We are dividing f by g and so g goes into f, q times
with remainder r. This is really high school polynomial division which we
will discuss in more detail a bit later. In the sequel we will sometimes denote
the remainder, r by f mod g.

Example 16.14. Let f := 3x3 + 5 and g = 2x+ 3 in Q [x] , then

3
2x

2 − 9
4x+ 27

8

2x+ 3
)

3x3 + 5
− 3x3 − 9

2x
2

− 9
2x

2

9
2x

2 + 27
4 x
27
4 x + 5

− 27
4 x−

81
8

− 41
8

which shows,

3x3 + 5 =
(

3
2
x2 − 9

4
x+

27
8

)
(2x+ 3) +

(
−41

8

)
so that

q (x) =
(

3
2
x2 − 9

4
x+

27
8

)
and r (x) = −41

8
in this example.

Example 16.15. Consider f (x) = x2 + x+ 2 and g (x) = 2x+ 1 inside of Z3 [x] .
Then, using 2 · 2 = 4 mod 3 = 1, we find

2x − 2
2x+ 1

)
x2 + x + 2
x2 + 2x

−x + 2
−x − 2

4 = 1

,

which implies

x2 + x+ 2 = (2x− 2) (2x+ 1) + 1
= (2x+ 1) (2x+ 1) + 1.

Example 16.16 (Example 16.15). Here is alternate way to do the last example.
First use the division algorithm over Q to find;

1
2x+ 1

4

2x+ 1
)

x2 + x + 2
− x2 − 1

2x
1
2x + 2

− 1
2x−

1
4
7
4

,

that is over Q we have

x2 + x+ 2 =
(

1
2
x+

1
4

)
(2x+ 1) + 7/4.

Multiplying this equation through by 4 gives,

4
(
x2 + x+ 2

)
= (2x+ 1) (2x+ 1) + 7

and then apply the “mod 3 homomorphism” to the coefficients implies,

x2 + x+ 2 = (2x+ 1) (2x+ 1) + 1

which is the result above again.

Example 16.17. Let f (x) = 2x3 and g (x) = ix2 + 5x+ 2 in C [x] , then

−2ix + 10
ix2 + 5x+ 2

)
2x3 + 0x2 + 0x + 0
2x3 − 10ix2 − 4ix

+ 10ix2 + 4ix + 0
+ 10ix2 + 50x + 20

(−50 + 4i)x − 20

so that
2x3 = (−2ix+ 10)

(
ix2 + 5x+ 2

)
+ (−50 + 4i)x− 20,

that is
q (x) = (−2ix+ 10) and r (x) = (−50 + 4i)x− 20.

Corollary 16.18. Let F be a field, a ∈ F, and f (x) ∈ F [x] . Then f (a) is the
remainder in the division of f (x) by (x− a) .

Proof. By the division algorithm, there exists k (x) , r (x) ∈ F [x] such that
deg (r) = 0 < 1 and
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f (x) = k (x) (x− a) + r (x) . (16.1)

Since deg (r) = 0, r (x) = b for some b ∈ F and hence evaluating Eq. (16.1) at
x = a implies,

f (a) = k (a) (a− a) + b = b.

Example 16.19. Let f (x) = x2 + 5 in R [x] . If we divide (x+ 1) = (x− (−1))
into f (x) the remainder will be f (−1) = 6.

Example 16.20. If we divide x− 1 into x2 + 2 we find,

x+ 1
x− 1

)
x2 + 2

− x2 + x

x+ 2
− x+ 1

3

which gives x2 +2 = (x+ 1) (x− 1)+3. Notice that the remainder, 3 = (1)2 +2
as it should be.

Theorem 16.21 (F [x] is a PID). Let F be a field, then F [x] is a principle
ideal domain. Moreover the map,

{monic polynomials} 3 p→ 〈p〉 ∈ {non-zero ideals of F [x]} (16.2)

is a one to one correspondence. The inverse map is given by associating to a
non-zero ideal, I ⊂ F [x] , the unique monic polynomial, p ∈ I, with lowest
degree.

Proof. Let us first show the map in Eq. (16.2) is one to one. So suppose
that p and q are monic polynomials such that 〈p〉 = 〈q〉 . Then by Lemmas 15.1
and 16.6, we know that p (x) = kq (x) for some k ∈ U (F ) = F \ {0} . Since
both p and q are monic, we must in fact have k = 1, i.e. p (x) = q (x) .

Suppose that I ⊂ F [x] is an ideal. If I = {0} then I = 〈0〉 so that {0} is a
principle ideal (as always). So now suppose that I 6= {0} and let p (x) ∈ I be a
non-zero polynomial in I with minimal degree. By dividing p (x) by its leading
order coefficient, we may further assume that p (x) is monic. If f (x) ∈ I, use
the division algorithm to write, f (x) = k (x) p (x) + r (x) where deg (r) <
deg (p) . Since r = f − kq ∈ I, we must have r = 0 showing that I = 〈p〉 as
claimed. If q ∈ I is another monic polynomial such that deg (q) = deg (p) , then
q (x) = k (x) p (x) for some k ∈ F [x] . A simple degree argument then shows
that deg (k) = 0 so that k (x) = k0 is a constant polynomial. Since q and p are
both monic, it follows that k0 = 1, i.e. q (x) = p (x) .

Example 16.22. Z [x] is not an principle ideal domain. For example consider the
ideal,

I := 〈2, x〉 = Z [x] · 2 + Z [x] · x.

This ideal is proper since if 1 ∈ I, then 1 = 2p (x) + xq (x) which would imply
that 2p0 = 1 for some p0 ∈ Z. But this is impossible. If there exists q ∈ Z [x]
such that I = 〈q〉 , then 2 = q (x) p (x) for some p. However this would imply
0 = deg (2) = deg (p)+deg (q) from which it follows that deg (q) = 0. Therefore
q (x) = q0 for some q0 ∈ Z. As I is proper we know that q0 6= ±1 and since
2 ∈ 〈q0〉 we must have q0 = ±2. However, it should be clear that x ∈ I while
x /∈ 〈2〉 = 〈−2〉 . Thus I is not a principle ideal.

16.4 Appendix: Proof of the division algorithm

Let us now give the formal proof of Theorem 16.13.
Proof. Proof of Theorem 16.13. Suppose that f, g ∈ F [x] with g 6= 0.

We break the proof into the existence and uniqueness assertions.
Uniqueness. Suppose that we have two decompositions,

f = qg + r = q′g + r′

where deg r < deg g and deg r′ < deg g. Then

(q − q′)g + (r − r′) = 0,

or equivalently,
(q − q′)g = (r′ − r).

If r − r′ 6= 0, we may take degrees of this equation to conclude,

deg(q − q′) + deg g = deg (r − r′) < deg g

which is a contradiction. Therefore r = r′ which then forces q = q′ since F [x]
is an integral domain and g 6= 0.This proves uniqueness.

Existence. Write

f (x) = anx
n + · · ·+ a1x+ a0 and

g (x) = bmx
m + · · ·+ b1x+ b0.

If m = deg g > deg f = n then we q = 0, and r = f so that f = 0 · g + f with
deg f < deg g.

If m = deg g ≤ deg f = n, we will use induction on the degree of f . In
the base case, deg f = 0, we have deg g = 0 so that f = a0 and g = b0 and
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therefore, f = a0
b0
g + 0, so r = 0 in this case. Now suppose that n = deg f ≥ 1

and the existence has been established for all lower n. Let

f ′ (x) = f (x)− an
bm

xn−mg (x)

= anx
n + · · ·+ a1x+ a0 −

an
bm

xn−m (bmxm + · · ·+ b1x+ b0)

= cn−1x
n−1 + · · ·+ c0.

Thus deg f ′ < n and hence by the induction hypothesis, f ′ (x) = q′ (x) g (x) +
r (x) where r = 0 or deg (r) < deg (g) . Therefore,

f (x) =
an
bm

xn−mg (x) + f ′ (x) =
an
bm

xn−mg (x) + q′ (x) g (x) + r (x)

=
[
an
bm

xn−m + q′ (x)
]
g (x) + r (x)

= q (x) g (x) + r (x)

where q (x) = an

bm
xn−m + q′ (x) and r = 0 or deg (r) < deg g.
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Lecture 17

We reviewed Corollary 11.5 in preparation for the next quiz.

17.1 Roots of polynomials

Definition 17.1. Let R be an integral domain and f (x) ∈ R [x] . Then a ∈ R
is a zero or root of f (x) if f (a) = 0.

Example 17.2. Let f (x) = 2x2 + 5x− 7 in Z [x] . Then f (1) = 0 so 1 is a root
while f (2) = 11 6= 0 so 2 is not a root of f.

Corollary 17.3. Let F be a field, a ∈ F, and f (x) ∈ F [x] . Then
(x− a) |f (x) ⇐⇒ f (a) = 0, i.e. iff a is a root of f (x) .

Remark 17.4. Corollary 17.3 holds more generally in that we may replace F
by any commutative ring with identity. Indeed, if f (x) ∈ R [x] and f (a) = 0
for some a ∈ R. Let g (x) := f (x+ a) , so that g (x) ∈ R [x] with g (0) = 0.
Since g (0) = 0, g (x) has no constant term which means that we may factor x
out of g (x) , i.e. g (x) = xk (x) for some k (x) ∈ R [x] . This translates into the
statement about f (x) ;

f (x) = g (x− a) = (x− a) k (x− a) ,

which shows x− a is a factor of f (x) .

Example 17.5. Let f (x) = x2 + 5 has no roots over R but two roots over C.
Indeed,

f (x) =
(
x− i

√
5
)(

x+ i
√

5
)

so that f
(
±i
√

5
)

= 0.

Example 17.6 (Book Problem 17.13). Consider the polynomial, f (x) = x3 + 6
on Z7 [x] and observe that

x 0 1 2 3 4 5 6
f (x) 6 0 0 5 0 5 5

.

Thus we know that (x− 1) , (x− 2) , and (x− 4) are all factors of f (x) . For
example,

x2 + x + 1
x− 1

)
x3 + 0x2 + 0x + 6
x3 − x2

+ x2 +
+ x2 − x

x + 6
x − 1

7 = 0

from which it follows that

f (x) = (x− 1)
(
x2 + x+ 1

)
.

Let g (x) = x2 + x + 1 and notice that 0 = f (2) = g (2) so that (x− 2) must
divide g (x) . Indeed this is the case,

x + 3
x− 2

)
x2 + x + 1
x2 − 2x

+ 3x + 1
+ 3x − 6

7 = 0

from which it follows that

g (x) = (x− 2) (x+ 3) = (x− 2) (x− 4) .

Thus as expected, we have

f (x) = (x− 1) (x− 2) (x− 4) .

Corollary 17.7. Let F be a field, f (x) ∈ F [x] , and suppose that {ai}ni=1 ⊂ F
is a list of n – distinct zeros of f. Then

∏n
i=1 (x− ai) divides f (x) . Alternatively

put, there exists k (x) ∈ F [x] such that

f (x) = k (x) (x− a1) (x− a2) . . . (x− an) . (17.1)
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Proof. The proof goes by induction on n. When n = 1 this is the content of
Corollary 17.3. Suppose the result holds for all k ≤ n for some n ≥ 1. Then if
{ai}n+1

i=1 is a list of distinct zeros of f, by corollary 17.3, there exists g (x) ∈ F [x]
such that

f (x) = g (x) (x− an+1) . (17.2)

Since
0 = f (ai) = g (ai) (ai − an + 1)

and ai − an+1 6= 0 for all i ≤ n, it follows that {ai}ni=1 are distinct zeros of g.
Therefore by the induction hypothesis, there exists, k (x) ∈ F [x] such that

g (x) = k (x) (x− a1) (x− a2) . . . (x− an) . (17.3)

Thus it follows from Eqs. (17.2) and (17.3) that

f (x) = k (x) (x− a1) (x− a2) . . . (x− an) (x− an+1)

which completes the induction step and the proof.

Corollary 17.8. Let F be a field and f (x) ∈ F [x] with N := deg (f) . Then f
has at most N distinct roots in F.

Proof. If a1, . . . , an be distinct zeros of f (x) . Then we may write f (x) as
in Eq. (17.1) from which it follows that

N = deg (f) = n+ deg (k) ≥ n.

Example 17.9. Consider

f (x) = (x− 4) (x− 5) = (x+ 2) (x+ 1) = x2 + 3x+ 2

in Z6 [x] . Clearly f (4) = f (5) = 0 but this is not all. Indeed, f (0) = 2 6= 0,
f (1) = 3 · 2 = 6 = 0, f (2) = 4 · 3 = 12 = 0, f (3) = (−1) (−2) = 2 6= 0. Thus
see that f (x) has four zeros in Z6, namely {1, 2, 4, 5} .

Example 17.10 (Zeros of xn − 1). Suppose that z = reiθ is a zero of xn − 1 in
C. Then we must have

rneinθ = 1

which implies r = 1 and inθ = k2π for some k ∈ Z. Thus the zeros, Z, of xn−1
are,

Z =
{
eik2π/n : k ∈ Z

}
=
{
eik2π/n : k ∈ Zn

}
.

If we let ω := ei2π/n, then we may write

Z =
{
ωk : k ∈ Zn

}
and ω is called a primitive nth – root of unity.

17.2 Roots with multiplicities

Definition 17.11. Let F be a field and f (x) ∈ F [x] . A root, a ∈ F, of f (x)
is said to have multiplicity k ≥ 1 if (x− a)k divides f (x) but (x− a)k+1 does
not.

Example 17.12. In R [x] , 3 is a root of order 2 for f (x) = x2 − 6x+ 9. Indeed,
f (x) = (x− 3)2 . If f (x) = x2 − 7x + 10, then f (x) = (x− 2) (x− 5) and the
only zeros of f are x = 2 and x = 5 each of which have multiplicity 1.

Example 17.13. Since f (x) = x3 − 2x2 + x ∈ Q [x] factors as,

f (x) = x
(
x2 − 2x+ 1

)
= x (x− 1)2 ,

the roots of f (x) are 0 and 1 with multiplicities 1 and 2 respectively.

Example 17.14. In R [x] the polynomial, f (x) = x4+2x2+1 has no roots. While
in C [x] it has two distinct roots each with multiplicity 2. To find these roots
observe that

f (x) =
(
x2 + 1

)2
= [(x− i) (x+ i)]2 = (x− i)2 (x+ i)2 .

Thus the roots are ±i.

Example 17.15 (17.23). Find all of the zeros and multiplicity of

f (x) = x5 + 4x4 + 4x3 − x2 − 4x+ 1 ∈ Z5 [x] .

We start by finding all of the roots;

x 0 1 2 3 4
f (x) 1 0 2 0 3

.

Then we divide (x− 1) into f (x) to find,

x4 + 4x2 + 3x − 1
x− 1

)
x5 + 4x4 + 4x3 − x2 − 4x + 1
x5 − x4

4x3 − x2 − 4x + 1
4x3 − 4x2

3x2 − 4x + 1
3x2 − 3x
− x + 1
− x + 1

0
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to find
f (x) = (x− 1) g (x)

with g (x) = x4 + 4x2 + 3x− 1. Let us check we got this right,

(x− 1)
(
x4 + 4x2 + 3x− 1

)
= x5 − x4 + 4x3 − x2 − 4x+ 1

= x5 + 4x4 + 4x3 − x2 − 4x+ 1.X

Notice that g (1) = 7 mod 5 = 2 6= 0 so that 1 is a root with multiplicity 1. We
now divide (x− 3) into g (x) to find;

x3 + 3x2 + 3x + 2
x− 3

)
x4 + 0x3 + 4x2 + 3x − 1
x4 − 3x3

3x3 + 4x2 + 3x − 1
3x3 − 4x2

+ 3x2 + 3x − 1
+ 3x2 − 4x

+ 2x − 1
+ 2x − 1

0

so that
g (x) = (x− 3)

(
x3 + 3x2 + 3x+ 2

)
.

Let h (x) := x3 + 3x2 + 3x + 2, then h (3) = 2 · 33 + 32 + 2 = 65 mod 5 = 0 so
that (x− 3) goes into h (x) . Here is the computation,

x2 + x + 1
x− 3

)
x3 + 3x2 + 3x + 2
x3 − 3x2

x2 + 3x + 2
x2 − 3x

+ x + 2
+ x − 3

+ 5 = 0

.

Thus we have shown,

x5 + 4x4 + 4x3 − x2 − 4x+ 1 = (x− 1) (x− 3)2
(
x2 + x+ 1

)
.

so that 3 has multiplicity 2. This is rather painful way to carry this out. We will
later develop a derivative test to make finding multiplicities easier to determine.
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Lecture 18

Corollary 17.7 has the following useful refinement.

Theorem 18.1. Suppose that a1, . . . , an are distinct zeros of f (x) ∈ F [x] with
multiplicities, l1, . . . , ln. Then there exists k (x) ∈ F [x] such that

f (x) = k (x) (x− a1)l1 . . . (x− an)ln . (18.1)

Proof. The proof will be by induction on N :=
∑n
i=1 li. If N = 1, then we

have n = 1, a1 = a ∈ F and l1 = 1. In this case it follows by definition of a root
with multiplicity 1 that f (x) = k (x) (x− a) for some k (x) ∈ F [x] .

Now suppose N ≥ 2 and the theorem holds whenever
∑n
i=1 li < N. By the

induction hypothesis there exists k1 (x) ∈ F [x] such that

f (x) = k1 (x) (x− a1)l1−1 (x− a2)l2 . . . (x− an)ln . (18.2)

Moreover since (x− a1)l1 |f (x) it follows that (x− a1) divides

f1 (x) = k1 (x) (x− a2)l2 . . . (x− an)ln

which implies f1 (a1) = 0. Since f1 (a1) = 0 while

(x− a2)l2 . . . (x− an)ln |x=a1 6= 0,

we may conclude that k1 (a1) = 0. Therefore that (x− a1) |k1 (x) , i.e. k1 (x) =
k (x) (x− a1) for some k (x) ∈ F [x] . Using this expression for k1 (x) back in
Eq. (18.2) completes the proof.

Corollary 18.2. Let F be a field and f (x) ∈ F [x] with N := deg (f) . Then f
has at most N roots in F when counted with multiplicities. In particular, there
can be at most N distinct roots of f (x) in F.

Proof. If a1, . . . , an be zeros of f (x) with multiplicities, l1, . . . , ln. Then
from Theorem 18.1 there exists k (x) ∈ F [x] such that Eq. (18.1) holds. In
particular it follows that

N := deg (f) = deg (k) +
n∑
i=1

li ≥
n∑
i=1

li.

This inequality is precisely what the Corollary states.

18.1 Irreducibles and Maximal Ideals

Definition 18.3. Let R be an integral domain and a ∈ R×\U (R) . We say that
a is reducible if it admits a non-trivial factorization, i.e. a = bc for come
b, c ∈ R× \ U (R) . Otherwise we say that a is irreducible. So a is irreducible
iff a 6= 0, a /∈ U (R) , and whenever a = bc then either b or c is in U (R) .

Let F be a field and recall from Lemma 16.6 that U (F [x]) = U (F ) = F×.
Therefore the associates to f (x) ∈ F [x] are {af (x) : a ∈ F×} . So f (x) =
a · h (x) with a ∈ F× and h (x) ∈ F [x] is a trivial factorization.

Example 18.4. If F is a field then f (x) ∈ F [x] is reducible iff there is a factor-
ization of the form f (x) = g (x)h (x) where deg g ≥ 1 and deg h ≥ 1.

Lemma 18.5. If F is a field and f (x) = g ∈ F [x] is reducible, then
deg (f (x)) ≥ 2. In particular if deg (f (x)) = 1 then f (x) is irreducible.

Proof. If f (x) admits a non-trivial factorization, f (x) = g (x)h (x) , then

deg f (x) = deg h (x) + deg g (x) ≥ 1 + 1 ≥ 2.

Example 18.6. In Z [x] ;

1. x2 − 1 is reducible since x2 − 1 = (x− 1) (x+ 1) .
2. 2x+ 4 = 2 (x+ 2) is reducible in Z [x] since both 2 and x+ 2 are not units

in Z [x] . Similarly 5x ∈ Z [x] is reducible since f (x) = 5 · x where both 5
and x are not units.

Notice that 2x + 4 = 2 (x+ 2) is irreducible in Q [x] by Lemma 18.5. The
difference now is that 2 is invertible in Q [x] while it is not in Z [x] .

Proposition 18.7. Suppose that D is an integral domain and 0 6= a ∈ D \
U (D) . Then a is irreducible iff 〈a〉 is maximal among all principle ideals in
D. To say 〈a〉 is maximal among all principle ideals in D we mean if b ∈ D
satisfies 〈a〉 ⊂ 〈b〉 ⊂ R, then either 〈a〉 = 〈b〉 or 〈b〉 = R.



Proof. You will prove this in the homework.
The following theorem is a direct consequence of Proposition 18.7 and The-

orem 14.3.

Theorem 18.8 (p irreducible ⇐⇒ 〈p〉 maximal in a PID). Suppose that
D is a PID and p ∈ D× \ U (D) . Then the following are equivalent;

1. p is irreducible,
2. 〈p〉 is a maximal ideal, and
3. D/ 〈p〉 is a field.

Example 18.9. In R [x] , x2 + 1 is irreducible. Indeed if x2 + 1 where to factor
non-trivially the factors would have to be linear and x2 + 1 would have to
have a root which it does not. Consequently we know that R [x] /

〈
x2 + 1

〉
is a

field. We already know this since we have seen, R [x] /
〈
x2 + 1

〉
is isomorphic

to C. Nevertheless, we have now shown that R [x] /
〈
x2 + 1

〉
is a field without

knowledge about C and hence we may view this as a fresh construction of C.
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Lecture 19

19.1 Irreducibles Polynomials I

Let F be a field – later it will be Q. Our goal is to determine when a polynomial,
p (x) ∈ F [x] , is irreducible. We start with the following general results.

Example 19.1 (Second proof of Lemma 18.5). Let F be a field and λ ∈ F. Then
ϕ : F [x]→ F be the evaluation homomorphism, ϕ (p) = p (λ) . Then ϕ (F [x]) =
F, I = ker (ϕ) = 〈x− λ〉 = F [x] · (x− λ) , and therefore, F [x] / 〈x− λ〉 ∼= F
and therefore x− λ is irreducible in F [x] for all λ ∈ F by Theorem 18.8.

Lemma 19.2. If F is a field, f (x) ∈ F [x] with deg (f) ≥ 2, and f has a zero
in F , then f is reducible over F.

Proof. Let a ∈ F be a root of f, then f (x) = (x− a) k (x) for some k (x) ∈
F (x) with deg (k) ≥ 1. Since both (x− a) and k (x) are not units, it follows
that f is reducible.

We have the following partial converse to this lemma.

Theorem 19.3. If F is a field, f (x) ∈ F [x] with deg (f) = 2 or deg (f) = 3,
then f is irreducible over F iff f has no zeros in F.

Proof. Lemma 19.2 shows that f has zero implies f is reducible. Conversely
if f is reducible, then f (x) = p (x) q (x) for some polynomials p and q with
deg (p) ,deg (q) ≥ 1. Since deg (p) + deg (q) = deg (f) ≤ 3, it follows that
deg (p) = 1 or deg (q) = 1, say deg (p) = 1. Thus p (x) = ax + b for some
a, b ∈ F with a 6= 0 and f (x) = (ax+ b) q (x) . Therefore

f

(
−b
a

)
=
(
a
−b
a

+ b

)
q

(
−b
a

)
= 0 · q

(
−b
a

)
which shows that f has a zero in F.

Example 19.4 (Construction of finite fields). Observe that the x3 function on
Z5 is given by

x 0 1 2 3 4
x3 0 1 3 2 4

.

Let f (x) := x3 + x+ 1 ∈ Z5 [x] , then

x 0 1 2 3 4
f (x) 1 3 1 1 4

showing f (x) has not roots and hence is irreducible. Therefore 〈f (x)〉 ⊂ Z5 [x]
is a maximal ideal and therefore,

F := Z5 [x] / 〈f (x)〉

is a field. As we have,

F =
{[
a+ bx+ cx2

]
: a, b, c ∈ Z5

}
,

we see that the number of elements in F is 53 = 125. Thus we have constructed
a field with 125 elements and characteristic 5.

Proposition 19.5. Suppose that f (x) =
∑n
k=0 akx

k ∈ Z [x] . If and f (r/s) = 0
for some r ∈ Z and s ∈ Z+ with gcd (r, s) = 1, .then s|an and r|a0. In particular
if f (x) is monic, i.e. an = 1, the only possible rational roots of f (x) must
actually be in Z and in fact must be a divisor of a0.

Proof. See problem 17.25 in Gallian which you are assigned for homework.

Example 19.6. Let k ≥ 2 and p be a prime in Z+, then k
√
p is irrational. Indeed

if k
√
p = r were rational, being a root of xk − p, r would have to be an integer

which divides p by Proposition 19.5. Thus r would have to be ±p or ±1 none of
which will work. Hence we may conclude that x2− p and x3− p are irreducible
polynomials over Q (or Z) for any prime number p. (In fact by Eisenstein’s
Criterion, Theorem 22.6 below, it is easy to see that xk − p is irreducible over
Q for all primes, p, and k ≥ 2.) Of course

x2 − 2 =
(
x−
√

2
)(

x+
√

2
)

in R [x]

and therefore x2 − 2 is reducible over R.

Example 19.7. In this example we consider the polynomial, x2 + 1 ∈ F [x] for a
number of fields, F.
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1. If F = R, then f (x) = x2 + 1 ≥ 1 > 0 for x ∈ R and so x2 + 1 is irreducible
in R [x] . Consequently, R [x] /

〈
x2 + 1

〉
is a field. (We already have seen this

isomorphic to C.)
2. If F = C, then x2 + 1 = (x− i) (x+ i) is reducible over C [x] .
3. If F = Z3, then f (0) = 1, f (1) = 2 and f (2) = 5 mod 3 = 2 and therefore
f is irreducible over Z3. Consequently Z3 [x] /

〈
x2 + 1

〉
is a field which is

easily seen to be isomorphic to Z3 [i] .
4. If F = Z5, then f (2) = 22 + 1 = 5 mod 5 = 0 and f (3) = 10 mod 5 = 0 and

therefore f (x) is reducible over Z5. Notice that

f (x) = (x− 2) (x− 3) = (x+ 3) (x+ 2) .

In this case Z5 [i] ∼= Z5 [x] /
〈
x2 + 1

〉
is not a field and in fact not even an

integral domain since [x+ 2] [x+ 3] = 0.

Example 19.8. The polynomial f (x) = x3 +x+1 is irreducible over Z2 [x] since
f (0) = 1 = f (1) .

Example 19.9. The polynomial, f (x) = x4 + 2x2 + 1 has no roots over R yet it
is reducible over R. Indeed we have the non-trivial factorizations,

f (x) =
(
x2 + 1

) (
x2 + 1

)
.

This shows the hypothesis that deg (f) ∈ {2, 3} is necessary in Theorem 19.3.

Example 19.10. Let f (x) = 3x3 + 2x+ 1 in Z5 [x] . Then

x 0 1 2 3 4
f (x) 1 1 4 3 1

and it follows that f is irreducible over Z5.

Example 19.11. Suppose that f (x) = x4 + x + 1 ∈ Z2 [x] . In this case f (0) =
1 = f (1) so that f has no roots and hence not linear factors. Thus if f (x) is to
factor it must be of the form f (x) = p (x) q (x) where deg p (x) = 2 = deg q (x)
and both p (x) and q (x) have no roots. By dividing p (x) by its leading order
coefficient we may assume that p is monic. This forces q to be monic as well
since f was monic. Thus we have, p (x) = x2 +ax+b form some a, b ∈ Z2. Since
0 6= p (0) = b we must have p (x) = x2 + ax+ 1. Similarly, 0 6= p (1) = a so that
a = 1. Thus the only monic degree 2 polynomial which is itself irreducible is
x2 + x+ 1. Thus if there is going to be a factorization of f (x) it must be given
by f (x) =

(
x2 + x+ 1

)2
. However a simple computation shows,(

x2 + x+ 1
)2

= 2x+ 3x2 + 2x3 + x4 + 1 = x4 + x2 + 1 6= x4 + x+ 1.

Alternatively we could divide x2 + x+ 1 into f (x) as follows,

x2 + x

x2 + x+ 1
)
x4 + 0x3 + 0x2 + x + 1
x4 + x3 + x2

x3 + x2 + x + 1
x3 + x2 + x

1

which shows that

x4 + x+ 1 =
(
x2 + x

) (
x2 + x+ 1

)
+ 1

and therefore
(
x2 + x+ 1

)
is not a factor of f (x) .

Theorem 19.12 (Fundamental theorem of algebra). The complex number
field, C, is algebraically closed, i.e. every non-constant polynomial, p (x) ∈
C [x] has a root.

Proof. This is a standard result proved in a course on complex variables.
We will not give the proof in this class.

Corollary 19.13. Let p (x) ∈ C [x] and {λi}mi=1 be the distinct zeros of p (x)
and {ki}mi=1 be the corresponding multiplicities. Then

p (x) = c

m∏
i=1

(x− λi)ki for some c ∈ C×. (19.1)

Proof. From Theorem 18.1 we know that exists k (x) ∈ C [x] such that

p (x) = k (x)
m∏
i=1

(x− λi)ki .

However, k (x) must not have any roots for otherwise we would not have ac-
counted for all the zeros with multiplicities of p (x) . According to Theorem
19.12, k (x) must be a constant polynomial c for some c ∈ C.
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Lecture 20

Corollary 20.1. The only irreducible polynomials in C [x] are those with de-
gree equal to one. The only irreducible polynomials in R [x] are the degree one
polynomials and the degree two polynomials with no roots.

Proof. The first assertion should be clear from Corollary 19.13. For the
second assertion, suppose that p (x) ∈ R [x] is any polynomial. If λ ∈ C is a
root of p (x) , then 0 = p (λ) = p

(
λ̄
)

because p (x) has all real coefficients. Let
us now suppose that p (x) is irreducible over R.

If λ ∈ R is a root of p (x) , then p (x) = (x− λ) k (x) for some k (x) ∈ R [x] .
Since p (x) is irreducible we must have deg (k (x)) = 0, i.e. .k (x) is a constant
and p (x) is linear. On the other hand if λ ∈ C \ R is a root of p (x) then so is
λ̄. Therefore we know

p (x) = (x− λ)
(
x− λ̄

)
k (x) =

(
x2 − 2 Reλ+ |λ|2

)
k (x)

for some k (x) ∈ R [x] . Since p (x) is irreducible, we must again have deg k (x) =
2. This observation along with Theorem 19.3 completes the proof of the corol-
lary.

Proposition 20.2. Let p (x) ∈ R [x] , then p (x) may be factored into irre-
ducibles of R [x] .

Proof. If p (x) is not irreducible, there exists h (x) , k (x) ∈ R [x] with
deg h ≥ 1, deg k ≥ 1, and p (x) = h (x) k (x) . Since deg h (x) < deg p (x) and d
deg k (x) < deg p (x) , the result follows by a simple induction argument.

20.1 Two more homomorphisms involving polynomials

Lemma 20.3. Let R and T be commutative rings, ϕ : R [x] → T be a ring
homomorphism, and let t := ϕ (x) . Then

ϕ

(
n∑
k=0

akx
k

)
=

n∑
k=0

ϕ (ak) tk for all
n∑
k=0

akx
k ∈ R [x] .

Proof. Using the ring homomorphism properties we find,

ϕ (p (x)) =
n∑
k=0

ϕ
(
akx

k
)

=
n∑
k=0

ϕ (ak)ϕ
(
xk
)

=
n∑
k=0

ϕ (ak)ϕ (x)k =
n∑
k=0

ϕ (ak) tk.

Proposition 20.4 (Changing coefficients). Let R and T be commutative
rings and ψ : R→ T be a ring homomorphism. Further define ψ̄ : R [x]→ T [x]
by the formula,

ψ̄

(
n∑
k=0

akx
k

)
:=

n∑
k=0

ψ (ak)xk for all
n∑
k=0

akx
k ∈ R [x] . (20.1)

Then ψ̄ is a ring homomorphism. Moreover this is the unique ring homo-
morphism from R [x] → T [x] such that ψ̄ (x) = x and ψ̄ (a) = ψ (a) for all
a ∈ R ⊂ R [x] .

Proof. You are asked to prove this for homework.

Example 20.5. Suppose that ψk : Z→ Zk is the homomorphism, ψk (a) :=
amod k so that ψ̄k : Z [x]→ Zk [x] . For example,

ψ̄3

(
5x3 + 7x+ 3

)
= 2x3 + x ∈ Z3 [x] ,

ψ̄5

(
5x3 + 7x+ 3

)
= 2x+ 3 ∈ Z5 [x] , and

ψ̄7

(
5x3 + 7x+ 3

)
= 5x3 + 3 ∈ Z7 [x] .

Corollary 20.6. Let R and T be commutative rings and ϕ : R → T be a
ring homomorphism. Then for each t ∈ T there exists a ring homomorphism
ϕt : R [x] → T such that ϕt (a) = ϕ (a) for all a ∈ R and ϕt (x) = t. More
specifically, if

ϕt

(
n∑
k=0

akx
k

)
=

n∑
k=0

ϕ (ak) tk for all
n∑
k=0

akx
k ∈ R [x] .
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Proof. Let ψ : R [x]→ T [x] be the homomorphism in Proposition 20.4 and
evt : T [x] → T be the evaluation homomorphism at t. Then ϕt = evt ◦ ψ :
R [x]→ T is the desired homomorphism.

Example 20.7. As an application of Corollary 20.6, let R be a commutative
ring, ϕ : R → R [x] be the homomorphism taking a ∈ R to the constant
polynomial a ∈ R [x] , and t (x) ∈ R [x] be any polynomial. Then there is a
unique homomorphism, ϕt : R [x] → R [x] such that ϕt (a) = a for all a ∈ R
and ϕt (x) = t (x) which is given formulaically as,

ϕ (p (x)) = p (t (x)) for all p (x) ∈ R [x] .

In particular if t (x) = x−a for some a ∈ R the map, p (x)→ p (x− a) is a ring
isomorphism from R [x] to R [x] with inverse being given by p (x)→ p (x+ a) .

20.2 Gauss’ Lemma

We now go back to finding more ways to determine when f (x) ∈ Q [x] is irre-
ducible. Are first goal is to change the question into one involving a polynomial
g (x) ∈ Z [x] being irreducible or not – see Corollary 21.5 below. The main tool
here will be Gauss’ Lemma 20.10 below.

Definition 20.8. Let f (x) =
∑n
k=0 anx

n ∈ Z [x] , then c (f) := gcd (a0, . . . , an)
is called the content of f. A polynomial f ∈ Z [x] is said to be primitive if
c (f) = 1.

Example 20.9. If f (x) = 14x2+10x+6, then c (f) = 2 and 1
2f (x) = 7x2+5x+3

is a primitive polynomial.

Lemma 20.10 (Gauss’ Lemma). If f (x) , g (x) ∈ Z [x] are primitive polyno-
mials, then f (x) g (x) is primitive as well, i.e. c (f) = 1 = c (g) =⇒ c (fg) = 1.

Proof. Suppose that c (fg) > 1 and let p be a prime divisor of c (fg) .
Further let f̄ (x) :=

∑n
k=0 (an mod p)xn and similarly for ḡ (x) . Observe that

f → f̄ is a ring homomorphism from Z [x] → Zp [x] so that fg = f̄ ḡ. Since
p divides all of the coefficients of fg we know fg = 0 and since Zp [x] is an
integral domain, we may conclude that either f̄ = 0 or ḡ = 0, i.e. p|c (f) or
p|c (g) . Thus at least one of the polynomials, f or g, is not primitive.

Lemma 20.11. Suppose that a0, . . . , an ∈ Z (not all zero) and m ∈ Z+. Then
gcd (ma0, . . . ,man) = m gcd (a0, . . . , an) . In particular if f (x) ∈ Z [x] and
m ∈ Z×, then c (mf) = |m| c (f) .

Proof. First Proof. One way to compute the gcd of a bunch of numbers
is by looking at their prime number decompositions. In terms of this decompo-
sition,

gcd (a0, . . . , an) =
N∏
i=1

pki
i

where {pi}Ni=1 are the distinct primes which appear in these decomposition and
ki ∈ {0, 1, 2, . . . } is chosen so that pki

i |aj for all j but pki+1
i does not divide one

of the aj . Using this description it is easy to see the truth of the lemma.
Second Proof. Let d := gcd (a0, . . . , an) and c := gcd (ma0, . . . ,man) then

we know there exists si ∈ Z such that

d = s0a0 + · · ·+ snan.

From this it follows that

md = s0ma0 + · · ·+ snman.

Thus every common divisor of mai for all i is a divisor of md and in particular
c| (md) . Since md is a divisor of mai for all i we also know that md|c. Thus we
may conclude that md = c as claimed.

Corollary 20.12. If f, g ∈ Z [x] then c (fg) = c (f) · c (g) . In particular,
f (x) g (x) is primitive iff both f (x) and g (x) are primitive.

Proof. Let f0 (x) := 1
c(f)f (x) and g0 (x) := 1

c(g)g (x) so that both f0 (x) and
g0 (x) are primitive in Z [x] . Then by Gauss’ lemma, f0 (x) g0 (x) is primitive
and since f (x) g (x) = c (f) c (g) f0 (x) g0 (x) , it follows from Lemma 20.11 that
c (fg) = c (f) c (g) .

Corollary 20.13. Suppose that f (x) , g (x) ∈ Z [x] , g (x) is primitive, and
k (x) ∈ Q [x] . If f (x) = k (x) g (x) in Q [x] , then k (x) ∈ Z [x] . In words if
g (x) divides f (x) in Q [x] then the quotient is in fact back in Z [x] .

Proof. Let t ∈ Z+ be chosen so that h (x) := tk (x) ∈ Z [x] – for example
let t be the least common multiple of all of the denominators in the coefficients
of k (x) . We then have tf (x) = h (x) g (x) therefore that tc (f) = c (tf) =
c (h) c (g) = c (h) . It now follows that

1
c (f)

f (x) =
1

c (tf)
tf (x) =

1
c (h)

tf (x) =
1

c (h)
h (x) g (x) =

1
c (h)

h (x) g (x) .

Therefore
f (x) = c (f)

1
c (h)

h (x) g (x) = k (x) g (x)
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and hence

k (x) = c (f)
(

1
c (h)

h (x)
)
∈ Z [x] .

Example 20.14. If g (x) is not primitive, the results in Corollary 20.13 may fail.
For example take f (x) = x2, g (x) = 2x and k (x) = 1

2x.
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Lemma 21.1. Suppose that f (x) , g (x) ∈ Z [x] are primitive polynomials and
there exists α, β ∈ Q× such that αf (x) = βg (x) as polynomials in Q [x] . Then
|α| = |β| and f (x) = ±g (x) .

Proof. Apply Corollary 20.13 with k (x) = β/α to learn that β/α = t ∈ Z.
Since f (x) = tg (x) it follows that 1 = c (f) = |t| c (g) = |t| so that β/α = t =
±1.

Alternative Proof. Let α := a
b and β := u

v with a, b, u, v ∈ Z\ {0} . Then
vaf (x) = ubg (x) . From Lemma 20.11 we know

|va| = c (vaf (x)) = c (ubg (x)) = |ub|

from which it follows that f (x) = ±g (x) .

Example 21.2. The polynomial, f (x) = x2 − 5x + 6 ∈ Z [x] has a factorization
over Q as

f (x) =
(

1
2
x− 3

2

)
(2x− 4) .

Of course if we move the factor of 2 from the second factor to the first we also
have the factorizations of f (x) over Z as,

f (x) = (x− 3) (x− 2) .

The next theorem shows this sort of rejiggering can always be done.

Theorem 21.3. Let f (x) ∈ Z [x] . If f (x) is reducible over Q then f (x) is
reducible over Z. In fact f (x) is reducible over Q [x] iff f (x) factors in Z [x] in
the form, f (x) = u (x) v (x), where u (x) , v (x) ∈ Z [x] with deg u (x) ≥ 1 and
deg v (x) ≥ 1.

Consequently: if f (x) is irreducible over Z then f (x) is also irreducible
over Q.

Proof. We need to show that any non-trivial factorization over Q gives rise
to a non-trivial factorization over Z. So suppose f (x) ∈ Z [x] and h (x) , g (x) ∈
Q [x] with deg (h) ≥ 1, deg (g) ≥ 1, and f (x) = g (x)h (x) in Q [x] . Choose
s, t ∈ Z+ such that g1 (x) := sg (x) and h1 (x) := th (x) and in Z [x] . Then we
have

stf (x) = g1 (x)h1 (x) =⇒ stc (f) = c (g1) · c (h1)

and therefore

1
c (f)

f (x) =
1

stc (f)
stf (x) =

1
c (g1)

g1 (x) · 1
c (h1)

h1 (x) .

Therefore we have found a non-trivial factorization of f (x) over Z in the desired
form, namely;

f (x) =
[
c (f)

1
c (g1)

g1 (x)
]
·
[

1
c (h1)

h1 (x)
]

=
[
c (f)

s

c (g1)
g (x)

]
·
[

t

c (h1)
h (x)

]
=: u (x) v (x) .

Example 21.4. Notice that x ∈ Z [x] is irreducible. Indeed if x = f (x) g (x) for
some f (x) , g (x) ∈ Z [x] , then 1 = deg (f (x))+deg (g (x)) and we may suppose
that deg (f) = 1 and deg (g) = 0. Moreover we know that f (x) and g (x) are
primitive and therefore g (x) = ±1 ∈ U (Z [x]) . Thus the factorization is trivial
and x ∈ Z [x] is irreducible.

On the other hand, f (x) = 5x ∈ Z [x] is reducible over Z but irreducible
over Q. The point being that 5 ∈ U (Q) while 5 /∈ U (Z) .

However we do have the following corollary to Theorem 21.3.

Corollary 21.5. If f (x) ∈ Z [x] is primitive, then f (x) is irreducible over
Z [x] iff f (x) is irreducible over Q [x] .

Proof. 1. First observe that if g (x) /∈ U (Z [x]) and g (x) is primitive then
deg g (x) ≥ 1. Indeed if deg g (x) = 0 and g (x) is primitive, then g (x) = ±1,
i.e. g (x) ∈ U (Z [x]) .

2. Suppose that f (x) is primitive and reducible over Z, i.e. f (x) = g (x)h (x)
for some g (x) , h (x) /∈ U (Z [x]) . Since 1 = c (f) = c (g) c (h) it follows that
c (g) = 1 = c (h) and therefore by the first part we must have deg g (x) ≥ 1 and
deg h (x) ≥ 1. Therefore g (x) , h (x) /∈ U (Q [x]) ∼= Q× and so the factorization
f (x) = g (x)h (x) is nontrivial over Q as well, i.e. f (x) is reducible in Q [x] .
Since the converse was already proven in Theorem 21.3, the proof is complete.



21.1 mod p Irreducibility Tests

Theorem 21.6 (mod p test). Let f (x) ∈ Z [x] , p ∈ Z+ be a prime, and
f̄ (x) ∈ Zp [x] be the reduction of f (x) mod p, i.e. reduce all of the coefficients
of f (x) mod p. If deg f̄ = deg f,1 and f̄ (x) is irreducible over Zp, then f (x) is
irreducible over Q.

Proof. If f (x) is reducible over Q, then by Theorems 21.3, there f (x) =
g (x)h (x) with deg (g) ,deg (h) ≥ 1, then f̄ (x) = ḡ (x) h̄ (x) . Since deg ḡ ≤
deg g and deg h̄ = deg h and deg f = deg f̄ by assumption,

deg f = deg f̄ = deg ḡ + deg h̄ ≤ deg g + deg h = deg f.

From this equation it follows that we must have deg ḡ = deg g ≥ 1 and deg h̄ =
deg h ≥ 1. Therefore f̄ (x) is reducible over Zp as well.

Remark 21.7 (mod p test failures). We will see in examples below if f̄ (x) ∈
Zp [x] is reducible or deg f̄ < deg f, then the only thing we may conclude is
that the test fails and we need to try another p.

Example 21.8. Consider f (x) = x4 + x + 1 ∈ Z [x] . We have seen in Example
19.11 that

f̄ (x) = f (x) mod 2 = x4 + x+ 1 ∈ Z2 [x]

is irreducible and therefore f (x) = x4 + x+ 1 is irreducible in Z [x] and hence
also on Q [x] .

Notice that if we had decided test this using the mod 3 test, we would have
seen that f̄ (1) = 1 + 1 + 1 = 3 mod 3 = 0 so that f̄ (x) is reducible in Z3 [x] .
The only thing we can conclude from this is that the test has failed.

Example 21.9. Now suppose that f (x) = x3 + x2 + x − 1 ∈ Z [x] . In this
case the mod 2 test fails but the mod 3 test wins the day. So suppose that
f̄ (x) = f (x) mod 3 and observe that

f̄ (0) mod 3 = 2, f̄ (1) mod 3 = 2, and f̄ (2) mod 3 = 1.

Since f̄ is third order and has not roots it is irreducible and therefore f (x) is
irreducible over Z and hence also Q.

1 Alternatively put, we are assuming that the leading the order coefficient of f (x) is
not divisible by p.
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Let f (x) ∈ Z [x] and for any prime p ≥ 2, let fp (x) := f (x) mod p. Then
combining Theorems 21.3 and 21.6 we have the following implication; ∃ p such that

deg fp (x) = deg f (x) &
fp (x) ∈ Zp [x] is irreducible

 =⇒
(
f (x) is irreducible

over Q

)
.

Example 22.1. Let us consider the polynomial,

f (x) := 5x4 − 8
3
x3 + 3x+

11
3
∈ Q [x] .

Then f (x) is irreducible iff

g (x) := 3f (x) = 15x4 − 8x3 + 9x+ 11

is irreducible over Q. As g (x) ∈ Z [x] and c (g) = 1 we need only show that
g (x) is irreducible over Z [x] . To test this out, let ḡ (x) be g (x) mod 2, so that

ḡ (x) = x4 + x+ 1 ∈ Z2 [x] .

We have already seen in Example 19.11 that ḡ (x) is irreducible and therefore
by the mod 2 test, g (x) is irreducible and therefore so is 3f (x) ∈ Z [x] and
hence f (x) ∈ Q [x] .

Example 22.2 (Converse of mod p test is false). Let f (x) := x2+5x+25 ∈ Z [x]
and f̄ (x) = x2 be f (x) mod 5. Notice that f̄ is reducible over Z5 yet f (x) is
irreducible over Q. Indeed, it is easy to see that f (x) has not roots in Z and
hence not roots in Q. Alternatively, apply the mod 2 test in which case we
consider x2 +x+1 which is irreducible over Z2 as it has no roots. Alternatively,
by the quadratic formula the roots of f (x) are given by

−5±
√

25− 100
2

=
−5± i

√
75

2
so there are not even any real roots. This can also be seen by completing the
squares to see,

f (x) =
(
x+

5
2

)2

+ 25−
(

5
2

)2

=
(
x+

5
2

)2

+ 25 · 3
4
≥ 75

4
.

Example 22.3 (Degree hypothesis is necessary). Let

f (x) = 2x2 + 3x+ 1 = (2x+ 1) (x+ 1) ∈ Q [x] . (22.1)

Clearly this polynomial is reducible. On the on the other hand if we reduce f
mod 2 we get the polynomial, f̄ (x) = x+1 which is linear and hence irreducible.
Notice that under the mod 2 reduction, the factorization in Eq. (22.1) becomes,

x+ 1 = 1 · (x+ 1)

which is a trivial factorization of x+ 1.

Example 22.4. Let us determine if

f (x) :=
3
7
x3 +

5
7
x+

1
7
∈ Q [x]

is irreducible or not. We need only consider 7f (x) = 3x3 + 5x + 1 which is
primitive in Z [x].

Plot of 7f (x) .

Let us consider

g (x) := 7f (x) mod 2 = x3 + x+ 1.

Since g (0) = g (1) = 1, it follows that g is irreducible and since deg (g) =
deg (7f) , we learn that 7f and hence f is irreducible over Q.

Alternatively we may use Proposition 19.5 to argue that 7f (x) and hence
f (x) has no roots in Q. According to Proposition 19.5 we need only look for
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roots of the form a/3 where a ∈ {±1} that is we need only consider {0,±1/3} .
By direct calculation we learn

7f (−1/3) = −7/9 6= 0 and 7f (1/3) =
25
9
6= 0.

This again shows that f (x) is irreducible over Q [x] .

Example 22.5. Let us show again the f (x) = x3 + 5 is irreducible over Q.

1. Method 1. By Proposition 19.5 the only possible roots of f (x) are for x ∈
{±5} and it is clear that neither of these are roots of f (x) .

2. Method 2. Let us try the mod p tests.
a) For p = 2 and p = 3 the tests fails since 1 is a root in each of these

cases.
b) For p = 5, f̄ (x) = x3 is clearly reducible so the test fails again.
c) For p = 7 we find

f (0) mod 7 = 5, f (1) mod 7 = 6, f (2) mod 7 = 6, f (3) mod 7 = 4,
f (4) mod 7 = 6, f (5) mod 7 = 4, f (6) mod 7 = 4

and the test has succeeded in showing that x3 + 5 is irreducible over Q.
3. Method 3. Use Eisenstein’s criteria in Theorem 22.6 below.

22.1 Eisenstein’s Criterion

Theorem 22.6 (Eisenstein’s Criterion). Let f (x) :=
∑n
k=0 akx

k ∈ Z [x]
with n ≥ 2. If there is a prime p such that p - an, p2 - a0 while p|aj for
j = 0, 1, 2, . . . , n− 1 then f (x) is irreducible. over Q.

Proof. If f (x) were reducible over Q [x] then, by Theorem 21.3, there exists
g (x) , h (x) ∈ Z [x] with deg (g) ,deg (h) ≥ 1 such that f (x) = g (x)h (x) . Let

g (x) =
r∑

k=0

gkx
k and h (x) =

s∑
k=0

hkx
k

where r + s = n.
In order to absorb the general proof better let us first suppose that r = s = 1

so that

f (x) = (g0 + g1x) (h0 + h1x) = g0h0 + (g0h1 + g1h0)x+ g1h1x
2.

Since p| (g0h0) and p2 - (g0h0) , we may assume that p|g0 but p - h0. Combining
this with the assumption that p| (g0h1 + g1h0) implies that p|g1. But this then

implies p| (g1h1) which contradicts the assumption that p does not divide the
leading order coefficient of f (x) .

With this as a warm-up we go to the general case. Notice that a0 = g0h0

and an = grhs. Since p|a0 while p2 - a0 it follows that p divides exactly one of
g0 or h0 but not both. Suppose that p|g0 and p - h0. Also notice that p - an
implies p - gr so there is a first 0 < t ≤ r < n such that p - gt. Since,

at = g0ht + g1ht−1 + · · ·+ gt−1h1 + gth0,

and p|at, it follows that p|gth0 which then implies p|h0 which is a contradiction.

For a second proof of this theorem, see Theorem 24.8 below.

Example 22.7. The polynomial, x5+9x4+12x2+6 is irreducible over Q [x] since
p = 3 divides all of the coefficients except the leading order one and 32 - 6.

For n ∈ N, let
Φn (x) = 1 + x+ x2 + · · ·+ xn−1.

This geometric series may be summed in the usual way,

xΦn (x)− Φn (x) = xn − 1 =⇒ Φn (x) =
xn − 1
x− 1

.

Corollary 22.8. For any prime, p ∈ N, Φp (x) is irreducible over Q.

Proof. Observe that

(x+ 1)p − 1 =
p∑
k=0

(
p

k

)
xk − 1 =

p∑
k=1

(
p

k

)
xk,

(x+ 1)− 1 = x, and hence

Φp (x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

=
∑p
k=1

(
p
k

)
xk

x
=

p∑
k=1

(
p

k

)
xk−1

= xp−1 +
(

p

p− 1

)
xp−2 +

(
p

p− 2

)
xp−3 + . . .

(
p

2

)
x+

(
p

1

)
.

For 1 ≤ k < p, since there is no factor of p in k! or (p− k)!, it follows that(
p

p− k

)
=

p (p− 1)!
k! (p− k)!

= p · (p− 1)!
k! (p− k)!

is an integer which is divisible by p. Thus p|
(
p

p−k
)

for 1 ≤ k ≤ p − 1 while
p2 -

(
p
1

)
= p and hence the Eisenstein’s Criterion, Φp (x+ 1) is irreducible. This

then is easily seen to imply Φp (x) is irreducible.
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22.2 Summary of irreducibility tests

Theorem 22.9 (Reducibility tests). Let F be a field and f (x) ∈ F [x] . If
deg f (x) = 1, then f (x) is irreducible so suppose that deg f (x) ≥ 2. Then;

(
f (x) has a root

in F

)
=⇒

(
f (x) is reducible

over F

)
.

Moreover if deg f (x) = 2 or deg f (x) = 3, then(
f (x) has a root

in F

)
⇐⇒

(
f (x) is reducible

over F

)
.

Theorem 22.10 (Finding roots). Suppose that f (x) =
∑n
k=0 akx

k ∈ Z [x]
with an 6= 0 6= a0. Then the rational roots of f (x) are contained in{r

s
: r ∈ N, s ∈ Z+ 3 s|an and r|a0

}
.

Theorem 22.11 (Q – Irreducibility tests). Suppose f (x) =
∑n
k=0 akx

k ∈
Z [x] with n := deg f (x) ≥ 2. Then;

deg f (x) = 1 or
deg f (x) = 2 or 3

& f (x) has no
roots in Q


mod p test ⇓ Eisenstein’s

Criterion
∃ a prime p 3

deg fp (x) = deg f (x)
& fp (x) is irreducible

over Zp

 =⇒
(
f (x) is irreducible

over Q

)
⇐=


∃ a prime p

such that
p|ak for k < n
p - an & p2 - a0

 .

⇑(
f (x) is irreducible

over Z

)
Moreover if f (x) is primitive (i.e. c (f) = 1) then(

f (x) is irreducible
over Q

)
⇐⇒

(
f (x) is irreducible

over Z

)
.





23

Lecture 23

23.1 Irreducibles and Primes II

Definition 23.1. Let D be an integral domain (i.e. a commutative ring with 1
which has no zero divisors, i.e. cancellation holds in D) and a, b, c ∈ D. Then;

1. a is associated to b if a = b (mod)U (R) , i.e. a ∈ bU (R) or equivalently
b ∈ aU (R) .

2. a ∈ D is irreducible iff a 6= 0, a /∈ U (R) and whenever a = bc then either
b ∈ U (R) or c ∈ U (R) . (So a ∈ D is irreducible if it can not be factored in
a non-trivial way.) Similarly we say that 0 6= a ∈ D is reducible if it admits
a factorization of the form a = bc with b, c /∈ U (R) .

3. a ∈ D is prime if 0 6= a /∈ U (R) and if a satisfies; whenever a|bc then
either a|b or a|c. (So a ∈ D is prime if the conclusion of Euclid’s lemma
holds.)

Example 23.2. Let R = Z so that U (Z) = {±1} and the associates to m are
{±m} . Now 0 6= a ∈ Z is irreducible iff whenever a = bc we must have b or c
is ±1. (That is |a| is prime in our old sense of the word.) It therefore follows
by Euclid’s lemma (also see Theorem 23.7)) that if a|bc then a|b or a|c which
means that a is prime in our new sense of being prime as well. As will see in
Theorem 23.4 below, prime always implies irreducible. Thus we are new notion
of prime gives {±2,±3,±5,±7, . . . } for the primes in Z.

Proposition 23.3 (〈prime〉 is prime). Let D be an integral domain and a ∈
D with 0 6= a /∈ U (R) . Then the following are equivalent;

1. a is prime.
2. 〈a〉 = Ra is a prime ideal in D.
3. R/ 〈a〉 is an integral domain.

Proof. See the homework.

Theorem 23.4 (Prime =⇒ irreducible). If D is an integral domain and
a ∈ D is prime then a is irreducible.

Proof. Suppose that a ∈ D is a prime. If a = bc then a|b or a|c. Say that
a|b, i.e. b = at. Then a = atc and since D is a domain we may cancel a form this

equation to see that 1 = tc. This shows that c ∈ U (R) and so a only admits
trivial factorizations, i.e. a is irreducible.

The next example shows that the converse of Theorem 23.4 is false in general,
i.e. it is not always true that irreducibles are primes.

Example 23.5 (Example 1, p. 321). In this example we will show that

α := 1 +
√
−3 ∈ R := Z

[√
−3
]

is irreducible but not prime which we will now verify. First observe that R is
a sub-ring of C which will simplify our computations. Given x = a+b

√
−3 ∈ R,

let x̄ := a − b
√
−3 and N (x) := |x|2 = xx̄ = a2 + 3b2 ∈ N. Since |xy| = |x| |y|

for all x, y ∈ C A direct calculation shows1 that N (xy) = N (x)N (y) for all
x, y ∈ R.

• U (R) = {±1} . If xy = 1, then 1 = N (1) = N (x)N (y) implies N (x) =
1 = N (y) . Conversely if N (x) = 1, then x−1 = x̄ and therefore

U (R) = {x ∈ R : N (x) = 1} = {±1} .

• α is irreducible. If α = xy with x, y ∈ R, then 4 = N (α) = N (x)N (y) . If
neither x nor y is a unit, we must have N (x) = 2 = N (y) which is impossible
since N (x) = a2 + 3b2 which is never 2. Thus no such decomposition exists
and α is irreducible.

• α is not prime. Since αᾱ = N (α) = 4, α|4 while 4 = 2 · 2. So if α were
prime we would have α|2, i.e. 2 = αx for some x = a + b

√
−3. However if

2 = αx then 2ᾱ = α · ᾱx = N (α)x = 4x. Thus we must have 2x = ᾱ, i.e.

2a+ 2b
√
−3 = 1−

√
−3

which is impossible to do unless we take a = 1/2 and b = −1/2 neither of
which are in R. Thus we have shown α does not divide 2 and so α is not
prime.

• Similarly, one shows that 2 irreducible but not prime. To see that 2 is not
prime, notice that 2|αᾱ = 4 while 2 - α. If 2 were reducible, then 2 = xy
with x, y /∈ U (R) . Since 4 = N (2) = N (x)N (y) and neither N (x) = 1 or
N (y) = 1 we must have N (x) = 2 which is impossible.

1 You should check this by direct calculation if this is not familiar to you.
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The next theorem gathers in one place all of the results we know involving
maximal and prime principle ideals and prime and irreducible elements of an
integral domain R.

Theorem 23.6. Let R be an integral domain and 〈a〉 = Ra where a ∈ R with
a 6= 0 and a /∈ U (R) . Then;

〈a〉 is maximal ideal ⇐⇒ R/ 〈a〉 is a field
⇓ (1)

〈a〉 is a prime ideal ⇐⇒ R/ 〈a〉 is an integral domain
m (2)

a is a prime element in R

⇓ (3)
a is an irreducible element in R.

If we further assume that R is a PID, then the converse of all of the above
implications hold.2

Proof. The horizontal equivalences are contained in Theorem 14.3. The ver-
tical implication (1) has been explained in Corollary 14.4. The vertical equiva-
lence (2) is Proposition 23.3 and (3) is Theorem 23.4.

If R is now a PID, we know from Theorem 18.8 that a is irreducible implies
〈a〉 is maximal. Therefore all statements in the theorem are now equivalent.

If time permits we will consider some other interesting integral domains
which are not PID’s and for which some of the equivalences in Theorem 23.6
no longer hold.

Remark 23.7 (Prime ⇐⇒ irreducible in a PID). Here is an alternative proof
that if D is a PID (principle ideal domain) and a ∈ D is irreducible then a is
prime. Suppose that a ∈ D is irreducible and a|bc for some b, c ∈ D. Let

I := aD + bD := {ax+ by : x, y ∈ D} .

Notice that I is an ideal of D and hence I = 〈d〉 for some d ∈ D. Since a ∈ I we
have a = dr for some r ∈ D. As a is irreducible, either d ∈ U (R) or a ∈ U (R) .
If d ∈ U (R) , then I = 〈d〉 = R and in particular 1 ∈ I. Thus there exists
x, y ∈ D such that ax+ by = 1. Therefore,

axc+ ybc = c

from which it follows that a|c. On the other hand of r ∈ U (R) , then I = 〈d〉 =
〈a〉 . Since b ∈ I it follows that b = at for some t ∈ D, i.e. a|b. So we have shown
that a|bc implies a|b or a|c, i.e. a is prime.
2 More succinctly, if R is a PID and a ∈ R× \ U (R) is irreducible, then 〈a〉 is a

maximal ideal in R.

Example 23.8. We have x ∈ Z [x] is prime and hence irreducible. Neverthe-
less, 〈x〉 is not a maximal ideal as we have seen above. For example, 〈x〉 $
{p (x) : p (0) is even} $ Z [x] . Thus we can not drop the assumption that D is
a PID in Theorem 23.4. Nevertheless, we will see below in Theorem 24.1 that
f (x) ∈ Z [x] is prime iff it is irreducible in Z [x] .

Example 23.9. In Z5, x
2 + 1 has two zeros, namely x = 2 and x = 3. There-

fore, x2 + 1 factors as (x− 2) (x− 3) from which it follows that
〈
x2 + 1

〉
is not a maximal ( ⇐⇒ prime) ideal in Z5 [x] . Therefore it follows that
Z5 [x] /

〈
x2 + 1

〉 ∼= Z5 [i] is not a field and not even an integral domain. Ex-
plicitly we have (i− 2) (i− 3) = 6− 1− 5i = 0 in Z5 [i] .

Remark 23.10. On the other hand, it is easy to verify that x2 + 1 has no zeros
over Z3 and therefore x2 + 1 is irreducible over Z3. From this we may conclude
that Z3 [i] ∼= Z3 [x] /

〈
x2 + 1

〉
is a field. This was already proved with some

effort in Example 5.3.
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It is possible for all irreducibles to be prime even if the ring is not a PID as
the next theorem shows.

Theorem 24.1 (Irreducible ⇐⇒ prime in Z[x]). If f (x) ∈ Z [x] is irre-
ducible then f (x) is prime in Z [x] .

Proof. In the proof to follow we suppose that g (x) , h (x) ∈ Z [x] and that
f (x) |g (x)h (x) , i.e. there exists k (x) ∈ Z [x] such that

g (x)h (x) = k (x) f (x) . (24.1)

Case 1. Suppose that deg (f) = 0, i.e. f (x) is constant. Since f (x) is irre-
ducible we must have f (x) = p where p is a prime in Z which we assume to be
positive for simplicity. Applying the content function, c (·) , to Eq. (24.1) gives

c (g) c (h) = c (k) c (f) = c (k) · p.

Therefore p|c (g) c (h) which implies p|c (g) or p|c (h) , i.e. p|g (x) or p|h (x) .
Case 2. Suppose that deg (f) ≥ 1. In this case c (f) = 1 for otherwise

f (x) = c (f)
[

1
c (f)

f (x)
]

would be a non-trivial factorization of f (x) over Z [x] . Since f (x) is primitive
and irreducible over Z [x] it is irreducible over Q [x] by Corollary 21.5. Therefore
f (x) is prime in Q [x] and it follows that f (x) |g (x) or f (x) |h (x) in Q [x] . But
by Corollary 20.13 this implies that f (x) |g (x) or f (x) |h (x) in Z [x] , i.e. f (x)
is prime in Z [x] .

24.1 Unique Factorization Domains

Definition 24.2 (UFD). A unique factorization domain (UFD for short)
is an integral domain, R, such that

1. Every non-zero element of R which is not a unit may be written as a product
of irreducibles in R.

2. The factorization into irreducibles is unique up to associates and the order
in which the factors appear. To be more precise, if a1, . . . , an and b1, . . . , bm
are irreducibles in R such that a1 . . . an = b1 . . . bm then m = n and there
exists a permutation, σ ∈ Sn, such that ai and bσ(i) are associates for each
i.

Example 24.3. The fundamental theorem of arithmetic asserts that Z is a unique
factorization domain.

Example 24.4 (Z[
√
−3] is not a UFD). Example 23.5 easily allows us to see that

R := Z
[√
−3
]
⊂ C is not a unique factorization domain. (see Definition 24.2

below). We have see that 4 ∈ R may be factored as 4 = 2 ·2 and also as 4 = α · ᾱ
where

α := 1 +
√
−3 and ᾱ := 1−

√
−3.

Since the units of R are {±1} it is clear neither α nor ᾱ is associated to 2. (See
Chapter 18 of the Gallian [2] and in particular the comments on p. 333 as to
when Z

[√
d
]

is a UFD.)

Lemma 24.5. Suppose that R is an integral domain, a ∈ R is prime, and
b1, . . . , bn ∈ R are irreducibles. If a| (b1 . . . bn) then a is associated to bi for
some i.

Proof. Since a is prime, a|bi for some i. As bi is irreducible this can only
happen if bi = au where u ∈ U (R) , i.e. a is associated to bi.

Proposition 24.6. Suppose that R is an integral domain, 1 ≤ m ≤ n, {ai}mi=1

are primes in R and {bj}nj=1 are irreducibles in R. If

a1 . . . am = b1 . . . bn,

then m = n and after a possible reordering of the {bi}ni=1 , we have ai and bi
are associates for each i.

Proof. Before proving the general case let first do two special cases as a
warm up.

1) Suppose that m = 2 and n = 3 so that a1a2 = b1b2b3. By Lemma 24.5,
bi = u1a1 for some i and u1 ∈ U (R) . By relabeling the bi if necessary we may
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assume that i = 1 and we now have a1a2 = a1u1b2b3 and so by cancellation,
a2 = (u1b2) b3. Another application of Lemma 24.5 shows a2 is associated to
u1b2 (hence b2) or b3. Again we may relabel the bi if necessary and suppose
that a2 is associated to b2, i.e. b2 = u2a2 for some u2 ∈ U (R) . Thus we may
conclude that a2 = a2u1u2b3 which implies 1 = u1u2b3. This shows that b3 must
be a unit which contradicts the assumption that b3 was prime and in particular
not a unit. Thus this case can not happen.

2) Suppose that m = n = 2 so that a1a2 = b1b2. Working as in case 1), we
easily show, after relabeling the bi if necessary, that a1 is associated to b1 and
a2 is associated to b2.

The formal proof goes by induction on n. When n = m = 1 there is nothing
to prove. Now suppose that n ≥ 2 and the result holds for lower n. Then working
as above, after relabeling the b’s is necessary we may assume that b1 = a1u1 for
some u1 ∈ U (R) . If m = 1, this would imply that 1 = b2 . . . bn showing that all
the remaining bi are units which is impossible. Therefore we must have m ≥ 2
and we now have (

u−1
1 a2

)
a3 . . . am = b2b3 . . . bn.

Since u−1
1 a2 is still prime, it follows by the induction hypothesis that m = n

and that after relabeling the {bi}ni=2 if necessary that

u−1
1 a2 = u2b2, a3 = u3b3, . . . , an = unbn

for some ui ∈ U (R) . This completes the proof since a2 = u1u2b2 and u1u2 ∈
U (R) .

Because of this proposition we see that the uniqueness of factorizations into
irreducibles will hold for an integral domain R when R has the property that
irreducibles and primes are the same, i.e. irreducible implies prime. This is
not always the case as was shown in Example ??. However we have seen that
irreducibles and primes are the same in principle ideal domains (Theorem 23.6)
like F [x] and in R = Z [x] , see Theorem 24.1.

Theorem 24.7 (F [x] is a UFD). If F is a field, then F [x] is a unique fac-
torization domain.

Proof. Let f (x) ∈ F [x] with deg (f) ≥ 1. If f (x) is not irreducible, then
f (x) = g (x)h (x) for some g (x) , h (x) ∈ F [x] with deg g ≥ 1 and deg h ≥ 1.
Since deg g + deg h = deg f we must have deg g < deg f and deg h < deg f.
By further decomposing g (x) and h (x) is possible we must eventually arrive
at a decomposition of f (x) into irreducibles which gives the desired existence.
(You may add the formal the induction proof if you wish.) The uniqueness of
this factorization follows from Proposition 24.6 and the fact that primes and
irreducibles are the same in a PID like F [x] , see Theorem 23.7.

As an application of this theorem let us give another proof of Eisenstein’s
Criterion – see Theorem 22.6. For the readers convenience we repeat the state-
ment here.

Theorem 24.8 (Eisenstein’s Criterion). Let f (x) :=
∑n
k=0 akx

k ∈ Z [x] .
If there is a prime p such that p - an, p2 - a0 while p|aj for j = 0, 1, 2, . . . , n− 1
then f (x) is irreducible. over Q.

Proof. If f (x) were reducible over Q [x] then, by Theorem 21.3, it would
be reducible over Z [x] and in fact there would exists g (x) , h (x) ∈ Z [x] with
deg (g) ,deg (h) ≥ 1 such that f (x) = g (x)h (x) . Letting f̄ , ḡ and h̄ be the
reductions of f, g, and h mod p we find, ānxn = ḡ (x) h̄ (x) wherein we have use
ān := an mod p 6= 0 in Zp. Since Zp is a field, Zp [x] is a UFD and because deg ḡ
and deg h̄ are both less than n we must have x divides both ḡ (x) and h̄ (x) . (In
fact there must exist b, c ∈ Z×p such that ḡ (x) = bxdeg g and h̄ (x) = cxdeg h.)
This then implies that p|g (0) and p|h (0) and therefore p2|a0 as a0 = g (0)h (0) .
However this contradicts the assumption that p2 - a0.

Theorem 24.9 (Z[x] is a UFD). Z [x] is a unique factorization domain.

Proof. Existence. Let f (x) ∈ Z [x] and set f0 (x) := 1
c(f)f0 (x) so that

f (x) = c (f) f0 (x) where f0 (x) is primitive. Since we may factor c (f) into
prime integers which are irreducible in Z [x] it suffices to factor f0 (x) into
irreducibles. So from now on we assume that f (x) is primitive.

If f (x) is not irreducible, the f (x) = h (x) g (x) with neither h (x) or g (x)
being invertible. Since c (h) c (g) = c (f) = 1 we know that both h and g are
primitive and therefore deg h ≥ 1 and deg g ≥ 1. Since deg f = deg h+deg g, we
must have deg h < deg f and deg g < deg f. Thus the existence of a factorization
of f (x) when f (x) is primitive goes just as in the proof of Theorem 24.7.

Uniqueness. The uniqueness of the factorization follows by combining
Proposition 24.6 with Theorem 24.1.

Fact 24.10 (Facts about UFD’s) Here are two more facts about unique fac-
torization domains which we will not prove in class.

1. Every PID is a UFD. This is proved in Gallian [2, p. 327 – 329] and is
fairly similar to the proof of Theorem 24.7.

2. If R a UFD then R [x] is a UFD. Our proof that Z [x] is a UFD is rather
similar to the general case – see Knapp [3, pgs. 384-396] for details. (This
proof would make use of the field of fractions, see Subsection 24.2.4 below
if you are interested.)
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24.2 Extra Topics (not covered in class)

24.2.1 Greatest Common Divisors (not covered in class)

Definition 24.11. Let R be an integral domain. We say that c ∈ R is a common
divisor of a1, . . . , an ∈ R if c|ai for all i. We say that d ∈ R is a greatest
common divisor of a1, . . . , an ∈ R if d is a divisor and if c|d for any other
divisor of a1, . . . , an ∈ R.

If c and d are two greatest common divisors of a1, . . . , an ∈ R, then c = ud
and d = vc for some u, v ∈ R. Therefore, c = uvc and since R is an integral
domain, uv = 1 by cancellation. Thus c and d are associates and the gcd of
a1, . . . , an is well defined modulo U (R) .

Proposition 24.12. If R is a PID, then every list of elements, a1, . . . , an ∈
R×, has a greatest common divisor, d. Moreover there exists r1, . . . , rn ∈ R
such that

d = r1a1 + · · ·+ riai + · · ·+ rnan. (24.2)

Proof. Let J = 〈a1, . . . , an〉 = 〈a1〉+ · · ·+ 〈an〉 be the ideal of R generated
by (a1, . . . , an) and choose c ∈ R such that J = 〈c〉 . Then by definition of J,
c may be expressed as in Eq. (24.2) and ai ∈ 〈c〉 for all i. The latter condition
asserts that c|ai for all i so that c is a common divisor and it follows from Eq.
(24.2) that in fact c is a greatest common divisor.

Definition 24.13. As in the case R = Z we will say that elements, a1, . . . , an
in a PID, R, are relatively prime if the greatest common divisors are units.
Alternatively, this is equivalent to saying 1 ∈ gcd (a1, . . . , an) .

Here is the analogue of Euclid’s Lemma in this more general context.

Lemma 24.14 (Euclid’s Lemma II). Let R be a PID and a, b, c ∈ R with
a, b being relatively prime. If a| (bc) then a|c.

Proof. From Proposition 24.12 we know that 1 = sa+ tb for some s, t ∈ R.
Therefore c = sac+ tbc from which it follows that a|c.

Remark 24.15. If F is a field and p (x) , q (x) ∈ F [x] are two non-zero polyno-
mials, one may find gcd (p, q) using the division algorithm just as we did for the
integers, Z. The point is to repeatedly make use of the fact that

gcd (p, q) = gcd (q, qmod p)

where qmod p denotes the remainder from dividing p into q.where qmod p de-
notes the remainder from dividing p into q.

The next result has already been proved in Theorem 18.8. Nevertheless it is
instructive to give another proof.

Corollary 24.16. Suppose that F is a field and p (x) ∈ F [x] is irreducible.
Then F [x] / 〈p (x)〉 is a field.

Proof. If f (x) ∈ F [x] with deg f (x) < deg p (x) , then f (x) and p (x) are
relatively prime since the only possible non-trivial common factor would be
p (x) which is impossible since deg f (x) < deg p (x) . Therefore by Proposition
24.12, there exists s (x) , t (x) ∈ F [x] such that

s (x) f (x) + t (x) p (x) = 1.

Since [p (x)] = 0 it follows that [s (x)] [f (x)] = 1 and we have shown [f (x)]−1 =
[s (x)] exists. Thus every non-zero element of F [x] / 〈p (x)〉 is invertible and
hence F [x] / 〈p (x)〉 is a field.

Remark 24.17. It is interesting to see how to compute [f (x)]−1 in the context
of Corollary 24.16 explicitly. This can be done using the same technique as
for finding inverses in Un = U (Zn) . That is we repeatedly use the division
algorithm as follows;

p (x) = k0 (x) f (x) + f1 (x)
f (x) = k1 (x) f1 (x) + f2 (x)
f1 (x) = k2 (x) f2 (x) + f3 (x)

...
fl−1 (x) = kl (x) fl (x) + fl+1

where fl+1 ∈ F×. We then work backwards from this set of equation to solve
for fl+1. Rather than explain this in general, let me show how this works in an
example.

Example 24.18. Let I :=
〈
x3 + 2x+ 1

〉
⊂ Q [x] . Notice that p (x) := x3 +2x+1

is irreducible by the mod 3 test. We now wish to compute [x]−1 and
[
x2
]−1

.
The first case is rather simple since,

p (x) = x3 + 2x+ 1 = x
(
x2 + 2

)
+ 1

and therefore
1 = p (x)− x

(
x2 + 2

)
so that

1 = [p (x)]− [x]
[
x2 + 2

]
= − [x]

[
x2 + 2

]
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which shows that [x]−1 = −
[
x2 + 2

]
.

Now to compute
[
x2
]−1

. By the division algorithm we have

p (x) = x3 + 2x+ 1 = x · x2 + 2x+ 1

and
1
2x −

1
4

2x+ 1
)
x2

x2 + 1
2x
− 1

2x
− 1

2x −
1
4
1
4

so that

x2 =
(

1
2
x− 1

4

)
(2x+ 1) +

1
4
.

Working backwards this implies,

1
4

= x2 −
(

1
2
x− 1

4

)
(2x+ 1)

= x2 −
(

1
2
x− 1

4

)(
p (x)− x · x2

)
= x2

(
1 +

(
1
2
x− 1

4

)
x

)
−
(

1
2
x− 1

4

)
p (x) .

Therefore,

[1] = 4 ·
[

1
4

]
= 4 ·

[
x2

(
1 +

(
1
2
x− 1

4

)
x

)]
=
[
x2
]

[4 + (2x− 1)x] =
[
x2
] [

2x2 − x+ 4
]

which shows that [
x2
]−1

=
[
2x2 − x+ 4

]
.

As a check we should have[
x2
]−1

=
(

[x]−1
)2

=
[(
x2 + 2

)2]
=
[
x4 + 4x2 + 4

]
. (24.3)

However
x

x3 + 2x+ 1
)
x4 + 0x3 + 4x2 + 0x + 4
x4 + + 2x2 + x

2x2 − x + 4

which is to say,
x4 + 4x2 + 4 = x · p (x) + 2x2 − x+ 4

and therefore, [
x2
]−1

=
[
x · p (x) + 2x2 − x+ 4

]
=
[
2x2 − x+ 4

]
as before. Alternatively, from Eq. (24.3) we may simply use[

x4
]

=
[
x · x3

]
= [x · (−2x− 1)] = −

[
2x2 + x

]
to discover, (

[x]−1
)2

=
[
x4 + 4x2 + 4

]
=
[
−
(
2x2 + x

)
+ 4x2 + 4

]
=
[
2x2 − x+ 4

]
.

Remark 24.19. If p (x) ∈ F [x] is not irreducible, then we may still compute
U (F [x] / 〈p (x)〉) as we did for the rings Zm where m was not prime. The result
is,

U (F [x] / 〈p (x)〉) =
{

[f (x)] : deg f (x) < deg p (x) and gcd (f (x) , p (x)) ∈ F×
}
.

The division algorithm gives us again a way to compute [f (x)]−1 when
gcd (f (x) , p (x)) ∈ F×.

24.2.2 Partial Fractions (not covered in class)

In this section let F be a fixed field. We are going verify in this sections stan-
dard facts about partial fraction decompositions which you were probably first
introduced to when studying integral calculus.

Theorem 24.20 (Partial fractions). Let p (x) , q (x) , and f (x) be in F [x]
and assume that p and q are relatively prime and that deg f (x) < deg p (x) +
deg q (x) = deg (p (x) q (x)) . Then there exists unique polynomials, a (x) and
b (x) with deg a (x) < deg p (x) and deg b (x) < deg q (x) such that

f (x)
p (x) q (x)

=
a (x)
p (x)

+
b (x)
q (x)

. (24.4)

Proof. Choose t (x) and s (x) ∈ F [x] such that 1 = t (x) p (x) + s (x) q (x) .
Then

f (x)
p (x) q (x)

=
f (x)

p (x) q (x)
(t (x) p (x) + s (x) q (x))

=
s (x) f (x)
p (x)

+
t (x) f (x)
q (x)

.
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Let a (x) := s (x) f (x) mod p (x) and b (x) := t (x) f (x) mod q (x) in which case
we have,

f (x)
p (x) q (x)

=
a (x)
p (x)

+
b (x)
q (x)

+ k (x)

for some k (x) ∈ F [x] . Multiplying this last equation by p (x) q (x) then implies,

f (x) = a (x) q (x) + b (x) p (x) + k (x) q (x) p (x) .

So on one hand,

deg k (x) + deg (q (x) p (x)) = deg (k (x) q (x) p (x))
= deg (f (x)− a (x) q (x)− b (x) p (x)) < deg (p (x) q (x))

from which we conclude that deg k (x) = −∞, i.e. k (x) = 0. So we have proved
the existence of the decomposition in Eq. (24.4).

To prove uniqueness, it suffices to show that if f (x) = 0 then a (x) = 0 =
b (x) in Eq. (24.4) or equivalently that

a (x) q (x) + b (x) p (x) = 0 =⇒ a (x) = 0 = b (x) .

However, since a (x) q (x) = −b (x) p (x) it follows that q (x) |b (x) p (x) and as
q (x) and p (x) are relatively prime, we must have q (x) |b (x) . but deg b (x) <
deg q (x) and therefore this is only possible if b (x) = 0 which then implies
a (x) = 0 as well.

Proposition 24.21. Suppose that p (x) ∈ F [x] is a polynomial with deg p (x) ≥
1, n ∈ Z+, and f (x) ∈ F [x] has deg f (x) < deg p (x)n = ndeg p (x) . Then
there exists unique polynomials, ai (x) with deg ai (x) < deg p (x) such that

f (x)
p (x)n

=
n∑
i=1

ai (x)

p (x)i
. (24.5)

Proof. By the division algorithm, there exists k (x) , r (x) ∈ R [x] such that
f (x) = k (x) p (x) + an (x) where deg an (x) < deg p (x) . Moreover we must
have deg k (x) < deg p (x)n−1 since otherwise we would violate the assumption
that deg f (x) ≥ deg p (x)n . Therefore,

f (x)
p (x)n

=
k (x) p (x) + an (x)

p (x)n
=

k (x)
p (x)n−1 +

an (x)
p (x)n

and iterating this procedure (i.e. by induction) we easily prove the existence of
the decomposition in Eq. (24.5).

For uniqueness, it suffices to show that if
∑n
i=1

ai(x)

p(x)i = 0 with deg ai (x) <
deg p (x) , then ai (x) = 0 for all i. Equivalently we must show if

0 = p (x)n
n∑
i=1

ai (x)

p (x)i
=

n∑
i=1

ai (x) p (x)n−i =⇒ ai (x) = 0 ∀ i.

To see this observe that

0 =
n∑
i=1

ai (x) p (x)n−i = a1 (x) p (x)n−1 + r (x)

where

r (x) =
n∑
i=2

ai (x) p (x)n−i and deg r (x) < deg p (x)n−1
.

Therefore, by the division algorithm (or directly by degree arguments) we must
have that a1 (x) = 0 and r (x) = 0. Repeating this procedure (induction again)
then shows that all of the ai (x) must be zero.

Corollary 24.22 (Partial fractions). Let F be a field and {pi (x)}mi=1 be a
collection of distinct monic irreducible polynomials in F [x] . Further let ki ≥ 1
for each i and f (x) ∈ F [x] with deg f (x) <

∑m
i=1 ki deg pi (x) . Then there

exists aij (x) ∈ F [x] for 1 ≤ i ≤ m and 1 ≤ j ≤ ki such that deg aij (x) <
deg pi (x) for all i and j and

f (x)∏m
i=1 pi (x)ki

=
m∑
i=1

ki∑
j=1

aij (x)

pi (x)j
.

Proof. Repeatedly make use of Theorem 24.20 and Proposition 24.21.

24.2.3 Factorizing Polynomials in finite time (not covered in class)

The goal of this section is to show that it is possible to factor f (x) ∈ Z [x]
with a finite number of operations. The point is Mignotte’s bound in Corollary
24.27 which states that if h (x) ∈ Z [x] is a factor of f (x) , then there is an a
priori bound on the size of all of the coefficients of h (x) in terms of a bound
on the coefficients of f (x) and the degrees of the polynomials, f (x) and h (x) .
Thus when looking for factorizations of f (x) we may reduce the question to a
finite number of possibilities to try out. The material presented below is taken
directly from [4, p. 162 - 164].

Notation 24.23 Given f (x) =
∑n
k=0 fkx

k ∈ C [x] , let

‖f‖∞ := max
k
|fk| , ‖f‖1 :=

∑
k

|fk| , and ‖f‖2 :=

(∑
k

|fk|2
)1/2

.
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Further we let

M (f) := |fn|
n∏
i=1

max (1, |zi|)

where {zi}ni=1 are the roots of f counted with multiplicities, i.e.

f (x) = fn

n∏
i=1

(x− zi) . (24.6)

Lemma 24.24. If z ∈ C, and f (x) ∈ C [x] , then

‖(x− z) f (x)‖2 = ‖(z̄x− 1) f (x)‖ .

Proof. Letting f−1 = 0 and fk = 0 for k > deg f, we have

‖(x− z) f (x)‖22 =
∞∑
k=0

|fk−1 − zfk|2

=
∞∑
k=0

(
|fk−1|2 + |zfk|2 − 2 Re

(
fk−1f̄kz̄

))
=
(

1 + |z|2
)
‖f (x)‖22 − 2

∞∑
k=0

Re
(
fk−1f̄kz̄

)
.

On the other hand,

‖(z̄x− 1) f (x)‖22 =
∞∑
k=0

|z̄fk−1 − fk|2

=
∞∑
k=0

(
|z̄fk−1|2 + |fk|2 − 2 Re

(
z̄fk−1f̄k

))
=
(

1 + |z|2
)
‖f (x)‖22 − 2

∞∑
k=0

Re
(
fk−1f̄kz̄

)
.

Comparing these last two equations completes the proof.

Theorem 24.25 (Landau’s inequality). For all f (x) ∈ C [x] , M (f) ≤
‖f‖2 .

Proof. Let f (x) be factored as in Eq. (24.6) and S := {1 ≤ i ≤ n : |zi| ≤ 1}
and L := {1 ≤ i ≤ n : |zi| > 1} – so S represents the small roots and L the large
ones. Then M (f) = |fn|

∏
i∈L |zi| . Now let

g (x) := fn
∏
i∈L

(z̄ix− 1)
∏
i∈S

(x− zi) =

(
fn
∏
i∈L

z̄i

)
·
∏
i∈L

(
x− 1

z̄i

)∏
i∈S

(x− zi) .

Then M (f) = |fn|
∏
i∈L |zi| =

∣∣fn∏i∈L z̄i
∣∣ = |gn| and therefore,

M (f) ≤ |gn| ≤ ‖g‖2 .

Letting h (x) := fn
∏
i∈S (x− zi), we have, using Lemma 24.24 repeatedly, that

‖g (x)‖2 =

∥∥∥∥∥h (x)
∏
i∈L

(z̄ix− 1)

∥∥∥∥∥
2

=

∥∥∥∥∥h (x)
∏
i∈L

(x− zi)

∥∥∥∥∥
2

= ‖f (x)‖2 .

Combining the last two equations completes the proof.

Theorem 24.26. Suppose that h (x) , f (x) ∈ (C [x])× , deg h = m ≥ 1, deg f =
n ≥ m, and h (x) |f (x) . Then

‖h‖2 ≤ ‖h‖1 ≤ 2mM (h) ≤ 2m
∣∣∣∣hmfn

∣∣∣∣ ‖f‖2 .
Proof. Write h is factored form as

h (x) = hm

m∏
i=1

(x− ui)

where each factor, (x− ui) , is also a factor of f (x) , i.e. {ui}mi=1 ⊂ {zi}
n
i=1 with

multiplicities. The kth coefficient of h (x) is given by

hk = hm
∑

S⊂{1,2,...,m}
#S=m−k

∏
i∈S

(−ui)

and therefore,

|hk| ≤
∑

S⊂{1,2,...,m}
#S=m−k

|hm|
∏
i∈S
|ui|

≤
∑

S⊂{1,2,...,m}
#S=m−k

M (h) =
(
m

k

)
M (h) .

Summing this equation on k (using the binomial theorem) shows,

‖h‖2 ≤ ‖h‖1 ≤ 2mM (h) .

Finally, looking at the definition of M (·) , we see that M (h) ≤ |hm|
|fm|M (f) .
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Corollary 24.27 (Mignotte’s bound). Suppose that f, g, h ∈ Z [x] have de-
grees deg f = n ≥ 1, deg g = m, and deg h = k, and that gh|f in Z [x] . Then

‖g‖∞ ‖h‖∞ ≤ ‖g‖2 ‖h‖2 ≤ ‖g‖1 ‖h‖1 (abstract nonsense)

≤ 2m+k ‖f‖2 ≤ (n+ 1)1/2 2m+k ‖f‖∞ (24.7)

and

‖h‖∞ ≤ ‖h‖2 ≤ 2k ‖f‖2 ≤ 2k ‖f‖1 and

‖h‖∞ ≤ ‖h‖2 ≤ (n+ 1)1/2 2k ‖f‖∞ . (24.8)

Proof. First off, notice that M (g)M (h) = M (gh) ≤ M (f) since (gh)n =
gmhk|fn. By Theorems 24.26 and 24.25,

‖g‖1 ‖h‖1 ≤ 2mM (g) 2kM (h) = 2m+kM (gh)

≤ 2m+kM (f) ≤ 2m+k ‖f‖2 ≤ (n+ 1)1/2 2m+k ‖f‖∞ .

The second set of inequalities follow by taking g = 1 in Eq. (24.7).

24.2.4 Fields of fractions (not covered in class)

Suppose you met an alien from a planet where they had invented rings, but
because everything on their planet involved whole units, they had never invented
the idea of division. So this guy knows about Z, but not about fractions. How
do you explain in an algebraic way about Q?

Idea. An element ofQ is a fraction a
b where a, b are integers, that is, elements

in Z and b 6= 0. But, the word fraction is undefined here, and the notation will be
difficult to justify. So instead we could do the following—we identify a

b with an
ordered pair (a, b) with a, b ∈ Z and b 6= 0. Secretly thinking of fractions, now we
can say how to multiply and add in Q. To multiply, we set (a, b)·(c, d) = (ac, bd),
and to add, we set (a, b) + (c, d) = (ad+ bc, bd), for b, d 6= 0. We can also divide
them: (a, b)÷ (c, d) = (ad, bc), when b, c, d 6= 0.

However, there are problems to this approach. For example

(1, 2)[(1, 2) + (1, 2)] = (1, 2)(4, 4) = (4, 8)

(1, 2)(1, 2) + (1, 2)(1, 2) = (1, 4) + (1, 4) = (8, 16).

These are not the same, so distributivity fails. So to solve this problem, we
need to say when two fractions are the same. We put an equivalence relation
on Q saying that (a, b) ∼ (c, d) when ad = bc. Then we let Q be the equivalence
classes and refine our notion of a

b to mean the equivalence class containing
(a, b) . This works!

Now generally we start with a ring R, which is commutative with 1. We are
unhappy if we can’t divide one element of R by another. So we want to replace
R by a bigger ring S, with R ⊆ S where S is a field. That is, in S you can
divide and two elements, as long as you don’t divide by zero. When can we do
this? How can we do this?

Example 24.28. Let R = Z. Then we know Z ⊂ Q where Q is a field. Q is also
the “smallest” field with this property in some sense.

Lemma 24.29. Suppose S is a field and R ⊂ S is a subring. Then R is an
integral domain.

Proof. Since S is a field, S is an integral domain. Now if ab = 0 for some
a, b ∈ R, then ab = 0 in S. Since S is an integral domain, a = 0 or b = 0 in S,
and so also in R.

So if the R we start with is not a domain, we can’t hope to form a bigger
ring containing R which is a field. The next theorem shows this is the only
obstruction to embedding a commutative ring, R, with identity into a “field of
fractions.”

Theorem 24.30. Let R be a integral domain with 1 and R× := R \ {0}. Then
we may define an equivalence relation on R×R× by,

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

Let a
b = [(a, b)] denote the equivalence class determined by ∼ and S :={

a
b : a ∈ R and b ∈ R×

}
. Further define two binary operations, + and ·, on

S by,
a

b
+
c

d
:=

ad+ cb

bd
and

a

b
· c
d

:=
ac

bd
. (24.9)

Then with these operations, S becomes a field and the map,

R 3 a→ a/1 ∈ S

is an injective rings isomorphism. In the future we identify a ∈ R with a/1 ∈ S
and views R as a sub-ring of S. The new ring S is called the field of fractions
of the integral domain, R.

Proof. We’re almost already done. The proof is the same as for Z!

1. Define S̃ = {(a, b) : a, b ∈ R, b 6= 0}.
2. Put an equivalence relation on S̃ by saying (a, b) ∼ (c, d) if ad = bc in R.

We start by checking that “∼” is an equivalence relation:
a) (a, b) ∼ (a, b) since ab = ba in R.
b) (a, b) ∼ (c, d)⇒ (c, d) ∼ (a, d) since ad = bc⇒ cd = da.
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c) If (a, b) ∼ (c, d) and (c, d) ∼ (e, f), then (a, b) ∼ (e, f) since ad =
bc, cf = de⇒ adf = bcf = bce so daf = dbe and af = be. Here we used
that R is a domain in order to use cancellation.

3. We now must show that operations in Eq. (24.9) makes sense. That is if

a

b
=
a′

b′
and

c

d
=
c′

d′
, i.e. ab′ = ba′ and cd′ = dc′,

then we must show,

ac

bd
=
a′c′

b′d′
, i.e. that acb′d′ = a′c′bd and

ad+ cb

bd
=
a′d′ + c′b′

b′d′
, i.e. that (ad+ cb) b′d′ = (a′d′ + c′b′) bd.

These are easily checked;

acb′d′ = (ab′) (cd′) = (ba′) (dc′) = a′c′bd

and

(ad+ cb) b′d′ = ab′dd′ + bb′cd′ = ba′dd′ + bb′dc′ = (a′d′ + b′c′) bd

as desired.
4. We must now show that (S, ·,+) satisfies the axioms of a ring. There is lots

to do here and we leave the tedious details to the reader. However, observe
that 0S = 0

1 and 1S = 1
1 .

5. The new ring S is a field. This is almost immediate. Given a
b ∈ S

×, then
b
a ∈ S

× and a
b ·

b
a = ab

ab = 1
1 = 1S . Thus

(
a
b

)−1 =
(
b
a

)
as was to be expected

and hence S is a field.
6. Finally we observe that ϕ : R → S defined by ϕ (r) = r

1 is a one to one
ring homomorphism. It is one-to-one because r

1 = r′

1 iff r · 1 = r′ · 1, i.e. iff
r = r′. In this way we may now identify R with ϕ (R) ⊂ S.

Once we know that we can do this, we think of elements of the field of
fractions S as fractions, and we write them that way, instead of as ordered
pairs.

Example 24.31. Let R = R [x]. Then the field of fractions S of R looks like

S =

 anx
n + · · ·+ a1x+ a0

bmxm + · · ·+ b1x+ b0
: ai, bj ∈ R,

m∑
j=0

bjx
j 6= 0



and you manipulate these gadgets in the obvious way. The traditional no-
tation for S is R(x).

Example 24.32.

x

x+ 2
+
x2

5
=

5x+ x2(x+ 2)
5(x+ 2)

=
x3 + 2x2 + 5x

5x+ 10

Example 24.33. R = Z[i] =
{
a+ bi : a, b ∈ Z, i2 = −1

}
. S consists of fractions

{a+ bi

c+ di
: c+ di 6= 0, i2 = −1}

under the equivalence relation

a+ bi

c+ di
∼ a+ bi

c+ di

a− bi
c− di

=
ac+ bd+ (bc− da)i

c2 + d2
=
ac+ bd

c2 + d2
+

(bc− ad)i
c2 + d2

In fact, it is not too hard to show S ∼= Q[i] = {a+ bi : a, b ∈ Q}.

Example 24.34. An infinite field of characteristic p. Let p be prime. Zp is a
finite field with characteristic p. Zp [x] is an infinite ring with characteristic p.
Let S be the field of fractions of Zp, written Zp(x). Then S is an infinite field
of characteristic p.

S =
{
f

g
: f, g ∈ Zp [x] , g 6= 0

}
Example 24.35. Suppose we start with a field. What is its field of fractions?
For example, what is the field of fractions of Q? S = {(a, b) : a, b ∈ Q, b 6= 0}
under (a, b) ∼ (c, d) if ad = bc. Then (a, b) ∼ (ab , 1). Thus the map Q → S by
q 7→ (q, 1) is an isomorphism.
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Lecture 25

25.1 Vector Spaces & Review of Linear Algebra

Definition 25.1. Let F be a field (called “scalars”). A set V (called ”vectors”)
is called a vector space over F if

1. V is an Abelian group under addition (written +).
2. For each a ∈ F , v ∈ V , there is an element av ∈ V (this is called “scalar

multiplication”).
3. a(v + u) = av + au ∀a ∈ F, u, v,∈ V (scalar multiplication is group homo-

morphism).
4. (a+ b)v = av + bv ∀a, b ∈ F, v ∈ V .
5. a(bv) = (ab)v ∀a, b ∈ F, v ∈ V .
6. 1v = v ∀v ∈ V , where 1 = 1F is the identity of F .

These look a lot like ring axioms. But in general, a vector space V is not a
ring. The two elements participating in this multiplication come from different
sets. Let us recall a couple of basic notions from Math 20F before we go onto
giving examples.

Definition 25.2. A set S of vectors linearly dependent if there are vectors
v1, . . . , vn ∈ S and scalars a1, . . . , aN not all zero with a1v1 + · · · + anvN = 0.
If S is not linearly dependent it is called linearly independent.

Definition 25.3. A set S is a basis for the vector space V if S is independent
and spans V in that sense that ever v ∈ V is of the form

∑
aivi for some ai ∈ F

and vi ∈ S.

Theorem 25.4. Every vector space V over F has a basis. Moreover, the number
of elements in the basis is unique, and is called the dimension of V or more
precisely the dimension of V over F which we denote by dimF V .

Proof. See the Gallian [2, Theorem 19.1] for one proof. Alternatively go
back to your Math 20F course and see how it was done there. Here is a sketch
of that method. The main point is to show if β := {v1, . . . , vm} is a basis and
γ := (u1, . . . , un) is a list of any n – vectors in V with n > m, then γ is linearly
dependent. The point is, since β is a basis, there exists aij ∈ F such that

uj =
m∑
i−1

viaij for all 1 ≤ j ≤ n.

Thus if {bj}nj=1 ⊂ F we will have
∑n
j=1 bjuj = 0 iff

0 =
n∑
j=1

bj

m∑
i−1

viaij =
m∑
i−1

vi

n∑
j=1

aijbj .

Thus
∑n
j=1 bjuj = 0 if (b1, . . . , bn) is a solution to the system of equations,

n∑
j=1

aijbj = 0 for 1 ≤ i ≤ m.

However, from basic row reduction techniques one knows that such a homoge-
nous system of m – linear equations with n > m unknowns always have non-
trivial solutions and {uj}nj=1 can not be linearly independent.

Example 25.5. In Math 20F, one concentrates on examples like:

• Suppose F = R, and

V = R2 = {(x, y) : x, y ∈ R}.

Then V is a vector space with the usual vector addition (so V is an abelian
group, 0 = (0, 0) is an additive identity) and scalar multiplication a(x, y) =
(ax, ay). Here dimRR2 = 2 with basis {(1, 0) , (0, 1)} for example.

• Suppose F = R, and V is Euclidean 3-space,

V = R3 = {(x, y, z) : x, y, z ∈ R}

which again is a vector space in the analogous way. In this case, dimR R3 = 3
and {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} is a basis.

• More generally we might have taken F = R and V = Rn for any n in which
case dimR V = n.

Now that we have some ring theory, we can note that weirder examples have
already come up. There are many examples of a ring R which is also a vector
space over some field F .
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Example 25.6. Let R = F [x] for some field F . Then in addition to R being a
ring, R is a vector space over F . R is already an abelian group under addition
of polynomials. We define scalar multiplication in the obvious way by,

a [bnxn + · · ·+ b1x+ b0] := abnx
n + · · ·+ ab1x+ ab0.

It is easy to verify the axioms of a vector space. In fact, note that what is
happening here is F is a subring of F [x], just the scalar polynomial functions.
So we already have a way of multiplying a ∈ F, f ∈ F [x] together, the usual
multiplication in F [x]. This is really all that scalar multiplication is doing. So
in fact, all of the vector space axioms reduce to some special cases of the ring
axioms!

Example 25.7. Suppose that F is any field and V = F [x]. Then V is an infinite
dimensional vector space over F with basis, β := {1, x, x2, x3, x4, . . . }. Indeed,
everything in F [x] may be written as anxn + · · ·+ a0, i.e. a linear combination
of the {xn} . Moreover, β is independent since

∑n
i=0 aix

i = 0 happens iff ai = 0
for all i by the very definition of the polynomial ring.

Definition 25.8. Finally recall that if V is a vector space over a field, F. Then
W ⊂ V is a subspace of V if W is a subgroup of V which is closed under
scalar multiplication.

Example 25.9. Suppose that F is any field, n ∈ N, and

V = {f ∈ F [x] : deg f (x) ≤ n} .

The V is a subspace of F [x] , β =
{

1, x, x2, . . . , xn
}

is a basis for V and hence
dimV = n+ 1.

Example 25.10. M2(F ) is a vector space over F with scalar multiplication

a

[
w x
y z

]
=
[
aw ax
ay az

]
.

Identify F as a subring of M2(F ), via

F 3 a↔
[
a 0
0 a

]
∈
{[

b 0
0 b

] ∣∣∣∣b ∈ F} .
Then scalar multiplication is really left multiplication by[

a 0
0 a

]
.

Example 25.11. Think of M2(R) as a R-vector space. Then M2(R) is a vector
space of dimension 4 over R. A basis is[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
These are called elementary matrices. Thus dimR M2 (R) = 4.

Example 25.12. Here is an important example. Let F ⊂ E where F and E
are fields and F is a subring of E. Then we say F is a subfield of E. Notice
that E is a vector space over F . The scalar multiplication is defined using the
multiplication in E, i.e. if a ∈ F and v ∈ E then av ∈ E. The vector space
axioms follow from ring axioms for E.

Notation 25.13 If F is a subfield of E we let [E : F ] := dimF (E) be the
dimension of E as an F vector space.

Example 25.14. R ⊂ C. Then C is an R-vector space with operation for r ∈ R,
a+ bi ∈ C, r(a+ bi) = ra+ (rb)i and [C : R] = 2 – a basis being {1, i} .

Proof. Every element of C has the form a + bi = a(1) + b(i) for some
a, b ∈ R. Moreover if a(1)+b(i) = 0 then a = 0 = b. [This justifies thinking of C
as the plane which we tend to identify with R2.] Of course only the number of
basis elements is unique. S′ = {−1,−i} is also a basis for C over R. Similarly,
S′′ = {1 + i,

√
3− 2i} is as well.

Example 25.15. Q ⊂ Q[
√

2]. Then Q[
√

2] (which is a field, as we proved) is a
Q-vector space with operation for q ∈ Q, a + b

√
2 ∈ Q[

√
2], q(a + b

√
2) =

qa + (qb)
√

2. Then {1,
√

2} is a Q – basis for Q
[√

2
]

so that
[
Q[
√

2] : Q
]

= 2.
The proof is as in the previous example since every element of Q(

√
2) is of the

form a(1)+b(
√

2) for some a, b ∈ Q and a(1)+b(
√

2) = 0 happens iff a = 0 = b.
The latter fact is a consequence of

√
2 being irrational.

Example 25.16. We have that Q is a sub-field of R. However [R : Q] =∞. One
way to see this is to notice that any finite dimensional vector space over Q would
have to be countable. Since R is uncountable, R must be an infinite dimensional
vector space over Q.

Corollary 25.17 (of Theorem 25.4). If F is a finite field of characteristic
p, then # (F ) = pn for some n ∈ Z+.

Proof. Identify Zp with the image of the ring homomorphism,

Zp 3 k → k · 1 ∈ F.

Then F may be viewed as a vector space over Zp. Let n := dimZp
F ∈ Z+. Then

# (F ) = pn by a homework problem.
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Example 26.1. Let F = Z2, and let f = x3 + x + 1, an irreducible polynomial
over Z2. Then R = Z2/

〈
x3 + x+ 1

〉
is a field with 8 elements. Then we can

think of F as a subfield of R by identifying a ∈ F with a +
〈
x3 + x+ 1

〉
in

R. As such, R is a vector space over F and we have dimF R = 3. (Notice that
8 = 23 = # (F )dimF R

.)

Theorem 26.2. Suppose that E is a field, G ⊂ E is a subfield of E, and F ⊂ G
is a subfield of G. If m := [E : G] <∞ and n := [G : F ] <∞, then [E : F ] <∞
and

[E : F ] = [E : G] [G : F ] .

Moreover if {ui}mi=1 is a basis for E over G and {vj}nj=1 is a basis for G over
F, then β := {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is an F – basis for E.

Proof. For any a ∈ E there exists ai ∈ G such that a =
∑m
i=1 aiui and for

each i there exists aij ∈ F such that ai =
∑n
j=1 aijvj . Therefore it follows that

a =
m∑
i=1

n∑
j=1

aijuivj

and hence that the F – span of β is E. So to finish the proof we need only show
β is linearly independent. If aij ∈ F satisfy, 0 =

∑m
i=1

∑n
j=1 aijuivj , then

0 =
m∑
i=1

 n∑
j=1

aijvj

ui.

Since {ui}mi=1 is a basis for E over G it follows that
∑n
j=1 aijvj = 0 for each i

and since {vj}nj=1 is a basis for G over F it follows that aij = 0 for each j. This
completes the proof.

26.1 Field Theory

Definition 26.3. Given fields E,F , with F ⊂ E where F is a subring of E,
we say that F is a subfield of E. We call E an extension field of F and the
entire setup, F ⊆ E, is called a field extension.

The setup for the time being will be that E is a field and F ⊂ E is a sub-
field. Typically we might have E = C and F = Q or F is some other sub-field
of C.

Definition 26.4. We say an element α ∈ E is algebraic over F is there exists
p (x) ∈ F [x] such that p (α) = 0. Otherwise we say α ∈ E is transcendental
over F.

Remark 26.5. For each n ∈ Z+ there are countably many polynomials in Q [x]
of degree n and each of these polynomials have at most n - distinct zeros.
Therefore there are only countable many Q – algebraic elements in C. Since C
is uncountable, most of the element in C are therefore transcendental. However,
proving a specific given complex number is transcendental is not so easy. We
state here without proof that both e and π are transcendental numbers.

Notation 26.6 If S is a subset of E we let F (S) denote the smallest subfield
of E which contains F and S. This sub-field exists. Indeed,

F (S) := ∩{K ⊂ E : K is a sub-field 3 S ∪ F ⊂ K} .

Lemma 26.7. If S and T are subsets of E, then F (S) (T ) = F (S ∪ T ) =
F (T ) (S) .

Proof. Sine S ∪ T ⊂ F (S) (T ) it follows that F (S ∪ T ) ⊂ F (S) (T ) . Con-
versely it is clear that F (S) ⊂ F (S ∪ T ) and that T ⊂ F (S ∪ T ) , therefore
F (S) (T ) ⊂ F (S ∪ T ) .

Example 26.8. R [i] = C and Q
(√

2
)

=
{
a+ b

√
2 : a, b ∈ Q

}
as we have see

before.

Theorem 26.9 (Adjoining a root). Suppose that α ∈ E is algebraic over F
and ϕ : F [x]→ E is the evaluation homomorphism, ϕ (f (x)) = f (α) . Then;

1. kerϕ = 〈p (x)〉 where p (x) is an irreducible polynomial which may be taken
to be the unique monic polynomial f (x) ∈ F [x] of minimal degree which
has α as a root. (This polynomial is called the minimal polynomial of
α ∈ E.)
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2. We have

F (α) = F [α] = {f (α) : f ∈ F [x]}
= {f (α) : f ∈ F [x] with deg f (x) < deg p (x)} .

3. The map, ϕ̄ : F [x] / 〈p (x)〉 → F (α) defined by ϕ̄ ([f (x)]) = f (α) is an
isomorphism of fields.

4. [F (α) : F ] = deg (p (x)) =: n

β :=
{

1, α, α2, . . . , αn−1
}

(26.1)

is a basis for F (α) over F.
5. [F (α) : F ] ≤ deg g (x) where g (x) ∈ F [x] is any non-zero polynomial such

that g (α) = 0.

Proof. 1. Since F [x] is a principle ideal domain and kerϕ is an ideal, we
know that kerϕ = 〈p (x)〉 where p (x) may be taken to be the unique monic
polynomial in kerϕ = {f (x) ∈ F [x] : f (α) = 0} with minimal degree. If p (x)
were not irreducible, it would have a non-trivial factorization, p (x) = h (x) k (x)
where deg h (x) ,deg k (x) < deg p (x) . Moreover p (α) = 0 would then imply
h (α) = 0 or k (α) = 0. But then h (x) or k (x) would be in kerϕ with degree
less than p (x) which is impossible.

2. and 3. By the first isomorphism theorem we know that

ϕ̄ : F [x] / 〈p (x)〉 → F [α] = {f (α) : f ∈ F [x]}

so defined above is an isomorphism of rings. Since p (x) is irreducible we know
〈p (x)〉 is maximal and therefore F [x] / 〈p (x)〉 is a field. Therefore F [α] is a
field and we are justified in writing F (α) = F [α] . Lastly if f (x) ∈ F [x] ,
then f (x) = k (x) p (x) + r (x) with deg r (x) < deg p (x) . Therefore, f (α) =
k (α) p (α) + r (α) = r (α) and this shows that

F (α) = {f (α) : f ∈ F [x] with deg f (x) < deg p (x)} .

4. Since ϕ̄ is a field isomorphism it is also a vector space of F – isomorphism.
Therefore,

[F (α) : F ] = dimF (F [x] / 〈p (x)〉)
= dim {f (x) ∈ F [x] : deg f (x) < deg p (x)} = deg p (x) = n.

If f (x) =
∑n−1
j=0 ajx

j ∈ F [x] , then f (α) =
∑n−1
j=0 ajα

j which shows that f (α)
is a spanning set of F (α) . Since [F (α) : F ] = n it follows that β must indeed
be a basis.

5. This simply follows from item 4. since deg (p (x)) ≤ deg (g (x)) .

Example 26.10.
√
−3 has minimal polynomial x2 + 3 over Q. Why? It is monic,√

−3 is a root, and it is irreducible over Q since it has no real and hence no
rational roots.

Example 26.11. What is the minimal polynomial over R for i ∈ C? Answer;
x2 + 1.
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Example 27.1. Since x2 − 3 is irreducible over Q, it must be the minimal poly-
nomial for

√
3. Therefore,[

Q
(√

3
)

: Q
]

= deg
(
x2 − 3

)
= 2,

and the general element of Q
(√

3
)

may be written as a+ b
√

3 with a, b ∈ Q.

Example 27.2. Let us now consider Q
(√

3,
√

5
)

= Q
(√

3
) (√

5
)
. Notice that

√
5

is a root of x2 − 5. Moreover we claim that x2 − 5 is irreducible over Q
(√

3
)
.

The point is that ±
√

5 /∈ Q
(√

3
)

and so x2−5 has no roots in Q
(√

3
)
. Indeed,

if
√

5 = a+ b
√

3 ∈ Q
(√

3
)

then it would follow that

5 =
(
a+ b

√
3
)2

= a2 + 3b2 + 2ab
√

3.

Since
√

3 /∈ Q, we would have to have ab = 0, i.e. a2 = 5 or 3b2 = 5 for some
a, b ∈ Q which is not possible since x2− 5 and 3x3− 5 are both irreducible over
Q. Thus we may conclude that, x2 − 5 is the minimal polynomial over Q

(√
3
)

for
√

5 and [
Q
(√

3,
√

5
)

: Q
(√

3
)]

= deg
(
x2 − 5

)
= 2.

Consequently, by Theorem 26.2,[
Q
(√

3,
√

5
)

: Q
]

=
[
Q
(√

3,
√

5
)

: Q
(√

3
)] [

Q
(√

3
)

: Q
]

= 2 · 2 = 4 (27.1)

and moreover
{

1,
√

3,
√

5,
√

3
√

5 =
√

15
}

is a basis for Q
(√

3,
√

5
)
.

Proposition 27.3. If α ∈ C is transcendental, then ϕ : Q [x] → C defined
by ϕ (f (x)) = f (α) has trivial kernel and therefore Q [x] ∼= Q [α] . Moreover,
if Q (x) denotes the field of rational function with rational coefficients, then
Q (α) ∼= Q (x) .

From now on we will be sticking with the algebraic numbers inside of C.

27.1 Ruler and Compass Constructions

Let us identify the plane with the complex numbers. The type of question
we would like to address, given 0, 1 ∈ C (i.e. fix an origin in the plan and a
unit length) what complex numbers in the plane are constructible just using
a straight edge and a compass. Let us begin with some (hopefully) familiar
constructions from high school geometry.

Fig. 27.1. This figure should remind you of how to bisect a line segment ab to get
point c. Alternatively if you start with point c on the line l, this picture indicates how
to construct the line perpendicular to l which goes through c.

Using the abilities of this construction it now follows that given a line l and
a point p not in l we can construct the line l′ going through p which intersects
l at a right angle, see Figure 27.2.

Making use of dropping perpendicular lines, given a line l and a point p not
in l we we can construct the line l′ which goes through p that is parallel to l as
in Figure 27.3.

The other standard construction from high school geometry is the ability to
bisect an angle which is demonstrated in Figure 27.4.

We these constructions in hand we may now work out the numbers which
are constructible. We do this in the next few results.

Lemma 27.4. Suppose that r, s ∈ (0,∞) are given are representable by line
segments of these lengths where we are given a unit length segment as reference.
Then we can also represent; 1/r, rs, and

√
s.
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Fig. 27.2. A perpendicular bisector.

Fig. 27.3. Constructing parallel lines using an intermediary perpendicular line.

Proof. The proofs of these assertions are encoded in the following pictures.
To construct the square root of r the reader is referred to Figure 27.7 below.

Using the notation in this figure we learn by Pythagorean’s theorem that

( s+ 1)2 = |ib− 1|2 + |ib− s|2 .

Expanding out both sides of this equation gives,

s2 + 2 s+ 1 = b2 + 1 + b2 + s2 = s2 + 2b2 + 1,

which implies that b2 = s, i.e. b =
√
s.

It should be obvious that given ways to measure r, s ∈ R we can construct
the point r + is ∈ C with a straight edge and compass, see Figure 27.8.

Fig. 27.4. Bisecting a given angle.

Fig. 27.5. Given segments of length 1 and r here is how to construct a segment of
length 1/r. This may be viewed as a special case the the construction in Figure 27.6
as well.
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Fig. 27.6. Given segments of length 1, r, and s here is how to construct a segment
of length rs. On the other hand if we turn this around and suppose that α := rs and
r are the given lengths, then this picture shows how to construct s = α/r as well.

Fig. 27.7. This is a semi-circle of radius (d+ 1) /2.

Fig. 27.8. Constructing a complex number from its real and imaginary parts.

Remark 27.5. Suppose E ⊂ C is a sub-field of C which is closed under complex
conjugation. Let us now look for a square root, x+ iy, of a+ ib ∈ E. Thus we
must have,

x2 − y2 = a and 2xy = b.

Solving the last equation for y and substituting the result into the first gives
an equation for x, namely,

x2 −
(
b

2x

)2

= a ⇐⇒ 4x4 − 4ax2 − b2 = 0.

We are looking for real roots of this equation. By the quadratic formula it
follows that

x2 =
4a±

√
16a2 + 16b2

2 · 4
=
a±
√
a2 + b2

2
and we must choose the positive root here to learn,

x2 =
a+
√
a2 + b2

2
.

Thus we find that

x = ±

√
a+
√
a2 + b2

2

and therefore that

y = ± b

2
√

a+
√
a2+b2

2

= ± b√
2a+ 2

√
a2 + b2

.

Thus we see that x2 ∈ E
[√
a2 + b2

]
and that x, y ∈ E

[√
a2 + b2,

√
a+
√
a2+b2

2

]
.

As an example if a+ ib = 3
5 + 4

5 i then

x2 =
3
5 +

√(
3
5

)2 +
(

4
5

)2
2

=
4
5

and x =
2√
5
.

Lemma 27.6. Suppose that z, w ∈ C are given complex numbers which have
put on the complex plane along with 1. Then;

1. the real and imaginary parts of z are representable.
2. z + w and z − w are representable.
3. z̄ is representable.
4. zw is representable.
5. If z 6= 0, then 1/z is representable.
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6. If z 6= 0, the two square-roots of z are representable.

Proof. Most of these are simple to realize.

1. The real and imaginary parts are found by right angle projections of z onto
that x and y – axis which we know how to do.

2. It should be clear how to represent z+w and z−w when z and w are real.
Thus we may do the complex case by considering the real and imaginary
parts. (Better yet, use the usual graphical methods for vector addition which
only need the ability to construct parallel lines going through given points.)

3. Similarly if z = x+ iy then we can represent x and y and hence x and −y
and therefore z̄ = x− iy. (Alternatively you may easily do this graphically
as well.)

4. Again this can be done by working with the real and imaginary parts of zw
and using that we know how to work with real lengths. Alternatively write
z = reiθ and w = ρeiα. Then the line going through ei(θ+α) as in Figure
27.9 and mark the point on this line which is distance rρ from the origin.

5. For this simply observe that z̄z = |z|2 from which it follows that

1
z

= z̄
1
|z|2

which is representable by what we have already proved.
6. Case 1. Suppose that z = reiθ = r cos θ + ir sin θ with 0 ≤ θ ≤ π. To

construct the square roots of z, draw the line through 0 ∈ C which bisects
the angle θ between 0 1 and 0 z. Then mark the two points on this line
which are

√
|z| from the origin. These are the graphical representations of

the two square roots of z.
Case 2. Suppose that z = reiθ = r cos θ + ir sin θ with 0 ≤ θ ≤ π. In this
case we may write z = re−i(2π−θ) and then work as in the previous example
to bisect the angle between 0 1 and 0 z and mark the points as before. In
doing this we will construct,

±
√
re−i(2π−θ)/2 = ±

√
re−iπ+θ/2 = ∓

√
reiθ/2

which again represents the two square roots of z.

Our results so far easily give the following propositions.

Proposition 27.7. If {0, 1} are plotted in the complex plane, we may construct
Q [i] = Q+iQ ⊂ C using only a compass and a straight edge. Moreover we may
construct

√
z for all z ∈ Q [i] .

Fig. 27.9. Multiplying complex numbers with a straight edge and a compass.

Proposition 27.8. Suppose that S ⊂ C is a set containing {0, 1} and F (S)
are the complex numbers which are constructible from S using compass and a
straight edge. Then S is a sub-field of C which contains Q. Moreover if z ∈ F (S)
then Re z, Im z, and z̄ are all back in F (S) .

Proof. From Lemma 27.6, F (S) is closed under subtraction, multiplication
and complex conjugation. From this it follows that F (S) is a field which is
closed under complex conjugations. Since

Re z =
z + z̄

2
and Im z =

z − z̄
2i

it now follows that Re z, Im z ∈ F (S) .

Theorem 27.9 (Theorem 9.24 of Knapp, p. 466). The set, C, of x coordi-
nates that can be constructed from x = 0 and x = 1 by straightedge and compass
forms a subfield of R such that the square root of any positive element of the
field lies in the field. Conversely the members of C are those real numbers lying
in some subfield Fn of R of the form,

F1 = Q (
√
a0) , F2 = F1 (

√
a1) , . . . Fn = Fn−1

(√
an−1

)
,

where aj ∈ Fj and a0, . . . , an−1 ≥ 0.

Proof. We have already seen that we can construct the elements described
in Fn by a ruler and straightedge so it only remains to see that we can not
construct anything else by these methods. To see this, observe that the only
points we may construct are gotten by intersection lines going through two
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points already constructed with other such lines or with circles centered at
points with radii from points we have already constructed.

So suppose that we have constructed a sub-field, E ⊂ Q using a ruler and
straightedge. Then a line joining (a1, b1) and (a2, b2) with ai, bj ∈ E is described
by

y − b1
x− a1

=
b2 − b1
a2 − a1

or equivalently of the form y = mx+b or x = my+b with m, b ∈ E. An allowed
circle is of the form,

(y − u)2 + (x− v)2 = c2 with u, v, c ∈ E.

1. Then the intersection of two lines;

y = mx+ b and y = m′x+ b′

gives a linear equation for x of the form (m−m′)x+ b− b′ = 0 which only
has solutions from E. So no new points are found this way.

2. If we intersect a line and a circle, we find an equation for x of the form,

(mx+ b− u)2 + (x− v)2 = c2

which is quadratic in x. If there is (real) solution to this equation it will lie
in E

(√
γ
)

for some γ ∈ E with γ > 0.
3. Now suppose we intersect two circles say,

(y − u1)2 + (x− v1)2 = c21 and (y − u2)2 + (x− v2)2 = c22

with all of the u’s, v’s and c’s coming from E. By translating the whole
picture by (u2, v2) we may assume that u2 = v2 = 0. Thus it suffices to
consider the intersection points of

(y − u)2 + (x− v)2 = c2 and y2 + x2 = d2 with u, v, c, d ∈ E.

Since

c2 = (y − u)2 + (x− v)2 = u2 − 2vx− 2uy + v2 + x2 + y2

at the intersection points we must have

c2 = u2 − 2vx− 2uy + v2 + d2

which is a linear equation for x. Thus we are back to case 2. namely the
intersection of a line and a circle and the proof is complete.

Corollary 27.10. Letting Fn be as in Theorem 27.9 we have [Fn : Q] = 2k for
some 0 ≤ k ≤ n.
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As an application of this corollary, let us show that 3
√
p /∈ Fn for any prime

p. The reason is that if 3
√
p ∈ Fn then Q

(
3
√
p
)
⊂ Fn and we must have

[Fn : Q] = [Fn : Q ( 3
√
p)] [Q ( 3

√
p) : Q] .

However, x3−p is irreducible over Q by Eisenstein and therefore
[
Q
(

3
√
p
)

: Q
]

=
deg

(
x3 − p

)
= 3. But 3 - 2k and so it is impossible for 3

√
p to be in Fn.

28.1 Geometric Consequences for the Greeks

Example 28.1 (Doubling the cube). In this example we show that it is impossible
to “double the cube” with a compass and straight edge. That is we can not use
a compass and straight edge only to construct a cube with volume 2. To do this
we would need to construct a cube with side length equal to 3

√
2 which have

just seen is impossible.

Example 28.2 (Trisecting an angle). In this example we show that it is impos-
sible to trisect a 60◦ angle. First off notice that

cos 60 = 1/2 and sin 60 =
√

3/2

which are constructible and therefore so is 60◦. In order to trisect this angle it
would have to be possible to construct a := cos (20◦) . To see this is not possible,
observe that

cos 3θ = Re
(
ei3θ

)
= Re (cos θ + i sin θ)3

= cos3 θ − 3 cos θ sin2 θ = cos3 θ − 3 cos θ
(
1− cos2 θ

)
= 4 cos3 θ − 3 cos θ. (28.1)

Thus taking θ = 20◦ in Eq. (28.1) we learn that

4α3 − 3α = cos 60 =
1
2
,

i.e. α is a root of f (x) = 8x3 − 6x− 1.

The graphs of f (x) .

But the mod 5 test shows this polynomial is irreducible since,

x 0 1 2 3 4
f (x) mod 5 4 1 1 2 2

.

Alternatively one may check that {±1,±1/2,±1/4,±1/8} are not1 roots of
f (x) so that f (x) has no rational roots. No matter how this is done we learn
that [Q (α) : Q] = deg (f (x)) = 3 which does not divide 2k for any k and hence
is not constructible. This same argument applies to all three roots of f (x) .

Lemma 28.3. Suppose that D is a regular n – gon in C, then the center of D
may be determined by summing the coordinates of the vertices of the n – gon D
and in particular the center of D may be found using only a ruler and compass.

Proof. Suppose that the vertices of D are described by xk := z + αωk for
k = 0, 1, 2 . . . , n− 1 where ω is a primitive nth – root of unity, α 6= 0 in C and
z is the center we are trying to find. Then making use of the relation,

n−1∑
k=0

ωk =
ωn − 1
ω − 1

= 0 (28.2)

1 From the graph in Figure 28.2, we see that −1/4 and −1/8 are the most likely can-
didates to be a rational roots of f (x) – however f (−1/4) = 3

8
6= 0 and f (−1/8) =

− 17
64
6= 0.
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we see that
1
n

n−1∑
k=0

xk =
1
n

n−1∑
k=0

(
z + αωk

)
= z.

Better yet if n is even draw lines through ωk and ω̄k to find the center as
the common intersection point while if n is odd draw lines through ωk and the
midpoint of the opposite side to find the center, see Figure 28.1.

Fig. 28.1. Finding the center of a pertagon and a hexagon.

Example 28.4 (9 - gons are not constructible). If a regular 9 -gon were con-
structible then we could also construct the angle, 40◦ = 360/9, i.e. we could
construct α := cos 40. But by virtue of Eq. (28.1) we know that

4α3 − 3α = cos (3 · 40) = cos (120) =
1
2
.

As in Example 28.2, none of the roots of 4x3 − 3x− 1/2 are constructible and
therefore α = cos 40◦ is not constructible.

Example 28.5 (Pentagons are constructible). In order to construct a pentagon
we must be able to construct θ := 2π/5 or equivalently α := cos (2π/5) . How-
ever, recall from Eq. (28.2) that

0 = 1 + eiθ + ei2θ + ei3θ + ei4θ

= 1 + eiθ + ei2θ + e−i2θ + e−iθ

= 1 + eiθ + e−iθ + ei2θ + e−i2θ.

Taking the real part of this identity gives,

0 = 1 + 2 cos θ + 2 cos 2θ.

Then using the double angle formula,

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1

allows us to conclude that

2
(
2 cos2 θ − 1

)
+ 2 cos θ + 1 = 0,

i.e. α is a root of
f (x) := 4x2 + 2x− 1.

This polynomial is irreducible since

x 0 1 2
f (x) mod 3 2 2 1

.

Alternatively use the quadratic formula to see the roots of f (x) are given by

−2±
√

16 + 4
8

=
−2± 2

√
5

8
=
−1±

√
5

4

so that f (x) has no rational roots. Thus we conclude that Q (α) = Q
(√

5
)

so
that α is constructible. Actually we have won the game when we found that α
was a root of some f (x) ∈ Q [x] with deg f (x) = 2 – we need not have gone
any further (why?).

The general result along these lines (see Gallian [2, Theorem 33.5, p. 570])
is the following theorem due to Gauss, 1796.

Theorem 28.6. It is possible to construct the regular n -gon with a straightedge
and compass iff n = 2kp1 . . . pl, where k ≥ 0 and p1, . . . , pl are and distinct
primes each of which is of the form, 2m + 1 for some m ≥ 2.

For example when 5 = 22+1 so pentagon’s are constructible as we have seen.
On the other hand 7 6= 2m + 1 and therefore the 7 - gon is not constructible.
Also 9 = 3 · 3 so the 9 -gon is not constructible since the odd prime, 3, appears
twice in the decomposition of 9. On the other hand, 17 = 24 + 1 is prime so the
17 - gon is constructible.

28.2 Splitting fields over Q

Definition 28.7. Given a field F ⊆ E and a polynomial f ∈ F [x], we say that
f splits over E if f factors into irreducibles as

f (x) = c(x− a1)(x− a2) . . . (x− an)

for some ai ∈ E and c ∈ F×.
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Example 28.8. f(x) = x2 − 2 does not split over Q but does split over R;

x2 − 2 = (x−
√

2)(x+
√

2).

Theorem 28.9. Given any polynomial f ∈ F [x] for some field F , there exists
a field extension F ⊆ E such that f splits over E.

We’ll mostly stick to the case F = Q. In this case to find a field over which a
polynomial splits we may make use Theorem 19.12 – the fundamental theorem
of algebra which we restate here.

Theorem 28.10 (Fundamental theorem of algebra). Every polynomial
f ∈ C[x] splits over C.

Now suppose f(x) ∈ Q[x]. We know f (x) splits over C, but there is a big
distance between Q and C, and sometimes we want to change our fields only a
little to a find a field in which f (x) splits.

Definition 28.11. Let F ⊂ E be a field extension, and f (x) ∈ F [x]. Suppose
f (x) splits over E. The splitting field for f (x) is the smallest subfield K with
F ⊆ K ⊆ E such that f (x) splits over K. Explicitly, if f(x) = (x− a1) . . . (x−
an) with a1, . . . , an ∈ E, then K = F (a1, . . . , an) is the smallest subfield of E
containing F and a1, . . . an.

Mostly we will use this definition in the case F = Q, E = C. Then for any
polynomial f (x) ∈ Q[x], f (x) splits over C, so f (x) has a splitting field inside
C.

Example 28.12. According to Theorem 28.10, f (x) = x3 + 1 ∈ Q [x] must split
over C – but how? It is not necessarily easy to find the factors in general!
However in this case we see that −1 is a root of f and by the division algorithm
that x3 + 1 = (x+ 1)(x2 − x+ 1). The roots of x2 − x+ 1 are

1±
√

1− 4
2

=
1
2
±
√

3i
2

and thus we may conclude that (over C) f (x) factorizes as;

f(x) = (x+ 1)

(
x− (

1
2

+
√

3i
2

)

)(
x− (

1
2
−
√

3i
2

)

)
.

The splitting field of f (x) over Q is then

K = Q

(
−1,

1
2
−
√

3i
2
,

1
2

+
√

3i
2

)
.

We can simplify our expression for K and in the process get a better idea
what is in it. Since −1 ∈ Q already, the inclusion in the list defining K is
irrelevant. Also observe that

(
1
2 +

√
3i
2

)
∈ K and 1

2 ∈ Q ⊂ K allows us to
conclude that

√
−3 = 2

√
3

2
i = 2

(
1
2

+
√

3i
2
− 1

2

)
∈ K

and therefore, Q(
√
−3) ⊆ K. Conversely,

−1,
1
2

+
√

3i
2
,

1
2
−
√

3i
2
∈ Q(

√
−3) =⇒ K ⊂ Q(

√
−3)

and hence we may conclude that

K = Q(
√
−3) = Q

[√
−3
]

= {a+ b
√
−3 : a, b ∈ Q}.

Let us recall how to compute
(
a+ b

√
−3
)−1

;

(
a+ b

√
−3
)−1

=
1

a+ b
√
−3
· a− b

√
−3

a− b
√
−3

=
a− b

√
−3

a2 + 3b2
=

a

a2 + 3b2
− b

a2 + 3b2
√
−3

which is well defined provided that a + b
√
−3 6= 0. Let us summarize what we

have proved.

Lemma 28.13. The splitting field for x3 + 1 ∈ Q [x] is Q
(√
−3
)

= Q
[√
−3
]
.

This is also the splitting field for x2 − x+ 1 and for x2 + 3.

Example 28.14. In this example we wish to find the splitting field for x4 − 3 ∈
Q [x] . Let ω := ei2π/4 = eiπ/2 = i be a primitive 4th root of unity. Then the
roots of x4 − 3 are

4
√

3 ·
{

1, ω, ω2, ω3
}

= 4
√

3 · {±1,±i} = ·
{
± 4
√

3,±i 4
√

3
}
.

Thus the splitting field for f (x) is

Q
(
± 4
√

3,±i 4
√

3
)

= Q
(

4
√

3, i
)
.

Since x2 + 1 is irreducible2 over Q
(

4
√

3
)

and x4 − 3 is irreducible (Eisenstein’s
criteria for example) over Q, it follows that

2 It is irreducible over R and hence over Q
(

4
√

3
)

since x2 + 1 has not real roots.
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Q
(

4
√

3, i
)

: Q
]

=
[
Q
(

4
√

3, i
)

: Q
(

4
√

3
)] [

Q
(

4
√

3
)

: Q
]

= deg
(
x2 + 1

)
· deg

(
x4 − 3

)
= 2 · 4 = 8.

A basis for Q
(

4
√

3, i
)

over Q is

{1, i} ·
{

1, 31/4, 31/2, 33/4
}

=
{

1,
√

3, 4
√

3, 3
3
4 , i, i

√
3, i 4
√

3, i3
3
4

}
.

28.3 More practice on understanding field extensions of Q

Theorem 28.15 (Primitive element theorem. Steinitz, 1910). If f (x) ∈
Q[x] and Q ⊆ K ⊆ C is the splitting field for f (x), then K = Q(a) for some
single element a ∈ C.

We will not prove this theorem here (but see Gallian[2, Theorem 21.6 on
p.375]). In certain examples, we can see how to find a single element by guessing.

Lemma 28.16. Suppose that p and q are distinct primes. Then
√
p /∈ Q

(√
q
)
.

Proof. If
√
p ∈ Q

(√
q
)

then
√
p = a+ b

√
q for some a, b ∈ Q. Squaring this

equation would then imply that

p = a2 + b2q + 2ab
√
q. (28.3)

Since
√
q is irrational, we must have ab = 0, i.e. a = 0 or b = 0. So in order to

solve Eq. (28.3), we must solve one of the equations, qb2 = p or a2 = p with
a, b ∈ Q. But it is easy to check that both qx2 − p and x2 − p are irreducible of
Q so that these equations have not solutions and hence there is no solution to
Eq. (28.3), i.e.

√
p /∈ Q

(√
q
)
. To see that qx2−p and x2−p are irreducible of Q

observe that polynomials are primitive and therefore we may apply Eisenstein
criterion using the prime, p.

Example 28.17. Consider Q(
√

3,
√

5). This is the smallest subfield of C contain-
ing Q,

√
3, and

√
5. We claim that Q(

√
3,
√

5) = Q(
√

3 +
√

5)

Proof. Since
√

3 +
√

5 is in Q(
√

3,
√

5), and Q ⊂ Q(
√

3,
√

5), it follows that
Q(
√

3 +
√

5) ⊆ Q(
√

3,
√

5). The harder part is to prove the reverse inclusion.
Since Q(

√
3 +
√

5) is a field, we know (
√

3 +
√

5)−1 ∈ Q(
√

3 +
√

5). Since

1√
3 +
√

5
=

1√
3 +
√

5

√
3−
√

5√
3−
√

5
=
√

3−
√

5
−2

= −1
2

√
3 +

1
2

√
5

it follows that − 1
2

√
3 + 1

2

√
5 ∈ Q(

√
3 +
√

5). Therefore,

√
3−
√

5 = −2
(
−1

2

√
3 +

1
2

√
5
)
∈ Q(

√
3 +
√

5)

and hence √
3 +
√

5±
(√

3−
√

5
)
∈ Q(

√
3 +
√

5)

from which it follows that
√

3,
√

5 ∈ Q(
√

3 +
√

5). Thus we have shown
Q(
√

3,
√

5) ⊆ Q(
√

3 +
√

5) which completes the proof.
In general finding the minimal polynomial for some algebraic element, α ∈ C,

can be challenging.

Example 28.18. Let us find the minimal polynomial for α :=
√

3 +
√

5 over Q.
We first look for a monic polynomial, p (x) ∈ Q [x] such that p (α) = 0. We
begin by observing that

α2 = (
√

3 +
√

5)2 = 8 + 2
√

15

and therefore, (
α2 − 8

)2
=
(

2
√

15
)2

= 4 · 15 = 60. (28.4)

Thus we see that

p (x) :=
(
x2 − 8

)2 − 60 = x4 − 16x2 + 4 (28.5)

is a polynomial having α as a root.
We claim this polynomial is the minimal polynomial for α. One way to see

this is to use Example 27.2 where we showed,

4 = [Q [α] : Q] = deg (the minimal polynomial for α) .

Since deg p (x) = 4 and p (α) = 0, it must in fact be the minimal polynomial
for α!

Remark 28.19. Another way to show that p (x) in Eq. (28.5) is the minimal
polynomial such that p (α) = 0 would be to show that p (x) is irreducible over
Q. One way to do this is to first find all of the roots of p (x) . From Eq. (28.5),
p (a) = 0 for some a ∈ C then

(
a2 − 8

)2 = 60 and therefore,

a2 = 8±
√

60 = 8± 2
√

15.

So we may conclude that
{
a (ε, δ) = ε

√
8 + δ2

√
15
}
ε,δ=±1

are all the roots of

p (x) . To see that p (x) is irreducible it suffices to observe that p (x) can not
be factored into a product of quadratic polynomials since a (ε, δ) a (ε0, δ0) /∈ Q
whenever (ε, δ) 6= (ε0, δ0) .
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Note: We could also try to use the mod p test here. However the test fails
for p = 2 and p = 3. For example, if p̄ (x) = p (x) mod 3, then

p̄ (x) = x4 − x2 + 1 = x4 + 2x2 + 1 =
(
x2 + 1

)2
is reducible. So using a mod p test is becoming rather painful.

Example 28.20. Let us now consider Q
(√

3,
√

5,
√

7
)
. I claim that

√
7 /∈

Q
(√

3,
√

5
)
. To see this let x, y ∈ Q

(√
3
)

so that x + y
√

5 is the general
element of Q

(√
3,
√

5
)
. Thus we would have to have

√
7 = x + y

√
5 for some

x, y ∈ Q
(√

3
)
. Squaring this equation then implies that

7 = x2 + 5y2 + 2xy
√

5.

Since we have already see that
√

5 /∈ Q
(√

3
)
, it will only be possible to solve

this equation if xy = 0, i.e. either x = 0 or y = 0. Thus we must either solve
x2 = 7 or 5y2 = 7 for some x or y in Q

(√
3
)
. or equivalently. But working as

in the previous example, these equations have no solutions over Q
(√

3
)

and we
are done. From these observations we may conclude that[

Q
(√

3,
√

5,
√

7
)

: Q
]

= 23 = 8.

Example 28.21. In this example we wish to compute n :=
[
Q
(

3
√

2, 4
√

3
)

: Q
]
.

Using [
Q
(

3
√

2, 4
√

3
)

: Q
]

=
[
Q
(

3
√

2, 4
√

3
)

: Q
(

3
√

2
)] [

Q
(

3
√

2
)

: Q
]

=
[
Q
(

3
√

2, 4
√

3
)

: Q
(

3
√

2
)]
· 3

and[
Q
(

3
√

2, 4
√

3
)

: Q
]

=
[
Q
(

3
√

2, 4
√

3
)

: Q
(

4
√

3
)] [

Q
(

4
√

3
)

: Q
]

=
[
Q
(

3
√

2, 4
√

3
)

: Q
(

4
√

3
)]
· 4

it follows that 3|n and 4|n and therefore that 12|n. Since[
Q
(

3
√

2, 4
√

3
)

: Q
(

3
√

2
)]
≤ 4 as 4

√
3 is a root of x4 − 4 ∈ Q

(
3
√

2
)

[x] we
also know that n ≤ 12. Therefore n = 12.
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Lecture 29 (Review Day)

The Final Exam Questions will be similar to Quiz Questions.

29.1 Definitions you should know:

• Ring (but I will not ask you to check that something is or is not a ring
directly from the definition).

• Identity element of a ring.
• Commutative ring.
• Unit.
• Subring.
• Zero-divisor and the cancellation property.
• Integral domain
• Field.
• Characteristic of a ring. (I only care about characteristic for rings R with

identity, and I define it to be the smallest positive integer n such that n ·1 =
0, or if no such n exists the characteristic is defined to be 0.)

• Ideal.
• Factor ring.
• Prime ideal.
• Maximal ideal.
• Homomorphism and isomorphism.
• Kernel and image of a homomorphism.
• Polynomial rings, R [x] and most importantly F [x] where F is a field.
• Principle ideal domain.
• Unique factorization domain.
• F (α) where F is a sub-field of a field E and α ∈ E, e.g. Q

(
4
√

5
)
.

• [E : F ] = dimF (E) .
• Algebraic and transcendental elements of an extension field.
• Minimal polynomial.

29.2 Examples of Rings

We have only studied a few classes of rings. You should know all of these and
their basic properties. How do you multiply and add in each one? Which are

integral domains and which aren’t? Which are fields? Which are commutative
and which are noncommutative? Which have an identity element and what is
it? What is the characteristic of each ring?

• Rings of numbers: Z, Q, R, C.
• Zm, the integers modulo m, for any m ≥ 2.
• Matrix rings: M2(F ),which is 2× 2 - matrices with entries from F . Here F

could be any of the rings of numbers above, or even Zm for some m.
• The Gaussian integers Z[i] = {a+b : a, b ∈ Z}, where i =

√
−1. Also studied

Zm [i] a bit.
• The ring of polynomials F [x] , which consists of all elements of the form

axn + an−1x
n−1 + · · ·+ a1x+ a0,

where the coefficients ai all come from F . Here F could be any of the rings
of numbers above, or even Zm for some m.

• The ring Z[
√
m], where m is a positive integer which is not a square. This

ring consists of all elements

{a+ b
√
m : a, v ∈ Z}.

• Given any two rings R and S, the direct sum of R and S is a new ring

R⊕ S = {(r, s) : r ∈ R and s ∈ S},

with component-wise addition and multiplication.
• F [α] := {p (α) : p ∈ F [x]} where α ∈ E and E is some field extension of F.

29.3 Important theorems and techniques

• Know how to check if a subset of a ring is a subring.
• Know how to check if a subset of a ring is an ideal of the ring.
• Know the theorem that a finite integral domain with identity is a field.
• Know that Zm is a field precisely when m is prime, and understand why

this fails when m is not prime.
• Understand the example Q

[√
2
]

and understand the proof that it is a field.



• Know the theorem that the characteristic of a domain is a prime number
(or 0).

• Given a commutative ring R with element a, know the definition of the
principle ideal generated by a, written as 〈a〉 .

• Understand the definition of a factor ring and how to do addition and mul-
tiplication in such a ring.

• Understand some important examples where factor rings can be shown to
be the same as other familiar rings. Z/ 〈m〉 ∼= Zm. R [x] / 〈x〉 ∼= R. There are
also various problems where one looks at factor rings of Z [i]. For example,
we showed Z [i] / 〈2− i〉 ∼= Z5.

• Know the theorem that a ideal I of a commutative ring R is prime if and
only if R/I is a domain, and that I is maximal if and only if R/I is a field.
As a corollary, know that a commutative ring R with identity is a field if
and only if R and {0} are the only ideals of R.

• Be able to check if a function between two rings is a homomorphism, and if
it is a isomorphism.

• Know that the kernel of a homomorphism ϕ : R → S is always an ideal of
R , and the image of a homomorphism is always a subring of S. Know the
statement of the 1st – isomorphism theorem: R/ ker (ϕ) ∼= Imϕ and how to
use it.

• Know that given any ring R with identity, there is a homomorphism Z→ R
sending a to a · 1. The kernel of this homomorphism is exactly 〈m〉 , where
m is the characteristic of R.

• Know how to determine the homomorphisms, ϕ : Z [i]→ R such that ϕ (1) =
1 – recall i must be sent to t ∈ R such that t2 = −1R.

• Understand how to manipulate polynomials and how to carry out long di-
vision in F [x] where F is a field like Q or Zp where p is prime.

• Understand how to find the roots of polynomials and their relationship to
linear factors.

• Know how to check if a polynomial in Q [x] is irreducible or not. See Section
22.2 for a summary of this point.

• Know the relationships between prime (maximal) principle ideals and prime
and maximal elements of an integral domain. See Theorem 23.6 for a sum-
mary.

• If F ⊂ E ⊂ G are fields then [G : F ] = [G : E] [E : F ] .
• F (α) ⊂ E is the smallest subfield of E containing F and α.
• Recall that if α is algebraic over F , then F (α) = F [α] and [F (α) : F ] =

deg f (x) where f (x) ∈ F [x] is the minimal polynomial over F of α. See
Theorem 26.9 for details.
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Error Correcting Codes

30.1 Algebraic Coding Theory.

Applications to telecommunications, internet, etc., not cryptography.
Idea: we want to send out a message over a cable line, fiber optic line,

satellite connection, etc. but somehow avoid errors which are introduced by
noise in the communication channel.

Our messages usually consists of a sequence of words in some alphabet and
this alphabet is often {0, 1} coming from the bits in a computer. “Noise” in the
system can cause errors by flipping the value of a given bit. We want to know
if the received message has errors and if so we would like to correct them. An
easy method for doing this is to send the message more than once!

For example suppose the message is sent in triplicate. Then if there is one
error in the entire process, it can be detected and corrected. An alternate version
is to send each digit three times in a row.

Example 30.1. Code words are all strings of four 0’s and 1’s. Say the message
we would like to transmit is 0101 1100 0001. We would then send

000 111 000 111 111111 000000 000 000 000 111.

If there were a single transmission error, for example maybe we received,
000 111000 111 101 111000 000 . . . , then we know that 101 is obviously
wrong since it is not a string of three like digits. Also, assuming there was at
most one error, it is clear that we should interpret 101 to be 111. So this method
can correct any single error. It can also detect two errors, but it is not able to
correct them. For example if we only know that at most two errors could have
occurred in the above transmission we may still conclude that 101 was an er-
ror but now we don’t know if it should have been 111 (one error) or 000 (two
errors). So up to two errors may be detected but not corrected and knowing at
most one error occurred we can detect and correct that error. Three errors in
general cannot even be detected by this scheme.

This is the general idea, and it’s all fine, but it’s wasteful. You send three
times the number of digits in the actual message, and there may be some ex-
pense involved in the extra digits (satellite time, mostly time issues). So the
topic of this lecture and the next is to discuss one way (there are many more
complicated ones) to create error correcting / detecting codes which are more
efficient (require fewer digits to be transmitted).

Definition 30.2. An (n, k)-linear binary code is a kdimensional subspace V
of the vector space

Zn2 = {(a1, a2, . . . , an : ai ∈ Z2}.

Members of V are called code words.

Out of laziness (and easier to read) we write tuples without parentheses or
commas. So the 4-tuple (0, 1, 1, 0) ∈ Z4

2 is written 0110, that is, vectors are
identified with strings of 0’s and 1’s.

Example 30.3 (The main one we will study). Let G be the 4× 7 matrix

G =


1 0 0 0 | 1 1 0
0 1 0 0 | 1 0 1
0 0 1 0 | 1 1 1
0 0 0 1 | 0 1 1

 (30.1)

with entries from Z2 = {0, 1}. Consider the linear transformation

Z4
2 → Z7

2 defined by
ϕ(a1, a2, a3, a4) := (a1, a2, a3, a4)G. (30.2)

The image of ϕ is a four-dimensional subspace of Z7
2. So V = Ran (ϕ) is a (7,4)

binary code.
Similarly, if

G =

1 0 0 | 1 1 0
0 1 0 | 1 0 1
0 0 1 | 1 1 1

 (30.3)

we may construct (6, 3) binary code,

V := {(a1, a2, a3)G : a1, a2, a3 ∈ Z2} ⊂ Z6
2.

Example 30.4. Let G and ϕ be as in Eqs. (30.1) and (30.2), then (for example),

ϕ(1, 0, 1, 0) =
row 1 of G

(1000110) +
row 3 of G

(0010111) = (1010001).

In general, the code words are all possible sums of some collection of rows of G!
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0000 7→ 0000000 1001 7→ 1001101 0111 7→ 0111011
1000 7→ 1000110 0110 7→ 0110010 1111 7→ 1111111
0100 7→ 0100101 0101 7→ 0101110
0010 7→ 0010111 0011 7→ 0011100
0001 7→ 0001011 1110 7→ 1110100
1100 7→ 1100011 1101 7→ 1101000
1010 7→ 1010001 1011 7→ 1011010

V has 16 vectors out of the 27 = 128 vectors in Z7
2. V is a subspace of Z7

2

automatically since it is the image of a linear transformation So the sum of any
two vectors in the code is another code vector – very important!

(Also V is closed under scalar multiplication. This doesn’t mean much since
1 · v = v and 0 · v = 0 for any v.)

Notice. Any 4-tuple a1a2a3a4 is encoded by ϕ as a 7-triple a1a2a3a4b1b2b3.
So the first four digits are the same and there are three extra digits. These are
called check digits. Now suppose we want to send a message. The message is
a sequence of 4-tuples in Z2. We encode these as 7-tuples using ϕ so we send a
sequence of length 7 code words instead.

Claim. This code can correct any error! We are only sending less than fifty
percent extra digits (versus two-hundred percent!)

Example 30.5. The message is

0001 1010 1110 encodes to
0001011 1010001 1110100.

If a single digit error occurs and the message is received as
0001011 1110001 1110100, we see that 1110001 is not a code word.

This is all set up so that ;

Example 30.6. 1. If 1 digit in a code word is altered, the result is not a code
word. So the error is detected.

2. There is a unique code word that differs from the altered one by a single
digit. So the error can be corrected.

3. Above, 1010001 is the only word that differs from 1110001 by a single digit,
so we know that 1010001 was the intended second word in the message.
Could just check that the code has properties 1 and 2. But we want to be

more systematic and so we will be able to produce other codes with properties
like this.

Definition 30.7. Let v, w be vectors in Zn2 . The distance, d(v, w), between v
and w is the number of coordinates in which the two vectors differ. The weight
of a vector, wt(v), is d(v, 0) which is the number of 1’s appearing in v. If
V ⊂ Zn2 is a code, the weight of the code, wt(V ), is the smallest of the
weights of the non-zero vectors in the code, V, i.e.

wt (V ) := min {wt (v) : v ∈ V \ {0}} .

Example 30.8. In the (7,4) code V above, d(0100101, 01111001) = 3, and
wt(0100101) = 3. By inspection every vector in the code has at least 3 ones
(except the zero vector), so the weight of the code, V, is 3.

Theorem 30.9. Let u, v, w be vectors in a code. Then;

1. d(u, v) = wt(u− v) and
2. d(u, v) ≤ d(u,w) + d(w, v) (triangle inequality).

Proof. 1. d(u, v) is the number of coordinates where u, v differ. The ith

coordinate of u−v is 0 if u and v have the same ith coordinate, and 1 otherwise.
So the number of 1’s in u− v is the number of differences between u and v. So
d(u, v) = wt(u− v).

2. Note that for any vectors x, y

wt(x+ y) ≤ wt(x) + wt(y)

This is clear: the total number of ones in x + y is at most the number of ones
in x, plus the number of ones in y, but usually smaller. Then

d(u, v) = wt(u− v) ≤ wt(u− w) + wt(w − v) = d(u,w) + d(w, v).

We should think of d(·, ·) as a distance function. The smaller d(u,w) is, the
“closer” u and w are to each other.

Theorem 30.10. If V is a (n, k) code with weight greater than or equal to
2t + 1, then the code can correct any t or fewer errors. Alternatively, the code
can detect (but not correct) any 2t or fewer errors.

Proof. Think of the elements of V as a subset of Zn2 . Then since V is closed
under subtraction, for any v1, v2 ∈ V , d(v1, v2) = wt(v1− v2). So either v1 = v2
so v1 − v2 = 0, or d(v1, v2) ≥ wt(v1 − v2) ≥ 2t + 1. In other words, any two
distinct code words are at least 2t+ 1 apart from one another. This means that
if we consider the “sphere” of radius t about each code word, these sphere do
not intersect!, see Figure 30.1. Here is the formal argument.

Error correction. Let v ∈ V and suppose v′ ∈ Zn2 is the result of t or
fewer errors to v, i.e. d(v′, v) ≤ t. Let w be another code word (i.e. a vector in
V ), with w 6= v. Then
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30.2 Hamming Codes 105

Fig. 30.1. A schematic form of the geometry of the hamming code. In this figure v3
is the only code word within distance t from w1. Also w2 is a message with distance
2t of v3 but not equal to v3. As we see from the picture, w2 can not be equal to any
code word so an error has been detected. On the othe rhand we do now know how to
correct this error since the message w2 could be v1 or v3 or possibly even some other
code word.

2t+ 1 ≤ d (v, w) ≤ d (v, v′) + d (v′, w) (30.4)
≤ t+ d (v′, w)

which shows, d (v′, w) ≥ t+1 and therefore v is the unique code within distance t
from w. So v′ can be corrected to v, by simply finding the code word of minimum
distance to v (fewest differences in position).

Error detection. Next suppose instead we alter a code word v to some
v′ ∈ Zn2 with v′ 6= v but differing from v by changing at most 2t digits, i.e.
1 ≤ d(v, v′) ≤ 2t. We claim that v′ is not a code word (i.e. v′ /∈ V ) and
therefore we can detect 2t or less errors to a code word. Indeed, if v′ ∈ V, then
0 6= v − v′ ∈ V (as V is a vector space!) and therefore,

2t ≥ d (v, v′) = wt (v − v′) ≥ 2t+ 1.

The last inequality is absurd and hence we may conclude that v′ /∈ V and we
have detected that an error has occurred.

Corollary 30.11. The (7,4) code above (with weight 3 = 2 · 1 + 1) can correct
any 1 error or alternatively detect any two errors.

Next time we will answer the question; how do we efficiently detect and
correct errors, without just reading through the list of code words one by one?

30.2 Hamming Codes

Recall that a binary (n, k) code is a k – dimensional subspace V of Zn2 . A
Hamming code is one given by a k × n matrix G =

[
I | ∗

]
where I is the

identity matrix and ∗ is any matrix. The Hamming code associated to G is the
subspace or row vectors;

V := {vG : v ∈ Zn2} ⊂ Zn2 .

Equivalently, V consists of all linear combinations of the rows of G.

Example 30.12. The matrix,

G =

1 0 0 | 1 1 0
0 1 0 | 1 0 1
0 0 1 | 1 1 1


determines a binary Hamming code

V = {100110, 010101, 001111, 000000, 110011, 011010, 101001, 111100}.

Remember that the weight, wt(v), of a vector v is the number of 1’s appear-
ing in v and the distance between v and w, d(v, w), is the number of positions
or coordinates in which the vectors v and w differ. The weight of a code is the
weight of the smallest nonzero vector in the code. The weight of V for the (6,3)
code in Example 30.12 above is 3. So we can take t = 1 in Theorem 30.10 to
learn this code can correct any single digit error or detect any two errors.

Example 30.13. In this example we use the (6,3) code of Example 30.12.

1. If 111100 is sent with one error as 011100. Then 1111000 is the unique code
word at distance 1 from 011100, so 011100 can be corrected to 111100.

2. If 100110 is sent out with two errors as 100011. The error can be detected,
because this is not a code word. The error can not be corrected, since 101001
is also distance 2 away.

3. If 110011 is sent with three errors as 011010. The error cannot be detected,
since 011010 is also a code word.

The actual decoding for the (6,3) code of Example 30.12 can be done by
going down the list, and picking the “closest” code word to the received word.
For more complicated codes, there are too many code words do this, so “decod-
ing” becomes more difficult. However, there is a more ”mechanical” way to do
decoding for a Hamming code.

Let the binary code (n, k) be determined by the matrix

G =
[
I | A

]
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106 30 Error Correcting Codes

where I is the k × k identity matrix, and A is k × (n− k). We then define the
corresponding parity check matrix by,

H =

−A−−
I


where −A is k × (n − k) and I is the (n − k) × (n − k) identity matrix. This
is a general definition referring to the case where Z2 is replaced by some finite
field. In our case of binary codes we always have A = −A and therefore

H =

 A
−−
I


Example 30.14. For the (6,3) code of Example 30.12,

H =



−1 −1 0
−1 0 −1
−1 −1 −1
− − −
1 0 0
0 1 0
0 0 1


=



1 1 0
1 0 1
1 1 1
− − −
1 0 0
0 1 0
0 0 1


.

Theorem 30.15. Suppose the code given by G corrects any single error, and
suppose the parity check matrix has nonzero distinct rows. Then H can be used
to correct any single error as follows:

Suppose at most one error is made to the code word v ∈ V , where V is the
code given by G, and v′ is the received word. Then if v′H = 0, then v′ is a code
word and v′ = v. If v′H 6= 0, then v′H is equal to the ith row of H for some i.
Then v′ has a single error, and the error occurred in the ith coordinate.

Proof. Suppose v ∈ V. If v is a code word, (no error), then v = wG for
some row vector w ∈ Z4

2. Then vH = wGH. But

GH =
[
I A
] [−A

I

]
= I(−A) +AI = 0

by block multiplication. So GH = 0, and wGH = 0.
If v′ = v modulo one error, then v′ = v + ei for some i where

ei = (0, 0, . . . , 0, 1, 0, . . . 0, 0) (1 in the ith slot).

Then

v′H = (v + ei)H = vH + eiH = 0 + eiH.

By above eiH is the ith row of H. Since the rows of H are distinct we can
determine this row from v′ simply by computing v′H. So v′H is the ith -row
of H we know that the error occurred at position i and we may correct it by
flipping the bit at this position.

Of course there are more complicated versions of this theorem to detect and
correct more than one error but we will not cover this here.

Example 30.16. Consider the code word, v = 110011. Suppose the word is trans-
mitted with at most one error—say the recipient gets v′ = 110011. The recipient
calculates

v′H = [1 1 0 0 1 1]


1 1 0
1 0 1
1 1 1
1 0 0
0 1 0
0 0 1

 = [0 0 0]

So Theorem 30.15 says that v′ = v and there was no error.
Suppose instead that the receiver gets v′ = 110111 for which,

v′H = [1 1 0 1 1 1]


1 1 0
1 0 1
1 1 1
1 0 0
0 1 0
0 0 1

 = [1 0 0].

The resulting vector is row four of H and therefore the error occurred in position
4. The message was so supposed to be v = 110011.
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MA, 2006, Along with a companion volume ıt Advanced algebra. MR MR2257570
(2007e:00001)

4. Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, second
ed., Cambridge University Press, Cambridge, 2003. MR MR2001757 (2004g:68202)


	Part I Algebra Homeworks
	Math 103B Homework Problems
	Homework #1 (Due Thursday, April 2)
	Homework #2 (Due Thursday, April 9)
	Homework #3 (Due Thursday, April 16)
	Homework #4 (Due Thursday, April 23)
	Homework #5 (Due Thursday, April 30)
	Homework #6 (Due Thursday, May 7)
	Homework #7 (Due Thursday, May 14)
	Homework #8 (Due Thursday, May 21)
	Homework #9 (Due Thursday, May 28)
	Homework #10 (Due Thursday, June 4)


	Part II Math 103B Lecture Notes
	Lecture 1 
	Definition of Rings and Examples
	Appendix: Facts about finite sums

	Lecture 2 
	Polynomial Ring Examples 
	Subrings and Ideals I

	Lecture 3 
	Some simple ring facts
	The R[ S]  subrings I
	Appendix: R[ S]  rings II

	Lecture 4 
	Units
	(Zero) Divisors and Integral Domains
	Fields

	Lecture 5 
	Characteristic of a Ring 

	Lecture 6 
	Square root field extensions of Q
	Homomorphisms

	Lecture 7 
	Lecture 8 
	Lecture 9 
	Factor Rings

	Lecture 10 
	First Isomorphism Theorem

	Lecture 11 
	Lecture 12 
	Higher Order Zeros (Not done in class)
	More Example of Factor Rings
	II. More on the characteristic of a ring
	Summary

	Lecture 13 
	Ideals and homomorphisms
	Maximal and Prime Ideals

	Lecture 14 
	Lecture 15 
	The rest this section was not covered in class

	Lecture 16 
	The Degree of a Polynomial
	The evaluation homomorphism (review)
	The Division Algorithm
	Appendix: Proof of the division algorithm

	Lecture 17 
	Roots of polynomials
	Roots with multiplicities

	Lecture 18 
	Irreducibles and Maximal Ideals

	Lecture 19 
	Irreducibles Polynomials I

	Lecture 20 
	Two more homomorphisms involving polynomials
	Gauss' Lemma

	Lecture 21 
	mod p Irreducibility Tests

	Lecture 22 
	Eisenstein's Criterion
	Summary of irreducibility tests

	Lecture 23 
	Irreducibles and Primes II

	Lecture 24 
	Unique Factorization Domains
	Extra Topics (not covered in class)
	Greatest Common Divisors (not covered in class)
	Partial Fractions (not covered in class)
	Factorizing Polynomials in finite time (not covered in class)
	Fields of fractions (not covered in class)


	Lecture 25 
	Vector Spaces & Review of Linear Algebra

	Lecture 26 
	Field Theory

	Lecture 27 
	Ruler and Compass Constructions

	Lecture 28
	Geometric Consequences for the Greeks
	Splitting fields over Q
	More practice on understanding field extensions of Q

	Lecture 29 (Review Day)
	Definitions you should know:
	Examples of Rings
	Important theorems and techniques

	Error Correcting Codes
	Algebraic Coding Theory.
	Hamming Codes

	References




