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Lecture 1

1.1 Definition of Rings and Examples

A ring will be a set of elements, R, with both an addition and multiplication
operation satisfying a number of “natural” axioms.

Axiom 1.1 (Axioms for a ring) Let R be a set with 2 binary operations
called addition (written a + b) and multiplication (written ab). R is called a
ring if for all a, b, c ∈ R we have

1. (a+ b) + c = a+ (b+ c)
2. There exists an element 0 ∈ R which is an identity for +.
3. There exists an element −a ∈ R such that a+ (−a) = 0.
4. a+ b = b+ a.
5. (ab)c = a(bc).
6. a(b+ c) = ab+ ac and (b+ c)a = ba+ bc.

Items 1. – 4. are the axioms for an abelian group, (R,+) . Item 5. says mul-
tiplication is associative, and item 6. says that is both left and right distributive
over addition. Thus we could have stated the definition of a ring more succinctly
as follows.

Definition 1.2. A ring R is a set with two binary operations “+” = addition
and “·”= multiplication, such that (R,+) is an abelian group (with identity
element we call 0), “·” is an associative multiplication on R which is both left
and right distributive over addition.

Remark 1.3. The multiplication operation might not be commutative, i.e., ab 6=
ba for some a, b ∈ R. If we have ab = ba for all a, b ∈ R, we say R is a
commutative ring. Otherwise R is noncommutative.

Definition 1.4. If there exists and element 1 ∈ R such that a1 = 1a = a for all
a ∈ R, then we call 1 the identity element of R [the book calls it the unity.]

Most of the rings that we study in this course will have an identity element.

Lemma 1.5. If R has an identity element 1, then 1 is unique. If an element
a ∈ R has a multiplicative inverse b, then b is unique, and we write b = a−1.

Proof. Use the same proof that we used for groups! I.e. 1 = 1 · 1′ = 1′ and
if b, b′ are both inverses to a, then b = b (ab′) = (ba) b′ = b′.

Notation 1.6 (Subtraction) In any ring R, for a ∈ R we write the additive
inverse of a as (−a). So at a + (−a) = (−a) + a = 0 by definition. For any
a, b ∈ R we abbreviate a+ (−b) as a− b.

Let us now give a number of examples of rings.

Example 1.7. Here are some examples of commutative rings that we are already
familiar with.

1. Z = all integers with usual + and ·.
2. Q = all mn such that m,n ∈ Z with n 6= 0, usual + and ·. (We will generalize

this later when we talk about “fields of fractions.”)
3. R = reals, usual + and ·.
4. C = all complex numbers, i.e. {a+ ib : a, b ∈ R} , usual + and · operations.

(We will explicitly verify this in Proposition 3.6 below.)

Example 1.8. 2Z = {. . . ,−4,−2, 0, 2, 4, . . . } is a ring without identity.

Example 1.9 (Integers modulo m). For m ≥ 2, Zm = {0, 1, 2, . . . ,m− 1} with

+ = addition modm
· = multiplication modn.

Recall from last quarter that (Zm,+) is an abelian group and we showed,

[(ab) modm · c] modm = [abc] = [a (bc) modm] modm (associativity)

and

[a · (b+ c) modm] modm = [a · (b+ c)] modm
= [ab+ ac] modm = (ab) modm+ (ac) modm

which is the distributive property of multiplication modm. Thus Zm is a ring
with identity, 1.
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Example 1.10. M2(F ) = 2 × 2 matrices with entries from F , where F = Z, Q,
R, or C with binary operations;[

a b
c d

]
+
[
a′ b′

c′ d′

]
=
[
a+ a′ b+ b′

c+ c′ d+ d′

]
(addition)

[
a b
c d

] [
a′ b′

c′ d′

]
=
[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
. (multiplication)

That is multiplication is the usual matrix product. You should have checked in
your linear algebra course that M2 (F ) is a non-commutative ring with identity,

I =
[

1 0
0 1

]
.

For example let us check that left distributive law in M2(Z);[
a b
c d

]([
e f
g h

]
+
[
p q
r s

])
=
[
a b
c d

] [
p+ e f + q
g + r h+ s

]
=
[
b (g + r) + a (p+ e) a (f + q) + b (h+ s)
d (g + r) + c (p+ e) c (f + q) + d (h+ s)

]
=
[
bg + ap+ br + ae af + bh+ aq + bs
dg + cp+ dr + ce cf + dh+ cq + ds

]
while [

a b
c d

] [
e f
g h

]
+
[
a b
c d

] [
p q
r s

]
=
[
bg + ae af + bh
dg + ce cf + dh

]
+
[
ap+ br aq + bs
cp+ dr cq + ds

]
=
[
bg + ap+ br + ae af + bh+ aq + bs
dg + cp+ dr + ce cf + dh+ cq + ds

]
which is the same result as the previous equation.

Example 1.11. We may realize C as a sub-ring of M2 (R) as follows. Let

I =
[

1 0
0 1

]
∈M2 (R) and i :=

[
0 −1
1 0

]
and then identify z = a+ ib with

aI+bi := a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
=
[
a −b
b a

]
.

Since

i2 =
[

0 −1
1 0

] [
0 −1
1 0

]
= I

it is straight forward to check that

(aI+bi) (cI+di) = (ac− bd) I + (bc+ ad) i and
(aI+bi) + (cI+di) = (a+ c) I + (b+ d) i

which are the standard rules of complex arithmetic. The fact that C is a ring
now easily follows from the fact that M2 (R) is a ring.

In this last example, the reader may wonder how did we come up with the

matrix i :=
[

0 −1
1 0

]
to represent i. The answer is as follows. If we view C as R2

in disguise, then multiplication by i on C becomes,

(a, b) ∼ a+ ib→ i (a+ ib) = −b+ ai ∼ (−b, a)

while

i
(
a
b

)
=
[

0 −1
1 0

](
a
b

)
=
(
−b
a

)
.

Thus i is the 2× 2 real matrix which implements multiplication by i on C.

Theorem 1.12 (Matrix Rings). Suppose that R is a ring and n ∈ Z+. Let
Mn (R) denote the n× n – matrices A = (Aij)

n
i,j=1 with entries from R. Then

Mn (R) is a ring using the addition and multiplication operations given by,

(A+B)ij = Aij +Bij and

(AB)ij =
∑
k

AikBkj .

Moreover if 1 ∈ R, then

I :=

1 0 0

0
. . . 0

0 0 1


is the identity of Mn (R) .

Proof. I will only check associativity and left distributivity of multiplication
here. The rest of the proof is similar if not easier. In doing this we will make
use of the results about sums in the Appendix 1.2 at the end of this lecture.

Let A, B, and C be n× n – matrices with entries from R. Then
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1.2 Appendix: Facts about finite sums 11

[A (BC)]ij =
∑
k

Aik (BC)kj =
∑
k

Aik

(∑
l

BklClj

)
=
∑
k,l

AikBklClj

while

[(AB)C]ij =
∑
l

(AB)il Clj =
∑
l

(∑
k

AikBkl

)
Clj

=
∑
k,l

AikBklClj .

Similarly,

[A (B + C)]ij =
∑
k

Aik (Bkj + Ckj) =
∑
k

(AikBkj +AikCkj)

=
∑
k

AikBkj +
∑
k

AikCkj = [AB]ij + [AC]ij .

Example 1.13. In Z6, 1 is an identity for multiplication, but 2 has no multi-
plicative inverse. While in M2(R), a matrix A has a multiplicative inverse if
and only if det(A) 6= 0.

Example 1.14 (Another ring without identity). Let

R =
{[

0 a
0 0

]
: a ∈ R

}
with the usual addition and multiplication of matrices.[

0 a
0 0

] [
0 b
0 0

]
=
[
0 0
0 0

]
.

The identity element for multiplication “wants” to be
[
1 0
0 1

]
, but this is not in

R.
More generally if (R,+) is any abelian group, we may make it into a ring

in a trivial way by setting ab = 0 for all a, b ∈ R. This ring clearly has no
multiplicative identity unless R = {0} is the trivial group.

1.2 Appendix: Facts about finite sums

Throughout this section, suppose that (R,+) is an abelian group, Λ is any set,
and Λ 3 λ→ rλ ∈ R is a given function.

Theorem 1.15. Let F := {A ⊂ Λ : |A| <∞} . Then there is a unique function,
S : F → R such that;

1. S (∅) = 0,
2. S ({λ}) = rλ for all λ ∈ Λ.
3. S (A ∪B) = S (A) + S (B) for all A,B ∈ F with A ∩B = ∅.

Moreover, for any A ∈ F , S (A) only depends on {rλ}λ∈A .

Proof. Suppose that n ≥ 2 and that S (A) has been defined for all A ∈ F
with |A| < n in such a way that S satisfies items 1. – 3. provided that |A ∪B| <
n. Then if |A| = n and λ ∈ A, we must define,

S (A) = S (A \ {λ}) + S ({λ}) = S (A \ {λ}) + rλ.

We should verify that this definition is independent of the choice of λ ∈ A. To
see this is the case, suppose that λ′ ∈ A with λ′ 6= λ, then by the induction
hypothesis we know,

S (A \ {λ}) = S ([A \ {λ, λ′}] ∪ {λ′})
= S (A \ {λ, λ′}) + S ({λ′}) = S (A \ {λ, λ′}) + rλ′

so that

S (A \ {λ}) + rλ = [S (A \ {λ, λ′}) + rλ′ ] + rλ

= S (A \ {λ, λ′}) + (rλ′ + rλ)
= S (A \ {λ, λ′}) + (rλ + rλ′)
= [S (A \ {λ, λ′}) + rλ] + rλ′

= [S (A \ {λ, λ′}) + S ({λ})] + rλ′

= S (A \ {λ′}) + rλ′

as desired. Notice that the “moreover” statement follows inductively using this
definition.

Now suppose that A,B ∈ F with A∩B = ∅ and |A ∪B| = n. Without loss
of generality we may assume that neither A or B is empty. Then for any λ ∈ B,
we have using the inductive hypothesis, that

S (A ∪B) = S (A ∪ [B \ {λ}]) + rλ = (S (A) + S (B \ {λ})) + rλ

= S (A) + (S (B \ {λ}) + rλ) = S (A) + (S (B \ {λ}) + S ({λ}))
= S (A) + S (B) .
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Thus we have defined S inductively on the size of A ∈ F and we had no
choice in how to define S showing S is unique.

Notation 1.16 Keeping the notation used in Theorem 1.15, we will denote
S (A) by

∑
λ∈A rλ. If A = {1, 2, . . . , n} we will often write,

∑
λ∈A

rλ =
n∑
i=1

ri.

Corollary 1.17. Suppose that A = A1 ∪ · · · ∪ An with Ai ∩ Aj = ∅ for i 6= j
and |A| <∞. Then

S (A) =
n∑
i=1

S (Ai) i.e.
∑
λ∈A

rλ =
n∑
i=1

(∑
λ∈Ai

rλ

)
.

Proof. As usual the proof goes by induction on n. For n = 2, the assertion
is one of the defining properties of S (A) :=

∑
λ∈A rλ. For n ≥ 2, we have using

the induction hypothesis and the definition of
∑n
i=1 S (Ai) that

S (A1 ∪ · · · ∪An) = S (A1 ∪ · · · ∪An−1) + S (An)

=
n−1∑
i=1

S (Ai) + S (An) =
n∑
i=1

S (Ai) .

Corollary 1.18 (Order does not matter). Suppose that A is a finite subset
of Λ and B is another set such that |B| = n = |A| and σ : B → A is a bijective
function. Then ∑

b∈B

rσ(b) =
∑
a∈A

ra.

In particular if σ : A→ A is a bijection, then∑
a∈A

rσ(a) =
∑
a∈A

ra.

Proof. We again check this by induction on n = |A| . If n = 1, then B = {b}
and A = {a := σ (b)} , so that∑

x∈B
rσ(x) = rσ(b) =

∑
a∈A

ra

as desired. Now suppose that N ≥ 1 and the corollary holds whenever n ≤ N.
If |B| = N + 1 = |A| and σ : B → A is a bijective function, then for any b ∈ B,
we have with B′ := B′ \ {b} that

∑
x∈B

rσ(x) =
∑
x∈B′

rσ(x) + rσ(b).

Since σ|B′ : B′ → A′ := A \ {σ (b)} is a bijection, it follows by the induction
hypothesis that

∑
x∈B′ rσ(x) =

∑
λ∈A′ rλ and therefore,∑

x∈B
rσ(x) =

∑
λ∈A′

rλ + rσ(b) =
∑
λ∈A

rλ.

Lemma 1.19. If {aλ}λ∈Λ and {bλ}λ∈Λ are two sequences in R, then∑
λ∈A

(aλ + bλ) =
∑
λ∈A

aλ +
∑
λ∈A

bλ.

Moreover, if we further assume that R is a ring, then for all r ∈ R we have the
right and left distributive laws;,

r ·
∑
λ∈A

aλ =
∑
λ∈A

r · aλ and(∑
λ∈A

aλ

)
· r =

∑
λ∈A

aλ · r.

Proof. This follows by induction. Here is the key step. Suppose that α ∈ A
and A′ := A \ {α} , then∑

λ∈A

(aλ + bλ) =
∑
λ∈A′

(aλ + bλ) + (aα + bα)

=
∑
λ∈A′

aλ +
∑
λ∈A′

bλ + (aα + bα) (by induction)

=

(∑
λ∈A′

aλ + aλ+

)(∑
λ∈A′

bλ + bα

) (
commutativity

and associativity

)
=
∑
λ∈A

aλ +
∑
λ∈A

bλ.

The multiplicative assertions follows by induction as well,

r ·
∑
λ∈A

aλ = r ·

(∑
λ∈A′

aλ + aα

)
= r ·

(∑
λ∈A′

aλ

)
+ r · aα

=

(∑
λ∈A′

r · aλ

)
+ r · aα

=
∑
λ∈A

r · aλ.
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Lecture 2

Recall that a ring is a set, R, with two binary operations “+” = addition
and “·”= multiplication, such that (R,+) is an abelian group (with identity
element we call 0), (·) is an associative multiplication on R which is left and right
distributive over “+.” Also recall that if there is a multiplicative identity, 1 ∈ R
(so 1a = a1 = a for all a), we say R is a ring with identity (unity). Furthermore
we write a − b for a + (−b) . This shows the importance of distributivity. We
now continue with giving more examples of rings.

Example 2.1. Let R denote the continuous functions, f : R→ R such that
limx→±∞ f (x) = 0. As usual, let f + g and f · g be pointwise addition and
multiplication of functions, i.e.

(f + g) (x) = f (x) + g (x) and (f · g) (x) = f (x) g (x) for all x ∈ R.

Then R is a ring without identity. (If we remove the restrictions on the functions
at infinity, R would be a ring with identity, namely 1 (x) ≡ 1.)

Example 2.2. For any collection of rings R1, R2, . . . , Rm, define the direct sum
to be

R = R1 ⊕ · · · ⊕Rn = {(r1, r2, . . . , rn) : ri ∈ Ri all i}

the set of all m-tuples where the ith coordinate comes from Ri. R is a ring if
we define

(r1, r2, . . . , rm) + (s1, s2, . . . , sm) = (r1s1, r2s2, . . . , rmsm),

and

(r1, r2, . . . , rm) + (s1, s2, . . . , sm) = (r1 + s1, r2 + s2, . . . , rm + sm).

The identity element 0 is (0, 0, . . . , 0). (Easy to check)

2.1 Polynomial Ring Examples

Example 2.3 (Polynomial rings). Let R = Z, Q, R, or Z and let R [x] denote the
polynomials in x with coefficients from R. We add and multiply polynomials in
the usual way. For example if f = 3x2 − 2x+ 5 and g = 5x2 + 1, then

f + g = 8x2 − 2x+ 6 and

fg = (5x3 + 1)(3x2 − 2x+ 5)

= 5− 2x+ 3x2 + 25x3 − 10x4 + 15x5.

One may check (see Theorem 2.4 below) that R [x] with these operations is a
commutative ring with identity, 1 = 1.These rules have been chosen so that
(f + g) (α) = f (α) + g (α) and (f · g) (α) = f (α) g (α) for all α ∈ R where

f (α) :=
∞∑
i=0

aiα
i.

Theorem 2.4. Let R be a ring and R [x] denote the collection of polynomials
with the usual addition and multiplication rules of polynomials. Then R [x] is
again a ring. To be more precise,

R [x] =

{
p =

∞∑
i=0

pix
i : pi ∈ R with pi = 0 a.a.

}
,

where we say that pi = 0 a.a. (read as almost always) provided that
|{i : pi 6= 0}| <∞. If q :=

∑∞
i=0 qix

i ∈ R [x] , then we set,

p+ q :=
∞∑
i=0

(pi + qi)xi and (2.1)

p · q :=
∞∑
i=0

( ∑
k+l=i

pkql

)
xi =

∞∑
i=0

(
i∑

k=0

pkqi−k

)
xi. (2.2)

Proof. The proof is similar to the matrix group examples. Let me only say
a few words about the associativity property of multiplication here, since this
is the most complicated property to check. Suppose that r =

∑∞
i=0 rix

i, then
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p (qr) =
∞∑
n=0

 ∑
i+j=n

pi (qr)j

xn

=
∞∑
n=0

 ∑
i+j=n

pi

 ∑
k+l=j

qkrl

xn

=
∞∑
n=0

( ∑
i+k+l=n

piqkrl

)
xn.

As similar computation shows,

(pq) r =
∞∑
n=0

( ∑
i+k+l=n

piqkrl

)
xn

and hence the multiplication rule in Eq. (2.2) is associative.

2.2 Subrings and Ideals I

We now define the concept of a subring in a way similar to the concept of
subgroup.

Definition 2.5 (Subring). Let R be a ring. If S is subset of R which is itself
a ring under the same operations +, · of R restricted to the set S, then S is
called a subring of R.

Lemma 2.6 (Subring test). S ⊂ R is a subring if and only if S is a subgroup
of (R,+) and S is closed under multiplication. In more detail, S is a subring
of R, iff for all a, b ∈ S, that

a+ b ∈ S, − a ∈ S, and ab ∈ S.

Alternatively we may check that

a− b ∈ S, and ab ∈ S for all a, b ∈ S.

Put one last way, S is a subring of R if (S,+) is a subgroup of (R,+) which is
closed under the multiplication operation, i.e. S · S ⊂ S.

Proof. Either of the conditions, a + b ∈ S, −a ∈ S or a − b ∈ S for all
a, b ∈ S implies that (S,+) is a subgroup of (R,+) . The condition that (S, ·)
is a closed shows that “·” is well defined on S. This multiplication on S then
inherits the associativity and distributivity laws from those on R.

Definition 2.7 (Ideals). Let R be a ring. A (two sided) ideal, I, of R is a
subring, I ⊂ R such that RI ⊂ R and IR ⊂ R. Alternatively put, I ⊂ R is an
ideal if (I,+) is a subgroup of (R,+) such that RI ⊂ R and IR ⊂ R. (Notice
that every ideal, I, of R is also a subring of R.)

Example 2.8. Suppose that R is a ring with identity 1 and I is an ideal. If 1 ∈ I,
then I = R since R = R · 1 ⊂ RI ⊂ I.

Example 2.9. Given a ring R, R itself and {0} are always ideals of R. {0} is the
trivial ideal. An ideal (subring) I ⊂ R for which I 6= R is called a proper ideal
(subring).

Example 2.10. If R is a commutative ring and b ∈ R is any element, then the
principal ideal generated by b, denoted by 〈b〉 or Rb, is

I = Rb = {rb : r ∈ R}.

To see that I is an ideal observer that if r, s ∈ R, then rb and sb are generic
elements of I and

rb− sb = (r − s)b ∈ Rb.

Therefore I is an additive subgroup of R. Moreover, (rb) s = s (rb) = (sr) b ∈ I
so that RI = IR ⊂ I.

Example 2.11. 〈n〉 = nZ inside of Z is the principal ideal generated by n. Since
every subring, S ⊂ Z is also a subgroup and all subgroups of Z are of the form
nZ for some n ∈ Z, it flows that all subrings of Z are in fact also principle
ideals.

Example 2.12. Suppose that n ∈ Z+. Then for any m ∈ Zn,

〈m〉 = {km : k ∈ Z} = mZn (2.3)

is the principle ideal in Zn generated by m.
Conversely if S ⊂ Zn is a sub-ring, then S is in particular a subgroup of Zn.

From last quarter we know that this implies S = 〈m〉 = 〈gcd (n,m)〉 for some
m ∈ Zn. Thus every subring of Zn is in an ideal and they are all principle ideals
as in Eq. (2.3).

Example 2.13. The set,

S =
{[
a b
0 d

]
: a, b, d ∈ R

}
,

is a subring of M2(R). To check this observe that;
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2.2 Subrings and Ideals I 15[
a b
0 d

]
−
[
a′ b′

0 d′

]
=
[
a− a b− b′

0 d− d′
]
∈ S

and [
a b
0 d

] [
a′ b′

0 d′

]
=
[
a′a ab′ + bd′

0 dd′

]
∈ S.

S is not an ideal since,[
0 0
1 0

] [
a b
0 d

]
=
[
0 0
a b

]
/∈ S if a 6= 0.

Example 2.14. Consider Zm and the subset U(m) the set of units in Zm. Then
U(m) is never a subring of Zm, because 0 /∈ U(m).

Example 2.15. The collection of matrices,

S =
{[

0 a
b c

]
: a, b, c ∈ R

}
,

is not a subring of M2(R). It is an additive subgroup which is however not
closed under matrix multiplication;[

0 a
b c

] [
0 a′

b′ c′

]
=
[
ab′ ac′

cb′ ba+ cc′

]
/∈ S

Definition 2.16. Let R be a ring with identity. We say that S ⊂ R is a unital
subring of R if S is a sub-ring containing 1R. (Most of the subrings we will
consider later will be unital.)

Example 2.17. Here are some examples of unital sub-rings.

1. S in Example 2.13 is a unital sub-ring of M2 (R) .
2. The polynomial functions on R is a unital sub-ring of the continuous func-

tions on R.
3. Z [x] is a unital sub-ring of Q [x] or R [x] or C [x] .
4. Z [i] := {a+ ib : a, b ∈ Z} is a unital subring of C.

Example 2.18. Here are a few examples of non-unital sub-rings.

1. nZ ⊂ Z is a non-unital subring of Z for all n 6= 0 since nZ does not even
contain an identity element.

2. If R = Z8, then every non-trivial proper subring, S = 〈m〉 , of R has no
identity. The point is if k ∈ Z8 is going to be an identity for some sub-ring
of Z8, then k2 = k. It is now simple to check that k2 = k in Z8 iff k = 0
or 1 which are not contained in any proper non-trivial sub-ring of Z8. (See
Remark 2.19 below.)

3. Let R := Z6 and S = 〈2〉 = {0, 2, 4} is a sub-ring of Z6. Moreover, one sees
that 1S = 4 is the unit in S (42 = 4 and 4 · 2 = 2) which is not 1R = 1.
Thus again, S is not a unital sub-ring of Z6.

4. The set,

S =
{[
a 0
0 0

]
: a ∈ R

}
⊂ R = M2(R),

is a subring of M2 (R) with

1S =
[
1 0
0 0

]
6=
[
1 0
0 1

]
= 1R

and hence is not a unital subring of M2 (R) .
5. Let v be a non-zero column vector in R2 and define,

S := {A ∈M2 (R) : Av = 0} .

Then S is a non-unital subring of M2 (R) which is not an ideal. (You should
verify these assertions yourself!)

Remark 2.19. Let n ∈ Z+ and S := 〈m〉 be a sub-ring of Zn. It is natural to
ask, when does S have an identity element. To answer this question, we begin
by looking for m ∈ Zn such that m2 = m. Given such a m, we claim that m is
an identity for 〈m〉 since

(km)m = km2 = k1m for all km ∈ 〈m〉 .

The condition that m2 = m is equivalent to m (m− 1) = 0, i.e. n|m (m− 1) .
Thus 〈m〉 = 〈gcd (n,m)〉 is a ring with identity iff n|m (m− 1) .

Example 2.20. Let us take m = 6 in the above remark so that m (m− 1) =
30 = 3 · 2 · 5. In this case 10, 15 and 30 all divide m (m− 1) and therefore 6
is the identity element in 〈6〉 thought of as a subring of either, Z10, or Z15, or
Z30. More explicitly 6 is the identity in

〈6〉 = 〈gcd (6, 10)〉 = 〈2〉 = {0, 2, 4, 6, 8} ⊂ Z10,

〈6〉 = 〈gcd (6, 15)〉 = 〈3〉 = {0, 3, 6, 9, 12} ⊂ Z15, and
〈6〉 = 〈gcd (6, 30)〉 = {0, 6, 12, 18, 24} ⊂ Z30.

Example 2.21. On the other hand there is no proper non-trivial subring of Z8

which contains an identity element. Indeed, if m ∈ Z8 and 8 = 23|m (m− 1) ,
then either 23|m if m is even or 23| (m− 1) if m is odd. In either the only
m ∈ Z8 with this property is m = 0 and m = 1. In the first case 〈0〉 = {0} is
the trivial subring of Z8 and in the second case 〈1〉 = Z8 is not proper.
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3.1 Some simple ring facts

The next lemma shows that the distributive laws force 0, 1, and the symbol
“−” to behave in familiar ways.

Lemma 3.1 (Some basic properties of rings). Let R be a ring. Then;

1. a0 = 0 = 0a for all a ∈ R.
2. (−a)b = − (ab) = a(−b) for all a, b ∈ R
3. (−a)(−b) = ab for all a, b ∈ R. In particular, if R has identity 1, then

(−1)(−1) = 1 and
(−1)a = −a for all a ∈ R.

(This explains why minus times minus is a plus! It has to be true in any
structure with additive inverses and distributivity.)

4. If a, b, c ∈ R, then a (b− c) = ab− ac and (b− c) a = ba− ca.

Proof. For all a, b ∈ R;

1. a0 + 0 = a0 = a(0 + 0) = a0 + a0, and hence by cancellation in the abelian
group, (R,+) , we conclude that , so 0 = a0. Similarly one shows 0 = 0a.

2. (−a)b+ab = (−a+a)b = 0b = 0, so (−a)b = − (ab). Similarly a(−b) = −ab.
3. (−a)(−b) = − (a(−b)) = −(−(ab)) = ab, where in the last equality we have

used the inverting an element in a group twice gives the element back.
4. This last item is simple since,

a (b− c) := a (b+ (−c)) = ab+ a (−c) = ab+ (−ac) = ab− ac.

Similarly one shows that (b− c) a = ba− ca.

In proofs above the reader should not be fooled into thinking these things
are obvious. The elements involved are not necessarily familiar things like real
numbers. For example, in M2(R) item 2 states, (−I)A = −(IA) = −A, i.e.[

−1 0
0 −1

] [
a b
c d

]
=
[
−a −b
−c −d

]
X

The following example should help to illustrate the significance of Lemma 3.1.

Example 3.2. Consider R = 〈2〉 = {0, 2, 4, 6, 8} ⊂ Z10. From Example 2.20 we
know that 1R = 6 which you can check directly as well. So −1R = −6 mod 10 =
4. Taking a = 2 let us write out the meaning of the identity, (−1R) · a = −a;

(−1R) · a = 4 · 2 = 8 = −a.

Let us also work out (−2) (−4) and compare this with 2 · 4 = 8;

(−2) (−4) = 8 · 6 = 48 mod 10 = 8.

Lastly consider,

4 · (8− 2) = 4 · 6 = 24 mod 10 = 4 while
4 · 8− 4 · 2 = 2− 8 = −6 mod 10 = 4.

3.2 The R [S] subrings I

Here we will construct some more examples of rings which are closely related
to polynomial rings. In these examples, we will be given a commutative ring R
(usually commutative) and a set S equipped with some sort of multiplication,
we then are going to define R [S] to be the collection of linear combinations of
elements from the set, ∪∞n=0RS

n. Here RSn consists of formal symbols of the
form rs1 . . . sn with r ∈ R and si ∈ S. The next proposition gives a typical
example of what we have in mind.

A typical case will be where S = {s1, . . . , sn} is a finite set then

Proposition 3.3. If R ⊂ R̄ is a sub-ring of a commutative ring R̄ and S =
{s1, . . . , sn} ⊂ R̄. Let

R [S] = R [s1, . . . , sn] =

{∑
k

aks
k : ak ∈ R with ak = 0 a.a.

}
,

where k = (k1, . . . kn) ∈ Nn and sk = sk11 . . . skn
n with a0s

0 := a0 ∈ R. Then
R [s1, . . . , sn] is a sub-ring of R̄.
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Proof. If f =
∑
k aks

k and g =
∑
k bks

k, then

f + g =
∑
k

(ak + bk) sk ∈ R [S] ,

−g =
∑
k

−bksk ∈ R [S] , and

f · g =
∑
k

aks
k ·
∑
l

bls
l

=
∑
k,l

akbls
ksl =

∑
k,l

akbls
k+l

=
∑
n

( ∑
k+l=n

akbl

)
sn ∈ R [S] .

Example 3.4 (Gaussian Integers). Let i :=
√
−1 ∈ C. Then Z [i] =

{x+ yi : x, y ∈ Z} . To see this notice that i2 = −1 ∈ Z, and therefore

∞∑
k=0

ak (i)k =
∞∑
l=0

[
a4l (i)

4l + a4l+1 (i)4l+1 + a4l+2 (i)4l+2 + a4l+3 (i)4l+3
]

=
∞∑
l=0

[a4l + a4l+1i− a4l+2 − a4l+3i]

=
∞∑
l=0

[a4l − a4l+2] +

( ∞∑
l=0

[a4l+1 − a4l+3]

)
i

= x+ yi

where

x =
∞∑
l=0

[a4l − a4l+2] and y =
∞∑
l=0

[a4l+1 − a4l+3] .

Example 3.5 (Gaussian Integers mod m). For any m ≥ 2, let

Zm [i] = {x+ yi : x, y ∈ Zm}

with the obvious addition rule and multiplication given by

(x+ yi) (u+ vi) = ux− vy + (uy + vx) i in Zm.

The next proposition shows that this is a commutative ring with identity, 1.

Proposition 3.6. Let R be a commutative ring with identity and let

R [i] := {a+ bi : a, b ∈ R} ∼= {(a, b) : a, b ∈ R} = R2.

Define addition and multiplication of R [i] as one expects by,

(a+ bi) + (c+ di) = (a+ c) + (b+ d) i

and
(a+ bi) · (c+ di) = (ac− bd) + (bc+ ad) i.

Then (R [i] ,+, ·) is a commutative ring with identity.

Proof. This can be checked by brute force. Rather than use brute force lets
give a proof modeled on Example 1.11, i.e. we will observe that we may identify
R [i] with a unital subring of M2 (R) . To do this we take,

i :=
[

0 −1
1 0

]
∈M2 (R) and 1 := I =

[
1 0
0 1

]
∈M2 (R) .

Thus we take,

a+ ib←→ aI + bi =
[
a −b
b a

]
∈M2 (R) .

Since

(aI + bi) + (cI + di) =
[
a −b
b a

]
+
[
c −d
d c

]
=
[
a+ c −b− d
b+ d a+ c

]
= (a+ c) I + (b+ d) i

and

(aI + bi) (cI + di) =
[
a −b
b a

] [
c −d
d c

]
=
[
ac− bd −ad− bc
ad+ bc ac− bd

]
= (ac− bd) I + (bc+ ad) i

we see that

S :=
{[

a −b
b a

]
= aI + bi : a, b ∈ R

}
is indeed a unital sub-ring of M2 (R) . Moreover, the multiplication rules on S
and R [i] agree under the identification; a + ib ←→ aI + bi. Therefore we may
conclude that (R [i] ,+, ·) satisfies the properties of a ring.
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3.3 Appendix: R [S] rings II

You may skip this section on first reading.
Definition 3.7. Suppose that S is a set which is equipped with an associative
binary operation, ·, which has a unique unit denoted by e. (We do not assume
that (S, ·) has inverses. Also suppose that R is a ring, then we let R [S] consist
of the formal sums,

∑
s∈S ass where {as}s∈S ⊂ R is a sequence with finite

support, i.e. |{s ∈ S : as 6= 0}| <∞. We define two binary operations on R [S]
by, ∑

s∈S
ass+

∑
s∈S

bss :=
∑
s∈S

(as + bs) s

and ∑
s∈S

ass ·
∑
s∈S

bss =
∑
s∈S

ass ·
∑
t∈S

btt

=
∑
s,t∈S

asbtst =
∑
u∈S

(∑
st=u

asbt

)
u.

So really we R [S] are those sequences a := {as}s∈S with finite support with the
operations,

(a+ b)s = as + bs and (a · b)s =
∑
uv=s

aubv for all s ∈ S.

Theorem 3.8. The set R [S] equipped with the two binary operations (+, ·) is
a ring.

Proof. Because (R,+) is an abelian group it is easy to check that (R [S] ,+)
is an abelian group as well. Let us now check that · is associative on R [S] . To
this end, let a, b, c ∈ R [S] , then

[a (bc)]s =
∑
uv=s

au (bc)v =
∑
uv=s

au

∑
αβ=v

bαcβ


=
∑
uαβ=s

aubαcβ

while

[(ab) c]s =
∑
αβ=s

(ab)α cβ =
∑
αβ=s

∑
uv=α

aubvcβ

=
∑
uvβ=s

aubvcβ =
∑
uαβ=s

aubαcβ = [a (bc)]s

as desired. Secondly,

[a · (b+ c)]s =
∑
uv=s

au (b+ c)v =
∑
uv=s

au (bv + cv)

=
∑
uv=s

aubv +
∑
uv=s

aucv

= [a · b]s + [a · c]s = [a · b+ a · c]s

from which it follows that a · (b+ c) = a · b + a · c. Similarly one shows that
(b+ c) · a = b · a+ c · a.

Lastly if S has an identity, e, and es := 1s=e ∈ R, then

[a · e]s =
∑
uv=s

auev = as

from which it follows that e is the identity in R [S] .

Example 3.9 (Polynomial rings). Let x be a formal symbol and let S :={
xk : k = 0, 1, 2 . . .

}
with xkxl := xk+l being the binary operation of S. No-

tice that x0 is the identity in S under this multiplication rule. Then for any
ring R, we have

R [S] =

{
p (x) :=

n∑
k=0

pkx
k : pk ∈ R and n ∈ N

}
.

The multiplication rule is given by

p (x) q (x) =
∞∑
k=0

 k∑
j=0

pjqk−j

xk

which is the usual formula for multiplication of polynomials. In this case it is
customary to write R [x] rather than R [S] .

This example has natural generalization to multiple indeterminants as fol-
lows.

Example 3.10. Suppose that x = (x1, . . . , xd) are d indeterminants and k =
(k1, . . . , kd) are multi-indices. Then we let

S :=
{
xk := xk11 . . . xkd

d : k ∈ Nd
}

with multiplication law given by

xkxk
′

:= xk+k
′
.
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Then

R [S] =

{
p (x) :=

∑
k

pkx
k : pk ∈ R with pk = 0 a.a.

}
.

We again have the multiplication rule,

p (x) q (x) =
∑
k

∑
j≤k

pjqk−j

xk.

As in the previous example, it is customary to write R [x1, . . . , xd] for R [S] .

In the next example we wee that the multiplication operation on S need not
be commutative.

Example 3.11 (Group Rings). In this example we take S = G where G is a
group which need not be commutative. Let R be a ring and set,

R [G] := {a : G→ R| |{g :∈ G} : a (g) 6= 0| <∞} .

We will identify a ∈ R [G] with the formal sum,

a :=
∑
g∈G

a (g) g.

We define (a+ b) (g) := a (g) + b (g) and

a · b =

∑
g∈G

a (g) g

(∑
k∈G

b (k) k

)
=
∑
g,k∈G

a (g) b (k) gk

=
∑
h∈G

∑
gk=h

a (g) b (k)

h =
∑
h∈G

∑
g∈G

a (g) b
(
g−1h

)h.

So formally we define,

(a · b) (h) :=
∑
g∈G

a (g) b
(
g−1h

)
=
∑
g∈G

a (hg) b
(
g−1

)
=
∑
g∈G

a
(
hg−1

)
b (g)

=
∑
gk=h

a (g) b (k) .

We now claim that R is a ring which is non – commutative when G is non-
abelian.

Let us check associativity and distributivity of ·. To this end,

[(a · b) · c] (h) =
∑
gk=h

(a · b) (g) · c (k)

=
∑
gk=h

[∑
uv=g

a (u) · b (v)

]
· c (k)

=
∑
uvk=h

a (u) · b (v) · c (k)

while on the other hand,

[a · (b · c)] (h) =
∑
uy=h

a (u) · (b · c) (y)

=
∑
uy=h

a (u) ·

∑
vk=y

b (v) · c (y)


=
∑
uvk=h

a (u) · (b (v) · c (y))

=
∑
uvk=h

a (u) · b (v) · c (k) .

For distributivity we find,

[(a+ b) · c] (h) =
∑
gk=h

(a+ b) (g) · c (k) =
∑
gk=h

(a (g) + b (g)) · c (k)

=
∑
gk=h

(a (g) · c (k) + b (g) · c (k))

=
∑
gk=h

a (g) · c (k) +
∑
gk=h

b (g) · c (k)

= [a · c+ b · c] (h)

with a similar computation showing c · (a+ b) = c · a+ c · b.

3.4 Units, Zero-Divisors, and Domains

Definition 3.12. Suppose R is a ring with identity. A unit of a ring is an
element a ∈ R such that there exists an element b ∈ R with ab = ba = 1. We
let U (R) ⊂ R denote the units of R.

Page: 20 job: 103bs macro: svmonob.cls date/time: 2-Apr-2009/8:32



3.5 Fields 21

Example 3.13. In M2(R), the units in this ring are exactly the elements in
GL(2,R), i.e.

U (M2 (R)) = GL(2,R) = {A ∈M2 (R) : detA 6= 0} .

If you look back at last quarters notes you will see that we have already
proved the following theorem. I will repeat the proof here for completeness.

Theorem 3.14 (The groups, U (m)). For any m ≥ 2, U (m)For m ≥ 2,

U (Zm) = U (m) = {a ∈ {1, 2, . . . ,m− 1} : gcd (a,m) = 1} .

Proof. If a ∈ U (Zm) , there there exists r ∈ Zm such that 1 = r · a =
ramodm. Equivalently put, m| (ra− 1) , i.e. there exists t such that ra − 1 =
tm. Since 1 = ra− tm it follows that gcd (a,m) = 1, i.e. that a ∈ U (m) .

Conversely, if a ∈ U (m) ⇐⇒ gcd (a,m) = 1 which we know implies there
exists s, t ∈ Z such that sa + tm = 1. Taking this equation modm and letting
b := smodm ∈ Zm, we learn that b · a = 1 in Zm, i.e. a ∈ U (Zm) .

Example 3.15. In R, the units are exactly the elements in R× := R \ {0} that
is U (R) = R×.

Definition 3.16 (Divisors). Let R be a ring. We say that for elements a, b ∈
R that a divides b if there exists an element c such that ac = b.

Note that if R = Z then this is the usual notion of whether one integer
evenly divides another, e.g., 2 divides 6 and 2 doesn’t divide 5.

Definition 3.17 (Zero divisors). A nonzero element a ∈ R is called a zero
divisor if there exists another nonzero element b ∈ R such that ab = 0, i.e. a
divides 0 in a nontrivial way. (The trivial way for a|0 is that 0 = a · 0.)

Example 3.18. The most familiar rings, Z, Q, R, and C have no zero-divisors.
In these number systems, it is a familiar fact that ab = 0 implies either a = 0
or b = 0.

Example 3.19. 2 · 3 = 0 in Z6, so that both 2 and 3 are zero divisors in Z6.

Example 3.20. Consider Zm for some m ≥ 2. If m is not prime, then we can
find 0 < a < m, 0 < b < m such that ab = m. Then ab = 0 modm, so ab = 0 in
Zm but a 6= 0 and b 6= 0 in Zm. So in this case Zm has zero divisors (at least
two such). If m is prime, then picking a, b ∈ {1, 2, . . . ,m − 1} if ab = 0 in Zm
this means m divides ab. Since m is prime, m divides a or m divides b. So either
a = 0 or b = 0 in Zm. So Zm has no zero divisors.

Example 3.21. In M2(R), it is easy to find zero divisors. For example[
0 a
0 0

] [
0 b
0 0

]
=
[
0 0
0 0

]
(saw this first time)

Example 3.22. If R is the direct product of at least 2 rings, R has zero divisors.
If R = Z⊕ Z, then (0, 1)(1, 0) = (0, 0).

Definition 3.23 (Integral domain). A (commutative) ring R with no zero
divisors is called an integral domain (or just domain).

Example 3.24. By above, Z, Q, R, C, and Zp for prime p are integral domains.
Another integral domain is the polynomial ring R[x]. The ring Zm is not an
integral domain for m not prime.

Domains behave more nicely than arbitrary rings and for a lot of the quarter
we will concentrate exclusively on domains. But in a lot of ring theory it is very
important to consider rings that are not necessarily domains like matrix rings.

Theorem 3.25 (Cancellation). If R is an integral domain and ab = ac with
a 6= 0, then b = c. Conversely if R is a commutative ring with identity satisfying
this cancellation property then R has no zero divisors and hence is an integral
domain.

Proof. If ab = ac, then a(b − c) = 0. Hence if a 6= 0 and R is an integral
domain, then b− c = 0, i.e. b = c.

Conversely, if R satisfies cancellation and ab = 0. If a 6= 0, then ab = a · 0
and so by cancellation, b = 0. This shows that R has no zero divisors.

3.5 Fields

If we add one more restriction to a domain we get a familiar class of objects
called fields.

Definition 3.26 (Fields). A ring R is a field if R is a commutative ring with
identity and U(R) = R \ {0}, that is, every non-zero element of R is a unit, in
other words has a multiplicative inverse.

Notice that a field R is a domain. To see this suppose that R is a field and
xy = 0 in R for some x, y. If x 6= 0. Then x has a multiplicative inverse x−1, so

x−1(xy) = x−10 = 0⇒ y = 0

so either x = 0 or y = 0.
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Example 3.27. Q and R are fields, which just means that inverses of non-zero
elements exists in these rings.

Example 3.28. Z is an integral domain that is not a field. For example 2 6= 0
has no multiplicative inverse. The inverse to 2 should be 1

2 which exists in Q
but not in Z.

Example 3.29. Lets check that C is a field. Given 0 6= a + bi ∈ C, a, b ∈ R,
i =
√
−1, we need to find (a+ ib)−1 ∈ C. Working formally; we expect,

(a+ ib)−1 =
1

a+ bi
=

1
a+ bi

a− bi
a− bi

a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i ∈ C,

which makes sense if N (a+ ib) := a2 + b2 6= 0, i.e. a+ ib 6= 0. A simple direct
check show that this formula indeed gives an inverse to a+ ib;

(a+ ib)
[

a

a2 + b2
− b

a2 + b2
i

]
=

1
a2 + b2

(a+ ib) (a− ib) =
1

a2 + b2
(
a2 + b2

)
= 1.

So if a+ ib 6= 0 we have shown

(a+ bi)−1 =
a

a2 + b2
− b

a2 + b2
i.

Example 3.30. What other fields have we seen? What about the Zm’s? For m
composite Zm is not even a domain. But for p prime, we know that U(Zp) =
U (p) = {1, 2, . . . , p−1} = Zp \{0}. So Zp is a field for p prime. When thinking
of it as a field, it is sometimes written Fp.

In fact, there is another way we could have seen that Zp is a field, using the
following useful lemma.

Lemma 3.31. Let R be a commutative domain with identity, such that R has
finitely many elements. Then R is a field.

Proof. Let a ∈ R with a 6= 0. We need to find a multiplicative inverse for
a. Consider a, a2, a3, . . . . Since R is finite, the elements on this list are not all
distinct. Suppose then that ai = aj for some i > j ≥ 1. Then ajai−j = aj · 1.
By cancellation, since R is a domain, ai−j = 1. Then ai−j−1 is an inverse for a.

Note that (i− j−1 ≥ 0, so ai−j−1 makes sense. Once we prove the theorem,
an makes sense for all n ∈ Z, but in generally negative powers don’t always make
sense in a ring. Here is another very interesting example of a field, different from
the other examples we’ve written down so far.

Example 3.32. I claim that R := Z3 [i] = Z3 + iZ3 is a field where we use the
multiplication rule,

(a+ ib) (c+ id) = (ac− bd) + i (bc+ ad) .

The main point to showing this is a field beyond the tedious check that R is a
ring is to show (a+ ib)−1 exists in R if whenever a+ ib 6= 0. Working formally
for the moment we should have,

1
a+ ib

=
a− ib
a2 + b2

.

This suggest that
(a+ ib)−1 =

(
a2 + b2

)−1
(a− ib) .

In order for the latter expression to make sense we need to know that a2+b2 6= 0
in Z3 if (a, b) 6= 0 which we can check by brute force;

a 0 0 0 1 1 1 2 2 2
b 0 1 2 0 1 2 0 1 2
N (a+ ib)
= a2 + b2

0 1 1 1 2 2 1 2 2
.
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