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Lecture 1 (1/5/2009)

Notation 1.1 Introduce N := {0, 1, 2, . . . } , Z, Q, R, and C. Also let Z+ :=
N \ {0} .

• Set notations.
• Recalled basic notions of a function being one to one, onto, and invertible.

Think of functions in terms of a bunch of arrows from the domain set to the
range set. To find the inverse function you should reverse the arrows.

• Some example of groups without the definition of a group:

1. GL2 (R) =
{
g :=

[
a b
c d

]
: det g = ad− bc 6= 0

}
.

2. Vector space with “group” operation being addition.
3. The permutation group of invertible functions on a set S like S =
{1, 2, . . . , n} .

1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) Every non-empty subset, S, of N
contains a smallest element.

We say that a subset S ⊂ Z is bounded below if S ⊂ [k,∞) for some
k ∈ Z and bounded above if S ⊂ (−∞, k] for some k ∈ Z.

Remark 1.3 (Well ordering variations). The well ordering principle may also be
stated equivalently as:

1. any subset S ⊂ Z which is bounded from below contains a smallest element
or

2. any subset S ⊂ Z which is bounded from above contains a largest element.

To see this, suppose that S ⊂ [k,∞) and then apply the well ordering
principle to S − k to find a smallest element, n ∈ S − k. That is n ∈ S − k and
n ≤ s − k for all s ∈ S. Thus it follows that n + k ∈ S and n + k ≤ s for all
s ∈ S so that n+ k is the desired smallest element in S.

For the second equivalence, suppose that S ⊂ (−∞, k] in which case −S ⊂
[−k,∞) and therefore there exist a smallest element n ∈ −S, i.e. n ≤ −s for all
s ∈ S. From this we learn that −n ∈ S and −n ≥ s for all s ∈ S so that −n is
the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let a ∈ Z and b ∈ Z+, then there exists
unique integers q ∈ Z and r ∈ N with r < b such that

a = bq + r.

(For example,

5
2

|12
10
2

so that 12 = 2 · 5 + 2.)

Proof. Let
S := {k ∈ Z : a− bk ≥ 0}

which is bounded from above. Therefore we may define,

q := max {k : a− bk ≥ 0} .

As q is the largest element of S we must have,

r := a− bq ≥ 0 and a− b (q + 1) < 0.

The second inequality is equivalent to r − b < 0 which is equivalent to r < b.
This completes the existence proof.

To prove uniqueness, suppose that a = bq′+r′ in which case, bq′+r′ = bq+r
and hence,

b > |r′ − r| = |b (q − q′)| = b |q − q′| . (1.1)

Since |q − q′| ≥ 1 if q 6= q′, the only way Eq. (1.1) can hold is if q = q′ and
r = r′.

Axiom 1.5 (Strong form of mathematical induction) Suppose that S ⊂
Z is a non-empty set containing an element a with the property that; if [a, n)∩
Z ⊂ S then n ∈ Z, then [a,∞) ∩ Z ⊂ S.

Axiom 1.6 (Weak form of mathematical induction) Suppose that S ⊂
Z is a non-empty set containing an element a with the property that for ev-
ery n ∈ S with n ≥ a, n+ 1 ∈ S, then [a,∞) ∩ Z ⊂ S.



Remark 1.7. In Axioms 1.5 and 1.6 it suffices to assume that a = 0. For if a 6= 0
we may replace S by S − a := {s− a : s ∈ S} . Then applying the axioms with
a = 0 to S − a shows that [0,∞) ∩ Z ⊂ S − a and therefore,

[a,∞) ∩ Z =[0,∞) ∩ Z + a ⊂ S.

Theorem 1.8 (Equivalence of Axioms). Axioms 1.2 – 1.6 are equivalent.
(Only partially covered in class.)

Proof. We will prove 1.2⇐⇒ 1.5 ⇐⇒ 1.6 =⇒1.2.

1.2=⇒1.5 Suppose 0 ∈ S ⊂ Z satisfies the assumption in Axiom 1.5. If N0 is not
contained in S, then N0 \ S is a non empty subset of N and therefore has a
smallest element, n. It then follows by the definition of n that [0, n)∩Z ⊂ S
and therefore by the assumed property on S, n ∈ S. This is a contradiction
since n can not be in both S and N0 \ S.

1.5 =⇒1.2 Suppose that S ⊂ N does not have a smallest element and let
Q := N\S. Then 0 ∈ Q since otherwise 0 ∈ S would be the minimal element
of S. Moreover if [1, n) ∩ Z ⊂ Q, then n ∈ Q for otherwise n would be a
minimal element of S. Hence by the strong form of mathematical induction,
it follows that Q = N and hence that S = ∅.

1.5 =⇒1.6 Any set, S ⊂ Z satisfying the assumption in Axiom 1.6 will also
satisfy the assumption in Axiom 1.5 and therefore by Axiom 1.5 we will
have [a,∞) ∩ Z ⊂ S.

1.6 =⇒1.5 Suppose that 0 ∈ S ⊂ Z satisfies the assumptions in Axiom 1.5. Let
Q := {n ∈ N : [0, n) ⊂ S} . By assumption, 0 ∈ Q since 0 ∈ S. Moreover, if
n ∈ Q, then [0, n) ⊂ S by definition of Q and hence n + 1 ∈ Q. Thus Q
satisfies the restrictions on the set, S, in Axiom 1.6 and therefore Q = N.
So if n ∈ N, then n + 1 ∈ N = Q and thus n ∈ [0, n + 1) ⊂ S which shows
that N ⊂ S. As 0 ∈ S by assumption, it follows that N0 ⊂ S as desired.
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Lecture 2 (1/7/2009)

Definition 2.1. Given a, b ∈ Z with a 6= 0 we say that a divides b or a is a
divisor of b (write a|b) provided b = ak for some k ∈ Z.

Definition 2.2. Given a, b ∈ Z with |a|+ |b| > 0, we let

gcd (a, b) := max {m : m|a and m|b}

be the greatest common divisor of a and b. (We do not define gcd (0, 0) and
we have gcd (0, b) = |b| for all b ∈ Z\ {0} .) If gcd (a, b) = 1, we say that a and
b are relatively prime.

Remark 2.3. Notice that gcd (a, b) = gcd (|a| , |b|) ≥ 0 and gcd (a, 0) = 0 for all
a 6= 0.

Lemma 2.4. Suppose that a, b ∈ Z with b 6= 0. Then gcd (a+ kb, b) = gcd (a, b)
for all k ∈ Z.

Proof. Let Sk denote the set of common divisors of a+ kb and b. If d ∈ Sk,
then d|b and d| (a+ kb) and therefore d|a so that d ∈ S0. Conversely if d ∈ S0,
then d|b and d|a and therefore d|b and d| (a+ kb) , i.e. d ∈ Sk. This shows that
Sk = S0, i.e. a + kb and b and a and b have the same common divisors and
hence the same greatest common divisors.

This lemma has a very useful corollary.

Lemma 2.5 (Euclidean Algorithm). Suppose that a, b are positive integers
with a < b and let b = ka + r with 0 ≤ r < a by the division algorithm. Then
gcd (a, b) = gcd (a, r) and in particular if r = 0, we have

gcd (a, b) = gcd (a, 0) = a.

Example 2.6. Suppose that a = 15 = 3 · 5 and b = 28 = 22 · 7. In this case it is
easy to see that gcd (15, 28) = 1. Nevertheless, lets use Lemma 2.5 repeatedly
as follows;

28 = 1 · 15 + 13 so gcd (15, 28) = gcd (13, 15) , (2.1)
15 = 1 · 13 + 2 so gcd (13, 15) = gcd (2, 13) , (2.2)
13 = 6 · 2 + 1 so G gcd (2, 13) = gcd (1, 2) , (2.3)
2 = 2 · 1 + 0 so gcd (1, 2) = gcd (0, 1) = 1. (2.4)

Moreover making use of Eqs. ( 2.1–2.3) in reverse order we learn that,

1 = 13− 6 · 2
= 13− 6 · (15− 1 · 13) = 7 · 13− 6 · 15
= 7 · (28− 1 · 15)− 6 · 15 = 7 · 28− 13 · 15.

Thus we have also shown that

1 = s · 28 + t · 15 where s = 7 and t = −13.

The choices for s and t used above are certainly not unique. For example we
have,

0 = 15 · 28− 28 · 15

which added to
1 = 7 · 28− 13 · 15

implies,

1 = (7 + 15) · 28− (13 + 28) · 15
= 22 · 28− 41 · 15

as well.

Example 2.7. Suppose that a = 40 = 23 · 5 and b = 52 = 22 · 13. In this case we
have gcd (40, 52) = 4. Working as above we find,

52 = 1 · 40 + 12
40 = 3 · 12 + 4
12 = 3 · 4 + 0

so that we again see gcd (40, 52) = 4. Moreover,

4 = 40− 3 · 12 = 40− 3 · (52− 1 · 40) = 4 · 40− 3 · 52.

So again we have shown gcd (a, b) = sa+ tb for some s, t ∈ Z, in this case s = 4
and t = 3.
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Example 2.8. Suppose that a = 333 = 32 · 37 and b = 459 = 33 · 17 so that
gcd (333, 459) = 32 = 9. Repeated use of Lemma 2.5 gives,

459 = 1 · 333 + 126 so gcd (333, 459) = gcd (126, 333) , (2.5)
333 = 2 · 126 + 81 so gcd (126, 333) = gcd (81, 126) , (2.6)
126 = 81 + 45 so gcd (81, 126) = gcd (45, 81) , (2.7)
81 = 45 + 36 so gcd (45, 81) = gcd (36, 45) , (2.8)
45 = 36 + 9 so gcd (36, 45) = gcd (9, 36) , and (2.9)
36 = 4 · 9 + 0 so gcd (9, 36) = gcd (0, 9) = 9. (2.10)

Thus we have shown that

gcd (333, 459) = 9.

We can even say more. From Eq. (2.10) we have, 9 = 45 − 36 and then from
Eq. (2.10),

9 = 45− 36 = 45− (81− 45) = 2 · 45− 81.

Continuing up the chain this way we learn,

9 = 2 · (126− 81)− 81 = 2 · 126− 3 · 81
= 2 · 126− 3 · (333− 2 · 126) = 8 · 126− 3 · 333
= 8 · (459− 1 · 333)− 3 · 333 = 8 · 459− 11 · 333

so that
9 = 8 · 459− 11 · 333.

The methods of the previous two examples can be used to prove Theorem
2.9 below. However, we will two different variants of the proof.

Theorem 2.9. If a, b ∈ Z\ {0}, then there exists (not unique) numbers, s, t ∈ Z
such that

gcd (a, b) = sa+ tb. (2.11)

Moreover if m 6= 0 is any common divisor of both a and b then m| gcd (a, b) .

Proof. If m is any common divisor of a and b then m is also a divisor of
sa + tb for any s, t ∈ Z. (In particular this proves the second assertion given
the truth of Eq. (2.11).) In particular, gcd (a, b) is a divisor of sa + tb for all
s, t ∈ Z. Let S := {sa+ tb : s, t ∈ Z} and then define

d := min (S ∩ Z+) = sa+ tb for some s, t ∈ Z. (2.12)

By what we have just said if follows that gcd (a, b) |d and in particular d ≥
gcd (a, b) . If we can snow d is a common divisor of a and b we must then have
d = gcd (a, b) . However, using the division algorithm,

a = kd+ r with 0 ≤ r < d. (2.13)

As
r = a− kd = a− k (sa+ tb) = (1− ks) a− ktb ∈ S ∩ N,

if r were greater than 0 then r ≥ d (from the definition of d in Eq. (2.12) which
would contradict Eq. (2.13). Hence it follows that r = 0 and d|a. Similarly, one
shows that d|b.

Lemma 2.10 (Euclid’s Lemma). If gcd (c, a) = 1, i.e. c and a are relatively
prime, and c|ab then c|b.

Proof. We know that there exists s, t ∈ Z such that sa+tc = 1. Multiplying
this equation by b implies,

sab+ tcb = b.

Since c|ab and c|cb, it follows from this equation that c|b.

Corollary 2.11. Suppose that a, b ∈ Z such that there exists s, t ∈ Z with
1 = sa+ tb. Then a and b are relatively prime, i.e. gcd (a, b) = 1.

Proof. If m > 0 is a divisor of a and b, then m| (sa+ tb) , i.e. m|1 which
implies m = 1. Thus the only positive common divisor of a and b is 1 and hence
gcd (a, b) = 1.

2.1 Ideals (Not covered in class.)

Definition 2.12. As non-empty subset S ⊂ Z is called an ideal if S is closed
under addition (i.e. S+S ⊂ S) and under multiplication by any element of Z,
i.e. Z · S ⊂ S.

Example 2.13. For any n ∈ Z, let

(n) := Z · n = nZ := {kn : k ∈ Z} .

I is easily checked that (n) is an ideal. The next theorem states that this is a
listing of all the ideals of Z.

Theorem 2.14 (Ideals of Z). If S ⊂ Z is an ideal then S = (n) for some
n ∈ Z. Moreover either S = {0} in which case n = 0 for S 6= {0} in which case
n = min (S ∩ Z+) .

Proof. If S = {0} we may take n = 0. So we may assume that S contains
a non-zero element a. By assumption that Z · S ⊂ S it follows that −a ∈ S as
well and therefore S∩Z+ is not empty as either a or −a is positive. By the well
ordering principle, we may define n as, n := minS ∩ Z+.
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Since Z · n ⊂ Z · S ⊂ S, it follows that (n) ⊂ S. Conversely, suppose
that s ∈ S ∩ Z+. By the division algorithm, s = kn + r where k ∈ N and
0 ≤ r < n. It now follows that r = s− kn ∈ S. If r > 0, we would have to have
r ≥ n = minS ∩ Z+ and hence we see that r = 0. This shows that s = kn for
some k ∈ N and therefore s ∈ (n) . If s ∈ S is negative we apply what we have
just proved to −s to learn that −s ∈ (n) and therefore s ∈ (n) .

Remark 2.15. Notice that a|b iff b = ak for some k ∈ Z which happens iff
b ∈ (a) .

Proof. Second Proof of Theorem 2.9. Let S := {sa+ tb : s, t ∈ Z} .
One easily checks that S ⊂ Z is an ideal and therefore S = (d) where d :=
minS ∩ Z+. Notice that d = sa + tb for some s, t ∈ Z as d ∈ S. We now claim
that d = gcd (a, b) . To prove this we must show that d is a divisor of a and b
and that it is the maximal such divisor.

Taking s = 1 and t = 0 or s = 0 and t = 1 we learn that both a, b ∈ S = (d) ,
i.e. d|a and d|b. If m ∈ Z+ and m|a and m|b, then

d

m
= s

a

m
+ t

b

m
∈ Z

from which it follows that so that m|d. This shows that d = gcd (a, b) and also
proves the last assertion of the theorem.

Alternate proof of last statement. If m|a and m|b there exists k, l ∈ Z
such that a = km and b = lm and therefore,

d = sa+ tb = (sk + tl)m

which again shows that m|d.

Remark 2.16. As a second proof of Corollary 2.11, if 1 ∈ S (where S is as in
the second proof of Theorem 2.9)), then gcd (a, b) = min (S ∩ Z+) = 1.
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Lecture 3 (1/9/2009)

3.1 Prime Numbers

Definition 3.1. A number, p ∈ Z, is prime iff p ≥ 2 and p has no divisors
other than 1 and p. Alternatively put, p ≥ 2 and gcd (a, p) is either 1 or p for
all a ∈ Z.

Example 3.2. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . .

Lemma 3.3 (Euclid’s Lemma again). Suppose that p is a prime number
and p|ab for some a, b ∈ Z then p|a or p|b.

Proof. We know that gcd (a, p) = 1 or gcd (a, p) = p. In the latter case
p|a and we are done. In the former case we may apply Euclid’s Lemma 2.10 to
conclude that p|b and so again we are done.

Theorem 3.4 (The fundamental theorem of arithmetic). Every n ∈ Z
with n ≥ 2 is a prime or a product of primes. The product is unique except for
the order of the primes appearing the product. Thus if n ≥ 2 and n = p1 . . . pn =
q1 . . . qm where the p’s and q’s are prime, then m = n and after renumbering
the q’s we have pi = qi.

Proof. Existence: This clearly holds for n = 2. Now suppose for every
2 ≤ k ≤ n may be written as a product of primes. Then either n+ 1 is prime in
which case we are done or n+ 1 = a · b with 1 < a, b < n+ 1. By the induction
hypothesis, we know that both a and b are a product of primes and therefore
so is n+ 1. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in 0.#25.
Here is the solution. Observe that p1|q1 . . . qm. If p1 does not divide q1 then
gcd (p1, q1) = 1 and therefore by Euclid’s Lemma 2.10, p1| (q2 . . . qm) . It now
follows by induction that p1 must divide one of the qi, by relabeling we may
assume that q1 = p1. The result now follows by induction on n ∨m.

Definition 3.5. The least common multiple of two non-zero integers, a, b, is the
smallest positive number which is both a multiple of a and b and this number
will be denoted by lcm (a, b) . Notice that m = min ((a) ∩ (b) ∩ Z+) .

Example 3.6. Suppose that a = 12 = 22·3 and b = 15 = 3·5. Then gcd (12, 15) =
3 while

lcm (12, 15) =
(
22 · 3

)
· 5 = 22 · (3 · 5) =

(
22 · 3 · 5

)
= 60.

Observe that

gcd (12, 15) · lcm (12, 15) = 3 ·
(
22 · 3 · 5

)
=
(
22 · 3

)
· (3 · 5) = 12 · 15.

This is a special case of Chapter 0.#12 on p. 23 which can be proved by similar
considerations. In general if

a = pn1
1 · · · · · p

nk
k and b = pm1

1 . . . pmkk with nj ,ml ∈ N

then

gcd (a, b) = pn1∧m1
1 · · · · · pnk∧mkk and lcm (a, b) = pn1∨m1

1 · · · · · pnk∨mkk .

Therefore,

gcd (a, b) · lcm (a, b) = pn1∧m1+n1∨m1
1 · · · · · pnk∧mk+nk∨mk

k

= pn1+m1
1 · · · · · pnk+mk

k = a · b.

3.2 Modular Arithmetic

Definition 3.7. Let n be a positive integer and let a = qan+ra with 0 ≤ ra < n.
Then we define amodn := ra. (Sometimes we might write a = ra modn – but
I will try to stick with the first usage.)

Lemma 3.8. Let n ∈ Z+ and a, b, k ∈ Z. Then:

1. (a+ kn) modn = amodn.
2. (a+ b) modn = (amodn+ bmodn) modn.
3. (a · b) modn = ((amodn) · (bmodn)) modn.

Proof. Let ra = amodn, rb = bmodn and qa, qb ∈ Z such that a = qan+ra
and b = qbn+ rb.
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1. Then a+ kn = (qa + k)n+ ra and therefore,

(a+ kn) modn = ra = amodn.

2. a+ b = (qa + qb)n+ ra + rb and hence by item 1 with k = qa + qb we find,

(a+ b) modn = (ra + rb) modn. = (amodn+ bmodn) modn.

3. For the last assertion,

a · b = [qan+ ra] · [qbn+ rb] = (qaqbn+ raqb + rbqa)n+ ra · rb

and so again by item 1. with k = (qaqbn+ raqb + rbqa) we have,

(a · b) modn = (ra · rb) modn = ((amodn) · (bmodn)) modn.

Example 3.9. Take n = 4, a = 18 and b = 7. Then 18 mod 4 = 2 and 7 mod 4 =
3. On one hand,

(18 + 7) mod 4 = 25 mod 4 = 1 while on the other,
(2 + 3) mod 4 = 1.

Similarly, 18 · 7 = 126 = 4 · 31 + 2 so that

(18 · 7) mod 4 = 2 while
(2 · 3) mod 4 = 6 mod 4 = 2.

Remark 3.10 (Error Detection). Companies often add extra digits to identi-
fication numbers for the purpose of detecting forgery or errors. For example
the United Parcel Service uses a mod 7 check digit. Hence if the identification
number were n = 354691332 one would append

nmod 7 = 354691332 mod 7 = 2 to the number to get
354691332 2 (say).

See the book for more on this method and other more elaborate check digit
schemes. Note,

354691332 = 50 670 190 · 7 + 2.

Remark 3.11. Suppose that a, n ∈ Z+ and b ∈ Z, then it is easy to show (you
prove)

(ab) mod (an) = a · (bmodn) .

Example 3.12 (Computing mod 10). We have,

123456 mod 10 = 6
123456 mod 100 = 56

123456 mod 1000 = 456
123456 mod 10000 = 3456

123456 mod 100000 = 23456
123456 mod 1000000 = 123456

so that
an . . . a2 a1 mod 10k = ak . . . a2 a1 for all k ≤ n.

Solution to Exercise (0.52). As an example, here is a solution to Problem

0.52 of the book which states that

k times︷ ︸︸ ︷
111 . . . 1 is not the square of an integer except

when k = 1.
As 11 is prime we may assume that k ≥ 3. By Example 3.12,

111 . . . 1 mod 10 = 1 and 111 . . . 1 mod 100 = 11. Hence 1111 . . . 1 = n2

for some integer n, we must have

n2 mod 10 = 1 and
(
n2 − 1

)
mod 100 = 10.

The first condition implies that nmod 10 = 1 or 9 as 12 = 1 and 92 mod 10 =
81 mod 10 = 1. In the first case we have, n = k · 10 + 1 and therefore we must
require,

10 =
(
n2 − 1

)
mod 100 =

[
(k · 10 + 1)2 − 1

]
mod 100 =

(
k2 · 100 + 2k · 10

)
mod 100

= (2k · 10) mod 100 = 10 · (2kmod 10)

which implies 1 = (2kmod 10) which is impossible since 2kmod 10 is even.
For the second case we must have,

10 =
(
n2 − 1

)
mod 100 mod 100 =

[
(k · 10 + 9)2 − 1

]
mod 100

=
(
k2 · 100 + 18k · 10 + 81− 1

)
mod 100

= ((10 + 8) k · 10 + 8 · 10) mod 100
= (8 (k + 1) · 10) mod 100
= 10 · 8kmod 10

which implies which 1 = (8kmod 10) which again is impossible since 8kmod 10
is even.
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Solution to Exercise (0.52 Second and better solution). Notice that
111 . . . 11 = 111 . . . 00 + 11 and therefore,

111 . . . 11 mod 4 = 11 mod 4 = 3.

On the other hand, if 111 . . . 11 = n2 we must have,

(nmod 4)2 mod 4 = 3.

There are only four possibilities for r := nmod 4, namely r = 0, 1, 2, 3 and these
are not allowed since 02 mod 4 = 0 6= 3, 12 mod 4 = 1 6= 3, 22 mod 4 = 0 6= 3,
and 32 mod 4 = 1 6= 3.

3.3 Equivalence Relations

Definition 3.13. A equivalence relation on a set S is a subset, R ⊂ S × S
with the following properties:

1. R is reflexive: (a, a) ∈ R for all a ∈ S
2. R is symmetric: If (a, b) ∈ R then (b, a) ∈ R.
3. R is transitive: If (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

We will usually write a ∼ b to mean that (a, b) ∈ R and pronounce this as a
is equivalent to b. With this notation we are assuming a ∼ a, a ∼ b =⇒ b ∼ a
and a ∼ b and b ∼ c =⇒ a ∼ c. (Note well: the book write aRb rather than
a ∼ b.)

Example 3.14. If S = {1, 2, 3, 4, 5} then:

1. R = {1, 2, 3}2 ∪ {4, 5}2 is an equivalence relation.
2. R = {(1, 1) , (2, 2) , (3, 3) , (4, 4) , (5, 5) , (1, 2) , (2, 1) , (2, 3) , (3, 2)} is not an

equivalence relation. For example, 1 ∼ 2 and 2 ∼ 3 but 1 is not equivalent
to 3, so R is not transitive.

Example 3.15. Let n ∈ Z+, S = Z and say a ∼ b iff amodn = bmodn. This is
an equivalence relation. For example, when s = 2 we have a ∼ b iff both a and
b are odd or even. So in this case R = {odd}2 ∪ {even}2 .

Example 3.16. Let S = R and say a ∼ b iff a ≥ b. Again not symmetric so is
not an equivalence relation.

Definition 3.17. A partition of a set S is a decomposition, {Sα}α∈I , by
disjoint sets, so Sα is a non-empty subset of S such that S = ∪α∈ISα and
Sα ∩ Sβ = ∅ if α 6= β.

Example 3.18. If {Sα}α∈I is a partition of S, then R = ∪α∈IS2
α is an equivalence

relation. The next theorem states this is the general type of equivalence relation.
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Lecture 4 (1/12/2009)

Theorem 4.1. Let R or ∼ be an equivalence relation on S and for each a ∈ S,
let

[a] := {x ∈ S : a ∼ x}

be the equivalence class of a.. Then S is partitioned by its distinct equivalence
classes.

Proof. Because ∼ is reflexive, a ∈ [a] for all a and therefore every element
a ∈ S is a member of its own equivalence class. Thus to finish the proof we must
show that distinct equivalence classes are disjoint. To this end we will show that
if [a] ∩ [b] 6= ∅ then in fact [a] = [b] . So suppose that c ∈ [a] ∩ [b] and x ∈ [a] .
Then we know that a ∼ c, b ∼ c and a ∼ x. By reflexivity and transitivity of ∼
we then have,

x ∼ a ∼ c ∼ b, and hence b ∼ x,

which shows that x ∈ [b] . Thus we have shown [a] ⊂ [b] . Similarly it follows
that [b] ⊂ [a] .

Exercise 4.1. Suppose that S = Z with a ∼ b iff amodn = bmodn. Identify
the equivalence classes of ∼ . Answer,

{[0] , [1] , . . . , [n− 1]}

where
[i] = i+ nZ = {i+ ns : s ∈ Z} .

Exercise 4.2. Suppose that S = R2 with a = (a1, a2) ∼ b = (b1, b2) iff |a| =
|b| where |a| := a2

1 +a2
2. Show that ∼ is an equivalence relation and identify the

equivalence classes of ∼ . Answer, the equivalence classes consists of concentric
circles centered about the origin (0, 0) ∈ S.

4.1 Binary Operations and Groups – a first look

Definition 4.2. A binary operation on a set S is a function, ∗ : S×S → S.
We will typically write a ∗ b rather than ∗ (a, b) .

Example 4.3. Here are a number of examples of binary operations.

1. S = Z and ∗ = “ + ”
2. S = {odd integers} and ∗ = “ + ” is not an example of a binary operator

since 3 ∗ 5 = 3 + 5 = 8 /∈ S.
3. S = Z and ∗ =“·”
4. S = R\ {0} and ∗ =“·”
5. S = R\ {0} with ∗ = “\” = “÷ ”.
6. Let S be the set of 2× 2 real (complex) matrices with A ∗B := AB.

Definition 4.4. Let ∗ be a binary operation on a set S. Then;

1. ∗ is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S.
2. e ∈ S is an identity element if e ∗ a = a = a ∗ e for all a ∈ S.
3. Suppose that e ∈ S is an identity element and a ∈ S. We say that b ∈ S is

an inverse to a if b ∗ a = e = a ∗ b.
4. ∗ is commutative if a ∗ b = b ∗ a for all a, b ∈ S.

Definition 4.5 (Group). A group is a triple, (G, ∗, e) where ∗ is an associa-
tive binary operation on a set, G, e ∈ G is an identity element, and each g ∈ G
has an inverse in G. (Typically we will simply denote g ∗ h by gh.)

Definition 4.6 (Commutative Group). A group, (G, e) , is commutative if
gh = hg for all h, g ∈ G.

Example 4.7 ((Z,+)). One easily checks that (Z, ∗ = +) is a commutative
group with e = 0 and the inverse to a ∈ Z is −a. Observe that e∗a = e+a = a
for all a iff e = 0.

Example 4.8. S = Z and ∗ =“·” is an associative, commutative, binary oper-
ation with e = 1 being the identity. Indeed e · a = a for all a ∈ Z implies
e = e · 1 = 1. This is not a group since there are no inverses for any a ∈ Z with
|a| ≥ 2.

Example 4.9 ((R\ {0} , ·)). G = R\ {0} =: R∗, and ∗ =“·” is a commutative
group, e = 1, an inverse to a is 1/a.

Example 4.10. S = R\ {0} with ∗ = “\” = “÷”. In this case ∗ is not associative
since



a ∗ (b ∗ c) = a/ (b/c) =
ac

b
while

(a ∗ b) ∗ c = (a/b) /c =
a

bc
.

It is also not commutative since a/b 6= b/a in general. There is no identity
element e ∈ S. Indeed, e ∗ a = a = a ∗ e, we would imply e = a2 for all a 6= 0
which is impossible, i.e. e = 1 and e = 4 at the same time.

Example 4.11. Let S be the set of 2× 2 real (complex) matrices with A ∗B :=
AB. This is a non-commutative binary operation which is associative and has
an identity, namely

e :=
[

1 0
0 1

]
.

It is however not a group only those A ∈ S with detA 6= 0 admit an inverse.

Example 4.12 (GL2 (R)). Let G := GL2 (R) be the set of 2 × 2 real (complex)

matrices such that detA 6= 0 with A ∗B := AB is a group with e :=
[

1 0
0 1

]
and

the inverse to A being A−1. This group is non-abeliean for example let

A :=
[

0 1
−1 0

]
and B =

[
1 1
0 1

]
,

then

AB =
[

0 1
−1 0

] [
1 1
0 1

]
=
[

0 1
−1 −1

]
while

BA =
[

1 1
0 1

] [
0 1
−1 0

]
=
[
−1 1
−1 0

]
6= AB.

Example 4.13 (SL2 (R)). Let SL2 (R) = {A ∈ GL2 (R) : detA = 1} . This is a
group since det (AB) = detA · detB = 1 if A,B ∈ SL2 (R) .
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5.1 Elementary Properties of Groups

Let (G, ·) be a group.

Lemma 5.1. The identity element in G is unique.

Proof. Suppose that e and e′ both satisfy ea = ae = a and e′a = ae′ = a
for all a ∈ G, then e = e′e = e′.

Lemma 5.2. Left and right cancellation holds. Namely, if ab = ac then b = c
and ba = ca then b = c.

Proof. Let d be an inverse to a. If ab = ac then d (ab) = d (ac) . On the
other hand by associativity,

d (ab) = (da) b = eb = b and similarly, d (ac) = c.

Thus it follows that b = c. The right cancellation is proved similarly.

Example 5.3 (No cross cancellation in general). Let G = GL2 (R) ,

A :=
[

0 1
−1 0

]
, B :=

[
1 1
0 1

]
and C :=

[
1 0
−1 1

]
.

Then

AB =
[

0 1
−1 −1

]
= CA

yet B 6= C. In general, all we can say if AB = CA is that C = ABA−1.

Lemma 5.4. Inverses in G are unique.

Proof. Suppose that b and b′ are both inverses to a, then ba = e = b′a.
Hence by cancellation, it follows that b = b′.

Notation 5.5 If g ∈ G, let g−1 denote the unique inverse to g. (If we are in
an abelian group and using the symbol, “+” for the binary operation we denote
g−1 by −g instead.

Example 5.6. Let G be a group. Because of the associativity law it makes sense
to write a1a2a3 and a1a2a3a4 where ai ∈ G. Indeed, we may either interpret
a1a2a3 as (a1a2) a3 or as a1 (a2a3) which are equal by the associativity law.
While we might interpret a1a2a3a4 as one of the following expressions;

c1 := (a1a2) (a3a4)
c2 := ((a1a2) a3) a4

c3 := (a1 (a2a3)) a4

c4 := a1 ((a2a3) a4)
c5 := a1 (a2 (a3a4)) .

Using the associativity law repeatedly these are all seen to be equal. For exam-
ple,

c1 = (a1a2) (a3a4) = ((a1a2) a3) a4 = c2,

c3 = (a1 (a2a3)) a4 = a1 ((a2a3) a4) = c4

= a1 (a2 (a3a4)) = (a1a2) (a3a4) = c1

and
c5 := a1 (a2 (a3a4)) = (a1a2) (a3a4) = c1.

More generally we have the following proposition.

Proposition 5.7. Suppose that G is a group and g1, g2, . . . , gn ∈ G, then it
makes sense to write g1g2 . . . gn ∈ G which is interpreted to mean: do the pair-
wise multiplications in any of the possible allowed orders without rearranging
the orders of the g’s.

Proof. Sketch. The proof is by induction. Let us begin by defining
{Mn : Gn → G}∞n=2 inductively by M2 (a, b) = ab, M3 (a, b, c) = (ab) c,
and Mn (g1, . . . , gn) := Mn−1 (g1, . . . , gn−1) · gn. We wish to show that
Mn (g1, . . . , gn) may be expressed as one of the products described in the propo-
sition. For the base case, n = 2, there is nothing to prove. Now assume that
the assertion holds for 2 ≤ k ≤ n. Consider an expression for g1 . . . gngn+1. We
now do another induction on the number of parentheses appearing on the right

of this expression, . . . g

k

n

︷ ︸︸ ︷
) . . . ). If k = 0, we have



(brackets involving g1 . . . gn)·gn+1 = Mn (g1, . . . , gn) gn+1 = Mn+1 (g1, . . . , gn+1) ,

wherein we used induction in the first equality and the definition of Mn+1 in the
second. Now suppose the assertion holds for some k ≥ 0 and consider the case
where there are k + 1 parentheses appearing on the right of this expression,

i.e. . . . g

k+1

n

︷ ︸︸ ︷
) . . . ). Using the associativity law for the last bracket on the right

we can transform this expression into one with only k parentheses appearing

on the right. It then follows by the induction hypothesis, that . . . g

k+1

n

︷ ︸︸ ︷
) . . . ) =

Mn+1 (g1, . . . , gn+1) .

Notation 5.8 For n ∈ Z and g ∈ G, let gn :=
n times︷ ︸︸ ︷
g . . . g and g−n :=

n times︷ ︸︸ ︷
g−1 . . . g−1 =(

g−1
)n if n ≥ 1 and g0 := e.

Observe that with this notation that gmgn = gm+n for all m,n ∈ Z. For
example,

g3g−5 = gggg−1g−1g−1g−1g−1 = ggg−1g−1g−1g−1 = gg−1g−1g−1 = g−1g−1 = g−2.

5.2 More Examples of Groups

Example 5.9. Let G be the set of 2 × 2 real (complex) matrices with A ∗ B :=
A + B. This is a group. In fact any vector space under addition is an abelian
group with e = 0 and v−1 = −v.

Example 5.10 (Zn). For any n ≥ 2, G := Zn = {0, 1, 2, . . . , n− 1} with a ∗ b =
(a+ b) modn is a commutative group with e = 0 and the inverse to a ∈ Zn
being n− a. Notice that (n− a+ a) modn = nmodn = 0.

Example 5.11. Suppose that S = {0, 1, 2, . . . , n− 1} with a ∗ b = abmodn. In
this case ∗ is an associative binary operation which is commutative and e = 1
is an identity for S. In general it is not a group since not every element need
have an inverse. Indeed if a, b ∈ S, then a ∗ b = 1 iff 1 = abmodn which we
have seen can happen iff gcd (a, n) = 1 by Lemma 9.8. For example if n = 4,
S = {0, 1, 2, 3} , then

2 ∗ 1 = 2, 2 ∗ 2 = 0, 2 ∗ 0 = 0, and 2 ∗ 3 = 2,

none of which are 1. Thus, 2 is not invertible for this operation. (Of course 0 is
not invertible as well.)
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Theorem 6.1 (The groups, U (n)). For n ≥ 2, let

U (n) := {a ∈ {1, 2, . . . , n− 1} : gcd (a, n) = 1}

and for a, b ∈ U (n) let a ∗ b := (ab) modn. Then (U (n) , ∗) is a group.

Proof. First off, let a ∗ b := abmodn for all a, b ∈ Z. Then if a, b, c ∈ Z we
have

(abc) modn = ((ab) c) modn = ((ab) modn · cmodn) modn
= ((a ∗ b) · cmodn) modn = ((a ∗ b) · c) modn
= (a ∗ b) ∗ c.

Similarly one shows that

(abc) modn = a ∗ (b ∗ c)

and hence ∗ is associative. It should be clear also that ∗ is commutative.
Claim: an element a ∈ {1, 2, . . . , n− 1} is in U (n) iff there exists r ∈

{1, 2, . . . , n− 1} such that r ∗ a = 1.
( =⇒ ) a ∈ U (n) ⇐⇒ gcd (a, n) = 1 ⇐⇒ there exists s, t ∈ Z such that

sa+ tn = 1. Taking this equation modn then shows,

(smodn · a) modn = (smodn · amodn) modn = (sa) modn = 1 modn = 1

and therefore r := smodn ∈ {1, 2, . . . , n− 1} and r ∗ a = 1.
(⇐=) If there exists r ∈ {1, 2, . . . , n− 1} such that 1 = r ∗ a = ramodn,

then n| (ra− 1) , i.e. there exists t such that ra − 1 = kt or 1 = ra − kt from
which it follows that gcd (a, n) = 1, i.e. a ∈ U (n) .

The claim shows that to each element, a ∈ U (n) , there is an inverse, a−1 ∈
U (n) . Finally if a, b ∈ U (n) let k := b−1 ∗ a−1 ∈ U (n) , then

k ∗ (a ∗ b) = b−1 ∗ a−1 ∗ a ∗ b = 1

and so by the claim, a ∗ b ∈ U (n) , i.e. the binary operation is really a binary
operation on U (n) .

Example 6.2 (U (10)). U (10) = {1, 3, 7, 9} with multiplication or Cayley table
given by

a\b 1 3 7 9
1
3
7
9


1 3 7 9
3 9 1 7
7 1 9 3
9 7 3 1


where the element of the (a, b) row indexed by U (10) itself is given by a ∗ b =
abmod 10.

Example 6.3. If p is prime, then U (p) = {1, 2, . . . , p} . For example U (5) =
{1, 2, 3, 4} with Cayley table given by,

a\b 1 2 3 4
1
2
3
4


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

.
Exercise 6.1. Compute 23−1 inside of U (50) .

Solution to Exercise. We use the division algorithm (see below) to show 1 =
6 · 50− 13 · 23. Taking this equation mod 50 shows that 23−1 = (−13) = 37. As
a check we may show directly that (23 · 37) mod 50 = 1.

Here is the division algorithm calculation:

50 = 2 · 23 + 4
23 = 5 · 4 + 3
4 = 3 + 1.

So working backwards we find,

1 = 4− 3 = 4− (23− 5 · 4) = 6 · 4− 23 = 6 · (50− 2 · 23)− 23
= 6 · 50− 13 · 23.



24 6 Lecture 6 (1/16/2009)

6.1 O (2) – reflections and rotations in R2

Definition 6.4 (Sub-group). Let (G, ·) be a group. A non-empty subset, H ⊂
G, is said to be a subgroup of G if H is also a group under the multiplication
law in G. We use the notation, H ≤ G to summarize that H is a subgroup of
G and H < G to summarize that H is a proper subgroup of G.

In this section, we are interested in describing the subgroup of GL2 (R)
which corresponds to reflections and rotations in the plane. We define these
operations now.

As in Figure 6.1 let

Fig. 6.1. The unit vector, u (θ) , at angle θ to the x – axis.

u (θ) :=
[

cos θ
sin θ

]
.

We also let Rα denote rotation by α degrees counter clockwise so that Rαu (θ) =
u (θ + α) as in Figure 6.2. We may represent Rα as a matrix, namely

Fig. 6.2. Rotation by α degrees in the counter clockwise direction.

Rα = [Rαe1|Rαe2] = [Rαu (0) |Rαu (π/2)] = [u (α) |u (α+ π/2)]

=
[

cosα cos (α+ π/2)
sinα sin (α+ π/2)

]
=
[

cosα − sinα
sinα cosα

]
.

We also define reflection, Sα, across the line determined by u (α) as in Figure
6.3 so that Sαu (θ) := u (2α− θ) . We may compute the matrix representing Sα

Fig. 6.3. Computing Sα.

as,

Sα = [Sαe1|Sαe2] = [Sαu (0) |Sαu (π/2)] = [u (2α) |u (2α− π/2)]

=
[

cos 2α cos (2α− π/2)
sin 2α sin (2α− π/2)

]
=
[

cos 2α sin 2α
sin 2α − cos 2α

]
.

Page: 24 job: algebra macro: svmonob.cls date/time: 6-Mar-2009/17:06
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Definition 7.1 (Sub-group). Let (G, ·) be a group. A non-empty subset, H ⊂
G, is said to be a subgroup of G if H is also a group under the multiplication
law in G. We use the notation, H ≤ G to summarize that H is a subgroup of
G and H < G to summarize that H is a proper subgroup of G.

Theorem 7.2 (Two-step Subgroup Test). Let G be a group and H be a
non-empty subset. Then H ≤ G if

1. H is closed under ·, i.e. hk ∈ H for all h, k ∈ H,
2. H is closed under taking inverses, i.e. h−1 ∈ H if h ∈ H.

Proof. First off notice that e = h−1h ∈ H. It also clear that H contains
inverses and the multiplication law is associative, thus H ≤ G.

Theorem 7.3 (One-step Subgroup Test). Let G be a group and H be a
non-empty subset. Then H ≤ G iff ab−1 ∈ H whenever a, b ∈ H.

Proof. If a ∈ H, then e = a a−1 ∈ H and hence so is a−1 = ae−1 ∈ H.
Thus it follows that for a, b ∈ H, that ab = a

(
b−1
)−1 ∈ H and hence H ≤ G.

and the result follows from Theorem 7.2.

Example 7.4. Here are some examples of sub-groups and not sub-groups.

1. 2Z < Z while 3Z ⊂ Z but is not a sub-group.
2. Zn = {0, 1, 2, . . . , n− 1} ⊂ Z is not a subgroup of Z since they have different

group operations.
3. {e} ≤ G is the trivial subgroup and G ≤ G.

Example 7.5. Let us find the smallest sub-group, H containing 7 ∈ U (15) .
Answer,

72 mod 15 = 4, 73 mod 15 = 13, 74 mod 15 = 1

so that H must contain, {1, 7, 4, 13} . One may easily check this is a subgroup
and we have |7| = 4.

Proposition 7.6. The elements, O (2) := {Sα, Rα : α ∈ R} form a subgroup
GL2 (R) , moreover we have the following multiplication rules:

RαRβ = Rα+β , SαSβ = R2(α−β), (7.1)
RβSα = Sα+β/2, and SαRβ = Sα−β/2. (7.2)

for all α, β ∈ R. Also observe that

Rα = Rβ ⇐⇒ α = βmod 360 (7.3)

while,
Sα = Sβ ⇐⇒ α = βmod 180. (7.4)

Proof. Equations (7.1) and (7.2) may be verified by direct computations
using the matrix representations for Rα and Sβ . Perhaps a more illuminating
way is to notice that all linear transformations on R2 are determined by there
actions on u (θ) for all θ (actually for two θ is typically enough). Using this
remark we find,

RαRβu (θ) = Rαu (θ + β) = u (θ + β + α) = Rα+βu (θ)
SαSβu (θ) = Sαu (2β − θ) = u (2α− (2β − θ)) = u (2 (α− β) + θ) = R2(α−β)u (θ) ,

RβSαu (θ) = Rβu (2α− θ) = u (2α− θ + β) = u (2 (α+ β/2)− θ) = Sα+β/2u (θ) ,
and

SαRβu (θ) = Sαu (θ + β) = u (2α− (θ + β)) = u (2 (α− β/2)− θ) = Sα−β/2u (θ)

which verifies equations (7.1) and (7.2). From these it is clear that H is a closed
under matrix multiplication and since R−α = R−1

α and S−1
α = Sα it follows H

is closed under taking inverses.
To finish the proof we will now verify Eq. (7.4) and leave the proof of Eq.

(7.3) to the reader. The point is that Sα = Sβ iff

u (2α− θ) = Sαu (θ) = Sβu (θ) = u (2β − θ) for all θ

which happens iff

[2α− θ] mod 360 = [2β − θ] mod 360

which is equivalent to α = βmod 180.





8

Lecture 8 (1/23/2009)

Notation 8.1 The order of a group, G, is the number of elements in G
which we denote by |G| .

Example 8.2. We have |Z| = ∞, |Zn| = n for all n ≥ 2, and |D3| = 6 and
|D4| = 8.

Definition 8.3 (Euler Phi – function). For n ∈ Z+, let

ϕ (n) := |U (n)| = # {1 ≤ k ≤ n : gcd (k, n) = 1} .

This function, ϕ, is called the Euler Phi – function.

Example 8.4. If p is prime, then U (p) = {1, 2, . . . , p− 1} and
ϕ (p) = p − 1. More generally U (pn) consists of {1, 2, . . . , pn} \
{multiples of p in {1, 2, . . . , pn}} . Therefore,

ϕ (pn) = |U (pn)| = pn −# {multiples of p in {1, 2, . . . , pn}}

Since

{multiples of p in {1, 2, . . . , pn}} =
{
kp : k = 1, 2, . . . , pn−1

}
it follows that # {multiples of p in {1, 2, . . . , pn}} = pn−1 and therefore,

ϕ (pn) = pn − pn−1 = pn−1 (p− 1)

valid for all primes and n ≥ 1.

Example 8.5 (ϕ (pmqn)). Let N = pmqn with m,n ≥ 1 and p and q being
distinct primes. We wish to compute ϕ (N) = |U (N)| . To do this, let let Ω :=
{1, 2, . . . , N − 1, N} , A be the multiples of p in Ω and B be the multiples of q
in Ω. Then A∩B is the subset of common multiples of p and q or equivalently
multiples of pq in Ω so that;

# (A) = N/p = pm−1qn,

# (B) = N/q = pmqn−1 and

# (A ∩B) = N/ (pq) = pm−1qn−1.

Therefore,

ϕ (N) = # (Ω \ (A ∪B)) = # (Ω)−# (A ∪B)
= # (Ω)− [# (A) + # (B)−# (A ∩B)]

= N −
[
N

p
+
N

q
− N

p · q

]
= pm · qn − pm−1 · qn − pm · qn−1 + pm−1 · qn−1

=
(
pm − pm−1

) (
qn − qn−1

)
.

which after a little algebra shows,

ϕ (pmqn) =
(
pm − pm−1

) (
qn − qn−1

)
= N

(
1− 1

p

)(
1− 1

q

)
.

The next theorem generalizes this example.

Theorem 8.6 (Euler Phi function). Suppose that N = pk11 . . . pknn with ki ≥
1 and pi being distinct primes. Then

ϕ (N) = ϕ
(
pk11 . . . pknn

)
=

n∏
i=1

(
pkii − p

ki−1
i

)
= N ·

n∏
i=1

(
1− 1

pi

)
.

Proof. (Proof was not given in class!) Let Ω := {1, 2, . . . , N} and Ai :=
{m ∈ Ω : pi|m} . It then follows that U (N) = Ω \ (∪ni=1Ai) and therefore,

ϕ (N) = # (Ω)−# (∪ni=1Ai) = N −# (∪ni=1Ai) .

To compute the later expression we will make use of the inclusion exclusion
formula which states,

# (∪ni=1Ai) =
n∑
l=1

(−1)l+1
∑

1≤i1<i2<···<il≤n

# (Ai1 ∩ · · · ∩Ail) . (8.1)

Here is a way to see this formula. For A ⊂ Ω, let 1A (k) = 1 if k ∈ A and 0
otherwise. We now have the identity,
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1− 1∪ni=1Ai
=

n∏
i=1

(1− 1Ai)

= 1−
n∑
l=1

(−1)l
∑

1≤i1<i2<···<il≤n

1Ai1∩···∩Ail .

Summing this identity on k ∈ Ω then shows,

N −# (∪ni=1Ai) = N −
n∑
l=1

(−1)l
∑

1≤i1<i2<···<il≤n

# (Ai1 ∩ · · · ∩Ail)

which gives Eq. (8.1).
Since Ai1 ∩ · · · ∩Ail consists of those k ∈ Ω which are common multiples of

pi1 , pi2 , . . . , pil or equivalently multiples of pi1 · pi2 · · · · · pil , it follows that

# (Ai1 ∩ · · · ∩Ail) =
N

pi1 · pi2 · · · · · pil
.

Thus we arrive at the formula,

ϕ (N) = N −
n∑
l=1

(−1)l+1
∑

1≤i1<i2<···<il≤n

N

pi1 · pi2 · · · · · pil

= N +
n∑
l=1

(−1)l
∑

1≤i1<i2<···<il≤n

N

pi1 · pi2 · · · · · pil

Let us now break up the sum over those terms with il = n and those with il < n
to find,

ϕ (N) =

N +
n−1∑
l=1

(−1)l
∑

1≤i1<i2<···<il<n

N

pi1 · pi2 · · · · · pil


+

 n∑
l=1

(−1)l
∑

1≤i1<i2<···<il−1<il=n

N

pi1 · pi2 · · · · · pil

 .
We may factor out pknn in the first term to find,

ϕ (N) = pknn ϕ
(
pk11 . . . p

kn−1
n−1

)
+

n∑
l=1

(−1)l
∑

1≤i1<i2<···<il−1<il=n

N

pi1 · pi2 · · · · · pil
.

Similarly the second term is equal to:

pkn−1
n

−pk11 . . . p
kn−1
n−1 +

n∑
l=2

(−1)l
∑

1≤i1<i2<···<il−1<n

pk11 . . . p
kn−1
n−1

pi1 · pi2 · · · · · pil−1


= pkn−1

n

−pk11 . . . p
kn−1
n−1 −

n−1∑
l=1

(−1)l
∑

1≤i1<i2<···<il<n

pk11 . . . p
kn−1
n−1

pi1 · pi2 · · · · · pil


= −pkn−1

n ϕ
(
pk11 . . . p

kn−1
n−1

)
.

Thus we have shown

ϕ (N) = pknn ϕ
(
pk11 . . . p

kn−1
n−1

)
− pkn−1

n ϕ
(
pk11 . . . p

kn−1
n−1

)
=
(
pknn − pkn−1

n

)
ϕ
(
pk11 . . . p

kn−1
n−1

)
and so the result now follows by induction.

Corollary 8.7. If m,n ≥ 1 and gcd (m,n) = 1, then ϕ (mn) = ϕ (m)ϕ (n) .

Notation 8.8 For g ∈ G, let 〈g〉 := {gn : n ∈ Z} . We call 〈g〉 the cyclic
subgroup generated by g (as justified by the next proposition).

Proposition 8.9 (Cyclic sub-groups). For all g ∈ G, 〈g〉 ≤ G.

Proof. For m,n ∈ Z we have gn (gm)−1 = gn−m ∈ 〈g〉 and therefore by the
one step subgroup test, 〈g〉 ≤ G.

Notation 8.10 The order of an element, g ∈ G, is

|g| := min {n ≥ 1 : gn = e}

with the convention that |g| =∞ if {n ≥ 1 : gn = e} = ∅.

Lemma 8.11. Let g ∈ G. Then |g| =∞ iff no two elements in the list,

{gn : n ∈ Z} =
{
. . . , g−2, g−1, g0 = e, g1 = g, g2, . . .

}
are equal.

Theorem 8.12. Suppose that g is an element of a group, G. Then either:

1. If |g| = ∞ then all elements in the list, {gn : n ∈ Z} , defining 〈g〉 are
distinct. In particular |〈g〉| =∞ = |g| .

2. If n := |g| <∞, then gm = gmmodn for all m ∈ Z,

〈g〉 =
{
e, g, g2, . . . , gn−1

}
(8.2)

with all elements in the list being distinct and |〈g〉| = n = |g| . We also
have,

gkgl = g(k+l) modn for all k, l ∈ Zn (8.3)

which shows that 〈g〉 is “equivalent” to Zn.
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So in all cases |g| = |〈g〉| .

Proof. 1. If gi = gj for some i < j, then

e = gig−i = gjg−i = gj−i

so that gm = e with m = j − i ∈ Z+ from which we would conclude that
|g| <∞. Thus if |g| =∞ it must be that all elements in the list, {gn : n ∈ Z} ,
are distinct. In particular 〈g〉 = {gn : n ∈ Z} has an infinite number of elements
and therefore |〈g〉| =∞.

2. Now suppose that n = |g| <∞. Since gn = e, it also follows that g−n =
(gn)−1 = e−1 = e. Therefore if m ∈ Z and m = sn + r where r := m modn,
then gm = (gn)s gr = gr, i.e. gm = gmmodn for all m ∈ Z. Hence it follows that
〈g〉 =

{
e, g, g2, . . . , gn−1

}
. Moreover if gi = gj for some 0 ≤ i ≤ j < n, then

gj−i = e with j − i < n and hence j = i. Thus the list in Eq. (8.2) consists of
distinct elements and therefore |〈g〉| = n. Lastly, if k, l ∈ Zn, then

gkgl = gk+l = g(k+l) modn.
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Corollary 9.1. Let a ∈ G. Then ai = aj iff |a| divides (j − i) . Here we use the
convention that ∞ divides m iff m = 0. In particular, ak = e iff |a| |k.

Corollary 9.2. For all g ∈ G we have |g| ≤ |G| .

Proof. This follows from the fact that |g| = |〈g〉| and 〈g〉 ⊂ G.

Theorem 9.3 (Finite Subgroup Test). Let H be a non-empty finite subset
of a group G which is closed under the group law, then H ≤ G.

Proof. To each h ∈ H we have
{
hk
}∞
k=1
⊂ H and since # (H) < ∞, it

follows that hk = hl for some k 6= l . Thus by Theorem 8.12, |h| < ∞ for all
h ∈ H and 〈h〉 =

{
e, h, h2, . . . , h|h|−1

}
⊂ H. In particular h−1 ∈ 〈h〉 ⊂ H for

all h ∈ H. Hence it follows by the two step subgroup test that H ≤ G.

Definition 9.4 (Centralizer of a in G). The centralizer of a ∈ G, denoted
C(a), is the set of g ∈ G which commute with a, i.e.

C (a) := {g ∈ G : ga = ag} .

More generally if S ⊂ G is any non-empty set we define

C (S) := {g ∈ G : gs = sg for all s ∈ S} = ∩s∈SC (s) .

Lemma 9.5. For all a ∈ G, 〈a〉 ≤ C(a) ≤ G.

Proof. If g ∈ C (a) , then ga = ag. Multiplying this equation on the right
and left by g−1 then shows,

ag−1 = g−1gag−1 = g−1agg−1 = g−1a

which shows g−1 ∈ C (a) . Moreover if g, h ∈ C (a) , then gha = gah = agh
which shows that gh ∈ C (a) and therefore C (a) ≤ G.

Example 9.6. If G is abelian, then C (a) = G for all a ∈ G.

Example 9.7. Let G = GL2 (R) we will compute C (A1) and C (A2) where

A1 =
[

0 1
1 0

]
and A2 :=

[
1 0
0 −1

]
.

1. We have B =
[
a b
c d

]
∈ C (A1) iff,

[
b a
d c

]
=
[
a b
c d

] [
0 1
1 0

]
=
[

0 1
1 0

] [
a b
c d

]
=
[
c d
a b

]
which means that b = c and a = d, i.e. B must be of the form,

B =
[
a b
b a

]
and therefore,

C (A1) =
{[

a b
b a

]
: a2 − b2 6= 0

}
.

2. We have B =
[
a b
c d

]
∈ C (A2) iff,

[
a −b
c −d

]
=
[
a b
c d

] [
1 0
0 −1

]
=
[

1 0
0 −1

] [
a b
c d

]
=
[
a b
−c −d

]
which happens iff b = c = 0. Thus we have,

C (A2) =
{[

a 0
0 d

]
: ad 6= 0

}
.

Lemma 9.8. If {Hi} is a collection of subgroups of G then H := ∩iHi ≤ G as
well.

Proof. If h, k ∈ H then h, k ∈ Hi for all i and therefore hk−1 ∈ Hi for all i
and hence hk−1 ∈ H.

Corollary 9.9. C (S) ≤ G for any non-empty subset S ⊂ G.

Definition 9.10 (Center of a group). Center of a group, denoted Z(G), is
the centralizer of G, i.e.

Z (G) = C (G) := {a ∈ G : ax = xa for all x ∈ G}
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By Corollary 9.9, Z (G) = C (G) is a group. Alternatively, if a ∈ Z (G) , then
ax = xa implies a−1x−1 = x−1a−1 which implies xa−1 = a−1x for all x ∈ G and
therefore a−1 ∈ Z (G) . If a, b ∈ Z (G) , then abx = axb = xab =⇒ ab ∈ Z (G) ,
which again shows Z (G) is a group.

Example 9.11. G is a abelian iff Z (G) = G, thus Z (Zn) = Zn, Z (U (n)) =
U (n) , etc.

Example 9.12. Using Example 9.7 we may easily show Z (GL2 (R)) =
{λI : λ ∈ R\ {0}} . Indeed,

Z (GL2 (R)) ⊂ C (A1) ∩ C (A2) =
{[

a 0
0 a

]
: a2 6= 0

}
= {λI : λ ∈ R\ {0}} .

As the latter matrices commute with every matrix we also have,

Z (GL2 (R)) ⊂ {λI : λ ∈ R\ {0}} ⊂ Z (GL2 (R)) .

Remark 9.13. If S ⊂ G is a non-empty set we let 〈S〉 denote the smallest sub-
group in G which contains S. This subgroup may be constructed as finite prod-
ucts of elements from S and S−1 :=

{
s−1 : s ∈ S

}
. It is not too hard to prove

that
C (S) = C (〈S〉) .

Let us also note that if S ⊂ T ⊂ G, then C (T ) ⊂ C (S) as there are more
restrictions on x ∈ G to be in C (T ) than there are for x ∈ G to be in C (S) .

9.1 Dihedral group formalities and examples

Definition 9.14 (General Dihedral Groups). For n ≥ 3, the dihedral
group, Dn, is the symmetry group of a regular n – gon. To be explicit this
may be realized as the sub-groups O (2) defined as

Dn =
{
Rk 2π

n
, Sk πn : k = 0, 1, 2, . . . , n− 1

}
,

see the Figures below. Notice that |Dn| = 2n.

See the book and the demonstration in class for more intuition on these
groups. For computational purposes, we may present Dn in terms of generators
and relations as follows.

Theorem 9.15 (A presentation of Dn). Let n ≥ 3 and r := R 2π
n

and f = S0.
Then

Dn =
{
rk, rkf : k = 0, 1, 2, . . . , n− 1

}
(9.1)

and we have the relations, rn = 1, f2 = 1, and frf = r−1. We say that r and
f are generators for Dn.

Fig. 9.1. The 3 reflection symmetries axis of a regular 3 – gon,. i.e. a equilateral
triangle.

Fig. 9.2. The 4− reflection symmetries axis of a regular 4 – gon,. i.e. a square.

Fig. 9.3. The 6− reflection symmety axis of a regular 6 – gon,. i.e. a heagon. There
are also 6 rotation symmetries.

Page: 32 job: algebra macro: svmonob.cls date/time: 6-Mar-2009/17:06



9.1 Dihedral group formalities and examples 33

Proof. We know that rk = Rk 2π
n

and that rkf = Rk 2π
n
S0 = Sk πn from which

Eq. (9.1) follows. It is also clear that rn = 1 = f2. Moreover,

frf = S0R 2π
n
S0 = S0Sπn = R2(0−πn ) = r−1

as desired. (Poetically, a rotation viewed through a mirror is a rotation in the
opposite direction.)

For computational purposes, observe that

fr3f = frf frf frf =
(
r−1
)3

= r−3

and therefore fr−3f = f
(
fr3f

)
f = r3. In general we have frkf = r−k for all

k ∈ Z.

Example 9.16. If f ∈ Dn is a reflection, then f2 = e and |f | = 2. If r := R2π/n

then rk = R2πk/n 6= e for 1 ≤ k ≤ n− 1 and rn = 1, so |r| = n and

〈r〉 =
{
R2πk/n : 0 ≤ k ≤ n− 1

}
⊂ Dn.

Example 9.17. Suppose that G = Dn and f = S0. Recall that Dn ={
rk, rkf

}n−1

k=0
. We wish to compute C (f) . We have rk ∈ C (f) iff rkf = frk

iff rk = frkf = r−k. There are only two rotations Rθ for which Rθ = R−1
θ ,

namely R0 = e and R180 = −I. The latter is in Dn only if n is even.
Let us now check to see if rkf ∈ C (f) . This is the case iff

rk =
(
rkf
)
f = f

(
rkf
)

= r−k

and so again this happens iff r = R0 or R180. Thus we have shown,

C (f) =
{

〈f〉 = {e, f} if n is odd{
e, rn/2, f, rn/2f

}
if n is even.

Let us now find C
(
rk
)
. In this case we have 〈r〉 ⊂ C

(
rk
)

(as this is a
general fact). Moreover rlf ∈ C

(
rk
)

iff
(
rlf
)
rk = rk

(
rlf
)

which happens iff

rl−k = rlr−k =
(
rlf
)
rkf = rk+l,

i.e. iff r2k = e. Thus we may conclude that C
(
rk
)

= 〈r〉 unless k = 0 or k = n
2

and when k = 0 or k = n/2 we have C
(
rk
)

= Dn. Of course the case k = n/2
only applies if n is even. By the way this last result is not too hard to understand
as r0 = I and rn/2 = −I where I is the 2× 2 identity matrix which commutes
with all matrices.

Example 9.18. For n ≥ 3,

Z (Dn) =
{
{R0 = I} if n is odd.
{R0, R180} if n is even (9.2)

To prove this recall that SαRθS−1
α = R−θ for all α and θ. So if Sα ∈ Z (Dn)

we would have Rθ = SαRθS
−1
α = R−θ for θ = k2π/n which is impossible. Thus

Z (Dn) contains no reflections. Moreover this shows that Rθ can only be in the
center if Rθ = R−θ, i.e. Rθ can only be R0 or R180. This completes the proof
since R180 ∈ Dn iff n is even.

Alternatively, observe that Z (Dn) = C (f) ∩ C (r) = C ({f, r}) since if
g ∈ Dn commutes with the generators of a group it must commute with all
elements of the group. Now according to Example 9.17, we again easily see that
Eq. (9.2) is correct. For example when n is even we have,

Z (Dn) = C (f) ∩ C (r) =
{
e, rn/2, f, rn/2f

}
∩ 〈r〉 =

{
e, rn/2

}
= {R0, R180} .
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Lecture 11 (1/30/2009)

11.1 Cyclic Groups

Definition 11.1. We say a group, G, is a cyclic group if there exists g ∈ G
such that G = 〈g〉 . We call such a g a generator of the cyclic group G.

Example 11.2. Recall that U (9) = {1, 2, 4, 5, 7, 8} and that

〈2〉 =
{

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 7, 25 = 5, 26 = 1
}

so that |2| = |〈2〉| = 6 and U (9) and 2 is a generator.
Notice that 22 = 4 is not a generator, since〈

22
〉

= {1, 4, 7} 6= U (9) .

Example 11.3. The group U (8) = {1, 3, 5, 7} is not cyclic since,

〈3〉 = {1, 3} , 〈5〉 = {1, 5} , and 〈7〉 = {1, 7} .

This group may be understood by observing that 3 · 5 = 15 mod 8 = 7 so that

U (8) =
{

3a5b : a, b ∈ Z2

}
.

Moreover, the multiplication on U (8) becomes two copies of the group operation
on Z2, i.e. (

3a5b
) (

3a
′
5′
)

= 3a+a′5b+b
′

= 3(a+a′) mod 25(b+b′) mod 2.

So in a sense to be made precise later, U (8) is equivalent to “Z2
2.”

Example 11.4. Here are some more examples of cyclic groups.

1. Z is cyclic with generators being either 1 or −1.
2. Zn is cyclic with 1 being a generator since

〈1〉 = {0, 1, 2 = 1 + 1, 3 = 1 + 1 + 1, . . . , n− 1} .

3. Let
G :=

{
ei
k
n 2π : k ∈ Z

}
,

then G is cyclic and g := ei2π/n is a generator. Indeed, gk = ei
k
n 2π is equal

to 1 for the first time when k = n.

These last two examples are essentially the same and basically this is the
list of all cyclic groups. Later today we will list all of the generators of a cyclic
group.

Lemma 11.5. If H ⊂ Z is a subgroup and a := minH ∩ Z+, then H = 〈a〉 =
{ka : k ∈ Z} .

Proof. It is clear that 〈a〉 ⊂ H. If b ∈ H, we may write it as b = ka + r
where 0 ≤ r < a. As r = b− ka ∈ H and 0 ≤ r < a, we must have r = 0. This
shows that b ∈ 〈a〉 and thus H ⊂ 〈a〉 .

Example 11.6. If f =
[

0 1
1 0

]
∈ GL2 (R) , then f is reflection about the line

y = x. In particular f2 = I and 〈f〉 = {I, f} and |f | = 2. So we can have
elements of finite order inside an infinite group. In fact any element of a Dihedral
subgroup of GL2 (R) gives such an example.

Notation 11.7 Let n ∈ Z+ ∪ {∞} . We will write b ≡ a (mod)n iff
(b− a) modn = 0 or equivalently n| (b− a) . here we use the convention that
if n =∞ then b ≡ a (mod)n iff b = a and ∞|m iff m = 0.

Theorem 11.8 (More properties of cyclic groups). Let a ∈ G and n = |a| .
Then;

1. ai = aj iff i ≡ j (mod)n,
2. If k|m then 〈am〉 ⊂

〈
ak
〉
.

3.
〈
ak
〉

=
〈
agcd(n,k)

〉
.

4.
∣∣ak∣∣ = |a| / gcd (|a| , k) .

5.
〈
ai
〉

=
〈
aj
〉

iff gcd (i, n) = gcd (j, n)
6.
〈
ak
〉

= 〈a〉 iff gcd (k, n) = 1.

Proof. 1. We have ai = aj iff

e = ai−j = a(i−j) modn

which happens iff (i− j) modn = 0 by Theorem 8.12.
2. If m = lk, then (am)q =

(
alk
)q =

(
ak
)lq

, and therefore 〈am〉 ⊂
〈
ak
〉
.



3. Let d := gcd (n, k) , then d|k and therefore
〈
ak
〉
⊂
〈
ad
〉
. For the opposite

inclusion we must show ad ∈
〈
ak
〉
. To this end, choose s, t ∈ Z such that

d = sk + tn. It then follows that

ad = askatn =
(
ak
)s ∈ 〈ak〉

as desired.
4. Again let d := gcd (n, k) and set m := n/d ∈ N. Then

(
ad
)k = adk 6= e for

1 ≤ k < m and adm = an = e. Hence we may conclude that
∣∣ad∣∣ = m = n/d.

Combining this with item 3. show,∣∣ak∣∣ =
∣∣〈ak〉∣∣ =

∣∣〈ad〉∣∣ =
∣∣ad∣∣ = n/d = |a| / gcd (k, |a|) .

5. By item 4., if gcd (i, n) = gcd (j, n) then〈
ai
〉

=
〈
agcd(i,n)

〉
=
〈
agcd(j,n)

〉
=
〈
aj
〉
.

Conversely if
〈
ai
〉

=
〈
aj
〉

then by item 4.,

n

gcd (i, n)
=
∣∣〈ai〉∣∣ =

∣∣〈aj〉∣∣ =
n

gcd (j, n)

from which it follows that gcd (i, n) = gcd (j, n) .
6. This follows directly from item 3. or item 5.

Example 11.9. Let use Theorem 11.8 to find all generators of Z10 =
{0, 1, 2, . . . , 9} . Since 1 is a generator it follow by item 6. of the previ-
ous theorem that the generators of Z10 are precisely those k ≥ 1 such that
gcd (k, 10) = 1. (Recall we use the additive notation here so that ak becomes
ka.) In other words the generators of Z10 is precisely

U (10) = {1, 3, 7, 9}

of which their are ϕ (10) = ϕ (5 · 2) = (5− 1) (2− 1) = 4.
More generally the generators of Zn are the elements in U (n) . It is in fact

easy to see that every a ∈ U (n) is a generator. Indeed, let b := a−1 ∈ U (n) ,
then we have

Zn = 〈1〉 = 〈(b · a) modn〉 = 〈b · a〉 ⊂ 〈a〉 ⊂ Zn.

Conversely if and a ∈ [Zn \ U (n)] , then gcd (a, n) = d > 1 and therefore
gcd (a/d, n) = 1 and a/d ∈ U (n) . Thus a/d generates Zn and therefore |a| =
n/d and hence |〈a〉| = n/d and 〈a〉 6= Zn.
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Theorem 12.1 (Fundamental Theorem of Cyclic Groups). Suppose that
G = 〈a〉 is a cyclic group and H is a sub-group of G, and

m := m (H) = min
{
k ≥ 1 : ak ∈ H

}
. (12.1)

Then:

1. H = 〈am〉 – so all subgroups of G are of the form 〈am〉 for some m ≥ 1.
2. If n = |a| <∞, then m|n and |H| = n/m.
3. To each divisor, k ≥ 1, of n there is precisely one subgroup of G of order k,

namely H =
〈
an/k

〉
.

In short, if G = 〈a〉 with |a| = n, then

{Positive divisors of n} ←→ {sub-groups of G}
m → 〈am〉

m (H) ← H

is a one to one correspondence. These subgroups may be indexed by their order,
k = |〈am〉| = n/m.

Proof. We prove each point in turn.

1. Suppose that H ⊂ G is a sub-group and m is defined as in Eq. (12.1). Since
am ∈ H and H is closed under the group operations it follows that 〈am〉 ⊂
H. So we must show H ⊂ 〈am〉 . If al ∈ H with l ∈ Z, we write l = jm+ r

with r := lmodm. Then al = amjar and hence ar = al (am)−j ∈ H. As
0 ≤ r < m, it follows from the definition of m that r = 0 and therefore
al = ajm = (am)j ∈ 〈am〉 . Thus we have shown H ⊂ 〈am〉 and therefore
that H = 〈am〉 .

2. From Theorem 11.8 we know that H = 〈am〉 =
〈
agcd(m,n)

〉
and that |H| =

n/ gcd (m,n) .Using the definition ofm, we must havem ≤ gcd (m,n) which
can only happen if m = gcd (m,n) . This shows that m|n and |H| = n/m.

3. From what we have just shown, the subgroups, H ⊂ G, are precisely of
the form 〈am〉 where m is a divisor of n. Moreover we have shown that
|〈am〉| = n/m =: k. Thus for each divisor k of n, there is exactly one
subgroup of G of order k, namely 〈am〉 where m = n/k.

Example 12.2. Let G = Z20. Since 20 = 22 · 5 it has divisors, k = 1, 2, 4, 5, 10,
20. The subgroups having these orders are,

Order
1 〈0〉 =

〈
20
1 · 1

〉
= {0}

2 〈10〉 =
〈

20
2 · 1

〉
= {0, 10}

4 〈5〉 =
〈

20
4 · 1

〉
= {0, 5, 10, 15}

5 〈4〉 =
〈

20
5 · 1

〉
= {0, 4, 8, 12, 16, 20}

10 〈2〉 =
〈

20
10 · 1

〉
= {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

20 〈1〉 =
〈

20
20 · 1

〉
= Z20

Corollary 12.3. Suppose G is a cyclic group of order n with generator g, d is
a divisor of n, and a = gn/d. Then

{elements of order d in G} =
{
ak : k ∈ U (d)

}
and in particular G contains exactly ϕ (d) elements of order d. It should be noted
that

{
ak : k ∈ U (d)

}
is also the list of all the elements of G which generate the

unique cyclic subgroup of order d.

Proof. We know that a := gn/d is the generator of the unique (cyclic)
subgroup, H ≤ G, of order d. This subgroup must contain all of the elements
of order d for if not there would be another distinct cyclic subgroup of order
d in G. The elements of H which have order d are precisely of the form ak

with 1 ≤ k < d and gcd (k, d) = 1, i.e. with k ∈ U (d) . As there are ϕ (d) such
elements the proof is complete.

Example 12.4. Let us find all the elements of order 10 in Z20. Since |2| = 10,
we know from Corollary 12.3 that

{2k : k ∈ U (10)} = {2k : k = 1, 3, 7, 9} = {2, 6, 14, 18}

are precisely the elements of order 10 in Z20.

Corollary 12.5. The Euler Phi – function satisfies, n =
∑

1≤d:d|n ϕ (d) .
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Proof. Every element of Zn has a unique order, d, which divides n and
therefore,

n =
∑

1≤d:d|n

# {k ∈ Zn : |k| = d} =
∑

1≤d:d|n

ϕ (d) .

Example 12.6. Let us test this out for n = 20. In this case we should have,

20 ?=ϕ (1) + ϕ (2) + ϕ (4) + ϕ (5) + ϕ (10) + ϕ (20)

=1 + 1 + 2 + 4 + 4 +
(
22 − 2

)
(5− 1)

=1 + 1 + 2 + 4 + 4 + 8 = 20.

Remark 12.7. In principle it is possible to use Corollary 12.5 to compute ϕ. For
example using this corollary and the fact that ϕ (1) = 1, we find for distinct
primes p and q that,

p = ϕ (1) + ϕ (p) = 1 + ϕ (p) =⇒ ϕ (p) = p− 1,

p2 = ϕ (1) + ϕ (p) + ϕ
(
p2
)

= p+ ϕ
(
p2
)

=⇒ ϕ (p) = p2 − p
pq = ϕ (1) + ϕ (p) + ϕ (q) + ϕ (pq) = p+ q − 1 + ϕ (pq)

which then implies,

ϕ (pq) = pq − p− q + 1 = (p− 1) (q − 1) .

Similarly,

p2q = ϕ (1) + ϕ (p) + ϕ (q) + ϕ (pq) + ϕ
(
p2
)

+ ϕ
(
p2q
)

= pq +
(
p2 − p

)
+ ϕ

(
p2q
)

and hence,

ϕ
(
p2q
)

= p2q − pq −
(
p2 − 1

)
= p2q − p2 − pq + p

= p (pq − p− q + 1) = p (p− 1) (q − 1) .

Theorem 12.8. Suppose that G is any finite group and d ∈ Z+, then the num-
ber elements of order d in G is divisible by ϕ (d) .

Proof. Let
Gd := {g ∈ G : |g| = d} .

If Gd = ∅, the statement of the theorem is true since ϕ (d) divides 0 = # (Gd) .
If a ∈ Gd, then 〈a〉 is a cyclic subgroup of order d with precisely ϕ (d) element

of order d. If Gd \ 〈a〉 = ∅ we are done since there are precisely ϕ (d) elements
of order d in G. If not, choose b ∈ Gd \ 〈a〉 . Then the elements of order d in 〈b〉

must be distinct from the elements of order d in 〈a〉 for otherwise 〈a〉 = 〈b〉 ,
but b /∈ 〈a〉 . If Gd \ (〈a〉 ∪ 〈b〉) = ∅ we are again done since now # (Gd) = 2ϕ (d)
will be the number of elements of order d in G. If Gd \ (〈a〉 ∪ 〈b〉) 6= ∅ we choose
a third element, c ∈ Gd \ (〈a〉 ∪ 〈b〉) and argue as above that # (Gd) = 3ϕ (d)
if Gd \ (〈a〉 ∪ 〈b〉 ∪ 〈c〉) = ∅. Continuing on this way, the process will eventually
terminate since # (Gd) <∞ and we will have shown that # (Gd) = nϕ (d) for
some n ∈ N.

Example 12.9 (Exercise 4.20). Suppose that G is an Abelian group, |G| = 35,
and every element of G satisfies x35 = e. Prove that G is cyclic. Since x35 = e,
we have seen in Corollary 9.1 that |x| must divide 35 = 5 ·7. Thus every element
in G has order either, 1, 5, 7, or 35. If there is an element of order 35, G is
cyclic and we are done. Since the only element of order 1 is e, there are 34
elements of either order 5 or 7. As ϕ (5) = 4 and ϕ (7) = 6 do not divide 35,
there must exists a, b ∈ G such that |a| = 5 and |b| = 7. We now let x := ab
and claim that |x| = 35 which is a contradiction. To see that |x| = 35 observe
that |x| > 1, x5 = a5b5 = eb5 6= e so |x| 6= 5 and x7 = a7b7 = a2 6= e so that
|x| 6= 7. Therefore |x| = 35 and we are done.

Alternatively, for this last part. Notice that xn = anbn = e iff an = b−n. If
an = b−n 6= e, then |an| = 5 while |b−n| = 7 which is impossible. Thus the only
way that anbn = e is if an = e = bn. Thus we must 5|n and 7|n and therefore
35|n and therefore |x| = 35.
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The least common multiple, lcm (a1, . . . , ak) , of k integers, a1, . . . , ak ∈
Z+, is the smallest integer n ≥ 1 which is a multiple of each ai for i = 1, . . . , k.

For example,

lcm (10, 14, 15) = lcm (2 · 5, 2 · 7, 3 · 5) = 2 · 3 · 5 · 7 = 210

Corollary 13.1. Let a1, . . . , ak ∈ Z+, then

〈a1〉 ∩ · · · ∩ 〈ak〉 = 〈lcm (a1, . . . , ak)〉 ⊂ Z.

Moreover, m ∈ Z is a common multiple of a1, . . . , ak iff m is a multiple of
lcm (a1, . . . , ak) .

Proof. First observe that

{common multiples of a1, . . . , ak} = 〈a1〉 ∩ · · · ∩ 〈ak〉

which is a sub-group of Z and therefore by Lemma 11.5,

{common multiples of a1, . . . , ak} = 〈n〉

where

n = min {common multiples of a1, . . . , ak} ∩ Z+ = lcm (a1, . . . , ak) .

Corollary 13.2. Let a1, . . . , ak ∈ Z+, then

lcm (a1, . . . , ak) = lcm (a1, lcm (a1, . . . , ak)) .

Proof. This follows from the following sequence of identities,

〈lcm (a1, . . . , ak)〉 = 〈a1〉 ∩ · · · ∩ 〈ak〉 = 〈a1〉 ∩ (〈a2〉 ∩ · · · ∩ 〈ak〉)
= 〈a1〉 ∩ 〈lcm (a1, . . . , ak)〉 = 〈lcm (a1, lcm (a1, . . . , ak))〉 .

Proposition 13.3. Suppose that G is a group and a and b are two finite order
commuting elements of a group G such that1 〈a〉 ∩ 〈b〉 = {e} . Then |ab| =
lcm (|a| , |b|) .

Proof. If e = (ab)m = ambm for some m ∈ Z then

〈a〉 3 am = b−m ∈ 〈b〉

from which it follows that am = b−m ∈ 〈a〉 ∩ 〈b〉 = {e} , i.e. am = e = bm. This
happens iff m is a common multiple of |a| and |b| and therefore the order of ab
is the smallest such multiple, i.e. |ab| = lcm (|a| , |b|) .

It is not possible to drop the assumption that 〈a〉∩〈b〉 = {e} in the previous
proposition. For example consider a = 2 and b = 6 in Z8, so that |a| = 4,
|6| = 8/ gcd (6, 8) = 4, and lcm (4, 4) = 4, while a + b = 0 and |0| = 1. More
generally if b = a−1 then |ab| = 1 while |a| = |b| can be anything. In this case,
〈a〉 ∩ 〈b〉 = 〈a〉 .

13.1 Cosets and Lagrange’s Theorem (Chapter 7 of the
book)

Let G be a group and H be a non-empty subset of G. Soon we will assume that
H is a subgroup of G.

Definition 13.4. Given a ∈ G, let

1. aH := {ah : h ∈ H} – called the left coset of H in G containing a when
H ≤ G,

2. Ha := {ha : h ∈ H} – called the right coset of H in G containing a
when H ≤ G, and

3. aHa−1 :=
{
aha−1 : h ∈ H

}
.

Definition 13.5. If H ≤ G, we let

G/H := {aH : a ∈ G}
1 You showed in Exercise 4.54 of homework 4, that if |a| and |b| are relatively prime,

then 〈a〉 ∩ 〈b〉 = {e} holds automatically.
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be the set of left cosets of H in G. The index of H in G is |G : H| := # (G/H) ,
that is

|G : H| = # (G/H) = (the number of distinct cosets of H in G) .

Example 13.6. Suppose that G = GL (2,R) and H := SL (2,R) . In this case
for A ∈ G we have,

AH = {AB : B ∈ H} = {C : detC = detA} .

Each coset of H in G is determined by value of the determinant on that coset.
As G/H may be indexed by R\ {0} , it follows that

|GL (2,R) : SL (2,R)| = # (R\ {0}) =∞.

Example 13.7. Let G = U (20) = U
(
22 · 5

)
= {1, 3, 7, 9, 11, 13, 17, 19} and take

H := 〈3〉 = {1, 3, 9, 7}

in which case,

1H = 3H = 9H = 7H = H,

11H = {11, 13, 19, 17} = 13H = 17H = 19H.

We have |G : H| = 2 and

|G : H| × |H| = 2× 4 = 8 = |G| .

Example 13.8. Let G = Z9 and H = 〈3〉 = {0, 3, 6} . In this case we use additive
notation,

0 +H = 3 +H = 6 +H = H

1 +H = {1, 4, 7} = 4 +H = 7 +H

2 +H = {2, 5, 8} = 2 +H = 8 +H

We have |G : H| = 3 and

|G : H| × |H| = 3× 3 = 9 = |G| .

Example 13.9. Suppose that G = D4 :=
{
rk, rkf

}3

k=0
with r4 = 1, f2 = 1, and

frf = r−1. If we take H = 〈f〉 = {1, f} then

rkH =
{
rk, rkf

}
=
{
rkf, rkff

}
= rkfH for k = 0, 1, 2, 3.

In this case we have |G : H| = 4 and

|G : H| × |H| = 4× 2 = 8 = |G|

Recall that we have seen if G is a finite cyclic group and H ≤ G, then
|H| divides G. This along with the last three examples suggests the following
theorem of Lagrange. They also motivate Lemma 14.2 below.

Theorem 13.10 (Lagrange’s Theorem). Suppose that G is a finite group
and H ≤ G, then |H| divides |G| and |G| / |H| is the number of distinct cosets
of H in G, i.e.

|G : H| × |H| = |G| .

Corollary 13.11. If G is a group of prime order p, then G is cyclic and every
element in G \ {e} is a generator of G.

Proof. Let g ∈ G \ {e} and take H := 〈g〉 . Then |H| > 1 and |H| | |G| = p
implies |H| = p. Thus it follows that H = G, i.e. G = 〈g〉 .

Before proving Theorem 13.10, we will pause for some basic facts about the
cosets of H in G.
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Suppose that f : X → Y is a bijection (f being one to one is actually enough
here). Then if A,B are subsets of X, we have

A = B ⇐⇒ f (A) = f (B) ,

where f (A) = {f (a) : a ∈ A} ⊂ Y. Indeed, it is clear that A = B =⇒
f (A) = f (B) . For the opposite implication, let g : Y → X be the in-
verse function to f, then f (A) = f (B) =⇒ g (f (A)) = g (f (B)) . But
g (f (A)) = {a = g (f (a)) : a ∈ A} = A and g (f (B)) = B.

Let us also observe that if f is one to one and A ⊂ X is a finite set with n
elements, then # (f (A)) = n = # (A) . Indeed if {a1, . . . , an} are the distinct
elements of A then {f (a1) , . . . , f (an)} are the distinct elements of f (A) .

Lemma 14.1. For any a ∈ G, the maps La : G → G and Ra : G → G defined
by La (x) = ax and Ra (x) = xa are bijections.

Proof. We only prove the assertions about La as the proofs for Ra are
analogous. Suppose that x, y ∈ G are such that La (x) = La (y) , i.e. ax = ay,
it then follows by cancellation that x = y. Therefore La is one to one. It is onto
since if x ∈ G, then La

(
a−1x

)
= x.

Alternatively. Simply observe that La−1 : G → G is the inverse map to
La.

Lemma 14.2. Let G be a group, H ≤ G, and a, b ∈ H. Then

1. a ∈ aH,
2. aH = H iff a ∈ H.
3. If a ∈ G and b ∈ aH, then aH = bH.
4. If aH ∩ bH 6= ∅ then aH = bH. So either aH = bH or aH ∩ bH = ∅.
5. aH = bH iff a−1b ∈ H.
6. G is the disjoint union of its distinct cosets.
7. aH = Ha iff aHa−1 = H.
8. |aH| = |H| = |bH| where |aH| denotes the number of element in aH.
9. aH is a subgroup of G iff a ∈ H.

Proof. For the most part we refer the reader to p. 138-139 of the book for
the details of the proof. Let me just make a few comments.

1. Since e ∈ H we have a = ae ∈ aH.
2. If aH = H, then a = ae ∈ aH = H. Conversely, if a ∈ H, then aH ⊂
H since H is a group. For the opposite inclusion, if if h ∈ H, then h =
a
(
a−1h

)
∈ aH, i.e. H ⊂ aH. Alternatively: as above it follows that

a−1H ⊂ H and therefore, H = a
(
a−1H

)
⊂ aH.

3. If b ∈ ah′ ∈ aH, then bH = ah′H = aH.
4. If ah = bh′ ∈ aH ∩ bH, then b = ah h′−1 ∈ aH and therefore bH = aH.
5. If a−1b ∈ H then a−1b = h ∈ H and b = ah and hence aH = bH. Conversely

if aH = bH then b = be = ah for some for some h ∈ H. Therefore, a−1b =
h ∈ H.

6. See item 1 shows G is the union of its cosets and item 4. shows the distinct
cosets are disjoint.

7. We have aH = Ha ⇐⇒ H = (Ha) a−1 = (aH) a−1 = aHa−1.
8. Since La and Lb are bijections, it follows that |aH| = # (La (H)) = # (H) .

Similarly, |bH| = |H| .
9. e ∈ aH iff a ∈ H.

Remark 14.3. Much of Lemma 14.2 may be understood with the aid of the
following equivalence relation. Namely, write a ∼ b iff a−1b ∈ H. Observe that
a ∼ a since a−1a = e ∈ H, a ∼ b =⇒ b ∼ a since a−1b ∈ H =⇒ b−1a =(
a−1b

)−1 ∈ H, and a ∼ b and b ∼ c implies a ∼ c since a−1b ∈ H and

b−1c ∈ H =⇒ a−1c = a−1bb−1c ∈ H.

The equivalence class, [a] , containing a is then

[a] = {b : a ∼ b} =
{
b : h := a−1b ∈ H

}
= {ah : h ∈ H} = aH.

Definition 14.4. A subgroup, H ≤ G, is said to be normal if aHa−1 = H for
all a ∈ G or equivalently put, aH = Ha for all a ∈ G. We write H C G to
mean that H is a normal subgroup of G.

We will prove later the following theorem. (If you want you can go ahead
and try to prove this theorem yourself.)
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Theorem 14.5 (Quotient Groups). If H C G, the set of left cosets, G/H,
becomes a group under the multiplication rule,

aH · bH := (ab)H for all a, b ∈ H.

In this group, eH is the identity and (aH)−1 = a−1H.

We are now ready to prove Lagrange’s theorem which we restate here.

Theorem 14.6 (Lagrange’s Theorem). Suppose that G is a finite group and
H ≤ G, then

|G : H| × |H| = |G| ,

where |G : H| := # (G/H) is the number of distinct cosets of H in G. In
particular |H| divides |G| and |G| / |H| = |G : H| .

Proof. Let n := |G : H| and choose ai ∈ G for i = 1, 2, . . . , n such that
{aiH}ni=1 is the collection of distinct cosets of H in G. Then by item 6. of
Lemma 14.2 we know that

G = ∪ni=1 [aiH] with aiH ∩ ajH = ∅ for all i 6= j.

Thus we may conclude, using item 8. of Lemma 14.2 that

|G| =
n∑
i=1

|aiH| =
n∑
i=1

|H| = n ·H = |G : H| · |H| .

Remark 14.7 (Becareful!). Despite the next two results, it is not true that all
groups satisfy the converse to Lagrange’s theorem. That is there exists groups
G for which there is a divisor, d, of |G| for which there is no subgroup, H ≤ G
with |H| = d. We will eventually see that G = A4 is a group of order 12 with
no subgroups of order 6. Here, A4, is the so called alternating group on four
letters.

Lemma 14.8. If H and K satisfy the converse to Lagrange’s theorem, then so
does H × K. In particular, every finite abelian group satisfies the converse to
Lagrange’s theorem.

Proof. Let m := |H| and n = |K| . If d|mn, then we may write d = d1d2

with d1|m and d2|n. We may now choose subgroups, H ′ ≤ H and K ′ ≤ K such
that |H ′| = d1 and |K ′| = d2. It then follows that H ′ × K ′ ≤ H × K with
|H ′ ×K ′| = d1d2 = d.

The second assertion follows from the fact that all finite abelian groups are
isomorphic to a product of cyclic groups and we already know the converse to
Lagrange’s theorem holds for these groups.

Example 14.9. Consider G = Dn =
〈
r, f : rn = e = f2 and frf = r−1

〉
. The

divisors of 2n are the divisors, Λ of n and 2Λ. If d ∈ Λ, let H :=
〈
rn/d

〉
to

construct a group of order d. To construct a group of order 2d, take,

H =
〈
rn/d

〉
f ∪

〈
rn/d

〉
.

Notice that this is subgroup of G since,(
rkn/df

)(
rln/df

)
= rkn/drln/dff = r(k−l)n/d(

rkn/df
)
rln/d = r(k−l)n/df

rln/drkn/df = r(k+l)n/df.

This shows that Dn satisfies the converse to Lagrange’s theorem.

Example 14.10. Let G = U (30) = U (2 · 3 · 5) = {1, 7, 11, 13, 17, 19, 23, 29} and
H = 〈11〉 = {1, 11} . In this case we know |G : H| = |G| / |H| = 8/2 = 4, i.e.
there are 4 distinct cosets which we now find.

1H = H = {1, 11}
7H = {7, 17}

13H = {13, 13 · 11 mod 30 = 23}
19H = {19, 19 · 11 mod 30 = 29} .

Notice that

19 · 11 = −112 mod 30 = −121 mod 30 = −1 mod 30 = 29.

Corollary 14.11. If G is a finite group and g ∈ G, then |g| divides |G| , i.e.

Proof. Let H := 〈g〉 , then |H| = |g| and |G : H| · |g| = |G| .

Corollary 14.12. If G is a finite group and g ∈ G, then g|G| = e.

Proof. By the previous corollary, we know that |G| = |g|n where n :=
|G : 〈g〉| . Therefore g|G| = g|g|n =

(
g|g|
)n

= en = e.

Corollary 14.13 (Fermat’s Little Theorem). Let p be a prime number and
a ∈ Z. Then

ap mod p = amod p. (14.1)

Proof. Let r := amod p ∈ {0, 1, 2, . . . , p− 1} . Since

ap mod p = (amod p)p mod p = rp mod p
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it suffices to show

rp mod p = r for all r ∈ {0, 1, 2, . . . , p− 1} .

As this latter equation is true when r = 0 we may now assume that r ∈ U (p) =
{1, 2, . . . , p− 1} . The previous equation is then equivalent to rp = r in U (p)
which is equivalent to rp−1 = 1 in U (p) . However this last assertion is true by
Corollary 14.12 and the fact that |U (p)| = p− 1.
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Example 15.1. Consider

32 mod 5 = 25 mod 5 = 2 mod 5 = 2.

Example 15.2. Let us now show that 35 is not prime by showing

235 mod 35 6= 2 mod 35 = 2.

To do this we have

2 mod 35 = 2

22 mod 35 = 4

24 mod 35 =
(
22 mod 35

)2
mod 35 = 42 mod 35 = 16

28 mod 35 =
(
24 mod 35

)2
mod 35 = (16)2 mod 35 = 256 mod 35 = 11

216 mod 35 = (11)2 mod 35 = 121 mod 35 = 16

232 mod 35 = (16)2 mod 35 = 11

and therefore,

235 mod 35 =
(
23 mod 35 · 232 mod 35

)
mod 35 = 88 mod 35 = 18 6= 2.

Therefore 35 is not prime!

Example 15.3 (Primality Test). Suppose that n ∈ Z+ is a large number we wish
to see if it is prime or not. Hard to do in general. Here are some tests to perform
on n. Pick a few small primes, p, like {2, 3, 5, 7} less than n:

1. compute gcd (p, n) . If gcd (p, n) = p we know that p|n and hence n is not
prime.

2. If gcd (p, n) = 1, compute pn modn (as above). If pn modn 6= p, then n is
again not prime.

3. If we have pn modn = p = gcd (p, n) for p from our list, the test has failed
to show n is not prime. We can test some more by adding some more primes
to our list.

Remark: This is not a fool proof test. There are composite numbers n such
that an modn = amodn for a. These numbers are called pseudoprimes and
n = 561 = 3× 11× 17 is one of them. See for example:

http : //en.wikipedia.org/wiki/Fermat primality test
and

http : //en.wikipedia.org/wiki/Pseudoprime

Example 15.4 (Exercise 7.16.). The same proof shows that if n ∈ Z+ and a ∈ Z
is relatively prime to n, then

aϕ(n) modn = 1.

Indeed, we have aϕ(n) modn = rϕ(n) modn where r := amodn and we have
seen that gcd (r, n) = gcd (a, n) = 1 so that r ∈ U (n) . Since ϕ (n) = |U (n)| we
may conclude that rϕ(n) = 1 in U (n) , i.e.

aϕ(n) modn = rϕ(n) modn = 1.

Theorem 15.5. Suppose G is a group of order p ≥ 3 which is prime. Then G
is isomorphic to Z2p or Dp.

Before giving the proof let us first prove a couple of lemmas.

Lemma 15.6. If G is a group such that a2 = e for all a ∈ G, then G is abelian.

Proof. Since a2 = e we know that a = a−1 for all a ∈ G. So for any a, b ∈ G
it follows that

ab = (ab)−1 = b−1a−1 = ba,

i.e. G must be abelian.

Lemma 15.7. If G is a group having two distinct commuting elements, a and
b, with |a| = 2 = |b| , then H := {e, a, b, ab} is a sub-group of order 4.

Proof. By cancellation ab is not equal to a or b. Moreover if ab = e, then
a = b−1 = b which again is not allowed by assumption. Therefore H has four
elements. It is easy to see that H ≤ G.



48 15 Lecture 15 (2/9/2009)

We are now ready for the proof of Theorem 15.5.
Proof. Proof of Theorem 15.5.
Case 1. There is an element, g ∈ G of order 2p. In this case G = 〈g〉 ∼= Z2p

and we are done.
Case 2. |g| ≤ p for all g ∈ G. In this case we must have at least one element,

a ∈ G, such that |a| = p. Otherwise we would have (by Lagrange’s theorem)
|g| ≤ 2 for all g ∈ G. However, by Lemmas 15.6 and 15.7 this would imply that
G contains a subgroup, H, of order 4 which is impossible because of Lagrange’s
theorem.

Let a ∈ G with |a| = p and set

H := 〈a〉 =
{
e, a, a2, . . . , ap−1

}
.

As [G : H] = |G| / |H| = 2p/p = 2, there are two distinct disjoint cosets of H
in G. So if b is any element in G \H the two distinct cosets are H and

bH = b 〈a〉 =
{
b, ba, ba2, . . . , bap−1

}
.

We are now going to show that b2 = e for all b ∈ G \H. What we know is that
b2H is either H or bH. If b2H = bH then b = b−1b2 ∈ H which contradicts the
assumption that b /∈ H. Therefore we must have b2H = H, i.e. b2 ∈ H. If b2 6= e,
then b2 = al for some 1 ≤ l < p and therefore

∣∣b2∣∣ =
∣∣al∣∣ = p/ gcd (l, p) = p and

therefore |b| = 2p. However, we are in case 2 where it is assumed that |g| ≤ p
for all g ∈ G so this can not happen. Therefore we may conclude that b2 = e
for all b /∈ H.

Let us now fix some b /∈ H = 〈a〉 . Then ba /∈ H and therefore we know
(ba)2 = e which is to say ba = (ba)−1 = a−1b−1, i.e. bab−1 = a−1. Therefore

G = H ∪ bH =
{
ak, bak : 0 ≤ k < n

}
with ap = e, b2 = e, and bab = a−1.

But his is precisely our description of Dp. Indeed, recall that for n ≥ 3,

Dn =
{
rk, frk : 0 ≤ k < n

}
with f2 = e, rn = e, and frf = r−1.

Thus we may map G → D2p via, ak → rk and bak → brk. This map is an
“isomorphism” of groups – a notion we discuss next.

15.1 Homomorphisms and Isomorphisms

Definition 15.8. Let G and Ḡ be two groups. A function, ϕ : G → Ḡ is a
homomorphism if ϕ (ab) = ϕ (a)ϕ (b) for all a, b ∈ G. We say that ϕ is an
isomorphism if ϕ is also a bijection, i.e. one to one and onto. We say G and
Ḡ are isomorphic if there exists and isomorphism, ϕ : G→ Ḡ.

Lemma 15.9. If ϕ : G→ Ḡ is an isomorphism, the inverse map, ϕ−1, is also
a homomorphism and ϕ−1 : Ḡ→ G is also an isomorphism.

Proof. Suppose that ā, b̄ ∈ Ḡ and a := ϕ−1 (ā) and b := ϕ−1
(
b̄
)
. Then

ϕ (ab) = ϕ (a)ϕ (b) = āb̄ from which it follows that

ϕ−1
(
āb̄
)

= ab = ϕ−1 (ā)ϕ−1
(
b̄
)

as desired.

Notation 15.10 If ϕ : G → Ḡ is a homomorphism, then the kernel of ϕ is
defined by,

ker (ϕ) := ϕ−1 ({eḠ}) := {x ∈ G : ϕ (x) = eḠ} ⊂ G

and the range of ϕ by

Ran (ϕ) := ϕ (G) = {ϕ (g) : g ∈ G} ⊂ Ḡ.

Example 15.11. The trivial homomorphism, ϕ : G→ Ḡ, is defined by ϕ (g) =
ē for all g ∈ G. For this example,

ker (ϕ) = G and Ran (G) = {ē} .

Example 15.12. Let G = GL (n,R) denote the set of n× n - invertible matrices
with the binary operation being matrix multiplication and letH = R∗ := R\ {0}
equipped with multiplication as the binary operation. Then det : G → H is a
homomorphism. In this example,

ker (det) = SL (n,R) := {A ∈ GL (n,R) : detA = 1} and
Ran (det) = R∗ (why?).

Example 15.13. Suppose that G = Rn and H = Rm both equipped with + as
their binary operation. Then any m × n matrix, A, gives rise to a homomor-
phism1 from G → H via the map, ϕA (x) := Ax for all x ∈ Rn. In this case
ker (ϕA) = Nul (A) and Ran (ϕA) = Ran (A) . Moreover, ϕA is an isomorphism
iff m = n and A is invertible.

1 Fact: any continuous homomorphism is of this form.
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Example 16.1. Suppose that G = R and Ḡ = S1 := {z ∈ Z : |z| = 1} . We use
addition on G and multiplication of Ḡ as the group operations. Then for each
λ ∈ R, ϕλ (t) := eiλt is a homomorphism from G to Ḡ. For this example, if
λ 6= 0 then ϕλ (t) = 1 iff λt ∈ 2πZ and therefore

ker (ϕλ) =
2π
λ

Z and Ran (ϕλ) = S1.

If λ = 0, ϕλ = ϕ0 is the trivial homomorphism.

Example 16.2. Suppose that G = Ḡ = S1 := {z ∈ Z : |z| = 1} . Then for each
n ∈ Z, ϕn (z) := zn is a homomorphism and when n = ±1 it is an isomorphism.
If n = 0, ϕn = ϕ0 is the trivial homomorphism while if n 6= 0, ϕn (z) = 1 iff
zn = 1 iff z = ei

2π
n k for some k = 0, 1, 2, . . . , n− 1, so that

ker (ϕn) =
{
ei

2π
n k : k = 0, 1, 2, . . . , n− 1

}
while

Ran (ϕn) = S1 = Ḡ.

Theorem 16.3. If ϕ : G→ Ḡ is a homomorphism, then

1. ϕ (e) = ē ∈ Ḡ,
2. ϕ

(
a−1

)
= ϕ (a)−1 for all a ∈ G,

3. ϕ (an) = ϕ (a)n for all n ∈ Z,
4. If |g| <∞ then |ϕ (g)| divides |g| ,
5. ϕ (G) ≤ Ḡ,
6. ker (ϕ) ≤ G,
7. ϕ (a) = ϕ (b) iff a−1b ∈ ker (ϕ) iff a ker (ϕ) = b ker (ϕ) , and
8. If ϕ (a) = ā ∈ Ḡ, then

ϕ−1 (ā) := {x ∈ G : ϕ (x) = ā} = a kerϕ.

Proof. We prove each of these results in turn.

1. By the homomorphism property,

ϕ (e) = ϕ (e · e) = ϕ (e) · ϕ (e)

and so by cancellation, we learn that ϕ (e) = ē.

2. If a ∈ G we have,

ē = ϕ (e) = ϕ
(
a · a−1

)
= ϕ (a) · ϕ

(
a−1

)
and therefore, ϕ

(
a−1

)
= ϕ (a)−1

.
3. When n = 0 item 3 follows from item 1. For n ≥ 1, we have

ϕ (an) = ϕ
(
a · an−1

)
= ϕ (a) · ϕ

(
an−1

)
from which the result then follows by induction. For n ≤ 1 we have,

ϕ (an) = ϕ

((
a|n|
)−1

)
= ϕ

(
a|n|
)−1

=
(
ϕ (a)|n|

)−1

= ϕ (a)n .

4. Let n = |g| < ∞, then ϕ (g)n = ϕ (gn) = ϕ (e) = e. Therefore, |ϕ (g)|
divides n = |g| .

5. If x, y ∈ G, ϕ (x) and ϕ (y) are two generic elements of ϕ (G) . Since,
ϕ (x)−1

ϕ (y) = ϕ
(
x−1y

)
∈ ϕ (G) , it follows that ϕ (G) ≤ Ḡ.

6. If x, y are now in ker (ϕ) , i.e. ϕ (x) = e = ϕ (y) , then

ϕ
(
x−1y

)
= ϕ (x)−1

ϕ (y) = e−1e = e.

This shows x−1y ∈ ker (ϕ) and therefore that ker (ϕ) ≤ G.
7. We have ϕ (a) = ϕ (b) iff e = ϕ (a)−1

ϕ (b) = ϕ
(
a−1b

)
iff a−1b ∈ ker (ϕ) .

8. We have x ∈ ϕ−1 (ā) iff ϕ (x) = ā = ϕ (a) which (by 7.) happens iff a−1x ∈
ker (ϕ) , i.e. iff x ∈ a ker (ϕ) .

Corollary 16.4. A homomorphism, ϕ : G→ Ḡ is an isomorphism iff ker (ϕ) =
{e} and ϕ (G) = Ḡ.

Proof. According to item 7. of Theorem 16.3, ϕ is one to one iff ker (ϕ) =
{e} . Since ϕ is onto iff (by definition) ϕ (G) = Ḡ the proof is complete.

Proposition 16.5 (Classification of groups with all elments being or-
der 2). Suppose G is a non-trivial finite group such that x2 = 1 for all x ∈ G.
Then G ∼= Zk2 and |G| = 2k for some k ∈ Z+.



Proof. We know from Lemma 15.6 that G is abelian. Choose a1 6= e and
let

H1 := {e, a1} = {aε1 : ε ∈ Z2} ≤ G.

If H1 6= G, choose a2 ∈ G \H1 and then let

H2 := {aε11 a
ε2
2 : εi ∈ Z2} ≤ G.

Notice that |H2| = 22. If H2 6= G choose a3 ∈ G \H2 and let

H3 := {aε11 a
ε2
2 a

ε3
3 : εi ∈ Z2} .

If aε11 a
ε2
2 a3 = a

ε′1
1 a

ε′2
2 , then a3 ∈ H2 which is is not. If aε11 a

ε2
2 a3 = a

ε′1
1 a

ε′2
2 a3 then

aε11 a
ε2
2 = a

ε′1
1 a

ε′2
2 and therefore εi = ε′i for i = 1, 2. This shows that |H3| = 23,

i.e. all elements in the list are distinct. Continuing this way we eventually find
{ai}ki=1 ⊂ G such that

G = {aε11 . . . aεkk : εi ∈ Z2}

with all elements being distinct in this list. We may now define ϕ : Zk2 → G, by

ϕ (ε1, . . . , εk) := aε11 . . . aεkk .

This map is clearly one to one and onto and is easily seen to be a homomorphism
and hence an isomorphism. Indeed, since G is abelian,

ϕ (ε1, . . . , εk)ϕ (δ1, . . . , δk) = aε11 . . . aεkk a
δ1
1 . . . aδkk = aε11 a

δ1
1 . . . aεkk a

δk
k

= aε1+δ1
1 . . . a

εk+δk
k = a

(ε1+δ1) mod 2
1 . . . a

(εk+δk) mod 2

k

= ϕ ((ε1, . . . , εk) + (δ1, . . . , δk)) .

Example 16.6 (Essentially the same as a homework problem). Recall that
U (12) = {1, 5, 7, 11} has all elements of order 2. Since |U (12)| = 22 we know
that U (12) ∼= Z2

2. In this case we may take, ϕ (ε1, ε2) := 5ε17ε2 . Notice that
5 · 7 = 35 mod 12 = 11. On the other hand,

U (10) = {1, 3, 7, 9} = 〈3〉 =
{

1, 3, 32 = 9, 33 = 7
}
.

It will follows from Theorem 17.1 below that U (10) and U (12) can not be
isomorphic.
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Theorem 17.1. If ϕ : G → Ḡ is a group isomorphism, then ϕ preserves all
group related properties. For example;

1. |ϕ (g)| = |g| for all g ∈ G.
2. G is cyclic iff Ḡ is cyclic. Moreover g ∈ G is a generator of G iff ϕ (g) is a

generator of Ḡ.
3. a, b ∈ G commute iff ϕ (a) , ϕ (b) commute in G. In particular, G is abelian

iff Ḡ is abelian.
4. For k ∈ Z+ and b ∈ G, the equation xk = b in G and x̄k = ϕ (b) in Ḡ have

the same number of equations. In fact, if xk = b iff ϕ (x)k = ϕ (b) .
5. K ⊂ G is a subgroup of G iff ϕ (K) is a subgroup of Ḡ.

Proof. 1. We have seen that |ϕ (g)| | |g| . Similarly it follows that∣∣ϕ−1 (ϕ (g))
∣∣ | |ϕ (g)| , i.e. |g| | |ϕ (g)| . Thus |ϕ (g)| = |g| .

2. If G = 〈g〉 , then Ḡ = ϕ (G) = 〈ϕ (g)〉 showing Ḡ is cyclic. The converse
follows by considering ϕ−1.

3. If ab = ba then ϕ (a)ϕ (b) = ϕ (ab) = ϕ (ba) = ϕ (b)ϕ (a) . The converse
assertion again follows by considering ϕ−1.

4. We have xk = b implies ϕ (b) = ϕ
(
xk
)

= ϕ (x)k . Conversely if x̄k = ϕ (b)
then ϕ−1 (x̄)k = b. Thus taking x := ϕ−1 (x̄) we have xk = b and x̄ = ϕ (x) .

5. We know if K ≤ G then ϕ (K) ≤ Ḡ and ϕ (K) ≤ Ḡ then K =
ϕ−1 (ϕ (K)) ≤ G.

Example 17.2. Let C∗ = C \ {0} and R∗ := R \ {0} which are groups under
multiplication. We claim they are not isomorphic. If they were the equations
z4 = 1 in C∗ and x4 = 1 in R∗ would have to have the same number of solutions.
However the first has four solutions, z = {±1,±i} , while the second has only
two, {±1} .

Proposition 17.3. Suppose that ϕ : G → Ḡ is a homomorphism and a ∈ G,
then the values of ϕ on 〈a〉 ≤ G are uniquely determined by knowing ā = ϕ (a) .
Let n̄ := |ā| and n = |a| .

1. If n = ∞, then to every element ā ∈ Ḡ there is a unique homomorphism
from G to Ḡ such that ϕ (a) = ā. If n̄ = ∞, then ker (ϕ) = {e} while if
n̄ <∞, then ker (ϕ) = 〈an̄〉 =

〈
a|ā|
〉
.

2. If n < ∞, then to every element ā ∈ Ḡ such that n̄|n, there is a unique
homomorphism, ϕ, from G to Ḡ. This homomorphism satisfies;
a) ker (ϕ) = 〈an̄〉 =

〈
a|ā|
〉

and
b) ϕ : 〈a〉 → 〈ā〉 is an isomorphism iff |a| = n = n̄ = |ā| .

In particular, two cyclic groups are isomorphic iff they have the same order.

Proof. Since ϕ
(
ak
)

= ϕ (a)k = āk, it follows that ϕ is uniquely determined
by knowing ā = ϕ (a) .

1. If n = |a| =∞, we may define ϕ
(
ak
)

= āk for all k ∈ Z. Then

ϕ
(
akal

)
= ϕ

(
ak+l

)
= āk+l = ākāl = ϕ

(
ak
)
ϕ
(
al
)
,

showing ϕ is a homomorphism. Moreover, we have e = ϕ
(
ak
)

= āk iff n̄ = |ā|
divides |k, i.e.

ker (ϕ) =
{
al·n̄ : l ∈ Z

}
=
〈
an̄
〉
.

2. Now suppose that n and n̄ are finite and n̄|n. Then again we define,

ϕ
(
ak
)

:= āk for all k ∈ Z.

However in this case we must show ϕ is “well defined,” i.e. we must check
the definition makes sense. The problem now is that

{
ak : k ∈ Z

}
contains

repetitions and in fact we know that ak = akmodn. Thus we must show
ϕ
(
ak
)

= ϕ
(
akmodn

)
. Write k = sn+ r with r = kmodn, then

ϕ
(
ak
)

= āk = āsnār = ār = ϕ (ar) ,

wherein we have used ān = e since n̄|n.
We now compute ker (ϕ) . For this we have ē = ϕ

(
ak
)

= āk iff n̄|k and
therefore,

ker (ϕ) =
{
ak : n̄|k

}
=
{
al·n̄ : l ∈ Z

}
=
〈
an̄
〉
.

Notice that ker (ϕ) = {e} iff n̄ = n and in this case ϕ (〈a〉) = 〈ā〉 showing ϕ is
an isomorphism. If G and Ḡ are cyclic groups of different orders, there is not
bijective map from G to Ḡ let alone no bijective homomorphism.

Corollary 17.4. If G = 〈a〉 and |a| =∞, then ϕ : G→ Z defined by ϕ
(
ak
)

=
k is an isomorphism. While if |a| = n < ∞, then ϕ : G → Zn defined by
ϕ
(
ak
)

= kmodn is an isomorphism.
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Proof. Each of the maps are well defined (by Proposition 17.3) homomor-
phisms onto Z and Zn respectively. Moreover the same proposition shows that
ker (ϕ) = {e} in each case and therefore they are isomorphism.

Example 17.5. If ϕ : Z12 → Z30 is a homomorphism, then ϕ (1) = k ∈ Z30

where the order of |k| must divide 12 which is equivalent to k · 12 = 0 in
Z30. This condition is easy to remember since, 12 = 0 in Z12 and therefore
0 = ϕ (0) = ϕ (12) = k ·12. At any rate we know that 30| (k · 12) or equivalently,
5| (2k) , i.e. 5|k. Thus the homomorphisms are of the form,

ϕk (x) = kx where k ∈ {0, 5, 10, 15, 20, 25} .

Furthermore we have ϕ5 (x) = 0 iff 5x = 0 (mod) 30 iff x = 0 (mod) 6 iff x is a
multiple of 6, i.e. x ∈ 〈6〉 . We also have

ϕ5 (Z12) = 〈5〉 = {1, 5, 10, 15, 20, 25} ≤ Z30.

More generally one shows

k gcd (k, 30) |k| = 30
gcd(k,30)

Ran (ϕk) = 〈k〉 =
〈gcd (k, 30)〉 ≤ Z30

ker (ϕk) =
〈|k|〉 ≤ Z12

0 30 1 〈0〉 = 〈30〉 Z12 = 〈1〉
5 5 6 〈5〉 〈6〉
10 10 3 〈10〉 〈3〉
15 15 2 〈15〉 〈2〉
20 10 3 〈20〉 = 〈10〉 〈3〉
25 5 6 〈25〉 = 〈5〉 〈6〉

as we will prove more generally in the next proposition.

Lemma 17.6. Suppose that m,n, k ∈ Z+, then m| (nk) iff m
gcd(m,n) |k.

Proof. Let d := gcd (m,n) , m′ := m/d and n′ := n/d. Then gcd (m′, n′) =
1. Moreover we have m| (nk) iff Z 3nkm = n′k

m′ iff m′| (n′k) iff (by Euclid’s lemma)
m′|k.

Proposition 17.7. If ϕ : Zn → Zm is a homomorphisms, then ϕ = ϕk for
some k ∈

〈
m

gcd(m,n)

〉
where ϕk (x) = kx (= kxmodm) . The list of distinct

homomorphisms from Zn → Zm is given by,{
ϕk : k ∈

〈
m

gcd (m,n)

〉
with 0 ≤ k < m

gcd (m,n)

}
.

Moreover,

Ran (ϕk) = ϕ (Zn) = 〈k〉 = 〈gcd (m, k)〉 ≤ Zm and

ker (ϕ) =
〈
|k|Zm

〉
=
〈

m

gcd (k,m)

〉
≤ Zn.

Proof. Let d := gcd (m,n) and m′ = m/d. By Proposition 17.3 the homo-
morphisms, ϕ : Zn → Zm, are of the form ϕk (x) = kx where k = ϕk (1) must
satisfy, |k|Zm |n, i.e. m

gcd(k,m) |n. Alternatively, this is equivalent to (see the proof1

of item 4. of Theorem 16.3) requiring kn = 0 in Zm, i.e. that m| (kn) which by
Lemma 17.6 is equivalent to m′|k. Thus the homomorphisms ϕ : Zn → Zm are
of the form ϕ = ϕk where k ∈ 〈m′〉 =

〈
m

gcd(m,n)

〉
.

If is now easy to see that Ran (ϕk) = 〈k〉 = 〈gcd (m, k)〉 and from Proposi-
tion 17.3 we know that

ker (ϕk) =
〈
|k|Zm · 1

〉
=
〈

m

gcd (k,m)

〉
.

Alternatively, 0 = ϕk (x) iff kx = 0 (mod)m, i.e. iff m| (kx) which happens (by
Lemma 17.6) iff m′|x, i.e.

x ∈ 〈m′〉 =
〈

m

gcd (k,m)

〉
=
〈
|k|Zm

〉
≤ Zn.

Corollary 17.8. If m,n ∈ Z+ are relatively prime there is only one homomor-
phism, ϕ : Zn → Zm, namely the zero homomorphism.

Proof. This follows from Proposition 17.7. We can also check it directly.
Indeed, if ϕ (1) = k then 0 = ϕ (0) = ϕ (n) = knmodm which implies m| (nk)
and hence by Euclid’s lemma, m|k. Therefore,

ϕ (x) = (kx) modm = (kmodm) (xmodm) modm = 0 (xmodm) modm = 0

for all x ∈ Zn.

1 We can also see this using Lemma 17.6. By that lemma with the roles of n and k
interchanged, m

gcd(k,m)
|n iff m| (nk) .
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Notation 18.1 Given a group, G, let

Aut (G) := {ϕ : G→ G|ϕ is an isomorphism} .

We call Aut (G) the automorphism group of G.

Lemma 18.2. Aut (G) is a group using composition of homomorphisms as the
binary operation.

Proof. We will show Aut (G) is a sub-group of the invertible functions from
G → G. We have already seen that Aut (G) is closed under taking inverses in
Lemma 15.9. So we must now only show that Aut (G) is closed under function
composition. But this is easy, since if a, b ∈ G and ϕ,ψ ∈ Aut (G) , then ϕ ◦ ψ
is still a bijection with inverse function given by (ϕ ◦ ψ)−1 = ψ−1 ◦ ϕ−1, and

(ϕ ◦ ψ) (ab) = ϕ (ψ (ab)) = ϕ (ψ (a)ψ (b))
= ϕ (ψ (a))ϕ (ψ (b)) = (ϕ ◦ ψ) (a) · (ϕ ◦ ψ) (b)

which shows that ϕ ◦ ψ ∈ Aut (G) .

Example 18.3. To each a ∈ G, let ϕa (g) := aga−1. Then ϕa ∈ Aut (G) . Indeed,
one has ϕ−1

a = ϕa−1 and for x, y ∈ G,

ϕa (xy) = axya−1 = axa−1aya1 = ϕa (x)ϕa (y) .

Notice that ϕa = idG iff a ∈ Z (G) . In particular if G is abelian, then ϕa = id
for all a ∈ G.

Definition 18.4. We say that, ϕa (g) = aga−1, is conjugation by a and refer
to ϕa as an inner automorphism. The set of inner automorphism is then

Inn (G) := {ϕa ∈ Aut (G) : a ∈ G} .

Example 18.5. If ϕ : Z→ Z is a homomorphism, then ϕ (x) = kx where k =
ϕ (1) . Conversely, ϕk (x) := kx gives a homomorphism from Z→ Z for all
k ∈ Z. Moreover we have ker (ϕk) = 〈0〉 if k 6= 0 while ker (ϕ0) = Z. Since
ϕk (Z) = 〈k〉 ≤ Z we see that ϕk (Z) = Z iff k = ±1. So ϕk : Z→ Z is an
isomorphism iff k ∈ {±1} and we have shown (see Proposition 16.5),

Aut (Z) = {ϕk : k = 1 or k = −1} ∼= Z2.

To see that last statement directly simply check that ψ : Z2 → Aut (Z) defined
by ψ (0) = ϕ1 and ψ (1) = ϕ−1 is a homomorphism. The only case to check is
as follows:

ϕ1 = ψ (0) = ψ (1 + 1) ?= ψ (1) ◦ ψ (1) = ϕ−1 ◦ ϕ−1 = ϕ(−1)2 = ϕ1. X

Theorem 18.6 (Aut (Zn) ∼= U (n)). All of the homomorphisms form Zn to
itself are of the form, ϕk (x) = kxmodn for some k ∈ Zn. Moreover, these ϕk
is an isomorphism iff k ∈ U (n) . Moreover the map,

U (n) 3 k → ϕk ∈ Aut (Zn) (18.1)

is an isomorphism of groups.

Proof. Since kn = 0 modn for all k ∈ Zn it follows from Proposition 17.7
that all of the homomorphisms, ϕ : Zn → Zn are of the form described. More-
over, by Proposition 17.7, Ran (ϕk) = 〈k〉 = 〈gcd (n, k)〉 which is equal to Zn
iff gcd (n, k) = 1, i.e. iff k ∈ U (n) . For such a k we know that ϕk is also one to
one since Zn is a finite set. Thus

Aut (Zn) = {ϕk : k ∈ U (n)} . (18.2)

Alternatively we have

ker (ϕk) =
〈

n

gcd (k, n)

〉
which is trivial iff n

gcd(k,n) = n, i.e. gcd (k, n) = 1, i.e. k ∈ U (n) . Thus for
k ∈ U (n) we know that ϕk is one to one and hence onto. So again we have
verified Eq. (18.2).

Suppose that k, l ∈ U (n) , then with all arithmetic being done modn – i.e.
in Zn we have

ϕk ◦ ϕl (x) = k (lx) = (kl)x = ϕkl (x) for all x ∈ Zn.

This shows that map in Eq. (18.1) is a homomorphism and hence an isomor-
phism since it is one to one and onto. The inverse map is,



Aut (Zn) 3 ϕ→ ϕ (1) ∈ U (n) .

Third direct proof: Suppose that k, l ∈ Zn, then with all arithmetic being
done modn – i.e. in Zn we have

ϕk ◦ ϕl (x) = k (lx) = (kl)x = ϕkl (x) for all x ∈ Zn.

Using this it follows that if k ∈ U (n) and k−1 is its inverse in U (n) , then
ϕ−1
k = ϕk−1 , so that ϕk ∈ Aut (Zn) . Conversely if d = gcd (k, n) > 1, then

ϕk

(n
d

)
=
(
k
n

d

)
modn =

(
k

d
n

)
modn = 0

which shows ker (ϕk) contains n
d 6= 0 in Zn. Hence ϕk is not an isomorphism.

Proposition 18.7. If ϕ : Z→ Zn is a homomorphism, then ϕ (x) = kx (=
kxmodn) where k = ϕ (1) ∈ Zn. Conversely to each k ∈ Zn, ϕk (x) := kx
defines a homomorphism from Z→ Zn. The kernel and range of ϕk are given
by

ker (ϕk) =
〈

n

gcd (k, n)
1
〉

=
〈

n

gcd (k, n)

〉
⊂ Z

and
Ran (ϕk) = 〈k〉 = 〈gcd (k, n)〉 ⊂ Zn.

Thus ker (ϕk) is never 0 and Ran (ϕk) = Zn iff k ∈ U (n) .

Proof. Most of this is straight forward to prove and actually follows from
Proposition 17.3. Since the order of k ∈ Zn is n

gcd(k,n) we have,

ker (ϕk) =
〈

n

gcd (k, n)
· 1
〉

=
〈

n

gcd (k, n)
1
〉
.

As a direct check notice that 0 = ϕk (x) = kxmodn happens iff n|kx iff
n

gcd(k,n) |x iff x ∈
〈

n
gcd(k,n) · 1

〉
. We can also directly check that ϕk is a ho-

momorphism:

ϕk (x+ y) = k (x+ y) modn = (kx+ ky) modn
= kxmodn+ kymodn = ϕk (x) + ϕk (y) .

Finally,
ϕk (Z) = 〈k〉 = 〈gcd (k, n)〉 ≤ Zn,

and therefore, ϕk (Z) = 〈k〉 = Zn iff k is a generator of Zn iff gcd (k, n) = 1 iff
k ∈ U (n) .
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Definition 19.1. The external direct product of groups, G1, . . . , Gn, is,

G1 ⊕ · · · ⊕Gn := G1 × · · · ×Gn as a set

with group operation given by

(g1, . . . , gn) (g′1, . . . , g
′
n) = (g1g

′
1, . . . , gng

′
n) ,

i.e. you just multiply componentwise. (It is easy to check this is a group with
e := (e, . . . , e) being the identity and

(g1, . . . , gn)−1 =
(
g−1

1 , . . . , g−1
n

)
.

Example 19.2. Recall that U (5) = {1, 2, 3, 4} and Z3 = {0, 1, 2} and therefore,

U (5)× Z3 = {(i, j) : 1 ≤ i ≤ 4 and 0 ≤ j ≤ 2} .

Moreover, we have

(2, 1) · (3, 1) = (2 · 3 mod 5, 1 + 1 mod 3) = (1, 2) .

and
(2, 1)−1 = (3, 2) .

Example 19.3. Suppose that |G| = 4, then G ∼= Z4 or G ∼= Z2 ⊕ Z2. By La-
grange’s theorem, we know that |g| = 1, 2, or 4 for all g ∈ G. If there exists
g ∈ G with |g| = 4, then G = 〈g〉 ∼= Z4 and if |g| ≤ 2 for all g ∈ G we know
that G ∼= Z2 ⊕ Z2 from results we have proved above. In particular there are
only two groups of order 4 and they are both abelian.

Fact 19.4 Here are some simple facts about direct products:

1. |G1 ⊕ · · · ⊕Gn| = |G1| × · · · × |Gn| .
2. Up to isomorphism, the groups G1 ⊕ · · · ⊕ Gn are independent of how the

factors are ordered. For example,

G1 ⊕G2 ⊕G3 3 (g1, g2, g3)→ (g3, g2, g1) ∈ G3 ⊕G2 ⊕G1

is an isomorphism.

3. One may associate the direct product factors in any way you please up to
isomorphism. So for example,

(G1 ⊕G2)⊕G3 3 ((g1, g2) , g3)→ (g1, g2, g3) ∈ G1 ⊕G2 ⊕G3

is an isomorphism.

Remark 19.5. Observe that if g = (e, . . . , e, gk, e, . . . , e) and g′ =
(e, . . . , e, gl, e, . . . , e) for some l 6= k, then g and g′ commute. For exam-
ple in G1 ×G2, (g1, e) and (e, g2) commute since,

(g1, e) (e, g2) = (g1, g2) = (e, g2) (g1, e) .

Theorem 19.6. Let (g1, . . . , gn) ∈ G1 ⊕ · · · ⊕Gn, then

|(g1, . . . , gn)| = lcm (|g1| , . . . , |gn|) .

(Also see Proposition 13.3.)

Proof. If t ∈ Z+, then

(g1, . . . , gn)t = e = (e, . . . , e) ⇐⇒ gti = e for all i

and this happens iff |gi| |t for all i, i.e. iff t is a common multiple of {|gi|} .
Therefore the order (g1, . . . , gn) must be lcm (|g1| , . . . , |gn|) .

Example 19.7 (Exercise 8.10 and 8.11).

1. How many elements of order 9 does Z3 ⊕ Z9 have? The elements of order
9 are of the form (a, b) where |b| = 9, i.e. b ∈ U (9) . Thus the elements of
order 9 are Z3 × U (9) of which there are,

|Z3 × U (9)| = 3 · ϕ (9) = 3 ·
(
33 − 3

)
= 18.

2. Exercise 8.11 – how many elements of order 4 are there in Z400 ⊕ Z800?
Recall that there is one subgroup of order 4 inside of Zn when 4|n which is〈
n
4

〉
. All the elements of order 4 are inside this sub-group and hence there

are ϕ (4) = 2 of them. The elements of order 2 in Zn are in
〈
n
2

〉
and there

is only one of them. So Zn has 2 elements of order 4 and one each of order
2 and 1. The elements of order 4 inside of Zm ⊕ Zn are of the form (a, b)
where |a| = 1 or 2 and |b| = 4 of which there are 2 · 2 = 4 of them or |a| = 4
and |b| ∈ {1, 2, 4} or which there are 2 · 4 = 8, so the total is 8 + 4 = 12.
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Example 19.8 (p. 155 Example 5). Determine the number of cyclic subgroups
of order 10 inside of Z100 ⊕ Z25. The strategy is to observe that every cyclic
subgroup H = 〈(a, b)〉 , of order 10 contains ϕ (10) = 1 · 4 = 4 elements of
order 10. Thus if we count the number of elements of order 10 we must divide
by 4 to get the number of cyclic subgroups of order 10 because no distinct
cyclic subgroups of order 10 can share an element of order 10. We now count
the number of elements (a, b) ∈ Z100 ⊕ Z25 of order 10. Recall that |(a, b)| =
lcm (|a| , |b|) and 100 = 10 · 10 = 22 · 52 and 25 = 52. So in order to get an
element of order 10 we must either

1. |a| = 10 and |b| = 1 or 5 of which there are ϕ (10) · (ϕ (1) + ϕ (5)) =
4 · (1 + 4) = 20 of them, or

2. |a| = 2 and |b| = 5 of which there are ϕ (2) · ϕ (5) = 1 · 4 = 4.

Therefore there are (20 + 4) /4 = 6 cyclic subgroups of order 10 inside of
Z100 ⊕ Z25.

Lemma 19.9. If G and H are groups such that G ⊕H is cyclic, then both G
and H are cyclic. Alternatively put, if either G or H is not cyclic, then G⊕H
is not cyclic.

Proof. Let (g, h) ∈ G⊕H be a generator of G⊕H. Then every element of
G⊕H is of the form

(g, h)k =
(
gk, hk

)
for some k ∈ Z.

Thus every element of G must be of the form gk for some k ∈ Z and every
element of H must be of the form hk for some k ∈ Z, i.e. both G and H are
cyclic.

Theorem 19.10. Suppose that G and H are cyclic groups of finite order, then
G⊕H is cyclic iff |G| and |H| are relatively prime.

Proof. Let m = |G| and n = |H| and suppose that G ⊕H is cyclic. Then
there exists (a, b) ∈ G⊕H such that |(a, b)| = mn. Now if d = gcd (m,n) then

(a, b)
mn
d =

(
am

n
d , bn

m
d

)
=
(
e
n
d , e

m
d

)
= (e, e)

so that (mn) /d ≥ |(a, b)| = mn and hence d = 1, i.e. m and n are relatively
prime.

Conversely if m and n are relatively prime and G = 〈a〉 and H = 〈b〉 , we
have |(a, b)| = lcm (m,n) = mn = |G⊕H| . (Alternatively, see Proposition
13.3.)

Example 19.11. Using the above results,

Z10 ⊕ Z12
∼= (Z2 ⊕ Z5)⊕ (Z4 ⊕ Z3)
∼= Z2 ⊕ Z5 ⊕ Z4 ⊕ Z3

∼= Z5 ⊕ Z4 ⊕ Z2 ⊕ Z3
∼= Z20 ⊕ Z6

and also,
Z10 ⊕ Z12

∼= Z15 ⊕ Z8.

By the way, |Z10 ⊕ Z12| = 120 as is true of all of the other isomorphic groups
appearing above.

Corollary 19.12. Suppose that Gi is cyclic for each i, then G1 ⊕ · · · ⊕ Gn is
cyclic iff |Gi| and |Gj | are relatively prime for all i 6= j.

Proof. This is proved by induction. Rather than do this, let me show how
the case n = 3 works. First suppose that mi := |Gi| and mj := |Gj | are
relatively prime for all i 6= j. Then by Theorem 19.10, G′2 := G2 ⊕G3 is cyclic
and observe that |G′2| = m2m3 is relatively prime to m1. (Indeed, look at the
prime number decompositions. Alternatively, if d > 1 is a divisor of m1 and
(m2m3) , then by Euclid’s lemma, d is also a divisor of m2 or m3 and either m1

and m2 or m1 and m3 are not relatively prime.) So by another application of
Theorem 19.10, we know G1 ⊕G2 ⊕G3

∼= G1 ⊕G′2 is cyclic as well.
Conversely if m2 and m3 are not relatively prime (for sake of argument),

then G′2 := G2 ⊕G3 is not cyclic and therefore by Lemma 19.9 we know G1 ⊕
G2 ⊕G3

∼= G1 ⊕G′2 is not cyclic as well.
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Lemma 20.1. Let G be a group, H ≤ G, and a, b ∈ H. Then

1. G is the disjoint union of its distinct cosets.
2. aH = bH iff a−1b ∈ H.

Theorem 20.2 (Lagrange’s Theorem). Suppose that G is a finite group and
H ≤ G, then

|G : H| × |H| = |G| ,

where |G : H| := # (G/H) is the number of distinct cosets of H in G. In
particular |H| divides |G| and |G| / |H| = |G : H| .

Corollary 20.3. If G is a group of prime order p, then G is cyclic and every
element in G \ {e} is a generator of G.

Corollary 20.4 (Fermat’s Little Theorem). Let p be a prime number and
a ∈ Z. Then

ap mod p = amod p.

Theorem 20.5. If ϕ : G→ Ḡ is a homomorphism, then

1. ϕ (an) = ϕ (a)n for all n ∈ Z,
2. If |g| <∞ then |ϕ (g)| divides |g| or equivalently, ϕ (g)|g| = e,

3. ϕ (G) ≤ Ḡ and ker (ϕ) ≤ G,
4. ϕ (a) = ϕ (b) iff a−1b ∈ ker (ϕ) iff a ker (ϕ) = b ker (ϕ) , and
5. If ϕ (a) = ā ∈ Ḡ, then

ϕ−1 (ā) := {x ∈ G : ϕ (x) = ā} = a kerϕ.

Corollary 20.6. A homomorphism, ϕ : G → Ḡ is one to one iff kerϕ = {e} .
So ϕ : G→ Ḡ is an isomorphism iff kerϕ = {e} and ϕ (G) = Ḡ.

Corollary 20.7. If G is a finite group and ϕ : G → G is a homomorphism,
then the following are equivalent:

1. ϕ is an isomorphism.
2. kerϕ = {e} .
3. ϕ is one to one.
4. ϕ (G) = G, i.e. ϕ is onto.

Theorem 20.8. If ϕ : G → Ḡ is a group isomorphism, then ϕ preserves all
group related properties. For example;

1. |ϕ (g)| = |g| for all g ∈ G.
2. G is cyclic iff Ḡ is cyclic. Moreover g ∈ G is a generator of G iff ϕ (g) is a

generator of Ḡ.
3. a, b ∈ G commute iff ϕ (a) , ϕ (b) commute in G. In particular, G is abelian

iff Ḡ is abelian.
4. For k ∈ Z+ and b ∈ G, the equation xk = b in G and x̄k = ϕ (b) in Ḡ have

the same number of equations. In fact, if xk = b iff ϕ (x)k = ϕ (b) .
5. K ⊂ G is a subgroup of G iff ϕ (K) is a subgroup of Ḡ.

Theorem 20.9 (Key Cyclic Group Facts). Let a ∈ G and n = |a| . Then;

1. ai = aj iff i ≡ j (mod)n,
2. If k|m then 〈am〉 ⊂

〈
ak
〉
.

3.
〈
ai
〉

=
〈
aj
〉

iff gcd (i, n) = gcd (j, n).
4.
〈
ak
〉

=
〈
agcd(n,k)

〉
.

5.
∣∣ak∣∣ = |a| / gcd (|a| , k) .

6. ak is a generator of 〈a〉 iff k ∈ U (n) .
7. If G is a cyclic group of order n, there there are ϕ (n) := |U (n)| elements

of order n in G which are given by,
{
ak : k ∈ U (n)

}
.

Theorem 20.10. Suppose that G is any finite group and d ∈ Z+, then the
number elements of order d in G is divisible by ϕ (d) = |U (d)| .

Theorem 20.11. If G is a cyclic group, then G ∼= Z if |G| =∞ or G ∼= Zn if
n := |G| <∞.

Proof. Let a ∈ G be a generator. If |G| = ∞, then ϕ : Z → G defined by
ϕ (k) := ak is an isomorphism of groups. If |G| = n < ∞, then ϕ : Zn → G
again defined by ϕ (k) := ak is an isomorphism of groups.

Theorem 20.12 (Fundamental Theorem of Cyclic Groups). Suppose
that G = 〈a〉 is a cyclic group.

1. The subgroups of G are all of the form, H = 〈am〉 for some m ∈ Z.
2. If n = |a| <∞ and H ≤ G, then m := |H| |n and H =

〈
an/m

〉
.
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3. To each divisor, k ≥ 1, of n there is precisely one subgroup of G of order k,
namely H =

〈
an/k

〉
.

Proposition 20.13. If ϕ : Zn → Zm is a homomorphisms, then ϕ = ϕk for
some k ∈

〈
m

gcd(m,n)

〉
where ϕk (x) = kx (= kxmodm) . The list of distinct

homomorphisms from Zn → Zm is given by,{
ϕk : k ∈

〈
m

gcd (m,n)

〉
with 0 ≤ k < m

gcd (m,n)

}
.

Moreover,

Ran (ϕk) = ϕ (Zn) = 〈k〉 = 〈gcd (m, k)〉 ≤ Zm and

ker (ϕ) =
〈
|k|Zm

〉
=
〈

m

gcd (k,m)

〉
≤ Zn.

Corollary 20.14. If m,n ∈ Z+ are relatively prime there is only one homo-
morphism, ϕ : Zn → Zm, namely the zero homomorphism.

Theorem 20.15. Let (g1, . . . , gn) ∈ G1 ⊕ · · · ⊕Gn, then

|(g1, . . . , gn)| = lcm (|g1| , . . . , |gn|) .

Theorem 20.16. Suppose that G and H are cyclic groups of finite order, then
G⊕H is cyclic iff |G| and |H| are relatively prime.

Corollary 20.17. Suppose that Gi is cyclic for each i, then G1 ⊕ · · · ⊕ Gn is
cyclic iff |Gi| and |Gj | are relatively prime for all i 6= j.

20.1 Examples:

Example 20.18. Show all non-trivial subgroups, H, of Z are isomorphic to Z.
Solution: from class we know that H = 〈n〉 for some n 6= 0. Now let ϕ (x) := nx
for x ∈ Z. Then ϕ is a homomorphism, kerϕ = {0} and ϕ (Z) = 〈n〉 , so ϕ is an
isomorphism.

Example 20.19. Write out all of the (left) cosets of 〈4〉 ≤ Z and compute
[Z : 〈4〉] . Answer, 〈4〉 = 0 + 〈4〉 , 1 + 〈4〉 , 2 + 〈4〉 , 3 + 〈4〉 – this is it. Why? well
these are all distinct since i + 〈4〉 is the only coset containing i for 0 ≤ i ≤ 3.
Moreover, you should check that every integer in Z is in precisely one of these
cosets. Thus it follows that [Z : 〈4〉] = 4.

Example 20.20. Find [Z12 : 〈3〉] . First off recall that |〈3〉| = |3| = 12
gcd(3,12) =

12
3 = 4 and hence by Lagrange’s theorem,

[Z12 : 〈3〉] =
|Z12|
|〈3〉|

=
12
4

= 3.

Example 20.21. What are the orders of the elements which occur in the group,
G := Z6 ⊕ Z10. To answer this suppose that (a, b) ∈ G then we know |(a, b)| =
lcm (|a| , |b|) where |a| ∈ {1, 2, 3, 6} , and |b| ∈ {1, 2, 5, 10} . Therefore one sees
that

|(a, b)| ∈ {1, 2, 5, 10} ∪ {2, 10} ∪ {3, 6, 15, 30} ∪ {6, 30}
= {1, 2, 3, 5, 6, 10, 15, 30}

are the possible orders.
Let us now compute the number element in G of order 10. This happens

if |a| = 1 and |b| = 10, or |a| = 2 and |b| = 5 or 10. Noting that ϕ (10) =
ϕ (2) · ϕ (5) = 1 · 4 = 4 it follows that the number of elements of order 10 is:
1 · 4 + 1 · (4 + 4) = 12.

Example 20.22. Suppose that ϕ : Z8 → Z4 is a homomorphism such that ϕ (3) =
1. Find a formula for ϕ and then find ker (ϕ) . Solution: First off we know
that 〈3〉 = 〈gcd (8, 3)〉 = 〈1〉 = Z8 (alternatively, 3 ∈ U (8) and is therefore
a generator) and therefore 3 is a generator of Z8. Hence it follows that ϕ is
determined by its value on 3 and since ϕ (3 · 8) = 1 · 8 = 0 (mod) 4, it follows
that there is such a homomorphism ϕ. Since 3 · 3 = 1 in Z8 it follows that
ϕ (1) = ϕ (3 · 3) = 3 · ϕ (3) = 3 · 1 = 3 in Z4. Therefore,

ϕ (x) = ϕ (x · 1) = x · ϕ (1) = 3xmod 4.

Now x ∈ ker (ϕ) iff 3xmod 4 = 0, i.e. iff 4|3x iff 4|x. Thus ker (ϕ) = 〈4〉 =
{1, 4} ≤ Z8.

Remark 20.23. In general if k ∈ U (n) , then we can find s, t ∈ Z by the division
algorithm such that sk + tn = 1. Taking this equation mod n then allows us
to conclude that k · (s modn) = 1 in Zn. For example if n = 8 and k = 3, we
have,

8 = 2 · 3 + 2 and 3 = 2 + 1

and therefore
1 = 3− 2 = 3− (8− 2 · 3) = 3 · 3− 8

and therefore 3 · 3 = 1 in Z8.
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Theorem 20.24 (Aut (Zn) ∼= U (n)). All of the homomorphisms form Zn to
itself are of the form, ϕk (x) = kxmodn for some k ∈ Zn. Moreover, these ϕk
is an isomorphism iff k ∈ U (n) . Moreover the map,

U (n) 3 k → ϕk ∈ Aut (Zn)

is an isomorphism of groups.
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22.1 U (n) groups

Lemma 22.1. If k, n ∈ Z+ and k|n, then αk : U (n) → U (k) defined by
αk (x) := xmod k is a homomorphism.

Proof. We first must check that r := αk (x) ∈ U (k) for all x ∈ U (n) , i.e.
that gcd (r, k) = 1. To see this write x = ak + r and observe that if d is a
common divisor of both k and r, then d will divide x and n since k|n, i.e. d is a
common divisor of x and n. But since x ∈ U (n), x and n are relatively prime
and therefore we must have d = 1, i.e. gcd (r, k) = 1 and hence r ∈ U (k) . The
fact that αk is a homomorphism follows from the basic properties of mod k –
arithmetic;

αk (xy) = xymod k = (xmod k · ymod k) mod k = αk (x) · αk (y) .

If k is not a divisor of n, then the map αk is not well defined in general. For
example, say k = 3 and n = 10, then

U (10) = {1, 3, 7, 9}

and we have α3 (3) = 3 mod 3 = 0 /∈ U (3) .

Definition 22.2. For k, n ∈ Z+ with k > 1 and k|n, let

Uk (n) := ker (αk) = {x ∈ U (n) : xmod k = 1} ≤ U (n) .

Example 22.3. If n = 10, then U (10) = {1, 3, 7, 9} and

U2 (10) = U (10) while U5 (10) = {1} .

(On the other hand, U3 (10) = {1, 7} = 〈7〉 ≤ U (10) .)

Example 22.4. If n = 30 = 2 · 3 · 5, then U (30) = {1, 7, 11, 13, 17, 19, 23, 29} ,

U2 (30) = U (30) ,
U3 (30) = {1, 7, 13, 19} ,
U5 (30) = {1, 11} ,
U6 (30) = {1, 7, 13, 19} ,
U10 (30) = {1, 11} ,
U15 (30) = {1} .

Further, let α : U (30)→ U (10) be the homomorphism, α (x) = xmod 10, then
restricting α to U3 (30) is given by;

α|U3(30)

U3 (30) → U (10)
x → xmod 10
1 → 1
7 → 7
13 → 3
19 → 9.

Notice that α : U3 (30)→ U (10) is an isomorphism. Similarly, if we let β :
U (30) → U (3) be the homomorphism, β (x) = xmod 3, then restricting β to
U10 (30) is given by;

β|U3(10)

U10 (30) → U (3)
x → xmod 3
1 → 1
11 → 2.

Therefore β : U10 (30)→ U (3) is an isomorphism.

Lemma 22.5. Suppose that m,n ≥ 2 are relatively prime, then Um (mn) ∩
Un (mn) = {1} .

Proof. By definition, x ∈ Um (mn)∩Un (mn) iff xmodm = 1 and xmodn =
1, i.e.

x = am+ 1 and x = bn+ 1 for some a, b ∈ Z.

From these equations we see that am = bn. Hence, n|am and it follows by
Euclid’s lemma that n|a. Thus it follows that x = a

nnm+ 1 with a/n ∈ Z, i.e.
x = xmodnm = 1.

Proposition 22.6. Suppose that m,n ≥ 2 are relatively prime, then α :
Um (mn)→ U (n) defined by α (x) := xmodn is an isomorphism.

Proof. Since ker (α) = Um (mn) ∩ Un (mn) = {1} , it follows that α is one
to one. So to finish the proof we must show α is onto, i.e. to each k ∈ U (n) we
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have to find an x ∈ Um (mn) such that α (x) = xmodn = k, i.e. x = qn+ k for
some 0 ≤ q < m. The condition that x ∈ U (mn) is then,

1 = xmodm = (qn+ k) modm. (22.1)

We are now going to finish the proof by solving this equation for q.
1. Since m and n are relatively prime there exists s, t ∈ Z such that sn+tm =

1. Taking this equation modm and replacing s by s modm if necessary, we have
found 1 ≤ s < m such that snmodm = 1.

2. Multiplying Eq. (22.1) by s (doing all arithmetic modm) implies,

s = s (qn+ k) = q + sk in Zm.

Solving this equation for q shows that

q = s (1− k) modm. (22.2)

3. We now check that x = qn+ k with q as in Eq. (22.2) satisfies, x ∈ U (mn)
and α (x) = xmodm = k. First off, doing all arithmetic in Zm, we have

x = qn+ k = s (1− k)n+ k = (1− k) sn+ k = (1− k) + k = 1,

i.e. xmodm = 1 as desired. So we are only left to check x ∈ U (mn) . Since
k ∈ U (n) , it follows that

gcd (x, n) = gcd (qn+ k, n) = gcd (k, n) = 1.

Since xmodm = 1 we also know that gcd (x,m) = 1. Therefore, because m and
n are relatively prime, gcd (x,mn) = 1 by Euclid’s lemma, i.e. x ∈ U (mn) .

Lemma 22.7. Suppose that H, K, and G are groups and α : G → H and
β : G → K are homomorphisms, then ϕ : G → H × K defined by ϕ (g) :=
(α (g) , β (g)) is a group homomorphism.

Proof. This is a routine check,

ϕ (g1g2) = (α (g1g2) , β (g1g2)) = (α (g1)α (g2) , β (g1)β (g2))
= (α (g1) , β (g1)) (α (g2) , β (g2)) = ϕ (g1)ϕ (g2) .

Theorem 22.8. If m,n ∈ Z+ are relatively prime, then ϕ : U (mn)→ U (m)×
U (n) defined by

ϕ (x) := (xmodm,xmodn)

is an isomorphism of groups.

Proof. By Lemma 22.7, ϕ is a homomorphism. Since

ker (ϕ) = {x ∈ U (mn) : xmodm = 1 and xmodn = 1}
= Um (mn) ∩ Un (mn) = {1} ,

we know that ϕ is one to one.
To see that ϕ is onto, let (a, b) ∈ U (m)×U (n) . By Lemma ??, there exists

x ∈ Un (mn) and y ∈ Um (mn) such that xmodm = a and ymodn = b. Then
xy ∈ U (mn) and

ϕ (xy) = ϕ (x)ϕ (y) = (xmodm,xmodn) (ymodm, ymodn)
= (a, 1) (1, b) = (a, b) .

Corollary 22.9. If m,n ∈ Z+ are relatively prime, then ϕ (mn) = ϕ (m)·ϕ (n) .

Corollary 22.10. If n ∈ Z+ factors as n = pn1
1 . . . pnkk with {pi}ki=1 being dis-

tinct primes, then

ϕ (n) =
k∏
i=1

(
pnii − p

ni−1
i

)
=

k∏
i=1

pni−1
i (pi − 1) .

Fact 22.11 Carl Gauss proved in 1801 that

U (pn) ∼= Zpn−pn−1 if p is an odd prime, and
U (2) ∼= {1} , U (4) = {1, 3} ∼= Z2, while,
U (2n) ∼= Z2 ⊕ Z2n−2 for n ≥ 3.

The only cyclic U – groups are the ones appearing in first two rows of the above
list – U (n) is not cyclic for all other n. Recall from Exercise 4.56 that it was
shown that U (2n) has two distinct elements of order 2 and therefore we already
know that U (2n) is not cyclic for n ≥ 3.

22.2 Public Key Encryption

Let us briefly explain the algorithm for sending “public key” encrypted mes-
sages. For the input to this scheme, the receiver of the message prepares:

1. two (large) distinct primes p and q.
Let n := pq and observe that

U (n) = U (p)⊕ U (q) ∼= Zp−1 ⊕ Zq−1. (22.3)
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2. Compute m := lcm (p− 1, q − 1) which is the maximal possible order of any
element in U (n) because of Eq. (22.3).

3. Choose any r ∈ U (m) other than 1, for example r = m− 1 would work.
4. Tell the sender publicly to send her/his message, M, encrypted as R :=
Mr modn. The message M should be a number in {1, 2, . . . ,min (p, q)− 1} .
This latter condition ensures that gcd (M,n) = gcd (M,pq) = 1, i.e. M ∈
U (n) .

The sender now sends his/her message, M, as R := Mr modn. When the
receiver gets the encrypted message, R, he/she uses the following algorithm to
decode R back to the original message, M.

1. Compute s := r−1 ∈ U (m) . (This can be done by the division algorithm
for finding s, t ∈ Z such that sr + tm = 1.)

2. Observe that R = Mr as computed in U (n) . Since (as we have seen above)
|M | |m, it follows that

Rs = Mrs = Mrs modm = M1 = M.

Thus we may recover the original message, M, from the encrypted message
R, via

M = Rs modn. (22.4)

See the text book for an explicit example of the procedure in action.

22.3 Extras (This section may be safely skipped)

Remark 22.12. Here is alternative proof of the assertion in Theorem 22.8 that
U (mn) ∼= U (m)× U (n) when m and n are relatively prime.

Recall that if (a, b) ∈ Zm × Zn, then k := |(a, b)| = lcm (|a| , |b|) where

|a| = m

gcd (m, a)
and |b| = n

gcd (n, b)
.

Since any common divisor of |a| and |b| would have to be a common divisor of
m and n, we also know gcd (|a| , |b|) = 1. Therefore,

|a| · |b| = lcm (|a| , |b|) · gcd (|a| , |b|) = lcm (|a| , |b|) = |(a, b)|

for all (a, b) ∈ Zm × Zn.
If |(a, b)| = |a| |b| divides m, then we must have |b| divides m as well. How-

ever, |b| divides n and therefore is a common divisor of m and n and is there-
fore equal to 1 and we must have b = 0. Thus the only homomorphisms from
Zm → Zm × Zn are of the form, α (x) = (kx, 0) for some k ∈ Zm. So accord-
ing to Lemma 22.13 below, if ϕ : Zm × Zn → Zm × Zn is a homomorphism,

then ϕ (x, y) = (kx, ly) for some (k, l) ∈ Zm × Zn. Furthermore, such a ϕ is an
isomorphism iff k ∈ U (m) and l ∈ U (n) . Thus we have shown,

U (m)× U (n) ∼= Aut (Zm × Zn) .

On the other hand since m and n are relatively prime, we know that Zm ×
Zn ∼= Zmn and therefore Aut (Zm × Zn) ∼= Aut (Zmn) ∼= U (mn) . Thus we may
conclude,

U (m)× U (n) ∼= Aut (Zm × Zn) ∼= Aut (Zmn) ∼= U (mn) .

The next lemma appeared on the second midterm.

Lemma 22.13. Suppose that G1, G2 and G are groups and ϕ : G1 × G2 →
G is a homomorphism. Then α (g1) := ϕ (g1, e) and β (g2) := ϕ (e, g2) are
homomorphisms from G1 → G and G2 → G respectively. Moreover the elements
of α (G1) commute with all of the elements of β (G2) . Conversely if α : G1 →
G and β : G2 → G are homomorphisms such that the elements of α (G1)
commute with all of the elements of β (G2) , then ϕ (g1, g2) := α (g1)β (g2) is a
homomorphism from G1 ×G2 → G. (See Proposition 22.14 above as well.)

Proof. Observe that

α (g1g
′
1) = ϕ (g1g

′
1, e) = ϕ ((g1, e) (g′1, e)) = ϕ (g1, e)ϕ (g′1, e) = α (g1)α (g′1)

showing α : G1 → G is a homomorphism. Furthermore,

α (g1)β (g2) = ϕ (g1, e)ϕ (e, g2) = ϕ ((g1, e) (e, g2)) = ϕ ((g1, g2))
= ϕ ((e, g2) (g1, e)) = ϕ (e, g2)ϕ (g1, e) = β (g2)α (g1)

which proves the commutativity property. It is easy to check that ϕ (g1, g2) :=
α (g1)β (g2) is a homomorphism.

In this extra section, we will put the proof of Theorem 22.8 into a more
general context.

Proposition 22.14. Suppose that G, H, and K, are groups. Then G is isomor-
phic to H × K iff there exists homomorphisms, ϕ : G → H and ψ : G → K
such that kerϕ ∩ kerψ = {e} and ϕ (kerψ) = H and ψ (kerϕ) = K.

Proof. Suppose that η : G→ H×K is an isomorphism of groups. Since the
projection maps on H×K are homomorphism, it follows that η = (ϕ,ψ) where
ϕ : G → H and ψ : G → K are homomorphisms. Moreover, {e} = ker η =
kerϕ∩ kerψ and since η is surjective, for each h ∈ H there exists a g ∈ G such
that (h, e) = η (g) = (ϕ (g) , ψ (g)) . Thus we see that g ∈ kerψ and ϕ (g) = h
showing ϕ (kerψ) = H. Similarly we may show ψ (kerϕ) = K.
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Conversely, suppose that ϕ : G → H and ψ : G → K such that kerϕ ∩
kerψ = {e} and ϕ (kerψ) = H and ψ (kerϕ) = K and define η := (ϕ,ψ) :
G → H × K. It is easily checked that η is a homomorphism and the ker η =
kerϕ ∩ kerψ = {e} . Now suppose that (h, k) ∈ H × K and choose a ∈ kerψ
and b ∈ kerϕ such that ϕ (a) = h and ψ (b) = k. Then letting g := ab, we find

ϕ (g) = ϕ (ab) = ϕ (a)ϕ (b) = he = h and
ψ (g) = ψ (ab) = ψ (a)ψ (b) = ek = k.

This shows that η (g) = (h, k) and hence shows that η is surjective.

Lemma 22.15 (Number Theoretic). Suppose that s, t ∈ Z+. Then
amod st = bmod st implies amod s = bmod s and amod t = bmod t. Moreover
if gcd (s, t) = 1, we have amod st = bmod st iff amod s = bmod s and
amod t = bmod t.

Proof. First off amod st = bmod st iff st| (a− b) , amod s = bmod s iff
s| (a− b) and amod t = bmod t iff t| (a− b) . Since it is clear that s| (a− b) and
t| (a− b) if st| (a− b) the first assertion is proved. Moreover if gcd (s, t) = 1, and
s| (a− b) and t| (a− b) , then a−b = ks and t|ks. By Euclid’s lemma, this implies
that t|k and therefore, a− b = k

t st, i.e. st| (a− b) so that amod st = bmod st.
(Alternatively, use the fundamental theorem of arithmetic to prove the second
assertion.)

Lemma 22.16. Let a, b, c ∈ Z+, then gcd (a, bc) = 1 iff gcd (a, b) = 1 =
gcd (a, c) .

Proof. This is easily proved with the aid of the fundamental theorem of
arithmetic. Alternatively, it is clear that gcd (a, b) and gcd (a, c) are divisors of
both a and bc and therefore if either of these is greater than 1 it would follows
that gcd (a, bc) > 1. Conversely if gcd (a, b) = 1 = gcd (a, c) , there would exists
s, t, u, v ∈ Z such that sa+ tb = 1 and ua+ vc = 1. Hence it follows that

1 = 12 = (sa+ tb) (ua+ vc) .

Taking this equation mod a then implies, 1 = (tvbc) mod a from which it follows
that gcd (a, bc) = 1.

Lemma 22.17. For all a, b ∈ Z+ we have (xmod ab) mod a = xmod a.

Proof. Let r := xmod ab and write x = kab+ r. Then

xmod a = (kab+ r) mod a = rmod a = (xmod ab) mod a.

Theorem 22.18. Suppose that m,n ≥ 2 and gcd (m,n) = 1. Then

U (mn) 3 x→ (xmodm,xmodn) ∈ U (m)× U (n)

is an isomorphism. In particular, ϕ (mn) := |U (mn)| = ϕ (m) · ϕ (n) . (See
Remark 22.12 for another proof which is perhaps better!)

Proof. From Lemma 22.16, we know that gcd (x,mn) = 1 implies
gcd (x,m) = 1 and gcd (x, n) = 1. Thus if x ∈ U (mn) and r := xmodn, we will
have x = kn+ r and hence 1 = gcd (x, n) = gcd (x, r) . Therefore we may define
maps, ϕ : U (mn)→ U (m) and ψ : U (mn)→ U (n) via, ϕ (x) = xmodm and
ψ (x) = xmodn. Notice that both of these maps are homomorphisms. Indeed,

ϕ (xy) = (xymodmn) modn = xymodn
= (xmodn · ymodn) modn = ϕ (x)ϕ (y)

as desired.
Now ϕ (x) = 1 iff xmodn = 1 and ψ (x) = 1 iff xmodm = 1. Therefore

x ∈ kerϕ ∩ kerψ iff n| (x− 1) and m| (x− 1) . As gcd (m,n) = 1, it follows
by Euclid’s lemma that mn| (x− 1) as well, i.e. xmodmn = 1 and we have
shown kerϕ ∩ kerψ = {1} . As before we denote kerϕ by Un (mn) and kerψ
by Um (mn) . To finish the proof we must now show ψ (Un (mn)) = U (m) and
ϕ (Um (mn)) = U (n) .

Let 0 ≤ k < n and choose 1 ≤ s < m such that sn modm = 1
which is possible since gcd (m,n) = 1. We claim there is an q ∈ Z such that
(qn+ k) modm = 1. If such a q exists we must have,

s = [s (qn+ k)] modm = [q + sk] modm

which is to say q = s (1− k) modm. Conversely if we take q := s (1− k) modm,
then

(qn+ k) modm = (sn (1− k) + k) modm = ((1− k) + k) modm = 1.

With this fact in hand, we see that for all k ∈ U (n) we can find a 0 ≤
q < m such that (qn+ k) modm = 1. Thus if we let x := qn + k, we will
have xmodm = 1 so that gcd (x,m) = 1 and xmodn = k so that gcd (x, n) =
gcd (k, n) = 1 and therefore gcd (x,mn) = 1. Thus g := xmodmn satisfies,
gcd (g,mn) = 1, i.e. g ∈ U (mn) . Moreover,

ϕ (g) = gmodn = [(qn+ k) modmn] modn = (qn+ k) modn = k

and

ψ (g) = gmodm = [(qn+ k) modmn] modm = (qn+ k) modm = 1.

Thus we have shown ϕ (kerψ) = U (n) . Similarly we may show ψ (kerϕ) =
U (m) . The result now follows by an application of Proposition 22.14.
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22.4 Permutation Groups

The following proposition should be verified by the reader.

Proposition 22.19 (Permutation Groups). Let Λ be a set and

S (Λ) := {σ : Λ→ Λ| σ is bijective} .

If we equip G with the binary operation of function composition, then G is a
group. The identity element in G is the identity function, ε, and the inverse,
σ−1, to σ ∈ G is the inverse function to σ.

Definition 22.20 (Finite permutation groups). For n ∈ Z+, let Λn :=
{1, 2, . . . , n} , and Sn := S (Λn) be the group described in Proposition 22.19.
We will identify elements, σ ∈ Sn, with the following 2× n array,[

1 2 . . . n
σ (1) σ (2) . . . σ (n)

]
.

(Notice that |Sn| = n! since there are n choices for σ (1) , n− 2 for σ (2) , n− 3
for σ (3) , . . . , 1 for σ (n) .)

For examples, suppose that n = 6 and let

ε =
[

1 2 3 4 5 6
1 2 3 4 5 6

]
– the identity, and

σ =
[

1 2 3 4 5 6
2 4 3 1 6 5

]
.

We identify σ with the following picture,

1

��
>>>>>>> 2

''NNNNNNNNNNNNNN 3

��

4

uujjjjjjjjjjjjjjjjjjjj 5

��
>>>>>>> 6

���������

1 2 3 4 5 6

.

The inverse to σ is gotten pictorially by reversing all of the arrows above to
find,

1 2 3 4 5 6

1

55jjjjjjjjjjjjjjjjjjjj 2

^^>>>>>>>
3

OO

4

ggNNNNNNNNNNNNNN
5

@@�������
6

^^>>>>>>>

or equivalently,

1

))TTTTTTTTTTTTTTTTTTTT 2

���������
3

��

4

wwpppppppppppppp 5

��
>>>>>>> 6

���������

1 2 3 4 5 6

and hence,

σ−1 =
[

1 2 3 4 5 6
4 1 3 2 6 5

]
.

Of course the identity in this graphical picture is simply given by

1

��

2

��

3

��

4

��

5

��

6

��

1 2 3 4 5 6

Now let β ∈ S6 be given by

β =
[

1 2 3 4 5 6
2 1 4 6 3 5

]
,

or in pictures;

1

��
>>>>>>> 2

���������
3

��
>>>>>>> 4

''NNNNNNNNNNNNNN 5

wwpppppppppppppp 6

���������

1 2 3 4 5 6

We can now compose the two permutations β ◦ σ graphically to find,

1

��
>>>>>>> 2

''NNNNNNNNNNNNNN 3

��

4

uujjjjjjjjjjjjjjjjjjjj 5

��
>>>>>>> 6

���������

1

��
>>>>>>> 2

���������
3

��
>>>>>>> 4

''NNNNNNNNNNNNNN 5

wwpppppppppppppp 6

���������

1 2 3 4 5 6

which after erasing the intermediate arrows gives,

1

��

2

++WWWWWWWWWWWWWWWWWWWWWWWWWWW 3

��
>>>>>>> 4

wwpppppppppppppp 5

��

6

uujjjjjjjjjjjjjjjjjjjj

1 2 3 4 5 6

.

In terms of our array notation we have,
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β ◦ σ =
[

1 2 3 4 5 6
2 1 4 6 3 5

]
◦
[

1 2 3 4 5 6
2 4 3 1 6 5

]
=
[

1 2 3 4 5 6
1 6 4 2 5 3

]
.

It is also worth observing that β splits into a product of two permutations,

β =
[

1 2 3 4 5 6
2 1 3 4 5 6

] [
1 2 3 4 5 6
1 2 4 6 3 5

]
=
[

1 2 3 4 5 6
1 2 4 6 3 5

] [
1 2 3 4 5 6
2 1 3 4 5 6

]
,

corresponding to the non-crossing parts in the graphical picture for β. Each of
these permutations is called a “cycle.”

Lemma 22.21. Suppose that σ ∈ Sn and 1 ≤ x ≤ n, then there exists k ≥ 1
such that σk (x) = x. Let k (x) ≥ 1 be the minimal such k, then

Ox (σ) :=
{
x, σ (x) , . . . , σk(x)−1 (x)

}
are distinct element in Λn. We call Ox (σ) the orbit of x under σ.

Proof. As Λn is a finite set, it follows that {σm (x)}∞m=0 are not all distinct
elements and therefore σm (x) = σl (x) for some l < m and therefore, σk (x) = x
where k = m− l ≥ 1.

Now let k = k (x) be the minimal k ≥ 1 such that σk (x) = x. if{
x, σ (x) , . . . , σk(x)−1 (x)

}
were not all distinct, then σi (x) = σj (x) for some

0 ≤ i < j ≤ k− 1 and it would follows that σj−i (x) = x with 1 ≤ j − i < k− 1
which would violate the definition of k (x) .

Definition 22.22. Given σ ∈ Sn and x ∈ Λn, we say Ox (σ) is trivial if
Ox (σ) = {x} , i.e. σ (x) = x. Further let

Fσ := {x ∈ Λn : Ox (σ) = x} = {x ∈ Λn : σ (x) = x}

be the fixed points of σ.

Example 22.23. If σ =
[

1 2 3 4 5 6
2 4 3 1 6 5

]
then the orbits of σ are,

O1 = {1, 2, 4} = O2 = O4,

O3 = {3} and
O5 = {5, 6} = O6.

Notice that the orbits have partitioned Λ6 into disjoint sets. In this case Fσ =
{3} . Also observe that the action of σ on each of the orbits is rather simple. For
example the action of σ restricted toO1 may be summarized by; 1→ 2→ 4→ 1.
In fact we may summarize the action of σ via the rules,

4← 2
↘ ↑

1
; 3� 3 and 5� 6.

We will abbreviate this permutations as; σ = (124) (3) (56) . Here (124) is a 3 –
cycle, (3) is a one cycle and (56) is a two cycle. We say these cycles are disjoint
since they have no elements of Λ6 in common. We will formalize these notions
now.

Definition 22.24. An element σ ∈ Sn is said to be a cycle if it has at most
one non-trivial orbit. Alternatively put, for all x /∈ Fσ, Ox (σ) = Λn \ Fσ.

Notation 22.25 If σ 6= ε is a cycle and x is any element in the non-trivial
orbit of σ, then we abbreviate σ by,

σ =
(
x, σ (x) , . . . , σk−1 (x)

)
where k is the first time that σk (x) = x.

Lemma 22.26. If σ = (a1, . . . , am) is a cycle, then |σ| = m.
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Definition 23.1. We say that two non-trivial cycles σ = (a1, . . . , am) and τ =
(b1, . . . , bn) are disjoint if {a1, . . . , am} ∩ {b1, . . . , bn} = ∅. Equivalently put,
the non-trivial orbit of σ and τ should be disjoint.

It is easy to check that στ = τσ whenever σ and τ are disjoint cycles.

Theorem 23.2. Every permutation, σ 6= ε, may be written as a product of non
trivial disjoint cycles which are unique modulo order. Since they all commute,
the ordering of the cycles in this product is irrelevant.

Proof. Sketch. Let i ∼ j iff i ∈ Oj (σ) , i.e. iff i = σk (j) for some k ∈ N.
This is easily seen to be an equivalence relation and therefore it follows that
the distinct orbits of σ form a partition of Λn. Suppose that O1, . . . , Ok are the
distinct orbits of σ and let il ∈ Ol be a chosen point in each of these orbits. For
each l we let σl :=

(
il, σ (il) , σ2 (il) , . . . , σml−1 (il)

)
where ml ≥ 1 is the first

time σml (il) = il. One then checks that σ = σ1 . . . σk.

Example 23.3. Here are some examples:[
1 2 3 4 5 6
2 4 3 1 6 5

]
= (124) (3) (56) = (124) (56) = (56) (124) ,[

1 2 3 4 5 6
3 1 2 6 4 5

]
= (132) (465) = (465) (132) ,

(124) (413) = (13) (24) = (24) (13) ,
(413) (124) = (12) (34) ,
(124) (513) = (13524) , and
(513) (124) = (12435) .

Lemma 23.4. If σ is written a product of disjoint cycles, σ1, . . . , σk, then |σ| =
lcm (|σ1| , . . . , |σk|) .

Proof. Let t ∈ Z+ such that σt = ε, then

ε = σt = (σ1 . . . σk)t = σt1 . . . σ
t
k

which can only happen if σti = ε for each i (why?). Therefore |σi| |t for all
i, i.e. t is a common multiple of |σ1| , . . . , |σk| . Therefore the order of σ is the
least common multiple of |σ1| , . . . , |σk| . (This also could be proved by induction
using Proposition 13.3 and Corollary 13.2.)

Example 23.5. The for permutations appearing in Example 23.3 have order,
lcm (2, 3) = 6, lcm (3, 3) = 3, lcm (2, 2) = 2 and 5 respectively.

Example 23.6. Let us observe that if

σ =
[

1 2 3 4 5 6
2 4 3 1 6 5

]
then

(35)σ =
[

1 2 3 4 5 6
2 4 5 1 6 3

]
= σ (36)

and

(26)σ =
[

1 2 3 4 5 6
6 4 3 1 2 5

]
= σ (15) .

(Feel free to omit the following comment.) More generally if τ ∈ S6

then

τσ =
[

1 2 3 4 5 6
τ (2) τ (4) τ (3) τ (1) τ (6) τ (5)

]
while στ can be viewed (in the non-standard form) as,

στ =
[
τ−1 (1) τ−1 (2) τ−1 (3) τ−1 (4) τ−1 (5) τ−1 (6)

2 4 3 1 6 5

]
.

The latter statement is easily verified by applying both sides to τ−1 (i) for
i = 1, 2, . . . , 6.

Using the above example we can easily prove the following proposition.

Proposition 23.7. Every permutation, σ ∈ Sn, may be written as a product of
two cycles.

Proof. The main point is to repeatedly use the following observation. If
σ ∈ Sn and 1 ≤ i < j ≤ n, then the permutation, τ ∈ Sn, defined so that
τ (i) = σ (j) , τ (j) = σ (i) , and agrees with τ otherwise, may be expresses as
either

τ = (σ (i) , σ (j))σ or τ = σ (i, j) .
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Example 23.8. Let us show how to write

σ =
[

1 2 3 4 5
2 4 5 3 1

]
as a product of 2 – cycles. We first transform σ to ε by a series of flips,

flips
ε

(12)
(24)
(35)
(45)


1 2 3 4 5
2 4 5 3 1
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5


which is to say,

(45) (35) (24) (12)σ = ε

and therefore,

σ = [(45) (35) (24) (12)]−1 = (12) (24) (35) (45)

as can be verified directly. There are of course many ways to do this, so this
representation is far from unique.

Lemma 23.9. Every two cycle may be written as a product of an odd number
of two cycles of the form (i, i+ 1) for some 1 ≤ i < n.

Proof. Suppose that i+ 1 < j, then

(i, i+ 1) (i, j) (i, i+ 1) = (i+ 1, j)

and therefore,
(i, j) = (i, i+ 1) (i+ 1, j) (i, i+ 1) .

The proof now follows by induction. Here is an example to see how this works
in practice:

(2, 3) (3, 4) (4, 5) (3, 4) (2, 3) = (2, 3) (3, 5) (2, 3) = (2, 5) .

Combining Lemma 23.9 with Proposition 23.7 gives the following corollary.

Corollary 23.10. Every permutation, σ ∈ Sn, may be written as a product
of 2 – cycles, σ = σ1 . . . σm, where each σi is of the form (a, a+ 1) for some
1 ≤ a < n.

23.1 The sign of a permutation

Definition 23.11. We say σ ∈ Sn has an inversion at (a, b) if a < b while
σ (a) > σ (b) . Given σ ∈ Sn, let

I (σ) := {(a, b) : a < b and σ (a) > σ (b)} ,

N (σ) := # (I (σ)) =
∑

1≤i<j≤n

1σ(i)>σ(j), and

sgn(σ) := (−1)N(σ)
.

We call sgn(σ) the sign of σ.

The main theorem (see Theorem 23.14) of this section states that sgn :
Sn → {±1} is a homomorphism such that sgn(i, j) = −1 for all i 6= j.

Example 23.12. For example if

σ =
[

1 2 3 4 5
3 4 5 2 1

]
then

I (σ) = {(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5)}
=⇒ N (σ) = 2 + 2 + 2 + 1 = 7, and sgn(σ) = −1

while,

(45)σ =
[

1 2 3 4 5
3 5 4 2 1

]
and (23)σ =

[
1 2 3 4 5
2 4 5 3 1

]
so that

I ((45)σ) = {(1, 4) , (1, 5) , (2,3) , (2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5)}
=⇒ N (σ) = 2 + 3 + 2 + 1 = 8 and sgn(σ) = 1

and

I ((23)σ) =
{

(̂1,4), (1, 5) , (2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5)
}

=⇒ N (σ) = 1 + 2 + 2 + 1 = 6 and sgn(σ) = 1,

where the hatted term is to be omitted from the list.

The following lemma generalizes this example.

Lemma 23.13. If σ ∈ Sn and 1 ≤ i < n, then N ((i, i+ 1)σ) ≡
[N (σ) + 1] (mod) 2 or equivalently

sgn((i, i+ 1)σ) = −sgn(σ).
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Proof. Let τ := (i, i+ 1)σ and a := σ−1 (i) and b := σ−1 (i+ 1) so that
σ (a) = i and σ (b) = i+1. If a < b then (a, b) /∈ I (σ) and I (τ) = I (σ)∪{(a, b)}
so that N (τ) = N (σ)+1. While if a > b, then (b, a) ∈ I (σ) and I (τ) = I (σ)\
{(b, a)} and N (τ) = N (σ)− 1. In all cases we have N (τ) ≡ [N (σ) + 1] mod 2.
Therefore,

sgn(τ) = (−1)N(τ) = (−1)N(τ) mod 2 = (−1)[N(σ)+1] mod 2

= (−1)N(σ)+1 = −sgn(σ).

Theorem 23.14. The function , sgn : Sn → {±1} given by sgn(σ) :=
(−1)N(σ)

, is a homomorphism of groups.

Proof. If σ ∈ Sn is written (using Corollary 23.10) in the form, σ =
σ1 . . . σmε where ε is the identity permutation and each σi is of the form
(a, a+ 1) for some 1 ≤ a < n, then by Lemma 23.13, we know that

sgn(σ) = sgn(σ1σ2 . . . σmε) = (−1) sgn(σ2 . . . σmε)

= (−1)2 sgn(σ3 . . . σmε) = . . .

= (−1)m sgn(ε) = (−1)m .

Therefore, if τ ∈ Sn is another permutation and τ = τ1 . . . τk with τi of the form
(a, a+ 1) for some 1 ≤ a < n, then sgn(τ) = (−1)k , στ = σ1 . . . σmτ1 . . . τk and
so

sgn(στ) = (−1)m+k = (−1)m (−1)k = sgn(σ) · sgn(τ).
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Definition 24.1 (Alternating Groups). For each n ∈ Z+, let

An := ker
(
sgnSn

)
≤ Sn.

We call An the alternating group on n – letters. Elements of An are said to
be even while those not in An are odd, i.e. σ ∈ Sn is even if sgn(σ) = 1 and
odd if sgn(σ) = −1.

Corollary 24.2 (Even – Odd Theorem). If σ = (a, b) with a 6= b, then
sgn(σ) = −1, i.e. (a, b) is odd. More generally, if σ = σ1 . . . σn where each σi is
a two cycle, then sgn(σ) = (−1)n . So any decomposition of σ as a product of
2 – cycles must have an odd number of terms if sgn(σ) = −1 and even number
of terms if sgn(σ) = 1.

Proof. The second assertion follows from the first because of the homomor-
phism property of sgn. For the first recall from Lemma 23.9 that (a, b) may be
expressed as a product of an odd number of adjacent flips, σ1, . . . , σm. Therefore

sgn(a, b) = (−1)m = (−1)odd = −1.

Example 24.3. Let us compute sgn(2465). To do this observe that

(26) (25) (2465) = (26) (246) = (24)

so that
(2465) = (25) (26) (24)

and it follows that

sgn (2465) = sgn (25) · sgn (26) · sgn (24) = (−1)3
.

The general result is the content of the next corollary.

Corollary 24.4. If σ is an m –cycle then sgn(σ) = (−1)m−1
. (So cycles of odd

length are even and cycles of even length are odd.)

Proof. If σ = (a1, a2, . . . , am) is a m – cycle, then

(a1, a2)σ = (a1, a2) (a1, a2, . . . , am) = (a1) (a2, . . . , am) = (a2, . . . , am)

or equivalently,
σ = (a1, a2) (a2, . . . , am)

Thus it follows by induction that

σ = (a1, a2) (a2, a3) . . . (am−2, am−1) (am−1, am) . (24.1)

Alternatively,

(a1, am)σ = (a1, am) (a1, a2, . . . , am)
= (am) (a1, a2, . . . , am−1) = (a1, a2, . . . , am−1)

and therefore,

σ = (a1, am) (a1, a2, . . . , am−1)
= (a1, am) (a1, am−1) . . . (a1, a2) .

Using either of these forms for σ, we learn that

sgn(σ) = (−1)m−1
.

Example 24.5. What are the possible order of elements from S4. The elements
of S4 have the following possible cycle structures,

|(1234)| = 4
|(123) (4)| = 3 (24.2)
|(12) (34)| = 2 = |(12)|

|ε| = 1.

Thus the possible orders are 1, 2, 3, 4. If we restrict to A4 we see that only 1, 2, 3
are now possible.

Note well: both (12) (34) and (12) have order 2 while sgn((12) (34)) =
1 6= −1 = sgn((12)). Therefore, you can not compute the sign of an arbitrary
permutation, σ, just by knowing its order.
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Example 24.6. In this example we wish to compute the number of elements of
order 3 inside of A4. From the form in Eq. (??) we see that we have 4 choices
for the element left out of the three cycle. For each such choice there are two
distinct three cycles. (For example if 4 is omitted from the three cycle, then we
have the two choices, (123) and (132) .) Therefore there are 2 · 4 = 8 elements
of order 3 in A4.

Theorem 24.7. For each n ≥ 2, |An| = n!/2.

Proof. This will be an easy consequence of the first isomorphism theorem
to come later. Here is another proof. Since

sgn ((1, 2)σ) = −sgn(σ)

it follows that (1, 2)An not the cosets εAn and that these cosets are dis-
joint. Moreover if σ ∈ Sn then either sgn(σ) = 1 in which case σ ∈ An or
sgn ((1, 2)σ) = 1 in which case σ ∈ (1, 2)An. This shows

2 = [Sn : An] =
|Sn|
|An|

=
n!
|An|

.

Example 24.8 (Converse to Lagrange’s Theorem is False). In this example we
wish to show that A4 has no subgroup of order 6 even though 6| |A4| = 12.
Suppose that H ≤ A4 is a subgroup of order 6. Let σ ∈ A4 with |σ| = 3.
As [A4 : H] = 2, we know that H, σH, and σ2H can not all be distinct. If
σH = σ2H or σH = H we know that σ ∈ H and if σ2H = H then σ2 ∈ H
and hence σ = σ4 ∈ H as well. So in all case σ ∈ H. This shows that A4 must
contain all 8 (see Example 24.6) the elements of order 3 in A4 which is absurd
since |H| = 6 < 8.

Example 24.9. What is the maximal order of an element of A6. Well we must
divide 6 into an even number of bins. If there are 2 bins we have

6 = 1 + 5 = 2 + 4 = 3 + 3 with max lcm = 5

if there are 4 bins, then

6 = 1 + 1 + 2 + 2 = 1 + 1 + 1 + 3 with max lcm = 3

and so the maximal order is 5.

Example 24.10. What is the maximal order of an element of A8. Well we must
divide 8 into an even number of bins. If there are 2 bins we have

8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4 with max lcm = 15.

If there are 4 bins, and there is a 1 in one of the bins we must consider,

7 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 3 + 3 = 2 + 2 + 3 with max lcm = 6

so we may assume no one appears and there are four bins we must have 8 =
2 + 2 + 2 + 2 which is not helpful. If there are 6 bins, then we must have at least
two ones and we are back to A6. Thus the maximal order of an element in A8

is 15.

Theorem 24.11 (Permutations and Determinants). If A is an n × n –
matrix, then

det (A) =
∑
σ∈Sn

sgn(σ)A1,σ1 . . . An,σn. (24.3)

Proof. Let us first do the cases n = 2 and n = 3 by hand. For n = 2,

det (A) = det
[
A11 A12

A21 A22

]
= A11A22 −A12A21

while S2 = {ε, (12)} so that∑
σ∈S2

sgn(σ)A1,σ1 ·A2,σ2 = A11A22 −A12A21 = det (A) .

Similarly, by expanding det (A) by cofactors across one shows,

det (A) = det

A11 A12 A13

A21 A22 A23

A31 A32 A33


= A11A22A33 +A12A23A31 +A13A21A32

−A11A23A32 −A12A21A33 −A13A22A31.

Notice that there are 6 = |S3| terms in this sum with each term corresponding
to a permutation. For example the third term corresponds to the 3 – cycle
σ = (132) with sgn(σ) = 1. The fourth term corresponds to the transposition,
σ = (23) with sgn(σ) = −1. In the first row each term is a 3 – cycle with +1
for its signature and in the bottom row each permutation is a transposition
with signature being −1. These observations complete the proof of Eq. (24.3)
for n = 3.

For general n, let us make use of basic facts about the determinant function.
Let {ei}ni=1 be the standard basis for Rn thought of as row vectors. Then, since
det is a multilinear function of its rows,
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detA = det


∑n
i1=1A1i1ei1

...∑n
in=1Aninein


=

n∑
i1=1

· · ·
n∑

in=1

A1i1 . . . Anin det

 ei1...
ein

 .
We also recall that the determinant is zero if any two rows are equal so the
above sum may be reduced to

detA =
∑
σ∈Sn

A1,σ1 . . . An,σn det

 eσ1

...
eσn

 .
Since the interchange of any two rows produces a (−1) factor it follows that

det

 eσ1

...
eσn

 = sgn(σ) det

 e1

...
en

 = sgn(σ)

and the result is proved.

24.1 Symmetry and Transformation Groups

Theorem 24.12 (Cayley’s Theorem). Every group, G, is isomorphic to
some subgroup of a permutation group.

Proof. To fix ideas, we will suppose that |G| < ∞ and let S (G) be the
permutation group on the alphabet of letters from G. We then define a homo-
morphism, ϕ : G→ S (G) via, ϕ (g) := Lg where Lg : G→ G is left translation
by G, i.e. Lgx = gx for all x ∈ G. Notice that L−1

g = Lg−1 and

ϕ (g) ◦ ϕ (h) (x) = LgLhx = ghx = Lghx = ϕ (gh) (x)

which shows ϕ (gh) = ϕ (g) ◦ ϕ (h) . Thus ϕ is a homomorphism of groups.
Moreover, if ϕ (g) = idG then in particular, e = ϕ (g) (e) = ge = g which shows
ker (ϕ) = {e} . Therefore G is isomorphic to ϕ (G) ⊂ S (G) .

Notice that in Cayley’s theorem, if |G| = n, we are embedding G into Sn
where |Sn| = n!. We can often do better.

Example 24.13. We may embed Dn inside of Sn for each n. Indeed, let
{v1, . . . , vn} be the vertices of the n – gon which is fixed by Dn. Then for
g ∈ Dn, let ϕ (g) ∈ Sn be defined by, ϕ (g) (i) = j if gvi = vj , i.e. gvi = vϕ(g)(i).
Observe that on one hand,

g1g2vi = g1vϕ(g2)(i) = v
(
ϕ(g1)ϕ(g2)(i)

)
while on the other,

g1g2vi = vϕ(g1g2)(i).

Thus it follows that ϕ (g1g2) = ϕ (g1) ◦ ϕ (g2) so that ϕ : Dn → Sn is a homo-
morphism. Moreover if ϕ (g) = id, then

gvi = vϕ(g)(i) = vi for all i

and therefore g = Id ∈ Dn. Therefore ϕ : Dn → ϕ (Dn) ≤ Sn is an isomorphism
of groups.

Corollary 24.14. When n = 3, S3
∼= D3. For n ≥ 4, Dn and Sn are not

isomorphic.

Proof. Given example 24.13, we need to show ϕ (D3) = S3. However |D3| =
6 = |S3| and ϕ is one to one and therefore it is onto. Alternatively, just convince
yourself that D3 move the three vertices of the triangle to all possible locations.
When n ≥ 4, the groups have different orders (|Dn| = 2n < n! = |Sn|) and
hence are not isomorphic.

24.2 Normal Subgroups

Theorem 24.15. Let G be a subgroup and H ≤ G be a subgroup. Then the
following are equivalent;

1. gHg−1 ⊂ H for all g ∈ G,
2. gHg−1 = H for all g ∈ G, and
3. gH = Hg for all g ∈ G, i.e. right and left cosets are the same.

Proof. In this proof we will make use of the fact that right and left mul-
tiplication by any g ∈ G are bijections on G and hence preserve set inclusions
and equalities. With this said the proof is straightforward.

1. ⇐⇒ 2. If item 1. holds for all g ∈ G it holds for g−1 ∈ G and therefore
g−1Hg ⊂ H. Multiplying this relation on the right by g and left by g−1 shows,
H ⊂ gHg−1 which combined with the original expression in item 1. shows that
gHg−1 = H, i.e. item 2. holds. The converse direction is trivial.

2. ⇐⇒ 3. If gHg−1 = H then multiply the identity through on the right
by g to learn gH = Hg. Multiplying this identity through on the right by g−1

then takes us back to 2.
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Definition 24.16. A subgroup, H ≤ G, is said to be normal if any one of the
equivalent conditions in Theorem 24.15 hold. We will write H C G to indicate
that H is a normal subgroup of G.

Lemma 24.17. Every subgroup of an abelian group is normal. The center of
any group is a normal subgroup. Any subgroup of the center including {e} is
also a normal subgroup.

Proof. If G is abelian, then ghg−1 = h for all h ∈ G and therefore gHg−1 =
H for any subset, H ⊂ G. Thus all subgroups are normal.

If H = Z (G) , then ghg−1 = h for all h ∈ G and therefore gHg−1 = H.
Be aware, then H ≤ G can be a normal subgroup even if ghg−1 6= h for

h ∈ H and g ∈ G. The condition of being normal only says that ghg−1 ∈ H
not that it is equal to h, see Example 24.19 below.

Lemma 24.18. If ϕ : G→ K is a homomorphism of groups, then ker (ϕ) is a
normal sub-group of G. More generally, if N C K, then ϕ−1 (N) C G.

Proof. If a ∈ G and x ∈ ker (ϕ) , then

ϕ
(
axa−1

)
= ϕ (a)ϕ (x)ϕ (a)−1 = ϕ (a) eϕ (a)−1 = e.

Therefore, axa−1 ker (ϕ) for all a ∈ G and x ∈ ker (ϕ) , i.e. a ker (ϕ) a−1 ⊂
ker (ϕ) .

Let H := ϕ−1 (N) where N C K. Then for g ∈ G and h ∈ H, we have

ϕ
(
ghg−1

)
= ϕ (g)ϕ (h)ϕ (g)−1 ∈ ϕ (g)Nϕ (g)−1 = N

which shows that ghg−1 ∈ ϕ−1 (N) = H. Thus we have shown H C G as well.

Example 24.19. If n ∈ Z+, then An C Sn as it is the kernel of sgn : Sn → {±1} .
(Alternatively, see Example 25.3 below.) When n = 3 we have,

A3 = {ε, (123) , (132)} .

Notice that

(12) (123) (12)−1 = (12) (123) (12) = (132) 6= (123) .

Example 24.20. The subgroups, H := {ε, (12)} ≤ S3, of S3 is not normal. In-
deed,

(13) (12) (13)−1 = (13) (12) (13) = (23) /∈ H.
Alternatively, notice that

(13)H = {(13) , (13) (12)} = {(13) , (123)}

while
H (13) = {(13) , (12) (13)} = {(13) , (132)} 6= (13)H.
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Example 25.1. Let G = GL (n,R) denote the set of n × n - invertible matrices
with the binary operation being matrix multiplication and let H := R\ {0}
equipped with multiplication as the binary operation. Then det : G → H is a
homomorphism, Ran (det) = R\ {0} and

ker (ϕ) = SL (n,R) := {A ∈ GL (n,R) : detA = 1} .

This shows that SL (n,R) C GL (n,R) . It also follows that

H := {A ∈ GL (n,R) : detA > 0} C GL (n,R) .

Indeed, H = det−1 (R+) and R+ := (0,∞) C R\ {0} .

Example 25.2 (Translation and Rotation Subgroups). Let G denote the Eu-
clidean group of R2 consisting of transformations of the form,

T (x) = Rx+ a with R ∈ O (2) and a ∈ R2.

If S (x) = R′x+ a′, then

S ◦ T (x) = R′ (Rx+ a) + a′ = R′Rx+ (R′a+ a′)

is another Euclidean transformation. It also follows from this that

T−1 (x) = R−1x−R−1a

is back in G. Thus G is a subgroup of the bijective maps on R2.
There are two natural subgroups in G, namely the rotations, O (2) ≤ G, and

the translations, H :=
{
Ta : a ∈ R2

}
≤ G where Ta (x) := x + a. If R′ ∈ O (2)

and Ta (x) := x+ a, we have

TaRT−a (x) = TaR (x− a) = Ta (Rx−Ra) = Rx−Ra+ a,

which shows that O (2) is not a normal subgroup of G. On the other hand, if
T (x) = Rx+ a and Tb ∈ K, then

T ◦ Tb ◦ T−1 (x) = T ◦ Tb
(
R−1x−R−1a

)
= T

(
R−1x−R−1a+ b

)
= R

(
R−1x−R−1a+ b

)
+ a = x− a+Rb

= x+Rb = TRb.

This shows that H C G.

Example 25.3. If G is a group and H ≤ G with |G : H| = 2, then H is normal.
To see this let a /∈ H, then G is the disjoint union of H and Ha and also of H
and aH. Therefore,

Ha = G \H = aH.

25.1 Factor Groups and the First Isomorphism Theorem

Suppose we have a homomorphism, ϕ : G→ K, which is onto but not injective.
We would like to find some way to make an isomorphism out of ϕ. To see what
we should do, let H := ker (ϕ) and recall that for any k ∈ K, ϕ−1 (k) =
g ker (ϕ) = gH where g is any element in ϕ−1 (k) . So to make ϕ injective, we
need to “identify” all the points in gH = Hg as being the same. That is we
want to make a new group whose elements are the left cosets of H in G, i.e. the
new group should be G/H. We then define ϕ̄ : G/H → K by ϕ̄ (gH) = ϕ (g)
for any g ∈ G. The map, ϕ̄ : G/H → K is now one to one and onto. Moreover,
if it makes sense (and it does, see Theorem 25.4) to define a group structure on
G/H via the formula,

(g1H) · (g2H) = g1g2H for all g1, g2 ∈ G, (25.1)

then we will have proved the first isomorphism theorem, namely, ϕ̄ : G/H → K
is an isomorphism, see Theorem 25.6.

Theorem 25.4 (Factor / Quotient Groups). If H C G, then the multipli-
cation rule in Eq. (25.1) is well defined and make G/H into a group. Moreover,
π : G→ G/H defined by π (g) := gH is a surjective group homomorphism with
ker (π) = H.

Proof. The main thing we have to show that the multiplication rule in Eq.
(25.1) is well defined. Namely if g̃1H = g1H and g̃2H = g̃2H, then g1g2H =
g̃1g̃2H. To see this is the case recall that

g̃1H = g1H ⇐⇒ g−1
1 g̃1 = h1 ∈ H and

g̃2H = g̃2H ⇐⇒ g−1
2 g̃2 = h2 ∈ H.

Now consider,
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(g1g2)−1
g̃1g̃2 = g−1

2 g−1
1 g̃1g̃2 = g−1

2 h1g̃2

= g−1
2 g̃2g̃

−1
2 h1g̃2 = h2

(
g̃−1

2 h1g̃2

)
∈ H

wherein we used the normality of H in the last line. This shows that g1g2H =
g̃1g̃2H as desired.

The proof that G/H is a group is straight forward. Indeed, H = eH is the
identity element, (gH)−1 = g−1H, and the multiplication rule is associative
since the binary operation on G was associative.

By construction, π : G→ G/H is operation preserving, i.e.

π (g1g2) = g1g2H = g1H · g2H = π (g1) · π (g2) .

So it only remains to show ker (π) = H which we do now;

g ∈ ker (π) ⇐⇒ π (g) = eH ⇐⇒ gH = H ⇐⇒ g ∈ H.

Corollary 25.5. A subgroup, H ≤ G, is normal iff it is the kernel of some
homomorphism from G to another group.

Given our discussion before Theorem 25.4 we have also proved the first
isomorphism theorem.

Theorem 25.6 (1st - Isomorphism Theorem). Suppose ϕ : G → K is a
surjective homomorphism and H := ker (ϕ) . Then ϕ̄ : G/K → K defined by
ϕ̄ (gH) = ϕ (g) for all g ∈ G is an isomorphism of groups. Notice that we have
“factored” ϕ through π, i.e. ϕ = ϕ̄ ◦ π. This is often summarized by the saying
the following diagram:

G
π−→ G/H

ϕ↘ � ↙ ϕ̄
K

Example 25.7. Since ϕ : Z→ Zn defined by ϕ (k) = kmodn is an onto homo-
morphism with ker (ϕ) = 〈n〉 = nZ, it follows that ϕ̄ : Z/ 〈n〉 → Zn is an
isomorphism where ϕ̄ (k + 〈n〉) = kmodn.

Example 25.8. Since ϕ : Z6 → Z3, ϕ (x) = xmod 3 is a homomorphism with
x ∈ ker (ϕ) iff x is a multiple of 3, i.e.ker (ϕ) = {0, 3} , we have,

Z6/ {0, 3} 3 x+ {0, 3} → xmod 3 ∈ Z3

is an isomorphism of groups.

Example 25.9. Let ϕ : R → S1 be defined by ϕ (θ) := ei2πθ. Then ϕ is a
homomorphism with ker (ϕ) = Z. Therefore R/Z ∼= S1. (So called periodic
boundary conditions.) Notice that

[0, 1) 3 x→ x+ Z ∈ R/Z is a bijection.

Example 25.10. LetG be any group and define, ϕ : G→ Aut (G) via, ϕ (g) (x) =
gxg−1. Notice that

ϕ (g1) ◦ ϕ (g2) (x) = g1

(
g2xg

−1
2

)
g−1

1 = (g1g2)x (g1g2)−1 = ϕ (g1g2) (x) ,

which shows that ϕ is a homomorphism. Moreover, g ∈ ker (ϕ) iff ϕ (g) = id,
i.e. iff gxg−1 = x for all x ∈ G, i.e. iff g ∈ Z (G) . Therefore it follows that

G/Z (G) ∼= ϕ (G) = Inn (G) ,

where ϕ (G) = Inn (G) are the so called inner automorphisms of G.
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