Lecture 1 ($1 / 5 / 2009$)

Notation 1.1 Introduce $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}. Also let $\mathbb{Z}_{+}:=$ $\mathbb{N} \backslash\{0\}$.

- Set notations.
- Recalled basic notions of a function being one to one, onto, and invertible. Think of functions in terms of a bunch of arrows from the domain set to the range set. To find the inverse function you should reverse the arrows.
- Some example of groups without the definition of a group:

1. $G L_{2}(\mathbb{R})=\left\{g:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: \operatorname{det} g=a d-b c \neq 0\right\}$.
2. Vector space with "group" operation being addition.
3. The permutation group of invertible functions on a set S like $S=$ $\{1,2, \ldots, n\}$.

1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) Every non-empty subset, S, of \mathbb{N} contains a smallest element.

We say that a subset $S \subset \mathbb{Z}$ is bounded below if $S \subset[k, \infty)$ for some $k \in \mathbb{Z}$ and bounded above if $S \subset(-\infty, k]$ for some $k \in \mathbb{Z}$.

Remark 1.3 (Well ordering variations). The well ordering principle may also be stated equivalently as:

1. any subset $S \subset \mathbb{Z}$ which is bounded from below contains a smallest element or
2. any subset $S \subset \mathbb{Z}$ which is bounded from above contains a largest element.

To see this, suppose that $S \subset[k, \infty)$ and then apply the well ordering principle to $S-k$ to find a smallest element, $n \in S-k$. That is $n \in S-k$ and $n \leq s-k$ for all $s \in S$. Thus it follows that $n+k \in S$ and $n+k \leq s$ for all $s \in S$ so that $n+k$ is the desired smallest element in S.

For the second equivalence, suppose that $S \subset(-\infty, k]$ in which case $-S \subset$ $[-k, \infty)$ and therefore there exist a smallest element $n \in-S$, i.e. $n \leq-s$ for all $s \in S$. From this we learn that $-n \in S$ and $-n \geq s$ for all $s \in S$ so that $-n$ is the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}_{+}$, then there exists unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ with $r<b$ such that

$$
a=b q+r
$$

(For example,

$$
\left.5\right|_{\frac{10}{2}} ^{\frac{2}{12}} \text { so that } 12=2 \cdot 5+2 \text {.) }
$$

Proof. Let

$$
S:=\{k \in \mathbb{Z}: a-b k \geq 0\}
$$

which is bounded from above. Therefore we may define,

$$
q:=\max \{k: a-b k \geq 0\} .
$$

As q is the largest element of S we must have,

$$
r:=a-b q \geq 0 \text { and } a-b(q+1)<0
$$

The second inequality is equivalent to $r-b<0$ which is equivalent to $r<b$. This completes the existence proof.

To prove uniqueness, suppose that $a=b q^{\prime}+r^{\prime}$ in which case, $b q^{\prime}+r^{\prime}=b q+r$ and hence,

$$
\begin{equation*}
b>\left|r^{\prime}-r\right|=\left|b\left(q-q^{\prime}\right)\right|=b\left|q-q^{\prime}\right| \tag{1.1}
\end{equation*}
$$

Since $\left|q-q^{\prime}\right| \geq 1$ if $q \neq q^{\prime}$, the only way Eq. 1.1) can hold is if $q=q^{\prime}$ and $r=r^{\prime}$.

Axiom 1.5 (Strong form of mathematical induction) Suppose that $S \subset$ \mathbb{Z} is a non-empty set containing an element a with the property that; if $[a, n) \cap$ $\mathbb{Z} \subset S$ then $n \in \mathbb{Z}$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Axiom 1.6 (Weak form of mathematical induction) Suppose that $S \subset$ \mathbb{Z} is a non-empty set containing an element a with the property that for every $n \in S$ with $n \geq a, n+1 \in S$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Remark 1.7. In Axioms 1.5 and 1.6 it suffices to assume that $a=0$. For if $a \neq 0$ we may replace S by $S-a:=\{s-a: s \in S\}$. Then applying the axioms with $a=0$ to $S-a$ shows that $[0, \infty) \cap \mathbb{Z} \subset S-a$ and therefore,

$$
[a, \infty) \cap \mathbb{Z}=[0, \infty) \cap \mathbb{Z}+a \subset S
$$

Theorem 1.8 (Equivalence of Axioms). Axioms 1.2 - 1.6 are equivalent. (Only partially covered in class.)

Proof. We will prove $1.2 \Longleftrightarrow 1.5 \Longleftrightarrow 1.6 \Longrightarrow 1.2$
$1.2 \Longrightarrow 1.5$ Suppose $0 \in S \subset \mathbb{Z}$ satisfies the assumption in Axiom 1.5 If \mathbb{N}_{0} is not contained in S, then $\mathbb{N}_{0} \backslash S$ is a non empty subset of \mathbb{N} and therefore has a smallest element, n. It then follows by the definition of n that $[0, n) \cap \mathbb{Z} \subset S$ and therefore by the assumed property on $S, n \in S$. This is a contradiction since n can not be in both S and $\mathbb{N}_{0} \backslash S$.
$1.5 \Longrightarrow 1.2$ Suppose that $S \subset \mathbb{N}$ does not have a smallest element and let $Q:=\mathbb{N} \backslash S$. Then $0 \in Q$ since otherwise $0 \in S$ would be the minimal element of S. Moreover if $[1, n) \cap \mathbb{Z} \subset Q$, then $n \in Q$ for otherwise n would be a minimal element of S. Hence by the strong form of mathematical induction, it follows that $Q=\mathbb{N}$ and hence that $S=\emptyset$.
$1.5 \Longrightarrow 1.6$ Any set, $S \subset \mathbb{Z}$ satisfying the assumption in Axiom 1.6 will also satisfy the assumption in Axiom 1.5 and therefore by Axiom 1.5 we will have $[a, \infty) \cap \mathbb{Z} \subset S$.
1.6 $\Longrightarrow 1.5$ Suppose that $0 \in S \subset \mathbb{Z}$ satisfies the assumptions in Axiom 1.5. Let $Q:=\{n \in \mathbb{N}:[0, n) \subset S\}$. By assumption, $0 \in Q$ since $0 \in S$. Moreover, if $n \in Q$, then $[0, n) \subset S$ by definition of Q and hence $n+1 \in Q$. Thus Q satisfies the restrictions on the set, S, in Axiom 1.6 and therefore $Q=\mathbb{N}$. So if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}=Q$ and thus $n \in[0, n+1) \subset S$ which shows that $\mathbb{N} \subset S$. As $0 \in S$ by assumption, it follows that $\mathbb{N}_{0} \subset S$ as desired.

Lecture $2(1 / 7 / 2009)$

Definition 2.1. Given $a, b \in \mathbb{Z}$ with $a \neq 0$ we say that a divides b or a is a divisor of b (write $a \mid b$) provided $b=a k$ for some $k \in \mathbb{Z}$.

Definition 2.2. Given $a, b \in \mathbb{Z}$ with $|a|+|b|>0$, we let

$$
\operatorname{gcd}(a, b):=\max \{m: m \mid a \text { and } m \mid b\}
$$

be the greatest common divisor of a and b. (We do not define $\operatorname{gcd}(0,0)$ and we have $\operatorname{gcd}(0, b)=|b|$ for all $b \in \mathbb{Z} \backslash\{0\}$.) If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.

Remark 2.3. Notice that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|) \geq 0$ and $\operatorname{gcd}(a, 0)=0$ for all $a \neq 0$.

Lemma 2.4. Suppose that $a, b \in \mathbb{Z}$ with $b \neq 0$. Then $\operatorname{gcd}(a+k b, b)=\operatorname{gcd}(a, b)$ for all $k \in \mathbb{Z}$.

Proof. Let S_{k} denote the set of common divisors of $a+k b$ and b. If $d \in S_{k}$, then $d \mid b$ and $d \mid(a+k b)$ and therefore $d \mid a$ so that $d \in S_{0}$. Conversely if $d \in S_{0}$, then $d \mid b$ and $d \mid a$ and therefore $d \mid b$ and $d \mid(a+k b)$, i.e. $d \in S_{k}$. This shows that $S_{k}=S_{0}$, i.e. $a+k b$ and b and a and b have the same common divisors and hence the same greatest common divisors.

This lemma has a very useful corollary.
Lemma 2.5 (Euclidean Algorithm). Suppose that a, b are positive integers with $a<b$ and let $b=k a+r$ with $0 \leq r<a$ by the division algorithm. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$ and in particular if $r=0$, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, 0)=a .
$$

Example 2.6. Suppose that $a=15=3 \cdot 5$ and $b=28=2^{2} \cdot 7$. In this case it is easy to see that $\operatorname{gcd}(15,28)=1$. Nevertheless, lets use Lemma 2.5 repeatedly as follows;

$$
\begin{align*}
28 & =1 \cdot 15+13 \text { so } \operatorname{gcd}(15,28)=\operatorname{gcd}(13,15) \tag{2.1}\\
15 & =1 \cdot 13+2 \text { so } \operatorname{gcd}(13,15)=\operatorname{gcd}(2,13) \tag{2.2}\\
13 & =6 \cdot 2+1 \text { so } G \operatorname{gcd}(2,13)=\operatorname{gcd}(1,2) \tag{2.3}\\
2 & =2 \cdot 1+0 \text { so } \operatorname{gcd}(1,2)=\operatorname{gcd}(0,1)=1 \tag{2.4}
\end{align*}
$$

Moreover making use of Eqs. (2.1 2.3) in reverse order we learn that,

$$
\begin{aligned}
1 & =13-6 \cdot 2 \\
& =13-6 \cdot(15-1 \cdot 13)=7 \cdot 13-6 \cdot 15 \\
& =7 \cdot(28-1 \cdot 15)-6 \cdot 15=7 \cdot 28-13 \cdot 15 .
\end{aligned}
$$

Thus we have also shown that

$$
1=s \cdot 28+t \cdot 15 \text { where } s=7 \text { and } t=-13
$$

The choices for s and t used above are certainly not unique. For example we have,

$$
0=15 \cdot 28-28 \cdot 15
$$

which added to

$$
1=7 \cdot 28-13 \cdot 15
$$

implies,

$$
\begin{aligned}
1 & =(7+15) \cdot 28-(13+28) \cdot 15 \\
& =22 \cdot 28-41 \cdot 15
\end{aligned}
$$

as well.
Example 2.7. Suppose that $a=40=2^{3} \cdot 5$ and $b=52=2^{2} \cdot 13$. In this case we have $\operatorname{gcd}(40,52)=4$. Working as above we find,

$$
\begin{aligned}
& 52=1 \cdot 40+12 \\
& 40=3 \cdot 12+4 \\
& 12=3 \cdot 4+0
\end{aligned}
$$

so that we again see $\operatorname{gcd}(40,52)=4$. Moreover,

$$
4=40-3 \cdot 12=40-3 \cdot(52-1 \cdot 40)=4 \cdot 40-3 \cdot 52 .
$$

So again we have shown $\operatorname{gcd}(a, b)=s a+t b$ for some $s, t \in \mathbb{Z}$, in this case $s=4$ and $t=3$.

Example 2.8. Suppose that $a=333=3^{2} \cdot 37$ and $b=459=3^{3} \cdot 17$ so that $\operatorname{gcd}(333,459)=3^{2}=9$. Repeated use of Lemma 2.5 gives,

$$
\begin{align*}
459 & =1 \cdot 333+126 \text { so } \operatorname{gcd}(333,459)=\operatorname{gcd}(126,333) \tag{2.5}\\
333 & =2 \cdot 126+81 \text { so } \operatorname{gcd}(126,333)=\operatorname{gcd}(81,126) \tag{2.6}\\
126 & =81+45 \text { so } \operatorname{gcd}(81,126)=\operatorname{gcd}(45,81) \tag{2.7}\\
81 & =45+36 \text { so } \operatorname{gcd}(45,81)=\operatorname{gcd}(36,45) \tag{2.8}\\
45 & =36+9 \text { so } \operatorname{gcd}(36,45)=\operatorname{gcd}(9,36), \text { and } \tag{2.9}\\
36 & =4 \cdot 9+0 \text { so } \operatorname{gcd}(9,36)=\operatorname{gcd}(0,9)=9 \tag{2.10}
\end{align*}
$$

Thus we have shown that

$$
\operatorname{gcd}(333,459)=9
$$

We can even say more. From Eq. 2.10 we have, $9=45-36$ and then from Eq. 2.10),

$$
9=45-36=45-(81-45)=2 \cdot 45-81
$$

Continuing up the chain this way we learn,

$$
\begin{aligned}
9 & =2 \cdot(126-81)-81=2 \cdot 126-3 \cdot 81 \\
& =2 \cdot 126-3 \cdot(333-2 \cdot 126)=8 \cdot 126-3 \cdot 333 \\
& =8 \cdot(459-1 \cdot 333)-3 \cdot 333=8 \cdot 459-11 \cdot 333
\end{aligned}
$$

so that

$$
9=8 \cdot 459-11 \cdot 333
$$

The methods of the previous two examples can be used to prove Theorem 2.9 below. However, we will two different variants of the proof.

Theorem 2.9. If $a, b \in \mathbb{Z} \backslash\{0\}$, then there exists (not unique) numbers, $s, t \in \mathbb{Z}$ such that

$$
\begin{equation*}
\operatorname{gcd}(a, b)=s a+t b \tag{2.11}
\end{equation*}
$$

Moreover if $m \neq 0$ is any common divisor of both a and b then $m \mid \operatorname{gcd}(a, b)$.
Proof. If m is any common divisor of a and b then m is also a divisor of $s a+t b$ for any $s, t \in \mathbb{Z}$. (In particular this proves the second assertion given the truth of Eq. 2.11).) In particular, $\operatorname{gcd}(a, b)$ is a divisor of $s a+t b$ for all $s, t \in \mathbb{Z}$. Let $S:=\{s a+t b: s, t \in \mathbb{Z}\}$ and then define

$$
\begin{equation*}
d:=\min \left(S \cap \mathbb{Z}_{+}\right)=s a+t b \text { for some } s, t \in \mathbb{Z} \tag{2.12}
\end{equation*}
$$

By what we have just said if follows that $\operatorname{gcd}(a, b) \mid d$ and in particular $d \geq$ $\operatorname{gcd}(a, b)$. If we can snow d is a common divisor of a and b we must then have $d=\operatorname{gcd}(a, b)$. However, using the division algorithm,

$$
\begin{equation*}
a=k d+r \text { with } 0 \leq r<d \tag{2.13}
\end{equation*}
$$

As

$$
r=a-k d=a-k(s a+t b)=(1-k s) a-k t b \in S \cap \mathbb{N}
$$

if r were greater than 0 then $r \geq d$ (from the definition of d in Eq. (2.12) which would contradict Eq. 2.13). Hence it follows that $r=0$ and $d \mid a$. Similarly, one shows that $d \mid b$.

Lemma 2.10 (Euclid's Lemma). If $\operatorname{gcd}(c, a)=1$, i.e. c and a are relatively prime, and $c \mid a b$ then $c \mid b$.

Proof. We know that there exists $s, t \in \mathbb{Z}$ such that $s a+t c=1$. Multiplying this equation by b implies,

$$
s a b+t c b=b
$$

Since $c \mid a b$ and $c \mid c b$, it follows from this equation that $c \mid b$.
Corollary 2.11. Suppose that $a, b \in \mathbb{Z}$ such that there exists $s, t \in \mathbb{Z}$ with $1=s a+t b$. Then a and b are relatively prime, i.e. $\operatorname{gcd}(a, b)=1$.

Proof. If $m>0$ is a divisor of a and b, then $m \mid(s a+t b)$, i.e. $m \mid 1$ which implies $m=1$. Thus the only positive common divisor of a and b is 1 and hence $\operatorname{gcd}(a, b)=1$.

2.1 Ideals (Not covered in class.)

Definition 2.12. As non-empty subset $S \subset \mathbb{Z}$ is called an ideal if S is closed under addition (i.e. $S+S \subset S$) and under multiplication by any element of \mathbb{Z}, i.e. $\mathbb{Z} \cdot S \subset S$.

Example 2.13. For any $n \in \mathbb{Z}$, let

$$
(n):=\mathbb{Z} \cdot n=n \mathbb{Z}:=\{k n: k \in \mathbb{Z}\}
$$

I is easily checked that (n) is an ideal. The next theorem states that this is a listing of all the ideals of \mathbb{Z}.
Theorem 2.14 (Ideals of \mathbb{Z}). If $S \subset \mathbb{Z}$ is an ideal then $S=(n)$ for some $n \in \mathbb{Z}$. Moreover either $S=\{0\}$ in which case $n=0$ for $S \neq\{0\}$ in which case $n=\min \left(S \cap \mathbb{Z}_{+}\right)$.

Proof. If $S=\{0\}$ we may take $n=0$. So we may assume that S contains a non-zero element a. By assumption that $\mathbb{Z} \cdot S \subset S$ it follows that $-a \in S$ as well and therefore $S \cap \mathbb{Z}_{+}$is not empty as either a or $-a$ is positive. By the well ordering principle, we may define n as, $n:=\min S \cap \mathbb{Z}_{+}$.

Since $\mathbb{Z} \cdot n \subset \mathbb{Z} \cdot S \subset S$, it follows that $(n) \subset S$. Conversely, suppose that $s \in S \cap \mathbb{Z}_{+}$. By the division algorithm, $s=k n+r$ where $k \in \mathbb{N}$ and $0 \leq r<n$. It now follows that $r=s-k n \in S$. If $r>0$, we would have to have $r \geq n=\min S \cap \mathbb{Z}_{+}$and hence we see that $r=0$. This shows that $s=k n$ for some $k \in \mathbb{N}$ and therefore $s \in(n)$. If $s \in S$ is negative we apply what we have just proved to $-s$ to learn that $-s \in(n)$ and therefore $s \in(n)$.

Remark 2.15. Notice that $a \mid b$ iff $b=a k$ for some $k \in \mathbb{Z}$ which happens iff $b \in(a)$.

Proof. Second Proof of Theorem 2.9, Let $S:=\{s a+t b: s, t \in \mathbb{Z}\}$. One easily checks that $S \subset \mathbb{Z}$ is an ideal and therefore $S=(d)$ where $d:=$ $\min S \cap \mathbb{Z}_{+}$. Notice that $d=s a+t b$ for some $s, t \in \mathbb{Z}$ as $d \in S$. We now claim that $d=\operatorname{gcd}(a, b)$. To prove this we must show that d is a divisor of a and b and that it is the maximal such divisor.

Taking $s=1$ and $t=0$ or $s=0$ and $t=1$ we learn that both $a, b \in S=(d)$, i.e. $d \mid a$ and $d \mid b$. If $m \in \mathbb{Z}_{+}$and $m \mid a$ and $m \mid b$, then

$$
\frac{d}{m}=s \frac{a}{m}+t \frac{b}{m} \in \mathbb{Z}
$$

from which it follows that so that $m \mid d$. This shows that $d=\operatorname{gcd}(a, b)$ and also proves the last assertion of the theorem.

Alternate proof of last statement. If $m \mid a$ and $m \mid b$ there exists $k, l \in \mathbb{Z}$ such that $a=k m$ and $b=l m$ and therefore,

$$
d=s a+t b=(s k+t l) m
$$

which again shows that $m \mid d$.
Remark 2.16. As a second proof of Corollary 2.11, if $1 \in S$ (where S is as in the second proof of Theorem 2.9) , then $\operatorname{gcd}(a, b)=\min \left(S \cap \mathbb{Z}_{+}\right)=1$.

Lecture 3 ($1 / 9 / 2009$)

3.1 Prime Numbers

Definition 3.1. A number, $p \in \mathbb{Z}$, is prime iff $p \geq 2$ and p has no divisors other than 1 and p. Alternatively $p u t, p \geq 2$ and $\operatorname{gcd}(a, p)$ is either 1 or p for all $a \in \mathbb{Z}$.

Example 3.2. The first few prime numbers are $2,3,5,7,11,13,17,19,23, \ldots$.
Lemma 3.3 (Euclid's Lemma again). Suppose that p is a prime number and $p \mid a b$ for some $a, b \in \mathbb{Z}$ then $p \mid a$ or $p \mid b$.

Proof. We know that $\operatorname{gcd}(a, p)=1$ or $\operatorname{gcd}(a, p)=p$. In the latter case $p \mid a$ and we are done. In the former case we may apply Euclid's Lemma 2.10 to conclude that $p \mid b$ and so again we are done.

Theorem 3.4 (The fundamental theorem of arithmetic). Every $n \in \mathbb{Z}$ with $n \geq 2$ is a prime or a product of primes. The product is unique except for the order of the primes appearing the product. Thus if $n \geq 2$ and $n=p_{1} \ldots p_{n}=$ $q_{1} \ldots q_{m}$ where the p 's and q 's are prime, then $m=n$ and after renumbering the q 's we have $p_{i}=q_{i}$.

Proof. Existence: This clearly holds for $n=2$. Now suppose for every $2 \leq k \leq n$ may be written as a product of primes. Then either $n+1$ is prime in which case we are done or $n+1=a \cdot b$ with $1<a, b<n+1$. By the induction hypothesis, we know that both a and b are a product of primes and therefore so is $n+1$. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in $0 . \# 25$. Here is the solution. Observe that $p_{1} \mid q_{1} \ldots q_{m}$. If p_{1} does not divide q_{1} then $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$ and therefore by Euclid's Lemma 2.10, $p_{1} \mid\left(q_{2} \ldots q_{m}\right)$. It now follows by induction that p_{1} must divide one of the q_{i}, by relabeling we may assume that $q_{1}=p_{1}$. The result now follows by induction on $n \vee m$.

Definition 3.5. The least common multiple of two non-zero integers, a, b, is the smallest positive number which is both a multiple of a and b and this number will be denoted by $\operatorname{lcm}(a, b)$. Notice that $m=\min \left((a) \cap(b) \cap \mathbb{Z}_{+}\right)$.

Example 3.6. Suppose that $a=12=2^{2} \cdot 3$ and $b=15=3 \cdot 5$. Then $\operatorname{gcd}(12,15)=$ 3 while

$$
\operatorname{lcm}(12,15)=\left(2^{2} \cdot 3\right) \cdot 5=2^{2} \cdot(3 \cdot 5)=\left(2^{2} \cdot 3 \cdot 5\right)=60
$$

Observe that

$$
\operatorname{gcd}(12,15) \cdot \operatorname{lcm}(12,15)=3 \cdot\left(2^{2} \cdot 3 \cdot 5\right)=\left(2^{2} \cdot 3\right) \cdot(3 \cdot 5)=12 \cdot 15
$$

This is a special case of Chapter $0 . \# 12$ on p. 23 which can be proved by similar considerations. In general if

$$
a=p_{1}^{n_{1}} \cdots \cdots p_{k}^{n_{k}} \text { and } b=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}} \text { with } n_{j}, m_{l} \in \mathbb{N}
$$

then

$$
\operatorname{gcd}(a, b)=p_{1}^{n_{1} \wedge m_{1}} \cdots \cdots p_{k}^{n_{k} \wedge m_{k}} \text { and } \operatorname{lcm}(a, b)=p_{1}^{n_{1} \vee m_{1}} \cdots \cdots p_{k}^{n_{k} \vee m_{k}}
$$

Therefore,

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =p_{1}^{n_{1} \wedge m_{1}+n_{1} \vee m_{1}} \cdots \cdot p_{k}^{n_{k} \wedge m_{k}+n_{k} \vee m_{k}} \\
& =p_{1}^{n_{1}+m_{1}} \cdots \cdot p_{k}^{n_{k}+m_{k}}=a \cdot b .
\end{aligned}
$$

3.2 Modular Arithmetic

Definition 3.7. Let n be a positive integer and let $a=q_{a} n+r_{a}$ with $0 \leq r_{a}<n$. Then we define $a \bmod n:=r_{a}$. (Sometimes we might write $a=r_{a} \bmod n-b u t$ I will try to stick with the first usage.)

Lemma 3.8. Let $n \in \mathbb{Z}_{+}$and $a, b, k \in \mathbb{Z}$. Then:

1. $(a+k n) \bmod n=a \bmod n$.
2. $(a+b) \bmod n=(a \bmod n+b \bmod n) \bmod n$.
3. $(a \cdot b) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$.

Proof. Let $r_{a}=a \bmod n, r_{b}=b \bmod n$ and $q_{a}, q_{b} \in \mathbb{Z}$ such that $a=q_{a} n+r_{a}$ and $b=q_{b} n+r_{b}$.

3 Lecture 3 (1/9/2009)

1. Then $a+k n=\left(q_{a}+k\right) n+r_{a}$ and therefore,

$$
(a+k n) \bmod n=r_{a}=a \bmod n
$$

2. $a+b=\left(q_{a}+q_{b}\right) n+r_{a}+r_{b}$ and hence by item 1 with $k=q_{a}+q_{b}$ we find,

$$
(a+b) \bmod n=\left(r_{a}+r_{b}\right) \bmod n .=(a \bmod n+b \bmod n) \bmod n
$$

3. For the last assertion,

$$
a \cdot b=\left[q_{a} n+r_{a}\right] \cdot\left[q_{b} n+r_{b}\right]=\left(q_{a} q_{b} n+r_{a} q_{b}+r_{b} q_{a}\right) n+r_{a} \cdot r_{b}
$$

and so again by item 1 . with $k=\left(q_{a} q_{b} n+r_{a} q_{b}+r_{b} q_{a}\right)$ we have,
$(a \cdot b) \bmod n=\left(r_{a} \cdot r_{b}\right) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$.

Example 3.9. Take $n=4, a=18$ and $b=7$. Then $18 \bmod 4=2$ and $7 \bmod 4=$ 3. On one hand,

$$
\begin{aligned}
(18+7) \bmod 4 & =25 \bmod 4=1 \text { while on the other, } \\
(2+3) \bmod 4 & =1
\end{aligned}
$$

Similarly, $18 \cdot 7=126=4 \cdot 31+2$ so that

$$
\begin{aligned}
(18 \cdot 7) \bmod 4 & =2 \text { while } \\
(2 \cdot 3) \bmod 4 & =6 \bmod 4=2
\end{aligned}
$$

Remark 3.10 (Error Detection). Companies often add extra digits to identification numbers for the purpose of detecting forgery or errors. For example the United Parcel Service uses a mod 7 check digit. Hence if the identification number were $n=354691332$ one would append
$n \bmod 7=354691332 \bmod 7=2$ to the number to get
$\quad 354691332 _2$ (say).

See the book for more on this method and other more elaborate check digit schemes. Note,

$$
354691332=50670190 \cdot 7+2
$$

Remark 3.11. Suppose that $a, n \in \mathbb{Z}_{+}$and $b \in \mathbb{Z}$, then it is easy to show (you prove)

$$
(a b) \bmod (a n)=a \cdot(b \bmod n)
$$

Example 3.12 (Computing mod 10). We have,

$$
\begin{aligned}
123456 \bmod 10 & =6 \\
123456 \bmod 100 & =56 \\
123456 \bmod 1000 & =456 \\
123456 \bmod 10000 & =3456 \\
123456 \bmod 100000 & =23456 \\
123456 \bmod 1000000 & =123456
\end{aligned}
$$

so that

$$
a_{n} \ldots a_{2} a_{1} \bmod 10^{k}=a_{k} \ldots a_{2} a_{1} \text { for all } k \leq n
$$

Solution to Exercise (0.52). As an example, here is a solution to Problem 0.52 of the book which states that $\overbrace{111 \ldots 1}^{k \text { times }}$ is not the square of an integer except when $k=1$.

As 11 is prime we may assume that $k \geq 3$. By Example 3.12 $111 \ldots 1 \bmod 10=1$ and $111 \ldots 1 \bmod 100=11$. Hence $1111 \ldots 1=n^{2}$ for some integer n, we must have

$$
n^{2} \bmod 10=1 \text { and }\left(n^{2}-1\right) \bmod 100=10
$$

The first condition implies that $n \bmod 10=1$ or 9 as $1^{2}=1$ and $9^{2} \bmod 10=$ $81 \bmod 10=1$. In the first case we have, $n=k \cdot 10+1$ and therefore we must require,
$10=\left(n^{2}-1\right) \bmod 100=\left[(k \cdot 10+1)^{2}-1\right] \bmod 100=\left(k^{2} \cdot 100+2 k \cdot 10\right) \bmod 100$

$$
=(2 k \cdot 10) \bmod 100=10 \cdot(2 k \bmod 10)
$$

which implies $1=(2 k \bmod 10)$ which is impossible since $2 k \bmod 10$ is even.
For the second case we must have,

$$
\begin{aligned}
10 & =\left(n^{2}-1\right) \bmod 100 \bmod 100=\left[(k \cdot 10+9)^{2}-1\right] \bmod 100 \\
& =\left(k^{2} \cdot 100+18 k \cdot 10+81-1\right) \bmod 100 \\
& =((10+8) k \cdot 10+8 \cdot 10) \bmod 100 \\
& =(8(k+1) \cdot 10) \bmod 100 \\
& =10 \cdot 8 k \bmod 10
\end{aligned}
$$

which implies which $1=(8 k \bmod 10)$ which again is impossible since $8 k \bmod 10$ is even.

Solution to Exercise (0.52 Second and better solution). Notice that $111 \ldots 11=111 \ldots 00+11$ and therefore,

$$
111 \ldots 11 \bmod 4=11 \bmod 4=3
$$

On the other hand, if $111 \ldots 11=n^{2}$ we must have,

$$
(n \bmod 4)^{2} \bmod 4=3
$$

There are only four possibilities for $r:=n \bmod 4$, namely $r=0,1,2,3$ and these are not allowed since $0^{2} \bmod 4=0 \neq 3,1^{2} \bmod 4=1 \neq 3,2^{2} \bmod 4=0 \neq 3$, and $3^{2} \bmod 4=1 \neq 3$.

3.3 Equivalence Relations

Definition 3.13. A equivalence relation on a set S is a subset, $R \subset S \times S$ with the following properties:

1. R is reflexive: $(a, a) \in R$ for all $a \in S$
2. R is symmetric: If $(a, b) \in R$ then $(b, a) \in R$.
3. R is transitive: If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

We will usually write $a \sim b$ to mean that $(a, b) \in R$ and pronounce this as a is equivalent to b. With this notation we are assuming $a \sim a, a \sim b \Longrightarrow b \sim a$ and $a \sim b$ and $b \sim c \Longrightarrow a \sim c$. (Note well: the book write $a R b$ rather than $a \sim b$.)

Example 3.14. If $S=\{1,2,3,4,5\}$ then:

1. $R=\{1,2,3\}^{2} \cup\{4,5\}^{2}$ is an equivalence relation.
2. $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(2,3),(3,2)\}$ is not an equivalence relation. For example, $1 \sim 2$ and $2 \sim 3$ but 1 is not equivalent to 3 , so R is not transitive.

Example 3.15. Let $n \in \mathbb{Z}_{+}, S=\mathbb{Z}$ and say $a \sim b$ iff $a \bmod n=b \bmod n$. This is an equivalence relation. For example, when $s=2$ we have $a \sim b$ iff both a and b are odd or even. So in this case $R=\{\text { odd }\}^{2} \cup\{\text { even }\}^{2}$.

Example 3.16. Let $S=\mathbb{R}$ and say $a \sim b$ iff $a \geq b$. Again not symmetric so is not an equivalence relation.

Definition 3.17. A partition of a set S is a decomposition, $\left\{S_{\alpha}\right\}_{\alpha \in I}$, by disjoint sets, so S_{α} is a non-empty subset of S such that $S=\cup_{\alpha \in I} S_{\alpha}$ and $S_{\alpha} \cap S_{\beta}=\emptyset$ if $\alpha \neq \beta$.

Example 3.18. If $\left\{S_{\alpha}\right\}_{\alpha \in I}$ is a partition of S, then $R=\cup_{\alpha \in I} S_{\alpha}^{2}$ is an equivalence relation. The next theorem states this is the general type of equivalence relation.

Lecture 4 (1/12/2009)

Theorem 4.1. Let R or \sim be an equivalence relation on S and for each $a \in S$, let

$$
[a]:=\{x \in S: a \sim x\}
$$

be the equivalence class of a.. Then S is partitioned by its distinct equivalence classes.

Proof. Because \sim is reflexive, $a \in[a]$ for all a and therefore every element $a \in S$ is a member of its own equivalence class. Thus to finish the proof we must show that distinct equivalence classes are disjoint. To this end we will show that if $[a] \cap[b] \neq \emptyset$ then in fact $[a]=[b]$. So suppose that $c \in[a] \cap[b]$ and $x \in[a]$. Then we know that $a \sim c, b \sim c$ and $a \sim x$. By reflexivity and transitivity of \sim we then have,

$$
x \sim a \sim c \sim b, \text { and hence } b \sim x
$$

which shows that $x \in[b]$. Thus we have shown $[a] \subset[b]$. Similarly it follows that $[b] \subset[a]$.

Exercise 4.1. Suppose that $S=\mathbb{Z}$ with $a \sim b$ iff $a \bmod n=b \bmod n$. Identify the equivalence classes of \sim. Answer,

$$
\{[0],[1], \ldots,[n-1]\}
$$

where

$$
[i]=i+n \mathbb{Z}=\{i+n s: s \in \mathbb{Z}\}
$$

Exercise 4.2. Suppose that $S=\mathbb{R}^{2}$ with $\mathbf{a}=\left(a_{1}, a_{2}\right) \sim \mathbf{b}=\left(b_{1}, b_{2}\right)$ iff $|\mathbf{a}|=$ $|\mathbf{b}|$ where $|\mathbf{a}|:=a_{1}^{2}+a_{2}^{2}$. Show that \sim is an equivalence relation and identify the equivalence classes of \sim. Answer, the equivalence classes consists of concentric circles centered about the origin $(0,0) \in S$.

4.1 Binary Operations and Groups - a first look

Definition 4.2. A binary operation on a set S is a function, $*: S \times S \rightarrow S$. We will typically write $a * b$ rather than $*(a, b)$.

Example 4.3. Here are a number of examples of binary operations.

1. $S=\mathbb{Z}$ and $*="+"$
2. $S=\{$ odd integers $\}$ and $*="+"$ is not an example of a binary operator since $3 * 5=3+5=8 \notin S$.
3. $S=\mathbb{Z}$ and $*=$ "."
4. $S=\mathbb{R} \backslash\{0\}$ and $*=$ "."
5. $S=\mathbb{R} \backslash\{0\}$ with $*=" "=" \div "$.
6. Let S be the set of 2×2 real (complex) matrices with $A * B:=A B$.

Definition 4.4. Let $*$ be a binary operation on a set S. Then;

1. $*$ is associative if $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$.
2. $e \in S$ is an identity element if $e * a=a=a * e$ for all $a \in S$.
3. Suppose that $e \in S$ is an identity element and $a \in S$. We say that $b \in S$ is an inverse to a if $b * a=e=a * b$.
4. $*$ is commutative if $a * b=b * a$ for all $a, b \in S$.

Definition 4.5 (Group). A group is a triple, $(G, *, e)$ where $*$ is an associative binary operation on a set, $G, e \in G$ is an identity element, and each $g \in G$ has an inverse in G. (Typically we will simply denote $g * h$ by $g h$.)

Definition 4.6 (Commutative Group). A group, (G, e), is commutative if $g h=h g$ for all $h, g \in G$.

Example $4.7((\mathbb{Z},+))$. One easily checks that $(\mathbb{Z}, *=+)$ is a commutative group with $e=0$ and the inverse to $a \in \mathbb{Z}$ is $-a$. Observe that $e * a=e+a=a$ for all a iff $e=0$.

Example 4.8. $S=\mathbb{Z}$ and $*=$ "." is an associative, commutative, binary operation with $e=1$ being the identity. Indeed $e \cdot a=a$ for all $a \in \mathbb{Z}$ implies $e=e \cdot 1=1$. This is not a group since there are no inverses for any $a \in \mathbb{Z}$ with $|a| \geq 2$.

Example $4.9((\mathbb{R} \backslash\{0\}, \cdot)) . G=\mathbb{R} \backslash\{0\}=: \mathbb{R}^{*}$, and $*="$." is a commutative group, $e=1$, an inverse to a is $1 / a$.

Example 4.10. $S=\mathbb{R} \backslash\{0\}$ with $*=" \ "=" \div "$. In this case $*$ is not associative since

$$
\begin{aligned}
& a *(b * c)=a /(b / c)=\frac{a c}{b} \text { while } \\
& (a * b) * c=(a / b) / c=\frac{a}{b c} .
\end{aligned}
$$

It is also not commutative since $a / b \neq b / a$ in general. There is no identity element $e \in S$. Indeed, $e * a=a=a * e$, we would imply $e=a^{2}$ for all $a \neq 0$ which is impossible, i.e. $e=1$ and $e=4$ at the same time.

Example 4.11. Let S be the set of 2×2 real (complex) matrices with $A * B:=$ $A B$. This is a non-commutative binary operation which is associative and has an identity, namely

$$
e:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

It is however not a group only those $A \in S$ with $\operatorname{det} A \neq 0$ admit an inverse.
Example $4.12\left(G L_{2}(\mathbb{R})\right)$. Let $G:=G L_{2}(\mathbb{R})$ be the set of 2×2 real (complex) matrices such that $\operatorname{det} A \neq 0$ with $A * B:=A B$ is a group with $e:=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and the inverse to A being A^{-1}. This group is non-abeliean for example let

$$
A:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

then

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] \text { while } \\
& B A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] \neq A B
\end{aligned}
$$

Example 4.13 $\left(S L_{2}(\mathbb{R})\right.$). Let $S L_{2}(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}): \operatorname{det} A=1\right\}$. This is a group since $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B=1$ if $A, B \in S L_{2}(\mathbb{R})$.

Lecture 5 (1/14/2009)

5.1 Elementary Properties of Groups

Let (G, \cdot) be a group.
Lemma 5.1. The identity element in G is unique.
Proof. Suppose that e and e^{\prime} both satisfy $e a=a e=a$ and $e^{\prime} a=a e^{\prime}=a$ for all $a \in G$, then $e=e^{\prime} e=e^{\prime}$.

Lemma 5.2. Left and right cancellation holds. Namely, if $a b=a c$ then $b=c$ and $b a=c a$ then $b=c$.

Proof. Let d be an inverse to a. If $a b=a c$ then $d(a b)=d(a c)$. On the other hand by associativity,

$$
d(a b)=(d a) b=e b=b \text { and similarly, } d(a c)=c .
$$

Thus it follows that $b=c$. The right cancellation is proved similarly.
Example 5.3 (No cross cancellation in general). Let $G=G L_{2}(\mathbb{R})$,

$$
A:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], B:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } C:=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] .
$$

Then

$$
A B=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right]=C A
$$

yet $B \neq C$. In general, all we can say if $A B=C A$ is that $C=A B A^{-1}$.
Lemma 5.4. Inverses in G are unique.
Proof. Suppose that b and b^{\prime} are both inverses to a, then $b a=e=b^{\prime} a$. Hence by cancellation, it follows that $b=b^{\prime}$.

Notation 5.5 If $g \in G$, let g^{-1} denote the unique inverse to g. (If we are in an abelian group and using the symbol, "+" for the binary operation we denote g^{-1} by $-g$ instead.

Example 5.6. Let G be a group. Because of the associativity law it makes sense to write $a_{1} a_{2} a_{3}$ and $a_{1} a_{2} a_{3} a_{4}$ where $a_{i} \in G$. Indeed, we may either interpret $a_{1} a_{2} a_{3}$ as $\left(a_{1} a_{2}\right) a_{3}$ or as $a_{1}\left(a_{2} a_{3}\right)$ which are equal by the associativity law. While we might interpret $a_{1} a_{2} a_{3} a_{4}$ as one of the following expressions;

$$
\begin{aligned}
& c_{1}:=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \\
& c_{2}:=\left(\left(a_{1} a_{2}\right) a_{3}\right) a_{4} \\
& c_{3}:=\left(a_{1}\left(a_{2} a_{3}\right)\right) a_{4} \\
& c_{4}:=a_{1}\left(\left(a_{2} a_{3}\right) a_{4}\right) \\
& c_{5}:=a_{1}\left(a_{2}\left(a_{3} a_{4}\right)\right) .
\end{aligned}
$$

Using the associativity law repeatedly these are all seen to be equal. For example,

$$
\begin{aligned}
c_{1} & =\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=\left(\left(a_{1} a_{2}\right) a_{3}\right) a_{4}=c_{2}, \\
c_{3} & =\left(a_{1}\left(a_{2} a_{3}\right)\right) a_{4}=a_{1}\left(\left(a_{2} a_{3}\right) a_{4}\right)=c_{4} \\
& =a_{1}\left(a_{2}\left(a_{3} a_{4}\right)\right)=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=c_{1}
\end{aligned}
$$

and

$$
c_{5}:=a_{1}\left(a_{2}\left(a_{3} a_{4}\right)\right)=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=c_{1} .
$$

More generally we have the following proposition.
Proposition 5.7. Suppose that G is a group and $g_{1}, g_{2}, \ldots, g_{n} \in G$, then it makes sense to write $g_{1} g_{2} \ldots g_{n} \in G$ which is interpreted to mean: do the pairwise multiplications in any of the possible allowed orders without rearranging the orders of the g 's.

Proof. Sketch. The proof is by induction. Let us begin by defining $\left\{M_{n}: G^{n} \rightarrow G\right\}_{n=2}^{\infty}$ inductively by $M_{2}(a, b)=a b, M_{3}(a, b, c)=(a b) c$, and $M_{n}\left(g_{1}, \ldots, g_{n}\right):=M_{n-1}\left(g_{1}, \ldots, g_{n-1}\right) \cdot g_{n}$. We wish to show that $M_{n}\left(g_{1}, \ldots, g_{n}\right)$ may be expressed as one of the products described in the proposition. For the base case, $n=2$, there is nothing to prove. Now assume that the assertion holds for $2 \leq k \leq n$. Consider an expression for $g_{1} \ldots g_{n} g_{n+1}$. We now do another induction on the number of parentheses appearing on the right of this expression, $\ldots g_{n} \overbrace{\ldots \ldots)}^{k}$. If $k=0$, we have
(brackets involving $\left.g_{1} \ldots g_{n}\right) \cdot g_{n+1}=M_{n}\left(g_{1}, \ldots, g_{n}\right) g_{n+1}=M_{n+1}\left(g_{1}, \ldots, g_{n+1}\right)$,
wherein we used induction in the first equality and the definition of M_{n+1} in the second. Now suppose the assertion holds for some $k \geq 0$ and consider the case where there are $k+1$ parentheses appearing on the right of this expression, $\overbrace{}^{k+1}$
i.e. $\ldots g_{n} \overbrace{\ldots)}$. Using the associativity law for the last bracket on the right we can transform this expression into one with only k parentheses appearing on the right. It then follows by the induction hypothesis, that $\ldots g_{n} \overbrace{\ldots)}^{k+1}=$ $M_{n+1}\left(g_{1}, \ldots, g_{n+1}\right)$.

Notation 5.8 For $n \in \mathbb{Z}$ and $g \in G$, let $g^{n}:=\overbrace{g \ldots g}^{n \text { times }}$ and $g^{-n}:=\overbrace{g^{-1} \ldots g^{-1}}^{n \text { times }}=$ $\left(g^{-1}\right)^{n}$ if $n \geq 1$ and $g^{0}:=e$.

Observe that with this notation that $g^{m} g^{n}=g^{m+n}$ for all $m, n \in \mathbb{Z}$. For example,

$$
g^{3} g^{-5}=g g g g^{-1} g^{-1} g^{-1} g^{-1} g^{-1}=g g g^{-1} g^{-1} g^{-1} g^{-1}=g g^{-1} g^{-1} g^{-1}=g^{-1} g^{-1}=g^{-2} .
$$

5.2 More Examples of Groups

Example 5.9. Let G be the set of 2×2 real (complex) matrices with $A * B:=$ $A+B$. This is a group. In fact any vector space under addition is an abelian group with $e=0$ and $v^{-1}=-v$.

Example $5.10\left(\mathbb{Z}_{n}\right)$. For any $n \geq 2, G:=\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ with $a * b=$ $(a+b) \bmod n$ is a commutative group with $e=0$ and the inverse to $a \in \mathbb{Z}_{n}$ being $n-a$. Notice that $(n-a+a) \bmod n=n \bmod n=0$.

Example 5.11. Suppose that $S=\{0,1,2, \ldots, n-1\}$ with $a * b=a b \bmod n$. In this case $*$ is an associative binary operation which is commutative and $e=1$ is an identity for S. In general it is not a group since not every element need have an inverse. Indeed if $a, b \in S$, then $a * b=1$ iff $1=a b \bmod n$ which we have seen can happen iff $\operatorname{gcd}(a, n)=1$ by Lemma 9.8 . For example if $n=4$, $S=\{0,1,2,3\}$, then

$$
2 * 1=2, \quad 2 * 2=0, \quad 2 * 0=0, \quad \text { and } \quad 2 * 3=2
$$

none of which are 1 . Thus, 2 is not invertible for this operation. (Of course 0 is not invertible as well.)

Lecture 6 (1/16/2009)

Theorem 6.1 (The groups, $U(n)$). For $n \geq 2$, let

$$
U(n):=\{a \in\{1,2, \ldots, n-1\}: \operatorname{gcd}(a, n)=1\}
$$

and for $a, b \in U(n)$ let $a * b:=(a b) \bmod n$. Then $(U(n), *)$ is a group.
Proof. First off, let $a * b:=a b \bmod n$ for all $a, b \in \mathbb{Z}$. Then if $a, b, c \in \mathbb{Z}$ we have

$$
\begin{aligned}
(a b c) \bmod n & =((a b) c) \bmod n=((a b) \bmod n \cdot c \bmod n) \bmod n \\
& =((a * b) \cdot c \bmod n) \bmod n=((a * b) \cdot c) \bmod n \\
& =(a * b) * c .
\end{aligned}
$$

Similarly one shows that

$$
(a b c) \bmod n=a *(b * c)
$$

and hence $*$ is associative. It should be clear also that $*$ is commutative.
Claim: an element $a \in\{1,2, \ldots, n-1\}$ is in $U(n)$ iff there exists $r \in$ $\{1,2, \ldots, n-1\}$ such that $r * a=1$.
$(\Longrightarrow) a \in U(n) \Longleftrightarrow \operatorname{gcd}(a, n)=1 \Longleftrightarrow$ there exists $s, t \in \mathbb{Z}$ such that $s a+t n=1$. Taking this equation $\bmod n$ then shows,
$(s \bmod n \cdot a) \bmod n=(s \bmod n \cdot a \bmod n) \bmod n=(s a) \bmod n=1 \bmod n=1$ and therefore $r:=s \bmod n \in\{1,2, \ldots, n-1\}$ and $r * a=1$.
(\Longleftarrow) If there exists $r \in\{1,2, \ldots, n-1\}$ such that $1=r * a=r a \bmod n$, then $n \mid(r a-1)$, i.e. there exists t such that $r a-1=k t$ or $1=r a-k t$ from which it follows that $\operatorname{gcd}(a, n)=1$, i.e. $a \in U(n)$.

The claim shows that to each element, $a \in U(n)$, there is an inverse, $a^{-1} \in$ $U(n)$. Finally if $a, b \in U(n)$ let $k:=b^{-1} * a^{-1} \in U(n)$, then

$$
k *(a * b)=b^{-1} * a^{-1} * a * b=1
$$

and so by the claim, $a * b \in U(n)$, i.e. the binary operation is really a binary operation on $U(n)$.

Example 6.2 ($U(10)$). $U(10)=\{1,3,7,9\}$ with multiplication or Cayley table given by

$a \backslash b 1379$	
1	1379
3	3917
7	7193
9	9731

where the element of the (a, b) row indexed by $U(10)$ itself is given by $a * b=$ $a b \bmod 10$.

Example 6.3. If p is prime, then $U(p)=\{1,2, \ldots, p\}$. For example $U(5)=$ $\{1,2,3,4\}$ with Cayley table given by,

$a \backslash b 1234$
$1\left[\begin{array}{lllll}1 & 2 & 3\end{array}\right]$
2413
3142
4321

Exercise 6.1. Compute 23^{-1} inside of $U(50)$.
Solution to Exercise. We use the division algorithm (see below) to show $1=$ $6 \cdot 50-13 \cdot 23$. Taking this equation $\bmod 50$ shows that $23^{-1}=(-13)=37$. As a check we may show directly that $(23 \cdot 37) \bmod 50=1$.

Here is the division algorithm calculation:

$$
\begin{aligned}
50 & =2 \cdot 23+4 \\
23 & =5 \cdot 4+3 \\
4 & =3+1 .
\end{aligned}
$$

So working backwards we find,

$$
\begin{aligned}
1 & =4-3=4-(23-5 \cdot 4)=6 \cdot 4-23=6 \cdot(50-2 \cdot 23)-23 \\
& =6 \cdot 50-13 \cdot 23 .
\end{aligned}
$$

2466 Lecture 6 ($1 / 16 / 2009$)

6.1 $O(2)$ - reflections and rotations in \mathbb{R}^{2}

Definition 6.4 (Sub-group). Let (G, \cdot) be a group. A non-empty subset, $H \subset$ G, is said to be a subgroup of G if H is also a group under the multiplication law in G. We use the notation, $H \leq G$ to summarize that H is a subgroup of G and $H<G$ to summarize that H is a proper subgroup of G.

In this section, we are interested in describing the subgroup of $G L_{2}(\mathbb{R})$ which corresponds to reflections and rotations in the plane. We define these operations now.

As in Figure 6.1 let

Fig. 6.1. The unit vector, $u(\theta)$, at angle θ to the x - axis.

$$
u(\theta):=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

We also let R_{α} denote rotation by α degrees counter clockwise so that $R_{\alpha} u(\theta)=$ $u(\theta+\alpha)$ as in Figure 6.2. We may represent R_{α} as a matrix, namely

Fig. 6.2. Rotation by α degrees in the counter clockwise direction.

$$
\begin{aligned}
R_{\alpha} & =\left[R_{\alpha} e_{1} \mid R_{\alpha} e_{2}\right]=\left[R_{\alpha} u(0) \mid R_{\alpha} u(\pi / 2)\right]=[u(\alpha) \mid u(\alpha+\pi / 2)] \\
& =\left[\begin{array}{c}
\cos \alpha \cos (\alpha+\pi / 2) \\
\sin \alpha \sin (\alpha+\pi / 2)
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha-\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
\end{aligned}
$$

We also define reflection, S_{α}, across the line determined by $u(\alpha)$ as in Figure 6.3 so that $S_{\alpha} u(\theta):=u(2 \alpha-\theta)$. We may compute the matrix representing S_{α}

Fig. 6.3. Computing S_{α}.
as,

$$
\begin{aligned}
S_{\alpha} & =\left[S_{\alpha} e_{1} \mid S_{\alpha} e_{2}\right]=\left[S_{\alpha} u(0) \mid S_{\alpha} u(\pi / 2)\right]=[u(2 \alpha) \mid u(2 \alpha-\pi / 2)] \\
& =\left[\begin{array}{c}
\cos 2 \alpha \cos (2 \alpha-\pi / 2) \\
\sin 2 \alpha \sin (2 \alpha-\pi / 2)
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha-\cos 2 \alpha
\end{array}\right] .
\end{aligned}
$$

Lecture 7 (1/21/2009)

Definition 7.1 (Sub-group). Let (G, \cdot) be a group. A non-empty subset, $H \subset$ G, is said to be a subgroup of G if H is also a group under the multiplication law in G. We use the notation, $H \leq G$ to summarize that H is a subgroup of G and $H<G$ to summarize that H is a proper subgroup of G.

Theorem 7.2 (Two-step Subgroup Test). Let G be a group and H be a non-empty subset. Then $H \leq G$ if

1. H is closed under \cdot, i.e. $h k \in H$ for all $h, k \in H$,
2. H is closed under taking inverses, i.e. $h^{-1} \in H$ if $h \in H$.

Proof. First off notice that $e=h^{-1} h \in H$. It also clear that H contains inverses and the multiplication law is associative, thus $H \leq G$.

Theorem 7.3 (One-step Subgroup Test). Let G be a group and H be a non-empty subset. Then $H \leq G$ iff $a b^{-1} \in H$ whenever $a, b \in H$.

Proof. If $a \in H$, then $e=a a^{-1} \in H$ and hence so is $a^{-1}=a e^{-1} \in H$. Thus it follows that for $a, b \in H$, that $a b=a\left(b^{-1}\right)^{-1} \in H$ and hence $H \leq G$. and the result follows from Theorem 7.2 ,

Example 7.4. Here are some examples of sub-groups and not sub-groups.

1. $2 \mathbb{Z}<\mathbb{Z}$ while $3 \mathbb{Z} \subset \mathbb{Z}$ but is not a sub-group.
2. $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\} \subset \mathbb{Z}$ is not a subgroup of \mathbb{Z} since they have different group operations.
3. $\{e\} \leq G$ is the trivial subgroup and $G \leq G$.

Example 7.5. Let us find the smallest sub-group, H containing $7 \in U(15)$. Answer,

$$
7^{2} \bmod 15=4,7^{3} \bmod 15=13,7^{4} \bmod 15=1
$$

so that H must contain, $\{1,7,4,13\}$. One may easily check this is a subgroup and we have $|7|=4$.

Proposition 7.6. The elements, $O(2):=\left\{S_{\alpha}, R_{\alpha}: \alpha \in \mathbb{R}\right\}$ form a subgroup $G L_{2}(\mathbb{R})$, moreover we have the following multiplication rules:

$$
\begin{align*}
R_{\alpha} R_{\beta} & =R_{\alpha+\beta}, \quad S_{\alpha} S_{\beta}=R_{2(\alpha-\beta)} \tag{7.1}\\
R_{\beta} S_{\alpha} & =S_{\alpha+\beta / 2}, \quad \text { and } S_{\alpha} R_{\beta}=S_{\alpha-\beta / 2} \tag{7.2}
\end{align*}
$$

for all $\alpha, \beta \in \mathbb{R}$. Also observe that

$$
\begin{equation*}
R_{\alpha}=R_{\beta} \Longleftrightarrow \alpha=\beta \bmod 360 \tag{7.3}
\end{equation*}
$$

while,

$$
\begin{equation*}
S_{\alpha}=S_{\beta} \Longleftrightarrow \alpha=\beta \bmod 180 \tag{7.4}
\end{equation*}
$$

Proof. Equations (7.1) and 7.2 may be verified by direct computations using the matrix representations for R_{α} and S_{β}. Perhaps a more illuminating way is to notice that all linear transformations on \mathbb{R}^{2} are determined by there actions on $u(\theta)$ for all θ (actually for two θ is typically enough). Using this remark we find,

$$
\left.\begin{array}{l}
R_{\alpha} R_{\beta} u(\theta)=R_{\alpha} u(\theta+\beta)=u(\theta+\beta+\alpha)=R_{\alpha+\beta} u(\theta) \\
S_{\alpha} S_{\beta} u(\theta)=S_{\alpha} u(2 \beta-\theta)=u(2 \alpha-(2 \beta-\theta))=u(2(\alpha-\beta)+\theta)=R_{2(\alpha-\beta)} u(\theta), \\
R_{\beta} S_{\alpha} u(\theta)
\end{array}\right)=R_{\beta} u(2 \alpha-\theta)=u(2 \alpha-\theta+\beta)=u(2(\alpha+\beta / 2)-\theta)=S_{\alpha+\beta / 2} u(\theta), ~ \begin{aligned}
\quad \text { and }
\end{aligned} \quad \begin{aligned}
S_{\alpha} R_{\beta} u(\theta) & =S_{\alpha} u(\theta+\beta)=u(2 \alpha-(\theta+\beta))=u(2(\alpha-\beta / 2)-\theta)=S_{\alpha-\beta / 2} u(\theta)
\end{aligned}
$$

which verifies equations (7.1) and $(7.2$. From these it is clear that H is a closed under matrix multiplication and since $R_{-\alpha}=R_{\alpha}^{-1}$ and $S_{\alpha}^{-1}=S_{\alpha}$ it follows H is closed under taking inverses.

To finish the proof we will now verify Eq. (7.4) and leave the proof of Eq.to the reader. The point is that $S_{\alpha}=S_{\beta}$ iff

$$
u(2 \alpha-\theta)=S_{\alpha} u(\theta)=S_{\beta} u(\theta)=u(2 \beta-\theta) \text { for all } \theta
$$

which happens iff

$$
[2 \alpha-\theta] \bmod 360=[2 \beta-\theta] \bmod 360
$$

which is equivalent to $\alpha=\beta \bmod 180$.

Lecture 8 (1/23/2009)

Notation 8.1 The order of a group, G, is the number of elements in G which we denote by $|G|$.

Example 8.2. We have $|\mathbb{Z}|=\infty,\left|\mathbb{Z}_{n}\right|=n$ for all $n \geq 2$, and $\left|D_{3}\right|=6$ and $\left|D_{4}\right|=8$.

Definition 8.3 (Euler Phi - function). For $n \in \mathbb{Z}_{+}$, let

$$
\varphi(n):=|U(n)|=\#\{1 \leq k \leq n: \operatorname{gcd}(k, n)=1\}
$$

This function, φ, is called the Euler Phi - function.
Example 8.4. If p is prime, then $U(p)=\{1,2, \ldots, p-1\}$ and $\varphi(p)=p-1$. More generally $U\left(p^{n}\right)$ consists of $\left\{1,2, \ldots, p^{n}\right\} \backslash$ $\left\{\right.$ multiples of p in $\left.\left\{1,2, \ldots, p^{n}\right\}\right\}$. Therefore,

$$
\varphi\left(p^{n}\right)=\left|U\left(p^{n}\right)\right|=p^{n}-\#\left\{\text { multiples of } p \text { in }\left\{1,2, \ldots, p^{n}\right\}\right\}
$$

Since

$$
\left\{\text { multiples of } p \text { in }\left\{1,2, \ldots, p^{n}\right\}\right\}=\left\{k p: k=1,2, \ldots, p^{n-1}\right\}
$$

it follows that $\#\left\{\right.$ multiples of p in $\left.\left\{1,2, \ldots, p^{n}\right\}\right\}=p^{n-1}$ and therefore,

$$
\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1)
$$

valid for all primes and $n \geq 1$.
Example $8.5\left(\varphi\left(p^{m} q^{n}\right)\right)$. Let $N=p^{m} q^{n}$ with $m, n \geq 1$ and p and q being distinct primes. We wish to compute $\varphi(N)=|U(N)|$. To do this, let let $\Omega:=$ $\{1,2, \ldots, N-1, N\}, A$ be the multiples of p in Ω and B be the multiples of q in Ω. Then $A \cap B$ is the subset of common multiples of p and q or equivalently multiples of $p q$ in Ω so that;

$$
\begin{aligned}
\#(A) & =N / p=p^{m-1} q^{n} \\
\#(B) & =N / q=p^{m} q^{n-1} \text { and } \\
\#(A \cap B) & =N /(p q)=p^{m-1} q^{n-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varphi(N) & =\#(\Omega \backslash(A \cup B))=\#(\Omega)-\#(A \cup B) \\
& =\#(\Omega)-[\#(A)+\#(B)-\#(A \cap B)] \\
& =N-\left[\frac{N}{p}+\frac{N}{q}-\frac{N}{p \cdot q}\right] \\
& =p^{m} \cdot q^{n}-p^{m-1} \cdot q^{n}-p^{m} \cdot q^{n-1}+p^{m-1} \cdot q^{n-1} \\
& =\left(p^{m}-p^{m-1}\right)\left(q^{n}-q^{n-1}\right)
\end{aligned}
$$

which after a little algebra shows,

$$
\varphi\left(p^{m} q^{n}\right)=\left(p^{m}-p^{m-1}\right)\left(q^{n}-q^{n-1}\right)=N\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
$$

The next theorem generalizes this example.
Theorem 8.6 (Euler Phi function). Suppose that $N=p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}$ with $k_{i} \geq$ 1 and p_{i} being distinct primes. Then

$$
\varphi(N)=\varphi\left(p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}\right)=\prod_{i=1}^{n}\left(p_{i}^{k_{i}}-p_{i}^{k_{i}-1}\right)=N \cdot \prod_{i=1}^{n}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. (Proof was not given in class!) Let $\Omega:=\{1,2, \ldots, N\}$ and $A_{i}:=$ $\left\{m \in \Omega: p_{i} \mid m\right\}$. It then follows that $U(N)=\Omega \backslash\left(\cup_{i=1}^{n} A_{i}\right)$ and therefore,

$$
\varphi(N)=\#(\Omega)-\#\left(\cup_{i=1}^{n} A_{i}\right)=N-\#\left(\cup_{i=1}^{n} A_{i}\right)
$$

To compute the later expression we will make use of the inclusion exclusion formula which states,

$$
\begin{equation*}
\#\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{l=1}^{n}(-1)^{l+1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \#\left(A_{i_{1}} \cap \cdots \cap A_{i_{l}}\right) \tag{8.1}
\end{equation*}
$$

Here is a way to see this formula. For $A \subset \Omega$, let $1_{A}(k)=1$ if $k \in A$ and 0 otherwise. We now have the identity,

$$
\begin{aligned}
1-1_{\cup_{i=1}^{n} A_{i}} & =\prod_{i=1}^{n}\left(1-1_{A_{i}}\right) \\
& =1-\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} 1_{A_{i_{1}} \cap \cdots \cap A_{i_{l}}}
\end{aligned}
$$

Summing this identity on $k \in \Omega$ then shows,

$$
N-\#\left(\cup_{i=1}^{n} A_{i}\right)=N-\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \#\left(A_{i_{1}} \cap \cdots \cap A_{i_{l}}\right)
$$

which gives Eq. 8.1.
Since $A_{i_{1}} \cap \cdots \cap A_{i_{l}}$ consists of those $k \in \Omega$ which are common multiples of $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{l}}$ or equivalently multiples of $p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{l}}$, it follows that

$$
\#\left(A_{i_{1}} \cap \cdots \cap A_{i_{l}}\right)=\frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdots p_{i_{l}}}
$$

Thus we arrive at the formula,

$$
\begin{aligned}
\varphi(N) & =N-\sum_{l=1}^{n}(-1)^{l+1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}} \\
& =N+\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdots p_{i_{l}}}
\end{aligned}
$$

Let us now break up the sum over those terms with $i_{l}=n$ and those with $i_{l}<n$ to find,

$$
\begin{aligned}
\varphi(N) & =\left[N+\sum_{l=1}^{n-1}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l}<n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}\right] \\
& +\left[\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l-1}<i_{l}=n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}\right]
\end{aligned}
$$

We may factor out $p_{n}^{k_{n}}$ in the first term to find,
$\varphi(N)=p_{n}^{k_{n}} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)+\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l-1}<i_{l}=n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}$.
Similarly the second term is equal to:

$$
\begin{aligned}
& p_{n}^{k_{n}-1}\left[-p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}+\sum_{l=2}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l-1}<n} \frac{p_{1}^{k_{1}} \cdots p_{n-1}^{k_{n-1}}}{p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{l-1}}}\right] \\
& =p_{n}^{k_{n}-1}\left[-p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}-\sum_{l=1}^{n-1}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l}<n} \frac{p_{1}^{k_{1}} \cdots p_{n-1}^{k_{n-1}}}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}\right] \\
& =-p_{n}^{k_{n}-1} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)
\end{aligned}
$$

Thus we have shown

$$
\begin{aligned}
\varphi(N) & =p_{n}^{k_{n}} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)-p_{n}^{k_{n}-1} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right) \\
& =\left(p_{n}^{k_{n}}-p_{n}^{k_{n}-1}\right) \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)
\end{aligned}
$$

and so the result now follows by induction.
Corollary 8.7. If $m, n \geq 1$ and $\operatorname{gcd}(m, n)=1$, then $\varphi(m n)=\varphi(m) \varphi(n)$.
Notation 8.8 For $g \in G$, let $\langle g\rangle:=\left\{g^{n}: n \in \mathbb{Z}\right\}$. We call $\langle g\rangle$ the cyclic subgroup generated by g (as justified by the next proposition).
Proposition 8.9 (Cyclic sub-groups). For all $g \in G,\langle g\rangle \leq G$.
Proof. For $m, n \in \mathbb{Z}$ we have $g^{n}\left(g^{m}\right)^{-1}=g^{n-m} \in\langle g\rangle$ and therefore by the one step subgroup test, $\langle g\rangle \leq G$.
Notation 8.10 The order of an element, $g \in G$, is

$$
|g|:=\min \left\{n \geq 1: g^{n}=e\right\}
$$

with the convention that $|g|=\infty$ if $\left\{n \geq 1: g^{n}=e\right\}=\emptyset$.
Lemma 8.11. Let $g \in G$. Then $|g|=\infty$ iff no two elements in the list,

$$
\left\{g^{n}: n \in \mathbb{Z}\right\}=\left\{\ldots, g^{-2}, g^{-1}, g^{0}=e, g^{1}=g, g^{2}, \ldots\right\}
$$

are equal.
Theorem 8.12. Suppose that g is an element of a group, G. Then either:

1. If $|g|=\infty$ then all elements in the list, $\left\{g^{n}: n \in \mathbb{Z}\right\}$, defining $\langle g\rangle$ are distinct. In particular $|\langle g\rangle|=\infty=|g|$.
2. If $n:=|g|<\infty$, then $g^{m}=g^{m \bmod n}$ for all $m \in \mathbb{Z}$,

$$
\begin{equation*}
\langle g\rangle=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\} \tag{8.2}
\end{equation*}
$$

with all elements in the list being distinct and $|\langle g\rangle|=n=|g|$. We also have,

$$
\begin{equation*}
g^{k} g^{l}=g^{(k+l) \bmod n} \text { for all } k, l \in \mathbb{Z}_{n} \tag{8.3}
\end{equation*}
$$

which shows that $\langle g\rangle$ is "equivalent" to \mathbb{Z}_{n}.

So in all cases $|g|=|\langle g\rangle|$.
Proof. 1. If $g^{i}=g^{j}$ for some $i<j$, then

$$
e=g^{i} g^{-i}=g^{j} g^{-i}=g^{j-i}
$$

so that $g^{m}=e$ with $m=j-i \in \mathbb{Z}_{+}$from which we would conclude that $|g|<\infty$. Thus if $|g|=\infty$ it must be that all elements in the list, $\left\{g^{n}: n \in \mathbb{Z}\right\}$, are distinct. In particular $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$ has an infinite number of elements and therefore $|\langle g\rangle|=\infty$.
2. Now suppose that $n=|g|<\infty$. Since $g^{n}=e$, it also follows that $g^{-n}=$ $\left(g^{n}\right)^{-1}=e^{-1}=e$. Therefore if $m \in \mathbb{Z}$ and $m=s n+r$ where $r:=m \bmod n$, then $g^{m}=\left(g^{n}\right)^{s} g^{r}=g^{r}$, i.e. $g^{m}=g^{m \bmod n}$ for all $m \in \mathbb{Z}$. Hence it follows that $\langle g\rangle=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}$. Moreover if $g^{i}=g^{j}$ for some $0 \leq i \leq j<n$, then $g^{j-i}=e$ with $j-i<n$ and hence $j=i$. Thus the list in Eq. 8.2 consists of distinct elements and therefore $|\langle g\rangle|=n$. Lastly, if $k, l \in \mathbb{Z}_{n}$, then

$$
g^{k} g^{l}=g^{k+l}=g^{(k+l) \bmod n}
$$

Lecture 9 ($1 / 26 / 2009$)

Corollary 9.1. Let $a \in G$. Then $a^{i}=a^{j}$ iff $|a|$ divides $(j-i)$. Here we use the convention that ∞ divides m iff $m=0$. In particular, $a^{k}=e$ iff $|a| \mid k$.

Corollary 9.2. For all $g \in G$ we have $|g| \leq|G|$.
Proof. This follows from the fact that $|g|=|\langle g\rangle|$ and $\langle g\rangle \subset G$.
Theorem 9.3 (Finite Subgroup Test). Let H be a non-empty finite subset of a group G which is closed under the group law, then $H \leq G$.

Proof. To each $h \in H$ we have $\left\{h^{k}\right\}_{k=1}^{\infty} \subset H$ and since $\#(H)<\infty$, it follows that $h^{k}=h^{l}$ for some $k \neq l$. Thus by Theorem 8.12, $|h|<\infty$ for all $h \in H$ and $\langle h\rangle=\left\{e, h, h^{2}, \ldots, h^{|h|-1}\right\} \subset H$. In particular $h^{-1} \in\langle h\rangle \subset H$ for all $h \in H$. Hence it follows by the two step subgroup test that $H \leq G$.

Definition 9.4 (Centralizer of a in G). The centralizer of $a \in G$, denoted $C(a)$, is the set of $g \in G$ which commute with a, i.e.

$$
C(a):=\{g \in G: g a=a g\}
$$

More generally if $S \subset G$ is any non-empty set we define

$$
C(S):=\{g \in G: g s=s g \text { for all } s \in S\}=\cap_{s \in S} C(s)
$$

Lemma 9.5. For all $a \in G,\langle a\rangle \leq C(a) \leq G$.
Proof. If $g \in C(a)$, then $g a=a g$. Multiplying this equation on the right and left by g^{-1} then shows,

$$
a g^{-1}=g^{-1} g a g^{-1}=g^{-1} a g g^{-1}=g^{-1} a
$$

which shows $g^{-1} \in C(a)$. Moreover if $g, h \in C(a)$, then $g h a=g a h=a g h$ which shows that $g h \in C(a)$ and therefore $C(a) \leq G$.
Example 9.6. If G is abelian, then $C(a)=G$ for all $a \in G$.
Example 9.7. Let $G=G L_{2}(\mathbb{R})$ we will compute $C\left(A_{1}\right)$ and $C\left(A_{2}\right)$ where

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } A_{2}:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

1. We have $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in C\left(A_{1}\right)$ iff,

$$
\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]
$$

which means that $b=c$ and $a=d$, i.e. B must be of the form,

$$
B=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

and therefore,

$$
C\left(A_{1}\right)=\left\{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]: a^{2}-b^{2} \neq 0\right\}
$$

2. We have $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in C\left(A_{2}\right)$ iff,

$$
\left[\begin{array}{ll}
a & -b \\
c-d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
-c & -d
\end{array}\right]
$$

which happens iff $b=c=0$. Thus we have,

$$
C\left(A_{2}\right)=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]: a d \neq 0\right\}
$$

Lemma 9.8. If $\left\{H_{i}\right\}$ is a collection of subgroups of G then $H:=\cap_{i} H_{i} \leq G$ as well.

Proof. If $h, k \in H$ then $h, k \in H_{i}$ for all i and therefore $h k^{-1} \in H_{i}$ for all i and hence $h k^{-1} \in H$.

Corollary 9.9. $C(S) \leq G$ for any non-empty subset $S \subset G$.
Definition 9.10 (Center of a group). Center of a group, denoted $Z(G)$, is the centralizer of G, i.e.

$$
Z(G)=C(G):=\{a \in G: a x=x a \text { for all } x \in G\}
$$

By Corollary 9.9, $Z(G)=C(G)$ is a group. Alternatively, if $a \in Z(G)$, then $a x=x a$ implies $a^{-1} x^{-1}=x^{-1} a^{-1}$ which implies $x a^{-1}=a^{-1} x$ for all $x \in G$ and therefore $a^{-1} \in Z(G)$. If $a, b \in Z(G)$, then $a b x=a x b=x a b \Longrightarrow a b \in Z(G)$, which again shows $Z(G)$ is a group.
Example 9.11. G is a abelian iff $Z(G)=G$, thus $Z\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{n}, Z(U(n))=$ $U(n)$, etc.

Example 9.12. Using Example 9.7 we may easily show $Z\left(G L_{2}(\mathbb{R})\right)=$ $\{\lambda I: \lambda \in \mathbb{R} \backslash\{0\}\}$. Indeed,

$$
Z\left(G L_{2}(\mathbb{R})\right) \subset C\left(A_{1}\right) \cap C\left(A_{2}\right)=\left\{\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]: a^{2} \neq 0\right\}=\{\lambda I: \lambda \in \mathbb{R} \backslash\{0\}\}
$$

As the latter matrices commute with every matrix we also have,

$$
Z\left(G L_{2}(\mathbb{R})\right) \subset\{\lambda I: \lambda \in \mathbb{R} \backslash\{0\}\} \subset Z\left(G L_{2}(\mathbb{R})\right)
$$

Remark 9.13. If $S \subset G$ is a non-empty set we let $\langle S\rangle$ denote the smallest subgroup in G which contains S. This subgroup may be constructed as finite products of elements from S and $S^{-1}:=\left\{s^{-1}: s \in S\right\}$. It is not too hard to prove that

$$
C(S)=C(\langle S\rangle)
$$

Let us also note that if $S \subset T \subset G$, then $C(T) \subset C(S)$ as there are more restrictions on $x \in G$ to be in $C(T)$ than there are for $x \in G$ to be in $C(S)$.

9.1 Dihedral group formalities and examples

Definition 9.14 (General Dihedral Groups). For $n \geq 3$, the dihedral group, D_{n}, is the symmetry group of a regular n - gon. To be explicit this may be realized as the sub-groups $O(2)$ defined as

$$
D_{n}=\left\{R_{k \frac{2 \pi}{n}}, S_{k \frac{\pi}{n}}: k=0,1,2, \ldots, n-1\right\}
$$

see the Figures below. Notice that $\left|D_{n}\right|=2 n$.
See the book and the demonstration in class for more intuition on these groups. For computational purposes, we may present D_{n} in terms of generators and relations as follows.

Theorem 9.15 (A presentation of D_{n}). Let $n \geq 3$ and $r:=R_{\frac{2 \pi}{n}}$ and $f=S_{0}$. Then

$$
\begin{equation*}
D_{n}=\left\{r^{k}, r^{k} f: k=0,1,2, \ldots, n-1\right\} \tag{9.1}
\end{equation*}
$$

and we have the relations, $r^{n}=1, f^{2}=1$, and $f r f=r^{-1}$. We say that r and f are generators for D_{n}.

Fig. 9.1. The 3 reflection symmetries axis of a regular 3 - gon,. i.e. a equilateral triangle.

Fig. 9.2. The 4 - reflection symmetries axis of a regular 4 - gon,. i.e. a square.

Fig. 9.3. The 6 - reflection symmety axis of a regular 6 - gon,. i.e. a heagon. There are also 6 rotation symmetries.

Proof. We know that $r^{k}=R_{k \frac{2 \pi}{n}}$ and that $r^{k} f=R_{k \frac{2 \pi}{n}} S_{0}=S_{k \frac{\pi}{n}}$ from which Eq. 9.1) follows. It is also clear that $r^{n}=1=f^{2}$. Moreover,

$$
f r f=S_{0} R_{\frac{2 \pi}{n}} S_{0}=S_{0} S_{\frac{\pi}{n}}=R_{2\left(0-\frac{\pi}{n}\right)}=r^{-1}
$$

as desired. (Poetically, a rotation viewed through a mirror is a rotation in the opposite direction.)

For computational purposes, observe that

$$
f r^{3} f=f r f f r f f r f=\left(r^{-1}\right)^{3}=r^{-3}
$$

and therefore $f r^{-3} f=f\left(f r^{3} f\right) f=r^{3}$. In general we have $f r^{k} f=r^{-k}$ for all $k \in \mathbb{Z}$.

Example 9.16. If $f \in D_{n}$ is a reflection, then $f^{2}=e$ and $|f|=2$. If $r:=R_{2 \pi / n}$ then $r^{k}=R_{2 \pi k / n} \neq e$ for $1 \leq k \leq n-1$ and $r^{n}=1$, so $|r|=n$ and

$$
\langle r\rangle=\left\{R_{2 \pi k / n}: 0 \leq k \leq n-1\right\} \subset D_{n} .
$$

Example 9.17. Suppose that $G=D_{n}$ and $f=S_{0}$. Recall that $D_{n}=$ $\left\{r^{k}, r^{k} f\right\}_{k=0}^{n-1}$. We wish to compute $C(f)$. We have $r^{k} \in C(f)$ iff $r^{k} f=f r^{k}$ iff $r^{k}=f r^{k} f=r^{-k}$. There are only two rotations R_{θ} for which $R_{\theta}=R_{\theta}^{-1}$, namely $R_{0}=e$ and $R_{180}=-I$. The latter is in D_{n} only if n is even.

Let us now check to see if $r^{k} f \in C(f)$. This is the case iff

$$
r^{k}=\left(r^{k} f\right) f=f\left(r^{k} f\right)=r^{-k}
$$

and so again this happens iff $r=R_{0}$ or R_{180}. Thus we have shown,

$$
C(f)=\left\{\begin{array}{cc}
\langle f\rangle=\{e, f\} & \text { if } n \text { is odd } \\
\left\{e, r^{n / 2}, f, r^{n / 2} f\right\} & \text { if } n \text { is even. }
\end{array}\right.
$$

Let us now find $C\left(r^{k}\right)$. In this case we have $\langle r\rangle \subset C\left(r^{k}\right)$ (as this is a general fact). Moreover $r^{l} f \in C\left(r^{k}\right)$ iff $\left(r^{l} f\right) r^{k}=r^{k}\left(r^{l} f\right)$ which happens iff

$$
r^{l-k}=r^{l} r^{-k}=\left(r^{l} f\right) r^{k} f=r^{k+l}
$$

i.e. iff $r^{2 k}=e$. Thus we may conclude that $C\left(r^{k}\right)=\langle r\rangle$ unless $k=0$ or $k=\frac{n}{2}$ and when $k=0$ or $k=n / 2$ we have $C\left(r^{k}\right)=D_{n}$. Of course the case $k=n / 2$ only applies if n is even. By the way this last result is not too hard to understand as $r^{0}=I$ and $r^{n / 2}=-I$ where I is the 2×2 identity matrix which commutes with all matrices.

Example 9.18. For $n \geq 3$,

$$
Z\left(D_{n}\right)=\left\{\begin{array}{c}
\left\{R_{0}=I\right\} \text { if } n \text { is odd. } \tag{9.2}\\
\left\{R_{0}, R_{180}\right\} \text { if } n \text { is even }
\end{array}\right.
$$

To prove this recall that $S_{\alpha} R_{\theta} S_{\alpha}^{-1}=R_{-\theta}$ for all α and θ. So if $S_{\alpha} \in Z\left(D_{n}\right)$ we would have $R_{\theta}=S_{\alpha} R_{\theta} S_{\alpha}^{-1}=R_{-\theta}$ for $\theta=k 2 \pi / n$ which is impossible. Thus $Z\left(D_{n}\right)$ contains no reflections. Moreover this shows that R_{θ} can only be in the center if $R_{\theta}=R_{-\theta}$, i.e. R_{θ} can only be R_{0} or R_{180}. This completes the proof since $R_{180} \in D_{n}$ iff n is even.

Alternatively, observe that $Z\left(D_{n}\right)=C(f) \cap C(r)=C(\{f, r\})$ since if $g \in D_{n}$ commutes with the generators of a group it must commute with all elements of the group. Now according to Example 9.17 , we again easily see that Eq. (9.2) is correct. For example when n is even we have,

$$
Z\left(D_{n}\right)=C(f) \cap C(r)=\left\{e, r^{n / 2}, f, r^{n / 2} f\right\} \cap\langle r\rangle=\left\{e, r^{n / 2}\right\}=\left\{R_{0}, R_{180}\right\}
$$

Lecture 10 (1/28/2009) Midterm I.

Lecture 11 ($1 / 30 / 2009$)

11.1 Cyclic Groups

Definition 11.1. We say a group, G, is a cyclic group if there exists $g \in G$ such that $G=\langle g\rangle$. We call such a g a generator of the cyclic group G.
Example 11.2. Recall that $U(9)=\{1,2,4,5,7,8\}$ and that

$$
\langle 2\rangle=\left\{2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=7,2^{5}=5,2^{6}=1\right\}
$$

so that $|2|=|\langle 2\rangle|=6$ and $U(9)$ and 2 is a generator.
Notice that $2^{2}=4$ is not a generator, since

$$
\left\langle 2^{2}\right\rangle=\{1,4,7\} \neq U(9) .
$$

Example 11.3. The group $U(8)=\{1,3,5,7\}$ is not cyclic since,

$$
\langle 3\rangle=\{1,3\},\langle 5\rangle=\{1,5\}, \text { and }\langle 7\rangle=\{1,7\} .
$$

This group may be understood by observing that $3 \cdot 5=15 \bmod 8=7$ so that

$$
U(8)=\left\{3^{a} 5^{b}: a, b \in \mathbb{Z}_{2}\right\} .
$$

Moreover, the multiplication on $U(8)$ becomes two copies of the group operation on \mathbb{Z}_{2}, i.e.

$$
\left(3^{a} 5^{b}\right)\left(3^{a^{\prime}} 5^{\prime}\right)=3^{a+a^{\prime}} 5^{b+b^{\prime}}=3^{\left(a+a^{\prime}\right) \bmod 2} 5^{\left(b+b^{\prime}\right) \bmod 2}
$$

So in a sense to be made precise later, $U(8)$ is equivalent to " \mathbb{Z}_{2}^{2}."
Example 11.4. Here are some more examples of cyclic groups.
$1 . \mathbb{Z}$ is cyclic with generators being either 1 or -1 .
2. \mathbb{Z}_{n} is cyclic with 1 being a generator since

$$
\langle 1\rangle=\{0,1,2=1+1,3=1+1+1, \ldots, n-1\} .
$$

3. Let

$$
G:=\left\{e^{i \frac{k}{n} 2 \pi}: k \in \mathbb{Z}\right\},
$$

then G is cyclic and $g:=e^{i 2 \pi / n}$ is a generator. Indeed, $g^{k}=e^{i \frac{k}{n} 2 \pi}$ is equal to 1 for the first time when $k=n$.

These last two examples are essentially the same and basically this is the list of all cyclic groups. Later today we will list all of the generators of a cyclic group.
Lemma 11.5. If $H \subset \mathbb{Z}$ is a subgroup and $a:=\min H \cap \mathbb{Z}_{+}$, then $H=\langle a\rangle=$ $\{k a: k \in \mathbb{Z}\}$.

Proof. It is clear that $\langle a\rangle \subset H$. If $b \in H$, we may write it as $b=k a+r$ where $0 \leq r<a$. As $r=b-k a \in H$ and $0 \leq r<a$, we must have $r=0$. This shows that $b \in\langle a\rangle$ and thus $H \subset\langle a\rangle$.

Example 11.6. If $f=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in G L_{2}(\mathbb{R})$, then f is reflection about the line $y=x$. In particular $f^{2}=I$ and $\langle f\rangle=\{I, f\}$ and $|f|=2$. So we can have elements of finite order inside an infinite group. In fact any element of a Dihedral subgroup of $G L_{2}(\mathbb{R})$ gives such an example.
Notation 11.7 Let $n \in \mathbb{Z}_{+} \cup\{\infty\}$. We will write $b \equiv a(\bmod) n$ iff $(b-a) \bmod n=0$ or equivalently $n \mid(b-a)$. here we use the convention that if $n=\infty$ then $b \equiv a(\bmod) n$ iff $b=a$ and $\infty \mid m$ iff $m=0$.

Theorem 11.8 (More properties of cyclic groups). Let $a \in G$ and $n=|a|$. Then;

1. $a^{i}=a^{j}$ iff $i \equiv j(\bmod) n$,
2. If $k \mid m$ then $\left\langle a^{m}\right\rangle \subset\left\langle a^{k}\right\rangle$.
3. $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle$.
4. $\left|a^{k}\right|=|a| / \operatorname{gcd}(|a|, k)$.
5. $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ iff $\operatorname{gcd}(i, n)=\operatorname{gcd}(j, n)$
6. $\left\langle a^{k}\right\rangle=\langle a\rangle$ iff $\operatorname{gcd}(k, n)=1$.

Proof. 1. We have $a^{i}=a^{j}$ iff

$$
e=a^{i-j}=a^{(i-j) \bmod n}
$$

which happens iff $(i-j) \bmod n=0$ by Theorem 8.12
2. If $m=l k$, then $\left(a^{m}\right)^{q}=\left(a^{l k}\right)^{q}=\left(a^{k}\right)^{l q}$, and therefore $\left\langle a^{m}\right\rangle \subset\left\langle a^{k}\right\rangle$.
3. Let $d:=\operatorname{gcd}(n, k)$, then $d \mid k$ and therefore $\left\langle a^{k}\right\rangle \subset\left\langle a^{d}\right\rangle$. For the opposite inclusion we must show $a^{d} \in\left\langle a^{k}\right\rangle$. To this end, choose $s, t \in \mathbb{Z}$ such that $d=s k+t n$. It then follows that

$$
a^{d}=a^{s k} a^{t n}=\left(a^{k}\right)^{s} \in\left\langle a^{k}\right\rangle
$$

as desired.
4. Again let $d:=\operatorname{gcd}(n, k)$ and set $m:=n / d \in \mathbb{N}$. Then $\left(a^{d}\right)^{k}=a^{d k} \neq e$ for $1 \leq k<m$ and $a^{d m}=a^{n}=e$. Hence we may conclude that $\left|a^{d}\right|=m=n / d$. Combining this with item 3. show,

$$
\left|a^{k}\right|=\left|\left\langle a^{k}\right\rangle\right|=\left|\left\langle a^{d}\right\rangle\right|=\left|a^{d}\right|=n / d=|a| / \operatorname{gcd}(k,|a|) .
$$

5. By item 4., if $\operatorname{gcd}(i, n)=\operatorname{gcd}(j, n)$ then

$$
\left\langle a^{i}\right\rangle=\left\langle a^{\operatorname{gcd}(i, n)}\right\rangle=\left\langle a^{\operatorname{gcd}(j, n)}\right\rangle=\left\langle a^{j}\right\rangle .
$$

Conversely if $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ then by item 4.,

$$
\frac{n}{\operatorname{gcd}(i, n)}=\left|\left\langle a^{i}\right\rangle\right|=\left|\left\langle a^{j}\right\rangle\right|=\frac{n}{\operatorname{gcd}(j, n)}
$$

from which it follows that $\operatorname{gcd}(i, n)=\operatorname{gcd}(j, n)$.
6 . This follows directly from item 3 . or item 5 .
Example 11.9. Let use Theorem 11.8 to find all generators of $Z_{10}=$ $\{0,1,2, \ldots, 9\}$. Since 1 is a generator it follow by item 6 . of the previous theorem that the generators of Z_{10} are precisely those $k \geq 1$ such that $\operatorname{gcd}(k, 10)=1$. (Recall we use the additive notation here so that a^{k} becomes $k a$.) In other words the generators of Z_{10} is precisely

$$
U(10)=\{1,3,7,9\}
$$

of which their are $\varphi(10)=\varphi(5 \cdot 2)=(5-1)(2-1)=4$.
More generally the generators of Z_{n} are the elements in $U(n)$. It is in fact easy to see that every $a \in U(n)$ is a generator. Indeed, let $b:=a^{-1} \in U(n)$, then we have

$$
\mathbb{Z}_{n}=\langle 1\rangle=\langle(b \cdot a) \bmod n\rangle=\langle b \cdot a\rangle \subset\langle a\rangle \subset \mathbb{Z}_{n}
$$

Conversely if and $a \in\left[\mathbb{Z}_{n} \backslash U(n)\right]$, then $\operatorname{gcd}(a, n)=d>1$ and therefore $\operatorname{gcd}(a / d, n)=1$ and $a / d \in U(n)$. Thus a / d generates \mathbb{Z}_{n} and therefore $|a|=$ n / d and hence $|\langle a\rangle|=n / d$ and $\langle a\rangle \neq \mathbb{Z}_{n}$.

Lecture 12 (2/2/2009)

Theorem 12.1 (Fundamental Theorem of Cyclic Groups). Suppose that $G=\langle a\rangle$ is a cyclic group and H is a sub-group of G, and

$$
\begin{equation*}
m:=m(H)=\min \left\{k \geq 1: a^{k} \in H\right\} \tag{12.1}
\end{equation*}
$$

Then:

1. $H=\left\langle a^{m}\right\rangle$ - so all subgroups of G are of the form $\left\langle a^{m}\right\rangle$ for some $m \geq 1$.
2. If $n=|a|<\infty$, then $m \mid n$ and $|H|=n / m$.
3. To each divisor, $k \geq 1$, of n there is precisely one subgroup of G of order k, namely $H=\left\langle a^{n / k}\right\rangle$.

In short, if $G=\langle a\rangle$ with $|a|=n$, then

$\{$ Positive divisors of $n\}$	\longleftrightarrow
m	\rightarrow
$m(H)$	\leftarrow

is a one to one correspondence. These subgroups may be indexed by their order, $k=\left|\left\langle a^{m}\right\rangle\right|=n / m$.

Proof. We prove each point in turn.

1. Suppose that $H \subset G$ is a sub-group and m is defined as in Eq. 12.1. Since $a^{m} \in H$ and H is closed under the group operations it follows that $\left\langle a^{m}\right\rangle \subset$ H. So we must show $H \subset\left\langle a^{m}\right\rangle$. If $a^{l} \in H$ with $l \in \mathbb{Z}$, we write $l=j m+r$ with $r:=l \bmod m$. Then $a^{l}=a^{m j} a^{r}$ and hence $a^{r}=a^{l}\left(a^{m}\right)^{-j} \in H$. As $0 \leq r<m$, it follows from the definition of m that $r=0$ and therefore $a^{l}=a^{j m}=\left(a^{m}\right)^{j} \in\left\langle a^{m}\right\rangle$. Thus we have shown $H \subset\left\langle a^{m}\right\rangle$ and therefore that $H=\left\langle a^{m}\right\rangle$
2. From Theorem 11.8 we know that $H=\left\langle a^{m}\right\rangle=\left\langle a^{\operatorname{gcd}(m, n)}\right\rangle$ and that $|H|=$ $n / \operatorname{gcd}(m, n)$. Using the definition of m, we must have $m \leq \operatorname{gcd}(m, n)$ which can only happen if $m=\operatorname{gcd}(m, n)$. This shows that $m \mid n$ and $|H|=n / m$.
3. From what we have just shown, the subgroups, $H \subset G$, are precisely of the form $\left\langle a^{m}\right\rangle$ where m is a divisor of n. Moreover we have shown that $\left|\left\langle a^{m}\right\rangle\right|=n / m=: k$. Thus for each divisor k of n, there is exactly one subgroup of G of order k, namely $\left\langle a^{m}\right\rangle$ where $m=n / k$.

Example 12.2. Let $G=\mathbb{Z}_{20}$. Since $20=2^{2} .5$ it has divisors, $k=1,2,4,5,10$, 20. The subgroups having these orders are,

Order

$1 \quad\langle 0\rangle=\left\langle\frac{20}{1} \cdot 1\right\rangle=\{0\}$
$2 \quad\langle 10\rangle=\left\langle\frac{20}{2} \cdot 1\right\rangle=\{0,10\}$
$4 \quad\langle 5\rangle=\left\langle\frac{20^{2}}{4} \cdot 1\right\rangle=\{0,5,10,15\}$
$5 \quad\langle 4\rangle=\left\langle\frac{20}{5} \cdot 1\right\rangle=\{0,4,8,12,16,20\}$
10

(2) $=$| $\frac{5}{5}$ |
| :---: |
| 20 |
| 20 | 1

$20 \quad\langle 1\rangle=\left\langle\frac{10}{20} \cdot 1\right\rangle=\mathbb{Z}_{20}$
Corollary 12.3. Suppose G is a cyclic group of order n with generator g, d is a divisor of n, and $a=g^{n / d}$. Then

$$
\{\text { elements of order } d \text { in } G\}=\left\{a^{k}: k \in U(d)\right\}
$$

and in particular G contains exactly $\varphi(d)$ elements of order d. It should be noted that $\left\{a^{k}: k \in U(d)\right\}$ is also the list of all the elements of G which generate the unique cyclic subgroup of order d.

Proof. We know that $a:=g^{n / d}$ is the generator of the unique (cyclic) subgroup, $H \leq G$, of order d. This subgroup must contain all of the elements of order d for if not there would be another distinct cyclic subgroup of order d in G. The elements of H which have order d are precisely of the form a^{k} with $1 \leq k<d$ and $\operatorname{gcd}(k, d)=1$, i.e. with $k \in U(d)$. As there are $\varphi(d)$ such elements the proof is complete.

Example 12.4. Let us find all the elements of order 10 in \mathbb{Z}_{20}. Since $|2|=10$, we know from Corollary 12.3 that

$$
\{2 k: k \in U(10)\}=\{2 k: k=1,3,7,9\}=\{2,6,14,18\}
$$

are precisely the elements of order 10 in \mathbb{Z}_{20}.
Corollary 12.5. The Euler Phi - function satisfies, $n=\sum_{1 \leq d: d \mid n} \varphi(d)$.

Proof. Every element of \mathbb{Z}_{n} has a unique order, d, which divides n and therefore,

$$
n=\sum_{1 \leq d: d \mid n} \#\left\{k \in \mathbb{Z}_{n}:|k|=d\right\}=\sum_{1 \leq d: d \mid n} \varphi(d)
$$

Example 12.6. Let us test this out for $n=20$. In this case we should have,

$$
\begin{aligned}
20 & \stackrel{?}{=} \varphi(1)+\varphi(2)+\varphi(4)+\varphi(5)+\varphi(10)+\varphi(20) \\
& =1+1+2+4+4+\left(2^{2}-2\right)(5-1) \\
& =1+1+2+4+4+8=20
\end{aligned}
$$

Remark 12.7. In principle it is possible to use Corollary 12.5 to compute φ. For example using this corollary and the fact that $\varphi(1)=1$, we find for distinct primes p and q that,

$$
\begin{aligned}
p & =\varphi(1)+\varphi(p)=1+\varphi(p) \Longrightarrow \varphi(p)=p-1 \\
p^{2} & =\varphi(1)+\varphi(p)+\varphi\left(p^{2}\right)=p+\varphi\left(p^{2}\right) \Longrightarrow \varphi(p)=p^{2}-p \\
p q & =\varphi(1)+\varphi(p)+\varphi(q)+\varphi(p q)=p+q-1+\varphi(p q)
\end{aligned}
$$

which then implies,

$$
\varphi(p q)=p q-p-q+1=(p-1)(q-1)
$$

Similarly,

$$
\begin{aligned}
p^{2} q & =\varphi(1)+\varphi(p)+\varphi(q)+\varphi(p q)+\varphi\left(p^{2}\right)+\varphi\left(p^{2} q\right) \\
& =p q+\left(p^{2}-p\right)+\varphi\left(p^{2} q\right)
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\varphi\left(p^{2} q\right) & =p^{2} q-p q-\left(p^{2}-1\right)=p^{2} q-p^{2}-p q+p \\
& =p(p q-p-q+1)=p(p-1)(q-1)
\end{aligned}
$$

Theorem 12.8. Suppose that G is any finite group and $d \in \mathbb{Z}_{+}$, then the number elements of order d in G is divisible by $\varphi(d)$.

Proof. Let

$$
G_{d}:=\{g \in G:|g|=d\}
$$

If $G_{d}=\emptyset$, the statement of the theorem is true since $\varphi(d)$ divides $0=\#\left(G_{d}\right)$.
If $a \in G_{d}$, then $\langle a\rangle$ is a cyclic subgroup of order d with precisely $\varphi(d)$ element of order d. If $G_{d} \backslash\langle a\rangle=\emptyset$ we are done since there are precisely $\varphi(d)$ elements of order d in G. If not, choose $b \in G_{d} \backslash\langle a\rangle$. Then the elements of order d in $\langle b\rangle$
must be distinct from the elements of order d in $\langle a\rangle$ for otherwise $\langle a\rangle=\langle b\rangle$, but $b \notin\langle a\rangle$. If $G_{d} \backslash(\langle a\rangle \cup\langle b\rangle)=\emptyset$ we are again done since now $\#\left(G_{d}\right)=2 \varphi(d)$ will be the number of elements of order d in G. If $G_{d} \backslash(\langle a\rangle \cup\langle b\rangle) \neq \emptyset$ we choose a third element, $c \in G_{d} \backslash(\langle a\rangle \cup\langle b\rangle)$ and argue as above that $\#\left(G_{d}\right)=3 \varphi(d)$ if $G_{d} \backslash(\langle a\rangle \cup\langle b\rangle \cup\langle c\rangle)=\emptyset$. Continuing on this way, the process will eventually terminate since $\#\left(G_{d}\right)<\infty$ and we will have shown that $\#\left(G_{d}\right)=n \varphi(d)$ for some $n \in \mathbb{N}$.

Example 12.9 (Exercise 4.20). Suppose that G is an Abelian group, $|G|=35$, and every element of G satisfies $x^{35}=e$. Prove that G is cyclic. Since $x^{35}=e$, we have seen in Corollary 9.1 that $|x|$ must divide $35=5 \cdot 7$. Thus every element in G has order either, $1,5,7$, or 35 . If there is an element of order $35, G$ is cyclic and we are done. Since the only element of order 1 is e, there are 34 elements of either order 5 or 7 . As $\varphi(5)=4$ and $\varphi(7)=6$ do not divide 35 , there must exists $a, b \in G$ such that $|a|=5$ and $|b|=7$. We now let $x:=a b$ and claim that $|x|=35$ which is a contradiction. To see that $|x|=35$ observe that $|x|>1, x^{5}=a^{5} b^{5}=e b^{5} \neq e$ so $|x| \neq 5$ and $x^{7}=a^{7} b^{7}=a^{2} \neq e$ so that $|x| \neq 7$. Therefore $|x|=35$ and we are done.

Alternatively, for this last part. Notice that $x^{n}=a^{n} b^{n}=e$ iff $a^{n}=b^{-n}$. If $a^{n}=b^{-n} \neq e$, then $\left|a^{n}\right|=5$ while $\left|b^{-n}\right|=7$ which is impossible. Thus the only way that $a^{n} b^{n}=e$ is if $a^{n}=e=b^{n}$. Thus we must $5 \mid n$ and $7 \mid n$ and therefore $35 \mid n$ and therefore $|x|=35$.

Lecture 13 (2/4/2009)

The least common multiple, $\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)$, of k integers, $a_{1}, \ldots, a_{k} \in$ \mathbb{Z}_{+}, is the smallest integer $n \geq 1$ which is a multiple of each a_{i} for $i=1, \ldots, k$. For example,

$$
\operatorname{lcm}(10,14,15)=\operatorname{lcm}(2 \cdot 5,2 \cdot 7,3 \cdot 5)=2 \cdot 3 \cdot 5 \cdot 7=210
$$

Corollary 13.1. Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}_{+}$, then

$$
\left\langle a_{1}\right\rangle \cap \cdots \cap\left\langle a_{k}\right\rangle=\left\langle\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)\right\rangle \subset \mathbb{Z}
$$

Moreover, $m \in \mathbb{Z}$ is a common multiple of a_{1}, \ldots, a_{k} iff m is a multiple of $\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)$.

Proof. First observe that

$$
\left\{\text { common multiples of } a_{1}, \ldots, a_{k}\right\}=\left\langle a_{1}\right\rangle \cap \cdots \cap\left\langle a_{k}\right\rangle
$$

which is a sub-group of \mathbb{Z} and therefore by Lemma 11.5

$$
\left\{\text { common multiples of } a_{1}, \ldots, a_{k}\right\}=\langle n\rangle
$$

where

$$
n=\min \left\{\text { common multiples of } a_{1}, \ldots, a_{k}\right\} \cap \mathbb{Z}_{+}=\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)
$$

Corollary 13.2. Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}_{+}$, then

$$
\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)=\operatorname{lcm}\left(a_{1}, \operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)\right)
$$

Proof. This follows from the following sequence of identities,

$$
\begin{aligned}
\left\langle\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)\right\rangle & =\left\langle a_{1}\right\rangle \cap \cdots \cap\left\langle a_{k}\right\rangle=\left\langle a_{1}\right\rangle \cap\left(\left\langle a_{2}\right\rangle \cap \cdots \cap\left\langle a_{k}\right\rangle\right) \\
& =\left\langle a_{1}\right\rangle \cap\left\langle\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)\right\rangle=\left\langle\operatorname{lcm}\left(a_{1}, \operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)\right)\right\rangle .
\end{aligned}
$$

Proposition 13.3. Suppose that G is a group and a and b are two finite order commuting elements of a group G such tha $\|^{\top}\langle a\rangle \cap\langle b\rangle=\{e\}$. Then $|a b|=$ $\operatorname{lcm}(|a|,|b|)$.

Proof. If $e=(a b)^{m}=a^{m} b^{m}$ for some $m \in \mathbb{Z}$ then

$$
\langle a\rangle \ni a^{m}=b^{-m} \in\langle b\rangle
$$

from which it follows that $a^{m}=b^{-m} \in\langle a\rangle \cap\langle b\rangle=\{e\}$, i.e. $a^{m}=e=b^{m}$. This happens iff m is a common multiple of $|a|$ and $|b|$ and therefore the order of $a b$ is the smallest such multiple, i.e. $|a b|=\operatorname{lcm}(|a|,|b|)$.

It is not possible to drop the assumption that $\langle a\rangle \cap\langle b\rangle=\{e\}$ in the previous proposition. For example consider $a=2$ and $b=6$ in \mathbb{Z}_{8}, so that $|a|=4$, $|6|=8 / \operatorname{gcd}(6,8)=4$, and $\operatorname{lcm}(4,4)=4$, while $a+b=0$ and $|0|=1$. More generally if $b=a^{-1}$ then $|a b|=1$ while $|a|=|b|$ can be anything. In this case, $\langle a\rangle \cap\langle b\rangle=\langle a\rangle$.

13.1 Cosets and Lagrange's Theorem (Chapter 7 of the book)

Let G be a group and H be a non-empty subset of G. Soon we will assume that H is a subgroup of G.

Definition 13.4. Given $a \in G$, let

1. $a H:=\{a h: h \in H\}-$ called the left coset of H in G containing a when $H \leq G$,
2. $H a:=\{h a: h \in H\}$ - called the right coset of H in G containing a when $H \leq G$, and
3. $a H a^{-1}:=\left\{a h a^{-1}: h \in H\right\}$.

Definition 13.5. If $H \leq G$, we let

$$
G / H:=\{a H: a \in G\}
$$

[^0]be the set of left cosets of H in G. The index of H in G is $|G: H|:=\#(G / H)$, that is
$$
|G: H|=\#(G / H)=(\text { the number of distinct cosets of } H \text { in } G) .
$$

Example 13.6. Suppose that $G=G L(2, \mathbb{R})$ and $H:=S L(2, \mathbb{R})$. In this case for $A \in G$ we have,

$$
A H=\{A B: B \in H\}=\{C: \operatorname{det} C=\operatorname{det} A\}
$$

Each coset of H in G is determined by value of the determinant on that coset. As G / H may be indexed by $\mathbb{R} \backslash\{0\}$, it follows that

$$
|G L(2, \mathbb{R}): S L(2, \mathbb{R})|=\#(\mathbb{R} \backslash\{0\})=\infty
$$

Example 13.7. Let $G=U(20)=U\left(2^{2} \cdot 5\right)=\{1,3,7,9,11,13,17,19\}$ and take

$$
H:=\langle 3\rangle=\{1,3,9,7\}
$$

in which case,

$$
\begin{aligned}
1 H & =3 H=9 H=7 H=H \\
11 H & =\{11,13,19,17\}=13 H=17 H=19 H
\end{aligned}
$$

We have $|G: H|=2$ and

$$
|G: H| \times|H|=2 \times 4=8=|G| .
$$

Example 13.8. Let $G=\mathbb{Z}_{9}$ and $H=\langle 3\rangle=\{0,3,6\}$. In this case we use additive notation,

$$
\begin{aligned}
& 0+H=3+H=6+H=H \\
& 1+H=\{1,4,7\}=4+H=7+H \\
& 2+H=\{2,5,8\}=2+H=8+H
\end{aligned}
$$

We have $|G: H|=3$ and

$$
|G: H| \times|H|=3 \times 3=9=|G|
$$

Example 13.9. Suppose that $G=D_{4}:=\left\{r^{k}, r^{k} f\right\}_{k=0}^{3}$ with $r^{4}=1, f^{2}=1$, and $f r f=r^{-1}$. If we take $H=\langle f\rangle=\{1, f\}$ then

$$
r^{k} H=\left\{r^{k}, r^{k} f\right\}=\left\{r^{k} f, r^{k} f f\right\}=r^{k} f H \text { for } k=0,1,2,3
$$

In this case we have $|G: H|=4$ and

$$
|G: H| \times|H|=4 \times 2=8=|G|
$$

Recall that we have seen if G is a finite cyclic group and $H \leq G$, then $|H|$ divides G. This along with the last three examples suggests the following theorem of Lagrange. They also motivate Lemma 14.2 below.

Theorem 13.10 (Lagrange's Theorem). Suppose that G is a finite group and $H \leq G$, then $|H|$ divides $|G|$ and $|G| /|H|$ is the number of distinct cosets of H in G, i.e.

$$
|G: H| \times|H|=|G|
$$

Corollary 13.11. If G is a group of prime order p, then G is cyclic and every element in $G \backslash\{e\}$ is a generator of G.

Proof. Let $g \in G \backslash\{e\}$ and take $H:=\langle g\rangle$. Then $|H|>1$ and $|H|||G|=p$ implies $|H|=p$. Thus it follows that $H=G$, i.e. $G=\langle g\rangle$.

Before proving Theorem 13.10, we will pause for some basic facts about the cosets of H in G.

Lecture 14 (2/6/2009)

Suppose that $f: X \rightarrow Y$ is a bijection (f being one to one is actually enough here). Then if A, B are subsets of X, we have

$$
A=B \Longleftrightarrow f(A)=f(B)
$$

where $f(A)=\{f(a): a \in A\} \subset Y$. Indeed, it is clear that $A=B \Longrightarrow$ $f(A)=f(B)$. For the opposite implication, let $g: Y \rightarrow X$ be the inverse function to f, then $f(A)=f(B) \Longrightarrow g(f(A))=g(f(B))$. But $g(f(A))=\{a=g(f(a)): a \in A\}=A$ and $g(f(B))=B$.

Let us also observe that if f is one to one and $A \subset X$ is a finite set with n elements, then $\#(f(A))=n=\#(A)$. Indeed if $\left\{a_{1}, \ldots, a_{n}\right\}$ are the distinct elements of A then $\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\}$ are the distinct elements of $f(A)$.

Lemma 14.1. For any $a \in G$, the maps $L_{a}: G \rightarrow G$ and $R_{a}: G \rightarrow G$ defined by $L_{a}(x)=a x$ and $R_{a}(x)=x a$ are bijections.

Proof. We only prove the assertions about L_{a} as the proofs for R_{a} are analogous. Suppose that $x, y \in G$ are such that $L_{a}(x)=L_{a}(y)$, i.e. $a x=a y$, it then follows by cancellation that $x=y$. Therefore L_{a} is one to one. It is onto since if $x \in G$, then $L_{a}\left(a^{-1} x\right)=x$.

Alternatively. Simply observe that $L_{a^{-1}}: G \rightarrow G$ is the inverse map to L_{a}.

Lemma 14.2. Let G be a group, $H \leq G$, and $a, b \in H$. Then

1. $a \in a H$,
2. $a H=H$ iff $a \in H$.
3. If $a \in G$ and $b \in a H$, then $a H=b H$.
4. If $a H \cap b H \neq \emptyset$ then $a H=b H$. So either $a H=b H$ or $a H \cap b H=\emptyset$.
5. $a H=b H$ iff $a^{-1} b \in H$.
6. G is the disjoint union of its distinct cosets.
7. $a H=H a$ iff $a H a^{-1}=H$.
8. $|a H|=|H|=|b H|$ where $|a H|$ denotes the number of element in $a H$.
9. $a H$ is a subgroup of G iff $a \in H$.

Proof. For the most part we refer the reader to p. 138-139 of the book for the details of the proof. Let me just make a few comments.

1. Since $e \in H$ we have $a=a e \in a H$
2. If $a H=H$, then $a=a e \in a H=H$. Conversely, if $a \in H$, then $a H \subset$ H since H is a group. For the opposite inclusion, if if $h \in H$, then $h=$ $a\left(a^{-1} h\right) \in a H$, i.e. $H \subset a H$. Alternatively: as above it follows that $a^{-1} H \subset H$ and therefore, $H=a\left(a^{-1} H\right) \subset a H$.
3. If $b \in a h^{\prime} \in a H$, then $b H=a h^{\prime} H=a H$.
4. If $a h=b h^{\prime} \in a H \cap b H$, then $b=a h h^{-1} \in a H$ and therefore $b H=a H$.
5. If $a^{-1} b \in H$ then $a^{-1} b=h \in H$ and $b=a h$ and hence $a H=b H$. Conversely if $a H=b H$ then $b=b e=a h$ for some for some $h \in H$. Therefore, $a^{-1} b=$ $h \in H$.
6. See item 1 shows G is the union of its cosets and item 4 . shows the distinct cosets are disjoint.
7. We have $a H=H a \Longleftrightarrow H=(H a) a^{-1}=(a H) a^{-1}=a H a^{-1}$.
8. Since L_{a} and L_{b} are bijections, it follows that $|a H|=\#\left(L_{a}(H)\right)=\#(H)$. Similarly, $|b H|=|H|$.
9. $e \in a H$ iff $a \in H$.

Remark 14.3. Much of Lemma 14.2 may be understood with the aid of the following equivalence relation. Namely, write $a \sim b$ iff $a^{-1} b \in H$. Observe that $a \sim a$ since $a^{-1} a=e \in H, a \sim b \Longrightarrow b \sim a$ since $a^{-1} b \in H \Longrightarrow b^{-1} a=$ $\left(a^{-1} b\right)^{-1} \in H$, and $a \sim b$ and $b \sim c$ implies $a \sim c$ since $a^{-1} b \in H$ and

$$
b^{-1} c \in H \Longrightarrow a^{-1} c=a^{-1} b b^{-1} c \in H
$$

The equivalence class, $[a]$, containing a is then

$$
[a]=\{b: a \sim b\}=\left\{b: h:=a^{-1} b \in H\right\}=\{a h: h \in H\}=a H
$$

Definition 14.4. A subgroup, $H \leq G$, is said to be normal if $a H a^{-1}=H$ for all $a \in G$ or equivalently put, $a H=H a$ for all $a \in G$. We write $H \triangleleft G$ to mean that H is a normal subgroup of G.

We will prove later the following theorem. (If you want you can go ahead and try to prove this theorem yourself.)

Theorem 14.5 (Quotient Groups). If $H \triangleleft G$, the set of left cosets, G / H, becomes a group under the multiplication rule,

$$
a H \cdot b H:=(a b) H \text { for all } a, b \in H
$$

In this group, eH is the identity and $(a H)^{-1}=a^{-1} H$.
We are now ready to prove Lagrange's theorem which we restate here.
Theorem 14.6 (Lagrange's Theorem). Suppose that G is a finite group and $H \leq G$, then

$$
|G: H| \times|H|=|G|
$$

where $|G: H|:=\#(G / H)$ is the number of distinct cosets of H in G. In particular $|H|$ divides $|G|$ and $|G| /|H|=|G: H|$.

Proof. Let $n:=|G: H|$ and choose $a_{i} \in G$ for $i=1,2, \ldots, n$ such that $\left\{a_{i} H\right\}_{i=1}^{n}$ is the collection of distinct cosets of H in G. Then by item 6 . of Lemma 14.2 we know that

$$
G=\cup_{i=1}^{n}\left[a_{i} H\right] \text { with } a_{i} H \cap a_{j} H=\emptyset \text { for all } i \neq j
$$

Thus we may conclude, using item 8. of Lemma 14.2 that

$$
|G|=\sum_{i=1}^{n}\left|a_{i} H\right|=\sum_{i=1}^{n}|H|=n \cdot H=|G: H| \cdot|H|
$$

Remark 14.7 (Becareful!). Despite the next two results, it is not true that all groups satisfy the converse to Lagrange's theorem. That is there exists groups G for which there is a divisor, d, of $|G|$ for which there is no subgroup, $H \leq G$ with $|H|=d$. We will eventually see that $G=A_{4}$ is a group of order 12 with no subgroups of order 6 . Here, A_{4}, is the so called alternating group on four letters.

Lemma 14.8. If H and K satisfy the converse to Lagrange's theorem, then so does $H \times K$. In particular, every finite abelian group satisfies the converse to Lagrange's theorem.

Proof. Let $m:=|H|$ and $n=|K|$. If $d \mid m n$, then we may write $d=d_{1} d_{2}$ with $d_{1} \mid m$ and $d_{2} \mid n$. We may now choose subgroups, $H^{\prime} \leq H$ and $K^{\prime} \leq K$ such that $\left|H^{\prime}\right|=d_{1}$ and $\left|K^{\prime}\right|=d_{2}$. It then follows that $H^{\prime} \times K^{\prime} \leq H \times K$ with $\left|H^{\prime} \times K^{\prime}\right|=d_{1} d_{2}=d$.

The second assertion follows from the fact that all finite abelian groups are isomorphic to a product of cyclic groups and we already know the converse to Lagrange's theorem holds for these groups.

Example 14.9. Consider $G=D_{n}=\left\langle r, f: r^{n}=e=f^{2}\right.$ and $\left.f r f=r^{-1}\right\rangle$. The divisors of $2 n$ are the divisors, Λ of n and 2Λ. If $d \in \Lambda$, let $H:=\left\langle r^{n / d}\right\rangle$ to construct a group of order d. To construct a group of order $2 d$, take,

$$
H=\left\langle r^{n / d}\right\rangle f \cup\left\langle r^{n / d}\right\rangle
$$

Notice that this is subgroup of G since,

$$
\begin{aligned}
\left(r^{k n / d} f\right)\left(r^{l n / d} f\right) & =r^{k n / d} r^{l n / d} f f=r^{(k-l) n / d} \\
\left(r^{k n / d} f\right) r^{l n / d} & =r^{(k-l) n / d} f \\
r^{l n / d} r^{k n / d} f & =r^{(k+l) n / d} f
\end{aligned}
$$

This shows that D_{n} satisfies the converse to Lagrange's theorem.
Example 14.10. Let $G=U(30)=U(2 \cdot 3 \cdot 5)=\{1,7,11,13,17,19,23,29\}$ and $H=\langle 11\rangle=\{1,11\}$. In this case we know $|G: H|=|G| /|H|=8 / 2=4$, i.e. there are 4 distinct cosets which we now find.

$$
\begin{aligned}
1 H & =H=\{1,11\} \\
7 H & =\{7,17\} \\
13 H & =\{13,13 \cdot 11 \bmod 30=23\} \\
19 H & =\{19,19 \cdot 11 \bmod 30=29\}
\end{aligned}
$$

Notice that

$$
19 \cdot 11=-11^{2} \bmod 30=-121 \bmod 30=-1 \bmod 30=29
$$

Corollary 14.11. If G is a finite group and $g \in G$, then $|g|$ divides $|G|$, i.e.
Proof. Let $H:=\langle g\rangle$, then $|H|=|g|$ and $|G: H| \cdot|g|=|G|$.
Corollary 14.12. If G is a finite group and $g \in G$, then $g^{|G|}=e$.
Proof. By the previous corollary, we know that $|G|=|g| n$ where $n:=$ $|G:\langle g\rangle|$. Therefore $g^{|G|}=g^{|g| n}=\left(g^{|g|}\right)^{n}=e^{n}=e$.

Corollary 14.13 (Fermat's Little Theorem). Let p be a prime number and $a \in \mathbb{Z}$. Then

$$
\begin{equation*}
a^{p} \bmod p=a \bmod p \tag{14.1}
\end{equation*}
$$

$$
\text { Proof. Let } r:=a \bmod p \in\{0,1,2, \ldots, p-1\} . \text { Since }
$$

$$
a^{p} \bmod p=(a \bmod p)^{p} \bmod p=r^{p} \bmod p
$$

$$
r^{p} \bmod p=r \text { for all } r \in\{0,1,2, \ldots, p-1\}
$$

As this latter equation is true when $r=0$ we may now assume that $r \in U(p)=$ $\{1,2, \ldots, p-1\}$. The previous equation is then equivalent to $r^{p}=r$ in $U(p)$ which is equivalent to $r^{p-1}=1$ in $U(p)$. However this last assertion is true by Corollary 14.12 and the fact that $|U(p)|=p-1$.

Lecture 15 (2/9/2009)

Example 15.1. Consider

$$
32 \bmod 5=2^{5} \bmod 5=2 \bmod 5=2
$$

Example 15.2. Let us now show that 35 is not prime by showing

$$
2^{35} \bmod 35 \neq 2 \bmod 35=2
$$

To do this we have

$$
\begin{aligned}
2 \bmod 35 & =2 \\
2^{2} \bmod 35 & =4 \\
2^{4} \bmod 35 & =\left(2^{2} \bmod 35\right)^{2} \bmod 35=4^{2} \bmod 35=16 \\
2^{8} \bmod 35 & =\left(2^{4} \bmod 35\right)^{2} \bmod 35=(16)^{2} \bmod 35=256 \bmod 35=11 \\
2^{16} \bmod 35 & =(11)^{2} \bmod 35=121 \bmod 35=16 \\
2^{32} \bmod 35 & =(16)^{2} \bmod 35=11
\end{aligned}
$$

and therefore,

$$
2^{35} \bmod 35=\left(2^{3} \bmod 35 \cdot 2^{32} \bmod 35\right) \bmod 35=88 \bmod 35=18 \neq 2
$$

Therefore 35 is not prime!
Example 15.3 (Primality Test). Suppose that $n \in \mathbb{Z}_{+}$is a large number we wish to see if it is prime or not. Hard to do in general. Here are some tests to perform on n. Pick a few small primes, p, like $\{2,3,5,7\}$ less than n :

1. compute $\operatorname{gcd}(p, n)$. If $\operatorname{gcd}(p, n)=p$ we know that $p \mid n$ and hence n is not prime.
2. If $\operatorname{gcd}(p, n)=1$, compute $p^{n} \bmod n\left(\right.$ as above). If $p^{n} \bmod n \neq p$, then n is again not prime.
3. If we have $p^{n} \bmod n=p=\operatorname{gcd}(p, n)$ for p from our list, the test has failed to show n is not prime. We can test some more by adding some more primes to our list.

Remark: This is not a fool proof test. There are composite numbers n such that $a^{n} \bmod n=a \bmod n$ for a. These numbers are called pseudoprimes and $n=561=3 \times 11 \times 17$ is one of them. See for example:

> http $:$ //en.wikipedia.org/wiki/Fermat_primality_test \quad and
> http $: / / e n . w i k i p e d i a . o r g / w i k i / P s e u d o p r i m e ~$

Example 15.4 (Exercise 7.16.). The same proof shows that if $n \in \mathbb{Z}_{+}$and $a \in \mathbb{Z}$ is relatively prime to n, then

$$
a^{\varphi(n)} \bmod n=1 .
$$

Indeed, we have $a^{\varphi(n)} \bmod n=r^{\varphi(n)} \bmod n$ where $r:=a \bmod n$ and we have seen that $\operatorname{gcd}(r, n)=\operatorname{gcd}(a, n)=1$ so that $r \in U(n)$. Since $\varphi(n)=|U(n)|$ we may conclude that $r^{\varphi(n)}=1$ in $U(n)$, i.e.

$$
a^{\varphi(n)} \bmod n=r^{\varphi(n)} \bmod n=1
$$

Theorem 15.5. Suppose G is a group of order $p \geq 3$ which is prime. Then G is isomorphic to $\mathbb{Z}_{2 p}$ or D_{p}.

Before giving the proof let us first prove a couple of lemmas.
Lemma 15.6. If G is a group such that $a^{2}=e$ for all $a \in G$, then G is abelian.
Proof. Since $a^{2}=e$ we know that $a=a^{-1}$ for all $a \in G$. So for any $a, b \in G$ it follows that

$$
a b=(a b)^{-1}=b^{-1} a^{-1}=b a
$$

i.e. G must be abelian.

Lemma 15.7. If G is a group having two distinct commuting elements, a and b, with $|a|=2=|b|$, then $H:=\{e, a, b, a b\}$ is a sub-group of order 4 .

Proof. By cancellation $a b$ is not equal to a or b. Moreover if $a b=e$, then $a=b^{-1}=b$ which again is not allowed by assumption. Therefore H has four elements. It is easy to see that $H \leq G$.

We are now ready for the proof of Theorem 15.5
Proof. Proof of Theorem 15.5 .
Case 1. There is an element, $g \in G$ of order $2 p$. In this case $G=\langle g\rangle \cong \mathbb{Z}_{2 p}$ and we are done.

Case 2. $|g| \leq p$ for all $g \in G$. In this case we must have at least one element, $a \in G$, such that $|a|=p$. Otherwise we would have (by Lagrange's theorem) $|g| \leq 2$ for all $g \in G$. However, by Lemmas 15.6 and 15.7 this would imply that G contains a subgroup, H, of order 4 which is impossible because of Lagrange's theorem.

Let $a \in G$ with $|a|=p$ and set

$$
H:=\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{p-1}\right\}
$$

As $[G: H]=|G| /|H|=2 p / p=2$, there are two distinct disjoint cosets of H in G. So if b is any element in $G \backslash H$ the two distinct cosets are H and

$$
b H=b\langle a\rangle=\left\{b, b a, b a^{2}, \ldots, b a^{p-1}\right\} .
$$

We are now going to show that $b^{2}=e$ for all $b \in G \backslash H$. What we know is that $b^{2} H$ is either H or $b H$. If $b^{2} H=b H$ then $b=b^{-1} b^{2} \in H$ which contradicts the assumption that $b \notin H$. Therefore we must have $b^{2} H=H$, i.e. $b^{2} \in H$. If $b^{2} \neq e$, then $b^{2}=a^{l}$ for some $1 \leq l<p$ and therefore $\left|b^{2}\right|=\left|a^{l}\right|=p / \operatorname{gcd}(l, p)=p$ and therefore $|b|=2 p$. However, we are in case 2 where it is assumed that $|g| \leq p$ for all $g \in G$ so this can not happen. Therefore we may conclude that $b^{2}=e$ for all $b \notin H$.

Let us now fix some $b \notin H=\langle a\rangle$. Then $b a \notin H$ and therefore we know $(b a)^{2}=e$ which is to say $b a=(b a)^{-1}=a^{-1} b^{-1}$, i.e. $b a b^{-1}=a^{-1}$. Therefore

$$
G=H \cup b H=\left\{a^{k}, b a^{k}: 0 \leq k<n\right\} \text { with } a^{p}=e, b^{2}=e, \text { and } b a b=a^{-1} .
$$

But his is precisely our description of D_{p}. Indeed, recall that for $n \geq 3$,

$$
D_{n}=\left\{r^{k}, f r^{k}: 0 \leq k<n\right\} \text { with } f^{2}=e, r^{n}=e, \text { and } f r f=r^{-1}
$$

Thus we may map $G \rightarrow D_{2 p}$ via, $a^{k} \rightarrow r^{k}$ and $b a^{k} \rightarrow b r^{k}$. This map is an "isomorphism" of groups - a notion we discuss next.

15.1 Homomorphisms and Isomorphisms

Definition 15.8. Let G and \bar{G} be two groups. A function, $\varphi: G \rightarrow \bar{G}$ is a homomorphism if $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in G$. We say that φ is an isomorphism if φ is also a bijection, i.e. one to one and onto. We say G and \bar{G} are isomorphic if there exists and isomorphism, $\varphi: G \rightarrow \bar{G}$.

Lemma 15.9. If $\varphi: G \rightarrow \bar{G}$ is an isomorphism, the inverse map, φ^{-1}, is also a homomorphism and $\varphi^{-1}: \bar{G} \rightarrow G$ is also an isomorphism.

Proof. Suppose that $\bar{a}, \bar{b} \in \bar{G}$ and $a:=\varphi^{-1}(\bar{a})$ and $b:=\varphi^{-1}(\bar{b})$. Then $\varphi(a b)=\varphi(a) \varphi(b)=\bar{a} \bar{b}$ from which it follows that

$$
\varphi^{-1}(\bar{a} \bar{b})=a b=\varphi^{-1}(\bar{a}) \varphi^{-1}(\bar{b})
$$

as desired.
Notation 15.10 If $\varphi: G \rightarrow \bar{G}$ is a homomorphism, then the kernel of φ is defined by,

$$
\operatorname{ker}(\varphi):=\varphi^{-1}\left(\left\{e_{\bar{G}}\right\}\right):=\left\{x \in G: \varphi(x)=e_{\bar{G}}\right\} \subset G
$$

and the range of φ by

$$
\operatorname{Ran}(\varphi):=\varphi(G)=\{\varphi(g): g \in G\} \subset \bar{G}
$$

Example 15.11. The trivial homomorphism, $\varphi: G \rightarrow \bar{G}$, is defined by $\varphi(g)=$ \bar{e} for all $g \in G$. For this example,

$$
\operatorname{ker}(\varphi)=G \text { and } \operatorname{Ran}(G)=\{\bar{e}\}
$$

Example 15.12. Let $G=G L(n, \mathbb{R})$ denote the set of $n \times n$ - invertible matrices with the binary operation being matrix multiplication and let $H=\mathbb{R}^{*}:=\mathbb{R} \backslash\{0\}$ equipped with multiplication as the binary operation. Then det : $G \rightarrow H$ is a homomorphism. In this example,

$$
\begin{aligned}
\operatorname{ker}(\operatorname{det}) & =S L(n, \mathbb{R}):=\{A \in G L(n, \mathbb{R}): \operatorname{det} A=1\} \text { and } \\
\operatorname{Ran}(\operatorname{det}) & =\mathbb{R}^{*}(\text { why? }) .
\end{aligned}
$$

Example 15.13. Suppose that $G=\mathbb{R}^{n}$ and $H=\mathbb{R}^{m}$ both equipped with + as their binary operation. Then any $m \times n$ matrix, A, gives rise to a homomorphism ${ }^{1}$ from $G \rightarrow H$ via the map, $\varphi_{A}(x):=A x$ for all $x \in \mathbb{R}^{n}$. In this case $\operatorname{ker}\left(\varphi_{A}\right)=\operatorname{Nul}(A)$ and $\operatorname{Ran}\left(\varphi_{A}\right)=\operatorname{Ran}(A)$. Moreover, φ_{A} is an isomorphism iff $m=n$ and A is invertible.

Lecture 16 (2/11/2009)

Example 16.1. Suppose that $G=\mathbb{R}$ and $\bar{G}=S^{1}:=\{z \in \mathbb{Z}:|z|=1\}$. We use addition on G and multiplication of \bar{G} as the group operations. Then for each $\lambda \in \mathbb{R}, \varphi_{\lambda}(t):=e^{i \lambda t}$ is a homomorphism from G to \bar{G}. For this example, if $\lambda \neq 0$ then $\varphi_{\lambda}(t)=1$ iff $\lambda t \in 2 \pi \mathbb{Z}$ and therefore

$$
\operatorname{ker}\left(\varphi_{\lambda}\right)=\frac{2 \pi}{\lambda} \mathbb{Z} \text { and } \operatorname{Ran}\left(\varphi_{\lambda}\right)=S^{1}
$$

If $\lambda=0, \varphi_{\lambda}=\varphi_{0}$ is the trivial homomorphism.
Example 16.2. Suppose that $G=\bar{G}=S^{1}:=\{z \in \mathbb{Z}:|z|=1\}$. Then for each $n \in \mathbb{Z}, \varphi_{n}(z):=z^{n}$ is a homomorphism and when $n= \pm 1$ it is an isomorphism. If $n=0, \varphi_{n}=\varphi_{0}$ is the trivial homomorphism while if $n \neq 0, \varphi_{n}(z)=1$ iff $z^{n}=1$ iff $z=e^{i \frac{2 \pi}{n} k}$ for some $k=0,1,2, \ldots, n-1$, so that

$$
\begin{aligned}
\operatorname{ker}\left(\varphi_{n}\right) & =\left\{e^{i \frac{2 \pi}{n} k}: k=0,1,2, \ldots, n-1\right\} \text { while } \\
\operatorname{Ran}\left(\varphi_{n}\right) & =S^{1}=\bar{G} .
\end{aligned}
$$

Theorem 16.3. If $\varphi: G \rightarrow \bar{G}$ is a homomorphism, then

1. $\varphi(e)=\bar{e} \in \bar{G}$,
2. $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$ for all $a \in G$,
3. $\varphi\left(a^{n}\right)=\varphi(a)^{n}$ for all $n \in \mathbb{Z}$,
4. If $|g|<\infty$ then $|\varphi(g)|$ divides $|g|$,
5. $\varphi(G) \leq \bar{G}$,
6. $\operatorname{ker}(\varphi) \leq G$,
7. $\varphi(a)=\varphi(b)$ iff $a^{-1} b \in \operatorname{ker}(\varphi)$ iff $a \operatorname{ker}(\varphi)=b \operatorname{ker}(\varphi)$, and
8. If $\varphi(a)=\bar{a} \in \bar{G}$, then

$$
\varphi^{-1}(\bar{a}):=\{x \in G: \varphi(x)=\bar{a}\}=a \operatorname{ker} \varphi .
$$

Proof. We prove each of these results in turn.

1. By the homomorphism property,

$$
\varphi(e)=\varphi(e \cdot e)=\varphi(e) \cdot \varphi(e)
$$

and so by cancellation, we learn that $\varphi(e)=\bar{e}$.
2. If $a \in G$ we have,

$$
\bar{e}=\varphi(e)=\varphi\left(a \cdot a^{-1}\right)=\varphi(a) \cdot \varphi\left(a^{-1}\right)
$$

and therefore, $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
3. When $n=0$ item 3 follows from item 1 . For $n \geq 1$, we have

$$
\varphi\left(a^{n}\right)=\varphi\left(a \cdot a^{n-1}\right)=\varphi(a) \cdot \varphi\left(a^{n-1}\right)
$$

from which the result then follows by induction. For $n \leq 1$ we have,

$$
\varphi\left(a^{n}\right)=\varphi\left(\left(a^{|n|}\right)^{-1}\right)=\varphi\left(a^{|n|}\right)^{-1}=\left(\varphi(a)^{|n|}\right)^{-1}=\varphi(a)^{n}
$$

4. Let $n=|g|<\infty$, then $\varphi(g)^{n}=\varphi\left(g^{n}\right)=\varphi(e)=e$. Therefore, $|\varphi(g)|$ divides $n=|g|$.
5. If $x, y \in G, \varphi(x)$ and $\varphi(y)$ are two generic elements of $\varphi(G)$. Since, $\varphi(x)^{-1} \varphi(y)=\varphi\left(x^{-1} y\right) \in \varphi(G)$, it follows that $\varphi(G) \leq \bar{G}$.
6. If x, y are now in $\operatorname{ker}(\varphi)$, i.e. $\varphi(x)=e=\varphi(y)$, then

$$
\varphi\left(x^{-1} y\right)=\varphi(x)^{-1} \varphi(y)=e^{-1} e=e
$$

This shows $x^{-1} y \in \operatorname{ker}(\varphi)$ and therefore that $\operatorname{ker}(\varphi) \leq G$.
7. We have $\varphi(a)=\varphi(b)$ iff $e=\varphi(a)^{-1} \varphi(b)=\varphi\left(a^{-1} b\right)$ iff $a^{-1} b \in \operatorname{ker}(\varphi)$.
8. We have $x \in \varphi^{-1}(\bar{a})$ iff $\varphi(x)=\bar{a}=\varphi(a)$ which (by 7.) happens iff $a^{-1} x \in$ $\operatorname{ker}(\varphi)$, i.e. iff $x \in a \operatorname{ker}(\varphi)$.

Corollary 16.4. A homomorphism, $\varphi: G \rightarrow \bar{G}$ is an isomorphism iff $\operatorname{ker}(\varphi)=$ $\{e\}$ and $\varphi(G)=\bar{G}$.

Proof. According to item 7. of Theorem 16.3, φ is one to one iff $\operatorname{ker}(\varphi)=$ $\{e\}$. Since φ is onto iff (by definition) $\varphi(G)=G$ the proof is complete.
Proposition 16.5 (Classification of groups with all elments being order 2). Suppose G is a non-trivial finite group such that $x^{2}=1$ for all $x \in G$. Then $G \cong \mathbb{Z}_{2}^{k}$ and $|G|=2^{k}$ for some $k \in \mathbb{Z}_{+}$.

Proof. We know from Lemma 15.6 that G is abelian. Choose $a_{1} \neq e$ and let

$$
H_{1}:=\left\{e, a_{1}\right\}=\left\{a_{1}^{\varepsilon}: \varepsilon \in \mathbb{Z}_{2}\right\} \leq G
$$

If $H_{1} \neq G$, choose $a_{2} \in G \backslash H_{1}$ and then let

$$
H_{2}:=\left\{a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}}: \varepsilon_{i} \in \mathbb{Z}_{2}\right\} \leq G .
$$

Notice that $\left|H_{2}\right|=2^{2}$. If $H_{2} \neq G$ choose $a_{3} \in G \backslash H_{2}$ and let

$$
H_{3}:=\left\{a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} a_{3}^{\varepsilon_{3}}: \varepsilon_{i} \in \mathbb{Z}_{2}\right\}
$$

If $a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} a_{3}=a_{1}^{\varepsilon_{1}^{\prime}} a_{2}^{\varepsilon_{2}^{\prime}}$, then $a_{3} \in H_{2}$ which is is not. If $a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} a_{3}=a_{1}^{\varepsilon_{1}^{\prime}} a_{2}^{\varepsilon_{2}^{\prime}} a_{3}$ then $a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}}=a_{1}^{\varepsilon_{1}^{\prime}} a_{2}^{\varepsilon_{2}^{\prime}}$ and therefore $\varepsilon_{i}=\varepsilon_{i}^{\prime}$ for $i=1,2$. This shows that $\left|H_{3}\right|=2^{3}$, i.e. all elements in the list are distinct. Continuing this way we eventually find $\left\{a_{i}\right\}_{i=1}^{k} \subset G$ such that

$$
G=\left\{a_{1}^{\varepsilon_{1}} \ldots a_{k}^{\varepsilon_{k}}: \varepsilon_{i} \in \mathbb{Z}_{2}\right\}
$$

with all elements being distinct in this list. We may now define $\varphi: \mathbb{Z}_{2}^{k} \rightarrow G$, by

$$
\varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right):=a_{1}^{\varepsilon_{1}} \ldots a_{k}^{\varepsilon_{k}} .
$$

This map is clearly one to one and onto and is easily seen to be a homomorphism and hence an isomorphism. Indeed, since G is abelian,

$$
\begin{aligned}
\varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \varphi\left(\delta_{1}, \ldots, \delta_{k}\right) & =a_{1}^{\varepsilon_{1}} \ldots a_{k}^{\varepsilon_{k}} a_{1}^{\delta_{1}} \ldots a_{k}^{\delta_{k}}=a_{1}^{\varepsilon_{1}} a_{1}^{\delta_{1}} \ldots a_{k}^{\varepsilon_{k}} a_{k}^{\delta_{k}} \\
& =a_{1}^{\varepsilon_{1}+\delta_{1}} \ldots a_{k}^{\varepsilon_{k+\delta_{k}}}=a_{1}^{\left(\varepsilon_{1}+\delta_{1}\right) \bmod 2} \ldots a_{k}^{\left(\varepsilon_{k+\delta_{k}}\right) \bmod 2} \\
& =\varphi\left(\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)+\left(\delta_{1}, \ldots, \delta_{k}\right)\right)
\end{aligned}
$$

Example 16.6 (Essentially the same as a homework problem). Recall that $U(12)=\{1,5,7,11\}$ has all elements of order 2 . Since $|U(12)|=2^{2}$ we know that $U(12) \cong \mathbb{Z}_{2}^{2}$. In this case we may take, $\varphi\left(\varepsilon_{1}, \varepsilon_{2}\right):=5^{\varepsilon_{1}} 7^{\varepsilon_{2}}$. Notice that $5 \cdot 7=35 \bmod 12=11$. On the other hand,

$$
U(10)=\{1,3,7,9\}=\langle 3\rangle=\left\{1,3,3^{2}=9,3^{3}=7\right\}
$$

It will follows from Theorem 17.1 below that $U(10)$ and $U(12)$ can not be isomorphic.

Lecture 17 (2/13/2009)

Theorem 17.1. If $\varphi: G \rightarrow \bar{G}$ is a group isomorphism, then φ preserves all group related properties. For example;

1. $|\varphi(g)|=|g|$ for all $g \in G$.
2. G is cyclic iff \bar{G} is cyclic. Moreover $g \in G$ is a generator of G iff $\varphi(g)$ is a generator of G.
3. $a, b \in G$ commute iff $\varphi(a), \varphi(b)$ commute in G. In particular, G is abelian iff \bar{G} is abelian.
4. For $k \in \mathbb{Z}_{+}$and $b \in G$, the equation $x^{k}=b$ in G and $\bar{x}^{k}=\varphi(b)$ in \bar{G} have the same number of equations. In fact, if $x^{k}=b$ iff $\varphi(x)^{k}=\varphi(b)$.
5. $K \subset G$ is a subgroup of G iff $\varphi(K)$ is a subgroup of \bar{G}.

Proof. 1. We have seen that $|\varphi(g)| \||g|$. Similarly it follows that $\left|\varphi^{-1}(\varphi(g))\right|||\varphi(g)|$, i.e. $| g|||\varphi(g)|$. Thus $| \varphi(g)|=|g|$.
2. If $G=\langle g\rangle$, then $G=\varphi(G)=\langle\varphi(g)\rangle$ showing G is cyclic. The converse follows by considering φ^{-1}.
3. If $a b=b a$ then $\varphi(a) \varphi(b)=\varphi(a b)=\varphi(b a)=\varphi(b) \varphi(a)$. The converse assertion again follows by considering φ^{-1}.
4. We have $x^{k}=b$ implies $\varphi(b)=\varphi\left(x^{\dot{k}}\right)=\varphi(x)^{k}$. Conversely if $\bar{x}^{k}=\varphi(b)$ then $\varphi^{-1}(\bar{x})^{k}=b$. Thus taking $x:=\varphi^{-1}(\bar{x})$ we have $x^{k}=b$ and $\bar{x}=\varphi(x)$.
5. We know if $K \leq G$ then $\varphi(K) \leq \bar{G}$ and $\varphi(K) \leq \bar{G}$ then $K=$ $\varphi^{-1}(\varphi(K)) \leq G$.

Example 17.2. Let $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $\mathbb{R}^{*}:=\mathbb{R} \backslash\{0\}$ which are groups under multiplication. We claim they are not isomorphic. If they were the equations $z^{4}=1$ in \mathbb{C}^{*} and $x^{4}=1$ in \mathbb{R}^{*} would have to have the same number of solutions. However the first has four solutions, $z=\{ \pm 1, \pm i\}$, while the second has only two, $\{ \pm 1\}$.

Proposition 17.3. Suppose that $\varphi: G \rightarrow \bar{G}$ is a homomorphism and $a \in G$, then the values of φ on $\langle a\rangle \leq G$ are uniquely determined by knowing $\bar{a}=\varphi(a)$. Let $\bar{n}:=|\bar{a}|$ and $n=|a|$.

1. If $n=\infty$, then to every element $\bar{a} \in \bar{G}$ there is a unique homomorphism from G to \bar{G} such that $\varphi(a)=\bar{a}$. If $\bar{n}=\infty$, then $\operatorname{ker}(\varphi)=\{e\}$ while if $\bar{n}<\infty$, then $\operatorname{ker}(\varphi)=\left\langle a^{\bar{n}}\right\rangle=\left\langle a^{|\bar{a}|}\right\rangle$.
2. If $n<\infty$, then to every element $\bar{a} \in G$ such that $\bar{n} \mid n$, there is a unique homomorphism, φ, from G to \bar{G}. This homomorphism satisfies;
a) $\operatorname{ker}(\varphi)=\left\langle a^{\bar{n}}\right\rangle=\left\langle a^{|\bar{a}|}\right\rangle$ and
b) $\varphi:\langle a\rangle \rightarrow\langle\bar{a}\rangle$ is an isomorphism iff $|a|=n=\bar{n}=|\bar{a}|$.

In particular, two cyclic groups are isomorphic iff they have the same order.
Proof. Since $\varphi\left(a^{k}\right)=\varphi(a)^{k}=\bar{a}^{k}$, it follows that φ is uniquely determined by knowing $\bar{a}=\varphi(a)$.

1. If $n=|a|=\infty$, we may define $\varphi\left(a^{k}\right)=\bar{a}^{k}$ for all $k \in \mathbb{Z}$. Then

$$
\varphi\left(a^{k} a^{l}\right)=\varphi\left(a^{k+l}\right)=\bar{a}^{k+l}=\bar{a}^{k} \bar{a}^{l}=\varphi\left(a^{k}\right) \varphi\left(a^{l}\right),
$$

showing φ is a homomorphism. Moreover, we have $e=\varphi\left(a^{k}\right)=\bar{a}^{k}$ iff $\bar{n}=|\bar{a}|$ divides $\mid k$, i.e.

$$
\operatorname{ker}(\varphi)=\left\{a^{l \cdot \bar{n}}: l \in \mathbb{Z}\right\}=\left\langle a^{\bar{n}}\right\rangle
$$

2. Now suppose that n and \bar{n} are finite and $\bar{n} \mid n$. Then again we define,

$$
\varphi\left(a^{k}\right):=\bar{a}^{k} \text { for all } k \in \mathbb{Z}
$$

However in this case we must show φ is "well defined," i.e. we must check the definition makes sense. The problem now is that $\left\{a^{k}: k \in \mathbb{Z}\right\}$ contains repetitions and in fact we know that $a^{k}=a^{k \bmod n}$. Thus we must show $\varphi\left(a^{k}\right)=\varphi\left(a^{k \bmod n}\right)$. Write $k=s n+r$ with $r=k \bmod n$, then

$$
\varphi\left(a^{k}\right)=\bar{a}^{k}=\bar{a}^{s n} \bar{a}^{r}=\bar{a}^{r}=\varphi\left(a^{r}\right),
$$

wherein we have used $\bar{a}^{n}=e$ since $\bar{n} \mid n$.
We now compute $\operatorname{ker}(\varphi)$. For this we have $\bar{e}=\varphi\left(a^{k}\right)=\bar{a}^{k}$ iff $\bar{n} \mid k$ and therefore,

$$
\operatorname{ker}(\varphi)=\left\{a^{k}: \bar{n} \mid k\right\}=\left\{a^{l \cdot \bar{n}}: l \in \mathbb{Z}\right\}=\left\langle a^{\bar{n}}\right\rangle
$$

Notice that $\operatorname{ker}(\varphi)=\{e\}$ iff $\bar{n}=n$ and in this case $\varphi(\langle a\rangle)=\langle\bar{a}\rangle$ showing φ is an isomorphism. If G and \bar{G} are cyclic groups of different orders, there is not bijective map from G to \bar{G} let alone no bijective homomorphism.
Corollary 17.4. If $G=\langle a\rangle$ and $|a|=\infty$, then $\varphi: G \rightarrow \mathbb{Z}$ defined by $\varphi\left(a^{k}\right)=$ k is an isomorphism. While if $|a|=n<\infty$, then $\varphi: G \rightarrow \mathbb{Z}_{n}$ defined by $\varphi\left(a^{k}\right)=k \bmod n$ is an isomorphism.

Proof. Each of the maps are well defined (by Proposition 17.3) homomorphisms onto \mathbb{Z} and \mathbb{Z}_{n} respectively. Moreover the same proposition shows that $\operatorname{ker}(\varphi)=\{e\}$ in each case and therefore they are isomorphism.

Example 17.5. If $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ is a homomorphism, then $\varphi(1)=k \in \mathbb{Z}_{30}$ where the order of $|k|$ must divide 12 which is equivalent to $k \cdot 12=0$ in \mathbb{Z}_{30}. This condition is easy to remember since, $12=0$ in \mathbb{Z}_{12} and therefore $0=\varphi(0)=\varphi(12)=k \cdot 12$. At any rate we know that $30 \mid(k \cdot 12)$ or equivalently, $5 \mid(2 k)$, i.e. $5 \mid k$. Thus the homomorphisms are of the form,

$$
\varphi_{k}(x)=k x \text { where } k \in\{0,5,10,15,20,25\}
$$

Furthermore we have $\varphi_{5}(x)=0$ iff $5 x=0(\bmod) 30$ iff $x=0(\bmod) 6$ iff x is a multiple of 6 , i.e. $x \in\langle 6\rangle$. We also have

$$
\varphi_{5}\left(\mathbb{Z}_{12}\right)=\langle 5\rangle=\{1,5,10,15,20,25\} \leq \mathbb{Z}_{30}
$$

More generally one shows

k	$\operatorname{gcd}(k, 30)$	$\|k\|=\frac{30}{\operatorname{gcd}(k, 30)}$	$\operatorname{Ran}\left(\varphi_{k}\right)=\langle k\rangle=$ $\langle\operatorname{gcd}(k, 30)\rangle \leq \mathbb{Z}_{30}$	$\operatorname{ker}\left(\varphi_{k}\right)=$ $\langle \| k\left\rangle \leq \mathbb{Z}_{12}\right.$
0	30	1	$\langle 0\rangle=\langle 30\rangle$	$\mathbb{Z}_{12}=\langle 1\rangle$
5	5	6	$\langle 5\rangle$	$\langle 6\rangle$
10	10	3	$\langle 10\rangle$	$\langle 3\rangle$
15	15	2	$\langle 15\rangle$	$\langle 2\rangle$
20	10	3	$\langle 20\rangle=\langle 10\rangle$	$\langle 3\rangle$
25	5	6	$\langle 25\rangle=\langle 5\rangle$	$\langle 6\rangle$

as we will prove more generally in the next proposition.
Lemma 17.6. Suppose that $m, n, k \in \mathbb{Z}_{+}$, then $m \mid(n k)$ iff $\left.\frac{m}{\operatorname{gcd}(m, n)} \right\rvert\, k$.
Proof. Let $d:=\operatorname{gcd}(m, n), m^{\prime}:=m / d$ and $n^{\prime}:=n / d$. Then $\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)=$ 1. Moreover we have $m \mid(n k)$ iff $\mathbb{Z} \ni \frac{n k}{m}=\frac{n^{\prime} k}{m^{\prime}}$ iff $m^{\prime} \mid\left(n^{\prime} k\right)$ iff (by Euclid's lemma) $m^{\prime} \mid k$.

Proposition 17.7. If $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ is a homomorphisms, then $\varphi=\varphi_{k}$ for some $k \in\left\langle\frac{m}{\operatorname{gcd}(m, n)}\right\rangle$ where $\varphi_{k}(x)=k x(=k x \bmod m)$. The list of distinct homomorphisms from $\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ is given by,

$$
\left\{\varphi_{k}: k \in\left\langle\frac{m}{\operatorname{gcd}(m, n)}\right\rangle \text { with } 0 \leq k<\frac{m}{\operatorname{gcd}(m, n)}\right\}
$$

Moreover,

$$
\begin{aligned}
\operatorname{Ran}\left(\varphi_{k}\right) & =\varphi\left(\mathbb{Z}_{n}\right)=\langle k\rangle=\langle\operatorname{gcd}(m, k)\rangle \leq \mathbb{Z}_{m} \text { and } \\
\operatorname{ker}(\varphi) & \left.=\left.\langle | k\right|_{\mathbb{Z}_{m}}\right\rangle=\left\langle\frac{m}{\operatorname{gcd}(k, m)}\right\rangle \leq \mathbb{Z}_{n} .
\end{aligned}
$$

Proof. Let $d:=\operatorname{gcd}(m, n)$ and $m^{\prime}=m / d$. By Proposition 17.3 the homomorphisms, $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$, are of the form $\varphi_{k}(x)=k x$ where $k=\varphi_{k}(1)$ must satisfy, $|k|_{\mathbb{Z}_{m}} \mid n$, i.e. $\left.\frac{m}{\operatorname{gcd}(k, m)} \right\rvert\, n$. Alternatively, this is equivalent to (see the proof ${ }^{11}$ of item 4. of Theorem 16.3 requiring $k n=0$ in \mathbb{Z}_{m}, i.e. that $m \mid(k n)$ which by Lemma 17.6 is equivalent to $m^{\prime} \mid k$. Thus the homomorphisms $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ are of the form $\varphi=\varphi_{k}$ where $k \in\left\langle m^{\prime}\right\rangle=\left\langle\frac{m}{\operatorname{gcd}(m, n)}\right\rangle$.

If is now easy to see that $\operatorname{Ran}\left(\varphi_{k}\right)=\langle k\rangle=\langle\operatorname{gcd}(m, k)\rangle$ and from Proposition 17.3 we know that

$$
\left.\operatorname{ker}\left(\varphi_{k}\right)=\left.\langle | k\right|_{\mathbb{Z}_{m}} \cdot 1\right\rangle=\left\langle\frac{m}{\operatorname{gcd}(k, m)}\right\rangle
$$

Alternatively, $0=\varphi_{k}(x)$ iff $k x=0(\bmod) m$, i.e. iff $m \mid(k x)$ which happens (by Lemma 17.6) iff $m^{\prime} \mid x$, i.e.

$$
\left.x \in\left\langle m^{\prime}\right\rangle=\left\langle\frac{m}{\operatorname{gcd}(k, m)}\right\rangle=\left.\langle | k\right|_{\mathbb{Z}_{m}}\right\rangle \leq \mathbb{Z}_{n}
$$

Corollary 17.8. If $m, n \in \mathbb{Z}_{+}$are relatively prime there is only one homomorphism, $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$, namely the zero homomorphism.

Proof. This follows from Proposition 17.7. We can also check it directly. Indeed, if $\varphi(1)=k$ then $0=\varphi(0)=\varphi(n)=k n \bmod m$ which implies $m \mid(n k)$ and hence by Euclid's lemma, $m \mid k$. Therefore,

$$
\varphi(x)=(k x) \bmod m=(k \bmod m)(x \bmod m) \bmod m=0(x \bmod m) \bmod m=0
$$

for all $x \in \mathbb{Z}_{n}$.

[^1]
Lecture 18 (2/16/2009)

Notation 18.1 Given a group, G, let

$$
\operatorname{Aut}(G):=\{\varphi: G \rightarrow G \mid \varphi \text { is an isomorphism }\}
$$

We call Aut (G) the automorphism group of G.

Lemma 18.2. Aut (G) is a group using composition of homomorphisms as the binary operation.

Proof. We will show Aut (G) is a sub-group of the invertible functions from $G \rightarrow G$. We have already seen that Aut (G) is closed under taking inverses in Lemma 15.9. So we must now only show that $\operatorname{Aut}(G)$ is closed under function composition. But this is easy, since if $a, b \in G$ and $\varphi, \psi \in \operatorname{Aut}(G)$, then $\varphi \circ \psi$ is still a bijection with inverse function given by $(\varphi \circ \psi)^{-1}=\psi^{-1} \circ \varphi^{-1}$, and

$$
\begin{aligned}
(\varphi \circ \psi)(a b) & =\varphi(\psi(a b))=\varphi(\psi(a) \psi(b)) \\
& =\varphi(\psi(a)) \varphi(\psi(b))=(\varphi \circ \psi)(a) \cdot(\varphi \circ \psi)(b)
\end{aligned}
$$

which shows that $\varphi \circ \psi \in \operatorname{Aut}(G)$.
Example 18.3. If $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ is a homomorphism, then $\varphi(x)=k x$ where $k=$ $\varphi(1)$. Conversely, $\varphi_{k}(x):=k x$ gives a homomorphism from $\mathbb{Z} \rightarrow \mathbb{Z}$ for all $k \in \mathbb{Z}$. Moreover we have $\operatorname{ker}\left(\varphi_{k}\right)=\langle 0\rangle$ if $k \neq 0$ while $\operatorname{ker}\left(\varphi_{0}\right)=\mathbb{Z}$. Since $\varphi_{k}(\mathbb{Z})=\langle k\rangle \leq \mathbb{Z}$ we see that $\varphi_{k}(\mathbb{Z})=\mathbb{Z}$ iff $k= \pm 1$. So $\varphi_{k}: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism iff $k \in\{ \pm 1\}$ and we have shown (see Proposition 16.5),

$$
\operatorname{Aut}(\mathbb{Z})=\left\{\varphi_{k}: k=1 \text { or } k=-1\right\} \cong \mathbb{Z}_{2}
$$

To see that last statement directly simply check that $\psi: \mathbb{Z}_{2} \rightarrow$ Aut (\mathbb{Z}) defined by $\psi(0)=\varphi_{1}$ and $\psi(1)=\varphi_{-1}$ is a homomorphism. The only case to check is as follows:

$$
\varphi_{1}=\psi(0)=\psi(1+1) \stackrel{?}{=} \psi(1) \circ \psi(1)=\varphi_{-1} \circ \varphi_{-1}=\varphi_{(-1)^{2}}=\varphi_{1}
$$

Theorem $18.4\left(\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong U(n)\right.$). All of the homomorphisms form \mathbb{Z}_{n} to itself are of the form, $\varphi_{k}(x)=k x \bmod n$ for some $k \in \mathbb{Z}_{n}$. Moreover, these φ_{k} is an isomorphism iff $k \in U(n)$. Moreover the map,

$$
\begin{equation*}
U(n) \ni k \rightarrow \varphi_{k} \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right) \tag{18.1}
\end{equation*}
$$

is an isomorphism of groups.

Proof. Since $k n=0 \bmod n$ for all $k \in \mathbb{Z}_{n}$ it follows from Proposition 17.7 that all of the homomorphisms, $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ are of the form described. Moreover, by Proposition 17.7, $\operatorname{Ran}\left(\varphi_{k}\right)=\langle k\rangle=\langle\operatorname{gcd}(n, k)\rangle$ which is equal to \mathbb{Z}_{n} iff $\operatorname{gcd}(n, k)=1$, i.e. iff $k \in U(n)$. For such a k we know that φ_{k} is also one to one since \mathbb{Z}_{n} is a finite set. Thus

$$
\begin{equation*}
\operatorname{Aut}\left(\mathbb{Z}_{n}\right)=\left\{\varphi_{k}: k \in U(n)\right\} \tag{18.2}
\end{equation*}
$$

Alternatively we have

$$
\operatorname{ker}\left(\varphi_{k}\right)=\left\langle\frac{n}{\operatorname{gcd}(k, n)}\right\rangle
$$

which is trivial iff $\frac{n}{\operatorname{gcd}(k, n)}=n$, i.e. $\operatorname{gcd}(k, n)=1$, i.e. $k \in U(n)$. Thus for $k \in U(n)$ we know that φ_{k} is one to one and hence onto. So again we have verified Eq. 18.2 .

Suppose that $k, l \in U(n)$, then with all arithmetic being done $\bmod n-$ i.e. in \mathbb{Z}_{n} we have

$$
\varphi_{k} \circ \varphi_{l}(x)=k(l x)=(k l) x=\varphi_{k l}(x) \text { for all } x \in \mathbb{Z}_{n}
$$

This shows that map in Eq. 18.1 is a homomorphism and hence an isomorphism since it is one to one and onto. The inverse map is,

$$
\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \ni \varphi \rightarrow \varphi(1) \in U(n)
$$

Third direct proof: Suppose that $k, l \in \mathbb{Z}_{n}$, then with all arithmetic being done $\bmod n$ - i.e. in \mathbb{Z}_{n} we have

$$
\varphi_{k} \circ \varphi_{l}(x)=k(l x)=(k l) x=\varphi_{k l}(x) \text { for all } x \in \mathbb{Z}_{n}
$$

Using this it follows that if $k \in U(n)$ and k^{-1} is its inverse in $U(n)$, then $\varphi_{k}^{-1}=\varphi_{k^{-1}}$, so that $\varphi_{k} \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$. Conversely if $d=\operatorname{gcd}(k, n)>1$, then

$$
\varphi_{k}\left(\frac{n}{d}\right)=\left(k \frac{n}{d}\right) \bmod n=\left(\frac{k}{d} n\right) \bmod n=0
$$

which shows $\operatorname{ker}\left(\varphi_{k}\right)$ contains $\frac{n}{d} \neq 0$ in \mathbb{Z}_{n}. Hence φ_{k} is not an isomorphism.

Proposition 18.5. If $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a homomorphism, then $\varphi(x)=k x$ ($=$ $k x \bmod n)$ where $k=\varphi(1) \in \mathbb{Z}_{n}$. Conversely to each $k \in \mathbb{Z}_{n}, \varphi_{k}(x):=k x$ defines a homomorphism from $\mathbb{Z} \rightarrow \mathbb{Z}_{n}$. The kernel and range of φ_{k} are given by

$$
\operatorname{ker}\left(\varphi_{k}\right)=\left\langle\frac{n}{\operatorname{gcd}(k, n)} 1\right\rangle=\left\langle\frac{n}{\operatorname{gcd}(k, n)}\right\rangle \subset \mathbb{Z}
$$

and

$$
\operatorname{Ran}\left(\varphi_{k}\right)=\langle k\rangle=\langle\operatorname{gcd}(k, n)\rangle \subset \mathbb{Z}_{n}
$$

Thus $\operatorname{ker}\left(\varphi_{k}\right)$ is never 0 and $\operatorname{Ran}\left(\varphi_{k}\right)=\mathbb{Z}_{n}$ iff $k \in U(n)$.
Proof. Most of this is straight forward to prove and actually follows from Proposition 17.3. Since the order of $k \in \mathbb{Z}_{n}$ is $\frac{n}{\operatorname{gcd}(k, n)}$ we have,

$$
\operatorname{ker}\left(\varphi_{k}\right)=\left\langle\frac{n}{\operatorname{gcd}(k, n)} \cdot 1\right\rangle=\left\langle\frac{n}{\operatorname{gcd}(k, n)} 1\right\rangle
$$

As a direct check notice that $0=\varphi_{k}(x)=k x \bmod n$ happens iff $n \mid k x$ iff $\left.\frac{n}{\operatorname{gcd}(k, n)} \right\rvert\, x$ iff $x \in\left\langle\frac{n}{\operatorname{gcd}(k, n)} \cdot 1\right\rangle$. We can also directly check that φ_{k} is a homomorphism:

$$
\begin{aligned}
\varphi_{k}(x+y) & =k(x+y) \bmod n=(k x+k y) \bmod n \\
& =k x \bmod n+k y \bmod n=\varphi_{k}(x)+\varphi_{k}(y)
\end{aligned}
$$

Finally,

$$
\varphi_{k}(\mathbb{Z})=\langle k\rangle=\langle\operatorname{gcd}(k, n)\rangle \leq \mathbb{Z}_{n}
$$

and therefore, $\varphi_{k}(\mathbb{Z})=\langle k\rangle=\mathbb{Z}_{n}$ iff k is a generator of \mathbb{Z}_{n} iff $\operatorname{gcd}(k, n)=1$ iff $k \in U(n)$.

Lecture 19 (2/18/2009)

Definition 19.1. The external direct product of groups, G_{1}, \ldots, G_{n}, is,

$$
G_{1} \oplus \cdots \oplus G_{n}:=G_{1} \times \cdots \times G_{n} \text { as a set }
$$

with group operation given by

$$
\left(g_{1}, \ldots, g_{n}\right)\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)=\left(g_{1} g_{1}^{\prime}, \ldots, g_{n} g_{n}^{\prime}\right)
$$

i.e. you just multiply componentwise. (It is easy to check this is a group with $\mathbf{e}:=(e, \ldots, e)$ being the identity and

$$
\left(g_{1}, \ldots, g_{n}\right)^{-1}=\left(g_{1}^{-1}, \ldots, g_{n}^{-1}\right)
$$

Example 19.2. Recall that $U(5)=\{1,2,3,4\}$ and $\mathbb{Z}_{3}=\{0,1,2\}$ and therefore,

$$
U(5) \times \mathbb{Z}_{3}=\{(i, j): 1 \leq i \leq 4 \text { and } 0 \leq j \leq 2\}
$$

Moroever, we have

$$
(2,1) \cdot(3,1)=(2 \cdot 3 \bmod 5,1+1 \bmod 3)=(1,2)
$$

and

$$
(2,1)^{-1}=(3,2)
$$

Example 19.3. Suppose that $|G|=4$, then $G \cong \mathbb{Z}_{4}$ or $G \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. By Lagrange's theorem, we know that $|g|=1,2$, or 4 for all $g \in G$. If there exists $g \in G$ with $|g|=4$, then $G=\langle g\rangle \cong \mathbb{Z}_{4}$ and if $|g| \leq 2$ for all $g \in G$ we know that $G \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ from results we have proved above. In particular there are only two groups of order 4 and they are both abelian.

Fact 19.4 Here are some simple facts about direct products:

1. $\left|G_{1} \oplus \cdots \oplus G_{n}\right|=\left|G_{1}\right| \times \cdots \times\left|G_{n}\right|$.
2. Up to isomorphism, the groups $G_{1} \oplus \cdots \oplus G_{n}$ are independent of how the factors are ordered. For example,

$$
G_{1} \oplus G_{2} \oplus G_{3} \ni\left(g_{1}, g_{2}, g_{3}\right) \rightarrow\left(g_{3}, g_{2}, g_{1}\right) \in G_{3} \oplus G_{2} \oplus G_{1}
$$

is an isomorphism.
3. One may associate the direct product factors in any way you please up to isomorphism. So for example,

$$
\left(G_{1} \oplus G_{2}\right) \oplus G_{3} \ni\left(\left(g_{1}, g_{2}\right), g_{3}\right) \rightarrow\left(g_{1}, g_{2}, g_{3}\right) \in G_{1} \oplus G_{2} \oplus G_{3}
$$

is an isomorphism.
Remark 19.5. Observe that if $g=\left(e, \ldots, e, g_{k}, e, \ldots, e\right)$ and $g^{\prime}=$ $\left(e, \ldots, e, g_{l}, e, \ldots, e\right)$ for some $l \neq k$, then g and g^{\prime} commute. For example in $G_{1} \times G_{2},\left(g_{1}, e\right)$ and $\left(e, g_{2}\right)$ commute since,

$$
\left(g_{1}, e\right)\left(e, g_{2}\right)=\left(g_{1}, g_{2}\right)=\left(e, g_{2}\right)\left(g_{1}, e\right) .
$$

Theorem 19.6. Let $\left(g_{1}, \ldots, g_{n}\right) \in G_{1} \oplus \cdots \oplus G_{n}$, then

$$
\left|\left(g_{1}, \ldots, g_{n}\right)\right|=\operatorname{lcm}\left(\left|g_{1}\right|, \ldots,\left|g_{n}\right|\right)
$$

(Also see Proposition 13.3.)
Proof. If $t \in \mathbb{Z}_{+}$, then

$$
\left(g_{1}, \ldots, g_{n}\right)^{t}=e=(e, \ldots, e) \Longleftrightarrow g_{i}^{t}=e \text { for all } i
$$

and this happens iff $\left|g_{i}\right| \mid t$ for all i, i.e. iff t is a common multiple of $\left\{\left|g_{i}\right|\right\}$. Therefore the order $\left(g_{1}, \ldots, g_{n}\right)$ must be $\operatorname{lcm}\left(\left|g_{1}\right|, \ldots,\left|g_{n}\right|\right)$.
Example 19.7 (Exercise 8.10 and 8.11).

1. How many elements of order 9 does $\mathbb{Z}_{3} \oplus \mathbb{Z}_{9}$ have? The elements of order 9 are of the form (a, b) where $|b|=9$, i.e. $b \in U(9)$. Thus the elements of order 9 are $\mathbb{Z}_{3} \times U(9)$ of which there are,

$$
\left|\mathbb{Z}_{3} \times U(9)\right|=3 \cdot \varphi(9)=3 \cdot\left(3^{3}-3\right)=18
$$

2. Exercise 8.11 - how many elements of order 4 are there in $\mathbb{Z}_{400} \oplus \mathbb{Z}_{800}$? Recall that there is one subgroup of order 4 inside of \mathbb{Z}_{n} when $4 \mid n$ which is $\left\langle\frac{n}{4}\right\rangle$. All the elements of order 4 are inside this sub-group and hence there are $\varphi(4)=2$ of them. The elements of order 2 in \mathbb{Z}_{n} are in $\left\langle\frac{n}{2}\right\rangle$ and there is only one of them. So \mathbb{Z}_{n} has 2 elements of order 4 and one each of order 2 and 1. The elements of order 4 inside of $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ are of the form (a, b) where $|a|=1$ or 2 and $|b|=4$ of which there are $2 \cdot 2=4$ of them or $|a|=4$ and $|b| \in\{1,2,4\}$ or which there are $2 \cdot 4=8$, so the total is $8+4=12$.

Example 19.8 (p. 155 Example 5). Determine the number of cyclic subgroups of order 10 inside of $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$. The strategy is to observe that every cyclic subgroup $H=\langle(a, b)\rangle$, of order 10 contains $\varphi(10)=1 \cdot 4=4$ elements of order 10 . Thus if we count the number of elements of order 10 we must divide by 4 to get the number of cyclic subgroups of order 10 because no distinct cyclic subgroups of order 10 can share an element of order 10 . We now count the number of elements $(a, b) \in \mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$ of order 10 . Recall that $|(a, b)|=$ $\operatorname{lcm}(|a|,|b|)$ and $100=10 \cdot 10=2^{2} \cdot 5^{2}$ and $25=5^{2}$. So in order to get an element of order 10 we must either

1. $|a|=10$ and $|b|=1$ or 5 of which there are $\varphi(10) \cdot(\varphi(1)+\varphi(5))=$ $4 \cdot(1+4)=20$ of them, or
2. $|a|=2$ and $|b|=5$ of which there are $\varphi(2) \cdot \varphi(5)=1 \cdot 4=4$.

Therefore there are $(20+4) / 4=6$ cyclic subgroups of order 10 inside of $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$.

Lemma 19.9. If G and H are groups such that $G \oplus H$ is cyclic, then both G and H are cyclic. Alternatively put, if either G or H is not cyclic, then $G \oplus H$ is not cyclic.

Proof. Let $(g, h) \in G \oplus H$ be a generator of $G \oplus H$. Then every element of $G \oplus H$ is of the form

$$
(g, h)^{k}=\left(g^{k}, h^{k}\right) \text { for some } k \in \mathbb{Z}
$$

Thus every element of G must be of the form g^{k} for some $k \in \mathbb{Z}$ and every element of H must be of the form h^{k} for some $k \in \mathbb{Z}$, i.e. both G and H are cyclic.

Theorem 19.10. Suppose that G and H are cyclic groups of finite order, then $G \oplus H$ is cyclic iff $|G|$ and $|H|$ are relatively prime.

Proof. Let $m=|G|$ and $n=|H|$ and suppose that $G \oplus H$ is cyclic. Then there exists $(a, b) \in G \oplus H$ such that $|(a, b)|=m n$. Now if $d=\operatorname{gcd}(m, n)$ then

$$
(a, b)^{\frac{m n}{d}}=\left(a^{m \frac{n}{d}}, b^{n \frac{m}{d}}\right)=\left(e^{\frac{n}{d}}, e^{\frac{m}{d}}\right)=(e, e)
$$

so that $(m n) / d \geq|(a, b)|=m n$ and hence $d=1$, i.e. m and n are relatively prime.

Conversely if m and n are relatively prime and $G=\langle a\rangle$ and $H=\langle b\rangle$, we have $|(a, b)|=\operatorname{lcm}(m, n)=m n=|G \oplus H|$. (Alternatively, see Proposition 13.3.)

Example 19.11. Using the above results,

$$
\begin{aligned}
\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} & \cong\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{5}\right) \oplus\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}\right) \\
& \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \\
& \cong \mathbb{Z}_{5} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \cong \mathbb{Z}_{20} \oplus \mathbb{Z}_{6}
\end{aligned}
$$

and also,

$$
\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \cong \mathbb{Z}_{15} \oplus \mathbb{Z}_{8}
$$

By the way, $\left|\mathbb{Z}_{10} \oplus \mathbb{Z}_{12}\right|=120$ as is true of all of the other isomorphic groups appearing above.

Corollary 19.12. Suppose that G_{i} is cyclic for each i, then $G_{1} \oplus \cdots \oplus G_{n}$ is cyclic iff $\left|G_{i}\right|$ and $\left|G_{j}\right|$ are relatively prime for all $i \neq j$.

Proof. This is proved by induction. Rather than do this, let me show how the case $n=3$ works. First suppose that $m_{i}:=\left|G_{i}\right|$ and $m_{j}:=\left|G_{j}\right|$ are relatively prime for all $i \neq j$. Then by Theorem 19.10. $G_{2}^{\prime}:=G_{2} \oplus G_{3}$ is cyclic and observe that $\left|G_{2}^{\prime}\right|=m_{2} m_{3}$ is relatively prime to m_{1}. (Indeed, look at the prime number decompositions. Alternatively, if $d>1$ is a divisor of m_{1} and $\left(m_{2} m_{3}\right)$, then by Euclid's lemma, d is also a divisor of m_{2} or m_{3} and either m_{1} and m_{2} or m_{1} and m_{3} are not relatively prime.) So by another application of Theorem 19.10 we know $G_{1} \oplus G_{2} \oplus G_{3} \cong G_{1} \oplus G_{2}^{\prime}$ is cyclic as well.

Conversely if m_{2} and m_{3} are not relatively prime (for sake of argument), then $G_{2}^{\prime}:=G_{2} \oplus G_{3}$ is not cyclic and therefore by Lemma 19.9 we know $G_{1} \oplus$ $G_{2} \oplus G_{3} \cong G_{1} \oplus G_{2}^{\prime}$ is not cyclic as well.

Lecture 20 (Review) (2/23/2008)

Lemma 20.1. Let G be a group, $H \leq G$, and $a, b \in H$. Then

1. G is the disjoint union of its distinct cosets.
2. $a H=b H$ iff $a^{-1} b \in H$.

Theorem 20.2 (Lagrange's Theorem). Suppose that G is a finite group and $H \leq G$, then

$$
|G: H| \times|H|=|G|
$$

where $|G: H|:=\#(G / H)$ is the number of distinct cosets of H in G. In particular $|H|$ divides $|G|$ and $|G| /|H|=|G: H|$.

Corollary 20.3. If G is a group of prime order p, then G is cyclic and every element in $G \backslash\{e\}$ is a generator of G.
Corollary 20.4 (Fermat's Little Theorem). Let p be a prime number and $a \in \mathbb{Z}$. Then

$$
a^{p} \bmod p=a \bmod p
$$

Theorem 20.5. If $\varphi: G \rightarrow \bar{G}$ is a homomorphism, then

1. $\varphi\left(a^{n}\right)=\varphi(a)^{n}$ for all $n \in \mathbb{Z}$,
2. If $|g|<\infty$ then $|\varphi(g)|$ divides $|g|$ or equivalently, $\varphi(g)^{|g|}=e$,
3. $\varphi(G) \leq \bar{G}$ and $\operatorname{ker}(\varphi) \leq G$,
4. $\varphi(a)=\varphi(b)$ iff $a^{-1} b \in \operatorname{ker}(\varphi)$ iff $a \operatorname{ker}(\varphi)=b \operatorname{ker}(\varphi)$, and
5. If $\varphi(a)=\bar{a} \in \bar{G}$, then

$$
\varphi^{-1}(\bar{a}):=\{x \in G: \varphi(x)=\bar{a}\}=a \operatorname{ker} \varphi .
$$

Corollary 20.6. A homomorphism, $\varphi: G \rightarrow \bar{G}$ is one to one iff $\operatorname{ker} \varphi=\{e\}$. So $\varphi: G \rightarrow \bar{G}$ is an isomorphism iff $\operatorname{ker} \varphi=\{e\}$ and $\varphi(G)=\bar{G}$.

Corollary 20.7. If G is a finite group and $\varphi: G \rightarrow G$ is a homomorphism, then the following are equivalent:

1. φ is an isomorphism.
2. $\operatorname{ker} \varphi=\{e\}$.
3. φ is one to one.
4. $\varphi(G)=G$, i.e. φ is onto.

Theorem 20.8. If $\varphi: G \rightarrow \bar{G}$ is a group isomorphism, then φ preserves all group related properties. For example;

1. $|\varphi(g)|=|g|$ for all $g \in G$.
2. G is cyclic iff \bar{G} is cyclic. Moreover $g \in G$ is a generator of G iff $\varphi(g)$ is a generator of \bar{G}.
3. $a, b \in G$ commute iff $\varphi(a), \varphi(b)$ commute in G. In particular, G is abelian iff G is abelian.
4. For $k \in \mathbb{Z}_{+}$and $b \in G$, the equation $x^{k}=b$ in G and $\bar{x}^{k}=\varphi(b)$ in \bar{G} have the same number of equations. In fact, if $x^{k}=b$ iff $\varphi(x)^{k}=\varphi(b)$.
5. $K \subset G$ is a subgroup of G iff $\varphi(K)$ is a subgroup of \bar{G}.

Theorem 20.9 (Key Cyclic Group Facts). Let $a \in G$ and $n=|a|$. Then;

1. $a^{i}=a^{j}$ iff $i \equiv j(\bmod) n$,
2. If $k \mid m$ then $\left\langle a^{m}\right\rangle \subset\left\langle a^{k}\right\rangle$.
3. $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ iff $\operatorname{gcd}(i, n)=\operatorname{gcd}(j, n)$.
4. $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle$.
5. $\left|a^{k}\right|=|a| / \operatorname{gcd}(|a|, k)$.
6. a^{k} is a generator of $\langle a\rangle$ iff $k \in U(n)$.
7. If G is a cyclic group of order n, there there are $\varphi(n):=|U(n)|$ elements of order n in G which are given by, $\left\{a^{k}: k \in U(n)\right\}$.

Theorem 20.10. Suppose that G is any finite group and $d \in \mathbb{Z}_{+}$, then the number elements of order d in G is divisible by $\varphi(d)=|U(d)|$.

Theorem 20.11. If G is a cyclic group, then $G \cong \mathbb{Z}$ if $|G|=\infty$ or $G \cong \mathbb{Z}_{n}$ if $n:=|G|<\infty$.

Proof. Let $a \in G$ be a generator. If $|G|=\infty$, then $\varphi: \mathbb{Z} \rightarrow G$ defined by $\varphi(k):=a^{k}$ is an isomorphism of groups. If $|G|=n<\infty$, then $\varphi: \mathbb{Z}_{n} \rightarrow G$ again defined by $\varphi(k):=a^{k}$ is an isomorphism of groups.

Theorem 20.12 (Fundamental Theorem of Cyclic Groups). Suppose that $G=\langle a\rangle$ is a cyclic group.

1. The subgroups of G are all of the form, $H=\left\langle a^{m}\right\rangle$ for some $m \in \mathbb{Z}$.
2. If $n=|a|<\infty$ and $H \leq G$, then $m:=|H| \mid n$ and $H=\left\langle a^{n / m}\right\rangle$.
3. To each divisor, $k \geq 1$, of n there is precisely one subgroup of G of order k, namely $H=\left\langle a^{n / k}\right\rangle$.
Proposition 20.13. If $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ is a homomorphisms, then $\varphi=\varphi_{k}$ for some $k \in\left\langle\frac{m}{\operatorname{gcd}(m, n)}\right\rangle$ where $\varphi_{k}(x)=k x(=k x \bmod m)$. The list of distinct homomorphisms from $\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ is given by,

$$
\left\{\varphi_{k}: k \in\left\langle\frac{m}{\operatorname{gcd}(m, n)}\right\rangle \text { with } 0 \leq k<\frac{m}{\operatorname{gcd}(m, n)}\right\} .
$$

Moreover,

$$
\begin{aligned}
\operatorname{Ran}\left(\varphi_{k}\right) & =\varphi\left(\mathbb{Z}_{n}\right)=\langle k\rangle=\langle\operatorname{gcd}(m, k)\rangle \leq \mathbb{Z}_{m} \text { and } \\
\operatorname{ker}(\varphi) & \left.=\left.\langle | k\right|_{\mathbb{Z}_{m}}\right\rangle=\left\langle\frac{m}{\operatorname{gcd}(k, m)}\right\rangle \leq \mathbb{Z}_{n}
\end{aligned}
$$

Corollary 20.14. If $m, n \in \mathbb{Z}_{+}$are relatively prime there is only one homomorphism, $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$, namely the zero homomorphism.

Theorem 20.15. Let $\left(g_{1}, \ldots, g_{n}\right) \in G_{1} \oplus \cdots \oplus G_{n}$, then

$$
\left|\left(g_{1}, \ldots, g_{n}\right)\right|=\operatorname{lcm}\left(\left|g_{1}\right|, \ldots,\left|g_{n}\right|\right)
$$

Theorem 20.16. Suppose that G and H are cyclic groups of finite order, then $G \oplus H$ is cyclic iff $|G|$ and $|H|$ are relatively prime.

Corollary 20.17. Suppose that G_{i} is cyclic for each i, then $G_{1} \oplus \cdots \oplus G_{n}$ is cyclic iff $\left|G_{i}\right|$ and $\left|G_{j}\right|$ are relatively prime for all $i \neq j$.

20.1 Examples:

Example 20.18. Show all non-trivial subgroups, H, of \mathbb{Z} are isomorphic to \mathbb{Z}. Solution: from class we know that $H=\langle n\rangle$ for some $n \neq 0$. Now let $\varphi(x):=n x$ for $x \in \mathbb{Z}$. Then φ is a homomorphism, $\operatorname{ker} \varphi=\{0\}$ and $\varphi(\mathbb{Z})=\langle n\rangle$, so φ is an isomorphism.

Example 20.19. Write out all of the (left) cosets of $\langle 4\rangle \leq \mathbb{Z}$ and compute $[\mathbb{Z}:\langle 4\rangle]$. Answer, $\langle 4\rangle=0+\langle 4\rangle, 1+\langle 4\rangle, 2+\langle 4\rangle, 3+\langle 4\rangle-$ this is it. Why? well these are all distinct since $i+\langle 4\rangle$ is the only coset containing i for $0 \leq i \leq 3$. Moreover, you should check that every integer in \mathbb{Z} is in precisely one of these cosets. Thus it follows that $[\mathbb{Z}:\langle 4\rangle]=4$.

Example 20.20. Find $\left[\mathbb{Z}_{12}:\langle 3\rangle\right]$. First off recall that $|\langle 3\rangle|=|3|=\frac{12}{\operatorname{gcd}(3,12)}=$ $\frac{12}{3}=4$ and hence by Lagrange's theorem,

$$
\left[\mathbb{Z}_{12}:\langle 3\rangle\right]=\frac{\left|\mathbb{Z}_{12}\right|}{|\langle 3\rangle|}=\frac{12}{4}=3
$$

Example 20.21. What are the orders of the elements which occur in the group, $G:=\mathbb{Z}_{6} \oplus \mathbb{Z}_{10}$. To answer this suppose that $(a, b) \in G$ then we know $|(a, b)|=$ $\operatorname{lcm}(|a|,|b|)$ where $|a| \in\{1,2,3,6\}$, and $|b| \in\{1,2,5,10\}$. Therefore one sees that

$$
\begin{aligned}
|(a, b)| & \in\{1,2,5,10\} \cup\{2,10\} \cup\{3,6,15,30\} \cup\{6,30\} \\
& =\{1,2,3,5,6,10,15,30\}
\end{aligned}
$$

are the possible orders.
Let us now compute the number element in G of order 10 . This happens if $|a|=1$ and $|b|=10$, or $|a|=2$ and $|b|=5$ or 10 . Noting that $\varphi(10)=$ $\varphi(2) \cdot \varphi(5)=1 \cdot 4=4$ it follows that the number of elements of order 10 is: $1 \cdot 4+1 \cdot(4+4)=12$.

Example 20.22. Suppose that $\varphi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{4}$ is a homomorphism such that $\varphi(3)=$ 1. Find a formula for φ and then find $\operatorname{ker}(\varphi)$. Solution: First off we know that $\langle 3\rangle=\langle\operatorname{gcd}(8,3)\rangle=\langle 1\rangle=\mathbb{Z}_{8}$ (alternatively, $3 \in U(8)$ and is therefore a generator) and therefore 3 is a generator of \mathbb{Z}_{8}. Hence it follows that φ is determined by its value on 3 and since $\varphi(3 \cdot 8)=1 \cdot 8=0(\bmod) 4$, it follows that there is such a homomrophism φ. Since $3 \cdot 3=1$ in \mathbb{Z}_{8} it follows that $\varphi(1)=\varphi(3 \cdot 3)=3 \cdot \varphi(3)=3 \cdot 1=3$ in \mathbb{Z}_{4}. Therefore,

$$
\varphi(x)=\varphi(x \cdot 1)=x \cdot \varphi(1)=3 x \bmod 4 .
$$

Now $x \in \operatorname{ker}(\varphi)$ iff $3 x \bmod 4=0$, i.e. iff $4 \mid 3 x$ iff $4 \mid x$. Thus $\operatorname{ker}(\varphi)=\langle 4\rangle=$ $\{1,4\} \leq \mathbb{Z}_{8}$.

Remark 20.23. In general if $k \in U(n)$, then we can find $s, t \in \mathbb{Z}$ by the division algorithm such that $s k+t n=1$. Taking this equation $\bmod n$ then allows us to conclude that $k \cdot(s \bmod n)=1$ in \mathbb{Z}_{n}. For example if $n=8$ and $k=3$, we have,

$$
8=2 \cdot 3+2 \text { and } 3=2+1
$$

and therefore

$$
1=3-2=3-(8-2 \cdot 3)=3 \cdot 3-8
$$

and therefore $3 \cdot 3=1$ in \mathbb{Z}_{8}.

[^0]: ${ }^{1}$ You showed in Exercise 4.54 of homework 4, that if $|a|$ and $|b|$ are relatively prime, then $\langle a\rangle \cap\langle b\rangle=\{e\}$ holds automatically.

[^1]: ${ }^{1}$ We can also see this using Lemma 17.6 By that lemma with the roles of n and k interchanged, $\left.\frac{m}{\operatorname{gcd}(k, m)} \right\rvert\, n$ iff $m \mid(n k)$.

