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Math 103A Lecture Notes

1.1 Lecture 1 (1/5/2009)

Notation 1.1 Introduce N := {0,1,2,...}, Z, Q, R, and C. Also let Z, :=

N\ {0}.
Set notations.
Recalled basic notions of a function being one to one, onto, and invertible.
Think of functions in terms of a bunch of arrows from the domain set to the
range set. To find the inverse function you should reverse the arrows.

e Some example of groups without the definition of a group:

1. GL(2,R) = {g = CCLZ :detg:ad—bc;«éO}.

2. Vector space with “group” operation being addition.

3. The permutation group of invertible functions on a set S like S =

{1,2,...,n}.

1.1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) FEvery non-empty subset, S, of N
contains a smallest element.

We say that a subset S C Z is bounded below if S C [k, o0) for some
k € Z and bounded above if S C (—o0, k] for some k € Z.

Remark 1.8 (Well ordering variations). The well ordering principle may also be
stated equivalently as:

1. any subset S C Z which is bounded from below contains a smallest element
or
2. any subset S C Z which is bounded from above contains a largest element.

To see this, suppose that S C [k,00) and then apply the well ordering
principle to S — k to find a smallest element, n € S — k. That isn € S — k and
n < s—k for all s € S. Thus it follows that n + k € S and n + k& < s for all
s € S so that n + k is the desired smallest element in S.

For the second equivalence, suppose that S C (—oo, k] in which case —S C
[—k, 00) and therefore there exist a smallest element n € —S, i.e. n < —s for all
s € S. From this we learn that —m € S and —n > s for all s € S so that —n is
the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let a € Z and b € Z., then there exists
unique integers q € Z and r € N with r < b such that

a=bqg+r.
(For example,
5

% so that 12=2-542.)

”‘om‘m

Proof. Let
S:={ke€eZ:a—-bk>0}

which is bounded from above. Therefore we may define,
q:=max{k:a—bk >0}.
As q is the largest element of S we must have,
ri=a—bg>0anda—b(qg+1)<0.

The second inequality is equivalent to » — b < 0 which is equivalent to r < b.
This completes the existence proof.

To prove uniqueness, suppose that a = bg’ +7’ in which case, bg’ +r" = bg+r
and hence,

b> ' —r[=b(¢—q)|=blg—q|. (1.1)
Since |¢ — ¢'| > 1 if ¢ # ¢/, the only way Eq. (1.1) can hold is if ¢ = ¢’ and
r=r'. u

Axiom 1.5 (Strong form of mathematical induction) Suppose that S C
Z is a non-empty set containing an element a with the property that; if [a,n) N
Z C S then n € Z, then [a,00) NZ C S.

Axiom 1.6 (Weak form of mathematical induction) Suppose that S C
Z is a mon-empty set containing an element a with the property that for ev-
eryn € S withn >a,n+1€ S, then [a,00) NZ C S.
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Remark 1.7. In Axioms [[.5] and [T.6] it suffices to assume that a = 0. For if a # 0
we may replace S by S —a:={s—a:s € S}. Then applying the axioms with
a =0 to S — a shows that [0,00) NZ C S — a and therefore,

[a,00) NZ =[0,00) NZ+a C S.

Theorem 1.8 (Equivalence of Axioms). Azioms - are equivalent.
(Only partially covered in class.)

Proof. We will prove [1.2] <= =

215 Suppose 0 € S C Z satisfies the assumption in Axiom[I.5] If Ny is not
contained in S, then Ny \ S is a non empty subset of N and therefore has a
smallest element, n. It then follows by the definition of n that [0,n)NZ C S
and therefore by the assumed property on S, n € S. This is a contradiction
since n can not be in both S and Ny \ S.

[[A =2 Suppose that S C N does not have a smallest element and let
@ := N\ S. Then 0 € @ since otherwise 0 € S would be the minimal element
of S. Moreover if [1,n) NZ C @, then n € @ for otherwise n would be a
minimal element of S. Hence by the strong form of mathematical induction,
it follows that Q = N and hence that S = 0.

=6 Any set, S C Z satisfying the assumption in Axiom will also
satisfy the assumption in Axiom and therefore by Axiom [I.5] we will
have [a,00)NZ C S.

={I.3l Suppose that 0 € S C Z satisfies the assumptions in Axiom Let
Q:={neN:[0,n) C S}. By assumption, 0 € @ since 0 € S. Moreover, if
n € @, then [0,n) C S by definition of ) and hence n +1 € Q. Thus Q
satisfies the restrictions on the set, S, in Axiom [[.6] and therefore Q = N.
Soifn e N, thenn+ 1€ N =@ and thus n € [0,n+ 1) C S which shows
that N C S. As 0 € S by assumption, it follows that Ny C S as desired.

1.2 Lecture 2 (1/7/2009)

Definition 1.9. Given a,b € Z with a # 0 we say that a divides b or a is a
divisor of b (write a|b) provided b = ak for some k € Z.

Definition 1.10. Given a,b € Z with |a| + |b| > 0, we let
ged (a,b) := max {m : mla and m|b}

be the greatest common divisor of a and b. (We do not define ged (0,0) and
we have ged (0,b) = |b| for all b € Z\ {0}.) If ged (a,b) = 1, we say that a and
b are relatively prime.
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Remark 1.11. Notice that ged (a,b) = ged (|al, |b]) > 0 and ged (a,0) = 0 for all
a # 0.

Lemma 1.12 (Euclidean Algorithm). Suppose that a,b are positive integers
with a < b and let b = ka+r with 0 < r < a by the division algorithm. If r = 0,
then ged (a,b) = ged (a,r) . In particular if r = 0, we have

ged (a,b) = ged (a,0) = a.

Proof. Since b = ka + r if d is a divisor of both a and r it is a divisor of
b. Similarly, » = b — ka so that if d is a divisor of both a and b then d is also
a divisor of r. Thus the common divisors of @ and r and a and b are the same
and therefore ged (a,b) = ged (a, 7). |

Ezample 1.13. Suppose that @ = 15 = 3-5 and b = 28 = 22 - 7. In this case it is
easy to see that ged (15,28) = 1. Nevertheless, lets use Lemma repeatedly
as follows;

28 =1-15+ 13 so ged (15,28) = ged (13, 15) (1.2)
15=1-13+2so ged (13,15) = ged (2,13), (1.3)
13=6-2+1so Gged(2,13) = ged (1,2), (1.4)

2=2-14+0s0 ged(1,2) =ged(0,1) = 1. (1.5)

Moreover making use of Egs. ( 1.4]) in reverse order we learn that,
1=13-6-2
=13-6-(15—-1-13)=7-13-6-15
=7-(28—1-15)—6-15=7-28 —13-15.
Thus we have also shown that

1=5-28+1t-15 where s =7 and t = —13.

The choices for s and t used above are certainly not unique. For example we
have,
0=15-28—-28-15

which added to
1=7-28—13-15

implies,
1=(74+15)-28 — (13+28)-15
=22-28—41-15
as well.
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Example 1.14. Suppose that ¢ = 40 = 23 -5 and b = 52 = 22 - 13. In this case
we have ged (40, 52) = 4. Working as above we find,

92 =1-40+12
40=3-12+4
12=3-4+0

so that we again see ged (40,52) = 4. Moreover,
4=40-3-12=40—-3-(52—1-40) =4-40—3-52.

So again we have shown ged (a,b) = sa + tb for some s,t € Z, in this case s =4
and t = 3.

FEzxample 1.15. Suppose that ¢ = 333 = 32-37 and b = 459 = 33 . 17 so that
ged (333,459) = 32 = 9. Repeated use of Lemma [1.12 gives,

459 = 1333 + 126 so ged (333,459) = ged (126,333) , (1.6)
333 = 2126 + 81 so ged (126,333) = ged (81, 126), (1.7)
126 = 81 + 45 so ged (81,126) = ged (45,81), (1.8)
81 =45+ 36 so ged (45, 81) = ged (36,45) , (1.9)
45 =36+9 so ged (36,45) = ged (9,36), and (1.10)
36=4-94+0s0 ged(9,36) =ged (0,9) =9. (1.11)

Thus we have shown that
ged (333,459) = 9.

We can even say more. From Eq. (L.11)) we have, 9 = 45 — 36 and then from

Eq. (L.11),
9 =45—36 =45 — (81 —45) = 2- 45 — 81.

Continuing up the chain this way we learn,

9=2-(126—-81)—81=2-126—3-81
=2-126—-3-(333 —2-126) =8-126 — 3- 333
=8-(459—-1-333) —3-333=8-459 — 11 - 333

so that
9=28-459 — 11 -333.

The methods of the previous two examples can be used to prove Theorem
[1.16) below. However, we will two different variants of the proof.
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Theorem 1.16. If a,b € Z\ {0}, then there exists (not unique) numbers, s,t €
Z such that
ged (a,b) = sa + tb. (1.12)

Moreover if m # 0 is any common divisor of both a and b then m|ged (a,b) .

Proof. If m is any common divisor of a and b then m is also a divisor of
sa + tb for any s,t € Z. (In particular this proves the second assertion given
the truth of Eq. (1.12).) In particular, ged (a,b) is a divisor of sa + tb for all
s,t €Z. Let S:={sa+tb:s,t €Z} and then define

d:=min (S NZy) = sa + tb for some s,t € Z. (1.13)

By what we have just said if follows that ged (a,b)|d and in particular d >
ged (a, b) . If we can snow d is a common divisor of a and b we must then have
d = ged (a,b) . However, using the division algorithm,

a=kd+r with 0 <r <d. (1.14)

As
r=a—kd=a—k(sa+th)=(1—-ks)a—kthe SNN,

if  were greater than 0 then r > d (from the definition of d in Eq. (1.13)) which
would contradict Eq. (1.14]). Hence it follows that » = 0 and d|a. Similarly, one
shows that d|b. |

Lemma 1.17 (Euclid’s Lemma). If ged (¢,a) =1, i.e. ¢ and a are relatively
prime, and clab then c|b.

Proof. We know that there exists s,¢ € Z such that sa+tc = 1. Multiplying
this equation by b implies,
sab + tcb = b.

Since c|ab and c|cb, it follows from this equation that c¢|b. ]

Corollary 1.18. Suppose that a,b € 7Z such that there exists s,t € Z with
1 =sa+tb. Then a and b are relatively prime, i.e. ged (a,b) = 1.

Proof. If m > 0 is a divisor of a and b, then m|(sa + tb), i.e. m|1 which

implies m = 1. Thus the only positive common divisor of a and b is 1 and hence
ged (a,b) = 1. ]
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1.2.1 Ideals (Not covered in class.)

Definition 1.19. As non-empty subset S C Z is called an ideal if S is closed

under addition (i.e. S+ S C S) and under multiplication by any element of Z,
e Z-5CS.

Ezxample 1.20. For any n € Z, let
(n):=Z-n=nZ:={kn:keZ}.

I is easily checked that (n) is an ideal. The next theorem states that this is a
listing of all the ideals of Z.

Theorem 1.21 (Ideals of Z). If S C Z is an ideal then S = (n) for some
n € Z. Moreover either S = {0} in which case n =0 for S # {0} in which case
n=min(SNZ;).

Proof. If S = {0} we may take n = 0. So we may assume that S contains
a non-zero element a. By assumption that Z - S C S it follows that —a € S as
well and therefore SNZ. is not empty as either a or —a is positive. By the well
ordering principle, we may define n as, n := minS NZ,.

Since Z-n C Z-S C S, it follows that (n) C S. Conversely, suppose
that s € SN Z,. By the division algorithm, s = kn + r where k£ € N and
0 < r < n. It now follows that r = s — kn € S. If r > 0, we would have to have
r > n =minS N Z4 and hence we see that 7 = 0. This shows that s = kn for
some k € N and therefore s € (n). If s € S is negative we apply what we have
just proved to —s to learn that —s € (n) and therefore s € (n). |

Remark 1.22. Notice that a|b iff b = ak for some k € Z which happens iff
be(a).

Proof. Second Proof of Theorem Let S := {sa+tb:s,teZ}.
One easily checks that S C Z is an ideal and therefore S = (d) where d :=
min .S N Z,. Notice that d = sa + tb for some s,t € Z as d € S. We now claim
that d = ged (a,b) . To prove this we must show that d is a divisor of a and b
and that it is the maximal such divisor.

Taking s =1 and ¢ = 0 or s = 0 and ¢ = 1 we learn that both a,b € S = (d),
i.e. d|a and d|b. If m € Z4 and m|a and m|b, then

d a b

— =s—+t—€Z

m mm

from which it follows that so that m|d. This shows that d = ged (a, b) and also
proves the last assertion of the theorem.

Alternate proof of last statement. If m|a and m|b there exists k,l € Z
such that a = km and b = Im and therefore,
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d=sa+th= (sk+tl)m
which again shows that m|d. ]

Remark 1.23. As a second proof of Corollary [1.18] if 1 € S (where S is as in
the second proof of Theorem [1.16])), then ged (a,b) = min (SNZ;) = 1.

1.3 Lecture 3 (1/9/2009)

1.3.1 Prime Numbers

Definition 1.24. A number, p € Z, is prime iff p > 2 and p has no divisors
other than 1 and p. Alternatively put, p > 2 and ged (a,p) is either 1 or p for
alla € Z.

Example 1.25. The first few prime numbers are 2,3,5,7,11,13,17,19,23,....

Lemma 1.26 (Euclid’s Lemma again). Suppose that p is a prime number
and plab for some a,b € Z then pla or pld.

Proof. We know that ged (a,p) = 1 or ged (a,p) = p. In the latter case
pla and we are done. In the former case we may apply Euclid’s Lemma to
conclude that p|b and so again we are done. ]

Theorem 1.27 (The fundamental theorem of arithmetic). Every n € Z
with n > 2 is a prime or a product of primes. The product is unique except for
the order of the primes appearing the product. Thus ifn > 2 andn=1p1...p, =
q1 - --Gm where the p’s and q’s are prime, then m = n and after renumbering
the q’s we have p; = q;.

Proof. Existence: This clearly holds for n = 2. Now suppose for every
2 < k < n may be written as a product of primes. Then either n+ 1 is prime in
which case we are done or n+1 =a-b with 1 < a,b < n + 1. By the induction
hypothesis, we know that both a and b are a product of primes and therefore
so is n + 1. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in 0.#25.
Here is the solution. Observe that p1|qi ... ¢m. If p1 does not divide ¢; then
ged (p1,91) = 1 and therefore by Euclid’s Lemma p1] (g2 - Gm). It now
follows by induction that p; must divide one of the ¢;, by relabeling we may
assume that g; = p;. The result now follows by induction on n V m. [

Definition 1.28. The least common multiple of two non-zero integers, a,b, is
the smallest positive number which is both a multiple of a and b and this number
will be denoted by lem (a, b) . Notice that m = min ((a) N (b)) NZ4).
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Example 1.29. Suppose that ¢ = 12 = 22-3 and b = 15 = 3 - 5. Then
ged (12,15) = 3 while

lem (12,15) = (2%-3) -5 =2%-(3-5) = (2°- 3-5) = 60.
Observe that
ged (12,15) - lem (12,15) =3+ (2°-3-5) = (2°-3) - (3-5) = 12 15.

This is a special case of Chapter 0.#12 on p. 23 which can be proved by similar
considerations. In general if

a=pto.- pp* and b= pi"t ... p"* with n;,m; € N
then
ged (a,b) = p* "™ P and lem (a,b) = pitY ™ . plEY e
Therefore,
ged (a,b) - lem (a, b) = pypr/Ammaym piye e Vi
_ ot T g,

1.3.2 Modular Arithmetic

Definition 1.30. Let n be a positive integer and let a = gon+714 with 0 < r, <
n. Then we define amodn := r,. (Sometimes we might write a = r, modn —
but I will try to stick with the first usage.)

Lemma 1.31. Let n € Z4 and a,b,k € Z. Then:

1. (a4 kn) modn = amodn.
2. (a + b)modn = (amodn + bmodn) mod n.
3. (a-b)modn = ((amodn) - (bmodn)) modn.

Proof. Let r, = amodn, r, = bmodn and q,, ¢ € Z such that a = g,n+r,
and b= gpn + rp.

1. Then a + kn = (g, + k) n + r, and therefore,
(a + kn)modn = r, = amodn.
2. a+b=(qq + q)n+ 174+ 1 and hence by item 1 with k = ¢, + ¢, we find,

(a+b)modn = (rq, + 15) modn. = (amodn + bmod n) mod n.
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3. For the last assertion,
a-b=lgan +ra]-[gon + 7o) = (qaqon + Taqy + Tvqa) N+ 70 Ty
and so again by item 1. with k& = (guqsn + Taqs + 76Ga) We have,
(a-b)modn = (ry - 1p) modn = ((amodn) - (bmodn)) modn.
|

Ezxample 1.32. Taken =4, a = 18 and b = 7. Then 18 mod4 = 2 and 7mod 4 =
3. On one hand,
(18 + 7)mod 4 = 25mod 4 = 1 while on the other,
(2+3)mod4 = 1.

Similarly, 18 -7 =126 =4 - 31 + 2 so that

(18 - 7)mod 4 = 2 while
(2-3)mod4 =6mod4 = 2.
Remark 1.33 (Error Detection). Companies often add extra digits to identi-
fication numbers for the purpose of detecting forgery or errors. For example
the United Parcel Service uses a mod 7 check digit. Hence if the identification
number were n = 354691332 one would append
nmod 7 = 354691332 mod 7 = 2 to the number to get
354691332_2 (say).
See the book for more on this method and other more elaborate check digit

schemes. Note,
354691332 = 50670190 - 7 + 2.

Remark 1.34. Suppose that a,n € Z and b € Z, then it is easy to show
(ab)mod (an) = a - (bmodn).
Ezample 1.35 (Computing mod 10). We have,

123456 mod 10 = 6
123456 mod 100 = 56
123456 mod 1000 = 456
123456 mod 10000 = 3456
123456 mod 100000 = 23456
123456 mod 1000000 = 123456

so that
ap ...a3 a;mod 10 = ay ...ay a; for all k < n.
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Solution to Exercise (0.52). As an example, here is a solution to Problem
k times
0.52 of the book which states that 111...1 is not the square of an integer except
when k£ = 1.
As 11 is prime we may assume that & > 3. By Example [1.35]
111...1mod10 = 1 and 111...1mod100 = 11. Hence 1111...1 = n?
for some integer n, we must have

n?mod10 = 1 and (n2 — 1) mod 100 = 10.

The first condition implies that nmod10 = 1 or 9 as 1> = 1 and 9> mod 10 =
81 mod 10 = 1. In the first case we have, n = k- 10 + 1 and therefore we must
require,

10 = (n® — 1) mod 100 = [(k -10+1)* — 1| mod 100 = (k2 - 100 + 2k - 10) mod 100

= (2k - 10) mod 100 = 10 - (2k mod 10)

which implies 1 = (2k mod 10) which is impossible since 2k mod 10 is even.
For the second case we must have,

10

n? — 1) mod 100 mod 100 = [(k 10+ 9)? — 1| mod 100

= (k:2 -100 + 18k - 10 4+ 81 — 1) mod 100
((1048) k- 10+ 8- 10) mod 100

(8 (k+1) - 10) mod 100

=10 - 8k mod 10

which implies which 1 = (8% mod 10) which again is impossible since 8k mod 10
is even.

1.3.3 Equivalence Relations

Definition 1.36. A equivalence relation on a set S is a subset, R C S x S
with the following properties:

1. R is reflexive: (a,a) € R for alla € S
2. R is symmetric: If (a,b) € R then (b,a) € R.
3. R 1is transitive: If (a,b) € R and (b,c) € R then (a,c) € R.

We will usually write a ~ b to mean that (a,b) € R and pronounce this as a
is equivalent to b. With this notation we are assuming a ~ a, a ~b = b~a
and a ~b and b~ ¢ = a ~ c. (Note well: the book write aRb rather than
a~b.)
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Ezample 1.37.1f S = {1,2,3,4,5} then:

1. R={1,2,3}>U{4,5}” is an equivalence relation.

2R ={(1,1),(2,2),(3,3), (4,4),(5,5),(1,2),(2,1),(2,3), (3,2)} is not an
equivalence relation. For example, 1 ~ 2 and 2 ~ 3 but 1 is not equivalent
to 3, so R is not transitive.

Example 1.38. Let n € Z, S = Z and say a ~ b iff amodn = bmodn. This is
an equivalence relation. For example, when s = 2 we have a ~ b iff both a and
b are odd or even. So in this case R = {odd}* U {even}”.

Example 1.39. Let S = R and say a ~ b iff a > b. Again not symmetric so is
not an equivalence relation.

Definition 1.40. A partition of a set S is a decomposition, {Sa},cr, by
disjoint sets, so S, is a mon-empty subset of S such that S = UaerSa and
SaNSg =0 if a#p.

Ezample 1.41. If {S4},; is a partition of S, then R = UaerS? is an equivalence
relation. The next theorem states this is the general type of equivalence relation.

Theorem 1.42. Let R or ~ be an equivalence relation on S and for each a € S,
let [a] :={be S:b ~a} be the equivalence class of a.. Then S = Ugeg [a

and [a] N [b] # 0 iff [a] = [b].

Proof. Because a is reflexive, a € [a] for all a and therefore, S = Uyes [a] -
Suppose that [a] N [b] # () in which there exists ¢ € [a] N [b], i.e. ¢ ~ a and
c ~ b. Because ~ is transitive and reflexive, it follows that a ~ b as well. Thus
if z € [a], i.e.  ~ a we must also have z ~ b (again because ~ is transitive
and reflexive), that is « € [b] . This shows that [a] C [b]. Similarly we can show
[b] C [a] and thus [a] = [b] as desired. |

Exercise 1.1. Suppose that S = Z with a ~ b iff amodn = bmod n. Identify
the equivalence classes of ~ . Answer,

{[o],[1],....[n 1]}

where
[[(]=i+nZ={i+ns:s€Z}.

Exercise 1.2. Suppose that S = R? with a = (aj,a2) ~ b = (b, by) iff |a] =
|b| where |a| := a? +a3. Show that ~ is an equivalence relation and identify the
equivalence classes of ~ . Answer, the equivalence classes consists of concentric
circles centered about the origin (0,0) € S.
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