Math 103A Lecture Notes

1.1 Lecture 1 (1/5/2009)

Notation 1.1 Introduce $\mathbb{N} := \{0, 1, 2, ...\}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, and \mathbb{C}.$ Also let $\mathbb{Z}_+ := \mathbb{N} \setminus \{0\}.$

- Set notations.
- Recalled basic notions of a function being one to one, onto, and invertible. Think of functions in terms of a bunch of arrows from the domain set to the range set. To find the inverse function you should reverse the arrows.
- Some example of groups without the definition of a group:

1.
$$GL(2,\mathbb{R}) = \left\{ g := \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \det g = ad - bc \neq 0 \right\}.$$

- 2. Vector space with "group" operation being addition.
- 3. The permutation group of invertible functions on a set S like $S = \{1, 2, ..., n\}$.

1.1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) Every non-empty subset, S, of \mathbb{N} contains a smallest element.

We say that a subset $S \subset \mathbb{Z}$ is **bounded below** if $S \subset [k, \infty)$ for some $k \in \mathbb{Z}$ and **bounded above** if $S \subset (-\infty, k]$ for some $k \in \mathbb{Z}$.

Remark 1.3 (Well ordering variations). The well ordering principle may also be stated equivalently as:

1. any subset $S \subset \mathbb{Z}$ which is bounded from below contains a smallest element or

2. any subset $S \subset \mathbb{Z}$ which is bounded from above contains a largest element.

To see this, suppose that $S \subset [k, \infty)$ and then apply the well ordering principle to S - k to find a smallest element, $n \in S - k$. That is $n \in S - k$ and $n \leq s - k$ for all $s \in S$. Thus it follows that $n + k \in S$ and $n + k \leq s$ for all $s \in S$ so that n + k is the desired smallest element in S.

For the second equivalence, suppose that $S \subset (-\infty, k]$ in which case $-S \subset [-k, \infty)$ and therefore there exist a smallest element $n \in -S$, i.e. $n \leq -s$ for all $s \in S$. From this we learn that $-n \in S$ and $-n \geq s$ for all $s \in S$ so that -n is the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}_+$, then there exists unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ with r < b such that

$$a = bq + r.$$

(For example,

$$5|\frac{\frac{2}{12}}{\frac{10}{2}}$$
 so that $12 = 2 \cdot 5 + 2$.)

Proof. Let

$$S := \{k \in \mathbb{Z} : a - bk \ge 0\}$$

which is bounded from above. Therefore we may define,

$$q := \max\left\{k : a - bk \ge 0\right\}.$$

As q is the largest element of S we must have,

$$r := a - bq \ge 0$$
 and $a - b(q + 1) < 0$.

The second inequality is equivalent to r - b < 0 which is equivalent to r < b. This completes the existence proof.

To prove uniqueness, suppose that a = bq' + r' in which case, bq' + r' = bq + rand hence,

$$b > |r' - r| = |b(q - q')| = b|q - q'|.$$
(1.1)

Since $|q - q'| \ge 1$ if $q \ne q'$, the only way Eq. (1.1) can hold is if q = q' and r = r'.

Axiom 1.5 (Strong form of mathematical induction) Suppose that $S \subset \mathbb{Z}$ is a non-empty set containing an element a with the property that; if $[a, n) \cap \mathbb{Z} \subset S$ then $n \in \mathbb{Z}$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Axiom 1.6 (Weak form of mathematical induction) Suppose that $S \subset \mathbb{Z}$ is a non-empty set containing an element a with the property that for every $n \in S$ with $n \ge a$, $n + 1 \in S$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

6 1 Math 103A Lecture Notes

Remark 1.7. In Axioms 1.5 and 1.6 it suffices to assume that a = 0. For if $a \neq 0$ we may replace S by $S - a := \{s - a : s \in S\}$. Then applying the axioms with a = 0 to S - a shows that $[0, \infty) \cap \mathbb{Z} \subset S - a$ and therefore,

$$[a,\infty) \cap \mathbb{Z} = [0,\infty) \cap \mathbb{Z} + a \subset S.$$

Theorem 1.8 (Equivalence of Axioms). Axioms 1.2 – 1.6 are equivalent. (Only partially covered in class.)

Proof. We will prove $1.2 \iff 1.5 \iff 1.6 \implies 1.2$.

- 1.2 ⇒ 1.5 Suppose $0 \in S \subset \mathbb{Z}$ satisfies the assumption in Axiom 1.5. If \mathbb{N}_0 is not contained in S, then $\mathbb{N}_0 \setminus S$ is a non empty subset of \mathbb{N} and therefore has a smallest element, n. It then follows by the definition of n that $[0, n) \cap \mathbb{Z} \subset S$ and therefore by the assumed property on $S, n \in S$. This is a contradiction since n can not be in both S and $\mathbb{N}_0 \setminus S$.
- 1.5 ⇒1.2 Suppose that $S \subset \mathbb{N}$ does not have a smallest element and let $Q := \mathbb{N} \setminus S$. Then $0 \in Q$ since otherwise $0 \in S$ would be the minimal element of S. Moreover if $[1, n) \cap \mathbb{Z} \subset Q$, then $n \in Q$ for otherwise n would be a minimal element of S. Hence by the strong form of mathematical induction, it follows that $Q = \mathbb{N}$ and hence that $S = \emptyset$.
- 1.5 ⇒1.6 Any set, $S \subset \mathbb{Z}$ satisfying the assumption in Axiom 1.6 will also satisfy the assumption in Axiom 1.5 and therefore by Axiom 1.5 we will have $[a, \infty) \cap \mathbb{Z} \subset S$.
- 1.6 \Longrightarrow 1.5 Suppose that $0 \in S \subset \mathbb{Z}$ satisfies the assumptions in Axiom 1.5. Let $Q := \{n \in \mathbb{N} : [0, n) \subset S\}$. By assumption, $0 \in Q$ since $0 \in S$. Moreover, if $n \in Q$, then $[0, n) \subset S$ by definition of Q and hence $n + 1 \in Q$. Thus Q satisfies the restrictions on the set, S, in Axiom 1.6 and therefore $Q = \mathbb{N}$. So if $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N} = Q$ and thus $n \in [0, n + 1) \subset S$ which shows that $\mathbb{N} \subset S$. As $0 \in S$ by assumption, it follows that $\mathbb{N}_0 \subset S$ as desired.

1.2 Lecture 2 (1/7/2009)

Definition 1.9. Given $a, b \in \mathbb{Z}$ with $a \neq 0$ we say that a **divides** b or a is a **divisor** of b (write a|b) provided b = ak for some $k \in \mathbb{Z}$.

Definition 1.10. Given $a, b \in \mathbb{Z}$ with |a| + |b| > 0, we let

 $gcd(a,b) := \max\{m : m | a \text{ and } m | b\}$

be the greatest common divisor of a and b. (We do not define gcd(0,0) and we have gcd(0,b) = |b| for all $b \in \mathbb{Z} \setminus \{0\}$.) If gcd(a,b) = 1, we say that a and b are relatively prime. Remark 1.11. Notice that $gcd(a, b) = gcd(|a|, |b|) \ge 0$ and gcd(a, 0) = 0 for all $a \ne 0$.

Lemma 1.12 (Euclidean Algorithm). Suppose that a, b are positive integers with a < b and let b = ka + r with $0 \le r < a$ by the division algorithm. If r = 0, then gcd(a, b) = gcd(a, r). In particular if r = 0, we have

$$gcd(a,b) = gcd(a,0) = a.$$

Proof. Since b = ka + r if *d* is a divisor of both *a* and *r* it is a divisor of *b*. Similarly, r = b - ka so that if *d* is a divisor of both *a* and *b* then *d* is also a divisor of *r*. Thus the common divisors of *a* and *r* and *a* and *b* are the same and therefore gcd(a, b) = gcd(a, r).

Example 1.13. Suppose that $a = 15 = 3 \cdot 5$ and $b = 28 = 2^2 \cdot 7$. In this case it is easy to see that gcd(15, 28) = 1. Nevertheless, lets use Lemma 1.12 repeatedly as follows;

$$28 = 1 \cdot 15 + 13 \text{ so } \gcd(15, 28) = \gcd(13, 15), \qquad (1.2)$$

$$15 = 1 \cdot 13 + 2$$
 so $gcd(13, 15) = gcd(2, 13)$, (1.3)

$$13 = 6 \cdot 2 + 1 \text{ so } G \gcd(2, 13) = \gcd(1, 2), \qquad (1.4)$$

$$2 = 2 \cdot 1 + 0 \text{ so } \gcd(1, 2) = \gcd(0, 1) = 1.$$
(1.5)

15

Moreover making use of Eqs. (1.2–1.4) in reverse order we learn that,

$$1 = 13 - 6 \cdot 2$$

= 13 - 6 \cdot (15 - 1 \cdot 13) = 7 \cdot 13 - 6 \cdot 15
= 7 \cdot (28 - 1 \cdot 15) - 6 \cdot 15 = 7 \cdot 28 - 13 \cdot 15.

Thus we have also shown that

$$1 = s \cdot 28 + t \cdot 15$$
 where $s = 7$ and $t = -13$.

The choices for s and t used above are certainly not unique. For example we have,

$$0 = 15 \cdot 28 - 28 \cdot 15$$

which added to

$$1 = 7 \cdot 28 - 13 \cdot 28$$

$$1 = (7+15) \cdot 28 - (13+28) \cdot 15$$
$$= 22 \cdot 28 - 41 \cdot 15$$

as well.

Page: 6

Example 1.14. Suppose that $a = 40 = 2^3 \cdot 5$ and $b = 52 = 2^2 \cdot 13$. In this case we have gcd (40, 52) = 4. Working as above we find,

$$52 = 1 \cdot 40 + 12$$

$$40 = 3 \cdot 12 + 4$$

$$12 = 3 \cdot 4 + 0$$

so that we again see gcd(40, 52) = 4. Moreover,

$$4 = 40 - 3 \cdot 12 = 40 - 3 \cdot (52 - 1 \cdot 40) = 4 \cdot 40 - 3 \cdot 52.$$

So again we have shown gcd(a, b) = sa + tb for some $s, t \in \mathbb{Z}$, in this case s = 4 and t = 3.

Example 1.15. Suppose that $a = 333 = 3^2 \cdot 37$ and $b = 459 = 3^3 \cdot 17$ so that $gcd(333, 459) = 3^2 = 9$. Repeated use of Lemma 1.12 gives,

$$459 = 1 \cdot 333 + 126 \text{ so } \gcd(333, 459) = \gcd(126, 333), \qquad (1.6)$$

$$333 = 2 \cdot 126 + 81$$
 so $gcd(126, 333) = gcd(81, 126)$, (1.7)

$$126 = 81 + 45 \text{ so } \gcd(81, 126) = \gcd(45, 81), \qquad (1.8)$$

$$81 = 45 + 36 \text{ so } \gcd(45, 81) = \gcd(36, 45), \qquad (1.9)$$

$$45 = 36 + 9$$
 so $gcd(36, 45) = gcd(9, 36)$, and (1.10)

$$36 = 4 \cdot 9 + 0$$
 so $gcd(9, 36) = gcd(0, 9) = 9.$ (1.11)

Thus we have shown that

$$gcd(333, 459) = 9.$$

We can even say more. From Eq. (1.11) we have, 9 = 45 - 36 and then from Eq. (1.11),

$$9 = 45 - 36 = 45 - (81 - 45) = 2 \cdot 45 - 81.$$

Continuing up the chain this way we learn,

$$9 = 2 \cdot (126 - 81) - 81 = 2 \cdot 126 - 3 \cdot 81$$

= 2 \cdot 126 - 3 \cdot (333 - 2 \cdot 126) = 8 \cdot 126 - 3 \cdot 333
= 8 \cdot (459 - 1 \cdot 333) - 3 \cdot 333 = 8 \cdot 459 - 11 \cdot 333

so that

$$9 = 8 \cdot 459 - 11 \cdot 333$$

The methods of the previous two examples can be used to prove Theorem 1.16 below. However, we will two different variants of the proof.

Theorem 1.16. If $a, b \in \mathbb{Z} \setminus \{0\}$, then there exists (not unique) numbers, $s, t \in \mathbb{Z}$ such that

$$gcd(a,b) = sa + tb.$$
(1.12)

Moreover if $m \neq 0$ is any common divisor of both a and b then $m | \gcd(a, b)$.

Proof. If *m* is any common divisor of *a* and *b* then *m* is also a divisor of sa + tb for any $s, t \in \mathbb{Z}$. (In particular this proves the second assertion given the truth of Eq. (1.12).) In particular, gcd(a, b) is a divisor of sa + tb for all $s, t \in \mathbb{Z}$. Let $S := \{sa + tb : s, t \in \mathbb{Z}\}$ and then define

$$d := \min(S \cap \mathbb{Z}_+) = sa + tb \text{ for some } s, t \in \mathbb{Z}.$$
 (1.13)

By what we have just said if follows that gcd(a, b) | d and in particular $d \ge gcd(a, b)$. If we can snow d is a common divisor of a and b we must then have d = gcd(a, b). However, using the division algorithm,

$$a = kd + r \text{ with } 0 \le r < d. \tag{1.14}$$

As

$$r = a - kd = a - k \left(sa + tb \right) = \left(1 - ks \right) a - ktb \in S \cap \mathbb{N},$$

if r were greater than 0 then $r \ge d$ (from the definition of d in Eq. (1.13) which would contradict Eq. (1.14). Hence it follows that r = 0 and d|a. Similarly, one shows that d|b.

Lemma 1.17 (Euclid's Lemma). If gcd(c, a) = 1, *i.e.* c and a are relatively prime, and c|ab then c|b.

Proof. We know that there exists $s, t \in \mathbb{Z}$ such that sa+tc = 1. Multiplying this equation by b implies,

$$sab + tcb = b.$$

Since c|ab and c|cb, it follows from this equation that c|b.

Corollary 1.18. Suppose that $a, b \in \mathbb{Z}$ such that there exists $s, t \in \mathbb{Z}$ with 1 = sa + tb. Then a and b are relatively prime, i.e. gcd(a, b) = 1.

Proof. If m > 0 is a divisor of a and b, then m | (sa + tb), i.e. m | 1 which implies m = 1. Thus the only positive common divisor of a and b is 1 and hence gcd(a, b) = 1.

1.2.1 Ideals (Not covered in class.)

Definition 1.19. As non-empty subset $S \subset \mathbb{Z}$ is called an *ideal* if S is closed under addition (i.e. $S + S \subset S$) and under multiplication by **any** element of \mathbb{Z} , i.e. $\mathbb{Z} \cdot S \subset S$.

Example 1.20. For any $n \in \mathbb{Z}$, let

$$(n) := \mathbb{Z} \cdot n = n\mathbb{Z} := \{kn : k \in \mathbb{Z}\}.$$

I is easily checked that (n) is an ideal. The next theorem states that this is a listing of all the ideals of \mathbb{Z} .

Theorem 1.21 (Ideals of \mathbb{Z}). If $S \subset \mathbb{Z}$ is an ideal then S = (n) for some $n \in \mathbb{Z}$. Moreover either $S = \{0\}$ in which case n = 0 for $S \neq \{0\}$ in which case $n = \min(S \cap \mathbb{Z}_+)$.

Proof. If $S = \{0\}$ we may take n = 0. So we may assume that S contains a non-zero element a. By assumption that $\mathbb{Z} \cdot S \subset S$ it follows that $-a \in S$ as well and therefore $S \cap \mathbb{Z}_+$ is not empty as either a or -a is positive. By the well ordering principle, we may define n as, $n := \min S \cap \mathbb{Z}_+$.

Since $\mathbb{Z} \cdot n \subset \mathbb{Z} \cdot S \subset S$, it follows that $(n) \subset S$. Conversely, suppose that $s \in S \cap \mathbb{Z}_+$. By the division algorithm, s = kn + r where $k \in \mathbb{N}$ and $0 \leq r < n$. It now follows that $r = s - kn \in S$. If r > 0, we would have to have $r \geq n = \min S \cap \mathbb{Z}_+$ and hence we see that r = 0. This shows that s = kn for some $k \in \mathbb{N}$ and therefore $s \in (n)$. If $s \in S$ is negative we apply what we have just proved to -s to learn that $-s \in (n)$ and therefore $s \in (n)$.

Remark 1.22. Notice that a|b iff b = ak for some $k \in \mathbb{Z}$ which happens iff $b \in (a)$.

Proof. Second Proof of Theorem 1.16. Let $S := \{sa + tb : s, t \in \mathbb{Z}\}$. One easily checks that $S \subset \mathbb{Z}$ is an ideal and therefore S = (d) where $d := \min S \cap \mathbb{Z}_+$. Notice that d = sa + tb for some $s, t \in \mathbb{Z}$ as $d \in S$. We now claim that $d = \gcd(a, b)$. To prove this we must show that d is a divisor of a and b and that it is the maximal such divisor.

Taking s = 1 and t = 0 or s = 0 and t = 1 we learn that both $a, b \in S = (d)$, i.e. d|a and d|b. If $m \in \mathbb{Z}_+$ and m|a and m|b, then

$$\frac{d}{m} = s\frac{a}{m} + t\frac{b}{m} \in \mathbb{Z}$$

from which it follows that so that m|d. This shows that d = gcd(a, b) and also proves the last assertion of the theorem.

Alternate proof of last statement. If m|a and m|b there exists $k, l \in \mathbb{Z}$ such that a = km and b = lm and therefore,

$$d = sa + tb = (sk + tl) m$$

which again shows that m|d.

Remark 1.23. As a second proof of Corollary 1.18, if $1 \in S$ (where S is as in the second proof of Theorem 1.16)), then $gcd(a,b) = min(S \cap \mathbb{Z}_+) = 1$.

1.3 Lecture 3 (1/9/2009)

1.3.1 Prime Numbers

Definition 1.24. A number, $p \in \mathbb{Z}$, is **prime** iff $p \ge 2$ and p has no divisors other than 1 and p. Alternatively put, $p \ge 2$ and gcd(a, p) is either 1 or p for all $a \in \mathbb{Z}$.

Example 1.25. The first few prime numbers are $2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots$

Lemma 1.26 (Euclid's Lemma again). Suppose that p is a prime number and p|ab for some $a, b \in \mathbb{Z}$ then p|a or p|b.

Proof. We know that gcd(a, p) = 1 or gcd(a, p) = p. In the latter case p|a and we are done. In the former case we may apply Euclid's Lemma 1.17 to conclude that p|b and so again we are done.

Theorem 1.27 (The fundamental theorem of arithmetic). Every $n \in \mathbb{Z}$ with $n \geq 2$ is a prime or a product of primes. The product is unique except for the order of the primes appearing the product. Thus if $n \geq 2$ and $n = p_1 \dots p_n = q_1 \dots q_m$ where the p's and q's are prime, then m = n and after renumbering the q's we have $p_i = q_i$.

Proof. Existence: This clearly holds for n = 2. Now suppose for every $2 \le k \le n$ may be written as a product of primes. Then either n+1 is prime in which case we are done or $n+1 = a \cdot b$ with 1 < a, b < n+1. By the induction hypothesis, we know that both a and b are a product of primes and therefore so is n+1. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in 0.#25. Here is the solution. Observe that $p_1|q_1 \ldots q_m$. If p_1 does not divide q_1 then $gcd(p_1, q_1) = 1$ and therefore by Euclid's Lemma 1.17, $p_1|(q_2 \ldots q_m)$. It now follows by induction that p_1 must divide one of the q_i , by relabeling we may assume that $q_1 = p_1$. The result now follows by induction on $n \lor m$.

Definition 1.28. The least common multiple of two non-zero integers, a, b, is the smallest positive number which is both a multiple of a and b and this number will be denoted by lcm (a, b). Notice that $m = \min((a) \cap (b) \cap \mathbb{Z}_+)$.

Example 1.29. Suppose that $a = 12 = 2^2 \cdot 3$ and $b = 15 = 3 \cdot 5$. Then gcd(12, 15) = 3 while

$$\operatorname{lcm}(12,15) = (2^2 \cdot 3) \cdot 5 = 2^2 \cdot (3 \cdot 5) = (2^2 \cdot 3 \cdot 5) = 60.$$

Observe that

$$gcd(12,15) \cdot lcm(12,15) = 3 \cdot (2^2 \cdot 3 \cdot 5) = (2^2 \cdot 3) \cdot (3 \cdot 5) = 12 \cdot 15$$

This is a special case of Chapter 0.#12 on p. 23 which can be proved by similar considerations. In general if

$$a = p_1^{n_1} \cdots p_k^{n_k}$$
 and $b = p_1^{m_1} \cdots p_k^{m_k}$ with $n_j, m_l \in \mathbb{N}$

then

$$gcd(a,b) = p_1^{n_1 \wedge m_1} \cdots p_k^{n_k \wedge m_k}$$
 and $lcm(a,b) = p_1^{n_1 \vee m_1} \cdots p_k^{n_k \vee m_k}$

Therefore,

$$gcd(a,b) \cdot lcm(a,b) = p_1^{n_1 \wedge m_1 + n_1 \vee m_1} \cdots p_k^{n_k \wedge m_k + n_k \vee m_k}$$
$$= p_1^{n_1 + m_1} \cdots p_k^{n_k + m_k} = a \cdot b.$$

1.3.2 Modular Arithmetic

Definition 1.30. Let n be a positive integer and let $a = q_a n + r_a$ with $0 \le r_a < n$. Then we define $a \mod n := r_a$. (Sometimes we might write $a = r_a \mod n$ – but I will try to stick with the first usage.)

Lemma 1.31. Let $n \in \mathbb{Z}_+$ and $a, b, k \in \mathbb{Z}$. Then:

1. $(a + kn) \mod n = a \mod n$. 2. $(a + b) \mod n = (a \mod n + b \mod n) \mod n$. 3. $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$.

Proof. Let $r_a = a \mod n$, $r_b = b \mod n$ and $q_a, q_b \in \mathbb{Z}$ such that $a = q_a n + r_a$ and $b = q_b n + r_b$.

1. Then $a + kn = (q_a + k)n + r_a$ and therefore,

$$(a+kn) \mod n = r_a = a \mod n.$$

2.
$$a + b = (q_a + q_b) n + r_a + r_b$$
 and hence by item 1 with $k = q_a + q_b$ we find,

$$(a+b) \operatorname{mod} n = (r_a + r_b) \operatorname{mod} n. = (a \operatorname{mod} n + b \operatorname{mod} n) \operatorname{mod} n.$$

3. For the last assertion,

a

$$\cdot b = [q_a n + r_a] \cdot [q_b n + r_b] = (q_a q_b n + r_a q_b + r_b q_a) n + r_a \cdot r_b$$

and so again by item 1. with $k = (q_a q_b n + r_a q_b + r_b q_a)$ we have,

$$(a \cdot b) \mod n = (r_a \cdot r_b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n.$$

Example 1.32. Take n = 4, a = 18 and b = 7. Then $18 \mod 4 = 2$ and $7 \mod 4 = 3$. On one hand,

$$(18+7) \mod 4 = 25 \mod 4 = 1$$
 while on the other,
 $(2+3) \mod 4 = 1$.

Similarly, $18 \cdot 7 = 126 = 4 \cdot 31 + 2$ so that

$$(18 \cdot 7) \mod 4 = 2$$
 while
 $(2 \cdot 3) \mod 4 = 6 \mod 4 = 2.$

Remark 1.33 (Error Detection). Companies often add extra digits to identification numbers for the purpose of detecting forgery or errors. For example the United Parcel Service uses a mod 7 check digit. Hence if the identification number were n = 354691332 one would append

 $n \mod 7 = 354691332 \mod 7 = 2$ to the number to get 354691332_2 (say).

See the book for more on this method and other more elaborate check digit schemes. Note,

$$354691332 = 50\,670\,190 \cdot 7 + 2.$$

Remark 1.34. Suppose that $a, n \in \mathbb{Z}_+$ and $b \in \mathbb{Z}$, then it is easy to show

 $(ab) \mod (an) = a \cdot (b \mod n).$

Example 1.35 (Computing mod 10). We have,

 $123456 \mod 10 = 6$ $123456 \mod 100 = 56$ $123456 \mod 1000 = 456$ $123456 \mod 10000 = 3456$ $123456 \mod 100000 = 23456$ $123456 \mod 100000 = 123456$

so that

 $a_n \ldots a_2 a_1 \mod 10^k = a_k \ldots a_2 a_1$ for all $k \le n$.

10 1 Math 103A Lecture Notes

Solution to Exercise (0.52). As an example, here is a solution to Problem 0.52 of the book which states that 111...1 is not the square of an integer except when k = 1.

As 11 is prime we may assume that $k \ge 3$. By Example 1.35, $111 \dots 1 \mod 10 = 1$ and $111 \dots 1 \mod 100 = 11$. Hence $1111 \dots 1 = n^2$ for some integer n, we must have

$$n^2 \mod 10 = 1$$
 and $(n^2 - 1) \mod 100 = 10$.

The first condition implies that $n \mod 10 = 1$ or 9 as $1^2 = 1$ and $9^2 \mod 10 = 81 \mod 10 = 1$. In the first case we have, $n = k \cdot 10 + 1$ and therefore we must require,

$$10 = (n^2 - 1) \mod 100 = \left[(k \cdot 10 + 1)^2 - 1 \right] \mod 100 = (k^2 \cdot 100 + 2k \cdot 10) \mod 100$$
$$= (2k \cdot 10) \mod 100 = 10 \cdot (2k \mod 10)$$

which implies $1 = (2k \mod 10)$ which is impossible since $2k \mod 10$ is even. For the second case we must have,

$$10 = (n^{2} - 1) \mod 100 \mod 100 = \left[(k \cdot 10 + 9)^{2} - 1 \right] \mod 100$$

= $(k^{2} \cdot 100 + 18k \cdot 10 + 81 - 1) \mod 100$
= $((10 + 8) k \cdot 10 + 8 \cdot 10) \mod 100$
= $(8 (k + 1) \cdot 10) \mod 100$
= $10 \cdot 8k \mod 10$

which implies which $1 = (8k \mod 10)$ which again is impossible since $8k \mod 10$ is even.

1.3.3 Equivalence Relations

Definition 1.36. A equivalence relation on a set S is a subset, $R \subset S \times S$ with the following properties:

1. R is reflexive: $(a, a) \in R$ for all $a \in S$

- 2. R is symmetric: If $(a, b) \in R$ then $(b, a) \in R$.
- 3. R is transitive: If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

We will usually write $a \sim b$ to mean that $(a, b) \in R$ and pronounce this as a is equivalent to b. With this notation we are assuming $a \sim a$, $a \sim b \implies b \sim a$ and $a \sim b$ and $b \sim c \implies a \sim c$. (Note well: the book write aRb rather than $a \sim b$.)

Example 1.37. If $S = \{1, 2, 3, 4, 5\}$ then:

- 1. $R = \{1, 2, 3\}^2 \cup \{4, 5\}^2$ is an equivalence relation.
- 2. $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (2,3), (3,2)\}$ is not an equivalence relation. For example, $1 \sim 2$ and $2 \sim 3$ but 1 is not equivalent to 3, so R is not transitive.

Example 1.38. Let $n \in \mathbb{Z}_+$, $S = \mathbb{Z}$ and say $a \sim b$ iff $a \mod n = b \mod n$. This is an equivalence relation. For example, when s = 2 we have $a \sim b$ iff both a and b are odd or even. So in this case $R = \{\text{odd}\}^2 \cup \{\text{even}\}^2$.

Example 1.39. Let $S = \mathbb{R}$ and say $a \sim b$ iff $a \geq b$. Again not symmetric so is not an equivalence relation.

Definition 1.40. A partition of a set S is a decomposition, $\{S_{\alpha}\}_{\alpha \in I}$, by disjoint sets, so S_{α} is a non-empty subset of S such that $S = \bigcup_{\alpha \in I} S_{\alpha}$ and $S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta$.

Example 1.41. If $\{S_{\alpha}\}_{\alpha \in I}$ is a partition of S, then $R = \bigcup_{\alpha \in I} S_{\alpha}^2$ is an equivalence relation. The next theorem states this is the general type of equivalence relation.

Theorem 1.42. Let R or \sim be an equivalence relation on S and for each $a \in S$, let $[a] := \{b \in S : b \sim a\}$ be the **equivalence class** of a.. Then $S = \bigcup_{a \in S} [a]$ and $[a] \cap [b] \neq \emptyset$ iff [a] = [b].

Proof. Because a is reflexive, $a \in [a]$ for all a and therefore, $S = \bigcup_{a \in S} [a]$. Suppose that $[a] \cap [b] \neq \emptyset$ in which there exists $c \in [a] \cap [b]$, i.e. $c \sim a$ and $c \sim b$. Because \sim is transitive and reflexive, it follows that $a \sim b$ as well. Thus if $x \in [a]$, i.e. $x \sim a$ we must also have $x \sim b$ (again because \sim is transitive and reflexive), that is $x \in [b]$. This shows that $[a] \subset [b]$. Similarly we can show $[b] \subset [a]$ and thus [a] = [b] as desired.

Exercise 1.1. Suppose that $S = \mathbb{Z}$ with $a \sim b$ iff $a \mod n = b \mod n$. Identify the equivalence classes of \sim . Answer,

$$\{[0], [1], \ldots, [n-1]\}$$

where

$$[i] = i + n\mathbb{Z} = \{i + ns : s \in \mathbb{Z}\}$$

Exercise 1.2. Suppose that $S = \mathbb{R}^2$ with $\mathbf{a} = (a_1, a_2) \sim \mathbf{b} = (b_1, b_2)$ iff $|\mathbf{a}| = |\mathbf{b}|$ where $|\mathbf{a}| := a_1^2 + a_2^2$. Show that \sim is an equivalence relation and identify the equivalence classes of \sim . Answer, the equivalence classes consists of concentric circles centered about the origin $(0, 0) \in S$.