
1

Math 103A Lecture Notes

1.1 Lecture 1 (1/5/2009)

Notation 1.1 Introduce N := {0, 1, 2, . . . } , Z, Q, R, and C. Also let Z+ :=
N \ {0} .

• Set notations.
• Recalled basic notions of a function being one to one, onto, and invertible.

Think of functions in terms of a bunch of arrows from the domain set to the
range set. To find the inverse function you should reverse the arrows.

• Some example of groups without the definition of a group:

1. GL (2,R) =
{
g :=

[
a b
c d

]
: det g = ad− bc 6= 0

}
.

2. Vector space with “group” operation being addition.
3. The permutation group of invertible functions on a set S like S =
{1, 2, . . . , n} .

1.1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) Every non-empty subset, S, of N
contains a smallest element.

We say that a subset S ⊂ Z is bounded below if S ⊂ [k,∞) for some
k ∈ Z and bounded above if S ⊂ (−∞, k] for some k ∈ Z.

Remark 1.3 (Well ordering variations). The well ordering principle may also be
stated equivalently as:

1. any subset S ⊂ Z which is bounded from below contains a smallest element
or

2. any subset S ⊂ Z which is bounded from above contains a largest element.

To see this, suppose that S ⊂ [k,∞) and then apply the well ordering
principle to S − k to find a smallest element, n ∈ S − k. That is n ∈ S − k and
n ≤ s − k for all s ∈ S. Thus it follows that n + k ∈ S and n + k ≤ s for all
s ∈ S so that n+ k is the desired smallest element in S.

For the second equivalence, suppose that S ⊂ (−∞, k] in which case −S ⊂
[−k,∞) and therefore there exist a smallest element n ∈ −S, i.e. n ≤ −s for all
s ∈ S. From this we learn that −n ∈ S and −n ≥ s for all s ∈ S so that −n is
the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let a ∈ Z and b ∈ Z+, then there exists
unique integers q ∈ Z and r ∈ N with r < b such that

a = bq + r.

(For example,

5
2

|12
10
2

so that 12 = 2 · 5 + 2.)

Proof. Let
S := {k ∈ Z : a− bk ≥ 0}

which is bounded from above. Therefore we may define,

q := max {k : a− bk ≥ 0} .

As q is the largest element of S we must have,

r := a− bq ≥ 0 and a− b (q + 1) < 0.

The second inequality is equivalent to r − b < 0 which is equivalent to r < b.
This completes the existence proof.

To prove uniqueness, suppose that a = bq′+r′ in which case, bq′+r′ = bq+r
and hence,

b > |r′ − r| = |b (q − q′)| = b |q − q′| . (1.1)

Since |q − q′| ≥ 1 if q 6= q′, the only way Eq. (1.1) can hold is if q = q′ and
r = r′.

Axiom 1.5 (Strong form of mathematical induction) Suppose that S ⊂
Z is a non-empty set containing an element a with the property that; if [a, n)∩
Z ⊂ S then n ∈ Z, then [a,∞) ∩ Z ⊂ S.

Axiom 1.6 (Weak form of mathematical induction) Suppose that S ⊂
Z is a non-empty set containing an element a with the property that for ev-
ery n ∈ S with n ≥ a, n+ 1 ∈ S, then [a,∞) ∩ Z ⊂ S.
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Remark 1.7. In Axioms 1.5 and 1.6 it suffices to assume that a = 0. For if a 6= 0
we may replace S by S − a := {s− a : s ∈ S} . Then applying the axioms with
a = 0 to S − a shows that [0,∞) ∩ Z ⊂ S − a and therefore,

[a,∞) ∩ Z =[0,∞) ∩ Z + a ⊂ S.

Theorem 1.8 (Equivalence of Axioms). Axioms 1.2 – 1.6 are equivalent.
(Only partially covered in class.)

Proof. We will prove 1.2⇐⇒ 1.5 ⇐⇒ 1.6 =⇒1.2.

1.2=⇒1.5 Suppose 0 ∈ S ⊂ Z satisfies the assumption in Axiom 1.5. If N0 is not
contained in S, then N0 \ S is a non empty subset of N and therefore has a
smallest element, n. It then follows by the definition of n that [0, n)∩Z ⊂ S
and therefore by the assumed property on S, n ∈ S. This is a contradiction
since n can not be in both S and N0 \ S.

1.5 =⇒1.2 Suppose that S ⊂ N does not have a smallest element and let
Q := N\S. Then 0 ∈ Q since otherwise 0 ∈ S would be the minimal element
of S. Moreover if [1, n) ∩ Z ⊂ Q, then n ∈ Q for otherwise n would be a
minimal element of S. Hence by the strong form of mathematical induction,
it follows that Q = N and hence that S = ∅.

1.5 =⇒1.6 Any set, S ⊂ Z satisfying the assumption in Axiom 1.6 will also
satisfy the assumption in Axiom 1.5 and therefore by Axiom 1.5 we will
have [a,∞) ∩ Z ⊂ S.

1.6 =⇒1.5 Suppose that 0 ∈ S ⊂ Z satisfies the assumptions in Axiom 1.5. Let
Q := {n ∈ N : [0, n) ⊂ S} . By assumption, 0 ∈ Q since 0 ∈ S. Moreover, if
n ∈ Q, then [0, n) ⊂ S by definition of Q and hence n + 1 ∈ Q. Thus Q
satisfies the restrictions on the set, S, in Axiom 1.6 and therefore Q = N.
So if n ∈ N, then n + 1 ∈ N = Q and thus n ∈ [0, n + 1) ⊂ S which shows
that N ⊂ S. As 0 ∈ S by assumption, it follows that N0 ⊂ S as desired.

1.2 Lecture 2 (1/7/2009)

Definition 1.9. Given a, b ∈ Z with a 6= 0 we say that a divides b or a is a
divisor of b (write a|b) provided b = ak for some k ∈ Z.

Definition 1.10. Given a, b ∈ Z with |a|+ |b| > 0, we let

gcd (a, b) := max {m : m|a and m|b}

be the greatest common divisor of a and b. (We do not define gcd (0, 0) and
we have gcd (0, b) = |b| for all b ∈ Z\ {0} .) If gcd (a, b) = 1, we say that a and
b are relatively prime.

Remark 1.11. Notice that gcd (a, b) = gcd (|a| , |b|) ≥ 0 and gcd (a, 0) = 0 for all
a 6= 0.

Lemma 1.12 (Euclidean Algorithm). Suppose that a, b are positive integers
with a < b and let b = ka+ r with 0 ≤ r < a by the division algorithm. If r = 0,
then gcd (a, b) = gcd (a, r) . In particular if r = 0, we have

gcd (a, b) = gcd (a, 0) = a.

Proof. Since b = ka + r if d is a divisor of both a and r it is a divisor of
b. Similarly, r = b − ka so that if d is a divisor of both a and b then d is also
a divisor of r. Thus the common divisors of a and r and a and b are the same
and therefore gcd (a, b) = gcd (a, r) .

Example 1.13. Suppose that a = 15 = 3 · 5 and b = 28 = 22 · 7. In this case it is
easy to see that gcd (15, 28) = 1. Nevertheless, lets use Lemma 1.12 repeatedly
as follows;

28 = 1 · 15 + 13 so gcd (15, 28) = gcd (13, 15) , (1.2)
15 = 1 · 13 + 2 so gcd (13, 15) = gcd (2, 13) , (1.3)
13 = 6 · 2 + 1 so G gcd (2, 13) = gcd (1, 2) , (1.4)
2 = 2 · 1 + 0 so gcd (1, 2) = gcd (0, 1) = 1. (1.5)

Moreover making use of Eqs. ( 1.2–1.4) in reverse order we learn that,

1 = 13− 6 · 2
= 13− 6 · (15− 1 · 13) = 7 · 13− 6 · 15
= 7 · (28− 1 · 15)− 6 · 15 = 7 · 28− 13 · 15.

Thus we have also shown that

1 = s · 28 + t · 15 where s = 7 and t = −13.

The choices for s and t used above are certainly not unique. For example we
have,

0 = 15 · 28− 28 · 15

which added to
1 = 7 · 28− 13 · 15

implies,

1 = (7 + 15) · 28− (13 + 28) · 15
= 22 · 28− 41 · 15

as well.
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Example 1.14. Suppose that a = 40 = 23 · 5 and b = 52 = 22 · 13. In this case
we have gcd (40, 52) = 4. Working as above we find,

52 = 1 · 40 + 12
40 = 3 · 12 + 4
12 = 3 · 4 + 0

so that we again see gcd (40, 52) = 4. Moreover,

4 = 40− 3 · 12 = 40− 3 · (52− 1 · 40) = 4 · 40− 3 · 52.

So again we have shown gcd (a, b) = sa+ tb for some s, t ∈ Z, in this case s = 4
and t = 3.

Example 1.15. Suppose that a = 333 = 32 · 37 and b = 459 = 33 · 17 so that
gcd (333, 459) = 32 = 9. Repeated use of Lemma 1.12 gives,

459 = 1 · 333 + 126 so gcd (333, 459) = gcd (126, 333) , (1.6)
333 = 2 · 126 + 81 so gcd (126, 333) = gcd (81, 126) , (1.7)
126 = 81 + 45 so gcd (81, 126) = gcd (45, 81) , (1.8)
81 = 45 + 36 so gcd (45, 81) = gcd (36, 45) , (1.9)
45 = 36 + 9 so gcd (36, 45) = gcd (9, 36) , and (1.10)
36 = 4 · 9 + 0 so gcd (9, 36) = gcd (0, 9) = 9. (1.11)

Thus we have shown that

gcd (333, 459) = 9.

We can even say more. From Eq. (1.11) we have, 9 = 45 − 36 and then from
Eq. (1.11),

9 = 45− 36 = 45− (81− 45) = 2 · 45− 81.

Continuing up the chain this way we learn,

9 = 2 · (126− 81)− 81 = 2 · 126− 3 · 81
= 2 · 126− 3 · (333− 2 · 126) = 8 · 126− 3 · 333
= 8 · (459− 1 · 333)− 3 · 333 = 8 · 459− 11 · 333

so that
9 = 8 · 459− 11 · 333.

The methods of the previous two examples can be used to prove Theorem
1.16 below. However, we will two different variants of the proof.

Theorem 1.16. If a, b ∈ Z\ {0}, then there exists (not unique) numbers, s, t ∈
Z such that

gcd (a, b) = sa+ tb. (1.12)

Moreover if m 6= 0 is any common divisor of both a and b then m| gcd (a, b) .

Proof. If m is any common divisor of a and b then m is also a divisor of
sa + tb for any s, t ∈ Z. (In particular this proves the second assertion given
the truth of Eq. (1.12).) In particular, gcd (a, b) is a divisor of sa + tb for all
s, t ∈ Z. Let S := {sa+ tb : s, t ∈ Z} and then define

d := min (S ∩ Z+) = sa+ tb for some s, t ∈ Z. (1.13)

By what we have just said if follows that gcd (a, b) |d and in particular d ≥
gcd (a, b) . If we can snow d is a common divisor of a and b we must then have
d = gcd (a, b) . However, using the division algorithm,

a = kd+ r with 0 ≤ r < d. (1.14)

As
r = a− kd = a− k (sa+ tb) = (1− ks) a− ktb ∈ S ∩ N,

if r were greater than 0 then r ≥ d (from the definition of d in Eq. (1.13) which
would contradict Eq. (1.14). Hence it follows that r = 0 and d|a. Similarly, one
shows that d|b.

Lemma 1.17 (Euclid’s Lemma). If gcd (c, a) = 1, i.e. c and a are relatively
prime, and c|ab then c|b.

Proof. We know that there exists s, t ∈ Z such that sa+tc = 1. Multiplying
this equation by b implies,

sab+ tcb = b.

Since c|ab and c|cb, it follows from this equation that c|b.

Corollary 1.18. Suppose that a, b ∈ Z such that there exists s, t ∈ Z with
1 = sa+ tb. Then a and b are relatively prime, i.e. gcd (a, b) = 1.

Proof. If m > 0 is a divisor of a and b, then m| (sa+ tb) , i.e. m|1 which
implies m = 1. Thus the only positive common divisor of a and b is 1 and hence
gcd (a, b) = 1.
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1.2.1 Ideals (Not covered in class.)

Definition 1.19. As non-empty subset S ⊂ Z is called an ideal if S is closed
under addition (i.e. S+S ⊂ S) and under multiplication by any element of Z,
i.e. Z · S ⊂ S.

Example 1.20. For any n ∈ Z, let

(n) := Z · n = nZ := {kn : k ∈ Z} .

I is easily checked that (n) is an ideal. The next theorem states that this is a
listing of all the ideals of Z.

Theorem 1.21 (Ideals of Z). If S ⊂ Z is an ideal then S = (n) for some
n ∈ Z. Moreover either S = {0} in which case n = 0 for S 6= {0} in which case
n = min (S ∩ Z+) .

Proof. If S = {0} we may take n = 0. So we may assume that S contains
a non-zero element a. By assumption that Z · S ⊂ S it follows that −a ∈ S as
well and therefore S∩Z+ is not empty as either a or −a is positive. By the well
ordering principle, we may define n as, n := minS ∩ Z+.

Since Z · n ⊂ Z · S ⊂ S, it follows that (n) ⊂ S. Conversely, suppose
that s ∈ S ∩ Z+. By the division algorithm, s = kn + r where k ∈ N and
0 ≤ r < n. It now follows that r = s− kn ∈ S. If r > 0, we would have to have
r ≥ n = minS ∩ Z+ and hence we see that r = 0. This shows that s = kn for
some k ∈ N and therefore s ∈ (n) . If s ∈ S is negative we apply what we have
just proved to −s to learn that −s ∈ (n) and therefore s ∈ (n) .

Remark 1.22. Notice that a|b iff b = ak for some k ∈ Z which happens iff
b ∈ (a) .

Proof. Second Proof of Theorem 1.16. Let S := {sa+ tb : s, t ∈ Z} .
One easily checks that S ⊂ Z is an ideal and therefore S = (d) where d :=
minS ∩ Z+. Notice that d = sa + tb for some s, t ∈ Z as d ∈ S. We now claim
that d = gcd (a, b) . To prove this we must show that d is a divisor of a and b
and that it is the maximal such divisor.

Taking s = 1 and t = 0 or s = 0 and t = 1 we learn that both a, b ∈ S = (d) ,
i.e. d|a and d|b. If m ∈ Z+ and m|a and m|b, then

d

m
= s

a

m
+ t

b

m
∈ Z

from which it follows that so that m|d. This shows that d = gcd (a, b) and also
proves the last assertion of the theorem.

Alternate proof of last statement. If m|a and m|b there exists k, l ∈ Z
such that a = km and b = lm and therefore,

d = sa+ tb = (sk + tl)m

which again shows that m|d.

Remark 1.23. As a second proof of Corollary 1.18, if 1 ∈ S (where S is as in
the second proof of Theorem 1.16)), then gcd (a, b) = min (S ∩ Z+) = 1.

1.3 Lecture 3 (1/9/2009)

1.3.1 Prime Numbers

Definition 1.24. A number, p ∈ Z, is prime iff p ≥ 2 and p has no divisors
other than 1 and p. Alternatively put, p ≥ 2 and gcd (a, p) is either 1 or p for
all a ∈ Z.

Example 1.25. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . .

Lemma 1.26 (Euclid’s Lemma again). Suppose that p is a prime number
and p|ab for some a, b ∈ Z then p|a or p|b.

Proof. We know that gcd (a, p) = 1 or gcd (a, p) = p. In the latter case
p|a and we are done. In the former case we may apply Euclid’s Lemma 1.17 to
conclude that p|b and so again we are done.

Theorem 1.27 (The fundamental theorem of arithmetic). Every n ∈ Z
with n ≥ 2 is a prime or a product of primes. The product is unique except for
the order of the primes appearing the product. Thus if n ≥ 2 and n = p1 . . . pn =
q1 . . . qm where the p’s and q’s are prime, then m = n and after renumbering
the q’s we have pi = qi.

Proof. Existence: This clearly holds for n = 2. Now suppose for every
2 ≤ k ≤ n may be written as a product of primes. Then either n+ 1 is prime in
which case we are done or n+ 1 = a · b with 1 < a, b < n+ 1. By the induction
hypothesis, we know that both a and b are a product of primes and therefore
so is n+ 1. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in 0.#25.
Here is the solution. Observe that p1|q1 . . . qm. If p1 does not divide q1 then
gcd (p1, q1) = 1 and therefore by Euclid’s Lemma 1.17, p1| (q2 . . . qm) . It now
follows by induction that p1 must divide one of the qi, by relabeling we may
assume that q1 = p1. The result now follows by induction on n ∨m.

Definition 1.28. The least common multiple of two non-zero integers, a, b, is
the smallest positive number which is both a multiple of a and b and this number
will be denoted by lcm (a, b) . Notice that m = min ((a) ∩ (b) ∩ Z+) .
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Example 1.29. Suppose that a = 12 = 22 · 3 and b = 15 = 3 · 5. Then
gcd (12, 15) = 3 while

lcm (12, 15) =
(
22 · 3

)
· 5 = 22 · (3 · 5) =

(
22 · 3 · 5

)
= 60.

Observe that

gcd (12, 15) · lcm (12, 15) = 3 ·
(
22 · 3 · 5

)
=
(
22 · 3

)
· (3 · 5) = 12 · 15.

This is a special case of Chapter 0.#12 on p. 23 which can be proved by similar
considerations. In general if

a = pn1
1 · · · · · p

nk

k and b = pm1
1 . . . pmk

k with nj ,ml ∈ N

then

gcd (a, b) = pn1∧m1
1 · · · · · pnk∧mk

k and lcm (a, b) = pn1∨m1
1 · · · · · pnk∨mk

k .

Therefore,

gcd (a, b) · lcm (a, b) = pn1∧m1+n1∨m1
1 · · · · · pnk∧mk+nk∨mk

k

= pn1+m1
1 · · · · · pnk+mk

k = a · b.

1.3.2 Modular Arithmetic

Definition 1.30. Let n be a positive integer and let a = qan+ra with 0 ≤ ra <
n. Then we define amodn := ra. (Sometimes we might write a = ra modn –
but I will try to stick with the first usage.)

Lemma 1.31. Let n ∈ Z+ and a, b, k ∈ Z. Then:

1. (a+ kn) modn = amodn.
2. (a+ b) modn = (amodn+ bmodn) modn.
3. (a · b) modn = ((amodn) · (bmodn)) modn.

Proof. Let ra = amodn, rb = bmodn and qa, qb ∈ Z such that a = qan+ra
and b = qbn+ rb.

1. Then a+ kn = (qa + k)n+ ra and therefore,

(a+ kn) modn = ra = amodn.

2. a+ b = (qa + qb)n+ ra + rb and hence by item 1 with k = qa + qb we find,

(a+ b) modn = (ra + rb) modn. = (amodn+ bmodn) modn.

3. For the last assertion,

a · b = [qan+ ra] · [qbn+ rb] = (qaqbn+ raqb + rbqa)n+ ra · rb

and so again by item 1. with k = (qaqbn+ raqb + rbqa) we have,

(a · b) modn = (ra · rb) modn = ((amodn) · (bmodn)) modn.

Example 1.32. Take n = 4, a = 18 and b = 7. Then 18 mod 4 = 2 and 7 mod 4 =
3. On one hand,

(18 + 7) mod 4 = 25 mod 4 = 1 while on the other,
(2 + 3) mod 4 = 1.

Similarly, 18 · 7 = 126 = 4 · 31 + 2 so that

(18 · 7) mod 4 = 2 while
(2 · 3) mod 4 = 6 mod 4 = 2.

Remark 1.33 (Error Detection). Companies often add extra digits to identi-
fication numbers for the purpose of detecting forgery or errors. For example
the United Parcel Service uses a mod 7 check digit. Hence if the identification
number were n = 354691332 one would append

nmod 7 = 354691332 mod 7 = 2 to the number to get
354691332 2 (say).

See the book for more on this method and other more elaborate check digit
schemes. Note,

354691332 = 50 670 190 · 7 + 2.

Remark 1.34. Suppose that a, n ∈ Z+ and b ∈ Z, then it is easy to show

(ab) mod (an) = a · (bmodn) .

Example 1.35 (Computing mod 10). We have,

123456 mod 10 = 6
123456 mod 100 = 56

123456 mod 1000 = 456
123456 mod 10000 = 3456

123456 mod 100000 = 23456
123456 mod 1000000 = 123456

so that
an . . . a2 a1 mod 10k = ak . . . a2 a1 for all k ≤ n.
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Solution to Exercise (0.52). As an example, here is a solution to Problem

0.52 of the book which states that

k times︷ ︸︸ ︷
111 . . . 1 is not the square of an integer except

when k = 1.
As 11 is prime we may assume that k ≥ 3. By Example 1.35,

111 . . . 1 mod 10 = 1 and 111 . . . 1 mod 100 = 11. Hence 1111 . . . 1 = n2

for some integer n, we must have

n2 mod 10 = 1 and
(
n2 − 1

)
mod 100 = 10.

The first condition implies that nmod 10 = 1 or 9 as 12 = 1 and 92 mod 10 =
81 mod 10 = 1. In the first case we have, n = k · 10 + 1 and therefore we must
require,

10 =
(
n2 − 1

)
mod 100 =

[
(k · 10 + 1)2 − 1

]
mod 100 =

(
k2 · 100 + 2k · 10

)
mod 100

= (2k · 10) mod 100 = 10 · (2kmod 10)

which implies 1 = (2kmod 10) which is impossible since 2kmod 10 is even.
For the second case we must have,

10 =
(
n2 − 1

)
mod 100 mod 100 =

[
(k · 10 + 9)2 − 1

]
mod 100

=
(
k2 · 100 + 18k · 10 + 81− 1

)
mod 100

= ((10 + 8) k · 10 + 8 · 10) mod 100
= (8 (k + 1) · 10) mod 100
= 10 · 8kmod 10

which implies which 1 = (8kmod 10) which again is impossible since 8kmod 10
is even.

1.3.3 Equivalence Relations

Definition 1.36. A equivalence relation on a set S is a subset, R ⊂ S × S
with the following properties:

1. R is reflexive: (a, a) ∈ R for all a ∈ S
2. R is symmetric: If (a, b) ∈ R then (b, a) ∈ R.
3. R is transitive: If (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

We will usually write a ∼ b to mean that (a, b) ∈ R and pronounce this as a
is equivalent to b. With this notation we are assuming a ∼ a, a ∼ b =⇒ b ∼ a
and a ∼ b and b ∼ c =⇒ a ∼ c. (Note well: the book write aRb rather than
a ∼ b.)

Example 1.37. If S = {1, 2, 3, 4, 5} then:

1. R = {1, 2, 3}2 ∪ {4, 5}2 is an equivalence relation.
2. R = {(1, 1) , (2, 2) , (3, 3) , (4, 4) , (5, 5) , (1, 2) , (2, 1) , (2, 3) , (3, 2)} is not an

equivalence relation. For example, 1 ∼ 2 and 2 ∼ 3 but 1 is not equivalent
to 3, so R is not transitive.

Example 1.38. Let n ∈ Z+, S = Z and say a ∼ b iff amodn = bmodn. This is
an equivalence relation. For example, when s = 2 we have a ∼ b iff both a and
b are odd or even. So in this case R = {odd}2 ∪ {even}2 .

Example 1.39. Let S = R and say a ∼ b iff a ≥ b. Again not symmetric so is
not an equivalence relation.

Definition 1.40. A partition of a set S is a decomposition, {Sα}α∈I , by
disjoint sets, so Sα is a non-empty subset of S such that S = ∪α∈ISα and
Sα ∩ Sβ = ∅ if α 6= β.

Example 1.41. If {Sα}α∈I is a partition of S, then R = ∪α∈IS2
α is an equivalence

relation. The next theorem states this is the general type of equivalence relation.

Theorem 1.42. Let R or ∼ be an equivalence relation on S and for each a ∈ S,
let [a] := {b ∈ S : b ∼ a} be the equivalence class of a.. Then S = ∪a∈S [a]
and [a] ∩ [b] 6= ∅ iff [a] = [b] .

Proof. Because a is reflexive, a ∈ [a] for all a and therefore, S = ∪a∈S [a] .
Suppose that [a] ∩ [b] 6= ∅ in which there exists c ∈ [a] ∩ [b] , i.e. c ∼ a and

c ∼ b. Because ∼ is transitive and reflexive, it follows that a ∼ b as well. Thus
if x ∈ [a] , i.e. x ∼ a we must also have x ∼ b (again because ∼ is transitive
and reflexive), that is x ∈ [b] . This shows that [a] ⊂ [b] . Similarly we can show
[b] ⊂ [a] and thus [a] = [b] as desired.

Exercise 1.1. Suppose that S = Z with a ∼ b iff amodn = bmodn. Identify
the equivalence classes of ∼ . Answer,

{[0] , [1] , . . . , [n− 1]}

where
[i] = i+ nZ = {i+ ns : s ∈ Z} .

Exercise 1.2. Suppose that S = R2 with a = (a1, a2) ∼ b = (b1, b2) iff |a| =
|b| where |a| := a2

1 +a2
2. Show that ∼ is an equivalence relation and identify the

equivalence classes of ∼ . Answer, the equivalence classes consists of concentric
circles centered about the origin (0, 0) ∈ S.
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