Math 103A Lecture Notes

1.1 Lecture 1 ($1 / 5 / 2009$)

Notation 1.1 Introduce $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}. Also let $\mathbb{Z}_{+}:=$ $\mathbb{N} \backslash\{0\}$.

- Set notations
- Recalled basic notions of a function being one to one, onto, and invertible. Think of functions in terms of a bunch of arrows from the domain set to the range set. To find the inverse function you should reverse the arrows.
- Some example of groups without the definition of a group:

1. $G L(2, \mathbb{R})=\left\{g:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: \operatorname{det} g=a d-b c \neq 0\right\}$.
2. Vector space with "group" operation being addition.
3. The permutation group of invertible functions on a set S like $S=$ $\{1,2, \ldots, n\}$.

1.1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) Every non-empty subset, S, of \mathbb{N} contains a smallest element.

We say that a subset $S \subset \mathbb{Z}$ is bounded below if $S \subset[k, \infty)$ for some $k \in \mathbb{Z}$ and bounded above if $S \subset(-\infty, k]$ for some $k \in \mathbb{Z}$.
Remark 1.3 (Well ordering variations). The well ordering principle may also be stated equivalently as:

1. any subset $S \subset \mathbb{Z}$ which is bounded from below contains a smallest element or
2. any subset $S \subset \mathbb{Z}$ which is bounded from above contains a largest element.

To see this, suppose that $S \subset[k, \infty)$ and then apply the well ordering principle to $S-k$ to find a smallest element, $n \in S-k$. That is $n \in S-k$ and $n \leq s-k$ for all $s \in S$. Thus it follows that $n+k \in S$ and $n+k \leq s$ for all $s \in S$ so that $n+k$ is the desired smallest element in S.

For the second equivalence, suppose that $S \subset(-\infty, k]$ in which case $-S \subset$ $[-k, \infty)$ and therefore there exist a smallest element $n \in-S$, i.e. $n \leq-s$ for all $s \in S$. From this we learn that $-n \in S$ and $-n \geq s$ for all $s \in S$ so that $-n$ is the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}_{+}$, then there exists unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ with $r<b$ such that

$$
a=b q+r
$$

(For example,

$$
\left.5\right|_{\frac{10}{2}} ^{\frac{2}{12}} \text { so that } 12=2 \cdot 5+2 \text {.) }
$$

Proof. Let

$$
S:=\{k \in \mathbb{Z}: a-b k \geq 0\}
$$

which is bounded from above. Therefore we may define,

$$
q:=\max \{k: a-b k \geq 0\}
$$

As q is the largest element of S we must have,

$$
r:=a-b q \geq 0 \text { and } a-b(q+1)<0
$$

The second inequality is equivalent to $r-b<0$ which is equivalent to $r<b$. This completes the existence proof.

To prove uniqueness, suppose that $a=b q^{\prime}+r^{\prime}$ in which case, $b q^{\prime}+r^{\prime}=b q+r$ and hence,

$$
\begin{equation*}
b>\left|r^{\prime}-r\right|=\left|b\left(q-q^{\prime}\right)\right|=b\left|q-q^{\prime}\right| \tag{1.1}
\end{equation*}
$$

Since $\left|q-q^{\prime}\right| \geq 1$ if $q \neq q^{\prime}$, the only way Eq. 1.1) can hold is if $q=q^{\prime}$ and $r=r^{\prime}$.

Axiom 1.5 (Strong form of mathematical induction) Suppose that $S \subset$ \mathbb{Z} is a non-empty set containing an element a with the property that; if $[a, n) \cap$ $\mathbb{Z} \subset S$ then $n \in \mathbb{Z}$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Axiom 1.6 (Weak form of mathematical induction) Suppose that $S \subset$ \mathbb{Z} is a non-empty set containing an element a with the property that for every $n \in S$ with $n \geq a, n+1 \in S$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Remark 1.7. In Axioms 1.5 and 1.6 it suffices to assume that $a=0$. For if $a \neq 0$ we may replace S by $S-a:=\{s-a: s \in S\}$. Then applying the axioms with $a=0$ to $S-a$ shows that $[0, \infty) \cap \mathbb{Z} \subset S-a$ and therefore,

$$
[a, \infty) \cap \mathbb{Z}=[0, \infty) \cap \mathbb{Z}+a \subset S
$$

Theorem 1.8 (Equivalence of Axioms). Axioms 1.2 - 1.6 are equivalent. (Only partially covered in class.)

Proof. We will prove $1.2 \Longleftrightarrow 1.5 \Longleftrightarrow 1.6 \Longrightarrow 1.2$,
\qquad Suppose $0 \in S \subset \mathbb{Z}$ satisfies the assumption in Axiom1.5. If \mathbb{N}_{0} is not contained in S, then $\mathbb{N}_{0} \backslash S$ is a non empty subset of \mathbb{N} and therefore has a smallest element, n. It then follows by the definition of n that $[0, n) \cap \mathbb{Z} \subset S$ and therefore by the assumed property on $S, n \in S$. This is a contradiction since n can not be in both S and $\mathbb{N}_{0} \backslash S$.
1.2 Suppose that $S \subset \mathbb{N}$ does not have a smallest element and let $Q:=\mathbb{N} \backslash S$. Then $0 \in Q$ since otherwise $0 \in S$ would be the minimal element of S. Moreover if $[1, n) \cap \mathbb{Z} \subset Q$, then $n \in Q$ for otherwise n would be a minimal element of S. Hence by the strong form of mathematical induction, it follows that $Q=\mathbb{N}$ and hence that $S=\emptyset$.
$1.5 \Longrightarrow 1.6$ Any set, $S \subset \mathbb{Z}$ satisfying the assumption in Axiom 1.6 will also satisfy the assumption in Axiom 1.5 and therefore by Axiom 1.5 we will have $[a, \infty) \cap \mathbb{Z} \subset S$.
$1.6 \Longrightarrow 1.5$ Suppose that $0 \in S \subset \mathbb{Z}$ satisfies the assumptions in Axiom 1.5. Let $Q:=\{n \in \mathbb{N}:[0, n) \subset S\}$. By assumption, $0 \in Q$ since $0 \in S$. Moreover, if $n \in Q$, then $[0, n) \subset S$ by definition of Q and hence $n+1 \in Q$. Thus Q satisfies the restrictions on the set, S, in Axiom 1.6 and therefore $Q=\mathbb{N}$. So if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}=Q$ and thus $n \in[0, n+1) \subset S$ which shows that $\mathbb{N} \subset S$. As $0 \in S$ by assumption, it follows that $\mathbb{N}_{0} \subset S$ as desired.

1.2 Lecture $2(1 / 7 / 2009)$

Definition 1.9. Given $a, b \in \mathbb{Z}$ with $a \neq 0$ we say that a divides b or a is a divisor of b (write $a \mid b$) provided $b=a k$ for some $k \in \mathbb{Z}$.
Definition 1.10. Given $a, b \in \mathbb{Z}$ with $|a|+|b|>0$, we let

$$
\operatorname{gcd}(a, b):=\max \{m: m \mid a \text { and } m \mid b\}
$$

be the greatest common divisor of a and b. (We do not define $\operatorname{gcd}(0,0)$ and we have $\operatorname{gcd}(0, b)=|b|$ for all $b \in \mathbb{Z} \backslash\{0\}$.) If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.

Remark 1.11. Notice that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|) \geq 0$ and $\operatorname{gcd}(a, 0)=0$ for all $a \neq 0$.
Lemma 1.12 (Euclidean Algorithm). Suppose that a, b are positive integers with $a<b$ and let $b=k a+r$ with $0 \leq r<a$ by the division algorithm. If $r=0$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$. In particular if $r=0$, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, 0)=a
$$

Proof. Since $b=k a+r$ if d is a divisor of both a and r it is a divisor of b. Similarly, $r=b-k a$ so that if d is a divisor of both a and b then d is also a divisor of r. Thus the common divisors of a and r and a and b are the same and therefore $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$.
Example 1.13. Suppose that $a=15=3 \cdot 5$ and $b=28=2^{2} \cdot 7$. In this case it is easy to see that $\operatorname{gcd}(15,28)=1$. Nevertheless, lets use Lemma 1.12 repeatedly as follows;

$$
\begin{align*}
28 & =1 \cdot 15+13 \text { so } \operatorname{gcd}(15,28)=\operatorname{gcd}(13,15) \tag{1.2}\\
15 & =1 \cdot 13+2 \text { so } \operatorname{gcd}(13,15)=\operatorname{gcd}(2,13) \tag{1.3}\\
13 & =6 \cdot 2+1 \text { so } G \operatorname{gcd}(2,13)=\operatorname{gcd}(1,2) \tag{1.4}\\
2 & =2 \cdot 1+0 \text { so } \operatorname{gcd}(1,2)=\operatorname{gcd}(0,1)=1 \tag{1.5}
\end{align*}
$$

Moreover making use of Eqs. ($\sqrt[1.2]{1.4}$) in reverse order we learn that,

$$
\begin{aligned}
1 & =13-6 \cdot 2 \\
& =13-6 \cdot(15-1 \cdot 13)=7 \cdot 13-6 \cdot 15 \\
& =7 \cdot(28-1 \cdot 15)-6 \cdot 15=7 \cdot 28-13 \cdot 15
\end{aligned}
$$

Thus we have also shown that

$$
1=s \cdot 28+t \cdot 15 \text { where } s=7 \text { and } t=-13
$$

The choices for s and t used above are certainly not unique. For example we have,

$$
0=15 \cdot 28-28 \cdot 15
$$

which added to

$$
1=7 \cdot 28-13 \cdot 15
$$

implies,

$$
\begin{aligned}
1 & =(7+15) \cdot 28-(13+28) \cdot 15 \\
& =22 \cdot 28-41 \cdot 15
\end{aligned}
$$

as well.

Example 1.14. Suppose that $a=40=2^{3} \cdot 5$ and $b=52=2^{2} \cdot 13$. In this case we have $\operatorname{gcd}(40,52)=4$. Working as above we find,

$$
\begin{aligned}
& 52=1 \cdot 40+12 \\
& 40=3 \cdot 12+4 \\
& 12=3 \cdot 4+0
\end{aligned}
$$

so that we again see $\operatorname{gcd}(40,52)=4$. Moreover,

$$
4=40-3 \cdot 12=40-3 \cdot(52-1 \cdot 40)=4 \cdot 40-3 \cdot 52
$$

So again we have shown $\operatorname{gcd}(a, b)=s a+t b$ for some $s, t \in \mathbb{Z}$, in this case $s=4$ and $t=3$.

Example 1.15. Suppose that $a=333=3^{2} \cdot 37$ and $b=459=3^{3} \cdot 17$ so that $\operatorname{gcd}(333,459)=3^{2}=9$. Repeated use of Lemma 1.12 gives,

$$
\begin{align*}
459 & =1 \cdot 333+126 \text { so } \operatorname{gcd}(333,459)=\operatorname{gcd}(126,333) \tag{1.6}\\
333 & =2 \cdot 126+81 \text { so } \operatorname{gcd}(126,333)=\operatorname{gcd}(81,126) \tag{1.7}\\
126 & =81+45 \text { so } \operatorname{gcd}(81,126)=\operatorname{gcd}(45,81) \tag{1.8}\\
81 & =45+36 \text { so } \operatorname{gcd}(45,81)=\operatorname{gcd}(36,45) \tag{1.9}\\
45 & =36+9 \text { so } \operatorname{gcd}(36,45)=\operatorname{gcd}(9,36), \text { and } \tag{1.10}\\
36 & =4 \cdot 9+0 \text { so } \operatorname{gcd}(9,36)=\operatorname{gcd}(0,9)=9 \tag{1.11}
\end{align*}
$$

Thus we have shown that

$$
\operatorname{gcd}(333,459)=9
$$

We can even say more. From Eq. 1.11 we have, $9=45-36$ and then from Eq. (1.11),

$$
9=45-36=45-(81-45)=2 \cdot 45-81
$$

Continuing up the chain this way we learn,

$$
\begin{aligned}
9 & =2 \cdot(126-81)-81=2 \cdot 126-3 \cdot 81 \\
& =2 \cdot 126-3 \cdot(333-2 \cdot 126)=8 \cdot 126-3 \cdot 333 \\
& =8 \cdot(459-1 \cdot 333)-3 \cdot 333=8 \cdot 459-11 \cdot 333
\end{aligned}
$$

so that

$$
9=8 \cdot 459-11 \cdot 333
$$

The methods of the previous two examples can be used to prove Theorem 1.16 below. However, we will two different variants of the proof.

Theorem 1.16. If $a, b \in \mathbb{Z} \backslash\{0\}$, then there exists (not unique) numbers, $s, t \in$ \mathbb{Z} such that

$$
\begin{equation*}
\operatorname{gcd}(a, b)=s a+t b \tag{1.12}
\end{equation*}
$$

Moreover if $m \neq 0$ is any common divisor of both a and b then $m \mid \operatorname{gcd}(a, b)$.
Proof. If m is any common divisor of a and b then m is also a divisor of $s a+t b$ for any $s, t \in \mathbb{Z}$. (In particular this proves the second assertion given the truth of Eq. 1.12).) In particular, $\operatorname{gcd}(a, b)$ is a divisor of $s a+t b$ for all $s, t \in \mathbb{Z}$. Let $S:=\{s a+t b: s, t \in \mathbb{Z}\}$ and then define

$$
\begin{equation*}
d:=\min \left(S \cap \mathbb{Z}_{+}\right)=s a+t b \text { for some } s, t \in \mathbb{Z} \tag{1.13}
\end{equation*}
$$

By what we have just said if follows that $\operatorname{gcd}(a, b) \mid d$ and in particular $d \geq$ $\operatorname{gcd}(a, b)$. If we can snow d is a common divisor of a and b we must then have $d=\operatorname{gcd}(a, b)$. However, using the division algorithm,

$$
\begin{equation*}
a=k d+r \text { with } 0 \leq r<d . \tag{1.14}
\end{equation*}
$$

As

$$
r=a-k d=a-k(s a+t b)=(1-k s) a-k t b \in S \cap \mathbb{N}
$$

if r were greater than 0 then $r \geq d$ (from the definition of d in Eq. 1.13) which would contradict Eq. (1.14). Hence it follows that $r=0$ and $d \mid a$. Similarly, one shows that $d \mid b$.

Lemma 1.17 (Euclid's Lemma). If $\operatorname{gcd}(c, a)=1$, i.e. c and a are relatively prime, and $c \mid a b$ then $c \mid b$.

Proof. We know that there exists $s, t \in \mathbb{Z}$ such that $s a+t c=1$. Multiplying this equation by b implies,

$$
s a b+t c b=b
$$

Since $c \mid a b$ and $c \mid c b$, it follows from this equation that $c \mid b$.
Corollary 1.18. Suppose that $a, b \in \mathbb{Z}$ such that there exists $s, t \in \mathbb{Z}$ with $1=s a+t b$. Then a and b are relatively prime, i.e. $\operatorname{gcd}(a, b)=1$.

Proof. If $m>0$ is a divisor of a and b, then $m \mid(s a+t b)$, i.e. $m \mid 1$ which implies $m=1$. Thus the only positive common divisor of a and b is 1 and hence $\operatorname{gcd}(a, b)=1$.

1.2.1 Ideals (Not covered in class.)

Definition 1.19. As non-empty subset $S \subset \mathbb{Z}$ is called an ideal if S is closed under addition (i.e. $S+S \subset S$) and under multiplication by any element of \mathbb{Z}, i.e. $\mathbb{Z} \cdot S \subset S$.

Example 1.20. For any $n \in \mathbb{Z}$, let

$$
(n):=\mathbb{Z} \cdot n=n \mathbb{Z}:=\{k n: k \in \mathbb{Z}\}
$$

I is easily checked that (n) is an ideal. The next theorem states that this is a listing of all the ideals of \mathbb{Z}.

Theorem 1.21 (Ideals of \mathbb{Z}). If $S \subset \mathbb{Z}$ is an ideal then $S=(n)$ for some $n \in \mathbb{Z}$. Moreover either $S=\{0\}$ in which case $n=0$ for $S \neq\{0\}$ in which case $n=\min \left(S \cap \mathbb{Z}_{+}\right)$.

Proof. If $S=\{0\}$ we may take $n=0$. So we may assume that S contains a non-zero element a. By assumption that $\mathbb{Z} \cdot S \subset S$ it follows that $-a \in S$ as well and therefore $S \cap \mathbb{Z}_{+}$is not empty as either a or $-a$ is positive. By the well ordering principle, we may define n as, $n:=\min S \cap \mathbb{Z}_{+}$.

Since $\mathbb{Z} \cdot n \subset \mathbb{Z} \cdot S \subset S$, it follows that $(n) \subset S$. Conversely, suppose that $s \in S \cap \mathbb{Z}_{+}$. By the division algorithm, $s=k n+r$ where $k \in \mathbb{N}$ and $0 \leq r<n$. It now follows that $r=s-k n \in S$. If $r>0$, we would have to have $r \geq n=\min S \cap \mathbb{Z}_{+}$and hence we see that $r=0$. This shows that $s=k n$ for some $k \in \mathbb{N}$ and therefore $s \in(n)$. If $s \in S$ is negative we apply what we have just proved to $-s$ to learn that $-s \in(n)$ and therefore $s \in(n)$.

Remark 1.22. Notice that $a \mid b$ iff $b=a k$ for some $k \in \mathbb{Z}$ which happens iff $b \in(a)$.

Proof. Second Proof of Theorem 1.16. Let $S:=\{s a+t b: s, t \in \mathbb{Z}\}$. One easily checks that $S \subset \mathbb{Z}$ is an ideal and therefore $S=(d)$ where $d:=$ $\min S \cap \mathbb{Z}_{+}$. Notice that $d=s a+t b$ for some $s, t \in \mathbb{Z}$ as $d \in S$. We now claim that $d=\operatorname{gcd}(a, b)$. To prove this we must show that d is a divisor of a and b and that it is the maximal such divisor.

Taking $s=1$ and $t=0$ or $s=0$ and $t=1$ we learn that both $a, b \in S=(d)$, i.e. $d \mid a$ and $d \mid b$. If $m \in \mathbb{Z}_{+}$and $m \mid a$ and $m \mid b$, then

$$
\frac{d}{m}=s \frac{a}{m}+t \frac{b}{m} \in \mathbb{Z}
$$

from which it follows that so that $m \mid d$. This shows that $d=\operatorname{gcd}(a, b)$ and also proves the last assertion of the theorem.

Alternate proof of last statement. If $m \mid a$ and $m \mid b$ there exists $k, l \in \mathbb{Z}$ such that $a=k m$ and $b=l m$ and therefore,

$$
d=s a+t b=(s k+t l) m
$$

which again shows that $m \mid d$.
Remark 1.23. As a second proof of Corollary 1.18, if $1 \in S$ (where S is as in the second proof of Theorem 1.16) , then $\operatorname{gcd}(a, b)=\min \left(S \cap \mathbb{Z}_{+}\right)=1$.

1.3 Lecture 3 ($1 / 9 / 2009$)

1.3.1 Prime Numbers

Definition 1.24. A number, $p \in \mathbb{Z}$, is prime iff $p \geq 2$ and p has no divisors other than 1 and p. Alternatively put, $p \geq 2$ and $\operatorname{gcd}(a, p)$ is either 1 or p for all $a \in \mathbb{Z}$.

Example 1.25. The first few prime numbers are $2,3,5,7,11,13,17,19,23, \ldots$.
Lemma 1.26 (Euclid's Lemma again). Suppose that p is a prime number and $p \mid a b$ for some $a, b \in \mathbb{Z}$ then $p \mid a$ or $p \mid b$.

Proof. We know that $\operatorname{gcd}(a, p)=1$ or $\operatorname{gcd}(a, p)=p$. In the latter case $p \mid a$ and we are done. In the former case we may apply Euclid's Lemma 1.17 to conclude that $p \mid b$ and so again we are done.

Theorem 1.27 (The fundamental theorem of arithmetic). Every $n \in \mathbb{Z}$ with $n \geq 2$ is a prime or a product of primes. The product is unique except for the order of the primes appearing the product. Thus if $n \geq 2$ and $n=p_{1} \ldots p_{n}=$ $q_{1} \ldots q_{m}$ where the p 's and q 's are prime, then $m=n$ and after renumbering the q 's we have $p_{i}=q_{i}$.

Proof. Existence: This clearly holds for $n=2$. Now suppose for every $2 \leq k \leq n$ may be written as a product of primes. Then either $n+1$ is prime in which case we are done or $n+1=a \cdot b$ with $1<a, b<n+1$. By the induction hypothesis, we know that both a and b are a product of primes and therefore so is $n+1$. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in $0 . \# 25$. Here is the solution. Observe that $p_{1} \mid q_{1} \ldots q_{m}$. If p_{1} does not divide q_{1} then $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$ and therefore by Euclid's Lemma 1.17, $p_{1} \mid\left(q_{2} \ldots q_{m}\right)$. It now follows by induction that p_{1} must divide one of the q_{i}, by relabeling we may assume that $q_{1}=p_{1}$. The result now follows by induction on $n \vee m$.

Definition 1.28. The least common multiple of two non-zero integers, a, b, is the smallest positive number which is both a multiple of a and b and this number will be denoted by $\operatorname{lcm}(a, b)$. Notice that $m=\min \left((a) \cap(b) \cap \mathbb{Z}_{+}\right)$.

Example 1.29. Suppose that $a=12=2^{2} \cdot 3$ and $b=15=3 \cdot 5$. Then $\operatorname{gcd}(12,15)=3$ while

$$
\operatorname{lcm}(12,15)=\left(2^{2} \cdot 3\right) \cdot 5=2^{2} \cdot(3 \cdot 5)=\left(2^{2} \cdot 3 \cdot 5\right)=60
$$

Observe that

$$
\operatorname{gcd}(12,15) \cdot \operatorname{lcm}(12,15)=3 \cdot\left(2^{2} \cdot 3 \cdot 5\right)=\left(2^{2} \cdot 3\right) \cdot(3 \cdot 5)=12 \cdot 15
$$

This is a special case of Chapter $0 . \# 12$ on p. 23 which can be proved by similar considerations. In general if

$$
a=p_{1}^{n_{1}} \cdots \cdots p_{k}^{n_{k}} \text { and } b=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}} \text { with } n_{j}, m_{l} \in \mathbb{N}
$$

then

$$
\operatorname{gcd}(a, b)=p_{1}^{n_{1} \wedge m_{1}} \cdots \cdots p_{k}^{n_{k} \wedge m_{k}} \text { and } \operatorname{lcm}(a, b)=p_{1}^{n_{1} \vee m_{1}} \cdots \cdots p_{k}^{n_{k} \vee m_{k}}
$$

Therefore,

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =p_{1}^{n_{1} \wedge m_{1}+n_{1} \vee m_{1}} \cdots \cdots p_{k}^{n_{k} \wedge m_{k}+n_{k} \vee m_{k}} \\
& =p_{1}^{n_{1}+m_{1}} \cdots \cdots p_{k}^{n_{k}+m_{k}}=a \cdot b .
\end{aligned}
$$

1.3.2 Modular Arithmetic

Definition 1.30. Let n be a positive integer and let $a=q_{a} n+r_{a}$ with $0 \leq r_{a}<$ n. Then we define $a \bmod n:=r_{a}$. (Sometimes we might write $a=r_{a} \bmod n-$ but I will try to stick with the first usage.)

Lemma 1.31. Let $n \in \mathbb{Z}_{+}$and $a, b, k \in \mathbb{Z}$. Then:

1. $(a+k n) \bmod n=a \bmod n$.
2. $(a+b) \bmod n=(a \bmod n+b \bmod n) \bmod n$.
3. $(a \cdot b) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$.

Proof. Let $r_{a}=a \bmod n, r_{b}=b \bmod n$ and $q_{a}, q_{b} \in \mathbb{Z}$ such that $a=q_{a} n+r_{a}$ and $b=q_{b} n+r_{b}$.

1. Then $a+k n=\left(q_{a}+k\right) n+r_{a}$ and therefore,

$$
(a+k n) \bmod n=r_{a}=a \bmod n
$$

2. $a+b=\left(q_{a}+q_{b}\right) n+r_{a}+r_{b}$ and hence by item 1 with $k=q_{a}+q_{b}$ we find,

$$
(a+b) \bmod n=\left(r_{a}+r_{b}\right) \bmod n .=(a \bmod n+b \bmod n) \bmod n .
$$

3. For the last assertion,

$$
a \cdot b=\left[q_{a} n+r_{a}\right] \cdot\left[q_{b} n+r_{b}\right]=\left(q_{a} q_{b} n+r_{a} q_{b}+r_{b} q_{a}\right) n+r_{a} \cdot r_{b}
$$

and so again by item 1 . with $k=\left(q_{a} q_{b} n+r_{a} q_{b}+r_{b} q_{a}\right)$ we have,

$$
(a \cdot b) \bmod n=\left(r_{a} \cdot r_{b}\right) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n .
$$

Example 1.32. Take $n=4, a=18$ and $b=7$. Then $18 \bmod 4=2$ and $7 \bmod 4=$ 3 . On one hand,

$$
\begin{aligned}
(18+7) \bmod 4 & =25 \bmod 4=1 \text { while on the other, } \\
(2+3) \bmod 4 & =1
\end{aligned}
$$

Similarly, $18 \cdot 7=126=4 \cdot 31+2$ so that

$$
\begin{aligned}
(18 \cdot 7) \bmod 4 & =2 \text { while } \\
(2 \cdot 3) \bmod 4 & =6 \bmod 4=2 .
\end{aligned}
$$

Remark 1.33 (Error Detection). Companies often add extra digits to identification numbers for the purpose of detecting forgery or errors. For example the United Parcel Service uses a mod 7 check digit. Hence if the identification number were $n=354691332$ one would append

$$
\begin{aligned}
& n \bmod 7=354691332 \bmod 7=2 \text { to the number to get } \\
& \quad 354691332 _2 \text { (say). }
\end{aligned}
$$

See the book for more on this method and other more elaborate check digit schemes. Note,

$$
354691332=50670190 \cdot 7+2
$$

Remark 1.34. Suppose that $a, n \in \mathbb{Z}_{+}$and $b \in \mathbb{Z}$, then it is easy to show

$$
(a b) \bmod (a n)=a \cdot(b \bmod n)
$$

Example 1.35 (Computing mod 10). We have,

$$
\begin{aligned}
123456 \bmod 10 & =6 \\
123456 \bmod 100 & =56 \\
123456 \bmod 1000 & =456 \\
123456 \bmod 10000 & =3456 \\
123456 \bmod 100000 & =23456 \\
123456 \bmod 1000000 & =123456
\end{aligned}
$$

so that

$$
a_{n} \ldots a_{2} a_{1} \bmod 10^{k}=a_{k} \ldots a_{2} a_{1} \text { for all } k \leq n
$$

Solution to Exercise (0.52). As an example, here is a solution to Problem 0.52 of the book which states that $\overbrace{111 \ldots 1}^{k \text { times }}$ is not the square of an integer except when $k=1$.

As 11 is prime we may assume that $k \geq 3$. By Example 1.35 , $111 \ldots 1 \bmod 10=1$ and $111 \ldots 1 \bmod 100=11$. Hence $1111 \ldots 1=n^{2}$ for some integer n, we must have

$$
n^{2} \bmod 10=1 \text { and }\left(n^{2}-1\right) \bmod 100=10
$$

The first condition implies that $n \bmod 10=1$ or 9 as $1^{2}=1$ and $9^{2} \bmod 10=$ $81 \bmod 10=1$. In the first case we have, $n=k \cdot 10+1$ and therefore we must require,

$$
\begin{aligned}
10 & =\left(n^{2}-1\right) \bmod 100=\left[(k \cdot 10+1)^{2}-1\right] \bmod 100=\left(k^{2} \cdot 100+2 k \cdot 10\right) \bmod 100 \\
& =(2 k \cdot 10) \bmod 100=10 \cdot(2 k \bmod 10)
\end{aligned}
$$

which implies $1=(2 k \bmod 10)$ which is impossible since $2 k \bmod 10$ is even.
For the second case we must have,

$$
\begin{aligned}
10 & =\left(n^{2}-1\right) \bmod 100 \bmod 100=\left[(k \cdot 10+9)^{2}-1\right] \bmod 100 \\
& =\left(k^{2} \cdot 100+18 k \cdot 10+81-1\right) \bmod 100 \\
& =((10+8) k \cdot 10+8 \cdot 10) \bmod 100 \\
& =(8(k+1) \cdot 10) \bmod 100 \\
& =10 \cdot 8 k \bmod 10
\end{aligned}
$$

which implies which $1=(8 k \bmod 10)$ which again is impossible since $8 k \bmod 10$ is even.

1.3.3 Equivalence Relations

Definition 1.36. A equivalence relation on a set S is a subset, $R \subset S \times S$ with the following properties:

1. R is reflexive: $(a, a) \in R$ for all $a \in S$
2. R is symmetric: If $(a, b) \in R$ then $(b, a) \in R$.
3. R is transitive: If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

We will usually write $a \sim b$ to mean that $(a, b) \in R$ and pronounce this as a is equivalent to b. With this notation we are assuming $a \sim a, a \sim b \Longrightarrow b \sim a$ and $a \sim b$ and $b \sim c \Longrightarrow a \sim c$. (Note well: the book write $a R b$ rather than $a \sim b$.)

Example 1.37. If $S=\{1,2,3,4,5\}$ then:

1. $R=\{1,2,3\}^{2} \cup\{4,5\}^{2}$ is an equivalence relation.
2. $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(2,3),(3,2)\}$ is not an equivalence relation. For example, $1 \sim 2$ and $2 \sim 3$ but 1 is not equivalent to 3 , so R is not transitive.

Example 1.38. Let $n \in \mathbb{Z}_{+}, S=\mathbb{Z}$ and say $a \sim b$ iff $a \bmod n=b \bmod n$. This is an equivalence relation. For example, when $s=2$ we have $a \sim b$ iff both a and b are odd or even. So in this case $R=\{\text { odd }\}^{2} \cup\{\text { even }\}^{2}$.

Example 1.39. Let $S=\mathbb{R}$ and say $a \sim b$ iff $a \geq b$. Again not symmetric so is not an equivalence relation.

Definition 1.40. A partition of a set S is a decomposition, $\left\{S_{\alpha}\right\}_{\alpha \in I}$, by disjoint sets, so S_{α} is a non-empty subset of S such that $S=\cup_{\alpha \in I} S_{\alpha}$ and $S_{\alpha} \cap S_{\beta}=\emptyset$ if $\alpha \neq \beta$.

Example 1.41. If $\left\{S_{\alpha}\right\}_{\alpha \in I}$ is a partition of S, then $R=\cup_{\alpha \in I} S_{\alpha}^{2}$ is an equivalence relation. The next theorem states this is the general type of equivalence relation.

Theorem 1.42. Let R or \sim be an equivalence relation on S and for each $a \in S$, let $[a]:=\{b \in S: b \sim a\}$ be the equivalence class of a. . Then $S=\cup_{a \in S}[a]$ and $[a] \cap[b] \neq \emptyset$ iff $[a]=[b]$.

Proof. Because a is reflexive, $a \in[a]$ for all a and therefore, $S=\cup_{a \in S}[a]$.
Suppose that $[a] \cap[b] \neq \emptyset$ in which there exists $c \in[a] \cap[b]$, i.e. $c \sim a$ and $c \sim b$. Because \sim is transitive and reflexive, it follows that $a \sim b$ as well. Thus if $x \in[a]$, i.e. $x \sim a$ we must also have $x \sim b$ (again because \sim is transitive and reflexive), that is $x \in[b]$. This shows that $[a] \subset[b]$. Similarly we can show $[b] \subset[a]$ and thus $[a]=[b]$ as desired.

Exercise 1.1. Suppose that $S=\mathbb{Z}$ with $a \sim b$ iff $a \bmod n=b \bmod n$. Identify the equivalence classes of \sim. Answer,

$$
\{[0],[1], \ldots,[n-1]\}
$$

where

$$
[i]=i+n \mathbb{Z}=\{i+n s: s \in \mathbb{Z}\}
$$

Exercise 1.2. Suppose that $S=\mathbb{R}^{2}$ with $\mathbf{a}=\left(a_{1}, a_{2}\right) \sim \mathbf{b}=\left(b_{1}, b_{2}\right)$ iff $|\mathbf{a}|=$ $|\mathbf{b}|$ where $|\mathbf{a}|:=a_{1}^{2}+a_{2}^{2}$. Show that \sim is an equivalence relation and identify the equivalence classes of \sim. Answer, the equivalence classes consists of concentric circles centered about the origin $(0,0) \in S$.

