Lecture 1 ($1 / 5 / 2009$)

Notation 1.1 Introduce $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}. Also let $\mathbb{Z}_{+}:=$ $\mathbb{N} \backslash\{0\}$.

- Set notations.
- Recalled basic notions of a function being one to one, onto, and invertible. Think of functions in terms of a bunch of arrows from the domain set to the range set. To find the inverse function you should reverse the arrows.
- Some example of groups without the definition of a group:

1. $G L_{2}(\mathbb{R})=\left\{g:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: \operatorname{det} g=a d-b c \neq 0\right\}$.
2. Vector space with "group" operation being addition.
3. The permutation group of invertible functions on a set S like $S=$ $\{1,2, \ldots, n\}$.

1.1 A Little Number Theory

Axiom 1.2 (Well Ordering Principle) Every non-empty subset, S, of \mathbb{N} contains a smallest element.

We say that a subset $S \subset \mathbb{Z}$ is bounded below if $S \subset[k, \infty)$ for some $k \in \mathbb{Z}$ and bounded above if $S \subset(-\infty, k]$ for some $k \in \mathbb{Z}$.

Remark 1.3 (Well ordering variations). The well ordering principle may also be stated equivalently as:

1. any subset $S \subset \mathbb{Z}$ which is bounded from below contains a smallest element or
2. any subset $S \subset \mathbb{Z}$ which is bounded from above contains a largest element.

To see this, suppose that $S \subset[k, \infty)$ and then apply the well ordering principle to $S-k$ to find a smallest element, $n \in S-k$. That is $n \in S-k$ and $n \leq s-k$ for all $s \in S$. Thus it follows that $n+k \in S$ and $n+k \leq s$ for all $s \in S$ so that $n+k$ is the desired smallest element in S.

For the second equivalence, suppose that $S \subset(-\infty, k]$ in which case $-S \subset$ $[-k, \infty)$ and therefore there exist a smallest element $n \in-S$, i.e. $n \leq-s$ for all $s \in S$. From this we learn that $-n \in S$ and $-n \geq s$ for all $s \in S$ so that $-n$ is the desired largest element of S.

Theorem 1.4 (Division Algorithm). Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}_{+}$, then there exists unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ with $r<b$ such that

$$
a=b q+r
$$

(For example,

$$
\left.5\right|_{\frac{10}{2}} ^{\frac{2}{12}} \text { so that } 12=2 \cdot 5+2 \text {.) }
$$

Proof. Let

$$
S:=\{k \in \mathbb{Z}: a-b k \geq 0\}
$$

which is bounded from above. Therefore we may define,

$$
q:=\max \{k: a-b k \geq 0\} .
$$

As q is the largest element of S we must have,

$$
r:=a-b q \geq 0 \text { and } a-b(q+1)<0
$$

The second inequality is equivalent to $r-b<0$ which is equivalent to $r<b$. This completes the existence proof.

To prove uniqueness, suppose that $a=b q^{\prime}+r^{\prime}$ in which case, $b q^{\prime}+r^{\prime}=b q+r$ and hence,

$$
\begin{equation*}
b>\left|r^{\prime}-r\right|=\left|b\left(q-q^{\prime}\right)\right|=b\left|q-q^{\prime}\right| \tag{1.1}
\end{equation*}
$$

Since $\left|q-q^{\prime}\right| \geq 1$ if $q \neq q^{\prime}$, the only way Eq. 1.1) can hold is if $q=q^{\prime}$ and $r=r^{\prime}$.

Axiom 1.5 (Strong form of mathematical induction) Suppose that $S \subset$ \mathbb{Z} is a non-empty set containing an element a with the property that; if $[a, n) \cap$ $\mathbb{Z} \subset S$ then $n \in \mathbb{Z}$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Axiom 1.6 (Weak form of mathematical induction) Suppose that $S \subset$ \mathbb{Z} is a non-empty set containing an element a with the property that for every $n \in S$ with $n \geq a, n+1 \in S$, then $[a, \infty) \cap \mathbb{Z} \subset S$.

Remark 1.7. In Axioms 1.5 and 1.6 it suffices to assume that $a=0$. For if $a \neq 0$ we may replace S by $S-a:=\{s-a: s \in S\}$. Then applying the axioms with $a=0$ to $S-a$ shows that $[0, \infty) \cap \mathbb{Z} \subset S-a$ and therefore,

$$
[a, \infty) \cap \mathbb{Z}=[0, \infty) \cap \mathbb{Z}+a \subset S
$$

Theorem 1.8 (Equivalence of Axioms). Axioms 1.2 - 1.6 are equivalent. (Only partially covered in class.)

Proof. We will prove $1.2 \Longleftrightarrow 1.5 \Longleftrightarrow 1.6 \Longrightarrow 1.2$
$1.2 \Longrightarrow 1.5$ Suppose $0 \in S \subset \mathbb{Z}$ satisfies the assumption in Axiom 1.5 If \mathbb{N}_{0} is not contained in S, then $\mathbb{N}_{0} \backslash S$ is a non empty subset of \mathbb{N} and therefore has a smallest element, n. It then follows by the definition of n that $[0, n) \cap \mathbb{Z} \subset S$ and therefore by the assumed property on $S, n \in S$. This is a contradiction since n can not be in both S and $\mathbb{N}_{0} \backslash S$.
$1.5 \Longrightarrow 1.2$ Suppose that $S \subset \mathbb{N}$ does not have a smallest element and let $Q:=\mathbb{N} \backslash S$. Then $0 \in Q$ since otherwise $0 \in S$ would be the minimal element of S. Moreover if $[1, n) \cap \mathbb{Z} \subset Q$, then $n \in Q$ for otherwise n would be a minimal element of S. Hence by the strong form of mathematical induction, it follows that $Q=\mathbb{N}$ and hence that $S=\emptyset$.
$1.5 \Longrightarrow 1.6$ Any set, $S \subset \mathbb{Z}$ satisfying the assumption in Axiom 1.6 will also satisfy the assumption in Axiom 1.5 and therefore by Axiom 1.5 we will have $[a, \infty) \cap \mathbb{Z} \subset S$.
1.6 $\Longrightarrow 1.5$ Suppose that $0 \in S \subset \mathbb{Z}$ satisfies the assumptions in Axiom 1.5 . Let $Q:=\{n \in \mathbb{N}:[0, n) \subset S\}$. By assumption, $0 \in Q$ since $0 \in S$. Moreover, if $n \in Q$, then $[0, n) \subset S$ by definition of Q and hence $n+1 \in Q$. Thus Q satisfies the restrictions on the set, S, in Axiom 1.6 and therefore $Q=\mathbb{N}$. So if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}=Q$ and thus $n \in[0, n+1) \subset S$ which shows that $\mathbb{N} \subset S$. As $0 \in S$ by assumption, it follows that $\mathbb{N}_{0} \subset S$ as desired.

Lecture $2(1 / 7 / 2009)$

Definition 2.1. Given $a, b \in \mathbb{Z}$ with $a \neq 0$ we say that a divides b or a is a divisor of b (write $a \mid b$) provided $b=a k$ for some $k \in \mathbb{Z}$.

Definition 2.2. Given $a, b \in \mathbb{Z}$ with $|a|+|b|>0$, we let

$$
\operatorname{gcd}(a, b):=\max \{m: m \mid a \text { and } m \mid b\}
$$

be the greatest common divisor of a and b. (We do not define $\operatorname{gcd}(0,0)$ and we have $\operatorname{gcd}(0, b)=|b|$ for all $b \in \mathbb{Z} \backslash\{0\}$.) If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.

Remark 2.3. Notice that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|) \geq 0$ and $\operatorname{gcd}(a, 0)=0$ for all $a \neq 0$.

Lemma 2.4. Suppose that $a, b \in \mathbb{Z}$ with $b \neq 0$. Then $\operatorname{gcd}(a+k b, b)=\operatorname{gcd}(a, b)$ for all $k \in \mathbb{Z}$.

Proof. Let S_{k} denote the set of common divisors of $a+k b$ and b. If $d \in S_{k}$, then $d \mid b$ and $d \mid(a+k b)$ and therefore $d \mid a$ so that $d \in S_{0}$. Conversely if $d \in S_{0}$, then $d \mid b$ and $d \mid a$ and therefore $d \mid b$ and $d \mid(a+k b)$, i.e. $d \in S_{k}$. This shows that $S_{k}=S_{0}$, i.e. $a+k b$ and b and a and b have the same common divisors and hence the same greatest common divisors.

This lemma has a very useful corollary.
Lemma 2.5 (Euclidean Algorithm). Suppose that a, b are positive integers with $a<b$ and let $b=k a+r$ with $0 \leq r<a$ by the division algorithm. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$ and in particular if $r=0$, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, 0)=a .
$$

Example 2.6. Suppose that $a=15=3 \cdot 5$ and $b=28=2^{2} \cdot 7$. In this case it is easy to see that $\operatorname{gcd}(15,28)=1$. Nevertheless, lets use Lemma 2.5 repeatedly as follows;

$$
\begin{align*}
28 & =1 \cdot 15+13 \text { so } \operatorname{gcd}(15,28)=\operatorname{gcd}(13,15) \tag{2.1}\\
15 & =1 \cdot 13+2 \text { so } \operatorname{gcd}(13,15)=\operatorname{gcd}(2,13) \tag{2.2}\\
13 & =6 \cdot 2+1 \text { so } G \operatorname{gcd}(2,13)=\operatorname{gcd}(1,2) \tag{2.3}\\
2 & =2 \cdot 1+0 \text { so } \operatorname{gcd}(1,2)=\operatorname{gcd}(0,1)=1 \tag{2.4}
\end{align*}
$$

Moreover making use of Eqs. (2.1 2.3) in reverse order we learn that,

$$
\begin{aligned}
1 & =13-6 \cdot 2 \\
& =13-6 \cdot(15-1 \cdot 13)=7 \cdot 13-6 \cdot 15 \\
& =7 \cdot(28-1 \cdot 15)-6 \cdot 15=7 \cdot 28-13 \cdot 15 .
\end{aligned}
$$

Thus we have also shown that

$$
1=s \cdot 28+t \cdot 15 \text { where } s=7 \text { and } t=-13
$$

The choices for s and t used above are certainly not unique. For example we have,

$$
0=15 \cdot 28-28 \cdot 15
$$

which added to

$$
1=7 \cdot 28-13 \cdot 15
$$

implies,

$$
\begin{aligned}
1 & =(7+15) \cdot 28-(13+28) \cdot 15 \\
& =22 \cdot 28-41 \cdot 15
\end{aligned}
$$

as well.
Example 2.7. Suppose that $a=40=2^{3} \cdot 5$ and $b=52=2^{2} \cdot 13$. In this case we have $\operatorname{gcd}(40,52)=4$. Working as above we find,

$$
\begin{aligned}
& 52=1 \cdot 40+12 \\
& 40=3 \cdot 12+4 \\
& 12=3 \cdot 4+0
\end{aligned}
$$

so that we again see $\operatorname{gcd}(40,52)=4$. Moreover,

$$
4=40-3 \cdot 12=40-3 \cdot(52-1 \cdot 40)=4 \cdot 40-3 \cdot 52 .
$$

So again we have shown $\operatorname{gcd}(a, b)=s a+t b$ for some $s, t \in \mathbb{Z}$, in this case $s=4$ and $t=3$.

Example 2.8. Suppose that $a=333=3^{2} \cdot 37$ and $b=459=3^{3} \cdot 17$ so that $\operatorname{gcd}(333,459)=3^{2}=9$. Repeated use of Lemma 2.5 gives,

$$
\begin{align*}
459 & =1 \cdot 333+126 \text { so } \operatorname{gcd}(333,459)=\operatorname{gcd}(126,333) \tag{2.5}\\
333 & =2 \cdot 126+81 \text { so } \operatorname{gcd}(126,333)=\operatorname{gcd}(81,126) \tag{2.6}\\
126 & =81+45 \text { so } \operatorname{gcd}(81,126)=\operatorname{gcd}(45,81) \tag{2.7}\\
81 & =45+36 \text { so } \operatorname{gcd}(45,81)=\operatorname{gcd}(36,45) \tag{2.8}\\
45 & =36+9 \text { so } \operatorname{gcd}(36,45)=\operatorname{gcd}(9,36), \text { and } \tag{2.9}\\
36 & =4 \cdot 9+0 \text { so } \operatorname{gcd}(9,36)=\operatorname{gcd}(0,9)=9 \tag{2.10}
\end{align*}
$$

Thus we have shown that

$$
\operatorname{gcd}(333,459)=9
$$

We can even say more. From Eq. 2.10 we have, $9=45-36$ and then from Eq. 2.10),

$$
9=45-36=45-(81-45)=2 \cdot 45-81
$$

Continuing up the chain this way we learn,

$$
\begin{aligned}
9 & =2 \cdot(126-81)-81=2 \cdot 126-3 \cdot 81 \\
& =2 \cdot 126-3 \cdot(333-2 \cdot 126)=8 \cdot 126-3 \cdot 333 \\
& =8 \cdot(459-1 \cdot 333)-3 \cdot 333=8 \cdot 459-11 \cdot 333
\end{aligned}
$$

so that

$$
9=8 \cdot 459-11 \cdot 333
$$

The methods of the previous two examples can be used to prove Theorem 2.9 below. However, we will two different variants of the proof.

Theorem 2.9. If $a, b \in \mathbb{Z} \backslash\{0\}$, then there exists (not unique) numbers, $s, t \in \mathbb{Z}$ such that

$$
\begin{equation*}
\operatorname{gcd}(a, b)=s a+t b \tag{2.11}
\end{equation*}
$$

Moreover if $m \neq 0$ is any common divisor of both a and b then $m \mid \operatorname{gcd}(a, b)$.
Proof. If m is any common divisor of a and b then m is also a divisor of $s a+t b$ for any $s, t \in \mathbb{Z}$. (In particular this proves the second assertion given the truth of Eq. 2.11).) In particular, $\operatorname{gcd}(a, b)$ is a divisor of $s a+t b$ for all $s, t \in \mathbb{Z}$. Let $S:=\{s a+t b: s, t \in \mathbb{Z}\}$ and then define

$$
\begin{equation*}
d:=\min \left(S \cap \mathbb{Z}_{+}\right)=s a+t b \text { for some } s, t \in \mathbb{Z} \tag{2.12}
\end{equation*}
$$

By what we have just said if follows that $\operatorname{gcd}(a, b) \mid d$ and in particular $d \geq$ $\operatorname{gcd}(a, b)$. If we can snow d is a common divisor of a and b we must then have $d=\operatorname{gcd}(a, b)$. However, using the division algorithm,

$$
\begin{equation*}
a=k d+r \text { with } 0 \leq r<d \tag{2.13}
\end{equation*}
$$

As

$$
r=a-k d=a-k(s a+t b)=(1-k s) a-k t b \in S \cap \mathbb{N}
$$

if r were greater than 0 then $r \geq d$ (from the definition of d in Eq. 2.12) which would contradict Eq. 2.13). Hence it follows that $r=0$ and $d \mid a$. Similarly, one shows that $d \mid b$.

Lemma 2.10 (Euclid's Lemma). If $\operatorname{gcd}(c, a)=1$, i.e. c and a are relatively prime, and $c \mid a b$ then $c \mid b$.

Proof. We know that there exists $s, t \in \mathbb{Z}$ such that $s a+t c=1$. Multiplying this equation by b implies,

$$
s a b+t c b=b
$$

Since $c \mid a b$ and $c \mid c b$, it follows from this equation that $c \mid b$.
Corollary 2.11. Suppose that $a, b \in \mathbb{Z}$ such that there exists $s, t \in \mathbb{Z}$ with $1=s a+t b$. Then a and b are relatively prime, i.e. $\operatorname{gcd}(a, b)=1$.

Proof. If $m>0$ is a divisor of a and b, then $m \mid(s a+t b)$, i.e. $m \mid 1$ which implies $m=1$. Thus the only positive common divisor of a and b is 1 and hence $\operatorname{gcd}(a, b)=1$.

2.1 Ideals (Not covered in class.)

Definition 2.12. As non-empty subset $S \subset \mathbb{Z}$ is called an ideal if S is closed under addition (i.e. $S+S \subset S$) and under multiplication by any element of \mathbb{Z}, i.e. $\mathbb{Z} \cdot S \subset S$.

Example 2.13. For any $n \in \mathbb{Z}$, let

$$
(n):=\mathbb{Z} \cdot n=n \mathbb{Z}:=\{k n: k \in \mathbb{Z}\}
$$

I is easily checked that (n) is an ideal. The next theorem states that this is a listing of all the ideals of \mathbb{Z}.
Theorem 2.14 (Ideals of \mathbb{Z}). If $S \subset \mathbb{Z}$ is an ideal then $S=(n)$ for some $n \in \mathbb{Z}$. Moreover either $S=\{0\}$ in which case $n=0$ for $S \neq\{0\}$ in which case $n=\min \left(S \cap \mathbb{Z}_{+}\right)$.

Proof. If $S=\{0\}$ we may take $n=0$. So we may assume that S contains a non-zero element a. By assumption that $\mathbb{Z} \cdot S \subset S$ it follows that $-a \in S$ as well and therefore $S \cap \mathbb{Z}_{+}$is not empty as either a or $-a$ is positive. By the well ordering principle, we may define n as, $n:=\min S \cap \mathbb{Z}_{+}$.

Since $\mathbb{Z} \cdot n \subset \mathbb{Z} \cdot S \subset S$, it follows that $(n) \subset S$. Conversely, suppose that $s \in S \cap \mathbb{Z}_{+}$. By the division algorithm, $s=k n+r$ where $k \in \mathbb{N}$ and $0 \leq r<n$. It now follows that $r=s-k n \in S$. If $r>0$, we would have to have $r \geq n=\min S \cap \mathbb{Z}_{+}$and hence we see that $r=0$. This shows that $s=k n$ for some $k \in \mathbb{N}$ and therefore $s \in(n)$. If $s \in S$ is negative we apply what we have just proved to $-s$ to learn that $-s \in(n)$ and therefore $s \in(n)$.

Remark 2.15. Notice that $a \mid b$ iff $b=a k$ for some $k \in \mathbb{Z}$ which happens iff $b \in(a)$.

Proof. Second Proof of Theorem 2.9. Let $S:=\{s a+t b: s, t \in \mathbb{Z}\}$. One easily checks that $S \subset \mathbb{Z}$ is an ideal and therefore $S=(d)$ where $d:=$ $\min S \cap \mathbb{Z}_{+}$. Notice that $d=s a+t b$ for some $s, t \in \mathbb{Z}$ as $d \in S$. We now claim that $d=\operatorname{gcd}(a, b)$. To prove this we must show that d is a divisor of a and b and that it is the maximal such divisor.

Taking $s=1$ and $t=0$ or $s=0$ and $t=1$ we learn that both $a, b \in S=(d)$, i.e. $d \mid a$ and $d \mid b$. If $m \in \mathbb{Z}_{+}$and $m \mid a$ and $m \mid b$, then

$$
\frac{d}{m}=s \frac{a}{m}+t \frac{b}{m} \in \mathbb{Z}
$$

from which it follows that so that $m \mid d$. This shows that $d=\operatorname{gcd}(a, b)$ and also proves the last assertion of the theorem.

Alternate proof of last statement. If $m \mid a$ and $m \mid b$ there exists $k, l \in \mathbb{Z}$ such that $a=k m$ and $b=l m$ and therefore,

$$
d=s a+t b=(s k+t l) m
$$

which again shows that $m \mid d$.
Remark 2.16. As a second proof of Corollary 2.11, if $1 \in S$ (where S is as in the second proof of Theorem 2.9) , then $\operatorname{gcd}(a, b)=\min \left(S \cap \mathbb{Z}_{+}\right)=1$.

Lecture 3 ($1 / 9 / 2009$)

3.1 Prime Numbers

Definition 3.1. A number, $p \in \mathbb{Z}$, is prime iff $p \geq 2$ and p has no divisors other than 1 and p. Alternatively $p u t, p \geq 2$ and $\operatorname{gcd}(a, p)$ is either 1 or p for all $a \in \mathbb{Z}$.

Example 3.2. The first few prime numbers are $2,3,5,7,11,13,17,19,23, \ldots$.
Lemma 3.3 (Euclid's Lemma again). Suppose that p is a prime number and $p \mid a b$ for some $a, b \in \mathbb{Z}$ then $p \mid a$ or $p \mid b$.

Proof. We know that $\operatorname{gcd}(a, p)=1$ or $\operatorname{gcd}(a, p)=p$. In the latter case $p \mid a$ and we are done. In the former case we may apply Euclid's Lemma 2.10 to conclude that $p \mid b$ and so again we are done.

Theorem 3.4 (The fundamental theorem of arithmetic). Every $n \in \mathbb{Z}$ with $n \geq 2$ is a prime or a product of primes. The product is unique except for the order of the primes appearing the product. Thus if $n \geq 2$ and $n=p_{1} \ldots p_{n}=$ $q_{1} \ldots q_{m}$ where the p 's and q 's are prime, then $m=n$ and after renumbering the q 's we have $p_{i}=q_{i}$.

Proof. Existence: This clearly holds for $n=2$. Now suppose for every $2 \leq k \leq n$ may be written as a product of primes. Then either $n+1$ is prime in which case we are done or $n+1=a \cdot b$ with $1<a, b<n+1$. By the induction hypothesis, we know that both a and b are a product of primes and therefore so is $n+1$. This completes the inductive step.

Uniqueness: You are asked to prove the uniqueness assertion in $0 . \# 25$. Here is the solution. Observe that $p_{1} \mid q_{1} \ldots q_{m}$. If p_{1} does not divide q_{1} then $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$ and therefore by Euclid's Lemma 2.10, $p_{1} \mid\left(q_{2} \ldots q_{m}\right)$. It now follows by induction that p_{1} must divide one of the q_{i}, by relabeling we may assume that $q_{1}=p_{1}$. The result now follows by induction on $n \vee m$.

Definition 3.5. The least common multiple of two non-zero integers, a, b, is the smallest positive number which is both a multiple of a and b and this number will be denoted by $\operatorname{lcm}(a, b)$. Notice that $m=\min \left((a) \cap(b) \cap \mathbb{Z}_{+}\right)$.

Example 3.6. Suppose that $a=12=2^{2} \cdot 3$ and $b=15=3 \cdot 5$. Then $\operatorname{gcd}(12,15)=$ 3 while

$$
\operatorname{lcm}(12,15)=\left(2^{2} \cdot 3\right) \cdot 5=2^{2} \cdot(3 \cdot 5)=\left(2^{2} \cdot 3 \cdot 5\right)=60
$$

Observe that

$$
\operatorname{gcd}(12,15) \cdot \operatorname{lcm}(12,15)=3 \cdot\left(2^{2} \cdot 3 \cdot 5\right)=\left(2^{2} \cdot 3\right) \cdot(3 \cdot 5)=12 \cdot 15
$$

This is a special case of Chapter $0 . \# 12$ on p. 23 which can be proved by similar considerations. In general if

$$
a=p_{1}^{n_{1}} \cdots \cdots p_{k}^{n_{k}} \text { and } b=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}} \text { with } n_{j}, m_{l} \in \mathbb{N}
$$

then

$$
\operatorname{gcd}(a, b)=p_{1}^{n_{1} \wedge m_{1}} \cdots \cdots p_{k}^{n_{k} \wedge m_{k}} \text { and } \operatorname{lcm}(a, b)=p_{1}^{n_{1} \vee m_{1}} \cdots \cdots p_{k}^{n_{k} \vee m_{k}}
$$

Therefore,

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =p_{1}^{n_{1} \wedge m_{1}+n_{1} \vee m_{1}} \cdots \cdot p_{k}^{n_{k} \wedge m_{k}+n_{k} \vee m_{k}} \\
& =p_{1}^{n_{1}+m_{1}} \cdots \cdot p_{k}^{n_{k}+m_{k}}=a \cdot b .
\end{aligned}
$$

3.2 Modular Arithmetic

Definition 3.7. Let n be a positive integer and let $a=q_{a} n+r_{a}$ with $0 \leq r_{a}<n$. Then we define $a \bmod n:=r_{a}$. (Sometimes we might write $a=r_{a} \bmod n-b u t$ I will try to stick with the first usage.)

Lemma 3.8. Let $n \in \mathbb{Z}_{+}$and $a, b, k \in \mathbb{Z}$. Then:

1. $(a+k n) \bmod n=a \bmod n$.
2. $(a+b) \bmod n=(a \bmod n+b \bmod n) \bmod n$.
3. $(a \cdot b) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$.

Proof. Let $r_{a}=a \bmod n, r_{b}=b \bmod n$ and $q_{a}, q_{b} \in \mathbb{Z}$ such that $a=q_{a} n+r_{a}$ and $b=q_{b} n+r_{b}$.

1. Then $a+k n=\left(q_{a}+k\right) n+r_{a}$ and therefore,

$$
(a+k n) \bmod n=r_{a}=a \bmod n
$$

2. $a+b=\left(q_{a}+q_{b}\right) n+r_{a}+r_{b}$ and hence by item 1 with $k=q_{a}+q_{b}$ we find,

$$
(a+b) \bmod n=\left(r_{a}+r_{b}\right) \bmod n .=(a \bmod n+b \bmod n) \bmod n
$$

3. For the last assertion,

$$
a \cdot b=\left[q_{a} n+r_{a}\right] \cdot\left[q_{b} n+r_{b}\right]=\left(q_{a} q_{b} n+r_{a} q_{b}+r_{b} q_{a}\right) n+r_{a} \cdot r_{b}
$$

and so again by item 1 . with $k=\left(q_{a} q_{b} n+r_{a} q_{b}+r_{b} q_{a}\right)$ we have,
$(a \cdot b) \bmod n=\left(r_{a} \cdot r_{b}\right) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$.

Example 3.9. Take $n=4, a=18$ and $b=7$. Then $18 \bmod 4=2$ and $7 \bmod 4=$ 3. On one hand,

$$
\begin{aligned}
(18+7) \bmod 4 & =25 \bmod 4=1 \text { while on the other, } \\
(2+3) \bmod 4 & =1
\end{aligned}
$$

Similarly, $18 \cdot 7=126=4 \cdot 31+2$ so that

$$
\begin{aligned}
(18 \cdot 7) \bmod 4 & =2 \text { while } \\
(2 \cdot 3) \bmod 4 & =6 \bmod 4=2
\end{aligned}
$$

Remark 3.10 (Error Detection). Companies often add extra digits to identification numbers for the purpose of detecting forgery or errors. For example the United Parcel Service uses a mod 7 check digit. Hence if the identification number were $n=354691332$ one would append
$n \bmod 7=354691332 \bmod 7=2$ to the number to get
$\quad 354691332 _2$ (say).

See the book for more on this method and other more elaborate check digit schemes. Note,

$$
354691332=50670190 \cdot 7+2
$$

Remark 3.11. Suppose that $a, n \in \mathbb{Z}_{+}$and $b \in \mathbb{Z}$, then it is easy to show (you prove)

$$
(a b) \bmod (a n)=a \cdot(b \bmod n)
$$

Example 3.12 (Computing mod 10). We have,

$$
\begin{aligned}
123456 \bmod 10 & =6 \\
123456 \bmod 100 & =56 \\
123456 \bmod 1000 & =456 \\
123456 \bmod 10000 & =3456 \\
123456 \bmod 100000 & =23456 \\
123456 \bmod 1000000 & =123456
\end{aligned}
$$

so that

$$
a_{n} \ldots a_{2} a_{1} \bmod 10^{k}=a_{k} \ldots a_{2} a_{1} \text { for all } k \leq n
$$

Solution to Exercise (0.52). As an example, here is a solution to Problem 0.52 of the book which states that $\overbrace{111 \ldots 1}^{k \text { times }}$ is not the square of an integer except when $k=1$.

As 11 is prime we may assume that $k \geq 3$. By Example 3.12 $111 \ldots 1 \bmod 10=1$ and $111 \ldots 1 \bmod 100=11$. Hence $1111 \ldots 1=n^{2}$ for some integer n, we must have

$$
n^{2} \bmod 10=1 \text { and }\left(n^{2}-1\right) \bmod 100=10
$$

The first condition implies that $n \bmod 10=1$ or 9 as $1^{2}=1$ and $9^{2} \bmod 10=$ $81 \bmod 10=1$. In the first case we have, $n=k \cdot 10+1$ and therefore we must require,
$10=\left(n^{2}-1\right) \bmod 100=\left[(k \cdot 10+1)^{2}-1\right] \bmod 100=\left(k^{2} \cdot 100+2 k \cdot 10\right) \bmod 100$

$$
=(2 k \cdot 10) \bmod 100=10 \cdot(2 k \bmod 10)
$$

which implies $1=(2 k \bmod 10)$ which is impossible since $2 k \bmod 10$ is even.
For the second case we must have,

$$
\begin{aligned}
10 & =\left(n^{2}-1\right) \bmod 100 \bmod 100=\left[(k \cdot 10+9)^{2}-1\right] \bmod 100 \\
& =\left(k^{2} \cdot 100+18 k \cdot 10+81-1\right) \bmod 100 \\
& =((10+8) k \cdot 10+8 \cdot 10) \bmod 100 \\
& =(8(k+1) \cdot 10) \bmod 100 \\
& =10 \cdot 8 k \bmod 10
\end{aligned}
$$

which implies which $1=(8 k \bmod 10)$ which again is impossible since $8 k \bmod 10$ is even.

Solution to Exercise (0.52 Second and better solution). Notice that $111 \ldots 11=111 \ldots 00+11$ and therefore,

$$
111 \ldots 11 \bmod 4=11 \bmod 4=3
$$

On the other hand, if $111 \ldots 11=n^{2}$ we must have,

$$
(n \bmod 4)^{2} \bmod 4=3
$$

There are only four possibilities for $r:=n \bmod 4$, namely $r=0,1,2,3$ and these are not allowed since $0^{2} \bmod 4=0 \neq 3,1^{2} \bmod 4=1 \neq 3,2^{2} \bmod 4=0 \neq 3$, and $3^{2} \bmod 4=1 \neq 3$.

3.3 Equivalence Relations

Definition 3.13. A equivalence relation on a set S is a subset, $R \subset S \times S$ with the following properties:

1. R is reflexive: $(a, a) \in R$ for all $a \in S$
2. R is symmetric: If $(a, b) \in R$ then $(b, a) \in R$.
3. R is transitive: If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

We will usually write $a \sim b$ to mean that $(a, b) \in R$ and pronounce this as a is equivalent to b. With this notation we are assuming $a \sim a, a \sim b \Longrightarrow b \sim a$ and $a \sim b$ and $b \sim c \Longrightarrow a \sim c$. (Note well: the book write $a R b$ rather than $a \sim b$.)

Example 3.14. If $S=\{1,2,3,4,5\}$ then:

1. $R=\{1,2,3\}^{2} \cup\{4,5\}^{2}$ is an equivalence relation.
2. $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(2,3),(3,2)\}$ is not an equivalence relation. For example, $1 \sim 2$ and $2 \sim 3$ but 1 is not equivalent to 3 , so R is not transitive.

Example 3.15. Let $n \in \mathbb{Z}_{+}, S=\mathbb{Z}$ and say $a \sim b$ iff $a \bmod n=b \bmod n$. This is an equivalence relation. For example, when $s=2$ we have $a \sim b$ iff both a and b are odd or even. So in this case $R=\{\text { odd }\}^{2} \cup\{\text { even }\}^{2}$.

Example 3.16. Let $S=\mathbb{R}$ and say $a \sim b$ iff $a \geq b$. Again not symmetric so is not an equivalence relation.

Definition 3.17. A partition of a set S is a decomposition, $\left\{S_{\alpha}\right\}_{\alpha \in I}$, by disjoint sets, so S_{α} is a non-empty subset of S such that $S=\cup_{\alpha \in I} S_{\alpha}$ and $S_{\alpha} \cap S_{\beta}=\emptyset$ if $\alpha \neq \beta$.

Example 3.18. If $\left\{S_{\alpha}\right\}_{\alpha \in I}$ is a partition of S, then $R=\cup_{\alpha \in I} S_{\alpha}^{2}$ is an equivalence relation. The next theorem states this is the general type of equivalence relation.

Lecture 4 (1/12/2009)

Theorem 4.1. Let R or \sim be an equivalence relation on S and for each $a \in S$, let

$$
[a]:=\{x \in S: a \sim x\}
$$

be the equivalence class of a.. Then S is partitioned by its distinct equivalence classes.

Proof. Because \sim is reflexive, $a \in[a]$ for all a and therefore every element $a \in S$ is a member of its own equivalence class. Thus to finish the proof we must show that distinct equivalence classes are disjoint. To this end we will show that if $[a] \cap[b] \neq \emptyset$ then in fact $[a]=[b]$. So suppose that $c \in[a] \cap[b]$ and $x \in[a]$. Then we know that $a \sim c, b \sim c$ and $a \sim x$. By reflexivity and transitivity of \sim we then have,

$$
x \sim a \sim c \sim b, \text { and hence } b \sim x
$$

which shows that $x \in[b]$. Thus we have shown $[a] \subset[b]$. Similarly it follows that $[b] \subset[a]$.

Exercise 4.1. Suppose that $S=\mathbb{Z}$ with $a \sim b$ iff $a \bmod n=b \bmod n$. Identify the equivalence classes of \sim. Answer,

$$
\{[0],[1], \ldots,[n-1]\}
$$

where

$$
[i]=i+n \mathbb{Z}=\{i+n s: s \in \mathbb{Z}\}
$$

Exercise 4.2. Suppose that $S=\mathbb{R}^{2}$ with $\mathbf{a}=\left(a_{1}, a_{2}\right) \sim \mathbf{b}=\left(b_{1}, b_{2}\right)$ iff $|\mathbf{a}|=$ $|\mathbf{b}|$ where $|\mathbf{a}|:=a_{1}^{2}+a_{2}^{2}$. Show that \sim is an equivalence relation and identify the equivalence classes of \sim. Answer, the equivalence classes consists of concentric circles centered about the origin $(0,0) \in S$.

4.1 Binary Operations and Groups - a first look

Definition 4.2. A binary operation on a set S is a function, $*: S \times S \rightarrow S$. We will typically write $a * b$ rather than $*(a, b)$.

Example 4.3. Here are a number of examples of binary operations.

1. $S=\mathbb{Z}$ and $*="+"$
2. $S=\{$ odd integers $\}$ and $*="+"$ is not an example of a binary operator since $3 * 5=3+5=8 \notin S$.
3. $S=\mathbb{Z}$ and $*=" . "$
4. $S=\mathbb{R} \backslash\{0\}$ and $*=$ "."
5. $S=\mathbb{R} \backslash\{0\}$ with $*=" "=" \div "$.
6. Let S be the set of 2×2 real (complex) matrices with $A * B:=A B$.

Definition 4.4. Let $*$ be a binary operation on a set S. Then;

1. $*$ is associative if $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$.
2. $e \in S$ is an identity element if $e * a=a=a * e$ for all $a \in S$.
3. Suppose that $e \in S$ is an identity element and $a \in S$. We say that $b \in S$ is an inverse to a if $b * a=e=a * b$.
4. $*$ is commutative if $a * b=b * a$ for all $a, b \in S$.

Definition 4.5 (Group). A group is a triple, $(G, *, e)$ where $*$ is an associative binary operation on a set, $G, e \in G$ is an identity element, and each $g \in G$ has an inverse in G. (Typically we will simply denote $g * h$ by $g h$.)

Definition 4.6 (Commutative Group). A group, (G, e), is commutative if $g h=h g$ for all $h, g \in G$.

Example $4.7((\mathbb{Z},+))$. One easily checks that $(\mathbb{Z}, *=+)$ is a commutative group with $e=0$ and the inverse to $a \in \mathbb{Z}$ is $-a$. Observe that $e * a=e+a=a$ for all a iff $e=0$.

Example 4.8. $S=\mathbb{Z}$ and $*=$ "." is an associative, commutative, binary operation with $e=1$ being the identity. Indeed $e \cdot a=a$ for all $a \in \mathbb{Z}$ implies $e=e \cdot 1=1$. This is not a group since there are no inverses for any $a \in \mathbb{Z}$ with $|a| \geq 2$.

Example $4.9((\mathbb{R} \backslash\{0\}, \cdot)) . G=\mathbb{R} \backslash\{0\}=: \mathbb{R}^{*}$, and $*="$." is a commutative group, $e=1$, an inverse to a is $1 / a$.

Example 4.10. $S=\mathbb{R} \backslash\{0\}$ with $*=" \ "=" \div "$. In this case $*$ is not associative since

$$
\begin{aligned}
& a *(b * c)=a /(b / c)=\frac{a c}{b} \text { while } \\
& (a * b) * c=(a / b) / c=\frac{a}{b c} .
\end{aligned}
$$

It is also not commutative since $a / b \neq b / a$ in general. There is no identity element $e \in S$. Indeed, $e * a=a=a * e$, we would imply $e=a^{2}$ for all $a \neq 0$ which is impossible, i.e. $e=1$ and $e=4$ at the same time.

Example 4.11. Let S be the set of 2×2 real (complex) matrices with $A * B:=$ $A B$. This is a non-commutative binary operation which is associative and has an identity, namely

$$
e:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

It is however not a group only those $A \in S$ with $\operatorname{det} A \neq 0$ admit an inverse.
Example $4.12\left(G L_{2}(\mathbb{R})\right)$. Let $G:=G L_{2}(\mathbb{R})$ be the set of 2×2 real (complex) matrices such that $\operatorname{det} A \neq 0$ with $A * B:=A B$ is a group with $e:=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and the inverse to A being A^{-1}. This group is non-abeliean for example let

$$
A:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

then

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] \text { while } \\
& B A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] \neq A B
\end{aligned}
$$

Example 4.13 $\left(S L_{2}(\mathbb{R})\right.$). Let $S L_{2}(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}): \operatorname{det} A=1\right\}$. This is a group since $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B=1$ if $A, B \in S L_{2}(\mathbb{R})$.

Lecture 5 (1/14/2009)

5.1 Elementary Properties of Groups

Let (G, \cdot) be a group.
Lemma 5.1. The identity element in G is unique.
Proof. Suppose that e and e^{\prime} both satisfy $e a=a e=a$ and $e^{\prime} a=a e^{\prime}=a$ for all $a \in G$, then $e=e^{\prime} e=e^{\prime}$.

Lemma 5.2. Left and right cancellation holds. Namely, if $a b=a c$ then $b=c$ and $b a=c a$ then $b=c$.

Proof. Let d be an inverse to a. If $a b=a c$ then $d(a b)=d(a c)$. On the other hand by associativity,

$$
d(a b)=(d a) b=e b=b \text { and similarly, } d(a c)=c
$$

Thus it follows that $b=c$. The right cancellation is proved similarly.
Example 5.3 (No cross cancellation in general). Let $G=G L_{2}(\mathbb{R})$,

$$
A:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], B:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } C:=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Then

$$
A B=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right]=C A
$$

yet $B \neq C$. In general, all we can say if $A B=C A$ is that $C=A B A^{-1}$.
Lemma 5.4. Inverses in G are unique.
Proof. Suppose that b and b^{\prime} are both inverses to a, then $b a=e=b^{\prime} a$. Hence by cancellation, it follows that $b=b^{\prime}$.

Notation 5.5 If $g \in G$, let g^{-1} denote the unique inverse to g. (If we are in an abelian group and using the symbol, "+" for the binary operation we denote g^{-1} by $-g$ instead.

Example 5.6. Let G be a group. Because of the associativity law it makes sense to write $a_{1} a_{2} a_{3}$ and $a_{1} a_{2} a_{3} a_{4}$ where $a_{i} \in G$. Indeed, we may either interpret $a_{1} a_{2} a_{3}$ as $\left(a_{1} a_{2}\right) a_{3}$ or as $a_{1}\left(a_{2} a_{3}\right)$ which are equal by the associativity law. While we might interpret $a_{1} a_{2} a_{3} a_{4}$ as one of the following expressions;

$$
\begin{aligned}
& c_{1}:=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \\
& c_{2}:=\left(\left(a_{1} a_{2}\right) a_{3}\right) a_{4} \\
& c_{3}:=\left(a_{1}\left(a_{2} a_{3}\right)\right) a_{4} \\
& c_{4}:=a_{1}\left(\left(a_{2} a_{3}\right) a_{4}\right) \\
& c_{5}:=a_{1}\left(a_{2}\left(a_{3} a_{4}\right)\right) .
\end{aligned}
$$

Using the associativity law repeatedly these are all seen to be equal. For example,

$$
\begin{aligned}
c_{1} & =\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=\left(\left(a_{1} a_{2}\right) a_{3}\right) a_{4}=c_{2}, \\
c_{3} & =\left(a_{1}\left(a_{2} a_{3}\right)\right) a_{4}=a_{1}\left(\left(a_{2} a_{3}\right) a_{4}\right)=c_{4} \\
& =a_{1}\left(a_{2}\left(a_{3} a_{4}\right)\right)=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=c_{1}
\end{aligned}
$$

and

$$
c_{5}:=a_{1}\left(a_{2}\left(a_{3} a_{4}\right)\right)=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=c_{1} .
$$

More generally we have the following proposition.
Proposition 5.7. Suppose that G is a group and $g_{1}, g_{2}, \ldots, g_{n} \in G$, then it makes sense to write $g_{1} g_{2} \ldots g_{n} \in G$ which is interpreted to mean: do the pairwise multiplications in any of the possible allowed orders without rearranging the orders of the g 's.

Proof. Sketch. The proof is by induction. Let us begin by defining $\left\{M_{n}: G^{n} \rightarrow G\right\}_{n=2}^{\infty}$ inductively by $M_{2}(a, b)=a b, M_{3}(a, b, c)=(a b) c$, and $M_{n}\left(g_{1}, \ldots, g_{n}\right):=M_{n-1}\left(g_{1}, \ldots, g_{n-1}\right) \cdot g_{n}$. We wish to show that $M_{n}\left(g_{1}, \ldots, g_{n}\right)$ may be expressed as one of the products described in the proposition. For the base case, $n=2$, there is nothing to prove. Now assume that the assertion holds for $2 \leq k \leq n$. Consider an expression for $g_{1} \ldots g_{n} g_{n+1}$. We now do another induction on the number of parentheses appearing on the right of this expression, $\ldots g_{n} \overbrace{\ldots \ldots)}^{k}$. If $k=0$, we have
(brackets involving $\left.g_{1} \ldots g_{n}\right) \cdot g_{n+1}=M_{n}\left(g_{1}, \ldots, g_{n}\right) g_{n+1}=M_{n+1}\left(g_{1}, \ldots, g_{n+1}\right)$,
wherein we used induction in the first equality and the definition of M_{n+1} in the second. Now suppose the assertion holds for some $k \geq 0$ and consider the case where there are $k+1$ parentheses appearing on the right of this expression, $\overbrace{}^{k+1}$
i.e. $\ldots g_{n} \overbrace{\ldots)}$. Using the associativity law for the last bracket on the right we can transform this expression into one with only k parentheses appearing on the right. It then follows by the induction hypothesis, that $\ldots g_{n} \overbrace{\ldots)}^{k+1}=$ $M_{n+1}\left(g_{1}, \ldots, g_{n+1}\right)$.

Notation 5.8 For $n \in \mathbb{Z}$ and $g \in G$, let $g^{n}:=\overbrace{g \ldots g}^{n \text { times }}$ and $g^{-n}:=\overbrace{g^{-1} \ldots g^{-1}}^{n \text { times }}=$ $\left(g^{-1}\right)^{n}$ if $n \geq 1$ and $g^{0}:=e$.

Observe that with this notation that $g^{m} g^{n}=g^{m+n}$ for all $m, n \in \mathbb{Z}$. For example,

$$
g^{3} g^{-5}=g g g g^{-1} g^{-1} g^{-1} g^{-1} g^{-1}=g g g^{-1} g^{-1} g^{-1} g^{-1}=g g^{-1} g^{-1} g^{-1}=g^{-1} g^{-1}=g^{-2} .
$$

5.2 More Examples of Groups

Example 5.9. Let G be the set of 2×2 real (complex) matrices with $A * B:=$ $A+B$. This is a group. In fact any vector space under addition is an abelian group with $e=0$ and $v^{-1}=-v$.

Example $5.10\left(\mathbb{Z}_{n}\right)$. For any $n \geq 2, G:=\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ with $a * b=$ $(a+b) \bmod n$ is a commutative group with $e=0$ and the inverse to $a \in \mathbb{Z}_{n}$ being $n-a$. Notice that $(n-a+a) \bmod n=n \bmod n=0$.

Example 5.11. Suppose that $S=\{0,1,2, \ldots, n-1\}$ with $a * b=a b \bmod n$. In this case $*$ is an associative binary operation which is commutative and $e=1$ is an identity for S. In general it is not a group since not every element need have an inverse. Indeed if $a, b \in S$, then $a * b=1$ iff $1=a b \bmod n$ which we have seen can happen iff $\operatorname{gcd}(a, n)=1$ by Lemma 9.8 . For example if $n=4$, $S=\{0,1,2,3\}$, then

$$
2 * 1=2,2 * 2=0, \quad 2 * 0=0, \quad \text { and } \quad 2 * 3=2,
$$

none of which are 1 . Thus, 2 is not invertible for this operation. (Of course 0 is not invertible as well.)

Lecture 6 (1/16/2009)

Theorem 6.1 (The groups, $U(n)$). For $n \geq 2$, let

$$
U(n):=\{a \in\{1,2, \ldots, n-1\}: \operatorname{gcd}(a, n)=1\}
$$

and for $a, b \in U(n)$ let $a * b:=(a b) \bmod n$. Then $(U(n), *)$ is a group.
Proof. First off, let $a * b:=a b \bmod n$ for all $a, b \in \mathbb{Z}$. Then if $a, b, c \in \mathbb{Z}$ we have

$$
\begin{aligned}
(a b c) \bmod n & =((a b) c) \bmod n=((a b) \bmod n \cdot c \bmod n) \bmod n \\
& =((a * b) \cdot c \bmod n) \bmod n=((a * b) \cdot c) \bmod n \\
& =(a * b) * c .
\end{aligned}
$$

Similarly one shows that

$$
(a b c) \bmod n=a *(b * c)
$$

and hence $*$ is associative. It should be clear also that $*$ is commutative.
Claim: an element $a \in\{1,2, \ldots, n-1\}$ is in $U(n)$ iff there exists $r \in$ $\{1,2, \ldots, n-1\}$ such that $r * a=1$.
$(\Longrightarrow) a \in U(n) \Longleftrightarrow \operatorname{gcd}(a, n)=1 \Longleftrightarrow$ there exists $s, t \in \mathbb{Z}$ such that $s a+t n=1$. Taking this equation $\bmod n$ then shows,
$(s \bmod n \cdot a) \bmod n=(s \bmod n \cdot a \bmod n) \bmod n=(s a) \bmod n=1 \bmod n=1$ and therefore $r:=s \bmod n \in\{1,2, \ldots, n-1\}$ and $r * a=1$.
(\Longleftarrow) If there exists $r \in\{1,2, \ldots, n-1\}$ such that $1=r * a=r a \bmod n$, then $n \mid(r a-1)$, i.e. there exists t such that $r a-1=k t$ or $1=r a-k t$ from which it follows that $\operatorname{gcd}(a, n)=1$, i.e. $a \in U(n)$.

The claim shows that to each element, $a \in U(n)$, there is an inverse, $a^{-1} \in$ $U(n)$. Finally if $a, b \in U(n)$ let $k:=b^{-1} * a^{-1} \in U(n)$, then

$$
k *(a * b)=b^{-1} * a^{-1} * a * b=1
$$

and so by the claim, $a * b \in U(n)$, i.e. the binary operation is really a binary operation on $U(n)$.

Example 6.2 ($U(10)$). $U(10)=\{1,3,7,9\}$ with multiplication or Cayley table given by

$a \backslash b 1379$	
1	1379
3	3917
7	7193
9	9731

where the element of the (a, b) row indexed by $U(10)$ itself is given by $a * b=$ $a b \bmod 10$.

Example 6.3. If p is prime, then $U(p)=\{1,2, \ldots, p\}$. For example $U(5)=$ $\{1,2,3,4\}$ with Cayley table given by,

$a \backslash b 1234$
$1\left[\begin{array}{lllll}1 & 2 & 3\end{array}\right]$
2413
3142
4321

Exercise 6.1. Compute 23^{-1} inside of $U(50)$.
Solution to Exercise. We use the division algorithm (see below) to show $1=$ $6 \cdot 50-13 \cdot 23$. Taking this equation $\bmod 50$ shows that $23^{-1}=(-13)=37$. As a check we may show directly that $(23 \cdot 37) \bmod 50=1$.

Here is the division algorithm calculation:

$$
\begin{aligned}
50 & =2 \cdot 23+4 \\
23 & =5 \cdot 4+3 \\
4 & =3+1 .
\end{aligned}
$$

So working backwards we find,

$$
\begin{aligned}
1 & =4-3=4-(23-5 \cdot 4)=6 \cdot 4-23=6 \cdot(50-2 \cdot 23)-23 \\
& =6 \cdot 50-13 \cdot 23 .
\end{aligned}
$$

226 Lecture 6 ($1 / 16 / 2009$)

6.1 $O(2)$ - reflections and rotations in \mathbb{R}^{2}

Definition 6.4 (Sub-group). Let (G, \cdot) be a group. A non-empty subset, $H \subset$ G, is said to be a subgroup of G if H is also a group under the multiplication law in G. We use the notation, $H \leq G$ to summarize that H is a subgroup of G and $H<G$ to summarize that H is a proper subgroup of G.

In this section, we are interested in describing the subgroup of $G L_{2}(\mathbb{R})$ which corresponds to reflections and rotations in the plane. We define these operations now.

As in Figure 6.1 let

Fig. 6.1. The unit vector, $u(\theta)$, at angle θ to the x - axis.

$$
u(\theta):=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

We also let R_{α} denote rotation by α degrees counter clockwise so that $R_{\alpha} u(\theta)=$ $u(\theta+\alpha)$ as in Figure 6.2. We may represent R_{α} as a matrix, namely

Fig. 6.2. Rotation by α degrees in the counter clockwise direction.

$$
\begin{aligned}
R_{\alpha} & =\left[R_{\alpha} e_{1} \mid R_{\alpha} e_{2}\right]=\left[R_{\alpha} u(0) \mid R_{\alpha} u(\pi / 2)\right]=[u(\alpha) \mid u(\alpha+\pi / 2)] \\
& =\left[\begin{array}{c}
\cos \alpha \cos (\alpha+\pi / 2) \\
\sin \alpha \sin (\alpha+\pi / 2)
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha-\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
\end{aligned}
$$

We also define reflection, S_{α}, across the line determined by $u(\alpha)$ as in Figure 6.3 so that $S_{\alpha} u(\theta):=u(2 \alpha-\theta)$. We may compute the matrix representing S_{α}

Fig. 6.3. Computing S_{α}.
as,

$$
\begin{aligned}
S_{\alpha} & =\left[S_{\alpha} e_{1} \mid S_{\alpha} e_{2}\right]=\left[S_{\alpha} u(0) \mid S_{\alpha} u(\pi / 2)\right]=[u(2 \alpha) \mid u(2 \alpha-\pi / 2)] \\
& =\left[\begin{array}{c}
\cos 2 \alpha \cos (2 \alpha-\pi / 2) \\
\sin 2 \alpha \sin (2 \alpha-\pi / 2)
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right] .
\end{aligned}
$$

Lecture 7 (1/21/2009)

Definition 7.1 (Sub-group). Let (G, \cdot) be a group. A non-empty subset, $H \subset$ G, is said to be a subgroup of G if H is also a group under the multiplication law in G. We use the notation, $H \leq G$ to summarize that H is a subgroup of G and $H<G$ to summarize that H is a proper subgroup of G.

Theorem 7.2 (Two-step Subgroup Test). Let G be a group and H be a non-empty subset. Then $H \leq G$ if

1. H is closed under \cdot, i.e. $h k \in H$ for all $h, k \in H$,
2. H is closed under taking inverses, i.e. $h^{-1} \in H$ if $h \in H$.

Proof. First off notice that $e=h^{-1} h \in H$. It also clear that H contains inverses and the multiplication law is associative, thus $H \leq G$.

Theorem 7.3 (One-step Subgroup Test). Let G be a group and H be a non-empty subset. Then $H \leq G$ iff $a b^{-1} \in H$ whenever $a, b \in H$.

Proof. If $a \in H$, then $e=a a^{-1} \in H$ and hence so is $a^{-1}=a e^{-1} \in H$. Thus it follows that for $a, b \in H$, that $a b=a\left(b^{-1}\right)^{-1} \in H$ and hence $H \leq G$. and the result follows from Theorem 7.2 ,

Example 7.4. Here are some examples of sub-groups and not sub-groups.

1. $2 \mathbb{Z}<\mathbb{Z}$ while $3 \mathbb{Z} \subset \mathbb{Z}$ but is not a sub-group.
2. $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\} \subset \mathbb{Z}$ is not a subgroup of \mathbb{Z} since they have different group operations.
3. $\{e\} \leq G$ is the trivial subgroup and $G \leq G$.

Example 7.5. Let us find the smallest sub-group, H containing $7 \in U(15)$. Answer,

$$
7^{2} \bmod 15=4,7^{3} \bmod 15=13,7^{4} \bmod 15=1
$$

so that H must contain, $\{1,7,4,13\}$. One may easily check this is a subgroup and we have $|7|=4$.

Proposition 7.6. The elements, $O(2):=\left\{S_{\alpha}, R_{\alpha}: \alpha \in \mathbb{R}\right\}$ form a subgroup $G L_{2}(\mathbb{R})$, moreover we have the following multiplication rules:

$$
\begin{align*}
R_{\alpha} R_{\beta} & =R_{\alpha+\beta}, \quad S_{\alpha} S_{\beta}=R_{2(\alpha-\beta)} \tag{7.1}\\
R_{\beta} S_{\alpha} & =S_{\alpha+\beta / 2}, \quad \text { and } S_{\alpha} R_{\beta}=S_{\alpha-\beta / 2} \tag{7.2}
\end{align*}
$$

for all $\alpha, \beta \in \mathbb{R}$. Also observe that

$$
\begin{equation*}
R_{\alpha}=R_{\beta} \Longleftrightarrow \alpha=\beta \bmod 360 \tag{7.3}
\end{equation*}
$$

while,

$$
\begin{equation*}
S_{\alpha}=S_{\beta} \Longleftrightarrow \alpha=\beta \bmod 180 \tag{7.4}
\end{equation*}
$$

Proof. Equations (7.1) and 7.2 may be verified by direct computations using the matrix representations for R_{α} and S_{β}. Perhaps a more illuminating way is to notice that all linear transformations on \mathbb{R}^{2} are determined by there actions on $u(\theta)$ for all θ (actually for two θ is typically enough). Using this remark we find,

$$
\left.\begin{array}{l}
R_{\alpha} R_{\beta} u(\theta)=R_{\alpha} u(\theta+\beta)=u(\theta+\beta+\alpha)=R_{\alpha+\beta} u(\theta) \\
S_{\alpha} S_{\beta} u(\theta)=S_{\alpha} u(2 \beta-\theta)=u(2 \alpha-(2 \beta-\theta))=u(2(\alpha-\beta)+\theta)=R_{2(\alpha-\beta)} u(\theta), \\
R_{\beta} S_{\alpha} u(\theta)
\end{array}\right)=R_{\beta} u(2 \alpha-\theta)=u(2 \alpha-\theta+\beta)=u(2(\alpha+\beta / 2)-\theta)=S_{\alpha+\beta / 2} u(\theta), ~ \begin{aligned}
\quad \text { and }
\end{aligned} \quad \begin{aligned}
S_{\alpha} R_{\beta} u(\theta) & =S_{\alpha} u(\theta+\beta)=u(2 \alpha-(\theta+\beta))=u(2(\alpha-\beta / 2)-\theta)=S_{\alpha-\beta / 2} u(\theta)
\end{aligned}
$$

which verifies equations 7.1 and 7.2 . From these it is clear that H is a closed under matrix multiplication and since $R_{-\alpha}=R_{\alpha}^{-1}$ and $S_{\alpha}^{-1}=S_{\alpha}$ it follows H is closed under taking inverses.

To finish the proof we will now verify Eq. (7.4) and leave the proof of Eq.to the reader. The point is that $S_{\alpha}=S_{\beta}$ iff

$$
u(2 \alpha-\theta)=S_{\alpha} u(\theta)=S_{\beta} u(\theta)=u(2 \beta-\theta) \text { for all } \theta
$$

which happens iff

$$
[2 \alpha-\theta] \bmod 360=[2 \beta-\theta] \bmod 360
$$

which is equivalent to $\alpha=\beta \bmod 180$.

Lecture 8 (1/23/2009)

Notation 8.1 The order of a group, G, is the number of elements in G which we denote by $|G|$.

Example 8.2. We have $|\mathbb{Z}|=\infty,\left|\mathbb{Z}_{n}\right|=n$ for all $n \geq 2$, and $\left|D_{3}\right|=6$ and $\left|D_{4}\right|=8$.

Definition 8.3 (Euler Phi - function). For $n \in \mathbb{Z}_{+}$, let

$$
\varphi(n):=|U(n)|=\#\{1 \leq k \leq n: \operatorname{gcd}(k, n)=1\}
$$

This function, φ, is called the Euler Phi - function.
Example 8.4. If p is prime, then $U(p)=\{1,2, \ldots, p-1\}$ and $\varphi(p)=p-1$. More generally $U\left(p^{n}\right)$ consists of $\left\{1,2, \ldots, p^{n}\right\} \backslash$ $\left\{\right.$ multiples of p in $\left.\left\{1,2, \ldots, p^{n}\right\}\right\}$. Therefore,

$$
\varphi\left(p^{n}\right)=\left|U\left(p^{n}\right)\right|=p^{n}-\#\left\{\text { multiples of } p \text { in }\left\{1,2, \ldots, p^{n}\right\}\right\}
$$

Since

$$
\left\{\text { multiples of } p \text { in }\left\{1,2, \ldots, p^{n}\right\}\right\}=\left\{k p: k=1,2, \ldots, p^{n-1}\right\}
$$

it follows that $\#\left\{\right.$ multiples of p in $\left.\left\{1,2, \ldots, p^{n}\right\}\right\}=p^{n-1}$ and therefore,

$$
\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1)
$$

valid for all primes and $n \geq 1$.
Example $8.5\left(\varphi\left(p^{m} q^{n}\right)\right)$. Let $N=p^{m} q^{n}$ with $m, n \geq 1$ and p and q being distinct primes. We wish to compute $\varphi(N)=|U(N)|$. To do this, let let $\Omega:=$ $\{1,2, \ldots, N-1, N\}, A$ be the multiples of p in Ω and B be the multiples of q in Ω. Then $A \cap B$ is the subset of common multiples of p and q or equivalently multiples of $p q$ in Ω so that;

$$
\begin{aligned}
\#(A) & =N / p=p^{m-1} q^{n} \\
\#(B) & =N / q=p^{m} q^{n-1} \text { and } \\
\#(A \cap B) & =N /(p q)=p^{m-1} q^{n-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varphi(N) & =\#(\Omega \backslash(A \cup B))=\#(\Omega)-\#(A \cup B) \\
& =\#(\Omega)-[\#(A)+\#(B)-\#(A \cap B)] \\
& =N-\left[\frac{N}{p}+\frac{N}{q}-\frac{N}{p \cdot q}\right] \\
& =p^{m} \cdot q^{n}-p^{m-1} \cdot q^{n}-p^{m} \cdot q^{n-1}+p^{m-1} \cdot q^{n-1} \\
& =\left(p^{m}-p^{m-1}\right)\left(q^{n}-q^{n-1}\right)
\end{aligned}
$$

which after a little algebra shows,

$$
\varphi\left(p^{m} q^{n}\right)=\left(p^{m}-p^{m-1}\right)\left(q^{n}-q^{n-1}\right)=N\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
$$

The next theorem generalizes this example.
Theorem 8.6 (Euler Phi function). Suppose that $N=p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}$ with $k_{i} \geq$ 1 and p_{i} being distinct primes. Then

$$
\varphi(N)=\varphi\left(p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}\right)=\prod_{i=1}^{n}\left(p_{i}^{k_{i}}-p_{i}^{k_{i}-1}\right)=N \cdot \prod_{i=1}^{n}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. (Proof was not given in class!) Let $\Omega:=\{1,2, \ldots, N\}$ and $A_{i}:=$ $\left\{m \in \Omega: p_{i} \mid m\right\}$. It then follows that $U(N)=\Omega \backslash\left(\cup_{i=1}^{n} A_{i}\right)$ and therefore,

$$
\varphi(N)=\#(\Omega)-\#\left(\cup_{i=1}^{n} A_{i}\right)=N-\#\left(\cup_{i=1}^{n} A_{i}\right)
$$

To compute the later expression we will make use of the inclusion exclusion formula which states,

$$
\begin{equation*}
\#\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{l=1}^{n}(-1)^{l+1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \#\left(A_{i_{1}} \cap \cdots \cap A_{i_{l}}\right) \tag{8.1}
\end{equation*}
$$

Here is a way to see this formula. For $A \subset \Omega$, let $1_{A}(k)=1$ if $k \in A$ and 0 otherwise. We now have the identity,

$$
\begin{aligned}
1-1_{\cup_{i=1}^{n} A_{i}} & =\prod_{i=1}^{n}\left(1-1_{A_{i}}\right) \\
& =1-\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} 1_{A_{i_{1}} \cap \cdots \cap A_{i_{l}}}
\end{aligned}
$$

Summing this identity on $k \in \Omega$ then shows,

$$
N-\#\left(\cup_{i=1}^{n} A_{i}\right)=N-\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \#\left(A_{i_{1}} \cap \cdots \cap A_{i_{l}}\right)
$$

which gives Eq. 8.1.
Since $A_{i_{1}} \cap \cdots \cap A_{i_{l}}$ consists of those $k \in \Omega$ which are common multiples of $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{l}}$ or equivalently multiples of $p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{l}}$, it follows that

$$
\#\left(A_{i_{1}} \cap \cdots \cap A_{i_{l}}\right)=\frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdots p_{i_{l}}}
$$

Thus we arrive at the formula,

$$
\begin{aligned}
\varphi(N) & =N-\sum_{l=1}^{n}(-1)^{l+1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}} \\
& =N+\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdots p_{i_{l}}}
\end{aligned}
$$

Let us now break up the sum over those terms with $i_{l}=n$ and those with $i_{l}<n$ to find,

$$
\begin{aligned}
\varphi(N) & =\left[N+\sum_{l=1}^{n-1}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l}<n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}\right] \\
& +\left[\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l-1}<i_{l}=n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}\right]
\end{aligned}
$$

We may factor out $p_{n}^{k_{n}}$ in the first term to find,
$\varphi(N)=p_{n}^{k_{n}} \varphi\left(p_{1}^{k_{1}} \cdots p_{n-1}^{k_{n-1}}\right)+\sum_{l=1}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l-1}<i_{l}=n} \frac{N}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdots p_{i_{l}}}$.
Similarly the second term is equal to:

$$
\begin{aligned}
& p_{n}^{k_{n}-1}\left[-p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}+\sum_{l=2}^{n}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l-1}<n} \frac{p_{1}^{k_{1}} \cdots p_{n-1}^{k_{n-1}}}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l-1}}}\right] \\
& =p_{n}^{k_{n}-1}\left[-p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}-\sum_{l=1}^{n-1}(-1)^{l} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l}<n} \frac{p_{1}^{k_{1}} \cdots p_{n-1}^{k_{n-1}}}{p_{i_{1}} \cdot p_{i_{2}} \cdots \cdot p_{i_{l}}}\right] \\
& =-p_{n}^{k_{n}-1} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)
\end{aligned}
$$

Thus we have shown

$$
\begin{aligned}
\varphi(N) & =p_{n}^{k_{n}} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)-p_{n}^{k_{n}-1} \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right) \\
& =\left(p_{n}^{k_{n}}-p_{n}^{k_{n}-1}\right) \varphi\left(p_{1}^{k_{1}} \ldots p_{n-1}^{k_{n-1}}\right)
\end{aligned}
$$

and so the result now follows by induction.
Corollary 8.7. If $m, n \geq 1$ and $\operatorname{gcd}(m, n)=1$, then $\varphi(m n)=\varphi(m) \varphi(n)$.
Notation 8.8 For $g \in G$, let $\langle g\rangle:=\left\{g^{n}: n \in \mathbb{Z}\right\}$. We call $\langle g\rangle$ the cyclic subgroup generated by g (as justified by the next proposition).

Proposition 8.9 (Cyclic sub-groups). For all $g \in G,\langle g\rangle \leq G$.
Proof. For $m, n \in \mathbb{Z}$ we have $g^{n}\left(g^{m}\right)^{-1}=g^{n-m} \in\langle g\rangle$ and therefore by the one step subgroup test, $\langle g\rangle \leq G$.

Notation 8.10 The order of an element, $g \in G$, is

$$
|g|:=\min \left\{n \geq 1: g^{n}=e\right\}
$$

with the convention that $|g|=\infty$ if $\left\{n \geq 1: g^{n}=e\right\}=\emptyset$.
Theorem 8.11. Suppose that g is an element of a group. Then either:

1. $g^{i} \neq g^{j}$ for all $i \neq j$ and $|g|=|\langle g\rangle|=\infty$ or
2. there exists an $m \in \mathbb{Z}_{+}$such that $g^{m}=e$. In this case $n:=|g|<\infty$, $g^{m}=g^{m \bmod n}$ for all $m \in \mathbb{Z}$,

$$
\begin{equation*}
\langle g\rangle=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\} \tag{8.2}
\end{equation*}
$$

with all elements in the list being distinct, and $|\langle g\rangle|=n=|g|$. We also have,

$$
g^{k} g^{l}=g^{(k+l) \bmod n} \text { for all } k, l \in \mathbb{Z}_{n}
$$

which shows that $\langle g\rangle$ is "equivalent" to \mathbb{Z}_{n}.

Proof. If $g^{i}=g^{j}$ for some $i<j$, then

$$
e=g^{i} g^{-i}=g^{j} g^{-i}=g^{j-i}
$$

so that $g^{m}=e$ with $m=j-i \in \mathbb{Z}_{+}$. So either case 1 . or case 2 . above must hold.

In case 1. we have

$$
\langle g\rangle=\left\{\ldots, g^{-2} g^{-1}, e, g, g^{2}, \ldots\right\}
$$

with all elements in the list being distinct so that $|\langle g\rangle|=\infty$. Moreover it follows that $g^{k} \neq e$ for all $k \geq 1$ and therefore, $|g|=\infty$.

In case 2. we let $n=|g|<\infty$ and observe that $g^{n}=e$ implies $g^{-n}=$ $\left(g^{n}\right)^{-1}=e^{-1}=e$. Therefore if $m \in \mathbb{Z}$ and $m=s n+r$ where $r:=m \bmod n$, then $g^{m}=\left(g^{n}\right)^{s} g^{r}=g^{r}$. Hence it follows that $\langle g\rangle=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}$. Moreover if $g^{i}=g^{j}$ for some $0 \leq i \leq j<n$, then $g^{j-i}=e$ with $j-i<n$ and hence $j=i$. Thus the list consists of distinct elements and therefore $|\langle g\rangle|=n$.

Lecture 9 (1/26/2009)

Corollary 9.1. Let $a \in G$. Then $a^{i}=a^{j}$ iff $|a|$ dvides $(j-i)$. Here we use the convention that ∞ divides m iff $m=0$.

Corollary 9.2. For all $g \in G$ we have $|g| \leq|G|$.
Proof. This follows from the fact that $|g|=|\langle g\rangle|$ and $\langle g\rangle \subset G$.
Theorem 9.3 (Finite Subgroup Test). Let H be a non-empty finite subset of a group G which is closed under the group law, then $H \leq G$.

Proof. To each $h \in H$ we have $\left\{h^{k}\right\}_{k=1}^{\infty} \subset H$ and since $\#(H)<\infty$, it follows that $h^{k}=h^{l}$ for some $k \neq l$. Thus by Theorem 8.11, $|h|<\infty$ for all $h \in H$ and $\langle h\rangle=\left\{e, h, h^{2}, \ldots, h^{|h|-1}\right\} \subset H$. In particular $h^{-1} \in\langle h\rangle \subset H$ for all $h \in H$. Hence it follows by the two step subgroup test that $H \leq G$.

Definition 9.4 (Centralizer of a in G). The centralizer of $a \in G$, denoted $C(a)$, is the set of $g \in G$ which commute with a, i.e.

$$
C(a):=\{g \in G: g a=a g\}
$$

More generally if $S \subset G$ is any non-empty set we define

$$
C(S):=\{g \in G: g s=s g \text { for all } s \in S\}=\cap_{s \in S} C(s)
$$

Lemma 9.5. For all $a \in G,\langle a\rangle \leq C(a) \leq G$.
Proof. If $g \in C(a)$, then $g a=a g$. Multiplying this equation on the right and left by g^{-1} then shows,

$$
a g^{-1}=g^{-1} g a g^{-1}=g^{-1} a g g^{-1}=g^{-1} a
$$

which shows $g^{-1} \in C(a)$. Moreover if $g, h \in C(a)$, then $g h a=g a h=a g h$ which shows that $g h \in C(a)$ and therefore $C(a) \leq G$.
Example 9.6. If G is abelian, then $C(a)=G$ for all $a \in G$.
Example 9.7. Let $G=G L_{2}(\mathbb{R})$ we will compute $C\left(A_{1}\right)$ and $C\left(A_{2}\right)$ where

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } A_{2}:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

1. We have $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in C\left(A_{1}\right)$ iff,

$$
\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]
$$

which means that $b=c$ and $a=d$, i.e. B must be of the form,

$$
B=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

and therefore,

$$
C\left(A_{1}\right)=\left\{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]: a^{2}-b^{2} \neq 0\right\}
$$

2. We have $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in C\left(A_{2}\right)$ iff,

$$
\left[\begin{array}{ll}
a-b \\
c-d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
-c & -d
\end{array}\right]
$$

which happens iff $b=c=0$. Thus we have,

$$
C\left(A_{2}\right)=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]: a d \neq 0\right\}
$$

Lemma 9.8. If $\left\{H_{i}\right\}$ is a collection of subgroups of G then $H:=\cap_{i} H_{i} \leq G$ as well.

Proof. If $h, k \in H$ then $h, k \in H_{i}$ for all i and therefore $h k^{-1} \in H_{i}$ for all i and hence $h k^{-1} \in H$.

Corollary 9.9. $C(S) \leq G$ for any non-empty subset $S \subset G$.
Definition 9.10 (Center of a group). Center of a group, denoted $Z(G)$, is the centralizer of G, i.e.

$$
Z(G)=C(G):=\{a \in G: a x=x a \text { for all } x \in G\}
$$

By Corollary 9.9, $Z(G)=C(G)$ is a group. Alternatively, if $a \in Z(G)$, then $a x=x a$ implies $a^{-1} x^{-1}=x^{-1} a^{-1}$ which implies $x a^{-1}=a^{-1} x$ for all $x \in G$ and therefore $a^{-1} \in Z(G)$. If $a, b \in Z(G)$, then $a b x=a x b=x a b \Longrightarrow a b \in Z(G)$, which again shows $Z(G)$ is a group.
Example 9.11. G is a abelian iff $Z(G)=G$, thus $Z\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{n}, Z(U(n))=$ $U(n)$, etc.

Example 9.12. Using Example 9.7 we may easily show $Z\left(G L_{2}(\mathbb{R})\right)=$ $\{\lambda I: \lambda \in \mathbb{R} \backslash\{0\}\}$. Indeed,

$$
Z\left(G L_{2}(\mathbb{R})\right) \subset C\left(A_{1}\right) \cap C\left(A_{2}\right)=\left\{\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]: a^{2} \neq 0\right\}=\{\lambda I: \lambda \in \mathbb{R} \backslash\{0\}\}
$$

As the latter matrices commute with every matrix we also have,

$$
Z\left(G L_{2}(\mathbb{R})\right) \subset\{\lambda I: \lambda \in \mathbb{R} \backslash\{0\}\} \subset Z\left(G L_{2}(\mathbb{R})\right)
$$

Remark 9.13. If $S \subset G$ is a non-empty set we let $\langle S\rangle$ denote the smallest subgroup in G which contains S. This subgroup may be constructed as finite products of elements from S and $S^{-1}:=\left\{s^{-1}: s \in S\right\}$. It is not too hard to prove that

$$
C(S)=C(\langle S\rangle)
$$

Let us also note that if $S \subset T \subset G$, then $C(T) \subset C(S)$ as there are more restrictions on $x \in G$ to be in $C(T)$ than there are for $x \in G$ to be in $C(S)$.

9.1 Dihedral group formalities and examples

Definition 9.14 (General Dihedral Groups). For $n \geq 3$, the dihedral group, D_{n}, is the symmetry group of a regular n - gon. To be explicit this may be realized as the sub-groups $O(2)$ defined as

$$
D_{n}=\left\{R_{k \frac{2 \pi}{n}}, S_{k \frac{\pi}{n}}: k=0,1,2, \ldots, n-1\right\}
$$

see the Figures below. Notice that $\left|D_{n}\right|=2 n$.
See the book and the demonstration in class for more intuition on these groups. For computational purposes, we may present D_{n} in terms of generators and relations as follows.

Theorem 9.15 (A presentation of D_{n}). Let $n \geq 3$ and $r:=R_{\frac{2 \pi}{n}}$ and $f=S_{0}$. Then

$$
\begin{equation*}
D_{n}=\left\{r^{k}, r^{k} f: k=0,1,2, \ldots, n-1\right\} \tag{9.1}
\end{equation*}
$$

and we have the relations, $r^{n}=1, f^{2}=1$, and $f r f=r^{-1}$. We say that r and f are generators for D_{n}.

Fig. 9.1. The 3 reflection symmetries axis of a regular 3 - gon,. i.e. a equilateral triangle.

Fig. 9.2. The 4 - reflection symmetries axis of a regular 4 - gon,. i.e. a square.

Fig. 9.3. The 6 - reflection symmety axis of a regular 6 - gon,. i.e. a heagon. There are also 6 rotation symmetries.

Proof. We know that $r^{k}=R_{k \frac{2 \pi}{n}}$ and that $r^{k} f=R_{k \frac{2 \pi}{n}} S_{0}=S_{k \frac{\pi}{n}}$ from which Eq. 9.1) follows. It is also clear that $r^{n}=1=f^{2}$. Moreover,

$$
f r f=S_{0} R_{\frac{2 \pi}{n}} S_{0}=S_{0} S_{\frac{\pi}{n}}=R_{2\left(0-\frac{\pi}{n}\right)}=r^{-1}
$$

as desired. (Poetically, a rotation viewed through a mirror is a rotation in the opposite direction.)

For computational purposes, observe that

$$
f r^{3} f=f r f f r f f r f=\left(r^{-1}\right)^{3}=r^{-3}
$$

and therefore $f r^{-3} f=f\left(f r^{3} f\right) f=r^{3}$. In general we have $f r^{k} f=r^{-k}$ for all $k \in \mathbb{Z}$.

Example 9.16. If $f \in D_{n}$ is a reflection, then $f^{2}=e$ and $|f|=2$. If $r:=R_{2 \pi / n}$ then $r^{k}=R_{2 \pi k / n} \neq e$ for $1 \leq k \leq n-1$ and $r^{n}=1$, so $|r|=n$ and

$$
\langle r\rangle=\left\{R_{2 \pi k / n}: 0 \leq k \leq n-1\right\} \subset D_{n} .
$$

Example 9.17. Suppose that $G=D_{n}$ and $f=S_{0}$. Recall that $D_{n}=$ $\left\{r^{k}, r^{k} f\right\}_{k=0}^{n-1}$. We wish to compute $C(f)$. We have $r^{k} \in C(f)$ iff $r^{k} f=f r^{k}$ iff $r^{k}=f r^{k} f=r^{-k}$. There are only two rotations R_{θ} for which $R_{\theta}=R_{\theta}^{-1}$, namely $R_{0}=e$ and $R_{180}=-I$. The latter is in D_{n} only if n is even.

Let us now check to see if $r^{k} f \in C(f)$. This is the case iff

$$
r^{k}=\left(r^{k} f\right) f=f\left(r^{k} f\right)=r^{-k}
$$

and so again this happens iff $r=R_{0}$ or R_{180}. Thus we have shown,

$$
C(f)=\left\{\begin{array}{cc}
\langle f\rangle=\{e, f\} & \text { if } n \text { is odd } \\
\left\{e, r^{n / 2}, f, r^{n / 2} f\right\} & \text { if } n \text { is even. }
\end{array}\right.
$$

Let us now find $C\left(r^{k}\right)$. In this case we have $\langle r\rangle \subset C\left(r^{k}\right)$ (as this is a general fact). Moreover $r^{l} f \in C\left(r^{k}\right)$ iff $\left(r^{l} f\right) r^{k}=r^{k}\left(r^{l} f\right)$ which happens iff

$$
r^{l-k}=r^{l} r^{-k}=\left(r^{l} f\right) r^{k} f=r^{k+l}
$$

i.e. iff $r^{2 k}=e$. Thus we may conlcude that $C\left(r^{k}\right)=\langle r\rangle$ unless $k=0$ or $k=\frac{n}{2}$ and when $k=0$ or $k=n / 2$ we have $C\left(r^{k}\right)=D_{n}$. Of course the case $k=n / 2$ only applies if n is even. By the way this last result is not too hard to understand as $r^{0}=I$ and $r^{n / 2}=-I$ where I is the 2×2 identity matrix which commutes with all matrices.

Example 9.18. For $n \geq 3$,

$$
Z\left(D_{n}\right)=\left\{\begin{array}{cl}
\left\{R_{0}=I\right\} & \text { if } n \text { is odd } \tag{9.2}\\
\left\{R_{0}, R_{180}\right\} & \text { if } n \text { is even }
\end{array}\right.
$$

To prove this recall that $S_{\alpha} R_{\theta} S_{\alpha}^{-1}=R_{-\theta}$ for all α and θ. So if $S_{\alpha} \in Z\left(D_{n}\right)$ we would have $R_{\theta}=S_{\alpha} R_{\theta} S_{\alpha}^{-1}=R_{-\theta}$ for $\theta=k 2 \pi / n$ which is impossible. Thus $Z\left(D_{n}\right)$ contains no reflections. Moreover this shows that R_{θ} can only be in the center if $R_{\theta}=R_{-\theta}$, i.e. R_{θ} can only be R_{0} or R_{180}. This completes the proof since $R_{180} \in D_{n}$ iff n is even.

Alternatively, observe that $Z\left(D_{n}\right)=C(f) \cap C(r)=C(\{f, r\})$ since if $g \in D_{n}$ commutes with the generators of a group it must commute with all elements of the group. Now according to Example 9.17 , we again easily see that Eq. (9.2) is correct. For example when n is even we have,

$$
Z\left(D_{n}\right)=C(f) \cap C(r)=\left\{e, r^{n / 2}, f, r^{n / 2} f\right\} \cap\langle r\rangle=\left\{e, r^{n / 2}\right\}=\left\{R_{0}, R_{180}\right\}
$$

