Math 20D Lecture 8: Power Series Method, First-Order Systems Thursday, July 21, 2022 4:53 PM	
Power Series Method (8.2, 8.3,	8.4)
funfinitely differentiable, Taylor series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$	
N=O Vi	
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	20
	2 ≈ 2.7 E=0.5
	E=0.1
≈ 2.66	٤=0.0000١
Def: A power series about a an expression $\sum_{n=0}^{\infty} a_n (x-x_0)^n$	point to is
We say a power series converge if $\sum_{n=0}^{\infty} a_n (C-x_0)^n$ converge	erges at $x = c$
1.e. $\lim_{N\to\infty} \sum_{n=0}^{N} a_n (c-x_0)^n$	= L ex75+9
We can define a function f(x) whose domain is wherever t	his seics converges.
(remark: for every E>0, there e	
1 > 61 11 24	

remark: for every
$$E>0$$
, there exists M

| Such that | L - $\sum_{n=0}^{N} a_n (x-x_0)^n | < E$ |
| for every N>M

| Facts: | Theorem: (Padius of Convergence) |
| For an power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, there exists a number g ($0 \le p \le \infty$) such that the series converges for $|x-x_0| < p$ at $x=x_0$, $\sum_{n=0}^{\infty} a_n (x_0-x_0)^n = 0$
| $\sum_{n=0}^{\infty} a_n (x_0-x_0)^n = 0$
| Ratio Test | If $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = L$, then $\sum_{n=0}^{\infty} a_n (x_0-x_0)^n = 0$
| Converges with radius of convergence $p=L$.

| Ps: ratio test series $\lim_{n\to\infty} |a_n| = P$, $0 \le P<1$, then $\sum_{n=0}^{\infty} |a_{n+1}| = P$, $0 \le P<1$, then $\sum_{n=0}^{\infty} |a_{n+1}| = \sum_{n=0}^{\infty} |a_{n+1}| = P$, $0 \le P<1$, $\sum_{n=0}^{\infty} |a_{n+1}| = |a_{n+1}| (x_0-x_0)^n = |a_{n+1}| = |a_{n+1}| |a_n| = |a_{n+1}| = |a_{n+1}|$

Vanishing If \(\int \an (x-x_0)^n = 0 in some open material containing xo, then an=0 for all n. Proof: fex) = \(\int_{n=0}^{80} \an (\pi - \pi_0)^{\lambda} = $a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + ...$ $0 = f(x_0) = \alpha_0$ $0=f'(x_0)=a_1$ $0 = f^{(m)}(x_0) = n! a_n$ Theorem (Differentlate & Integrate Power Series) Suppose $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ has radius of convegence g>0. Then, f is differentiable $f'(x) = \sum_{n=1}^{\infty} ha_n (x-x_0)^{n-1}$ has radius of convegence p as well. Corollary: f is infinitely differentiable and f(K)
has radius of convergence p

(CK) (m) - C (X) (K) (K)

has radius of convergence
$$g$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n \frac{d^k}{dx^k} [(x-x_0)^n]$$

also, f has an antidenvative given by

$$\int f(x) dx = \sum_{n \geq 0} \frac{a_n}{n+1} (x-x_0)^{n+1} + C$$

convergence radius g

If the power series about x_0 , their sum:
$$\sum_{n \geq 0} a_n (x-x_0)^n + \sum_{n \geq 0} b_n (x-x_0)^n$$

$$= \sum_{n \geq 0} (a_n + b_n) (x-x_0)^n$$

$$= \sum_{n \geq 0} (a_n + b_n) (x-x_0)^n$$

Expand g in a gover series about the initial time; in this case, g is g and g and

```
y'(x) = \( \sigma_{n=1}^{\infty} \na_n \chi^{-1} \)
                                         y''(x) = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}
           0 = (1+x2) y"(x) + y'(x) -y(x)
                         = (1+x^2)\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}
                                                               + \sum_{n=1}^{\infty} n a_n \chi^{n-1} - \sum_{n=0}^{\infty} a_n \chi^n
                     = \sum_{n=2}^{\infty} n(n-1) a_n \chi^{n-2} + \sum_{n=2}^{\infty} n(n-1) a_n \chi^{n}
+ \sum_{n=1}^{\infty} n a_n \chi^{n-1} - \sum_{n=0}^{\infty} a_n \chi^{n}
+ \sum_{n=1}^{\infty} n a_n \chi^{n-1} - \sum_{n=0}^{\infty} a_n \chi^{n}
+ \sum_{n=2}^{\infty} n a_n \chi^{n-1} - \sum_{n=0}^{\infty} a_n \chi^{n}
+ \sum_{n=2}^{\infty} n a_n \chi^{n-1} - \sum_{n=0}^{\infty} a_n \chi^{n}
+ \sum_{n=2}^{\infty} n a_n \chi^{n-1} - \sum_{n=0}^{\infty} a_n \chi^{n}
+ \sum_{n=2}^{\infty} a_n \chi^{n} - \sum_{n=2}^{\infty} a_n \chi^{n} - \sum_{n=2}^{\infty} a_n \chi^{n}
+ \sum_{n=2}^{\infty} a_n \chi^{n} - \sum_{n=2}^{\infty} a_n \chi^{n} - \sum_{n=2}^{\infty} a_n \chi^{n}
+ \sum_{n=2}^{\infty} a_n \chi^{n} - \sum_{n=2}^{\infty} a_n \chi^{n} 
        +\sum_{k=0}^{\infty} (k+1) a_{k+1} \chi^{k} - \sum_{k=0}^{\infty} a_{k} \chi^{k}
               = 2a_2 + a_1 - a_0 + (6a_3 + 2a_2 - a_1)x
                          + \sum_{k=2}^{\infty} \left( (k+2)(k+1)a_{k+2} + k(k-1)a_{k} \right) \chi
+ (k+1)a_{k+1} - a_{k}
K=0: 2a_2+a_1-a_0=0 a_2=\frac{a_0-a_1}{2}=\frac{1-2}{2}=-\frac{1}{2}
K=1 6a3+2a2-9,=0 a2=9,-292=2+1=1/2
```

k=1
$$6a_3 + 2a_2 - a_1 = 0$$
 $a_3 = a_1 - 2a_2 = 2+1 = 1/2$

k>,2 $(k+2)(k+1)a_{k+1} - a_k = 0$
 $\Rightarrow a_{k+2} = a_k - (k+1)a_{k+1} - k(k-1)a_k$
 $(k+1)(k+2)$

Def: A function is analytic about x_0 if it is given by a power series $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$

with a positive radius of convergence.

Consider the DE

 $a_2(x)y'' + a_1(x)y' + a_0(x)y = f(x)$
 $y'' + a_1(x)y' + a_0(x)y = g(x)$

We say x_0 is a regular (or ordinary) point if p, q, q are analytic at x_0 . Otherwise, we say x_0 is a singular point.

Theorem:

Consider the DE (**) and suppose p, q, q are analytic at x_0 . Then there exists

are analytic at Xo. Then, there exists a unique solution to IVP (X) with y(xo)=yo, y'(xo) = vo, which is analytic · Furthermore, the radius of convergence is atleast the distance from xo to the nearest singular point. 2=0 ex (1+x)y" + x2y" + y = ex y(0) = 0 4)(0) = 1 $y''' + \frac{x^2}{1+x}y' + \frac{1}{1+x}y' = \frac{e^x}{1+x}$ A,, (0) = D (tttt tim) 2 => Solution is only valid on the interal (-1,1) $y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + ...$ 0= y(0) = 00 1 = A,(0) = a1 $0 = y''(0) = 2a_2$ y'(x) = \(\int_{n=1}^{\infty} na_n \(\chi^{n-1} \) $y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$ $y'''(x) = \sum_{n=3}^{\infty} n(n-n)(n-2) a_n x^{n-3}$ $(1+x)y''' + x^2y' + y = e^x$ (1+x) 2 n (n-1) (n-2) an x n-3 125 max n-1 + 5 00 ax xn

$$+ \chi^{2} \sum_{n=1}^{50} n a_{n} \chi^{n-1} + \sum_{n=0}^{50} a_{n} \chi^{n}$$

$$= \sum_{n=0}^{50} \frac{\chi^{n}}{n!} + \sum_{n=3}^{50} n(n-1)(n-2)a_{n} \chi^{n-3}$$

$$+ \sum_{n=3}^{50} n(n-1)(n-2)a_{n} \chi^{n-2}$$

$$+ \sum_{n=0}^{50} a_{n} \chi^{n}$$

$$+ \sum_{n=0}^{50} $$+ \sum_{n=0}^{50} a_{$$

· Newton's Second Law
$$m\frac{d^2}{dt^2}\vec{\chi}(t) = \vec{F}(t,\vec{\chi}(t),\frac{d\vec{\chi}}{dt})\vec{\chi}(t) = \begin{pmatrix} \chi(t) \\ \gamma(t) \end{pmatrix}$$

$$\frac{1}{2}\vec{\chi}(t) = \vec{F}(t,\vec{\chi}(t),\frac{d\vec{\chi}}{dt})\vec{\chi}(t) = \begin{pmatrix} \chi(t) \\ \gamma(t) \\ \chi(t) \end{pmatrix}$$

Def:

· A vector-valued function (of time)
is a map
$$\vec{x}: I \longrightarrow \mathbb{R}^n$$

$$\vec{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

is a map
$$\chi: L^{-3}R^{-1}$$

$$A(+) = \begin{pmatrix} A_{11}(+) & \cdots & A_{1n}(+) \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1}(+) & \cdots & A_{nn}(+) \end{pmatrix}$$

e.g.
$$\frac{d}{dt} \vec{\chi}(t) = \left(\frac{d}{dt} \chi_{\Lambda}(t)\right)$$

$$\left(\frac{d}{dt} \chi_{\Lambda}(t)\right)$$

In general, a first-order system of DES can be written J: I×R"→R" $\frac{d}{dt} \vec{\chi}(t) = \vec{f}(t, \vec{\chi}(t))$ f may be a nonlinear function of \$\overline{x}\$, in which ease it may be hard to solve without special assumptions -> numerically solve on the computer Linear systems of DES Consider the DE (*) $\vec{z}'(t) = A(t) \vec{z}(t) + \vec{g}(t)$ / Linhamogeneity $J \rightarrow \mathbb{R}^n$ matrix-valued
function $J \rightarrow \mathbb{R}^{n \times n}$ An IVP is (4) with an initial condition $\vec{\chi}(t_0) = \vec{\chi}_0$ for some given $t_0 \in I$ and some given zo ER". Suppose A and \vec{g} are centinuous on an interval \vec{I} . Then, there exists a unique solution to the \vec{I} \vec{V} \vec{P} , (x) with \vec{x} $(t_0) = \vec{x}_0$. Consider the homogeneous case (\$\vec{g} \vec{z}0) " 4 \$(T) - V(T) \$(T)

(*) $\frac{d}{dt}\vec{x}(t) = A(t)\vec{x}(t)$ (dimension $n, \vec{x}: I \rightarrow \mathbb{R}^n$)

If \vec{x}_i and \vec{x}_i are solutions to (*),

then so is $C_i\vec{x}_i + C_i\vec{x}_i$ for constants $C_i, C_i \in \mathbb{R}^n$.

Proof: $\frac{d}{dt}(C_i\vec{x}_i(t) + C_i\vec{x}_i(t))$ $= C_i\frac{d}{dt}\vec{x}_i(t) + C_i\frac{d}{dt}\vec{x}_i(t)$ $= C_i\frac{d}{dt}\vec{x}_i(t) + C_i\frac{d}{dt}\vec{x}_i(t)$ $= C_iA(t)\vec{x}_i(t) + C_iA(t)\vec{x}_i(t)$ $= A(t)(C_i\vec{x}_i(t)) + C_i\vec{x}_i(t)$ $= A(t)(C_i\vec{x}_i(t)) + C_i\vec{x}_i(t)$

How to solve IVP?

Suppose we have n linearly inelependent

solutions to (*), \$\overline{x}_1,..., \$\overline{x}_n\$.

Def: We say m vector-valued functions \$\overline{x}_1,...,\overline{x}_m\)
defined on I are linearly dependent of those
exists constants C1,..., Cm, not all zero, s.t.
C1\overline{x}_1(t) + ... + Cm\overline{x}_m(t) = 0 for all teI.
Otherwise, say they are linearly independent

Theorem: Let $\vec{x}_1, ..., \vec{x}_n$ be lin. Ind. solutions to (x). Then, any solution to the IVP (x) with $\vec{x}(t_0) = \vec{x}_0$ can be expressed $C_1\vec{x}_1(t_1) + ... + C_n\vec{x}_n(t_1)$

 $C_1\vec{x}_1(4) + ... + C_n\vec{x}_n(4)$ for the appropriate choices of C1,..., Cn. Can ue choose $c_1,...,c_n$ s.t. $C_1\vec{x}_1(t_0) + \dots + C_n\vec{x}_n(t_0) = \vec{x}_0$? $(\vec{x}_1 + \vec{x}_2 + \vec{x}_3 + \vec{x}_2 + \vec{x}_3 + \vec{x}_3 + \vec{x}_4 + \vec{x}_5)) = \vec{x}_0$ Is this metric invertible $W(\vec{x},(t),...,\vec{x}_n(t)) = \det(\vec{x},(t) \cdot \cdot \cdot \vec{x}_n(t))$ We know is nonzero for some teI. Is it nonzero for all te I? Suppose, for contradiction, t*, st. W(x,(+,),..., x,(+,1) = 0 = 3 constants di.... du est. nat all sero $d_1 \chi_1(t_*) + ... + d_n \chi_n(t_*) = 0$ $O \in \mathbb{R}^n$ The function $\vec{x}(t) = d_1 \vec{x}_1(t) + ... + d_n \vec{x}_n(t)$ is a solution to the IVP $\vec{z}(t_*) = 0$ but so is y(t) = 0 Z(+)=0 everywhere on I >c

The Wronkinn is nonzero for all test
$$\Rightarrow \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \vec{\chi}_1(H_0) & \cdots & \vec{\chi}_n(H_0) \end{pmatrix}^{-1} \vec{\chi}_0$$

Constant Matrix

$$\frac{d}{dt} \vec{\chi}(t) = A \vec{\chi}(t), \quad A \in \mathbb{R}^{n \times n}, \quad \vec{\chi}: \vec{I} \Rightarrow \mathbb{R}^n$$

Simple example $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad \lambda \in \mathbb{R}$

$$\vec{\chi} = \begin{pmatrix} u \\ v \end{pmatrix} \quad \begin{pmatrix} du/dt \\ dv/dt \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda_1 u & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} \begin{pmatrix}$$

Observe
$$A(\frac{1}{0}) = (\frac{\lambda_1}{\lambda_2})(\frac{1}{0}) = (\frac{\lambda_1}{0}) = \lambda_1(\frac{1}{0})$$