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Abstract. Adjoint systems are widely used to inform control, optimization, and design in systems
described by ordinary differential equations or differential-algebraic equations. In this paper, we
explore the geometric properties and develop methods for such adjoint systems. In particular, we
utilize symplectic and presymplectic geometry to investigate the properties of adjoint systems associ-
ated with ordinary differential equations and differential-algebraic equations, respectively. We show
that the adjoint variational quadratic conservation laws, which are key to adjoint sensitivity analy-
sis, arise from (pre)symplecticity of such adjoint systems. We discuss various additional geometric
properties of adjoint systems, such as symmetries and variational characterizations. For adjoint
systems associated with a differential-algebraic equation, we relate the index of the differential-
algebraic equation to the presymplectic constraint algorithm of Gotay et al. [18]. As an application
of this geometric framework, we discuss how the adjoint variational quadratic conservation laws can
be used to compute sensitivities of terminal or running cost functions. Furthermore, we develop
structure-preserving numerical methods for such systems using Galerkin Hamiltonian variational
integrators (Leok and Zhang [23]) which admit discrete analogues of these quadratic conservation
laws. We additionally show that such methods are natural, in the sense that reduction, forming
the adjoint system, and discretization all commute, for suitable choices of these processes. We
utilize this naturality to derive a variational error analysis result for the presymplectic variational
integrator that we use to discretize the adjoint DAE system. Finally, we discuss the application
of adjoint systems in the context of optimal control problems, where we prove a similar naturality
result.
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1. Introduction

1.1. Applications of the Adjoint Equations. The solution of many nonlinear problems involves
successive linearization, and as such variational equations and their adjoints play a critical role in
a variety of applications. Adjoint equations are of particular interest when the parameter space is
significantly higher dimension than that of the output or objective. In particular, the simulation of
adjoint equations arise in sensitivity analysis [10; 11], adaptive mesh refinement [25], uncertainty
quantification [39], automatic differentiation [19], superconvergent functional recovery [28], optimal
control [31], optimal design [16], optimal estimation [27], and deep learning viewed as an optimal
control problem [5].

The study of geometric aspects of adjoint systems arose from the observation that the combina-
tion of any system of differential equations and its adjoint equations are described by a formal
Lagrangian [20; 21]. This naturally leads to the question of when the formation of adjoints and
discretization commutes [36], and prior work on this include the Ross–Fahroo lemma [32], and
the observation by Sanz-Serna [33] that the adjoints and discretization commute if and only if the
discretization is symplectic.

1.2. Symplectic and Presymplectic Geometry. Throughout the paper, we will assume that
all manifolds and maps are smooth, unless otherwise stated. Let (P,Ω) be a (finite-dimensional)
symplectic manifold, i.e., Ω is a closed nondegenerate two-form on P . Given a Hamiltonian H :
P ! R, the Hamiltonian system is defined by

iXH
Ω = dH,

where the vector field XH is a section of the tangent bundle to P . By nondegeneracy, the vector
field XH exists and is uniquely determined. For an open interval I ⊂ R, we say that a curve
z : I ! P is a solution of Hamilton’s equations if z is an integral curve of XH , i.e., ż(t) = XH(z(t))
for all t ∈ I.

A particularly important example for our purposes is when the symplectic manifold is the cotangent
bundle of a manifold, P = T ∗M , equipped with the canonical symplectic form Ω = dq∧dp in natural
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coordinates (q, p) on T ∗M . A Hamiltonian system has the coordinate expression

q̇ =
∂H(q, p)

∂p
,

ṗ = −∂H(q, p)

∂q
.

By Darboux’s theorem, any symplectic manifold is locally symplectomorphic to a cotangent bundle
equipped with its canonical symplectic form. As such, any Hamiltonian system can be locally
expressed in the above form (even when P is not a cotangent bundle), using Darboux coordinates.

We now consider the generalization of Hamiltonian systems where we relax the condition that Ω
is nondegenerate, i.e., presymplectic geometry. Let (P,Ω) be a presymplectic manifold, i.e., Ω is a
closed two-form on P with constant rank. As before, given a Hamiltonian H : P ! R, we define
the associated Hamiltonian system as

iXH
Ω = dH.

Note that since Ω is now degenerate, XH is not guaranteed to exist and if it does, it need not be
unique and in general is only partially defined on a submanifold of P . Again, we say a curve on P
is a solution to Hamilton’s equations if it is an integral curve of XH . Using Darboux coordinates
(q, p, r) adapted to (P,Ω), where Ω = dq ∧ dp and ker(Ω) = span{∂/∂r}, the local expression for
Hamilton’s equations is given by

q̇ =
∂H(q, p, r)

∂p
,

ṗ = −∂H(q, p, r)

∂q
,

0 =
∂H(q, p, r)

∂r
.

The third equation above is interpreted as a constraint equation which any solution curve must
satisfy. We will assume that the constraint defines a submanifold of P . It is clear that in order for a
solution vector field XH to exist, it must be restricted to lie on this submanifold. However, in order
for its flow to remain on the submanifold, it must be tangent to this submanifold, which further
restricts where X can be defined. Alternating restriction in order to satisfy these two constraints
yields the presymplectic constraint algorithm of Gotay et al. [18]. The presymplectic constraint
algorithm begins with the observation that for any X satisfying the above system, so does X + Z,
where Z ∈ ker(Ω). In order to obtain such a vector field X, one considers the subset P1 of P such
that Zp(H) = 0 for any Z ∈ ker(Ω), p ∈ P1. We will assume that the set P1 is a submanifold
of P . We refer to P1 as the primary constraint manifold. In order for the flow of the resulting
Hamiltonian vector field X to remain on P1, one further requires that X is tangent to P1. The
set of points satisfying this property defines a subsequent secondary constraint submanifold P2.
Iterating this process, one obtains a sequence of submanifolds

· · ·! Pk ! · · ·! P1 ! P0 ≡ P,

defined by

(1.1) Pk+1 = {p ∈ Pk : Zp(Hk) = 0 for all Z ∈ ker(Ωk)},

where

Ωk+1 = Ωk|Pk+1
,

Hk+1 = Hk|Pk+1
.
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If there exists a nontrivial fixed point in this sequence, i.e., a submanifold Pk of P such that
Pk = Pk+1, we refer to Pk as the final constraint manifold. If such a fixed point exists, we denote
by νP the minimum integer such that PνP = PνP +1, i.e., νP is the number of steps necessary for
the presymplectic constraint algorithm to terminate. If such a final constraint manifold PνP exists,
there always exists a solution vector field X defined on and tangent to PνP such that iXΩνP = dHνP

and X is unique up to the kernel of ΩνP . Furthermore, such a final constraint manifold is maximal
in the sense that if there exists a submanifold N of P which admits a vector field X defined on and
tangent to N such that iXΩ|N = dH|N , then N ⊂ PνP (Gotay and Nester [17]).

1.3. Main Contributions. In this paper, we explore the geometric properties of adjoint systems
associated with ordinary differential equations (ODEs) and differential-algebraic equations (DAEs).
For a discussion of adjoint systems associated with ODEs and DAEs, see Sanz-Serna [33] and Cao
et al. [11], respectively. In particular, we utilize the machinery of symplectic and presymplectic
geometry as a basis for understanding such systems.

In Section 2.1, we review the notion of adjoint equations associated with ODEs over vector spaces.
We show that the quadratic conservation law, which is the key to adjoint sensitivity analysis,
arises from the symplecticity of the flow of the adjoint system. In Section 2.2, we investigate the
symplectic geometry of adjoint systems associated with ODEs on manifolds. We additionally discuss
augmented adjoint systems, which are useful in the adjoint sensitivity of running cost functions.
In Section 2.3, we investigate the presymplectic geometry of adjoint systems associated with DAEs
on manifolds. We investigate the relation between the index of the base DAE and the index of the
associated adjoint system, using the notions of DAE reduction and the presymplectic constraint
algorithm. We additionally consider augmented systems for such adjoint DAE systems. For the
various adjoint systems that we consider, we derive various quadratic conservation laws which are
useful in adjoint sensitivity analysis of terminal and running cost functions. We additionally discuss
symmetry properties and present variational characterizations of such systems that provide a useful
perspective for constructing geometric numerical methods for these systems.

In Section 3, we discuss applications of the various adjoint systems to adjoint sensitivity and opti-
mal control. In Section 3.1, we show how the quadratic conservation laws developed in Section 2
can be used for adjoint sensitivity analysis of running and terminal cost functions, subject to ODE
or DAE constraints. In Section 3.2, we construct structure-preserving discretizations of adjoint
systems using the Galerkin Hamiltonian variational integrator construction of Leok and Zhang
[23]. For adjoint DAE systems, we introduce a presymplectic analogue of the Galerkin Hamiltonian
variational integrator construction. We show that such discretizations admit discrete analogues of
the aforementioned quadratic conservation laws and hence are suitable for the numerical compu-
tation of adjoint sensitivities. Furthermore, we show that such discretizations are natural when
applied to DAE systems, in the sense that reduction, forming the adjoint system, and discretiza-
tion all commute (for particular choices of these processes). As an application of this naturality, we
derive a variational error analysis result for the resulting presymplectic variational integrator for
adjoint DAE systems. Finally, in Section 3.3, we discuss adjoint systems in the context of optimal
control problems, where we prove a similar naturality result, in that suitable choices of reduction,
extremization, and discretization commute.

By developing a geometric theory for adjoint systems, the application areas that utilize such adjoint
systems can benefit from the existing work on geometric and structure-preserving methods.

1.4. Main Results. In this paper, we prove that, starting with an index 1 DAE, appopriate
choices of reduction, discretization, and forming the adjoint system commute. That is, the following
diagram commutes.
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Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

In order to prove this result, we develop along the way the definitions of the various vertices and
arrows in the above diagram. Roughly speaking, the four “Adjoint” arrows are defined by forming
the appropriate continuous or discrete action and enforcing the variational principle; the four
“Reduce” arrows are defined by solving the algebraic variables in terms of the kinematic variables
through the continuous or discrete constraint equations; the two “Discretize” arrows on the top face
are given by a Runge–Kutta method, while the two “Discretize” arrows on the bottom face are given
by the associated symplectic partitioned Runge–Kutta method. The above commutative diagram
can be understood as an extension of the result of Sanz-Serna [33] (that discretization and forming
the adjoint of an ODE commute when the discretization is a symplectic Runge–Kutta method)
by adding the reduction operation. In order to appropriately define this reduction operation, we
will show that the presymplectic adjoint DAE system has index 1 if the base DAE has index 1, so
that the reduction of the presymplectic adjoint DAE system results in a symplectic adjoint ODE
system; the tool for this will be the presymplectic constraint algorithm.

In the process of defining the ingredients in the above diagram, we will additionally prove various
properties of adjoint systems associated with ODEs and DAEs. The key properties that we will
prove for such adjoint systems are the adjoint variational quadratic conservation laws, Propositions
2.3, 2.6, 2.9, 2.10. As we will show, these conservation laws can be used to compute adjoint
sensitivities of running and terminal cost functions under the flow of an ODE or DAE. In order to
prove these conservation laws, we will need to define the variational equations associated with an
adjoint system. We will define them as the linearization of the base ODE or DAE; for the DAE
case, we will show that the variational equations have the same index as the base DAE so that they
have the same (local) solvability.

2. Adjoint Systems

2.1. Adjoint Equations on Vector Spaces. In this section, we review the notion of adjoint
equations on vector spaces and their properties, as preparation for adjoint systems on manifolds.
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Let Q be a finite-dimensional vector space and consider the ordinary differential equation on Q
given by

(2.1) q̇ = f(q),

where f : Q ! Q is a differentiable vector field on Q. Let Df(q) denote the linearization of f
at q ∈ Q, Df(q) ∈ L(Q,Q). Denoting its adjoint by [Df(q)]∗ ∈ L(Q∗, Q∗), the adjoint equation
associated with (2.1) is given by

(2.2) ṗ = −[Df(q)]∗p,

where p is a curve on Q∗.

Let qA be coordinates for Q and let pA be the associated dual coordinates for Q∗, so that the
duality pairing is given by 〈p, q〉 = pAq

A. The linearization of f at q is given in coordinates by

(Df(q))AB =
∂fA(q)

∂qB
,

where its action on v ∈ Q in coordinates is

(Df(q)v)A =
∂fA(q)

∂qB
vB.

Its adjoint then acts on p ∈ Q∗ by

([Df(q)]∗p)A =
∂fB(q)

∂qA
pB.

Thus, the ODE and its adjoint can be expressed in coordinates as

q̇A = fA(q),

ṗA = −∂f
B(q)

∂qA
pB.

Next, we recall that the combined system (2.1)-(2.2), which we refer to as the adjoint system, arises
from a variational principle. Letting 〈·, ·〉 denote the duality pairing between Q∗ and Q, we define
the Hamiltonian

H : Q×Q∗ ! R,
(q, p) 7! H(q, p) ≡ 〈p, f(q)〉.

The associated action, defined on the space of curves on Q×Q∗ covering some interval (t0, t1), is
given by

S[q, p] =

∫ t1

t0

(〈p, q̇〉 −H(q, p)) dt =

∫ t1

t0

(〈p, q̇〉 − 〈p, f(q)〉) dt.

Proposition 2.1. The variational principle δS = 0, subject to variations (δq, δp) which fix the
initial position δq(t0) = 0 and the final momenta δp(t1) = 0, yields the adjoint system (2.1)-(2.2).

Remark 2.1. We defer the proof of the above proposition until Proposition , where we prove the
more general case for manifolds.

The conditions δq(t0) = 0, δp(t1) = 0 correspond to boundary conditions q(t0) = q0, p(t1) = p1,
which are the boundary conditions used in adjoint sensitivity analysis.

The variational principle utilized above is formulated so that the stationarity condition δS = 0 is
equivalent to Hamilton’s equations, where we view Q × Q∗ ∼= T ∗Q with the canonical symplectic
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form on the cotangent bundle Ω = dq ∧ dp and with the corresponding Hamiltonian H : T ∗Q! R
given as above. It then follows that the flow of the adjoint system is symplectic.

The symplecticity of the adjoint system is a key feature of the system. In fact, the symplecticity
of the adjoint system implies that a certain quadratic invariant is preserved along the flow of
the system. This quadratic invariant is the key ingredient to the use of adjoint equations for
sensitivity analysis. To state the quadratic invariant, consider the variational equation associated
with equation (2.1),

(2.3)
d

dt
δq = Df(q)δq,

which corresponds to the linearization of (2.1) at q ∈ Q. For solution curves p and δq to (2.2) and
(2.3), respectively, over the same curve q, one has that the quantity 〈p, δq〉 is preserved along the
flow of the system, since

d

dt
〈p, δq〉 = 〈ṗ, δq〉+ 〈p, d

dt
δq〉 = 〈−[Df(q)]∗p, δq〉+ 〈p,Df(q)δq〉

= −〈p,Df(q)δq〉+ 〈p,Df(q)δq〉 = 0.

To see that symplecticity implies the preservation of this quantity, recall that symplecticity is the
statement that, along a solution curve of the adjoint system (2.1)-(2.2), one has

d

dt
Ω(V,W ) = 0,

where V and W are first variations to the adjoint system (i.e., that the flow of V and W on
solutions are again solutions). Infinitesimally, first variations V and W correspond to solutions of
the linearization of the adjoint system (2.1)-(2.2). At a solution (q, p) to the adjoint system, the
linearization of the system is given by

d

dt
δq = Df(q)δq,

d

dt
δp = −[Df(q)]∗δp.

Note that the first equation is just the variational equation (2.3) while the second equation is the
adjoint equation (2.2), with p replaced by δp, since the adjoint equation is linear in p. The first
variation vector field V corresponding to a solution (δq, δp) of this linearized system is

V = δq
∂

∂q
+ δp

∂

∂p
.

Now, we make two choices for the first variations V and W . For W , we take the solution δq = 0,
δp = p of the linearized system, which gives W = p ∂/∂p. For V , we take the solution δq = δq,
δp = 0 of the linearized system, which gives V = δq ∂/∂q. Inserting these into Ω gives

Ω(V,W ) = p
∂

∂p
y

(
δq

∂

∂q
y(dq ∧ dp)

)
= 〈p, δq〉.

Thus, symplecticity d
dtΩ(V,W ) = 0 with this particular choice of first variations V,W gives the

preservation of the quadratic invariant 〈p, δq〉.

2.2. Adjoint Systems on Manifolds. We now extend the notion of the adjoint system to the
case where the configuration space of the base ODE is a manifold. We will provide a symplectic
characterization of these adjoint systems, prove the associated adjoint variational quadratic conser-
vation laws, and additionally discuss symmetries and variational principles associated with these
systems.
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Let M be a manifold and consider the ODE on M given by

(2.4) q̇ = f(q),

where f is a vector field on M . Letting π : TM ! M denote the tangent bundle projection, we
recall that a vector field f is a map f : M ! TM which satisfies π ◦ f = 1M , i.e., f is a section of
the tangent bundle.

Analogous to the adjoint system on vector spaces, we will define the adjoint system on a manifold
as an ODE on the cotangent bundle T ∗M which covers (2.4), such that the time evolution of the
momenta in the fibers of T ∗M are given by an adjoint linearization of f .

To do this, in analogy with the vector space case, consider the Hamiltonian H : T ∗M ! R given
by H(q, p) = 〈p, f(q)〉q where 〈·, ·〉q is the duality pairing of T ∗qM with TqM . When there is no
possibility for confusion of the base point, we simply denote this duality pairing as 〈·, ·〉. Recall
that the cotangent bundle T ∗M possesses a canonical symplectic form Ω = −dΘ where Θ is the
tautological one-form on T ∗M . With coordinates (q, p) = (qA, pA) on T ∗M , this symplectic form
has the coordinate expression Ω = dq ∧ dp ≡ dqA ∧ dpA.

We define the adjoint system as the ODE on T ∗M given by Hamilton’s equations, with the above
choice of Hamiltonian H and the canonical symplectic form. Thus, the adjoint system is given by
the equation

iXH
Ω = dH,

whose solution curves on T ∗M are the integral curves of the Hamiltonian vector field XH . As is
well-known, for the particular choice of Hamiltonian H(q, p) = 〈p, f(q)〉, the Hamiltonian vector

field XH is given by the cotangent lift f̂ of f , which is a vector field on T ∗M that covers f (see,
for example, Bullo and Lewis [8]). With coordinates z = (q, p) on T ∗M , the adjoint system is the
ODE on T ∗M given by

(2.5) ż = f̂(z).

To be more explicit, recall that the cotangent lift of f is constructed as follows. Let Φε : M !
M denote the one-parameter family of diffeomorphisms generated by f . Then, we consider the
cotangent lifted diffeomorphisms given by (Φ−ε)

∗ : T ∗M ! T ∗M . This covers Φε in the sense that
πT ∗M ◦ (Φ−ε)

∗ = Φε ◦ πT ∗M where πT ∗M : T ∗M ! M is the cotangent projection. The cotangent

lift f̂ is then defined to be the infinitesimal generator of the cotangent lifted flow,

f̂(z) =
d

dε

∣∣∣
ε=0

(Φ−ε)
∗(z).

We can directly verify that f̂ is the Hamiltonian vector field for H, which follows from

i
f̂
Ω = −i

f̂
dΘ = −L

f̂
Θ + d(i

f̂
Θ) = d(i

f̂
Θ) = dH,

where Lf̂Θ = 0 follows from the fact that cotangent lifted flows preserve the tautological one-form

and H = i
f̂
Θ follows from a direct computation (where i

f̂
Θ is interpreted as a function on the

cotangent bundle which maps (q, p) to 〈Θ(q, p), f̂(q, p)〉)
The adjoint system (2.5) covers (2.4) in the following sense.

Proposition 2.2. Integral curves to the adjoint system (2.5) lift integral curves to the system (2.4).

Proof. Let z = (q, p) be coordinates on T ∗M . Let (q̇, ṗ) ∈ T(q,p)T
∗M . Then, TπT ∗M (q̇, ṗ) = q̇

where TπT ∗M is the pushforward of the cotangent projection. Furthermore,

TπT ∗M f̂(q, p) = TπT ∗M
d

dε

∣∣∣
ε=0

(Φ−ε)
∗(q, p) =

d

dε

∣∣∣
ε=0

(πT ∗M ◦ (Φ−ε)
∗)(q, p)
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=
d

dε

∣∣∣
ε=0

(Φε ◦ πT ∗M )(q, p) =
d

dε

∣∣∣
ε=0

Φε(q) = f(q).

Thus, the pushforward of the cotangent projection applied to (2.5) gives (2.4). It then follows that
integral curves of (2.5) lift integral curves of (2.4). �

Remark 2.2. This can also be seen explicitly in coordinates. Recalling that i
f̂
Ω = dH, one has

dH = d(pAf
A(q)) = fA(q)dpA + pB

∂fB(q)

∂qA
dqA,

and, on the other hand, denoting f̂(q, p) = XA(q, p)∂/∂qA + YA(q, p)∂/∂pA,

i
f̂
Ω = (XA(q, p)∂qA + YA(q, p)∂pA)y (dqB ∧ dpB) = XA(q, p)dpA − YA(q, p)dqA.

Equating these two gives the coordinate expression for the cotangent lift f̂ ,

f̂(q, p) = fA(q)
∂

∂qA
− pB

∂fB(q)

∂qA
∂

∂pA
.

Thus, the system ż = f̂(z) can be expressed in coordinates as

q̇A = fA(q),(2.6a)

ṗA = −pB
∂fB(q)

∂qA
,(2.6b)

which clearly covers the original ODE q̇A = fA(q). Also, note that this coordinate expression for
the adjoint system recovers the coordinate expression for the adjoint system in the vector space case.

Analogous to the vector space case, the adjoint system possesses a quadratic invariant associated
with the variational equations of (2.4). The variational equation is given by considering the tangent

lifted vector field on TM , f̃ : TM ! TTM , which is defined in terms of the flow Φε generated by
f by

f̃(q, δq) =
d

dε

∣∣∣
ε=0

TΦε(q, δq),

where (q, δq) are coordinates on TM . That is, f̃ is the infinitesimal generator of the tangent lifted
flow. The variational equation associated with (2.4) is the ODE associated with the tangent lifted
vector field. In coordinates,

(2.7)
d

dt
(q, δq) = f̃(q, δq).

Proposition 2.3. For integral curves (q, p) of (2.5) and (q, δq) of (2.7), which cover the same
curve q,

(2.8)
d

dt

〈
(q(t), p(t)), (q(t), δq(t))

〉
q(t)

= 0.

Proof. Note that (q(t), p(t)) ∈ T ∗q(t)M and (q(t), δq(t)) ∈ Tq(t)M so the duality pairing is well-

defined. Then,〈
(q(t), p(t)), (q(t), δq(t))

〉
q(t)

=
〈

(Φ−t)
∗(q(0), p(0)), TΦt(q(0), δq(0))

〉
q(t)

=
〈

(q(0), p(0)), TΦ−t ◦ TΦt(q(0), δq(0))
〉
q(0)

=
〈

(q(0), p(0)), T (Φ−t ◦ Φt)(q(0), δq(0))
〉
q(0)
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=
〈

(q(0), p(0)), (q(0), δq(0))
〉
q(0)

,

so the pairing is constant. �

Remark 2.3. In the vector space case, we saw that the preservation of the quadratic invariant is
implied by symplecticity. The above result is analogously implied by symplecticity, noting that the

flow of the adjoint system is symplectic since f̂ is a Hamiltonian vector field.

Another conserved quantity for the adjoint system (2.5) is the Hamiltonian, since the adjoint system
corresponds to a time-independent Hamiltonian flow, d

dtH = Ω(XH , XH) = 0.

Additionally, conserved quantities for adjoint systems are generated, via cotangent lift, by sym-
metries of the original ODE (2.4), where we say that a vector field g is a symmetry of the ODE
ẋ = h(x) if [g, h] = 0.

Proposition 2.4. Let g be a symmetry of (2.4), i.e., [g, f ] = 0. Then, its cotangent lift ĝ is a
symmetry of (2.5) and additionally, the function

〈Θ, ĝ〉

on T ∗M is preserved along the flow of f̂ , i.e., under the flow of the adjoint system (2.5).

Proof. We first show that ĝ is a symmetry of (2.5), i.e., that [ĝ, f̂ ] = 0. To see this, we recall that
the cotangent lift of the Lie bracket of two vector fields equals the Lie bracket of their cotangent
lifts,

[̂g, f ] = [ĝ, f̂ ].

Then, since [g, f ] = 0 by assumption, [ĝ, f̂ ] = [̂g, f ] = 0̂ = 0.

To see that 〈Θ, ĝ〉 is preserved along the flow of f̂ , we have

L
f̂
〈Θ, ĝ〉 = 〈L

f̂
Θ, ĝ〉+ 〈Θ,L

f̂
ĝ〉 = 〈0, ĝ〉+ 〈Θ, [f̂ , ĝ]〉 = 0,

where we used that L
f̂
Θ = 0 since f̂ is a cotangent lifted vector field. �

Remark 2.4. The above proposition states when [f, g] = 0, the Hamiltonian for the adjoint system
associated with g, 〈Θ, ĝ〉, is preserved along the Hamiltonian flow corresponding to the Hamiltonian

for the adjoint system associated with f , 〈Θ, f̂〉, and vice versa. Note, 〈Θ, ĝ〉 can be interpreted as
the momentum map corresponding to the action on T ∗M given by the flow of ĝ.

The above proposition shows that (at least some) symmetries of the adjoint system (2.5) can be found
by cotangent lifting symmetries of the original ODE (2.4). Additionally, the above proposition states
that such cotangent lifted symmetries give rise to conserved quantities.

In light of the above proposition, it is natural to ask the following question. Given a symmetry G

of the adjoint system (2.5) (i.e., [G, f̂ ] = 0), does it arise from a cotangent lifted symmetry in the
sense of Proposition 2.4? In general, the answer is no. However, for a projectable vector field G
which is a symmetry of the adjoint system, its projection by TπT ∗M to a vector field on M does
satisfy the assumptions of Proposition 2.4. This gives the following partial converse to the above
proposition.

Proposition 2.5. Let G be a projectable vector field on the bundle πT ∗M : T ∗M ! M which is

a symmetry of (2.5), i.e., [G, f̂ ] = 0. Then, the pushforward vector field g = TπT ∗M (G) on M
satisfies the assumptions of Proposition 2.4 and TπT ∗M ĝ = TπT ∗MG.
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Proof. Since G is a projectable vector field on the cotangent bundle, g = TπT ∗MG defines a well-
defined vector field on M . Thus,

[g, f ] = [TπT ∗MG,TπT ∗M f̂ ] = TπT ∗M [G, f̂ ] = TπT ∗M0 = 0,

so g is a symmetry of (2.4). Furthermore, we also have

TπT ∗M ĝ = TπT ∗M ̂(TπT ∗MG) = TπT ∗MG.

�

The preceding proposition shows that, for the class of projectable symmetries of the adjoint system
(2.5), it is always possible to find an associated symmetry of the original ODE (2.4) which, by
Proposition 2.4, corresponds to a Hamiltonian symmetry. Note that this implies that we can
associate a conserved quantity 〈Θ, ĝ〉 to G, where g = TπT ∗MG. Furthermore, since TπT ∗M ĝ =
TπT ∗MG and the canonical form Θ is a horizontal one-form, this implies that 〈Θ, G〉 equals 〈Θ, ĝ〉
and hence, is conserved.

These two propositions show that symmetries of an ODE can be identified with equivalence classes
of projectable symmetries of the associated adjoint system, where two projectable symmetries are
equivalent if their difference lies in the kernel of TπT ∗M .

2.2.1. Adjoint Systems with Augmented Hamiltonians. In this section, we consider a class of mod-
ified adjoint systems, where some function on the base manifold M is added to the Hamiltonian
of the adjoint system. More precisely, let H : T ∗M ! R, H(q, p) = 〈p, f(q)〉 be the Hamiltonian
of the previous section, corresponding to the ODE q̇ = f(q). Let L : M ! R be a function on
M . We identify L with its pullback through πT ∗M : T ∗M ! M . Then, we define the augmented
Hamiltonian

HL ≡ H + L : T ∗M ! R
(q, p) 7! H(q, p) + L(q) = 〈p, f(q)〉+ L(q).

We define the augmented adjoint system as the Hamiltonian system associated with HL relative to
the canonical symplectic form Ω on T ∗M ,

(2.9) iXHL
Ω = dHL.

Remark 2.5. The motivation for such systems arises from adjoint sensitivity analysis and optimal
control. For adjoint sensitivity analysis of a running cost function, one is concerned with the
sensitivity of some functional ∫ t

0
L(q)dt

along the flow of the ODE q̇ = f(q). In the setting of optimal control, the goal is to minimize such
a functional, constrained to curves satisfying the ODE (see, for example, Aguiar et al. [2]). We
will discuss such applications in more detail in Section 3.

In coordinates, the augmented adjoint system (2.9) takes the form

q̇A =
∂H

∂pA
= fA(q),(2.10a)

ṗA = − ∂H
∂qA

= −pB
∂fB(q)

∂qA
− ∂L(q)

∂qA
.(2.10b)
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We now prove various properties of the augmented adjoint system, analogous to the previous
section. To start, first note that we can decompose the Hamiltonian vector field XHL

as follows.

Let f̂ be the cotangent lift of f . Let XL ≡ XHL
− f̂ . Then, observe that

iXL
Ω = iXHL

Ω− i
f̂
Ω = dHL − dH = dL.

Thus, we have the decomposition XHL
= f̂ + XL, where f̂ and XL are the Hamiltonian vector

fields for H and L, respectively. In coordinates,

XL = − ∂L

∂qA
∂

∂pA
.

From the coordinate expression, we see that XL is a vertical vector field over the bundle T ∗M !M .
We can also see this intrinsically, since dL is a horizontal one-form on T ∗M , XL satisfies iXL

Ω = dL,
and Ω restricts to an isomorphism from vertical vector fields on T ∗M to horizontal one-forms on
T ∗M . Thus, it is immediate to see intrinsically that an analogous statement to Proposition 2.2

holds, since the flow of f̂ lifts the flow of f , while the flow of XL is purely vertical. That is, since
TπT ∗MXL = 0,

TπT ∗MXHL
= TπT ∗M f̂ = f.

We can of course also see that the augmented adjoint system lifts the original ODE from the
coordinate expression for the augmented adjoint system, (2.10a)-(2.10b).

We now prove analogous statements to Propositions 2.3 and 2.4, modified appropriately for the
presence of L in the augmented Hamiltonian.

Proposition 2.6. Let (q, p) be an integral curve of the augmented adjoint system (2.9) and let
(q, δq) be an integral curve of the variational equation (2.7), covering the same curve q. Then,

d

dt
〈p, δq〉 = −〈dL, δq〉.

Remark 2.6. Note that the variational equation associated with the above system is the same as in
the nonaugmented case, equation (2.7), since augmenting L to the Hamiltonian system only shifts
the Hamiltonian vector field in the vertical direction.

Proof. We will prove this in coordinates. We have the equations

ṗA = −pB
∂fB

∂qA
− ∂L

∂qA
,

d

dt
δqB =

∂fB

∂qA
δqA.

Then,

d

dt
〈p, δq〉 =

d

dt
pAδq

A = ṗAδq
A + pB

d

dt
δqB

= −pB
∂fB

∂qA
δqA − ∂L

∂qA
δqA + pB

∂fB

∂qA
δqA

= − ∂L

∂qA
δqA = −〈dL, δq〉.

�

Remark 2.7. Interestingly, the above proposition states that in the augmented case, 〈p, δq〉 is no
longer preserved but rather, its change measures the change of L with respect to the variation δq.
This may at first seem contradictory since both the augmented and nonaugmented Hamiltonian
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vector fields, XHL
and XH , preserve Ω, and as we noted previously in Remark 2.3, the preservation

of the quadratic invariant is implied by symplecticity. However, upon closer inspection, there is no
contradiction because the two cases have different first variations, where recall a first variation is a
symmetry vector field of the Hamiltonian system and symplecticity can be stated as

d

dt
Ω(V,W ) = 0,

for first variation vector fields V and W . In the nonaugmented case, the equations satisfied by the
first variation of the momenta p can be identified with p itself, since the adjoint equation for p is
linear in p. On the other hand, in the augmented case, the adjoint equation for p, (2.10b), is no
longer linear in p, rather, it is affine in p. Furthermore, the failure of this equation to be linear in
p is given precisely by −dL. Thus, in the augmented case, first variations in p can no longer be
identified with p, and this leads to the additional term −〈dL, δq〉 in the above proposition.

To prove an analogous statement to Proposition 2.4, we need the additional assumption that the
symmetry vector field g leaves L invariant, LgL = 0.

Proposition 2.7. Let g be a symmetry of the ODE q̇ = f(q), i.e., [g, f ] = 0. Additionally, assume
that g is a symmetry of L, i.e., LgL = 0. Then, its cotangent lift ĝ is a symmetry of the augmented
adjoint system, [ĝ, XHL

] = 0 and additionally, the function

〈Θ, ĝ〉
on T ∗M is preserved along the flow of XHL

.

Proof. To see that [ĝ, XHL
] = 0, note that with the decomposition XHL

= f̂ +XL, we have

[ĝ, XHL
] = [ĝ, f̂ ] + [ĝ, XL] = [ĝ, XL],

where we used that [ĝ, f̂ ] = [̂g, f ] = 0. To see that [ĝ, XL] = 0, we note that [ĝ, XL] can be expressed

[ĝ, XL] = LĝXL = Lĝ(Ω−1(dL)),

where we interpret Ω : T (T ∗M)! T ∗(T ∗M). Then, note that ĝ preserves Ω since ĝ is a cotangent
lift and it also preserves L (where, since we identify L with its pullback through πT ∗M , this is
equivalent to g preserving L). More precisely, since we are identifying L with its pullback (πT ∗M )∗L,
we have

Lĝ((πT ∗M )∗L) = 〈(πT ∗M )∗dL, ĝ〉 = 〈dL, TπT ∗M ĝ〉 = 〈dL, g〉 = LgL = 0.

Hence, Lĝ(Ω−1(dL)) = 0. One can also verify this in coordinates, and a direct computation yields

[ĝ, XL] =
∂

∂qA

(
gB(q)

∂L

∂qB

)
∂

∂pA
,

which vanishes since LgL = 0.

Now, to show that 〈Θ, ĝ〉 is preserved along the flow of XHL
, compute

LXHL
〈Θ, ĝ〉 = L

f̂
〈Θ, ĝ〉+ LXL

〈Θ, ĝ〉 = LXL
〈Θ, ĝ〉,

where we used that L
f̂
〈Θ, ĝ〉 = 0 by Proposition 2.4. Now, we have

LXHL
〈Θ, ĝ〉 = LXL

〈Θ, ĝ〉 = 〈LXL
Θ, ĝ〉+ 〈Θ,LXL

ĝ〉 = 〈LXL
Θ, ĝ〉+ 〈Θ, [XL, ĝ]︸ ︷︷ ︸

=0

〉

= 〈iXL
dΘ + d(iXL

Θ), ĝ〉 = 〈−iXL
Ω, ĝ〉+ 〈d(iXL

Θ), ĝ〉
= −〈dL, ĝ〉+ 〈d(iXL

Θ), ĝ〉.
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The first term above vanishes since LgL = 0. Furthermore, 〈d(iXL
Θ), ĝ〉 = 0 since XL is a vertical

vector field while Θ is a horizontal one-form. Hence, LXHL
〈Θ, ĝ〉 = 0. �

2.3. Adjoint Systems for DAEs via Presymplectic Mechanics. In this section, we generalize
the notion of adjoint system to the case where the base equation is a (semi-explicit) DAE. We will
prove analogous results to the ODE case. However, more care is needed than the ODE case, since
the DAE constraint introduces issues with solvability. As we will see, the adjoint system associated
with a DAE is a presymplectic system, so we will approach the solvability of such systems through
the presymplectic constraint algorithm.

We consider the following setup for a differential-algebraic equation. Let Md and Ma be two
manifolds, where we regard Md as the configuration space of the “dynamical” or “differential”
variables and Ma as the configuration space of the “algebraic” variables. Let πΦ : Φ ! Md ×Ma

be a vector bundle over Md ×Ma. Furthermore, let πd : Md ×Ma ! Md be the projection onto
the first factor and let πTMd

: TMd ! Md ×Ma be the pullback bundle of the tangent bundle

πTMd
: TMd ! Md by πd, i.e., TMd = π∗d(TMd). Then, a (semi-explicit) DAE is specified by a

section f ∈ Γ(TMd) and a section φ ∈ Γ(Φ), via the system

q̇ = f(q, u),(2.11a)

0 = φ(q, u),(2.11b)

where (q, u) are coordinates on Md×Ma. We refer to TMd as the differential tangent bundle, with
coordinates (q, u, v) and to Φ as the constraint bundle.

Remark 2.8. For the local solvability of (2.11a)-(2.11b), regard φ locally as a map Rdim(Md) ×
Rdim(Ma) ! Rrank(Φ). If ∂φ/∂u is an isomorphism at a point (q0, u0) where Φ(q0, u0) = 0, then by
the implicit function theorem, one can locally solve u = u(q) about (q0, u0) such that φ(q, u(q)) = 0,
and subsequently solve the unconstrained differential equation q̇ = f(q, u(q)) locally. This is the
case for semi-explicit index 1 DAEs.

In order for the rank(Φ) × dim(Ma) matrix ∂φ/∂u(q0, u0) to be an isomorphism, it is necessary
that rank(Φ) = dim(Ma). However, we will make no such assumption, so as to treat the theory in
full generality, allowing for, e.g., nonunique solutions.

Now, let T ∗Md be the pullback bundle of the cotangent bundle T ∗Md by πd, with coordinates
(q, u, p), which we refer to as the differential cotangent bundle. Furthermore, let Φ∗ be the dual
vector bundle to Φ, with coordinates (q, u, λ). Let T ∗Md ⊕ Φ∗ be the Whitney sum of these two
vector bundles over Md×Ma with coordinates (q, u, p, λ), which we refer to as the generalized phase
space bundle. We define a Hamiltonian on the generalized phase space,

H : T ∗Md ⊕ Φ∗ ! R,
H(q, u, p, λ) = 〈p, f(q, u)〉+ 〈λ, φ(q, u)〉.

Let Ωd denote the canonical symplectic form on T ∗Md, with coordinate expression Ωd = dq ∧ dp.
We define a presymplectic form Ω0 on T ∗Md ⊕ Φ∗ as follows: the pullback bundle admits the
map π̃d : T ∗Md ! T ∗Md which covers πd and acts as the identity on fibers and furthermore, the
generalized phase space bundle admits the projection Π : TM

∗
d ⊕ Φ∗ ! TM

∗
d, since the Whitney

sum has the structure of a double vector bundle. Hence, we can pullback Ωd along the sequence of
maps

T ∗Md ⊕ Φ∗
Π
−! T ∗Md

π̃d−! T ∗Md,

which allows us to define a two-form Ω0 ≡ Π∗ ◦ π̃∗d(Ωd) on the generalized phase space bundle.
Clearly, Ω0 is closed as the pullback of a closed form. In general, Ω0 will be degenerate except in
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the trivial case where Ma is empty and the fibers of Φ are the zero vector space. Hence, Ω0 is a
presymplectic form. Note that since Π acts by projection and π̃d acts as the identity on fibers, the
coordinate expression for Ω0 on T ∗Md⊕Φ∗ with coordinates (q, u, p, λ) is the same as the coordinate
expression for Ωd, Ω0 = dq ∧ dp. The various spaces and their coordinates are summarized in the
diagram below.

(q, u, p, λ) ∈ T ∗Md ⊕ Φ∗ (q, u, λ) ∈ Φ∗ Φ

(q, u, p) ∈ T ∗Md Md ×Ma 3 (q, u) TMd 3 (q, u, v)

(q, p) ∈ T ∗Md Md 3 q TMd 3 (q, v)

πd

We now define the adjoint system associated with the DAE (2.11a)-(2.11b) as the Hamiltonian
system

(2.12) iXΩ0 = dH.

Given a (generally, partially defined) vector field X on the generalized phase space satisfying (2.12),
we say a curve (q(t), u(t), p(t), λ(t)) is a solution curve of (2.12) if it is an integral curve of X.

Let us find a coordinate expression for the above system. Expressing our coordinates with indices
(qi, ua, pj , λA), the left hand side of (2.12) along a solution curve has the expression

iXΩ0 =

(
q̇i
∂

∂qi
+ u̇a

∂

∂ua
+ ṗj

∂

∂pj
+ λ̇A

∂

∂λA

)
y dqk ∧ dpk

= q̇idpi − ṗjdqj .

On the other hand, the right hand side of (2.12) has the expression

dH = d
(
pif

i(q, u) + λAφ
A(q, u)

)
= f i(q, u)dpi +

(
pi
∂f i

∂qj
+ λA

∂φA

∂qj

)
dqj + φA(q, u)dλA +

(
pi
∂f i

∂ua
+ λA

∂φA

∂ua

)
dua.

Equating these expressions gives the coordinate expression for the adjoint DAE system,

q̇i = f i(q, u),(2.13a)

ṗj = −pi
∂f i

∂qj
− λA

∂φA

∂qj
,(2.13b)

0 = φA(q, u),(2.13c)

0 = pi
∂f i

∂ua
+ λA

∂φA

∂ua
.(2.13d)

Remark 2.9. As mentioned in Remark 2.8, in the index 1 case, one can locally solve the original
DAE (2.13a) and (2.13c). Viewing such a solution (q, u) as fixed, one can subsequently locally solve
for λ in equation (2.13d) as a function of p, since ∂φ/∂u is locally invertible. Substituting this into
(2.13b) gives an ODE solely in the variable p, which can be solved locally.

Stated another way, if the original DAE (2.11a)-(2.11b) is an index 1 system, then the adjoint DAE
system (2.13a)-(2.13d) is an index 1 system with dynamical variables (q, p) and algebraic variables
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(u, λ). To see this, if one denotes the constraints for the adjoint system (2.13c) and (2.13d) as

0 = φ̃(q, u, p, λ) ≡
(

φA(q, u)

pi
∂f i

∂ua + λA
∂φA

∂ua

)
,

then the matrix derivative of φ̃ with respect to the algebraic variables (u, λ) can be locally expressed
in block form as (

∂φ/∂u A
0 ∂φ/∂u

)
,

where the block A has components given by the derivative of the right hand side of (2.13d) with
respect to u. It is clear from the block triangular form of this matrix that it is pointwise invertible
if ∂φ/∂u is.

Remark 2.10. It is clear from the coordinate expression (2.13a)-(2.13d) that a solution curve of
the adjoint DAE system, if it exists, covers a solution curve of the original DAE system.

We now prove several results regarding the structure of the adjoint DAE system.

First, we show that the constraint equations (2.13c)-(2.13d) can be interpreted as the statement
that the Hamiltonian H has the same time dependence as the “dynamical” Hamiltonian,

Hd : T ∗Md ⊕ Φ∗ ! R,
Hd(q, u, p, λ) = 〈p, f(q, u)〉,

when evaluated along a solution curve.

Proposition 2.8. For a solution curve (q, u, p, λ) of (2.12),

d

dt
H(q(t), u(t), p(t), λ(t)) =

d

dt
Hd(q(t), u(t), p(t), λ(t)).

Proof. For brevity, all functions below are appropriately evaluated along the solution curve. We
have

d

dt
H =

∂H

∂qi
q̇i +

∂H

∂pj
ṗj +

∂H

∂ua
u̇a +

∂H

∂λA
λ̇A

=
∂H

∂qi
q̇i +

∂H

∂pj
ṗj +

(
pi
∂f i

∂ua
+ λA

∂φA

∂ua

)
u̇a + φAλ̇A

=
∂H

∂qi
q̇i +

∂H

∂pj
ṗj

=
∂Hd

∂qi
q̇i +

∂Hd

∂pj
ṗj =

d

dt
Hd,

where in the third equality, we used (2.13c) and (2.13d). �

Remark 2.11. A more geometric way to view the above proposition is as follows: note that if
a partially-defined vector field X exists such that iXΩ0 = dH, then the change of H in a given
direction Y , at any point where X is defined, can be computed as dH(Y ) = Ω0(X,Y ). Observe
that the kernel of Ω0 is locally spanned by ∂/∂u, ∂/∂λ, i.e., it is spanned by the coordinate vectors
in the algebraic coordinates. Hence, the change of H in the algebraic coordinate directions is zero.
This justifies referring to (u, λ) as “algebraic” variables.

We now prove a result regarding the conservation of a quadratic invariant, analogous to the case of
cotangent lifted adjoint systems in the ODE case. To do this, we define the variational equations
as the linearization of the DAE (2.11a)-(2.11b). The coordinate expressions for the variational
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equations are obtained by taking the variation of equations (2.11a)-(2.11b) with respect to variations
(δq, δu),

q̇i = f i(q, u),(2.14a)

0 = φA(q, u),(2.14b)

d

dt
δqi =

∂f i(q, u)

∂qj
δqj +

∂f i(q, u)

∂ua
δua,(2.14c)

0 =
∂φA(q, u)

∂qj
δqj +

∂φA(q, u)

∂ua
δua.(2.14d)

Proposition 2.9. For a solution (q, u, p, λ) of the adjoint DAE system (2.13a)-(2.13d) and a
solution (q, u, δq, δu) of the variational equations (2.14a)-(2.14d), covering the same curve (q, u),
one has

d

dt
〈p(t), δq(t)〉 = 0.

Proof. This follows from a direct computation,

d

dt
〈p, δq〉 =

d

dt

(
piδq

i
)

= ṗjδq
j + pi

d

dt
δqi

= −pi
∂f i

∂qj
δqj − λA

∂φA

∂qj
δqj + pi

∂f i

∂qj
δqj + pi

∂f i

∂ua
δua

= −λA
∂φA

∂qj
δqj + pi

∂f i

∂ua
δua

=

(
λA

∂φA

∂ua
+ pi

∂f i

∂ua

)
δua = 0,

where we used (2.13b), (2.14c), (2.14d), and (2.13d). �

Remark 2.12. Although we proved the previous proposition in coordinates, it can be understood
intrinsically through the presymplecticity of the adjoint DAE flow. To see this, assume a partially-
defined vector field X exists such that iXΩ0 = dH. Then, the flow of X preserves Ω0, which follows
from

LXΩ0 = iXdΩ0 + d(iXΩ0) = d(iXΩ0) = d2H = 0.

The coordinate expression for the preservation of the presymplectic form Ω0 = dqi ∧ dpi, with the
appropriate choice of first variations, gives the previous proposition, analogous to the argument that
we made in the symplectic (unconstrained) case.

Additionally, as we will see in Section 3.1, Proposition 2.9 will provide a method for computing
adjoint sensitivities.

These two observations are interesting when constructing numerical methods to compute adjoint
sensitivities, since if we can construct integrators that preserve the presymplectic form, then it will
preserve the quadratic invariant and hence, be suitable for computing adjoint sensitivities efficiently.

Remark 2.13. For an index 1 DAE (2.11a)-(2.11b), since ∂φ/∂u is (pointwise) invertible for a
fixed curve (q, u), one can solve for δu as a function of δq in the variational equation (2.14d) and
substitute this into (2.14c) to obtain an explicit ODE for δq. Hence, in the index 1 case, given a
solution (q, u) of the DAE (2.11a)-(2.11b) and an initial condition δq(0) in the tangent fiber over
q(0), there is a corresponding (at least local) unique solution of the variational equations.
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2.3.1. DAE Index and the Presymplectic Constraint Algorithm. In this section, we relate the index
of the DAE (2.11a)-(2.11b) to the number of steps for convergence in the presymplectic constraint
algorithm associated with the adjoint DAE system (2.12). In particular, we show that for an index
1 DAE, the presymplectic constraint algorithm for the associated adjoint DAE system converges
after νP = 1 step. Subsequently, we discuss how one can formally handle the more general index ν
DAE case.

We consider again the presymplectic system given by the adjoint DAE system, P = T ∗Md ⊕ Φ∗

equipped with the presymplectic form Ω0 = dq ∧ dp and Hamiltonian H(q, u, p, λ) = 〈p, f(q, u)〉+
〈λ, φ(q, u)〉, as discussed in the previous section. Our goal is to bound the number of steps in the
presymplectic constraint algorithm νP for this presymplectic system in terms of the index ν of the
underlying DAE (2.11a)-(2.11b).

Recall the presymplectic constraint algorithm discussed in Section 1.2. We first determine the
primary constraint manifold P1. Observe that since Ω0 = dq ∧ dp, we have the local expression
ker(Ω0)|(q,u,p,λ) = span{∂/∂u, ∂/∂λ}. Thus, we require that

∂H

∂u
= 0,

∂H

∂λ
= 0,

i.e., P1 consists of the points (q, u, p, λ) such that

0 =
∂H(q, u, p, λ)

∂ua
= pi

∂f i(q, u)

∂ua
+ λA

∂φA(q, u)

∂ua
,

0 =
∂H(q, u, p, λ)

∂λA
= φA(q, u).

These are of course the constraint equations (2.13c)-(2.13d) of the adjoint DAE system.

We now consider first the case when the DAE system (2.11a)-(2.11b) has index ν = 1 and subse-
quently, consider the general case ν ≥ 1.

The Presymplectic Constraint Algorithm for ν = 1. For the case ν = 1, we will show that
the presymplectic constraint algorithm terminates after 1 step, i.e., νP = ν = 1.

Now, assume that the DAE system (2.11a)-(2.11b) has index ν = 1, i.e., for each (q, u) ∈Md×Ma

such that φ(q, u) = 0, the matrix with Ath row and ath column entry

∂φA(q, u)

∂ua

is invertible. Observe that the definition of the presymplectic constraint algorithm, equation (1.1),
is local and hence, we seek a local coordinate expression for Ω1 ≡ Ω0|P1 and its kernel.

Let (q, u, p, λ) ∈ P1. In particular, φ(q, u) = 0. Since ∂φ(q, u)/∂u is invertible, by the implicit
function theorem, one can locally solve for u as a function of q, which we denote u = u(q), such
that φ(q, u(q)) = 0. Then, one can furthermore locally solve for λ as a function of q and p from the
second constraint equation,

λA(q, p) = −

[(
∂φ(q, u(q))

∂u

)−1
]a
A

pi
∂f i(q, u(q))

∂ua
.

Thus, we can coordinatize P1 via coordinates (q′, p′), where the inclusion i1 : P1 ↪! P is given by
the coordinate expression

i1 : (q′, p′) 7! (q′, u(q′), p′, λ(q′, p′)).
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Then, one obtains the local expression for Ω1,

Ω1 = i∗1Ω0 = i∗1(dq) ∧ i∗1(dp) = dq′ ∧ dp′.

This is clearly nondegenerate, i.e., Zp = 0 for any Z ∈ ker(Ω1), p ∈ P1, so the presymplectic
constraint algorithm terminates, P2 = P1. We conclude that νP = 1.

To conclude the discussion of the index 1 case, we obtain coordinate expressions for the resulting
nondegenerate Hamiltonian system. The Hamiltonian on P1 can be expressed as

H1(q′, p′) = H(i1(q′, p′)) = 〈p′, f(q′, u(q′))〉+ 〈λ(q′, p′), φ(q′, u(q′))〉 = 〈p′, f(q′, u(q′))〉.

Thus, with the coordinate expression X = q̇′i∂/∂q′i + ṗ′i∂/∂p
′
i, Hamilton’s equations iXΩ1 = dH1

can be expressed as

q̇′i =
∂H1

∂p′i
= f i(q′, u(q′)),

ṗ′i = −∂H1

∂q′i
= −p′j

∂f j(q′, u(q′))

∂qi
− p′j

∂f j(q′, u(q′))

∂ua
∂ua(q′)

∂q′i
.

We will now show explicitly that this Hamiltonian system solves (2.13a)-(2.13d) along the subman-
ifold P1. Clearly, the latter two equations (2.13c)-(2.13d) are satisfied, by definition of P1. So, we
want to show that the first two equations (2.13a)-(2.13b) are satisfied. Using the second constraint
equation (2.13d), we have

−p′j
∂f j(q′, u(q′))

∂ua
= λA(q′, p′)

∂φA(q′, u(q′))

∂ua
.

Substituting this into the equation for ṗ′i above gives

ṗ′i = −p′j
∂f j(q′, u(q′))

∂qi
+ λA(q′, p′)

∂φA(q′, u(q′))

∂ua
∂ua(q′)

∂q′i
.

By the implicit function theorem, one has

∂φA(q′, u(q′))

∂ua
∂ua(q′)

∂q′i
= −∂φ

A(q′, u(q′))

∂qi
.

Hence, the Hamiltonian system on P1 can be equivalently expressed as

q̇′i = f i(q′, u(q′)),

ṗ′i = −p′j
∂f j(q′, u(q′))

∂qi
− λA(q′, p′)

∂φA(q′, u(q′))

∂qi
.

Thus, we have explicitly verified that (2.13a)-(2.13d) are satisfied along P1. Note that since the
presymplectic constraint algorithm terminates at νP = 1, X is guaranteed to be tangent to P1.
One can also verify this explicitly by computing the pushforward Ti1(X) and verifying that it
annihilates the constraint functions whose zero level set defines P1,

(q, u, p, λ) 7! φA(q, u),

(q, u, p, λ) 7! pi
∂f i(q, u)

∂ua
+ λA

∂φA(q, u)

∂ua
.

Remark 2.14. It is interesting to note that the Hamiltonian system iXΩ1 = dH1, which we
obtained by forming the adjoint system of the underlying index 1 DAE and subsequently, reducing the
index of the adjoint DAE system through the presymplectic constraint algorithm, can be equivalently
obtained (at least locally) by first reducing the index of the underlying DAE and then forming the
adjoint system.
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More precisely, if one locally solves φ(q, u) = 0 for u = u(q), then the index 1 DAE can be reduced
to an ODE,

q̇ = f(q, u(q)).

Subsequently, we can form the adjoint system to this ODE, as discussed in Section 2.2. The
corresponding Hamiltonian is H(q, p) = 〈p, f(q, u(q))〉, which is the same as H1.

Thus, for the index 1 case, the process of forming the adjoint system and reducing the index com-
mute.

Remark 2.15. In the language of the presymplectic constraint algorithm, Proposition 2.8 can be
restated as the statement that the Hamiltonian H and its first derivatives, restricted to the primary
constraint manifold, agrees with the dynamical Hamiltonian H1 and its first derivatives.

Remark 2.16. An alternative view of the solution theory of the presymplectic adjoint DAE system
(2.13a)-(2.13d) is through singular perturbation theory (see, for example, Berglund [6] and Chen
and Trenn [13]). We proceed by writing (2.13a)-(2.13d) as

q̇ =
∂H

∂p
= f(q, u),

ṗ = −∂H
∂q

= −[Dqf(q, u)]∗p− [Dqφ(q, u)]∗λ,

0 =
∂H

∂λ
= φ(q, u),

0 = −∂H
∂u

= −[Duf(q, u)]∗p− [Duφ(q, u)]∗λ.

Applying a singular perturbation to the constraint equations yields the system

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

,

εu̇ =
∂H

∂λ
,

ελ̇ = −∂H
∂u

,

where ε > 0. Observe that this is a nondegenerate Hamiltonian system with H(q, u, p, λ) as previ-
ously defined but with the modified symplectic form Ωε = dq∧dp+ε du∧dλ. Then, the above system
can be expressed iXH

Ωε = dH. In the language of perturbation theory, the primary constraint man-
ifold for the presymplectic system is precisely the slow manifold of the singularly perturbed system.
One can utilize techniques from singular perturbation theory to develop a solution theory for this
system, using Tihonov’s theorem, whose assumptions for this particular system depend on the eigen-
values of the algebraic Hessian D2

u,λH (see, Berglund [6]). Although we will not elaborate on this
here, this could be an interesting approach for the existence, stability, and approximation theory of
such systems. In particular, the slow manifold integrators introduced in Burby and Klotz [9] may
be relevant to their discretization. It is also interesting to note that for a solution (qε, pε, uε, λε) of
the singularly perturbed system and a solution (δqε, δuε) of the variational equations,

d

dt
δqε = Dqf(qε, uε)δqε +Duf(qε, uε)δuε,

ε
d

dt
δuε = Dqφ(qε, uε)δqε +Duφ(qε, uε)δuε,
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one has the perturbed adjoint variational quadratic conservation law

d

dt

(
〈pε, δqε〉+ ε〈λε, δuε〉

)
= 0,

which follows immediately from the preservation of Ωε under the symplectic flow.

The Presymplectic Constraint Algorithm for General ν ≥ 1. Note that for the general
case, we assume that the index of the DAE is finite, 1 ≤ ν <∞.

In this case, there are two possible approaches to reduce the adjoint system: either form the adjoint
system associated with the index ν DAE and then successively apply the presymplectic constraint
algorithm or, alternatively, reduce the index of the DAE, form the adjoint system, and then apply
the presymplectic constraint algorithm as necessary.

Since we have already worked out the presymplectic constraint algorithm for the index 1 case,
we will take the latter approach. Namely, we reduce an index ν DAE to an index 1 DAE, and
subsequently, apply the presymplectic constraint algorithm to the reduced index 1 DAE. Given an
index ν DAE, it is generally possible to reduce the DAE to an index 1 DAE using the algorithm
introduced in Mattsson and Söderlind [26]. The process of index reduction is given by differentiating
the equations of the DAE to reveal hidden constraints. Geometrically, the process of index reduction
can be understood as the successive jet prolongation of the DAE and subsequent projection back
onto the first jet (see, Reid et al. [29]).

Thus, given an index ν DAE ẋ = f̃(x, y), φ̃(x, y) = 0, we can, after ν−1 reduction steps, transform
it into an index 1 DAE of the form q̇ = f(q, u), φ(q, u) = 0. Subsequently, we can form the
adjoint DAE system and apply one iteration of the presymplectic constraint algorithm to obtain
the underlying nondegenerate dynamical system. If we let the νR,P denote the minimum number
of DAE index reduction steps plus presymplectic constraint algorithm iterations necessary to take
an index ν DAE and obtain the underlying nondegenerate Hamiltonian system associated with the
adjoint, we have νR,P ≤ ν.

Remark 2.17. Note that we could have reduced the index ν DAE to an explicit ODE after ν
reduction steps, and subsequently, formed the adjoint. While this is formally equivalent to the above
procedure by Remark 2.14, we prefer to keep the DAE in index 1 form. This is especially preferable
from the viewpoint of numerics: if one reduces an index 1 DAE to an ODE and attempts to apply
a numerical integrator, it is generically the case that the discrete flow drifts off the constraint
manifold. For this reason, it is preferable to develop numerical integrators for the index 1 adjoint
DAE system directly to prevent constraint violation.

Example 2.1 (Hessenberg Index 2 DAE). Consider a Hessenberg index 2 DAE, i.e., a DAE of
the form

q̇ = f(q, u),

0 = g(q),

where (q, u) ∈ Rn × Rm, f : Rn × Rm ! Rn, g : Rn ! Rm, and ∂g
∂q

∂f
∂u is pointwise invertible. We

reduce this to an index 1 DAE (2.11a)-(2.11b) as follows. Let Md = g−1({0}) be the dynamical
configuration space which we will assume is a submanifold of Rn. For example, this is true if g is a
constant rank map. Furthermore, let Ma = Rm be the algebraic configuration space. To reduce the
index, we differentiate the constraint g(q) = 0 with respect to time. This is equivalent to enforcing
that the dynamics are tangent to Md. This gives

0 =
∂gA(q)

∂qi
q̇i =

∂gA(q)

∂qi
f i(q, u) ≡ φA(q, u).
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Hence, we can form the semi-explicit index 1 system on Md ×Ma given by

q̇ = f(q, u),

0 = φ(q, u).

The above system is an index 1 DAE since ∂φ
∂u = ∂g

∂q
∂f
∂u is pointwise invertible.

We now form the adjoint DAE system associated with this index 1 DAE, (2.13a)-(2.13d). Expressing
the constraint in terms of g and f , instead of φ, gives

q̇i = f i(q, u),

ṗj = −pi
∂f i(q, u)

∂qj
− λA

(
∂2gA(q)

∂qj∂qi
f i(q, u) +

∂gA(q)

∂qi
∂f i(q, u)

∂qj

)
,

0 =
∂gA(q)

∂qi
f i(q, u),

0 = pi
∂f i(q, u)

∂ua
+ λA

(
∂gA(q)

∂qi
∂f i(q, u)

∂ua

)
.

We can then apply one iteration of the presymplectic constraint algorithm, as discussed above in the
index ν = 1 case, to obtain the underlying nondegenerate Hamiltonian dynamics. Restricting to the
primary constraint manifold, using the first constraint equation to solve for u = u(q) by the implicit
function theorem and subsequently, using the second constraint equation to solve for λ = λ(q, p) by

inverting
(
∂g
∂q

∂f
∂u

)T
, gives the Hamiltonian system

q̇′i = f i(q′, u(q′)),

ṗ′j = −p′i
∂f i(q′, u(q′))

∂qj
− λA(q′, p′)

(
∂2gA(q′)

∂qj∂qi
f i(q′, u(q′)) +

∂gA(q′)

∂qi
∂f i(q′, u(q′))

∂qj

)
.

2.3.2. Adjoint Systems for DAEs with Augmented Hamiltonians. In Section 2.2.1, we augmented
the adjoint ODE Hamiltonian by some function L. In this section, we do analogously for the adjoint
DAE system.

To begin, let H(q, u, p, λ) = 〈p, f(q, u)〉+ 〈λ, φ(q, u)〉 be the Hamiltonian on the generalized phase
space bundle corresponding to the DAE q̇ = f(q, u), 0 = φ(q, u), and let L : Md ×Ma ! R be the
function that we would like to augment. We identify L with its pullback through T ∗Md ⊕ Φ∗ !
Md ×Ma. Then, we define the augmented Hamiltonian

HL ≡ H + L : T ∗Md ⊕ Φ∗ ! R
(q, u, p, λ) 7! H(q, u, p, λ) + L(q, u).

We define the augmented adjoint DAE system as the presymplectic system

(2.15) iXHL
Ω0 = dHL.

A direct calculation yields the coordinate expression, along an integral curve of such a (generally,
partially-defined) vector field XHL

,

q̇i = f i(q, u),(2.16a)

ṗj = −pi
∂f i

∂qj
− λA

∂φA

∂qj
− ∂L

∂qj
,(2.16b)

0 = φA(q, u),(2.16c)
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0 = pi
∂f i

∂ua
+ λA

∂φA

∂ua
+
∂L

∂ua
.(2.16d)

Remark 2.18. Observe that if the base DAE (2.11a)-(2.11b) has index 1, then the above system has
index 1 by the exact same argument given in the nonaugmented case. After reduction by applying
the presymplectic constraint algorithm and solving for u as a function of q and λ as a function of
(q, p), the underlying nondegenerate Hamiltonian system on the primary (final) constraint manifold
corresponds to the Hamiltonian

(HL)1(q′, p′) = 〈p′, f(q′, u(q′))〉+ L(q′, u(q′)),

which is the adjoint Hamiltonian for the ODE q̇′ = f(q′, u(q′)), augmented by L(q′, u(q′)).

However, as we will discuss in Section 3.3, it is not uncommon in optimal control problems for
∂φ/∂u to be singular, but the presence of

∫
Ldt in the minimization objective may uniquely specify

the singular degrees of freedom.

We now prove an analogous proposition to Proposition 2.9, modified by the presence of L in the
Hamiltonian. We again consider the variational equations (2.14a)-(2.14d) associated with the base
DAE (2.11a)-(2.11b), which for simplicity we express in matrix derivative notation as

q̇ = f(q, u),(2.17a)

0 = φ(q, u),(2.17b)

d

dt
δq = Dqf(q, u)δq +Duf(q, u)δu,(2.17c)

0 = Dqφ(q, u)δq +Duφ(q, u)δu.(2.17d)

Proposition 2.10. For a solution (q, u, p, λ) of the augmented adjoint DAE system (2.16a)-(2.16d)
and a solution (q, u, δq, δu) of the variational equations (2.17a)-(2.17d), covering the same solution
(q, u) of the base DAE (2.11a)-(2.11b),

(2.18)
d

dt
〈p, δq〉 = −〈∇qL, δq〉 − 〈∇uL, δu〉.

Proof. This follows from a direct computation:

d

dt
〈p, δq〉 = 〈ṗ, δq〉+ 〈p, d

dt
δq〉

= −〈[Dqf ]∗p, δq〉 − 〈[Dqφ]∗λ, δq〉 − 〈∇qL, δq〉+ 〈p,Dqfδq〉+ 〈p,Dufδu〉
= −〈λ,Dqφδq〉 − 〈∇qL, δq〉+ 〈p,Dufδu〉
= 〈λ,Duφδu〉 − 〈∇qL, δq〉+ 〈p,Dufδu〉
= −〈∇qL, δq〉+ 〈[Duφ]∗λ+ [Duf ]∗p, δu〉
= −〈∇qL, δq〉 − 〈∇uL, δu〉,

where in the fourth equality above we used (2.17d) and in the sixth equality above we used (2.16d).
�

Remark 2.19. Analogous to the ODE case discussed in Remark 2.7, we remark that for the
nonaugmented adjoint DAE system (2.13a)-(2.13d), we have preservation of 〈p, δq〉 by virtue of
presymplecticity. On the other hand, for the augmented adjoint DAE system, despite preserving
the same presymplectic form, the change of 〈p, δq〉 now measures the change in L with respect to
variations in q and u. This can be understood from the fact that the adjoint equations for (p, λ)
in the nonaugmented case, (2.13b) and (2.13d), are linear in (p, λ), so that one can identify first
variations in (p, λ) with (p, λ); whereas, in the augmented case, equations (2.16b) and (2.16d) are
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affine in (p, λ), so such an identification cannot be made. Furthermore, the failure of (2.16b)
and (2.16d) to be linear in (p, λ) are given precisely by ∇qL and ∇uL, respectively. Thus, in the
augmented case, this leads to the additional terms −〈∇uL, δq〉 − 〈∇qL, δu〉 in equation (2.18).

2.4. An Intrinsic Type II Variational Principle for Adjoint Systems. We now show that
the adjoint system (2.9) arises from an intrinsic Type II variational principle. In coordinates, the
type II variational principle corresponds to fixed initial position q(t0) = q0 and fixed final momenta
p(t1) = p1, which are the boundary conditions used in adjoint sensitivity analysis, as we will discuss
in Section 3.1.

Consider the augmented adjoint system

q̇ = ∂HL/∂p = f(q),

ṗ = −∂HL/∂q = −[Df(q)]∗p− dL(q),

where HL is the augmented Hamiltonian. Recall that HL is intrinsically defined by HL = i
f̂
Θ +

π∗T ∗ML, where Θ is the tautological one-form on T ∗M , πT ∗M : T ∗M !M is the cotangent bundle
projection, and L : M ! R.

We would like to show that the above system arises from a variational principle. We consider the
action

S[ψ] =

∫ t1

t0

ψ∗ (Θ−HL dt) ,

where ψ : (t0, t1)! T ∗M is a curve on T ∗M .

In order to derive the augmented adjoint system from a variational principle, we have to place
boundary conditions on the curve ψ. Note that Type I boundary conditions, given by fixing the
position endpoints, πT ∗M (ψ(t0)) = q0 and πT ∗M (ψ(t1)) = q1, are in general incompatible with the
adjoint system. To see this, recall that the augmented adjoint system lifts an ODE on M , given
by q̇ = f(q). For the base ODE on M , once one specifies q(t0) = q0, this determines q(t1) as
q(t1) = Φt1−t0(q(t0)), where Φt denotes the time-t flow of f , assuming that the flow Φt is defined
for time t = t1− t0. Thus, one cannot in general impose boundary conditions for q at two different
times for the base ODE on M . Since the adjoint system lifts this ODE to an ODE on T ∗M , it
follows that one cannot in general place Type I boundary conditions for the adjoint system.

On the other hand, Type II boundary conditions, q(t0) = q0 and p(t1) = p1, do not have the
aforementioned inconsistency. However, Type II boundary conditions for Hamiltonian systems, in
general, suffer the drawback that they do not make intrinsic sense on a manifold, since one cannot
specify a covector p(t1) = p1 without specifying the basepoint q(t1). Fortunately, for Hamiltonian
systems which are adjoint systems, Type II boundary conditions do make intrinsic sense, due
to the fact they cover an ODE on the base manifold M . To see this, if we fix the boundary
condition q(t0) = q0, the time t1 − t0 flow of f , assuming it exists for this time, fixes the basepoint
q(t1) = Φt1−t0(q(t0)). In terms of the curve ψ, this means that once we fix πT ∗M (ψ(t0)) = q0, we
have ψ(t1) ∈ T ∗q(t1)M , where q(t1) = Φt1−t0(q(t0)). Thus, it then makes sense to specify a boundary

condition on ψ(t1) ∈ T ∗q(t1)M of the form ψ(t1) = p1, for any p1 ∈ T ∗q(t1)M. Figure 1 illustrates Type

II boundary conditions for an adjoint system; the flow of f on the base manifold evolves the initial
condition q0 forward to q1 and subsequently, the vertical component of the lifted vector field XHL

evolves the final momenta p1, based at q1, backwards to the initial momenta p0. As we will see
in Section 3.1, p1 can be chosen by taking p1 = dC|q1 to compute the sensivity of a terminal cost
function C : M ! R with a non-augmented Hamiltonian HL = H or by taking p1 = 0 to compute
the sensivity of a running cost function L with an augmented Hamiltonian HL = H + L.
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Figure 1. Type II boundary conditions for adjoint systems

Remark 2.20. It is interesting to note that the reason for which Type I boundary conditions for
adjoint systems are generally inconsistent (namely, that they cover an ODE on the base manifold)
is precisely the reason that one can make intrinsic sense of Type II boundary conditions for adjoint
systems. That is, Type II boundary conditions are consistent while Type I boundary conditions are
generally inconsistent precisely because an adjoint system is a Hamiltonian system which covers an
ODE on the base manifold. Conversely, every Hamiltonian system on T ∗M which covers an ODE
on the base manifold M is locally an adjoint system. To see this, if a Hamiltonian system covers
an ODE on the base manifold, then Hamilton’s equation in the position variable q̇ = ∂H/∂p must
equal f(q) for some vector field f on M . Thus, we have ∂H/∂p = f(q). Integrating this equation
yields a coordinate expression for the Hamiltonian

H(q, p) = 〈p, f(q)〉+ L(q),

where the “constant of integration” (constant with respect to the p variable) L(q) is some arbitrary
function of q. This is precisely the form of the Hamiltonian for an augmented adjoint system.

To state an intrinsic Type II variational principle for adjoint systems, we regard the integrand of
the above action (before pulling back by ψ) as a contact form on the extended phase space I×T ∗M .
Namely, given an interval I = (t0, t1) ⊂ R, t0 6= t1, let πI×T ∗M : I × T ∗M ! T ∗M denote the
projection onto the second factor. Then, define the contact form

ΘH = π∗I×T ∗MΘ−Hdt,

where we have identified H : T ∗M ! R with its pullback through πI×T ∗M . In coordinates,
ΘH(q, p) = pdq −Hdt. Additionally, we define the presymplectic form ΩH = −dΘH . Furthermore,
we identify curves on T ∗M , of the form ψ : I ! T ∗M , with curves on I × T ∗M which cover the
identity on I; in coordinates, this identification reads ψ(t) = (t, q(t), p(t)). The above action can
then be expressed

S[ψ] =

∫
I
ψ∗ΘH .

To enforce Type II boundary conditions πT ∗Q(ψ(t0)) = q0 ∈M and ψ(t1) = p1 ∈ T ∗q1M where q1 =
Φt1−t0(q0), we define the space of admissible variations with respect to these boundary conditions
as the space of vector fields X on T ∗M (identified with vertical vector fields on I × T ∗M ! T ∗M)
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such that (TπT ∗MX)(q0) = 0 and X(ψ1) = 0, where ψ1 = (q1, p1) ∈ T ∗q1M . Intuitively, the first
condition states that an admissible variation does not vary the initial position q(t0) = q0, whereas
the second condition states that an admissible variation does not vary the final momenta ψ1.

Proposition 2.11. Fix an interval I = (t0, t1) ⊂ R, t0 6= t1. Consider the above augmented
Hamiltonian, where we assume that the time t1 − t0 flow of the vector field f exists. Let q0 ∈ M
and let p1 ∈ T ∗q1M where q1 = Φt1−t0(q0). Then, the augmented adjoint system with Type II
boundary conditions

q̇ = f(q),

ṗ = −[Df(q)]∗p− dL(q),

q(t0) = q0,

p(t1) = p1,

is intrinsically given by the variation principle: enforce the stationarity of the action

S[ψ] =

∫
I
ψ∗ΘH

with respect to admissible variations.

Proof. Let ϕε denote the time-ε flow of an admissible variation X. Then, the variation principle
for the action with respect to admissible variations is given by

0 = dS[ψ] ·X =
d

dε

∣∣∣
ε=0

S[ϕε ◦ ψ] =

∫
I
ψ∗

d

dε

∣∣∣
0
ϕ∗εΘH =

∫
I
ψ∗LXΘH

= −
∫
I
ψ∗(iXΩH) +

∫
I
ψ∗d(iXΘH) = −

∫
I
ψ∗(iXΩH) +

∫
I
d(ψ∗iXΘH).

Observe that the boundary term
∫
I d(ψ∗iXΘH) = (ψ∗iXΘH)(t1) − (ψ∗iXΘH)(t0) vanishes by the

fact that X is an admissible variation since (ψ∗iXΘH)(t) = 〈p(t), (TπT ∗MX)(q(t))〉. Hence, the
stationarity condition is given by ∫

I
ψ∗(iXΩH) = 0.

By the fundamental lemma of the calculus of variations, we have ψ∗(iXΩH) = 0, whose coordinate
expression is precisely the adjoint system. �

Remark 2.21. In our definition of the space of admissible variations, we set the conditions that the
variation at q0 is purely vertical, (TπT ∗MX)(q0) = 0, whereas at q1, we enforced that the variation
is zero, X(q1, p1) = 0. In coordinates where

X = δq
∂

∂q
+ δp

∂

∂p
,

the first condition reads δq0 = 0 and the second condition reads δq1 = 0, δp1 = 0. It would thus seem
that we are enforcing an overdetermined set of three boundary conditions q(t0) = q0, q(t1) = q1,
p(t1) = p1. However, the resolution is that the variations δq0 and δq1 are not independent; fixing
one to zero sets the other one to zero, by virtue of the fact that the adjoint system covers an ODE
on M . Thus, with the chosen variational principle, we are only setting two independent boundary
conditions, q(t0) = q0, p(t1) = p1.

Furthermore, in the above proof, by looking at the coordinate expression of the boundary term,

ψ∗iXΘH

∣∣∣t1
t0

= 〈p(t1), δq(t1)〉 − 〈p(t0), δq(t0)〉,
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we see that we only used δq0 = 0, δq1 = 0. We did not need that δp1 = 0 for the boundary terms to
vanish. However, without setting δp1 = 0, we only have the system

q̇ = f(q),

ṗ = −[Df(q)]∗p− dL(q),

q(t0) = q0.

Hence, this system is underdetermined; any curve p(t) in the fibers of T ∗M satisfying

ṗ = −[Df(q)]∗p− dL(q)

would suffice. Thus, to uniquely fix the system, we must also supply a boundary condition of the
form p(t1) = p1. Thus, even though the condition δp1 = 0 is not strictly necessary in the variational
principle to derive the equations of motion, it is necessary to fix the curve p(t) in the fibers that
define the adjoint system with Type II boundary conditions.

Analogously the adjoint DAE system (2.16a)-(2.16d), for index 1 DAEs, can be derived by an
intrinsic Type II variational principle, by considering variations V of the action

S[ψ] =

∫ t1

t0

pdq − (H(q, u, p, λ) + L(q, u))dt

such that TΠqV |t0 = 0 and TΠ(q,p)V |t1 = 0 where Πq : (q, u, p, λ) 7! q and Π(q,p) : (q, u, p, λ) 7!

(q, p) are the canonical bundle projections on T ∗Md ⊕ Φ∗.

Remark 2.22. We will use the Type II variational structures associated with the adjoint ODE and
adjoint DAE systems to construct numerical integrators in Section 3.2.

3. Applications

3.1. Adjoint Sensitivity Analysis for Semi-explicit Index 1 DAEs. In this section, we
discuss how one can utilize adjoint systems to compute sensitivities. We will split this into four
cases; namely, we want to compute sensitivities for ODEs or DAEs (we will focus on index 1 DAEs),
and whether we are computing the sensitivity of a terminal cost or the sensitivity of a running cost.

The relevant adjoint system used to compute sensitivities in all four cases can be summarized:

Terminal Cost Running Cost

ODE Adjoint ODE System (2.6a)-(2.6b) Augmented Adjoint ODE System (2.10a)-(2.10b)

DAE Adjoint DAE System (2.13a)-(2.13d) Augmented Adjoint DAE System (2.16a)-(2.16d)

Note that in our calculations below, the top row (the ODE case) can be formally obtained from
the bottom row (the DAE case) simply by ignoring the algebraic variables (u, λ) and letting the
constraint function φ be identically zero. Thus, we will focus on the bottom row, i.e., computing
sensitivities of a terminal cost function and of a running cost function, subject to a DAE constraint.
In both cases, we will first show how the adjoint sensitivity can be derived using a traditional
variational argument. Subsequently, we will show how the adjoint sensitivity can be derived more
simply by using Propositions 2.9 and 2.10.

Adjoint Sensitivity of a Terminal Cost. Consider the DAE q̇ = f(q, u), 0 = φ(q, u) as in
Section 2.3. We will assume that Md is a vector space and additionally, that the DAE has index
1. We would like to extract the gradient of a terminal cost function C(q(tf )) with respect to the
initial condition q(0) = α, i.e., we want to extract the sensitivity of C(q(tf )) with respect to an
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infinitesimal perturbation in the initial condition, given by ∇αC(q(tf )). Consider the functional J
defined by

J = C(q(tf ))− 〈p0, q(0)− α〉 −
∫ tf

0
[〈p, q̇ − f(q, u)〉 − 〈λ, φ(q, u)〉]dt.

Observe that for (q, u) satisfying the given DAE with initial condition q(0) = α, J coincides with
C(q(tf )). We think of p0 as a free parameter. For simplicity, we will use matrix derivative notation
instead of indices. Computing the variation of J yields

δJ = 〈∇qC(q(tf )), δq(tf )〉 − 〈p0, δq(0)− δα〉

−
∫ tf

0

[
〈p, d

dt
δq −Dqf(q, u)δq〉 − 〈p,Duf(q, u)δu〉 − 〈λ,Dqφ(q, u)δq +Duφ(q, u)δu〉

]
dt.

Integrating by parts in the term containing d
dtδq and restricting to a solution (q, u, p, λ) of the

adjoint DAE system (2.13a)-(2.13d) yields

δJ = 〈∇qC(q(tf ))− p(tf ), δq(tf )〉 − 〈p0, δα〉+ 〈p(0)− p0, δq(0)〉.

We enforce the endpoint condition p(tf ) = ∇qC(q(tf )) and choose p0 = p(0), which yields

δJ = 〈p(0), δα〉.

Hence, the sensitivity of C(q(tf )) is given by

p(0) = ∇αJ = ∇αC(q(tf )),

with initial condition q(0) = α and terminal condition p(tf ) = ∇qC(q(tf )). Thus, the adjoint
sensitivity can be computed by setting the terminal condition on p(tf ) above and subsequently,
solving for the momenta p at time 0. In order for this to be well-defined, we have to verify that
the given initial and terminal conditions lie on the primary constraint manifold P1. However, as
discussed in Section 2.3.1, since the DAE has index 1, we can always solve for the algebraic variables
u = u(q) and λ = λ(q, p) and thus, we are free to choose the initial and terminal values of q and p,
respectively. For higher index DAEs, one has to ensure that these conditions are compatible with
the final constraint manifold. For example, this is done in [11] in the case of Hessenberg index 2
DAEs. Alternatively, at least theoretically, for higher index DAEs, one can reduce the DAE to an
index 1 DAE and then the above discussion applies, however, this reduction may fail in practice
due to numerical cancellation.

Note that the above adjoint sensitivity result is also a consequence of the preservation of the
quadratic invariant 〈p, v〉 as in Proposition 2.9. From this proposition, one has that

〈p(tf ), δq(tf )〉 = 〈p(0), δq(0)〉,

where δq satisfies the variational equations. Setting p(tf ) = ∇qC(q(tf )) and δq(0) = δα gives the
same result. As mentioned in Remark 2.12, this quadratic invariant arises from the presymplecticity
of the adjoint DAE system. Thus, a numerical integrator which preserves the presymplectic struc-
ture is desirable for computing adjoint sensitivities, as it exactly preserves the quadratic invariant
that allows the adjoint sensitivities to be accurately and efficiently computed. We will discuss this
in more detail in Section 3.2.

Adjoint Sensitivity of a Running Cost. Again, consider an index 1 DAE q̇ = f(q, u), 0 =
φ(q, u). We would like to extract the sensitivity of a running cost function∫ tf

0
L(q, u)dt,
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where L : Md ×Ma ! R, with respect to an infinitesimal perturbation in the initial condition
q(0) = α. Consider the functional J defined by

J = −〈p0, q(0)− α〉+

∫ tf

0
[L(q, u) + 〈p, f(q, u)− q̇〉+ 〈λ, φ(q, u)〉]dt.

Observe that when the DAE is satisfied with initial condition q(0) = α, J =
∫ tf

0 Ldt. Now, we

would to compute the implicit change in
∫ tf

0 Ldt with respect to a perturbation δα in the initial
condition. Taking the variation in J yields

δJ = −〈p0, δq(0)− δα〉

+

∫ tf

0

[
〈∇qL, δq〉+ 〈∇uL, δu〉+ 〈p,Dqfδq −

d

dt
δq〉+ 〈p,Dufδu〉+ 〈λ,Dqφδq +Duφδu〉

]
dt

= −〈p0, δq(0)− δα〉 − 〈p(tf ), δq(tf )〉+ 〈p(0), δq(0)〉

+

∫ tf

0

[
〈∇qL+ [Dqf ]∗p+ [Dqφ]∗λ+ ṗ, δq〉+ 〈∇uL+ [Duf ]∗p+ [Duφ]∗λ, δu〉

]
dt.

Restricting to a solution (q, u, p, λ) of the augmented adjoint DAE system (2.16a)-(2.16d), setting
the terminal condition p(tf ) = 0, and choosing p0 = p(0) gives δJ = 〈p(0), δα〉. Hence, the implicit

sensitivity of
∫ tf

0 Ldt with respect to a change δα in the initial condition is given by

p(0) = δαJ = δα

∫ tf

0
L(q, u)dt.

Thus, the adjoint sensitivity of a running cost functional with respect to a perturbation in the
initial condition can be computed by using the augmented adjoint DAE system (2.16a)-(2.16d)
with terminal condition p(tf ) = 0 to solve for the momenta p at time 0.

Note that the above adjoint sensitivity result can be obtained from Proposition 2.10 as follows. We
write equation (2.18) as

d

dt
〈p, δq〉 = −〈dL, (δq, δu)〉,

to highlight that the right hand side measures the total induced variation of L. Now, we integrate
this equation from 0 to tf , which gives

〈p(tf ), δq(tf )〉 − 〈p(0), δq(0)〉 = −
∫ tf

0
〈dL, (δq, δu)〉dt.

Since we want to determine the change in the running cost functional with respect to a perturbation
in the initial condition, we set p(tf ) = 0 which yields

〈p(0), δq(0)〉 =

∫ tf

0
〈dL, (δq, δu)〉dt.

The right hand side is the total change induced on the running cost functional, whereas the left hand
side tells us how this change is implicitly induced from a perturbation δq(0) in the initial condition.
Note that a perturbation in the initial condition δq(0) will generally induce perturbations in both
q and u, according to the variational equations. Such a curve (δq, δu) satisfying the variational
equations exists in the index 1 case as noted in Remark 2.13. Thus, we arrive at the same conclusion
as the variational argument: p(0) is the desired adjoint sensitivity.

To summarize, adjoint sensitivities for terminal and running costs can be computed using the
properties of adjoint systems, such as the various aforementioned propositions regarding d

dt〈p, δq〉,
which is zero in the nonaugmented case and measures the variation of L in the augmented case. In
the case of a terminal cost, one sets an inhomogeneous terminal condition p(tf ) = ∇qC(q(tf )) and
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backpropagates the momenta through the nonaugmented adjoint DAE system (2.13a)-(2.13d) to
obtain the sensitivity p(0). On the other hand, in the case of a running cost, one sets a homogeneous
terminal condition p(tf ) = 0 and backpropagates the momenta through the augmented adjoint DAE
system (2.16a)-(2.16d) to obtain the sensitivity p(0).

The various propositions used to derive the above adjoint sensitivity results are summarized below.
We also include the ODE case, since it follows similarly.

Terminal Cost Running Cost

ODE Proposition 2.3, d
dt〈p, δq〉 = 0 Proposition 2.6, d

dt〈p, δq〉 = −〈dL, δq〉

DAE Proposition 2.9, d
dt〈p, δq〉 = 0 Proposition 2.10, d

dt〈p, δq〉 = −〈dL, (δq, δu)〉

In Section 3.2, we will construct integrators that admit discrete analogues of the above propositions,
and hence, are suitable for computing discrete adjoint sensitivities.

3.2. Structure-Preserving Discretizations of Adjoint Systems. In this section, we utilize
the Galerkin Hamiltonian variational integrators of Leok and Zhang [23] to construct structure-
preserving integrators which admit discrete analogues of Propositions 2.3, 2.6, 2.9, and 2.10, and
are therefore suitable for numerical adjoint sensitivity analysis. For brevity, the proofs of these
discrete analogues can be found in Appendix A.

We start by recalling the construction of Galerkin Hamiltonian variational integrators as introduced
in Leok and Zhang [23]. We assume that the base manifold Q is a vector space and thus, we have
the identification T ∗Q ∼= Q × Q∗. To construct a variational integrator for a Hamiltonian system
on T ∗Q, one starts with the exact Type II generating function

H+
d,exact(q0, p1) = ext

[
〈p1, q1〉 −

∫ ∆t

0
[〈p, q̇〉 −H(q, p)]dt

]
,

where one extremizes over C2 curves on the cotangent bundle satisfying q(0) = q0, p(∆t) = p1. This
is a Type II generating function in the sense that it defines a symplectic map (q0, p1) 7! (q1, p0) by
q1 = D2H

+
d,exact(q0, p1), p0 = D1H

+
d,exact(q0, p1).

To approximate this generating function, one approximates the integral above using a quadra-
ture rule and extremizes the resulting expression over a finite-dimensional subspace satisfying the
prescribed boundary conditions. This yields the Galerkin discrete Hamiltonian

H+
d (q0, p1) = ext

[
〈p1, q1〉 −∆t

∑
i

bi

(
〈P i, V i〉 −H(Qi, P i)

)]
,

where ∆t > 0 is the timestep, q0, q1, p0, p1 are numerical approximations to q(0), q(∆t), p(0), p(∆t),
respectively, bi > 0 are quadrature weights corresponding to quadrature nodes ci ∈ [0, 1], Qi

and P i are internal stages representing q(ci∆t), p(ci∆t), respectively, and V is related to Q by
Qi = q0 + ∆t

∑
j aijV

j , where the coefficients aij arise from the choice of function space. The

expression above is extremized over the internal stages Qi, P i and subsequently, one applies the
discrete right Hamilton’s equations

q1 = D2H
+
d (q0, p1),

p0 = D1H
+
d (q0, p1),
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to obtain a Galerkin Hamiltonian variational integrator. The extremization conditions and the
discrete right Hamilton’s equations can be expressed as

q1 = q0 + ∆t
∑
i

biDpH(Qi, P i),(3.1a)

Qi = q0 + ∆t
∑
j

aijDpH(Qj , P j),(3.1b)

p1 = p0 −∆t
∑
i

biDqH(Qi, P i),(3.1c)

P i = p0 −∆t
∑
j

ãijDqH(Qi, P i),(3.1d)

where we interpret aij as Runge–Kutta coefficients and ãij = (bibj − bjaji)/bi as the symplectic
adjoint of the aij coefficients. Thus, (3.1a)-(3.1d) can be viewed as a symplectic partitioned Runge–
Kutta method.

We will consider such methods in four cases: adjoint systems corresponding to a base ODE or
DAE, and whether or not the corresponding system is augmented. Note that in the DAE case, we
will have to modify the above construction because the system is presymplectic. Furthermore, we
will assume that all of the relevant configuration spaces are vector spaces.

Nonaugmented Adjoint ODE System. The simplest case to consider is the nonaugmented
adjoint ODE system (2.6a)-(2.6b). Since the quadratic conservation law in Proposition 2.3,

d

dt
〈p, δq〉 = 0,

arises from symplecticity, a structure-preserving discretization can be obtained by applying a sym-
plectic integrator. This case is already discussed in Sanz-Serna [33], so we will only outline it
briefly.

Applying the Galerkin Hamiltonian variational integrator (3.1a)-(3.1d) to the Hamiltonian for the
adjoint ODE system, H(q, p) = 〈p, f(q)〉, yields

q1 = q0 + ∆t
∑
i

bif(Qi),(3.2a)

Qi = q0 + ∆t
∑
j

aijf(Qj),(3.2b)

p1 = p0 −∆t
∑
i

bi[Df(Qi)]∗P i,(3.2c)

P i = p0 −∆t
∑
j

ãij [Df(Qj)]∗P j .(3.2d)

In the setting of adjoint sensitivity analysis of a terminal cost function, the appropriate boundary
condition to prescribe on the momenta is p1 = ∇qC(q(tf )), as discussed in Section 3.1.

Since the above integrator is symplectic, we have the symplectic conservation law,

dq1 ∧ dp1 = dq0 ∧ dp0,

when evaluated on discrete first variations of (3.2a)-(3.2d). In this setting, a discrete first variation
can be identified with solutions of the linearization of (3.2a)-(3.2d). For the linearization of the
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equations in the position variables, (3.2a)-(3.2b), we have

δq1 = δq0 + ∆t
∑
i

biDf(Qi)δQi,(3.3a)

δQi = δq0 + ∆t
∑
j

aijDf(Qj)δQj .(3.3b)

As observed in Sanz-Serna [33], while we obtained this by linearizing the discrete equations, one
could also obtain this by first linearizing (2.1) and subsequently, applying the Runge–Kutta scheme
to the linearization. For the linearization of the equations for the adjoint variables, (3.2c)-(3.2d),
observe that they are already linear in the adjoint variables, so we can identify the linearization with
itself. Thus, we can choose for first variations vector fields V as the first variation corresponding to
the solution of the linearized position equation and W as the first variation corresponding to the
solution of the adjoint equation itself. With these choices, the above symplectic conservation law
yields

0 = dq1 ∧ dp1(V,W )|(q1,p1) − dq0 ∧ dp0(V,W )|(q0,p0) = 〈p1, δq1〉 − 〈p0, δq0〉.
This is of course a discrete analogue of Proposition 2.3. Note that one can derive the conservation
law 〈p1, δq1〉 = 〈p0, δq0〉 directly by starting with the expression 〈p1, δq1〉 and substituting the
discrete equations where appropriate. We will do this in the more general augmented case below.

Augmented Adjoint ODE System. We now consider the case of the augmented adjoint ODE
system (2.10a)-(2.10b). In the continuous setting, we have from Proposition 2.6,

d

dt
〈p, δq〉 = −〈dL, δq〉.

We would like to construct an integrator which admits a discrete analogue of this equation. To
do this, we apply the Galerkin Hamiltonian variational integrator, equations (3.1a)-(3.1d), to the
augmented Hamiltonian HL(q, p) = 〈p, f(q)〉+ L(q). This gives

q1 = q0 + ∆t
∑
i

bif(Qi),(3.4a)

Qi = q0 + ∆t
∑
j

aijf(Qj),(3.4b)

p1 = p0 −∆t
∑
i

bi([Df(Qi)]∗P i + dL(Qi)),(3.4c)

P i = p0 −∆t
∑
j

ãij([Df(Qj)]∗P j + dL(Qj)).(3.4d)

We now prove a discrete analogue of Proposition 2.6. To do this, we again consider the discrete
variational equations for the position variables, (3.3a)-(3.3b).

Proposition 3.1. With the above notation, the above integrator satisfies

(3.5) 〈p1, δq1〉 = 〈p0, δq0〉 −∆t
∑
i

bi〈dL(Qi), δQi〉.

Proof. See Appendix A. �

Remark 3.1. To see that this is a discrete analogue of d
dt〈p, δq〉 = −〈dL, δq〉, we write it in integral

form as

〈p1, δq1〉 = 〈p0, δq0〉 −
∫ ∆t

0
〈dL(q), δq〉dt.
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Then, applying the quadrature rule on [0,∆t] given by quadrature weights bi∆t and quadrature nodes
ci∆t, the above integral is approximated by∫ ∆t

0
〈dL(q), δq〉dt ≈ ∆t

∑
i

bi〈dL(q(ci∆t)), δq(ci∆t)〉 = ∆t
∑
i

bi〈dL(Qi), δQi〉,

which yields equation (3.5). The discrete analogue is natural in the sense that the quadrature
rule for which the discrete equation (3.5) approximates the continuous equation is the same as
the quadrature rule used to approximate the exact discrete generating function. This occurs more
generally for such Hamiltonian variational integrators, as noted in Tran and Leok [37] for the more
general setting of multisymplectic Hamiltonian variational integrators.

For adjoint sensitivity analysis of a running cost
∫
Ldt, the appropriate boundary condition to

prescribe on the momenta is p1 = 0, as discussed in Section 3.1. With such a boundary condition,
equation (3.5) reduces to

〈p0, δq0〉 = ∆t
∑
i

bi〈dL(Qi), δQi〉.

Thus, p0 gives the discrete sensitivity, i.e., the change in the quadrature approximation of
∫
Ldt

induced by a change in the initial condition along a discrete solution trajectory. One can compute
this quantity directly via the direct method, where one needs to integrate the discrete variational
equations for every desired search direction δq0. On the other hand, by the above proposition, one
can compute this quantity using the adjoint method: one integrates the adjoint equation with p1 = 0
once to compute p0 and subsequently, pair p0 with any search direction δq0 to obtain the sensitivity
in that direction. By the above proposition, both methods give the same sensitivities. However,
assuming the search space has dimension n > 1, the adjoint method is more efficient since it only
requires O(1) integrations and O(n) vector-vector products, whereas the direct method requires
O(n) integrations and O(ns) vector-vector products where s ≥ 1 is the number of Runge–Kutta
stages, since, in the direct method, one has to compute 〈dL(Qi), δQi〉 for each i and for each choice
of δq0.

Nonaugmented Adjoint DAE System. We will now construct discrete Hamiltonian variational
integrators for the adjoint DAE system (2.13a)-(2.13d), where we assume that the base DAE has
index 1. To construct such a method, we have to modify the Galerkin Hamiltonian variational
integrator (3.1a)-(3.1d), so that it is applicable to the presymplectic adjoint DAE system.

First, consider a general presymplectic system iXΩ′ = dH. Note that, locally, any presymplectic
system can be transformed to the canonical form (see, Cariñena et al. [12]),

q̇ = DpH(q, p, r),

ṗ = −DqH(q, p, r),

0 = DrH(q, p, r),

where, in these coordinates, Ω′ = dq∧dp, so that ker(Ω′) = span{∂/∂r}. The action for this system is

given by
∫ ∆t

0 (〈p, q̇〉−H(q, p, r))dt. We approximate this integral by quadrature, introduce internal

stages for q, p as before, and additionally introduce internal stages Ri = r(cih). This gives the
discrete generating function

H+
d (q0, p1) = ext

[
〈p1, q1〉 −∆t

∑
i

bi
(
〈P i, V i〉 −H(Qi, P i, Ri)

) ]
,

where again V is related to the internal stages of Q by Qi = q0 + ∆t
∑

j aijV
j and the above

expression is extremized over the internal stages Qi, P i, Ri. The discrete right Hamilton’s equations
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are again given by
q1 = H+

d (q0, p1), p0 = H+
d (q0, p1),

which we interpret as the evolution equations of the system. There are no evolution equations for
r due to the presymplectic structure and the absence of derivatives of r in the action. This gives
the integrator

q1 = q0 + ∆t
∑
i

biDpH(Qi, P i, Ri),(3.6a)

Qi = q0 + ∆t
∑
j

aijDpH(Qi, P i, Ri),(3.6b)

p1 = p0 −∆t
∑
i

biDqH(Qi, P i, Ri),(3.6c)

P i = p0 −∆t
∑
j

ãijDqH(Qi, P i, Ri),(3.6d)

0 = DrH(Qi, P i, Ri),(3.6e)

where (3.6b), (3.6d), (3.6e) arise from extremizing with respect to P i, Qi, Ri, respectively, while
(3.6a) and (3.6c) arise from the discrete right Hamilton’s equations. This integrator is presymplec-
tic, in the sense that

dq1 ∧ dp1 = dq0 ∧ dp0,

when evaluated on discrete first variations. The proof is formally identical to the symplectic case.
For this reason, we refer to (3.6a)-(3.6e) as a presymplectic Galerkin Hamiltonian variational inte-
grator.

Remark 3.2. In general, the system (3.6a)-(3.6e) evolves on the primary constraint manifold given
implicitly by the zero level set of DrH, however, it may not evolve on the final constraint manifold.
This is not an issue for us since we are dealing with adjoint DAE systems for index 1 DAEs, for
which we know the primary constraint manifold and the final constraint manifold coincide. For the
general case, one may need to additionally differentiate the constraint equation DrH = 0 to obtain
hidden constraints.

Thus, the method (3.6a)-(3.6e) is generally only applicable to index 1 presymplectic systems, unless
we add in further hidden constraints. In order for the continuous presymplectic system to have
index 1, it is sufficient that the Hessian of H with respect to the algebraic variables, D2

rH, is
(pointwise) invertible on the primary constraint manifold. This is the case for the adjoint DAE
system corresponding to an index 1 DAE.

We now specialize to the adjoint DAE system (2.13a)-(2.13d), corresponding to an index 1 DAE,
which is already in the above canonical form with r = (u, λ) and H(q, u, p, λ) = 〈p, f(q, u)〉 +
〈λ, φ(q, u)〉. Note that we reordered the argument of H, (q, p, r) = (q, p, u, λ)! (q, u, p, λ), in order
to be consistent with the previous notation used throughout. We label the internal stages for the
algebraic variables as Ri = (U i,Λi). Applying the presymplectic Galerkin Hamiltonian variational
integrator to this particular system yields

q1 = q0 + ∆t
∑
i

bif(Qi, U i),(3.7a)

Qi = q0 + ∆t
∑
j

aijf(Qj , U j),(3.7b)

p1 = p0 −∆t
∑
i

bi
(
[Dqf(Qi, U i)]∗P i + [Dqφ(Qi, U i)]∗Λi

)
,(3.7c)
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P i = p0 −∆t
∑
j

ãij
(
[Dqf(Qj , U j)]∗P j + [Dqφ(Qj , U j)]∗Λj

)
,(3.7d)

0 = φ(Qi, U i),(3.7e)

0 = [Duf(Qi, U i)]∗P i + [Duφ(Qi, U i)]∗Λi,(3.7f)

where (3.7b), (3.7d), (3.7e), (3.7f) arise from extremizing over P i, Qi,Λi, U i, respectively, while
(3.7a), (3.7c) arise from the discrete right Hamilton’s equations.

Remark 3.3. In order for q1 to appropriately satisfy the constraint, we should take the final
quadrature point to be cs = 1 (for an s-stage method), so that φ(q1, U

s) = φ(Qs, U s) = 0. In this
case, equation (3.7a) and equation (3.7b) with i = s are redundant. Note that with the choice
cs = 1, they are still consistent (i.e., are the same equation), since in the Galerkin construction,
the coefficients aij and bi are defined as

aij =

∫ ci

0
φj(τ)dτ, bi =

∫ 1

0
φj(τ)dτ,

where φj are functions on [0, 1] which interpolate the nodes cj (see, Leok and Zhang [23]). Hence,
asj = bj, so that the two equations are consistent. However, we will write the system as above for
conceptual clarity. Furthermore, even in the case where one does not take cs = 1, the proposition
that we prove below still holds, despite the possibility of constraint violations.

A similar remark holds for the adjoint variable p and the associated constraint (3.7f), except we
think of p0 as the unknown, instead of p1.

Note that (3.7a), (3.7b), (3.7e) is a standard Runge–Kutta discretization of an index 1 DAE q̇ =
f(q, u), 0 = φ(q, u), where again, usually cs = 1. Associated with these equations are the variational
equations given by their linearization,

δq1 = δq0 + ∆t
∑
i

bi(Dqf(Qi, U i)δQi +Duf(Qi, U i)δU i),(3.8a)

δQi = δq0 + ∆t
∑
j

aij(Dqf(Qj , U j)δQj +Duf(Qj , U j)δU j),(3.8b)

0 = Dqφ(Qi, U i)δQi +Duφ(Qi, U i)δU i,(3.8c)

which is the Runge–Kutta discretization of the continuous variational equations (2.14c) - (2.14d).

Proposition 3.2. With the above notation, the above integrator satisfies

〈p1, δq1〉 = 〈p0, δq0〉.

Proof. See Appendix A. �

Thus, the above integrator admits a discrete analogue of Proposition 2.9 for the nonaugmented
adjoint DAE system. By setting p1 = ∇qC(q(tf )), one can use this integrator to compute the
sensitivity p0 of a terminal cost function with respect to a perturbation in the initial condition. As
discussed before, this only requires O(1) integrations instead of O(n) integrations via the direct
method (for a dimension n search space). Furthermore, the adjoint method requires only O(1)
numerical solves of the constraints, while the direct method requires O(n) numerical solves.

Remark 3.4. Since we are assuming the DAE has index 1, it is always possible to prescribe an
arbitrary initial condition q0 (and δq0) and terminal condition p1, since the corresponding algebraic
variables can always formally be solved for using the corresponding constraints. In practice, one
generally has to solve the constraints to some tolerance, e.g., through an iterative scheme. If the
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constraints are only satisfied to a tolerance O(ε), then the above proposition holds to O(sε), where
s is the number of Runge–Kutta stages.

Remark 3.5. The above method (3.7a)-(3.7f) is presymplectic, since it is a special case of the
more general presymplectic Galerkin Hamiltonian variational integrator (3.6a)-(3.6e). Although we
proved it directly, the above proposition could also have been proven from presymplecticity, with the
appropriate choices of first variations.

Augmented Adjoint DAE System. Finally, we construct a discrete Hamiltonian variational
integrator for the augmented adjoint DAE system (2.16a)-(2.16d) associated with an index 1 DAE.
To do this, we apply the presymplectic Galerkin Hamiltonian variational integrator (3.6a)-(3.6e)
with r = (u, λ) and with Hamiltonian given by the augmented adjoint DAE Hamiltonian,

HL(q, u, p, λ) = 〈p, f(q, u)〉+ 〈λ, φ(q, u)〉+ L(q, u).

The presymplectic integrator is then

q1 = q0 + ∆t
∑
i

bif(Qi, U i),(3.9a)

Qi = q0 + ∆t
∑
j

aijf(Qj , U j),(3.9b)

p1 = p0 −∆t
∑
i

bi
(
[Dqf(Qi, U i)]∗P i + [Dqφ(Qi, U i)]∗Λi +DqL(Qi, U i)

)
,(3.9c)

P i = p0 −∆t
∑
j

ãij
(
[Dqf(Qj , U j)]∗P j + [Dqφ(Qj , U j)]∗Λj +DqL(Qi, U i)

)
,(3.9d)

0 = φ(Qi, U i),(3.9e)

0 = [Duf(Qi, U i)]∗P i + [Duφ(Qi, U i)]∗Λi +DuL(Qi, U i).(3.9f)

The associated variational equations are again (3.8a)-(3.8c). Remarks analogous to the nonaug-
mented case regarding setting the quadrature node cs = 1 and solvability of these systems under
the index 1 assumption can be made.

Proposition 3.3. With the above notation, the above integrator satisfies

〈p1, δq1〉 = 〈p0, δq0〉 −∆t
∑
i

bi〈dL(Qi, U i), (δQi, δU i)〉.

Proof. See Appendix A. �

Remark 3.6. Analogous to the remark in the augmented adjoint ODE case, the above proposition
is a discrete analogue of Proposition 2.10, in integral form,

〈p1, δq1〉 − 〈p0, δq0〉 = −
∫ ∆t

0
〈dL(q, u), (δq, δu)〉dt.

The discrete analogue is natural in the sense that it is just quadrature applied to the right hand side
of this equation, with the same quadrature rule used to discretize the generating function.

Remark 3.7. As with the augmented adjoint ODE case, the above proposition allows one to com-
pute numerical sensitivities of a running cost function by solving for p0 with p1 = 0, which is more
efficient than the direct method.

To summarize, we have utilized Galerkin Hamiltonian variational integrators to construct methods
which admit natural discrete analogues of the various propositions used for sensitivity analysis. We
summarize the results below.
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Terminal Cost Running Cost

ODE 〈p1, δq1〉 = 〈p0, δq0〉 〈p1, δq1〉 = 〈p0, δq0〉 −∆t
∑

i bi〈dL(Qi), δQi〉

DAE 〈p1, δq1〉 = 〈p0, δq0〉 〈p1, δq1〉 = 〈p0, δq0〉 −∆t
∑

i bi〈dL(Qi, U i), (δQi, δU i)〉

3.2.1. Naturality of the Adjoint DAE System Discretization. To conclude our discussion of dis-
cretizing adjoint systems, we prove a discrete extension of the fact that, for an index 1 DAE,
the process of index reduction and forming the adjoint system commute, as discussed in Section
2.3.1. Namely, we will show that, starting from an index 1 DAE (2.11a)-(2.11b), the processes
of reduction, forming the adjoint system, and discretization all commute, for particular choices of
these processes which we will define and choose below. This can be summarized in the following
commutative diagram.

Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

In the above diagram, we will use the convention that the “Discretize” arrows point forward, the
“Adjoint” arrows point downward, and the “Reduce” arrows point to the right. For the “Discretize”
arrows on the top face, we take the discretization to be a Runge–Kutta discretization (of a DAE
on the left and of an ODE on the right, with the same Runge–Kutta coefficients in both cases).
For the “Discretize” arrows on the bottom face, we take the discretization to be the symplectic
partitioned Runge–Kutta discretization induced by the discretization of the base DAE or ODE, i.e.,
the momenta expansion coefficients ãij are the symplectic adjoint of the coefficients aij used on the
top face. We have already defined the “Adjoint” arrows on the back face, as discussed in Section 2.
For the “Adjoint” arrows on the front face, we define them as forming the discrete adjoint system
corresponding to a discrete (and generally nonlinear) system of equations and we will review this
notion where needed in the proof. We have already defined the “Reduce” arrows on the back face,
as discussed in Section 2.3.1. For the “Reduce” arrows on the front face, we define this as solving
for the discrete algebraic variables in terms of the discrete kinematic variables through the discrete
constraint equations. With these choices, the above diagram commutes, as we will show. To prove
this, it suffices to prove that the diagrams on each of the six faces commutes. To keep the exposition
concise, we provide the proof in Appendix B and move on to discuss the implications of this result.
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The previous discussion shows that the presymplectic Galerkin Hamiltonian variational integrator
construction is natural for discretizing adjoint (index 1) DAE systems, in the sense that the inte-
grator is equivalent to the integrator produced from applying a symplectic Galerkin Hamiltonian
variational integrator to the underlying nondegenerate Hamiltonian system. Of course, in practice,
one cannot generally determine the function u = u(q) needed to reduce the DAE to an ODE.
Therefore, one generally works with the presymplectic Galerkin Hamiltonian variational integrator
instead, where one iteratively solves the constraint equations. However, although reduction then
symplectic integration is often impractical, one can utilize this naturality to derive properties of
the presymplectic integrator. For example, we will use this naturality to prove a variational error
analysis result.

The basic idea for the variational error analysis result goes as follows: one utilizes the naturality to
relate the presymplectic variational integrator to a symplectic variational integrator of the under-
lying nondegenerate Hamiltonian system and subsequently, applies the variational error analysis
result in the symplectic case (Schmitt and Leok [34]). Recall the discrete generating function for
the previously constructed presymplectic variational integrator,

H+
d (q0, p1; ∆t) = ext

[
〈p1, q1〉 −∆t

∑
i

bi
(
〈P i, V i〉 −H(Qi, U i, P i,Λi)

) ]
,

where we have now explicitly included the timestep dependence in H+
d and H is the Hamiltonian

for the adjoint DAE system (augmented or nonaugmented), corresponding to an index 1 DAE.

Proposition 3.4. Suppose the discrete generating function H+
d (q0, p1; ∆t) for the presymplectic

variational integrator approximates the exact discrete generating function H+,E
d (q0, p1; ∆t) to order

r, i.e.,

H+
d (q0, p1; ∆t) = H+,E

d (q0, p1; ∆t) +O(∆tr+1),

and the Hamiltonian H is continuously differentiable, then the Type II map (q0, p1) 7! (q1, p0) and
the evolution map (q0, p0) 7! (q1, p1) are order-r accurate.

Proof. The proof follows from two simple steps. First, observe that the discrete generating function
H+
d (q0, p1; ∆t) for the presymplectic integrator is also the discrete generating function for the

symplectic integrator for the underlying nondegenerate Hamiltonian system. This follows since
in the definition of H+

d , one extremizes over the algebraic variables U i,Λi which enforces the

constraints and hence, determines U i,Λi as functions of the kinematic variables Qi, P i. Thus, the

discrete (or continuous) Type II map determined by H+
d (or H+,E

d , respectively), (q0, p1) 7! (q1, p0),
is the same as the Type II map for the underlying nondegenerate Hamiltonian system, which is
just another consequence of the aforementioned naturality. One then applies the variational error
analysis result in Schmitt and Leok [34]. �

Remark 3.8. Another way to view this result is that the order of an implicit (partitioned) Runge–
Kutta scheme for index 1 DAEs is the same as the order of an implicit (partitioned) Runge–Kutta
scheme for ODEs (Roche [30]), since the aforementioned discretization generates a partitioned
Runge–Kutta scheme. To be complete, we should determine the order for the full presymplectic
flow, i.e., including also the algebraic variables. As discussed in Roche [30], as long as asi = bi for
each i, which, as we have discussed, is a natural choice and holds as long as cs = 1, there is no
order reduction arising from the algebraic variables. Thus, with this assumption, the presymplectic
variational integrator in the previous proposition approximates the presymplectic flow, in both the
kinematic and algebraic variables, to order r.

Remark 3.9. In the above proposition, we considered both the Type II map (q0, p1) 7! (q1, p0)
and the evolution map (q0, p0) 7! (q1, p1). The latter is of course the traditional way to view the
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map corresponding to a numerical method, but the former is the form of the map used in adjoint
sensitivity analysis.

Furthermore, in light of this naturality, we can view Propositions 3.2 and 3.3 as following from the
analogous propositions for symplectic Galerkin Hamiltonian variational integrators, applied to the
underlying nondegenerate Hamiltonian system.

3.3. Optimal Control of DAE Systems. In this section, we derive the optimality conditions
for an optimal control problem (OCP) subject to a semi-explicit DAE constraint. It is known that
the optimality conditions can be described as a presymplectic system on the generalized phase
space bundle (Delgado-Téllez and Ibort [14], Echeverŕıa-Enŕıquez et al. [15]). We will subsequently
consider a variational discretization of such OCPs and discuss the naturality of such discretizations.

Consider the following optimal control problem in Bolza form, subject to a DAE constraint, which
we refer to as (OCP-DAE),

min C(q(tf )) +

∫ tf

0
L(q, u)dt

subject to

q̇ = f(q, u),

0 = φ(q, u),

q0 = q(0),

0 = φf (q(tf )),

where the DAE system q̇ = f(q, u), 0 = φ(q, u) is over Md × Ma as described in Section 2.3,
C : Md ! R is the terminal cost, L : Md ×Ma ! R is the running cost, the initial condition
q(0) = q0 is prescribed, and for generality, a terminal constraint φf (q(tf )) = 0 is also imposed,
where φf is a map from Md into some vector space V .

We assume a local optimum to (OCP-DAE). We then adjoin the constraints to J using adjoint
variables, which gives the adjoined functional

J = C(q(tf )) + 〈λf , φf (q(tf ))〉+

∫ tf

0
[L(q, u) + 〈p, f(q, u)− q̇〉+ 〈λ, φ(q, u)〉] dt.

The optimality conditions are given by the condition that J is stationary about the local optimum,
δJ = 0 (Biegler [7]). For simplicity in the notation, we will use matrix derivative instead of indices.
Note also that we will implicitly leave out the variation of the adjoint variables, since those terms
pair with the DAE constraints, which vanish at the local optimum. The optimality condition
δJ = 0 is then

0 = δJ = 〈∇qC(q(tf )), δq(tf )〉+ 〈λf , Dqφf (q(tf ))δq(tf )〉

+

∫ tf

0

[
〈∇qL(q, u), δq〉+ 〈∇uL(q, u), δu〉+ 〈p,Dqf(q, u)δq〉+ 〈p,Duf(q, u)δu〉

− 〈p, d
dt
δq〉+ 〈λ,Dqφ(q, u)δq〉+ 〈λ,Duφ(q, u)δu〉

]
dt

= 〈∇qC(q(tf )) + [Dqφf (q(tf ))]∗λf − p(tf ), δq(tf )〉

+

∫ tf

0

[
〈∇qL(q, u) + [Dqf(q, u)]∗p+ ṗ+ [Dqφ(q, u)]∗λ, δq〉

+ 〈∇uL(q, u) + [Duf(q, u)]∗p+ [Duφ(q, u)]∗λ, δu〉
]
dt,
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where we integrated by parts on the term 〈p, ddtδq〉 and used δq(0) = 0 since the initial condition is
fixed. Enforcing stationarity for all such variations gives the optimality conditions,

q̇ = f(q, u),(3.10a)

ṗ = −[Dqf(q, u)]∗p− [Dqφ(q, u)]∗λ−∇qL(q, u),(3.10b)

0 = φ(q, u),(3.10c)

0 = ∇uL(q, u) + [Duf(q, u)]∗p+ [Duφ(q, u)]∗λ,(3.10d)

0 = φf (q(tf )),(3.10e)

p(tf ) = ∇qC(q(tf )) + [Dqφf (q(tf ))]∗λf .(3.10f)

The first four optimality conditions (3.10a)-(3.10d) are precisely the augmented adjoint DAE equa-
tions, (2.16a)-(2.16d). The last two optimality conditions (3.10e), (3.10f) are the terminal constraint
and the associated transversality condition, respectively. Note that these conditions are only suffi-
cient for a trajectory (q, u, p, λ) to be an extremum of the optimal control problem; whether or not
the trajectory is optimal depends on the properties of the DAE constraint and cost function, e.g.,
convexity of L.

Regular Index 1 Optimal Control. In the literature, the problem (OCP-DAE) is usually
formulated by making a distinction between algebraic variables and control variables, (q, y, u),
instead of (q, u) (see, for example, Biegler [7] and Aguiar et al. [2]). This does not change any of
the previous discussion of the optimality conditions, except that (3.10d) splits into two equations
for y and u. That is, the distinction is not formally important for the previous discussion. It
is of course important when actually solving such an optimal control problem. For example, the
constraint function φ(q, y, u) may have a singular matrix derivative with respect to (y, u) but may
have a nonsingular matrix derivative with respect to y. In such a case, one interprets y as the
algebraic variable, in that it can locally be solved in terms of (q, u) via the constraint, and the
control variable u as “free” to optimize over. We now briefly elaborate on this case.

We take the configuration manifold for the algebraic variables to be Ma = Ya×U 3 (y, u), where y
is interpreted as the algebraic constraint variable and u is interpreted as the control variable. We
will assume that the control space U is compact. The constraint has the form φ(q, y, u) = 0, and
we assume that ∂φ/∂y is pointwise invertible. We consider the following optimal control problem,

min

∫ tf

0
L(q, y, u)dt

subject to

q̇ = f(q, y, u),

0 = φ(q, y, u),

q0 = q(0).

We perform an analogous argument to before, except that, in this case, since U may have a
boundary, the optimality for the control variable u will either require u to lie on ∂U or will require
the stationarity of the adjoined functional with respect to variations in u. In any case, the necessary
conditions for optimality can be expressed as

q̇ = f(q, y, u),(3.11a)

ṗ = −[Dqf(q, y, u)]∗p− [Dqφ(q, y, u)]∗λ−∇qL(q, y, u),(3.11b)

0 = φ(q, y, u),(3.11c)

0 = ∇yL(q, y, u) + [Dyf(q, y, u)]∗p+ [Dyφ(q, y, u)]∗λ,(3.11d)
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u = arg min
u′∈U

HL(q, y, u′),(3.11e)

0 = p(tf ),(3.11f)

where HL is the augmented Hamiltonian HL(q, y, u) = L(q, y, u) + 〈p, f(q, y, u)〉 + 〈λ, φ(q, y, u)〉.
Assuming that u lies in the interior of U , (3.11e) can be expressed as

0 = ∇uL(q, y, u) + [Duf(q, y, u)]∗p+ [Duφ(q, y, u)]∗λ,

or DuHL(q, y, u) = 0. We say that an optimal control problem with a DAE constraint forms a
regular index 1 system if both ∂φ/∂y and the Hessian D2

uHL are pointwise invertible. In this case,
whenever u lies on the interior of U , (y, u, λ) can be locally solved as functions of (q, p). Thus, in
principle, the resulting Hamiltonian ODE for (q, p) can be integrated to yield extremal trajectories
for the optimal control problem. As mentioned before, without additional assumptions on the DAE
and cost function, such a trajectory will only generally be an extremum but not necessarily optimal.

Of course, in practice, one cannot generally analytically integrate the resulting ODE nor determine
the functions which give (y, u, λ) in terms of (q, p). Thus, the only practical option is to discretize
the presymplectic system above to compute approximate extremal trajectories. To integrate such a
presymplectic system, one can again use the presymplectic Galerkin Hamiltonian variational inte-
grator construction discussed in Section 3.2. Such an integrator would be natural in the following
sense. First, as discussed in Section 3.2, a presymplectic Galerkin Hamiltonian variational integra-
tor applied to the augmented adjoint DAE system is equivalent to applying a symplectic Galerkin
Hamiltonian variational integrator to the underlying Hamiltonian ODE, with the same Runge–
Kutta expansions for q1, Q

i in both methods. Furthermore, as shown in Sanz-Serna [33], utilizing a
symplectic integrator to discretize the extremality conditions is equivalent to first discretizing the
ODE constraint by a Runge–Kutta method and then enforcing the associated discrete extremality
conditions. This also holds in the DAE case.

More precisely, beginning with a regular index 1 optimal control problem, the processes of reduction,
extremization, and discretization commute, for suitable choices of these processes, analogous to
those used in the naturality result discussed in Section 3.2.1. The proof is similar to the naturality
result discussed in Section 3.2.1, where the arrow given by forming the adjoint is replaced by
extremization. In essence, these are the same, since the extremization condition is given by the
adjoint system, so we will just elaborate briefly. We already know how to extremize the continuous
optimal control problem, with either a DAE constraint or an ODE constraint after reduction, which
results in an adjoint system. We also already know how to discretize the resulting adjoint system
after discretization, using a (pre)symplectic partitioned Runge–Kutta method. Furthermore, at any
step, reduction is just defined to be solving the continuous or discrete constraints for y in terms
of (q, u). Thus, the only major difference compared to the previous naturality result is defining
the discretization of the optimal control problem and subsequently, how to extremize the discrete
optimal control problem. For the regular index 1 optimal control problem,

min

∫ tf

0
L(q, y, u)dt

subject to

q̇ = f(q, y, u),

0 = φ(q, y, u),

q0 = q(0),

its discretization is obtained by replacing the constraints with a Runge–Kutta discretization and
replacing the cost function with its quadrature approximation, using the same quadrature weights
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as those in the Runge–Kutta discretization. This can be written as

min ∆t
∑
i

biL(Qi, Y i, U i)

subject to

V i = f(Qi, Y i, U i),

0 = φ(Qi, Y i, U i),

where Qi = q0 + ∆t
∑

j aijV
j , which implicitly encodes q(0) = q0. One can then extremize this

discrete system, which is given by the discrete Euler–Lagrange equations for the discrete action

S = ∆t
∑
i

bi

(
〈P i, V i − f(Qi, Y i, U i)〉 − 〈Λi, φ(Qi, Y i, U i)〉 − L(Qi, Y i, U i)

)
.

That is, we enforce the discrete constraints by adding to the discrete Lagrangian the appropriate
Lagrange multiplier terms paired with the constraints, where we weighted the Lagrange multipliers
P i,Λi by ∆tbi just as convention, in order to interpret them as the appropriate variables, as
discussed in Appendix B. Enforcing extremality of this action recovers a partitioned Runge–Kutta
method applied to the adjoint system corresponding to extremizing the continuous optimal control
problem, as discussed in Appendix B, where the Runge–Kutta coefficients for the momenta are
the symplectic adjoint of the original Runge–Kutta coefficients. Alternatively, starting from the
original continuous optimal control problem, one could first reduce the DAE constraint to an ODE
constraint using the invertibility of Dyφ to give

min

∫ tf

0
L(q, y(q, u), u)dt

subject to

q̇ = f(q, y(q, u), u),

q0 = q(0).

One can then discretize this using the same Runge–Kutta method as before, where the cost func-
tion is replaced with a quadrature approximation, and then extremize using Lagrange multipliers.
Alternatively, one can extremize the continuous problem to yield an adjoint system and then apply
a partitioned Runge–Kutta method to that system, where the momenta Runge–Kutta coefficients
are again the symplectic adjoint of the original Runge–Kutta coefficients. Having defined all of
these processes, a direct computation yields that all of the processes commute, analogous to the
computation in Appendix B.

3.4. Numerical Example. For our numerical example, we consider the planar pendulum. Al-
though one can formulate this system as an ODE in the angular variable θ, we instead work with
this system in Cartesian coordinates xy where this system is formulated as a DAE, as an academic
example of the theory presented in this paper. We will derive the adjoint DAE system associ-
ated to the planar pendulum DAE, and subsequently, perform a numerical test demonstrating the
presymplecticity of a presymplectic Galerkin Hamiltonian variational integrator applied to this
system.

Consider a pendulum of mass m > 0 and length L > 0 confined to the xy plane, where gravity acts
in the vertical y direction, with acceleration −g < 0. This is described by the system

mẍ = ρx,

mÿ = ρy −mg,
x2 + y2 = L2.
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This system can be derived from the Lagrangian

L =
1

2
m(ẋ2 + ẏ2)−mg(y − L) +

1

2
ρ(x2 + y2 − L2),

where the first term is the kinetic energy, the second term is (minus) the potential energy, and the
third term enforces the constraint x2 + y2 = L2 where ρ is interpreted as a Lagrange multiplier.

If we restrict to the region y < 0, the above system can be expressed as a semi-explicit index 1
DAE of the form

ẋ = vx,(3.12a)

v̇x = ρx/m,(3.12b)

0 = x2 + y2 − L2,(3.12c)

0 = vxx+ vyy,(3.12d)

0 = m(v2
x + v2

y)−mgy + L2ρ.(3.12e)

In terms of the notation of Section 2.3, we have (x, vx) ∈ Md = (−1, 1) × R and (y, vy, ρ) ∈
Ma = R− × R × R. Letting q = (x, vx) denote the coordinates for the dynamical variables and
u = (y, vy, ρ) denote the coordinates for the algebraic variables, this system can be expressed in
the form (2.11a)-(2.11b), where

f(q, u) =

 vx

ρx/m

 ,

φ(q, u) =


x2 + y2 − L2

vxx+ vyy

m(v2
x + v2

y)−mgy + L2ρ

 .

We regard φ as a section of the constraint bundle Φ given by the trivial vector bundle (Md×Ma)×
R3 ! Md ×Ma. Coordinatize T ∗Md by (q, u, p) where p = (px, pvx) are the momenta dual to
q = (x, vx) and coordinatize Φ∗ by (q, u, λ) where λ = (λ1, λ2, λ3) are the coordinates of the fibers
dual to the constraint bundle fibers. The Hamiltonian H : T ∗Md ⊕ Φ∗ ! R is then given by

H(q, u, p, λ) = 〈p, f(q, u)〉+ 〈λ, φ(q, u)〉

= (px pvx)

vx
ρx

+ (λ1 λ2 λ3)


x2 + y2 − L2

vxx+ vyy

m(v2
x + v2

y)−mgy + L2ρ

 .

The presymplectic form Ω0 on T ∗Md ⊕ Φ∗ is given by

Ω0 = dq ∧ dp = dx ∧ dpx + dvx ∧ dpvx .
To obtain an expression for the adjoint DAE system (2.13a)-(2.13d), we compute the derivative
matrices of f and φ.

Dqf(q, u) =

 0 1

ρ/m 0

 ,
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Duf(q, u) =

0 0 0

0 0 x/m

 ,

Dqφ(q, u) =


2x 0

vx x

0 2mvx

 ,

Duφ(q, u) =


2y 0 0

vy y 0

−mg 2mvy L2

 .

Note that det(Duφ(q, u)) = 2L2y2 6= 0 for (q, u) ∈ Md ×Ma and hence, the system is an index 1
DAE as previously claimed.

The adjoint DAE system (2.13a)-(2.13d) for the planar pendulum is then given by

d

dt

 x

vx

 =

 vx

ρx/m

 ,(3.13a)

d

dt

 px

pvx

 = −

 0 1

ρ/m 0


T  px

pvx

−


2x 0

vx x

0 2mvx


T 

λ1

λ2

λ3

 ,(3.13b)

0 =


x2 + y2 − L2

vxx+ vyy

m(v2
x + v2

y)−mgy + L2ρ

 ,(3.13c)

0 =

0 0 0

0 0 x/m


T  px

pvx

+


2y 0 0

vy y 0

−mg 2mvy L2


T 

λ1

λ2

λ3

 .(3.13d)

We will apply a presymplectic Galerkin Hamiltonian variational integrator (3.7a)-(3.7f) to the above
system. We choose a first-order Runge–Kutta method, with Runge–Kutta coefficients a = 1, b =
1, c = 1 and hence, ã = 0. Thus, the internal stages for the position and momenta are given
by Q = q1 and P = p0. With these choices, the presymplectic Galerkin Hamiltonian variational
integrator can be expressed as

q1 = q0 + ∆tf(q1, U),

p1 = p0 −∆t ([Dqf(q1, U)]∗p0 + [Dqφ(q1, U)]∗Λ) ,

0 = φ(q1, U),
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0 = [Duf(q1, U)]∗p0 + [Duφ(q1, U)]∗Λ.

For our example, we set m = g = L = 1. Letting U = (Y, Vy,P) and Λ = (Λ1,Λ2,Λ3) denote the
internal stages corresponding to u = (y, vy, ρ) and λ = (λ1, λ2, λ3), respectively, the above integrator
applied to the adjoint DAE system for the planar pendulum (3.13a)-(3.13d), with m = g = L = 1,
can be expressed as

 x1

(vx)1

 =

 x0

(vx)0

+ ∆t

(vx)1

Px1

 ,

 (px)1

(pvx)1

 =

 (px)0

(pvx)0

−∆t


0 1

P 0


T  (px)0

(pvx)0

+


2x1 0

(vx)1 x1

0 2(vx)1


T 

Λ1

Λ2

Λ3


 ,

0 =


x2

1 + Y 2 − 1

(vx)1x1 + VyY

(vx)2
1 + V 2

y − Y + P

 ,

0 =

0 0 0

0 0 x1


T  (px)0

(pvx)0

+


2Y 0 0

Vy Y 0

−1 2Vy 1


T 

Λ1

Λ2

Λ3

 .

We refer to this method as PGHVI–1. We will compare this to the first-order method where the
Runge–Kutta coefficients are the same for both q and p, i.e., a = 1 = ã. This method is given by
applying the backward Euler method in both the q and p variables, i.e.,

 x1

(vx)1

 =

 x0

(vx)0

+ ∆t

(vx)1

Px1

 ,

 (px)1

(pvx)1

 =

 (px)0

(pvx)0

−∆t


0 1

P 0


T  (px)1

(pvx)1

+


2x1 0

(vx)1 x1

0 2(vx)1


T 

Λ1

Λ2

Λ3


 ,

0 =


x2

1 + Y 2 − 1

(vx)1x1 + VyY

(vx)2
1 + V 2

y − Y + P

 ,
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0 =

0 0 0

0 0 x1


T  (px)1

(pvx)1

+


2Y 0 0

Vy Y 0

−1 2Vy 1


T 

Λ1

Λ2

Λ3

 ,

which we refer to as BE–1.

For our numerical test, we will qualitatively compare the preservation of the presymplectic form
Ω0 = dx ∧ dpx + dvx ∧ dpvx between the two methods. Since Type II boundary conditions arise in
adjoint sensitivity analysis, we place Type II boundary conditions, i.e., by specifying q0 = (x0, (vx)0)
and p1 = ((px)1, (pvx)1), and subsequently, numerically solve the resulting system for q1, p0, U,Λ.
We use various nearby values for the initial position q0 = (x0, (vx)0) and various nearby values for
the final momenta p1 = ((px)1, (pvx)1). For a presymplectic integrator applied to a presymplectic
system with presymplectic form dx ∧ dpx + dvx ∧ dpvx , we expect that the area occupied by the
distribution of points (x0, (px)0) is the same as the area occupied by the distribution of points
(x1, (px)1); similarly, we expect that the area occupied by the distribution of points ((vx)0, (pvx)0)
is the same as the area occupied by the distribution of points ((vx)1, (pvx)1). Since we choose to
only solve the system for one timestep, we take a large timestep to highlight the difference between
the two methods, ∆t = 2, which corresponds to roughly one-third of the period of the pendulum.

Note that, with Type II boundary conditions, both methods give a map (q0, p1) 7! (q1, p0) which
implicitly determines an evolution map (q0, p0) 7! (q1, p1); below, we plot the phase space cross-
sections of these implicit evolution maps. The evolution of the (x, px) and (vx, pvx) distributions by
PGHVI–1 is shown in Figure 2 and Figure 3, respectively. The evolution of the (x, px) and (vx, pvx)
distributions by BE–1 is shown in Figure 4 and Figure 5, respectively. As can be qualitatively seen
from Figures 2, 3, 4, 5, the PGHVI–1 method preserves the phase space area in both the (x, px)
and (vx, pvx) cross-sections, whereas the BE–1 method does not.
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Figure 2. (x, px) phase space cross-section of PGHVI–1 applied to a distribution of initial conditions q0
and final momenta p1

Figure 3. (vx, pvx ) phase space cross-section of PGHVI–1 applied to a distribution of initial conditions q0
and final momenta p1
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Figure 4. (x, px) phase space cross-section of BE–1 applied to a distribution of initial conditions q0 and

final momenta p1

Figure 5. (vx, pvx ) phase space cross-section of BE–1 applied to a distribution of initial conditions q0 and

final momenta p1
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4. Conclusion and Future Research Directions

In this paper, we utilized symplectic and presymplectic geometry to study the properties of adjoint
systems associated with ODEs and DAEs, respectively. The (pre)symplectic structure of these
adjoint systems led us to a geometric characterization of the adjoint variational quadratic conser-
vation law used in adjoint sensitivity analysis. As an application of this geometric characterization,
we constructed structure-preserving discretizations of adjoint systems by utilizing (pre)symplectic
integrators, which led to natural discrete analogues of the quadratic conservation laws.

A natural research direction is to extend the current framework to adjoint systems for differential
equations with nonholonomic constraints, in order to more generally allow for constraints between
configuration variables and their derivatives. In this setting, it is reasonable to expect that the
geometry of the associated adjoint systems can be described using Dirac structures (see, for example,
Yoshimura and Marsden [40, 41]), which generalize the symplectic and presymplectic structures of
adjoint ODE and DAE systems, respectively. Structure-preserving discretizations of such systems
could then be studied through the lens of discrete Dirac structures (Leok and Ohsawa [22]). These
discrete Dirac structures make use of the notion of a retraction (Absil et al. [1]). The tangent
and cotangent lifts of a retraction also provide a useful framework for constructing geometric
integrators (Barbero-Liñán and Mart́ın de Diego [3]). It would be interesting to synthesize the
notion of tangent and cotangent lifts of retraction maps with discrete Dirac structures in order
to construct discrete Dirac integrators for adjoint systems with nonholonomic constraints which
generalize the presymplectic integrators constructed in Barbero-Liñán and Mart́ın de Diego [4].

Another natural research direction is to extend the current framework to evolutionary partial dif-
ferential equations (PDEs). There are two possible approaches in this direction. The first is to
consider evolutionary PDEs as ODEs evolving on infinite-dimensional spaces, such as Banach or
Hilbert manifolds. One can then investigate the geometry of the infinite-dimensional symplectic
structure associated with the corresponding adjoint system. In practice, adjoint systems for evolu-
tionary PDEs are often formed after semi-discretization, leading to an ODE on a finite-dimensional
space. Understanding the reduction of the infinite-dimensional symplectic structure of the adjoint
system to a finite-dimensional symplectic structure under semi-discretization could provide useful
insights into structure-preservation. The second approach would be to explore the multisymplectic
structure of the adjoint system associated with a PDE. This approach would be insightful for several
reasons. First, an adjoint variational quadratic conservation law arising from multisymplecticity
would be adapted to spacetime instead of just time. With appropriate spacetime splitting and
boundary conditions, such a quadratic conservation law would induce either a temporal or spatial
conservation law. As such, one could use the multisymplectic conservation law to determine ad-
joint sensitivities for a PDE with respect to spatial or temporal directions, which could be useful in
practice [24]. Furthermore, the multisymplectic framework would apply equally as well to nonevo-
lutionary (elliptic) PDEs, where there is no interpretation of a PDE as an infinite-dimensional
evolutionary ODE. Additionally, adjoint systems for PDEs with constraints could be investigated
with multi-Dirac structures (Vankerschaver et al. [38]). In future work, we aim to explore both
approaches, relate them once a spacetime splitting has been chosen, and investigate structure-
preserving discretizations of such systems by utilizing the multisymplectic variational integrators
constructed in Tran and Leok [37].
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Appendix A. Proofs of Discrete Adjoint Variational Quadratic Conservation Laws

Proof of Proposition 3.1.

Proof. We begin by substituting (3.4c) and (3.3a) into the left hand side of (3.5),

〈p1, δq1〉 = 〈p0, δq0〉+ ∆t
∑
i

bi〈p0, Df(Qi)δQi〉 −∆t
∑
i

bi〈[Df(Qi)]∗P i, δq0〉 −∆t
∑
i

bi〈dL(Qi), δq0〉

−∆t2
∑
ij

bibj〈[Df(Qi)]∗P i, Df(Qj)δQj〉 −∆t2
∑
ij

bibj〈dL(Qi), Df(Qj)δQj〉

= 〈p0, δq0〉+ ∆t
∑
i

bi

〈
P i + ∆t

∑
j

ãij([Df(Qj)]∗P j + dL(Qj)), Df(Qi)δQi

〉

−∆t
∑
i

bi

〈
[Df(Qi)]∗P i, δQi −∆t

∑
j

aijDf(Qj)δQj

〉
−∆t

∑
i

bi〈dL(Qi), δq0〉

−∆t2
∑
ij

bibj〈[Df(Qi)]∗P i, Df(Qj)δQj〉 −∆t2
∑
ij

bibj〈dL(Qi), Df(Qj)δQj〉,

where, in the last equality, we substituted (3.4d) and (3.3b). We now group and simplify the above
expression,

〈p1, δq1〉 = 〈p0, δq0〉+ ∆t
∑
i

bi

〈
P i + ∆t

∑
j

ãij [Df(Qj)]∗P j , Df(Qi)δQi

〉

−∆t
∑
i

bi

〈
[Df(Qi)]∗P i, δQi −∆t

∑
j

aijDf(Qj)δQj

〉
−∆t2

∑
ij

bibj〈[Df(Qi)]∗P i, Df(Qj)δQj〉

+ ∆t
∑
i

bi

〈
∆t
∑
j

ãijdL(Qj), Df(Qi)δQi

〉
−∆t

∑
i

bi〈dL(Qi), δq0〉

−∆t2
∑
ij

bibj〈dL(Qi), Df(Qj)δQj〉

= 〈p0, δq0〉+ ∆t2
∑
ij

(bj ãji + biaij − bibj)︸ ︷︷ ︸
=0

〈[Df(Qi)]∗P i, Df(Qj)δQj〉
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+ ∆t
∑
i

bi

〈
∆t
∑
j

ãijdL(Qj), Df(Qi)δQi

〉
−∆t

∑
i

bi〈dL(Qi), δq0〉

−∆t2
∑
ij

bibj〈dL(Qi), Df(Qj)δQj〉

= 〈p0, δq0〉 −∆t
∑
i

bi〈dL(Qi), δq0〉

−∆t2
∑
ij

(bibj − bj ãji)︸ ︷︷ ︸
=biaij

〈dL(Qi), Df(Qj)δQj〉

= 〈p0, δq0〉 −∆t2
∑
i

bi

〈
dL(Qi),

δq0

∆t
+
∑
j

aijDf(Qj)δQj

〉
= 〈p0, δq0〉 −∆t

∑
i

bi〈dL(Qi), δQi〉,

where, in the last equality, we used (3.3b). �

Proof of Proposition 3.2.

Proof. For brevity, we denote

Dqfi ≡ Dqf(Qi, U i),

Dufi ≡ Duf(Qi, U i),

Dqφi ≡ Dqφ(Qi, U i),

Duφi ≡ Duφ(Qi, U i).

Starting from 〈p1, δq1〉, we substitute the evolution equations (3.7c), (3.7d), (3.8a), (3.8b),

〈p1, δq1〉 = 〈p0, δq0〉 −∆t
∑
i

bi〈[Dqfi]
∗P i + [Dqφi]

∗Λi, δq0〉+ ∆t
∑
i

bi〈p0, DqfiδQ
i +DufiδU

i〉

−∆t2
∑
ij

bibj〈[Dqfi]
∗P i + [Dqφi]

∗Λi, DqfjδQ
j +DufjδU

j)〉

= 〈p0, δq0〉 −∆t
∑
i

bi

〈
[Dqfi]

∗P i + [Dqφi]
∗Λi, δQi −∆t

∑
j

aij(DqfjδQ
j +DufjδU

j)

〉

+ ∆t
∑
i

bi

〈
P i + ∆t

∑
j

ãij([Dqfj ]
∗P j + [Dqφj ]

∗Λj), DqfiδQ
i +DufiδU

i

〉
−∆t2

∑
ij

bibj〈[Dqfi]
∗P i + [Dqφi]

∗Λi, DqfjδQ
j +DufjδU

j〉

= 〈p0, δq0〉 −∆t
∑
i

bi〈[Dqfi]
∗P i + [Dqφi]

∗Λi, δQi〉

+ ∆t
∑
i

bi〈P i, DqfiδQ
i +DufiδU

i〉

+ ∆t2
∑
ij

(bj ãji + biaij − bibj)︸ ︷︷ ︸
=0

〈[Dqfi]
∗P i + [Dqφi]

∗Λi, DqfjδQ
j +DufjδU

j〉
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= 〈p0, δq0〉+ ∆t
∑
i

bi

(
〈[Dufi]

∗P i, δU i〉 − 〈[Dqφi]
∗Λi, δQi〉

)
= 〈p0, δq0〉+ ∆t

∑
i

bi

(
− 〈[Duφi]

∗Λi, δU i〉 − 〈[Dqφi]
∗Λi, δQi〉

)
= 〈p0, δq0〉 −∆t

∑
i

bi〈Λi, DuφiδU
i +DqφiδQ

i〉

= 〈p0, δq0〉,
where in the third to last equality, we used the constraint equation (3.7f) and in the last equality,
we used the constraint equation (3.8c). �

Proof of Proposition 3.3.

Proof. The proof uses computations analogous to those used in the proofs of Propositions 3.1
and 3.2. In particular, starting from the simplest case of the nonaugmented adjoint ODE system,
Proposition 3.1 considers the case of augmenting the Hamiltonian, whereas Proposition 3.2 considers
the case of replacing the ODE with a DAE. The case at hand combines both and the proof involves
a combination of both computations. �

Appendix B. Proof of Naturality of Adjoint System Discretization

In this appendix, we prove the statement in Section 3.2.1 that (for suitable choices of) discretization,
reduction, and forming the adjoint all commute when applied to an index 1 DAE. The definitions
and choices of these processes were made in Section 3.2.1. To prove that the diagram commutes,
we prove that each face of the diagram commutes. We again include the relevant diagram which
we wish to show commutes below.

Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

Back Face. We have already proved that the back face commutes (i.e., that reduction and forming
the adjoint commute when starting with an index 1 DAE), as discussed in Section 2.3.1. One can
then interpret the above diagram as an extension of this result with an extra dimension correspond-
ing to discretization.



GEOMETRIC METHODS FOR ADJOINT SYSTEMS 53

Right Face. This was proven in Sanz-Serna [33]. One can then interpret the above diagram as an
extension of the result in Sanz-Serna [33] by adding the reduction operation.

Bottom Face. Consider the augmented adjoint DAE system corresponding to the DAE (2.11a)-
(2.11b), which we take to have index 1, i.e., ∂φ/∂u is pointwise invertible. We consider the aug-
mented case because the nonaugmented case can be obtained by taking L ≡ 0. We show that
reducing the system first and then applying a symplectic Galerkin Hamiltonian variational integra-
tor is equivalent to applying a presymplectic Galerkin Hamiltonian variational integrator, with the
same partitioned Runge–Kutta coefficients, and then reducing.

We start with the former approach. The symplectic adjoint ODE system given by reduction, as
discussed in Section 2.3.1, is the Hamiltonian system corresponding to the Hamiltonian

H(q′, p′) = 〈p′, f ′(q′))〉+ L′(q′),

where we have solved u = u(q′) and defined f ′(q′) ≡ f(q′, u(q′)), L′(q′) ≡ L(q′, u(q′)). Applying the
symplectic Galerkin Hamiltonian variational integrator construction yields the integrator

q1 = q0 + ∆t
∑
i

bif
′(Qi)(B.1a)

= q0 + ∆t
∑
i

bif(Qi, u(Qi)),

Qi = q0 + ∆t
∑
j

aijf
′(Qj)(B.1b)

= q0 + ∆t
∑
j

aijf(Qj , u(Qj)),

p1 = p0 −∆t
∑
i

bi([Df
′(Qi)]∗P i + dL′(Qi)),(B.1c)

P i = p0 −∆t
∑
j

ãij([Df
′(Qj)]∗P j + dL′(Qj)).(B.1d)

Note that the derivative Df ′ can be equivalently expressed as

Df ′(Qi) = D1f(Qi, u(Qi)) +D2f(Qi, u(Qi))Du(Qi),

where Di denotes differentiation with respect to the ith argument. We switch to indexing the
derivative operator here, so we do not have to make the distinction between total derivatives Dq

and partial derivatives ∂q. Similarly, we can express dL′ as follows. First, note that we have been
implicitly identifying the row vector dL′ with the column vector given by its transpose ∇L′. Thus,
dL′ in equations (B.1c)-(B.1d) should really be written as ∇L′. Thus,

dL′(Qi) ∼= ∇L′(Qi) = ∇1L(Qi, u(Qi)) + [Du(Qi)]∗∇2L(Qi, u(Qi)).

Now, we show that the second approach is equivalent to the above system. The starting point is
the presymplectic Galerkin Hamiltonian variational integrator, equations (3.9a)-(3.9f). From (3.9e),
we can solve for U i in terms of Qi as U i = u(Qi). Plugging this into (3.9a)-(3.9b) gives precisely
(B.1a)-(B.1b). Thus, we just need to see that, after solving the constraint (3.9f) for Λi, the two
momenta equations (3.9c)-(3.9d) are equivalent to (B.1c)-(B.1d). Solving (3.9f) for Λi gives

Λi = −([D2φ(Qi, u(Qi))]∗)−1[D2f(Qi, u(Qi))]∗P i − ([D2φ(Qi, u(Qi))]∗)−1∇2L(Qi, u(Qi)).

Multiplying both sides by [D1φ(Qi, u(Qi))]∗ yields

[D1φ(Qi, u(Qi))]∗Λi = −[D1φ(Qi, u(Qi))]∗([Duφ(Qi, u(Qi))]∗)−1[D2f(Qi, u(Qi))]∗P i

− [D1φ(Qi, u(Qi))]∗([∇uφ(Qi, u(Qi))]∗)−1∇2L(Qi, u(Qi))
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= [Du(Qi)]∗[D2f(Qi, u(Qi))]∗P i + [Du(Qi)]∗∇2L(Qi, u(Qi))

= [D2f(Qi, u(Qi))Du(Qi)]∗P i + [Du(Qi)]∗∇2L(Qi, u(Qi)),

where in the second equality, we used D1φ(Qi, u(Qi)) = −D2φ(Qi, u(Qi))Du(Qi) from the implicit
function theorem. Plugging this expression and U i = u(Qi) into (3.9c)-(3.9d) yields (B.1c)-(B.1d),
noting the above expressions for Df ′, dL′.

Remark B.1. Note that, in the above, we used the implicit function theorem to obtain the local
function u = u(q). This is sufficient to prove that the two processes are the same for a single
integration step, assuming that the timestep ∆t is sufficiently small and the vector field f and
constraint φ are sufficiently regular, so that q0, q1, and all of the internal stages Qi are in the
neighborhood where the local function is defined. For each subsequent time step, one generally
needs a different local function. This does not matter in practice since one works directly with the
presymplectic integrator and solves the constraints iteratively.

Top Face. We want to prove that, starting from an index 1 DAE, the processes of discretization
and reduction commute, where the discretization of the ODE and DAE have the same Runge–Kutta
coefficients.

We start first with reduction then discretization. Starting from the index 1 DAE q̇ = f(q, u),
φ(q, u) = 0, we apply the reduction operation, which gives the ODE q̇ = f(q, u(q)). Applying a
Runge–Kutta discretization gives

q1 = q0 + ∆t
∑
i

bif(Qi, u(Qi)),

Qi = q0 + ∆t
∑
j

aijf(Qj , u(Qj)).

On the other hand, we can discretize the DAE and then reduce. We discretize the DAE q̇ = f(q, u),
φ(q, u) = 0 by applying a Runge–Kutta discretization with the same coefficients as before,

q1 = q0 + ∆t
∑
i

bif(Qi, U i),

Qi = q0 + ∆t
∑
j

aijf(Qj , U j),

0 = φ(Qi, U i).

To reduce this system, we solve the constraint equations U i = u(Qi) and substitute these into
the two evolution equations, which yields the same system obtained from first reducing and then
discretizing.

Front Face. The starting point for this loop is a discrete DAE system, which arises as a Runge–
Kutta discretization of an index 1 DAE, i.e., it is given by the discrete system

q1 = q0 + ∆t
∑
i

bif(Qi, U i),(B.2a)

Qi = q0 + ∆t
∑
j

aijf(Qj , U j),(B.2b)

0 = φ(Qi, U i).(B.2c)

From here, we wish to show that reducing and forming the discrete adjoint system commute.
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First, we recall the notion of a discrete adjoint system. Suppose we are given a generally nonlinear
system of equations, F (x1) = x0, where x1 ∈ V is unknown, x0 ∈ W is given, and F : V ! W
(where V and W are vector spaces). To define the adjoint system, we first consider the variational
equations associated with this nonlinear system given by its linearization,

DF (x1)δx1 = δx0,

where DF (x1) is a linear map V ! W and δx0 ∈ W is given. Suppose that we are interested in
computing the quantity 〈s1, δx1〉 for a given vector s1 ∈ V ∗. In the setting of adjoint sensitivity
analysis, the quantity 〈s1, δx1〉 is the sensitivity of the terminal cost function. We define the
associated adjoint equation as

[DF (x1)]∗s0 = s1.

For a solution s0 ∈W ∗ of this system, one has

〈s1, δx1〉 = 〈[DF (x1)]∗s0, δx1〉 = 〈s0, DF (x1)δx1〉 = 〈s0, δx0〉.
Thus, to compute 〈s1, δx1〉, one could solve the variational equation for δx1 and pair it with s1

which is given, or, alternatively, solve the adjoint equation for s0 and pair it with δx0 which is given,
since these linear systems are solvable by assumption. We define the adjoint system associated with
the equation F (x1) = x0 as this equation combined with the associated adjoint equation, i.e., as
the combined system

F (x1) = x0,

[Df(x1)]∗s0 = s1.

Following Ibragimov [20], we will utilize an alternative characterization of the adjoint system. We
define the discrete adjoint action

S(x1, s0) ≡ 〈s0, F (x1)〉.
Then, observe that S is a generating function for the adjoint system (x1, s0) 7! (x0, s1), in the sense
that

x0 =
δ

δs0
S(x1, s0) = F (x1),

s1 =
δ

δx1
S(x1, s0) = [Df(x1)]∗s0.

This characterization serves two purposes. First, it will simplify the calculation of the adjoint
system for the case at hand. Furthermore, it resembles the process of forming the adjoint at
the continuous level: starting from the (discrete or continuous) differential(-algebraic) equation at
hand, one forms the (discrete or continuous) adjoint action and applies the variational principle to
obtain the adjoint system. To obtain the augmented adjoint system, we add a discrete Lagrangian
L : V ! R to the action (as a convention, we subtract the discrete Lagrangian). We define the
augmented discrete adjoint action to be

SL(x1, s0) ≡ 〈s0, F (x1)〉 − L(x1).

The map that this generates defines the augmented discrete adjoint system,

x0 =
δ

δs0
SL(x1, s0) = F (x1),

s1 =
δ

δx1
SL(x1, s0) = [Df(x1)]∗s0 − dL(x1).

Observe that this definition of an augmented discrete adjoint system is natural in the sense that,

〈s1, δx1〉 = 〈[Df(x1)]∗s0 + dL(x1), δx1〉 = 〈s0, x0〉 − 〈dL(x1), δx1〉,
which resembles the continuous analogue of the adjoint sensitivity result for a running cost function.
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Now, we use this notion of a discrete adjoint system for the problem at hand. We begin first with
reduction and then forming the adjoint system. Applying the reduction operation to the discrete
DAE system (B.2a)-(B.2c), given by solving φ(Qi, U i) = 0 for U i = u(Qi),

q1 = q0 + ∆t
∑
i

bif(Qi, u(Qi)),(B.3a)

Qi = q0 + ∆t
∑
j

aijf(Qj , u(Qj)),(B.3b)

Let us define Qi = q0 + ∆t
∑

j aijV
j . We think of the internal stages Q as functions of the internal

stages V , which are the internal stage proxies for q̇. Our discrete system (B.3a)-(B.3b) can then
be defined by x1 = {V i}si=1, x0 = {0}si=1, where s is the number of internal stages, and

x0 = F (x1) ≡


V 1 − f(Qi(V ), u(Qi(V )))

...

V s − f(Qs(V ), u(Qs(V )))

 .

Observe that F = 0 only gives the internal stage equations (B.3b). We do this for simplicity,
since we will assume cs = 1 as is typical for a Runge–Kutta discretization of a DAE as previously
discussed and hence, equation (B.3a) is redundant, since asj = bj .

We define F and x1 in terms of V instead of Q because when we form the adjoint action, we
pair the components of F with the dual variable s0. In order to interpret s0 as representing the
momenta internal stages P i, it should be paired with the proxy for the tangent vector V , instead
of Q. We now form the discrete adjoint action. We define the dual variable for the adjoint system
to be s0 = {∆tbiP i}si=1. The normalization factor ∆tbi is used so that the discrete action is the
quadrature approximation of the continuous action. This is just a convention, but we would have to
reinterpret the components of s0 if we did not choose this convention. Finally, we define the discrete
Lagrangian to be the quadrature approximation of the continuous Lagrangian L′(q) ≡ L(q, u(q)),
i.e., L(x1) = ∆t

∑
i biL

′(Qi(V )). This is the natural choice because the discrete sensitivity of a
running cost function is ∆t

∑
i bi〈dL′(Qi(V )), δQi(V )〉, which equals 〈dL(x1), δx1〉 with the above

choice of L. The augmented discrete adjoint action is then

SL({V i}, {biP i}) = SL(x1, s0) = 〈s0, F (x1)〉 − L(x1)

= ∆t
∑
i

bi

(
〈P i, V i − f(Qi(V ), u(Qi(V )))〉 − L′(Qi(V ))

)
.

To define the discrete adjoint system, we have to give s1, which we take to be s1 = {∆tbip1}si=1,
where p1 is given. Thus, the augmented discrete adjoint system is given by

0 =
δ

δP k
SL = V k − f(Qk(V ), u(Qk(V ))),

∆tbkp1 =
δ

δV k
SL

= ∆tbkP
k −∆t2

∑
i

biaik

(
[D1f(Qi(V ), u(Qi(V )))]∗P i

+ [D2f(Qi(V ), u(Qi(V )))Du(Qi(V ))]∗P i + dL′(Qi(V ))
)
.
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The first set of equations above, combined with the definition of Q in terms of V , gives (B.3b). For
the second set of equations, we first divide through by ∆tbk and rearrange to obtain

P k = p1 + ∆t
∑
i

biaik
bk

(
[D1f(Qi(V ), u(Qi(V )))]∗P i

+ [D2f(Qi(V ), u(Qi(V )))Du(Qi(V ))]∗P i + dL′(Qi(V ))
)
.

= p1 +
∑
i

(bi − ãki)
(

[D1f(Qi(V ), u(Qi(V )))]∗P i

+ [D2f(Qi(V ), u(Qi(V )))Du(Qi(V ))]∗P i + dL′(Qi(V ))
)
.

Note that this is the usual symplectic partitioned Runge–Kutta expansion for the internal stages P i,
expressed in terms of p1 instead of p0. Thus, the full adjoint system, combined with the redundant
k = s stages, yields a symplectic partitioned Runge–Kutta method.

Now, in the other direction, we first form the adjoint system corresponding to the discrete DAE
system and subsequently reduce. We begin by forming the adjoint system. We form the discrete ac-
tion analogously to before, but now the discrete system (B.2a)-(B.2c) also has constraints which we
must incorporate into F , since we have not yet reduced the system. We take x1 = {{V i}, {U i}}si=1

and s0 = {{∆tbiP i}, {∆tbiΛi}}si=1. We define F as

x0 = F (x1) ≡



V 1 − f(Qi(V ), U i)

...

V s − f(Qs(V ), U i))

−φ(Q1(V ), U1)

...

−φ(Qs(V ), U s)


.

Note again that Q is a function of V as Qi = q0 + ∆t
∑

j aijV
j . It is not a priori a function of U

because the condition V i = f(Qi(V ), U i) has not yet been enforced. Rather, it is a consequence of
the variational principle, which formally matters when one computes the variation of the discrete
action. Define the discrete Lagrangian L(x1) =

∑
i biL(Qi(V ), U i). We form the augmented discrete

adjoint action

SL({V i}, {biP i}) = SL(x1, s0) = 〈s0, F (x1)〉 − L(x1)

= ∆t
∑
i

bi

(
〈P i, V i − f(Qi(V ), U i)〉 − 〈Λi, φ(Qi, U i)〉 − L(Qi(V ), U i)

)
.

We use this as a generating function to compute the adjoint system as before. The computation is
analogous so we will just state the result,

V k = f(Qk(V ), Uk),

P k = p1 + ∆t
∑
i

(bi − ãki)
(
[D1f(Qi(V ), U i)]∗P i + [D1φ(Qi(V ), U i)]∗Λi +DqL(Qi(V ), U i)

)
,

0 = φ(Qi(V ), U i),

0 = [D2f(Qi(V ), U i)]∗P i + [D2φ(Qi(V ), U i)]∗Λi +D2L(Qi(V ), U i).
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Finally, we reduce by solving the last two equations for U i, Λi as functions of Qi(V i), P i. Finally,
an implicit function theorem computation analogous to the proof of the bottom face shows that
this is the same as the system obtained by first reducing and then forming the discrete adjoint.

Left Face. The proof for the left face is formally similar to the right face, but since we have
already computed both directions, we will include it for completeness. Starting from an index 1
DAE, forming the adjoint and then discretizing just give the presymplectic Galerkin Hamiltonian
variational integrator (3.9a)-(3.9f). In the other direction, we first discretize the DAE and then
take the adjoint which we did in the proof of the front face. Expressed in terms of Q, instead of
V , this is

Qk = q0 + ∆t
∑
j

aijf(Qj , U j),

P k = p1 + ∆t
∑
i

(bi − ãki)
(
[D1f(Qi, U i)]∗P i + [D1φ(Qi, U i)]∗Λi +DqL(Qi, U i)

)
,

0 = φ(Qi, U i),

0 = [D2f(Qi, U i)]∗P i + [D2φ(Qi, U i)]∗Λi +D2L(Qi, U i).

Returning to the system given by first forming the adjoint and then discretizing, (3.9a)-(3.9f), one
substitutes (3.9c) into (3.9d) to write the internal stages for P i in terms of p1, and this gives the
above system.
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