
Extending FEniCS to Work in Higher Dimensions Using Tensor Product Finite
Elements

Mark Lovelanda,∗, Eirik Valsetha, Matt Lukacb, Clint Dawsona

aOden Institute for Computational Engineering and Sciences, The University of Texas at Austin. 201 E. 24th St. Stop C0200, Austin, Texas 78712
bInstitute of Ecology and Evolution, Department of Biology, University of Oregon. 77 Klamath Hall, 1210 University of Oregon, Eugene, Oregon

97403

Abstract

We present a method to extend the finite element library FEniCS to solve problems with domains in dimensions above

three by constructing tensor product finite elements. This methodology only requires that the high dimensional domain

is structured as a Cartesian product of two lower dimensional subdomains. In this study we consider Dirichlet problems

for scalar linear partial differential equations, though the methodology can be extended to non-linear problems. The

utilization of tensor product finite elements allows us to construct a global system of linear algebraic equations that only

relies on the finite element infrastructure of the lower dimensional subdomains contained in FEniCS. We demonstrate

the effectiveness of our methodology in four distinctive test cases. The first test case is a Poisson equation posed

in a four dimensional domain which is a Cartesian product of two unit squares solved using the classical Galerkin

finite element method. The second test case is the wave equation in space-time, where the computational domain is a

Cartesian product of a two dimensional space grid and a one dimensional time interval. In this second case we also

employ the Galerkin method. The third test case is an advection dominated advection-diffusion equation where the

global domain is a Cartesian product of two one dimensional intervals in which the streamline upwind Petrov-Galerkin

method is applied to ensure discrete stability. The final test case uses the Galerkin approach to solve a Poisson problem

on a Cartesian product of two intervals with a spatially varying, non-separable diffusivity term. In all cases, a p=1

basis is used and optimal L2 convergence rates of order hp+1 of the errors are achieved with respect to h refinement.

Keywords: FEniCS, tensor product, Cartesian product, finite element method

2000 MSC: 65N30 ,65M60, 35D30

1. Introduction

In the last decade, open source libraries with high level APIs that automate the process of solving partial differential

equations (PDEs) using the finite element method (FEM) have become valuable tools in computational research. Some

prominent libraries of this kind include Firedrake [1], deal.II [2], MFEM [3], and FEniCS [4]. FEniCS is one of the

most widely used of these libraries. FEniCS, along with most other FEM libraries, only include capability of handling

up to three dimensional problems (GetFEM [5] is a notable exception). FEniCS specifically supports unstructured

∗Corresponding author
Email address: Markloveland@utexas.edu (Mark Loveland)

Preprint May 27, 2022

ar
X

iv
:2

20
2.

00
76

2v
2

 [
m

at
h.

N
A

]
 2

5
M

ay
 2

02
2

meshes with corresponding basis functions in one, two, and three dimensions. Extension of FEniCS to solve problems

in higher dimensions is of interest for problems such as spectral wind wave models, spatial population genetics,

quantum mechanics, and even 3d space-time problems.

FEniCS does not contain support for fully unstructured meshes in dimensions higher than three. However, at the

expense of losing a fully unstructured mesh, a higher dimensional space can be discretized with the available tools in

FEniCS if it is the Cartesian product of two lower dimensional (3 or lower) spaces that can themselves be unstructured.

It is well known that in a Cartesian product space, a finite element basis can be constructed called the product basis

which spans the function space of the full domain [6–8]. This research seeks to use the infrastructure of an FEM

library, such as FEniCS, in the lower dimensional spaces to construct a basis for this high dimensional space.

Using FEM to discretize a structured domain via a product basis has been done before without the use of FEM

libraries such as FEniCS. In 1978, Banks [9] used tensor product finite elements to solve a 2D Poisson problem on

a structured grid in order to find a faster solver. In the study, the domain was a Cartesian product between two unit

intervals resulting in a uniform square mesh. Banks used the tensor product of two one dimensional quadratic and

cubic basis functions to construct the polynomial basis of the full 2D domain. In 1980, Baker performed numerical

tests as well as a stability analysis on a tensor product finite method with application to convection-dominated fluid

flow problems [10]. The stability analysis showed the basic algorithm is spatially fourth- order accurate in its most

elementary embodiment and the numerical experiments on the convection-dominated model test problems confirmed

the basic viability of the developed algorithm, and its tensor product formulation. Recently, Du et al. [11] used

tensor product finite elements to construct a fast solver for an electromagnetics scattering problem of a cavity. In

Firedrake [1], there exists a capability to create tensor product finite elements only up to three dimensions [12]. A

package built on deal.II called Hyperdeal [13] has the capability of creating tensor product finite elements in up to six

dimensions. deal.II is different to a library such as FEniCS since deal.II uses quadrilateral elements in two dimensions

whereas FEniCS uses triangles. Here, we present a general software framework built on the components of the

FEniCS library as well as other open source Python libraries to construct high dimensional meshes and corresponding

FE discretizations.

Following this introduction, the general set of problems for which this paper focuses on will be defined and the

notation for the product basis will be introduced in Section 2.1. Then, a set of four different model problems will be

described in detail and the derivation of the system of equations using tensor product finite elements will be shown

for each case. The first model problem will be discussed in Section 2.1 which is an N dimensional Poisson problem

where the domain is a Cartesian product between two subdomains of dimension three or less. In Section 2.2 the

second model problem is discussed which is a wave equation where the domain is decomposed as a Cartesian product

between space and time. The third model problem is discussed in Section 2.3 which is an advection dominated

advection-diffusion equation where the advection aligns with one of the subdomains, a streamlined upwind Petrov-

Galerkin method (SUPG) is formulated for this case. In Section 2.4 the fourth model problem is discussed which

is a Poisson problem in 2d which has a spatially varying diffusivity term that is non-separable. After each system

of equations is derived, numerical tests were run using FEniCS for each model problem where specific boundary

2

conditions were given. For each case, error and convergence rates are tabulated in Section 3. Lastly, conclusions and

recommendations for future work are given in Section 4.

2. Methods

To present the proposed methodology and algorithms, we consider the following class of problems, i.e., PDEs:

L u = f in Ω = Ω1×Ω2.

Where L is a linear differential operator, f is a forcing function, and the domain Ω is defined as a Cartesian product

between two lower dimensional Lipschitz domains. For example, if the global domain Ω⊂R2, then Ω can be defined

by the Cartesian product of 2 intervals Ω1 ⊂ R and Ω2 ⊂ R. Hence, we consider general domains of the form

Ω=Ω1×Ω2, see Figure 1 for an illustration. FEniCS can discretize up to three dimensional objects, hence, in practice

Figure 1: Example of a global domain Ω that is a Cartesian product of two lower dimensional subdomains Ω1,Ω2.

this framework can be used to define domains that are Cartesian products of up to six dimensions. Furthermore, this

process can be done iteratively to yield even higher dimensional domains as Ω1 itself could be a product of two other

spaces and so on. We note that in this presentation, we consider only symmetric functional settings which admit well

posed Galerkin FE discrtetization. For the methods described in model Sections 2.1, 2.2, and 2.3, L is restricted

to linear differential operators that either do not contain functions which depend on domain coordinates or contain

functions that are separable. However, it is important to note that a generalization of these methods does apply to

operators that contain non-separable functions. The procedure is a bit more complicated and some efficiency is lost

since the use of Kronecker products to directly assemble the system as will be seen in Sections 2.1, 2.2, and 2.3 is no

longer possible but an example implementation is constructed in Section 2.4.

It can be shown that if a function u is defined on a Cartesian product domain Ω = Ω1×Ω2 then we can construct a

basis of a polynomial space to be used for the FEM by exploiting this underlying geometric structure, see, e.g., [6–8].

With a basis for a polynomial space for the first lower dimensional subdomain Ω1:

{φi}N
i=1, (1)

3

and a basis for the second subdomain Ω2:

{ψ j}M
j=1. (2)

The basis for the entire domain can subsequently be constructed and any arbitrary function u whose domain is in

Ω = Ω1×Ω2 can be approximated via the product basis:

u≈
N

∑
i=1

M

∑
j=1

ui, jφi ψ j. (3)

Note that in the following, we use boldface letters and symbols to denote vector quantities, e.g., dx = dxdy.

2.1. Model Problem 1: N dimensional Poisson Equation

As a first model problem to illustrate the methodology, we consider the Poisson equation:

−∆u = f in Ω,

u = uD on ∂Ω,
(4)

where the source f is in L2(Ω) and the source data uD is assumed to be sufficiently regular. Now we will briefly derive

the finite element formulation using the Galerkin approach and the product basis. Note, that this derivation is not new

and similar derivations can be found in the literature such as the work from Banks [9] for example. The derivation

is included so it is clear how to implement in an algorithm as well as how the ideas of using tensor product elements

will apply to more complex cases. To define the weak formulation for (4), multiply both sides with a test function v in

L2(Ω) and integrate over Ω: ∫
Ω

−∆uv dx =
∫

Ω

f v dx ∀v ∈ L2(Ω), (5)

Integrating by parts on the left side (assuming Dirichlet boundary conditions on entire boundary) gives the following

weak formulation: find u ∈U (Ω) such that∫
Ω

∇u ·∇v dx =
∫

Ω

f v dx ∀ v ∈ V (Ω), (6)

where the function space V (Ω) is the Hilbert space with zero trace on the boundary H1
0 (Ω) and U (Ω) is V (Ω) with a

finite energy lift on the boundary so that the Dirichlet condition u = uD is satisfied. The weak formulation in (6), and

its corresponding discretization is known to be well posed, see, e.g., [14].

With a well posed weak formulation at hand, we can discretize this weak form using a finite element basis. In

this case, the functional setting dictates the use of a C0 continuous polynomial basis for the classical FEM. Hence, we

approximate the trial functions with the product basis:

u≈
N

∑
i=1

M

∑
j=1

ui, j φi ψ j, (7)

and the test functions by its product basis:

v≈
N

∑
k=1

M

∑
l=1

vk,l γk βl . (8)

4

The weak form from (5) can then be discretized by substitution of the product bases:∫
Ω

(∇
N

∑
i=1

M

∑
j=1

ui, j φi ψ j) · (∇
N

∑
k=1

M

∑
l=1

vk,l γk βl) dx =
∫

Ω

f (
N

∑
k=1

M

∑
l=1

vk,l γk βl) dx. (9)

Due to arbitrariness of the test function and the bilinearity of the weak form, this implies the following form:

N

∑
i=1

M

∑
j=1

∫
Ω

∇(φi ψ j) ·∇(γk βl) dxui, j =
∫

Ω

f (γk βl) dx. (10)

This left hand side results in a product between a 4 dimensional and a 2 dimensional tensor ui, j. Consequently, the 4

dimensional tensor Ai jkl will be of the form: ∫
Ω

∇(φi ψ j) ·∇(γk βl) dx. (11)

By the product rule we have:∫
Ω

∇(φi ψ j) ·∇(γk βl) dx =
∫

Ω

(φi ∇(ψ j)+ψ j ∇(φi)) · (γk ∇(βl)+βl ∇(γk)) dx. (12)

By construction, the φ ’s andγ’s only vary in the first subdomain Ω1 whereas the ψ’s and β ’s only vary in the second

subdomain Ω2. Thus, the integral form (12) can be simplified. To this end, we use the following notation convention:

if the gradient operator on the entire domain Ω is ∇, define the gradient on the subdomains Ω1 and Ω2 as ∇1, ∇2,

respectively. Hence, by construction ∇ = (∇1,∇2). Rewriting the gradients in (12) then gives:∫
Ω

(φi (∇1,∇2)(ψ j)+ψ j (∇1,∇2)(φi)) · (γk (∇1,∇2)(βl)+βl(∇1,∇2)(γk)) dx,

=
∫

Ω

((0,φi ∇2(ψ j))+(ψ j ∇1(φi),0)) · ((0,γk ∇2(βl))+(βl ∇1(γk),0)) dx,

=
∫

Ω

(ψ j ∇1(φi),φi ∇2(ψ j)) · (βl ∇1(γk),γk ∇2(βl)) dx,

=
∫

Ω

∇1(φi) ·∇1(γk)ψ j βl +φi γk ∇2(ψ j) ·∇2 (βl) dx.

(13)

Since the domain Ω is a Cartesian product of the subdomains Ω1,Ω2 we can rewrite the last integral in (13), as:∫
Ω1

∫
Ω2

∇1(φi) ·∇1(γk)ψ j βl +φi γk ∇2(ψ j) ·∇2(βl)dy dx. (14)

An application of Fubini’s theorem gives:∫
Ω1

∇1(φi) ·∇1(γk) dx
∫

Ω2

ψ j βl dy+
∫

Ω1

φi γk dx
∫

Ω2

∇2(ψ j) ·∇2(βl)dy, (15)

These can be written as Kronecker products of matrices, e.g., stiffness matrices computed with FEniCS. To continue

the discussion, we introduce the following notation:

K11 =
∫

Ω1

∇1φi ·∇1γk dx, K22 =
∫

Ω2

ψ j βl dy,

K12 =
∫

Ω1

φi γk dx, K21 =
∫

Ω2

∇2ψ j ·∇2βl dy,
(16)

where the first index indicates subdomain (i.e., 1 or 2 in this case) and the second indicates the term from the weak

form (1 is the first order operator and 2 the 0th order). Hence, each local matrix Ki j can be constructed independently,

5

and the global stiffness matrix Ai jkl can be defined by the sum of 2 Kronecker products. The Kronecker product allows

us to represent the matrix of a 4D tensor by smaller 2D matrices:

A = K11⊗K22 +K12⊗K21. (17)

For an arbitrary forcing function f , it is often more convenient to approximate f as a member of the solution space. A

similar reasoning for the right hand side leads to the following:

∫
Ω

f γk βl dx≈
N

∑
i=1

M

∑
j=1

∫
Ω1

φi γk dx
∫

Ω2

ψ j βl dy, fi, j, (18)

where fi, j is the pointwise value of f at each i, j coordinate in the global space. The forcing vector is consequently

defined as:

F = fi, j. (19)

Finally, the entire system of equations becomes:

(K11⊗K22 +K12⊗K21)(U) = K12⊗K22F, (20)

where U are the values at all d.o.f in the Cartesian product space for u. A subsequent application of boundary conditions

to (20) leads to the final system of linear algebraic equations.

2.2. Model Problem 2: Arbitrary dimensional Space-Time Wave Equation

The second model problem we consider is the linear wave equation. We consider this transient problem to highlight

the application of this methodology to transient problems where space-time finite elements are employed. Thus, we

have the following model problem:

∂ 2u
∂ t
− c2

∆u = 0 in ΩT ,

u= uD on ∂Ω,

u= uinitial on Ω,

(21)

where c denotes the wave speed. In this problem the space-time domain ΩT is a Cartesian product domain of one, two,

or three dimensional spatial domain and a one dimensional temporal domain (ΩT = Ω× (0,T)). Now we will derive

the finite element formulation for this problem, again using the Galerkin approach. Note that similar derivations can

be found in the literature, see work of Loscher [15] for instance. The weak form of (21) is obtained by multiplying by

a test function and integrating over the entire space-time domain:∫
ΩT

∂ 2u
∂ t

v− c2
∆uv dxdt = 0 ∀ v ∈ L2(ΩT), (22)

and subsequent integration by parts in space and time gives the following weak form. . Find u ∈U (ΩT):∫
ΩT

−∂u
∂ t

∂v
∂ t

+ c2
∇u ·∇v dxdt+

∫
∂ΩT |t=T

∂u
∂ t

v dx = 0 ∀ v ∈ V (ΩT), (23)

6

where we have applied Dirichlet conditions to the space-time boundary ∂ΩT , except at the final time boundary. V (ΩT)

is the space of all H1
0 (ΩT) functions except on ∂ΩT |t=T , where the trace is an unkown, and U (ΩT) is the space of all

H1
0 (ΩT) plus the trace u = uD on ∂ΩT except the aforementioned part of the boundary ΩT |t=T .

The corresponding discretization of (23) using a product basis gives a very similar system of equations to the

Poisson problem considered in Section 2.1, with a slight variation. The term K21 must include additional integrals and

becomes:

K21 =
∫ T

0

∂ψ j

∂ t
∂βl

∂ t
dt−

∫
∂Ω2

∇ψ j ·nβl ds. (24)

Consequently, the global system of equations becomes:

(c2K11⊗K22−K12⊗K21)U = 0. (25)

Finally, application of boundary and initial conditions to (25) results in the final system of linear algebraic equations.

2.3. Model Problem 3: SUPG Stabilized Advection Dominated Advection Diffusion Equation

To highlight the versatility of our approach to consider non-standard FE techniques, we consider a PDE which is

known to lead to stability issues in the Galerkin FE setting. Hence, we consider an advection-diffusion PDE in which

advection is the dominant:

−κ ∆u+b ·∇u = f , on Ω

u = uD on ∂Ω, ,
(26)

where Ω is defined as a Cartesian Product of two lower dimensional Lipschitz domains: Ω = Ω1×Ω2. By following

the standard procedure of deriving integral formulations, we get the corresponding weak form. Note that a similar

derivation for a more complex advection problem can be found in the work of Baker [10]:∫
Ω

κ∇u ·∇v+b ·∇(u)vdx =
∫

Ω

f vdx ∀v ∈ V (Ω) (27)

In problems where the advection term dominates the diffusion, that is when Peclet number Pe = L‖b‖
κ

>> 1, where L

is the characteristic length, the standard Galerkin method applied to (27) may result in a discretization that is unstable.

This issue of stability can be overcome by careful design of the FE mesh or through stabilization techniques that

ensure satisfaction of the discrete inf-sup condition. Here, we consider the SUPG method introduced by Brooks and

Hughes [16] since it is widely used and has well developed criteria for discrete stability. The SUPG method leads to

stable FE discretizations by adjusting the discretized weak form (27) with a penalized residual, i.e., find uh ∈Uh(Ω):

κ(∇uh,∇vh)Ω +(b ·∇uh,vh)Ω +(−κ ∆uh +b ·∇uh− f︸ ︷︷ ︸
Residual

,τ(b ·∇vh))Ω = (f ,vh)Ω ∀vh ∈ Vh(Ω), (28)

where the trial and test spaces consist of standard piecewise polynomials. Note that when the residual is zero, the

stabilization term vanishes, i.e., it is consistent with the weak form (27).

7

As for the preceding model problems, we wish to construct the 4 dimensional tensor Ai jkl using the product bases

of the test and trial spaces. Substitution of the product basis into (28) gives:

{κ(∇(φi ψ j),∇(γk βl))Ω +(b ·∇(φi ψ j),γkβl)Ω +(−κ∆(φi ψ j)+b ·∇(φi ψ j),τ[b ·∇(γk βl)])Ω}ui, j =

(f , γk βl + τ[b ·∇(γk βl)])Ω.
(29)

Application of the product rule gives:

{κ(ψ j∇φi +φi∇ψ j,βl∇γk + γk∇βl)Ω +(b · (ψ j∇φi +φi∇ψ j),γkβl)Ω+

(−κ(ψ j∆(φi)+φi∆(ψ j))+b · (ψ j∇(φi)+φi∇(ψ j)),τ[b · (βl∇(γk)+ γk∇(βl))])Ω}ui, j =

(f ,γkβl + τ[b · (βl∇(γk)+ γk∇(βl))])Ω,

(30)

which we expand using Fubini’s theorem and approximate the exact f as a function in the discrete solution space:

{κ
[
(∇φi,∇γk)Ω1(ψ j,βl)Ω2 +(φi,γk)Ω1(∇ψ j,∇βl)Ω2

]
+(b ·∇φi,γk)Ω1(ψ j,βl)Ω2 +(φi,γk)Ω1(b ·∇ψ j,βl)Ω2−

κτ[(∆φi,b ·∇γk)Ω1(ψ jβl)Ω2 +(∆φi,γk)Ω1(ψ j,b ·∇βl)Ω2 +(φi,b ·∇γk)Ω1(∆ψ j,βl)Ω2 +(φi,γk)Ω1(∆ψ j,b ·∇βl)Ω2]+

τ[(b ·∇φi,b ·∇γk)Ω1(ψ j,βl)Ω2 +(b ·∇φi,γk)Ω1(ψ j,b ·∇βl)Ω2+

(φi,b ·∇γk)Ω1(b ·∇ψ j,βl)Ω2 +(φi,γk)Ω1(b ·∇ψ j,b ·∇βl)Ω2]}ui, j

= (φi,γk)Ω1(ψ j,βl)Ω2 fi, j + τ(φi,b · γk)Ω1(ψ j,βl)Ω2 fi, j + τ(φi,γk)Ω1(ψ j,b ·∇βl)Ω2 fi, j.

(31)

The discrete weak form in (31) can be represented as a global stiffness matrix compromised of the following smaller

submatrices:

K11 = (∇φi,∇γk)Ω1 K21 = (∇ψ j,∇βl)Ω2

K12 = (φi,γk)Ω1 K22 = (ψ j,βl)Ω2

K13 = (b ·∇φi,γk)Ω1 K23 = (b ·∇ψ j,βl)Ω2

K14 = (∆φi,b ·∇γk)Ω1 K24 = (∆ψ j,b ·∇βl)Ω2

K15 = (∆φi,γk)Ω1 K25 = (∆ψ j,βl)Ω2

K16 = (φi,b ·∇γk)Ω1 K26 = (ψ j,b ·∇βl)Ω2

K17 = (b ·∇φi,b ·∇γk)Ω1 K27 = (b ·∇ψ j,b ·∇βl)Ω2

F = fi, j

(32)

Then the global system of linear algebraic equations is:

[κ(K11⊗K22 +K12⊗K21)+K13⊗K22 +K12⊗K23−κτ(K14⊗K22 +K15⊗K26 +K16⊗K25 +K12⊗K24)+

τ(K17⊗K22 +K13⊗K26 +K16⊗K23 +K12⊗K27)]U = (K12⊗K22 + τ(K16⊗K22 +K12⊗K26))F.
(33)

One advantage of this method is that it is possible to align one subdomain with the velocity vector. In this special

case when b is only non-zero along one subdomain (e.g., Ω2) the above weak form (31) reduces to:

{κ
[
(∇φi,∇γk)Ω1(ψ j,βl)Ω2 +(φi,γk)Ω1(∇ψ j,∇βl)Ω2

]
+(φi,γk)Ω1(b ·∇ψ j,βl)Ω2−

κτ
[
(∆φi,γk)Ω1(ψ j,b ·∇βl)Ω2 +(φi,γk)Ω1(∆ψ j,b ·∇βl)Ω2

]
+τ
[
(φi,γk)Ω1(b ·∇ψ j,b ·∇βl)Ω2

]
}ui, j = {(φi,γk)Ω1(ψ j,βl)Ω2 + τ(φi,γk)Ω1(ψ j,b ·∇βl)Ω2} fi, j.

(34)

8

Hence, the local matrices are defined:

K11 = (∇φi,∇γk)Ω1 K21 = (∇ψ j,∇w)Ω2

K12 = (φi,γk)Ω1 K22 = (ψ j,βl)Ω2

K13 = (∆φi,γk)Ω1 K23 = (b ·∇ψ j,βl)Ω2

K24 = (ψ j,b ·∇βl)Ω2 K25 = (∆ψ j,b ·∇βl)Ω2

K26 = (b ·∇ψ j,b ·∇βl)Ω2 F = fi, j

(35)

substitution into (34) yields the global system:

(κK11⊗K22 +κK12⊗K21 +K12⊗K23−κτK13⊗K24−κτK12⊗K25 + τK12⊗K26)U =

(K12⊗K22 + τK12⊗K24)F.
(36)

2.4. Model Problem 4: Poisson Problem with Variable, Non-Separable Diffusivity

To demonstrate that the methodology can be extended to more complicated settings where the problem is non-

separable we will consider a problem similar to the one from Section 2.1 but now with a varying diffusion coefficient

κ:

−∇ ·κ∇u = f , on Ω

u = uD on∂Ω,
(37)

where κ is a bounded, continuous function of position x, but not of the solution variable u. The derivation is essentially

identical to Section 2.1 up to (14). However, instead of (14) we have:∫
Ω1

∫
Ω2

κ∇1φi ·∇1(γk)ψ j βl +φi γk κ∇2ψ j ·∇2βl dy dx. (38)

The κ term does not allow for full separability and the resulting Kronecker product structure as seen in previous cases

can still construct a global system of equations via the following steps. In this case, the global stiffness matrix will be

constructed corresponding to the following rearrangement of the above system:∫
Ω2

ψ j βl

∫
Ω1

κ∇1φi ·∇1γk dxdy+
∫

Ω2

∇2ψ j ·∇2βl

∫
Ω1

κφi γk dxdy. (39)

Notice that the integrals over the domain Ω1 are only functions of y ∈ Ω2 since κ is a function of both x and y. For

simplicity we can write:

f1(y) =
∫

Ω1

κ(x,y)∇1φi ·∇1γk dx f2(y) =
∫

Ω1

κ(x,y)φi γk dx. (40)

To construct the global stiffness matrix, the only required task is the evaluation of the integrands in (39). This

assembly procedure is not as efficient as the cases where the operators are completely separable between subdomains.

First, let us denote the number of degrees of freedom in Ω1 = N1 and the number of degrees of freedom in Ω2 = N2.

Furthermore, let us assume the quadrature rule being used only needs the function values at the degrees of freedom.

Then, the algorithm can be summarized in the following steps:

9

• Compute f1 and f2 at all degrees pf freedom in the second subdomain y j ∈Ω2. This computation yields a set of

N2 sparse matrices of size N1×N1. Each sparse matrix represents the value of f1, f2 at a fixed point y ∈Ω2.

• Evaluate each integral in (39) using the evaluations of f1 and f2 from the previous step. This results in a global

block structured matrix of dimension N1N2×N1N2 where each block will be a sparse N2×N2 matrix.

• For efficiency, the N2×N2 blocks only need to be computed for the nonzero entries in each N1×N1 matrix.

• The right hand side is computed as in Section 2.1 with the Kronecker product.

• Modify global system to be consistent with boundary conditions where necessary.

3. Numerical Verifications

For each of the four problem introduced in Section 2, we consider and implement a specific test case in FEniCS.

Since all of the above derivations only rely on integration of the subdomains, the implementation in FEniCS is possible

without modification of the FEniCS codebase. Detailed tutorials for each of the following test cases are available on

GitHub at https://github.com/Markloveland/FEniCS_Tensor_Product_Demos.git in the form

of Jupyter notebooks. To verify the developed framework, we investigate the h−convergence properties of the imple-

mented methods by consideration of the rate of convergence of the FE solutions. The test and trial spaces in all cases

consist of continuous Lagrange polynomials of degree 1. To do this for each test case, the L∞ and L2 error norms are

computed as the grids are uniformly refined. The L∞ is computed as:

‖e‖L∞ = max
i, j∈N
|uexact(xi)−ui, j|, (41)

where N is the set that contains the indices for all i, j nodes, while L2 error is computed as:

‖e‖L2 =

√∫
Ω

(uexact −u)2dx. (42)

The convergence rates between successive refinement steps are then computed as:

raten =
ln(en−1/en)

ln(dn−1/dn)
, (43)

where n denotes the nth level of refinement and dn is the diameter of the element at the nth refinement level. For all of

the finite element discretizations presented hereafter, we expect convergence rates to be close to 2 which is the optimal

rate of convergence for Galerkin FE discretizations using linear polynomials, see, e.g.,Chapter 5 of the classical text

by Carey and Oden [17].

3.1. Case 1: 4-D Poisson Equation

We first consider the Poisson PDE in the high dimensional space of order four. We define the computational

domain as a tensor product between two unit squares, i.e., Ω = ((0,1)× (0,1))× ((0,1)× (0,1)). We select the

forcing function defined as f = 4π2uexact and the exact solution as uexact = Π4
i=1sin(πxi), where xi is a coordinate in

10

https://github.com/Markloveland/FEniCS_Tensor_Product_Demos.git

the domain Ω. In Table 1, the convergence data for the four dimensional Poisson problem is listed. Note that the

convergence of the FE solution is optimal, as the rate of convergence of the root mean square error (RMSE) and l∞

norm approaches O(hp+1).

Table 1: Error estimation results for the 4D Poisson problem.

dofs h L∞ L∞ rate L2 L2 rate

256 0.333 1.40E-01 - 5.62E-02 -

1296 0.200 7.88E-02 1.13 2.32E-02 1.73

2401 0.167 6.55E-02 1.01 1.65E-02 1.88

4096 0.143 4.50E-02 2.44 1.22-02 1.91

6561 0.125 3.76E-02 1.34 9.47E-03 1.94.

3.2. Case 2: 2D Space-Time Wave Equation

As a verification of the space-time wave model problem (21), we select the space-time domain as the Cartesian

product of a unit square spatial domain Ω and an interval time domain, i.e., ΩT = ((0,1)× (0,1))× (0,T). The wave

propagation speed is c = 1 and we consider a manufactured solution uexact = sin(x− ct)+ sin(y− ct). This solution

is used to ascertain boundary and initial conditions needed to solve the resulting system of equations. In Table 2, the

convergence results are presented along with the time interval element size, denoted by dt, and the space-time CFL

number. The RMSE is observed to converge at the expected optimal rate, whereas the l∞ error exhibits a reduced rate

for the finer meshes.

Table 2: Results for the Wave Space-Time problem.

dofs h dt CFL L∞ L∞ rate L2 error L2 rate

200 0.250 0.14 0.57 2.25E-04 - 7.80E-05 -

1215 0.125 0.07 0.57 5.06E-05 2.22 1.75E-05 2.15

3718 0.083 0.05 0.57 2.53E-05 1.71 7.77E-06 2.01

8381 0.063 0.04 0.57 1.31E-05 2.27 4.27E-06 2.08

3.3. Case 3: SUPG Stabilized Advection Dominated Advection Diffusion Equation

As a final numerical verification, we consider a special case of advection dominated advection diffusion equation.

In particular, we consider the case in which the advection acts in a single direction aligned with a coordinate axis,

see (36). We consider a case where the domain Ω is a tensor product of 2 unit intervals: Ω = (0,1)×(0,1), diffusivity

constant κ = 1
100 , and advection vector is b = (0,1). The analytic solution in this case is inspired by the work of Egger

and Schöberl [18]:

uexact = (−4(x−0.5)2 +1)

[
y+

e
1
κ
·by·y−1

1− e
1
κ
·by

]
, (44)

11

which implies that the forcing term must be f = −κ ∆uexact + b ·∇uexact and we enforce the corresponding homo-

geneous Dirichlet on the boundary ∂Ω. In Figures 3, and 2, we show the approximate FE solution and the analytic

solution, respectively. As expected, the SUPG stabilization results in a stable solution at this relatively coarse FE

mesh. In Table 3, the convergence results for this final case are presented. Both the RMSE and l∞ error converge at

the expected optimal rates.

Table 3: Error estimation results for advection dominated advection diffusion problem.

dofs h L∞ L∞ rate L2 L2 rate

1089 0.03125 5.10E-04 - 2.75E-04 -

4225 0.015625 1.44E-04 1.83 7.75E-05 1.83

4761 0.014703 1.28E-04 1.91 6.90E-05 1.92

5329 0.013889 1.15E-04 1.91 6.18E-05 1.93

Figure 2: Analytic solution to Case 3 projected onto FE mesh with 289 dofs.

Figure 3: Cartesian product FE solution to Case 3 at 289 dofs.

12

3.4. Case 4: Poisson Equation with Variable Coefficient

We consider problem 4 from Section 2.4 with the following set up: the domain is a Cartesian product of two unit

intervals Ω = (0,1)× (0,1). The coefficient κ is a non-separable scalar function κ = eαxy where α = 1. The right

hand side is set to f = 2α2(x2+y2)e2αxy and the analytic solution is u = eα(xy). The boundary conditions are Dirichlet

on the entire boundary and set to the exact solution. In Table 4 we present the corresponding convergence results and

note that the convergence rates for both L∞ and L2 errors are optimal at 2.

Table 4: Error estimation results for the Poisson problem with a variable coefficient.

dofs h l∞ l∞ rate L2 L2 rate

25 0.25 7.34E-03 - 3.96E-03 -

81 0.125 1.72E-03 2.09 9.11E-04 2.12

289 0.0625 4.18E-04 2.04 2.23E-04 2.03

1089 0.03125 1.04E-04 2.01 5.53-05 2.01

4. Conclusions

In this paper, we have introduced and implemented tensor product FE routines for high dimensional problems in

FEniCS. This methodology allows us to extend the FEniCS library to domains with more than three dimensions so

long as they are a Cartesian product of subdomains three or lower. To verify the developed methodology, we consider

four test cases utilizing classical and stabilized FE methods. For each test case, we observe the expected convergence

to the analytic solutions with respect to grid refinement was demonstrated in both the L2 and L∞ norms.

We consider only linear PDEs here since this allowed for the explicit construction of a single linear system of

algebraic equations. Hence, future studies should investigate potential extensions to nonlinear PDEs. Additionally,

the global system of equations was solved naively by explicitly constructing the global stiffness matrix and inverting.

However, the global matrix is sparse with highly structured blocks which should allow for faster solvers that would

greatly reduce run time. We refer to existing works [9, 19, 20], where related problems were considered and leave the

consideration of such solvers for future studies. Further extensions to mixed FE methods, such as those discussed in

the book by Brezzi et al. [21]. Finally, FE methods utilizing with discontinuous test/trial spaces could be considered

due to their extensive use in engineering applications. Furthermore, full integration of this method into the FEniCS

API would be valuable for both simplicity of future implementations as well as for performance.

5. Acknowledgements

Author Loveland has been supported by the CSEM Fellowship from the Oden Institute at the University of Texas

at Austin. Authors Loveland, Valseth, and Dawson have been supported by the United States National Science Foun-

dation - NSF PREEVENTS Track 2 Program, under NSF Grant Number 1855047 and the Department of Homeland

13

Security Coastal Resilience Center research project ”Accurate and Fast Wave Modeling and Coupling with ADCIRC”.

Author Lukac has been supported by the University of Oregon. The authors would also like to thank the reviewers of

this manuscript for their time and thoughtful suggestions.

References

[1] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. McRae, G.-T. Bercea, G. R. Markall,

P. H. Kelly, Firedrake: automating the finite element method by composing abstractions, ACM Transactions on

Mathematical Software (TOMS) 43 (3) (2016) 1–27.

[2] W. Bangerth, R. Hartmann, G. Kanschat, deal. ii—a general-purpose object-oriented finite element library, ACM

Transactions on Mathematical Software (TOMS) 33 (4) (2007) 24–es.

[3] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher,

T. Kolev, et al., Mfem: A modular finite element methods library, Computers & Mathematics with Applications

81 (2021) 42–74.

[4] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N.

Wells, The fenics project version 1.5, Archive of Numerical Software 3 (100) (2015).

[5] Y. Renard, K. Poulios, Getfem: Automated fe modeling of multiphysics problems based on a generic weak form

language, ACM Transactions on Mathematical Software (TOMS) 47 (1) (2020) 1–31.

[6] S. C. Brenner, L. R. Scott, L. R. Scott, The mathematical theory of finite element methods, Vol. 3, Springer,

2008.

[7] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Vol. 37, Springer Science & Business Media, 2010.

[8] A. Ern, J.-L. Guermond, Theory and practice of finite elements, Vol. 159, Springer Science & Business Media,

2013.

[9] R. E. Bank, Efficient algorithms for solving tensor product finite element equations, Numerische Mathematik

31 (1) (1978) 49–61. doi:10.1007/BF01396013.

[10] A. Baker, M. Soliman, On the accuracy and efficiency of a finite element tensor product algorithm for fluid

dynamics applications, Computer Methods in Applied Mechanics and Engineering 27 (2) (1981) 215–237. doi:

https://doi.org/10.1016/0045-7825(81)90150-X.

[11] K. Du, W. Sun, X. Zhang, Arbitrary high-order c0 tensor product Galerkin finite element methods for the electro-

magnetic scattering from a large cavity, Journal of Computational Physics 242 (2013) 181–195. doi:https:

//doi.org/10.1016/j.jcp.2013.02.015.

[12] A. T. McRae, G.-T. Bercea, L. Mitchell, D. A. Ham, C. J. Cotter, Automated generation and symbolic manipula-

tion of tensor product finite elements, SIAM Journal on Scientific Computing 38 (5) (2016) S25–S47.

14

https://doi.org/10.1007/BF01396013
https://doi.org/https://doi.org/10.1016/0045-7825(81)90150-X
https://doi.org/https://doi.org/10.1016/0045-7825(81)90150-X
https://doi.org/https://doi.org/10.1016/j.jcp.2013.02.015
https://doi.org/https://doi.org/10.1016/j.jcp.2013.02.015

[13] P. Munch, K. Kormann, M. Kronbichler, hyper.deal: An efficient, matrix-free finite-element library for high-

dimensional partial differential equations (2021).

[14] E. B. Becker, G. F. Carey, J. T. Oden, Finite elements: an introduction, Vol. 1, Prentice Hall, 1981.

[15] R. Löscher, O. Steinbach, M. Zank, Numerical results for an unconditionally stable space-time finite element

method for the wave equation (2021). doi:10.48550/ARXIV.2103.04324.

[16] A. N. Brooks, T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows

with particular emphasis on the incompressible navier-stokes equations, Computer methods in applied mechanics

and engineering 32 (1-3) (1982) 199–259.

[17] G. F. Carey, J. T. Oden, Finite Elements: A Second Course; Graham F. Carey and J. Tinsley Oden, Prentice-hall,

1983.

[18] H. Egger, J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion

problems, IMA Journal of Numerical Analysis 30 (4) (2010) 1206–1234.

[19] B. Bialecki, G. Fairweather, Matrix decomposition algorithms for separable elliptic boundary value problems

in two space dimensions, Journal of Computational and Applied Mathematics 46 (3) (1993) 369–386. doi:

https://doi.org/10.1016/0377-0427(93)90033-8.

[20] L. Gao, Kronecker products on preconditioning (2013). doi:10.25781/KAUST-8S7R9.

URL http://hdl.handle.net/10754/303766

[21] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Vol. 15, Springer Science & Business Media,

2012.

15

https://doi.org/10.48550/ARXIV.2103.04324
https://doi.org/https://doi.org/10.1016/0377-0427(93)90033-8
https://doi.org/https://doi.org/10.1016/0377-0427(93)90033-8
http://hdl.handle.net/10754/303766
https://doi.org/10.25781/KAUST-8S7R9
http://hdl.handle.net/10754/303766

	1 Introduction
	2 Methods
	2.1 Model Problem 1: N dimensional Poisson Equation
	2.2 Model Problem 2: Arbitrary dimensional Space-Time Wave Equation
	2.3 Model Problem 3: SUPG Stabilized Advection Dominated Advection Diffusion Equation
	2.4 Model Problem 4: Poisson Problem with Variable, Non-Separable Diffusivity

	3 Numerical Verifications
	3.1 Case 1: 4-D Poisson Equation
	3.2 Case 2: 2D Space-Time Wave Equation
	3.3 Case 3: SUPG Stabilized Advection Dominated Advection Diffusion Equation
	3.4 Case 4: Poisson Equation with Variable Coefficient

	4 Conclusions
	5 Acknowledgements

