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Preface

Computational methods to approximate the solution of differential equations play
a crucial role in science, engineering, mathematics, and technology. Indeed, the
key processes which govern the physical world—wave propagation, thermody-
namics, fluid flow, solid deformation, gas dynamics, electricity and magnetism,
quantum mechanics, general relativity, and many more—are described by differ-
ential equations, and we depend on numerical methods for the ability to simulate,
explore, predict, and control systems involving these processes. The variety of
differential equation problems that arise in these applications is vast, and much
research has gone into developing numerical methods which can solve different
problems accurately and efficiently. Mathematical analysis of these algorithms
plays an essential role, furnishing rigorous validation to particular methods in
clearly delineated circumstances, supplying quantitative error bounds, and en-
abling comparison among competing methods. In this book we will focus on
finite element methods, a vast class of numerical methods for differential equa-
tions which is of wide applicability and great utility, and also, not coincidentally,
one for which there is an extensive body of mathematical analysis.

The finite element method is a mature tool, in both practice and theory, in
many areas of computational science. Nonetheless, the variety of partial dif-
ferential equations (PDEs) which arise is vast, and there are still many impor-
tant problems for which the known numerical approaches fail, and good numer-
ical methods are yet to be devised. Consequently, research aimed at devising
and analyzing new methods is flourishing. Traditionally, the key mathematical
tools for the study of numerical PDEs, and especially of finite element methods,
have come from functional analysis: Hilbert and Banach spaces, the Hilbert pro-
jection theorem, the Lax–Milgram lemma, the Bramble–Hilbert lemma, duality,
Sobolev spaces, etc. The finite element exterior calculus (FEEC), presented in
this book, also depends essentially on functional analysis, especially the theory
of closed unbounded operators on Hilbert space. But FEEC’s mathematical ar-
senal goes well beyond functional analysis, bringing in tools from geometry and
topology to develop and analyze numerical methods for classes of PDEs resistant
to more traditional approaches. Methods derived from FEEC are prime examples
of structure-preserving numerical methods, in that they are designed to preserve
key geometric, topological, and algebraic structures of the PDE at the discrete
level. This turns out to be crucial to the development of successful finite element
methods for a variety of problems for which standard methods fail. Specifically,
FEEC focuses on PDEs which relate to complexes of differential operators act-
ing on Hilbert function spaces and uses finite element spaces which form sub-
complexes of these complexes, and which can be related to them via commuting
projections.

ix



x Preface

While FEEC’s antecedents go back decades, to the early days of the finite el-
ement method and even before, it first began to be defined as a distinct theory in
my presentation to the International Congress of Mathematicians in 2002 [5] and
was formalized in two long papers I coauthored with Richard Falk and Ragnar
Winther in 2006 [11] and 2010 [13]. The first paper emphasized a particular com-
plex of differential operators, namely, the de Rham complex of differential forms
on a domain in R3 (or a Riemannian manifold). It was here that the name finite
element exterior calculus first appeared, referring to the calculus of differential
forms. In the 2010 paper, more emphasis was put on the abstract structure of a
Hilbert complex, of which the L2 de Rham complex is a special case, allowing
FEEC to deal with other complexes that arise in other applications.

By June 2012 the basic outlines of FEEC theory were in place, and I was
fortunate to be offered the opportunity to present an intensive short course on
FEEC to an audience of nearly 70 faculty members, graduate students, and other
researchers from around the world. The course was generously supported by
the National Science Foundation and the Conference Board of the Mathematical
Sciences as part of the NSF-CBMS conference series and expertly hosted at the
Institute of Computational and Experimental Research in Mathematics (ICERM)
at Brown University. This book grew out of that course. It shares with the course
the goal of helping numerical analysts to master the fundamentals of FEEC, in-
cluding the geometrical and functional analysis preliminaries, quickly and in one
place. But the book has a broader audience in mind than the course, aiming to
be accessible as well to mathematicians and students of mathematics from areas
other than numerical analysis who are interested in understanding how techniques
from geometry and topology come to play a role in numerical PDE. FEEC has
been vigorously developing in the time since the course, and so the book contains
much more material than was taught in the course, some of which was not even
developed at that time.

The first portion of the book, Chapters 1–5, quickly develops the prerequisite
material from homological algebra, algebraic topology, and functional analysis.
These ingredients are combined in the basic structure of a Hilbert complex studied
in Chapter 4. Remaining in this general abstract framework, the approximation
of problems related to Hilbert complexes is developed in Chapter 5. The second
portion of the book consists of Chapters 6 and 7, where we apply the general
theory to the most canonical example of a Hilbert complex, the L2 de Rham
complex on a domain in Rn. Finally, in the closing chapter we briefly survey
some other examples and applications.

I am grateful to NSF and CBMS for their support of the FEEC course in
2012 and of this volume and for the support I received during the period I was
developing FEEC and writing the book from NSF grants DMS-1115291, DMS-
1418805, and DMS-1719694. Ron Rosier and David Bressoud, the former and
current directors of CBMS, are to be particularly thanked for their patience and
understanding. I am also grateful to ICERM for hosting the course and especially
to Alan Demlow, Johnny Guzmán, and Dmitriy Leykekhman, who conceived and
organized it. The audience for the course, many of whom have gone on to make
important contributions to FEEC, was also a great source of stimulation and in-
spiration. Several people have proofread all or part of the manuscript and made
countless valuable suggestions: thanks to Richard Falk, Ragnar Winther, Shawn
Walker, Espen Sande, and Kaibo Hu. Johnny Guzmán, Anil Hirani, and Ragnar
Winther have even used an early version of the book as a text for a course they
taught, which was particularly helpful.
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held at ICERM, Brown University, in June 2012.



Chapter 1

Introduction

The finite element exterior calculus, or FEEC, is a theoretical approach to the
design and understanding of finite element methods for the numerical solution
of a variety of partial differential equations. The finite element method itself is
one of the most important technologies of computational science and engineer-
ing. A major contributor to its success is the mathematical framework which has
been developed over the past 50 years, enabling rigorous error analysis and under-
standing of the properties of different finite element methods and computations.
Traditionally, this framework is primarily based upon the language and tools of
functional analysis. FEEC brings in additional tools from topology and homolog-
ical algebra. More specifically, FEEC captures essential structures of de Rham
cohomology and Hodge theory at the discrete level and relates the continuous
and discrete structures in order to obtain stable and convergent finite element dis-
cretizations.

In the next chapters, we will introduce the necessary homological and func-
tional analytic background material, and then use it to develop FEEC and apply it
in various contexts. But first, the reader may appreciate some motivation. Why do
we need an elaborate new theory for finite elements? After all, the finite element
method performs brilliantly in many applications. In this chapter, we will exhibit
some simple numerical examples where standard finite element methods fail ut-
terly, but for which more sophisticated finite elements—carefully constructed to
preserve key structures of the underlying PDE problem—come to the rescue.

First we set the stage by recalling some of the classical theory of the finite
element method. The simplest setting for finite elements is the numerical solution
of Dirichlet’s problem for the Poisson equation. Given a real-valued function f
on a domain Ω in Rn, we seek a function u satisfying

−∆u = f in Ω, u = 0 on ∂Ω.

The finite element method proceeds not from this strong formulation but from a
weak formulation of the boundary value problem. The solution u is sought in the
Sobolev space H̊1(Ω) consisting of L2(Ω) functions which have their first partial
derivatives also in L2(Ω) and which vanish on ∂Ω. It is determined by requiring
that the equation ∫

Ω

gradu · grad v dx =

∫
Ω

fv dx (1.1)

1



2 Chapter 1. Introduction

hold for all functions v in the test space H̊1(Ω) (which, in this example, is the
same as the trial space in which u is sought). This equation is derived by multi-
plying the original Poisson equation by the test function v and integrating over the
domain Ω by parts. The weak formulation of the problem is well-posed, meaning
that for any f (in L2(Ω), or even in the dual Sobolev space H−1(Ω) = H̊1(Ω)′)
there is a unique weak solution u and, moreover, it depends continuously in H1

on f in L2 or H−1.
To compute an approximate solution uh, we first consider Galerkin methods,

a class that includes the finite element methods. A Galerkin method requires that
we specify a finite dimensional subspace Vh of H̊1(Ω) to be used on the discrete
level as both trial and test space. Thus we seek the approximate solution uh ∈ Vh
by requiring that the weak equation (1.1) be satisfied for test functions v belonging
to Vh: ∫

Ω

graduh · grad v dx =

∫
Ω

fv dx, v ∈ Vh. (1.2)

This is a finite dimensional linear system of equations with dimension equal to
dimVh. To compute its solution, we need to specify a basis φi of Vh and to com-
pute the stiffness matrix with entries

∫
Ω

gradφj · gradφi dx and the load vector
with entries

∫
Ω
fφi dx, and then to solve the resulting matrix equation, whose

solution gives the coefficients of uh in the selected basis. The stiffness matrix
is, in this simple case, symmetric and positive definite, and thus the approximate
solution is uniquely determined. Note that the cost of computing the Galerkin
solution consists of the cost of computing the stiffness matrix and load vector en-
tries for each basis element, and the cost of solving the resulting linear system of
equations.

The solution of the Galerkin method not only is uniquely determined and
computable, but is also easy to derive an error estimate for it. In the present
case, we may simply invoke Poincaré’s inequality

‖w‖H1 ≤ c‖ gradw‖L2 , w ∈ H̊1,

where the constant c depends only on the domain Ω. It follows that the bilinear
form on the left-hand side of (1.1) defines an inner product on H̊1 which is norm
equivalent to the H1 inner product and so we may apply the Hilbert projection
theorem to prove the solution is quasi-optimal in the H1 norm:

‖u− uh‖H1 ≤ c inf
v∈Vh

‖u− v‖H1 , (1.3)

with the same constant c, independent of f , u, and the choice of subspace Vh.
A finite element method is a Galerkin method for which the Galerkin sub-

space Vh is a piecewise polynomial space which is efficiently computable (more
precisely, it can be constructed through the assembly procedure recalled at the be-
ginning of Section 7.1). The simplest finite elements are the Lagrange piecewise
linears. In two dimensions the finite element space is obtained by triangulating
the domain Ω (so the domain is assumed to be a polygon, or approximated by
one) and taking Vh to consist of all continuous functions which are polynomial
of degree at most 1 on each triangle of the triangulation and which vanish on ∂Ω.
Figure 1.1 shows the domain Ω = (0, 3)×(0, 3)\[2/3, 2]×[3/4, 2] partitioned by
a rather coarse triangulation of 256 triangles. In the center of the figure is an ex-
ample of a piecewise linear function satisfying the Dirichlet boundary conditions.
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Figure 1.1. Left: A triangulation of an annular polygonal domain. Center: A
piecewise linear function. Right: A Lagrange basis function.

This space has dimension equal to the number of interior vertices of the triangu-
lation, and it admits a convenient basis called the Lagrange basis, with each basis
function equal to unity at a unique interior vertex and zero at all the others, as
illustrated in the right image in the figure. This is a local basis in the sense that
each basis function is supported in only a small number of triangles. As a re-
sult, the integrals needed for the stiffness matrix and load vector can be computed
very quickly, and the stiffness matrix is highly sparse (having only seven nonzero
elements per row on average, asymptotically as the mesh is refined). Thus the
finite element solution is efficiently computable. By (1.3) its accuracy in H1(Ω)
is comparable to the best continuous piecewise linear approximation on the mesh.
To improve the accuracy of the finite element solution, we can enrich the finite
element space by refining the mesh. Alternatively, we can use Lagrange finite el-
ements of higher degree, i.e., increase the degree of the piecewise polynomials to
some d > 1. Combining the estimate (1.3) with approximation theory we ensure
that the error goes to 0 as either the mesh size tends to 0 or the element degree
tends to∞.

We have illustrated the basic aspects of the finite element method on a simple
model problem. Such a treatment would generally be continued by establishing
rates of convergence and their dependence on the triangulation and the regularity
of the solution, proving error estimates in norms other than the H1 norm, de-
veloping algorithms for a posteriori error estimation and adaptive meshing and
analyzing their performance, and, of course, extensions to other problems. See
one of the many available books for such treatments, e.g., [21, 22, 31, 40].

We will soon discuss a problem for which the standard finite element approach
fails, in order to motivate the study of FEEC. However, first, let us continue with
the standard finite element method, not for the source problem just discussed
but rather for the Laplacian eigenvalue problem. Again, this is a problem for
which standard finite elements are very successful and for which the theoretical
justification, which relies heavily on spectral theory in Hilbert space, is extensive
[16, 18]. Retaining the domain of Figure 1.1, we seek the fundamental mode and
frequency (or perhaps several modes and frequencies) of an annular polygonal
drum. That is, we want to find the least λ ∈ R for which there exists nonzero
u : Ω→ R such that

−∆u = λu in Ω, u = 0 on ∂Ω. (1.4)

Passing to a weak formulation and applying Galerkin’s method brings us to the
discrete eigenvalue problem of finding λh ∈ R and nonzero uh ∈ Vh such that∫

Ω

graduh · grad v dx = λh

∫
Ω

uhv dx, v ∈ Vh.
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Table 1.1. First and second eigenvalues for the Laplacian on the domain of
Figure 1.1, computed on uniform refinements of the given mesh, using Lagrange elements
of degree 1 and 3. The correct values are 9.190 and 11.166 to the nearest 0.001.

Degree 1 Degree 3

# Elements λ1 λ2 λ1 λ2

256 9.986 12.003 9.211 11.179
1,024 9.428 11.404 9.198 11.171
4,096 9.279 11.245 9.193 11.168

16,384 9.216 11.189 9.191 11.167
65,536 9.199 11.174 9.190 11.167

262,144 9.193 11.169 9.190 11.166

Via a basis, this reduces to a symmetric sparse generalized eigenvalue problem,
with one matrix the stiffness matrix defined above and the other the mass matrix
defined in a similar way but using the L2 inner product occuring on the right-
hand side of the equation. This matrix generalized eigenvalue problem can be
efficiently solved by an iterative method, such as the inverse power method to
find the fundamental eigenpair, or Krylov–Schur iteration to calculate the portion
of the spectrum within some interval. As to theory, one can prove, in this case,
that the first eigenfunction uh satisfies a quasi-optimal error estimate like (1.3)
and that the eigenvalue error is bounded by a multiple of the square of eigen-
function error. See, e.g., [18] for a lucid exposition, including the case of more
than one eigenvalue and the complications arising from eigenvalues which are
not simple.

Next we illustrate the performance with some numerical results. For the
coarse mesh of 256 triangles shown in Figure 1.1, and Lagrange linear finite ele-
ments, the computed value of the fundamental eigenvalue is 9.986 and the com-
puted fundamental eigenfunction is the one plotted in the center of Figure 1.1. It
is no surprise that these are not very accurate (the eigenvalue error turns out to
be about 9%), given the coarseness of the mesh. However, we can improve the
accuracy to the extent desired by refining the mesh and/or increasing the poly-
nomial degree. In Table 1.1, we show the results for polynomials of degree 1
and 3, both for the fundamental eigenvalue and the second eigenvalue, and for
a sequence of meshes obtained from the original one by uniform refinement of
the initial mesh. With piecewise linears and 65,536 triangles or piecewise cubics
and 1,024 triangles we obtain the fundamental eigenvalue to within about 0.1%.
Figure 1.2 shows the fundamental eigenfunction computed with linear Lagrange
elements on the mesh with 65,536 triangles. It is worth remarking that the same
accuracy as is achieved with these uniformly refined meshes could be obtained
with far fewer triangles using adaptive refinement, but that is not a direction we
shall discuss in this book.

Now we consider a problem for which the classical approach is insufficient
and FEEC comes to the rescue. For this, we move slightly away from the scalar
Laplacian. Instead we consider the vector Laplacian, the operator−∆ = curl curl
− grad div acting on a vector field u : Ω→ R2. (Since we are in two dimensions,
curlu is a scalar function, while the second application of curl maps the scalar
function back to a vector field.) Thus we consider the eigenvalue problem

(curl curl− grad div)u = λu in Ω, u · n = curlu = 0 on ∂Ω. (1.5)
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Figure 1.2. The fundamental eigenfunction computed with piecewise linears on
65,536 triangles.

These boundary conditions, sometimes called magnetic for their application in
electromagnetism, allow for a simple weak formulation. Define the space H̊(div)
consisting of vector fields in L2 with divergence in L2 and for which u·n vanishes
on the boundary, and also the space H(curl) of L2 vector fields with curl in L2

(with no boundary conditions imposed). If we take an arbitrary test vector field
v ∈ H̊(div)∩H(curl) and compute its L2 inner product with the vector fields on
both sides of (1.5), we get, after integration by parts, that∫

Ω

[curlu · curl v + (div u)(div v)] dx = λ

∫
Ω

u · v dx, (1.6)

where no boundary integral term arises from the integration by parts of the curl
since curlu = 0 on the boundary, and none arises in the integration by parts of the
gradient since v · n = 0. Thus, we obtain a weak formulation of (1.5) by seeking
u ∈ H̊(div)∩H(curl) satisfying (1.6) for all v belonging to the same space. Note
that the boundary condition on u ·n is essential in this formulation—it is imposed
on the space in which the solution is sought—while the boundary condition on
curlu is natural, arising from the weak formulation.

If we naively attempt to compute the eigenvalues using a method analogous
to that which we used for the scalar Laplacian, we are in for a big disappoint-
ment. To illustrate this, we discretize the weak formulation (1.6) using Galerkin’s
method, taking as the Galerkin subspace the space of vector fields both of whose
components are continuous piecewise linear polynomials (or piecewise polyno-
mials of higher degree: vector Lagrange elements of degree d). The results are
reported in Table 1.2, which is altogether analogous to Table 1.1, except that it
pertains to the vector Laplacian eigenvalue problem (1.5) instead of to the scalar
Laplacian eigenvalue problem (1.4). The computed eigenvalues tabulated in Ta-
ble 1.2 appear to be converging. For example, the computations strongly suggest
that the fundamental eigenvalue is about 1.8. But this is entirely wrong! As we
shall see later in the book, the vector Laplacian on a plane domain with the given
boundary conditions has a kernel whose dimension is the first Betti number of
the domain: the number of holes. Therefore, for our problem the Laplacian has a
one-dimensional kernel and the first eigenvalue is precisely 0. The convergence
of the finite element computation with the Lagrange elements to 1.8 is entirely
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Table 1.2. First and second eigenvalues for the vector Laplacian computed using
vector Lagrange elements of degree 1 and 3. The results are completely wrong, the correct
values being 0 and 0.617.

Degree 1 Degree 3

# Elements λ1 λ2 λ1 λ2

256 2.270 2.360 1.896 1.970
1,024 2.050 2.132 1.854 1.925
4,096 1.940 2.016 1.828 1.897

16,384 1.879 1.952 1.812 1.880
65,536 1.843 1.914 1.802 1.870

262,144 1.821 1.890 1.796 1.863

Table 1.3. First and second eigenvalues for the vector Laplacian computed using
FEEC, exhibiting convergence to the correct values of 0 and 0.617.

Degree 1 Degree 3

# Elements λ1 λ2 λ1 λ2

256 0.000 0.638 0.000 0.619
1,024 0.000 0.625 0.000 0.618
4,096 0.000 0.620 0.000 0.617

16,384 0.000 0.618 0.000 0.617
65,536 0.000 0.618 0.000 0.617

262,144 0.000 0.617 0.000 0.617

misleading. The situation is no better for the second eigenvalue either. The La-
grange finite element computation converges to a value of around 1.86, but in fact
the correct value is totally different, namely, 0.617.

The abject failure of the basic finite element method for the vector Laplacian
eigenvalue problem can be remedied with FEEC. A FEEC approach to this prob-
lem uses a weak formulation which is different from (1.6) and discretizes it not
with Lagrange finite elements but with specially designed finite elements. The
results of the FEEC approach are shown in Table 1.3. Notice that the FEEC meth-
ods compute the fundamental eigenvalue of 0 exactly (except for roundoff error).
As mentioned, this eigenvalue reflects a fundamental topological structure of the
problem—the hole in the domain. This is a first example of FEEC methods be-
ing structure-preserving. In topological terms, they preserve the homology of the
domain. The FEEC methods are not exact for the next eigenvalue, of course, but
they do converge to it nicely. In Figure 1.3, we show the first two eigenfunctions
computed with the lowest order FEEC method on the mesh with 4,096 triangles.
Notice that the first eigenfunction is a vector field which swirls around the hole in
the domain. Both eigenfunctions have strong singularities at the reentrant corners.

The reader may have noticed several features of this example. It is an eigen-
value problem rather than a source problem. The domain has both a hole, which
is tied to the existence of the zero eigenvalue, and a reentrant corner, which gives
rise to a singular solution. The singularity is in fact quite strong: the magnitude
of the eigenfunction itself, and not just of its derivatives, grows unboundedly as
we approach one of the reentrant corners. The last point is the most crucial for the
failure of the standard finite element method based on the weak formulation (1.6).
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Figure 1.3. Top: The first two eigenfunctions for (1.5) computed with the FEEC
approach. The color gives the magnitude of the vector and the arrow length is proportional
to it. Bottom: The magnitude of the first eigenfunction on the line y = 3/4 tangent to the
bottom side of the rectangular hole. (Vertical scale left unspecified as eigenfunctions are
determined only up to a constant multiple.)

We shall return to this point in Section 5.1 and fully explain the failure. There we
will also give another example, a source problem on a simply connected domain
with a reentrant corner, and see that the standard finite element method fails for
it as well. (The interested reader may peek ahead to Figure 5.1 to see.) Then,
in Section 5.2 we will show that these problems fit within the FEEC framework
of analysis developed in the first part of the book, and so the convergence of the
FEEC approach for them is guaranteed.

At the conclusion of Section 5.1 we also give a third, quite different, example
of failure of the standard finite element method for a vector Laplace source prob-
lem. In that case the domain is a circular annulus and so has a smooth boundary
and a smooth solution up to the boundary. The failure must therefore have a dif-
ferent origin, not dependent on singularity. Indeed, it turns out to be related to the
zero eigenvalue, as we shall explain there.

Another popular class of examples for demonstrating the pitfalls of naive finite
element methods and the need for methods based on the formulations and finite
element spaces we develop in this book involves neither holes in the domain nor
singular behavior. A simple example is the Maxwell eigenvalue problem, which
in its simplest form is the eigenvalue problem for the curl curl operator,

curl curlu = λu,
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together with, say, the electric boundary condition u × n = 0. The eigenvalues
λ for this problem are all real and nonnegative. However, for a simply connected
domain, the only eigenpairs which are of interest are those for which λ > 0, since
for these the equation implies that div u = 0, which is a requirement of Maxwell’s
equations. There exists also an infinite dimensional space of eigenvectors for the
eigenvalue λ = 0, comprising gradients of smooth functions which vanish on
the boundary. However, we do not consider 0 to be a Maxwell eigenvalue, since
these gradient eigenfunctions are not divergence-free. (In case the domain is not
simply connected there is also be a finite dimensional space of divergence-free 0
eigenvectors.)

We will consider the Maxwell eigenvalue problem on a square domain Ω =
(0, π)×(0, π). In this case, the exact eigenpairs have a simple analytic expression
which can be computed by separation of variables. The eigenvectors are

u(x, y) = curl(sinmx sinny) = (n sinmx cosny,−m cosmx sinny),

where m and n are nonnegative integers, not both zero, and the corresponding
eigenvalues λ = m2 + n2, i.e.,

λ = 1, 1, 2, 4, 4, 5, 5, 6, 7, 7, 10, 10, 13, 13, . . . .

A weak formulation of the eigenvalue problem seeks nonzero u ∈ H̊(curl)
and λ > 0 such that∫

Ω

curlu curl v dx = λ

∫
Ω

u · v dx, v ∈ H̊(curl),

where the space H̊(curl) incorporates the boundary condition u×n = 0. We now
show the results of discretizing this formulation using Galerkin’s method. For
the Galerkin finite element method we investigate two different sorts of uniform
triangulations and, for each of these, two different finite element spaces. The
first mesh we use is of diagonal type, obtained by dividing the square into 40 ×
40 subsquares and dividing each of them into two triangles using the positively
sloped diagonal, and the second is of crisscross type, with each subsquare divided
into four triangles using both diagonals. Meshes of the two types are shown in
Figure 1.4, but with only 10× 10 subsquares for improved visibility.

For the finite element spaces, we compare two possibilities on each mesh:
the simple vector Lagrange elements of degree 1 (continuous piecewise linear

Figure 1.4. Uniform meshes, diagonal and crisscross. The meshes used for
computation were finer, with 16 times as many elements.
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Table 1.4. First 12 Maxwell eigenvalues and Galerkin approximations of them.

Exact 1 1 2 4 4 5 5 8 9 9 10 10

Diagonal mesh

Lagrange 5.16 5.26 5.26 5.30 5.39 5.45 5.53 5.61 5.61 5.62 5.71 5.73
FEEC 1.00 1.00 2.00 4.00 4.00 5.00 5.00 8.01 8.98 8.99 9.99 9.99

Crisscross mesh

Lagrange 1.00 1.00 2.00 4.00 4.00 5.00 5.00 6.00 8.01 9.01 9.01 10.02
FEEC 1.00 1.00 2.00 4.00 4.00 5.00 5.00 7.99 9.00 9.00 10.00 10.00

vector fields fulfilling the boundary conditions) and elements fitting the FEEC
framework, the so-called Nédélec edge elements of lowest degree. In each case,
we had the Krylov–Schur eigenvalue solver report the 12 eigenvalues nearest 5.5.
The results are shown in Table 1.4. Comparing the exact eigenvalues to the ones
computed with Lagrange elements on the diagonal mesh, we see complete failure:
the eigenvalues are nowhere near the correct ones. On the crisscross mesh, we
have failure again, but it is more subtle (and arguably more dangerous). In fact,
11 of the first 12 eigenvalues are accurately computed, but the eighth computed
eigenvalue is 6.00. This value is completely spurious: the correct value is 8. Had
we computed more than 12 eigenvalues, we would have found additional spurious
eigenvalues, the next being a spurious double eigenvalue around 15. Moreover,
when a finer crisscross mesh is used, these spurious values persist (and apparently
converge to the precise, but spurious, values 6 and 15). By contrast, the FEEC
method converges nicely for both meshes, a fact that can be backed by theory. We
will return to this example in Section 8.1.

Having surveyed some motivating examples, we conclude the introduction
with a description of the remainder of the book. In the first part of this exposition,
in Chapters 2–5, we develop the basic abstract framework and results of FEEC.
The key structure of this framework is a Hilbert complex. A Hilbert complex
arises from the marriage of the algebraic structure of a chain complex, as stud-
ied in homological algebra, with the analytic setting of unbounded operators on
Hilbert spaces from functional analysis. In Chapter 2 we provide an elementary
self-contained introduction to the few results we need from homological algebra,
and in Chapter 3 we introduce the basic results we need concerning unbounded
operators on Hilbert space. These two chapters establish material which is pre-
requisite to what follows. Both of these, and subsequent chapters, end with a
box summarizing the main results obtained in the chapter. Readers familiar with
the subject of the chapter can skip forward to the boxed summary at the end and
decide whether it is necessary to read the body of the chapter. After the first
two prerequisite chapters, we develop Hilbert complexes in Chapter 4. Through-
out, we illustrate the abstract concepts with the important and canonical example
of the L2 de Rham complex on a domain in three-dimensional Euclidean space.
Each Hilbert complex gives rise to a sequence of operator equations, which are
the abstract generalizations of scalar and vector Poisson equations in the case of
the three-dimensional de Rham complex, as well as other elliptic partial differen-
tial equations. The accurate numerical solution of these problems is the goal of
FEEC. The approximation of these so-called abstract Hodge Laplacian problems
is studied within the Hilbert complex framework in Chapter 5, where the main
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theoretical results of FEEC are established. In particular, we show that consis-
tent, stable, and so convergent approximations are obtained by Galerkin’s method
applied to a mixed formulation of the equations as long as the Galerkin subspaces
satisfy a few important hypotheses.

In the second part of the book, Chapters 6 and 7, we specialize from a general
Hilbert complex to the L2 de Rham complex on an n-dimensional domain or
Riemannian manifold. In this case, the spaces are not abstract Hilbert spaces but
rather Hilbert spaces of differential forms. To treat this case, we introduce the
language and basic results of exterior calculus in Chapter 6, which allows for a
unified and more insightful treatment of all the spaces and operators involved.
Our next task is then to define, in the concrete setting of the de Rham complex,
Galerkin subspaces of differential forms. This is the main task of Chapter 7.

Finally, in the concluding chapter of the book we give a glimpse of exten-
sions and applications that take us beyond the de Rham complex and to additional
applications.



Chapter 2

Basic notions of
homological algebra

The basic structures of homological algebra, such as chain complexes and homol-
ogy groups, were introduced in the 19th century with the aim of defining topolog-
ical invariants such as the Betti numbers via the counting of discrete structures.
However, their antecedents go back much further, to Euler and even Descartes.
With the development of differential forms by E. Cartan at the start of the 20th
century and the study of their cohomology by de Rham in the 1930s these same
algebraic structures appeared in the context of spaces of functions acted on by par-
tial differential operators. Later yet they became objects of study from an abstract
algebraic point of view. Thus homological algebra has long played a fundamental
role in algebraic topology, differential geometry, and algebra. As useful as it is,
however, it is often unfamiliar to applied mathematicians and numerical analysts.
Therefore, in this chapter, we include a short self-contained introduction to the ba-
sic aspects of homological algebra we shall need. The key points are summarized
in Box 2.1 at the end of the chapter.

2.1 Graded vector spaces, chain complexes, and
differentials

A graded vector space is a vector space V expressed as a direct sum of subspaces
Vk indexed by the integers:

V =
∞⊕

k=−∞

Vk.

For example, the space P(Rn) of polynomial functions in n variables is graded
with the kth summand equal to the space of homogeneous polynomials of degree
k if k ≥ 0 and 0 otherwise. A graded vector space is called nonnegative if, as in
this case, Vk = 0 for k < 0. Unlike the full space of polynomials, most of the
graded spaces we encounter will be nonnegative and, in addition, finite, meaning
that only finitely many of the summands are nonzero. For example, the space
Pr(Rn) of polynomials of degree at most r is graded with only r + 1 nonzero
summands.

A linear map f : V → W between graded vector spaces is called a graded
map of degree p if f(Vk) ⊂Wk+p for k. The Laplace operator, for example, acts

11
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as a graded linear map of degree −2 on the polynomials, while multiplication by
some fixed homogeneous polynomial of degree p ≥ 0 is a graded map of degree
p.

A chain complex is simply a graded vector space V furnished with a graded
linear map ∂ : V → V of degree −1 which satisfies ∂2 = 0. The operator ∂, or,
equivalently, the sequence of the operators ∂k = ∂|Vk , is called the differential of
the chain complex, or, sometimes, the boundary operator. In other words, a chain
complex consists of a sequence of vector spaces Vk and linear maps ∂k : Vk →
Vk−1, k ∈ Z, with the property that ∂k ◦ ∂k+1 = 0. We will often write a chain
complex in the form

· · · → Vk+1
∂k+1−−−→ Vk

∂k−→ Vk−1 → · · · ,

but when we wish to refer to it briefly, we will simply write (V, ∂) or even just V .
The elements of Vk are sometimes called k-chains.

A graded subspace of a graded vector space is, naturally, a subspace S which
decomposes as the direct sum of subspaces Sk ⊂ Vk. If S is a graded subspace
of a complex (V, ∂) such that ∂Sk ⊂ Sk−1, then (Sk, ∂k|Sk) is itself a complex,
called a subcomplex of (V, ∂).

2.2 Cycles, boundaries, and homology
Given a chain complex (V, ∂), the null space Z and the range B of ∂ are each
graded subspaces of V . (They are subcomplexes, but with pretty boring differen-
tials, since the restriction of ∂ to each is zero.) The elements of Zk are called the
k-cycles and the elements of the range Bk of ∂k+1 are called the k-boundaries.
The differential property ∂2 = 0 means that Bk ⊂ Zk, and the kth homology
space is defined to be the quotient spaceHk = Zk/Bk. Thus the elements of the
homology space are equivalence classes of cycles, with two k-cycles considered
equivalent if their difference is the boundary of a (k + 1)-chain. If the boundary
spaces Bk are exactly equal to the cycle spaces Zk, rather than proper subspaces,
then the homology spaces Hk all vanish. In this case the complex is said to be
exact.

2.3 Example: The simplicial chain complex
A classical example of a chain complex, the one which accounts for much of the
terminology, is the simplicial chain complex associated to a simplicial complex.
By a k-dimensional simplex in some Euclidean space Rn we mean the convex hull
f of k + 1 points x0, . . . , xk, called the vertices of f , which we assume to be in
general position in Rn. Each nonempty subset of the vertex set of f determines a
simplex of some dimension≤ k, which is called a face of f . A simplicial complex
is a finite set S of simplices in Rn such that (1) whenever a simplex belongs to S ,
each of its faces also belongs to S, and (2) if f and g are two simplices in S, then
their intersection f ∩ g is either empty or a face of f and of g. The underlying
space of the simplicial complex, that is, the subset of Rn obtained as the union of
the simplices, may be a polyhedral domain, a piecewise flat manifold, or a more
complicated set. The dimension of the simplicial complex is the highest dimen-
sion of any of its simplices, and a simplicial complex of dimension k is said to
be pure if every simplex belonging to it is contained in a simplex of dimension k.
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Figure 2.1. Oriented simplices of dimensions 1, 2, and 3.

The notion of a pure simplicial complex is essentially the same as that of a tri-
angulation of the underlying space. More precisely, a finite set of n-dimensional
simplices constitute a triangulation of their union if and only if they, together with
all their faces of all dimensions, form a pure n-dimensional simplicial complex.

A simplex may be oriented by selecting an ordering of its vertices, with the
understanding that two orderings are equivalent if they differ by an even permuta-
tion. Thus every simplex of dimension k > 0 has two possible orientations. See
Figure 2.1. We shall write [x0, . . . , xk] for the simplex with vertices x0, . . . , xk
endowed with the orientation determined by the given ordering of the vertices.
We may (and shall) designate a preferred orientation for all the simplices in the
simplicial complex S by fixing an ordering of the set of all the vertices of the sim-
plicial complex, e.g., lexicographic ordering. The oriented simplex [x0, . . . , xk] is
then said to be of positive orientation if the vertex sequence x0, . . . , xk, or some
even permutation of it, is in increasing order.

Let S be a simplicial complex in Rn and denote by ∆k(S) its set of sim-
plices of dimension k. A k-chain is a formal linear combination of k-dimensional
oriented simplices,

c =
∑

f∈∆k(S)

cff,

with −1 times an oriented simplex being understood as the same simplex with
the opposite orientation. We shall mostly be concerned with chains with real co-
efficients, meaning that cf ∈ R. The space of all k-chains is thus a real vector
space of dimension #∆k(S), denoted by Ck(S), or simply Ck. Given any ori-
ented k-simplex f = [x0, x1, . . . , xk] in S, we define its boundary, ∂f , as the
(k − 1)-chain

∂[x0, x1, . . . , xk] :=
k∑
i=0

(−1)i[x0, . . . , x̂i, . . . , xk],

where the hat over xi means that that vertex is omitted. Thus the boundary of an
oriented k-simplex, ∂f , is the formal sum of the k − 1 simplices contained in the
geometrical boundary of the simplex, each endowed with the proper orientation
(through the signs in the above sum). See Figure 2.2. The boundary operator
extends to general chains by linearity: ∂c =

∑
cf∂f . As a linear operator ∂k can

be expressed as a matrix which is the oriented incidence matrix for the simplicial
complex. It has a column for each k-chain, a row for each (k − 1)-chain, and
its entries are 1, −1, or 0 according to whether the (k − 1)-chain belongs to the
boundary of the k-chain with the same orientation, with the opposite orientation,
or not at all.
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Figure 2.2. Boundaries of chains.

Figure 2.3. Two cycles which belong to the same nonzero homology class.

In this context, the k-boundaries Bk are truly the k-chains which arise as the
boundaries of (k + 1)-dimensional chains, and the cycles are those chains which
have no boundary, like the final chain in Figure 2.2, which describes a closed
curve, i.e., one without end points. The 1-cycles which are not boundaries signal
the existence of holes going through the domain. For example, Figure 2.3 shows
two such 1-cycles. However, they both signal the same hole since their difference
is a 1-boundary. In other words, they represent the same coset in the homology
group Hk = Zk/Bk. The dimension of the kth homology group is called the
kth Betti number of the simplicial complex S: bk = dimHk. The Betti numbers
are an invariant of the underlying space: they do not depend on the particular
triangulation. They are, in fact, one of the simplest topological invariants and
so one of the motivating examples of algebraic topology. Their meanings for
domains in two and three dimensions are as follows:

• b0 is the number of connected components of the domain.
• b1 is the number of holes through the domain (“tunnels” in the three-dimen-

sional case). For example, b1 is equal to 1 for a solid torus.
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• b2 is zero for any bounded domain in R2 (because such a domain always
has a boundary and so cannot be a cycle). For a three-dimensional domain,
b2 is the number of voids enclosed by the domain, e.g., b2 = 1 for a hollow
ball.
• b3 is zero for any domain in two or three dimensions.

The Betti numbers of some three-dimensional domains are given in Figure 2.4.

1, 1, 0, 0 1, 2, 1, 0 1, 2 , 0, 0 1, 0, 1, 0

Figure 2.4. Betti numbers b0, b1, b2, b3 for some domains in R3.

2.4 Chain maps
A chain map from a chain complex (V, ∂) to a second chain complex (W, ξ)
is a sequence of linear maps fk : Vk → Wk such that the following diagram
commutes:

· · · Vk+1 Vk Vk−1 · · ·

· · · Wk+1 Wk Wk−1 · · ·

∂k+1

fk+1

∂k

fk fk−1

ξk+1 ξk

In other words, a chain map is a graded linear map of degree 0 which commutes
with the differentials f ◦ ∂ = ξ ◦ f . Since f(∂c) = ξf(c) for c ∈ Vk+1, f maps
the k-boundaries of V to k-boundaries of W , and the same equation applied to
c ∈ Zk shows that f maps k-cycles to k-cycles. It follows that the chain map
f induces a linear map f̄ on homology, i.e., the map f̄k : Hk(V ) → Hk(W )
which takes the homology class v̄ of some v ∈ Vk to the homology class fkv of
fkv ∈ Wk. This map is functorial. That is, if (X, ζ) is a third chain complex
and g is a chain map from W to X , then g ◦ f is a chain map from V to X and
g ◦ f = ḡ ◦ f̄ .

A case we shall find of great interest later is when the complex W is a sub-
complex of V and the maps fk are projections of Vk onto Wk, i.e., fkv = v for
v ∈Wk. In this case we say that f is a chain projection.

Proposition 2.1. A chain projection from a complex to a subcomplex induces a
surjection on homology.

Proof. The subcomplex inclusion maps Wk ↪→ Vk certainly form a chain map,
i. When f is a projection, f ◦ i is the identity map from W to itself, and so
f̄ ◦ ī = f ◦ i is the identity on homology and is, in particular, surjective. Therefore
f̄ must be surjective.
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2.5 Cochain complexes
A cochain complex is the same thing as a chain complex except with the indexing
reversed: cochain differentials have degree +1 rather than −1. One typically
writes the index of a cochain complex as a superscript rather than a subscript and
often uses d rather than ∂ to denote the differential:

· · · → V k−1 dk−1

−−−→ V k
dk−→ V k+1 → · · · .

Of course, all the definitions and results above carry over in an obvious way. For
example, the kth cohomology spaceHk is defined as the quotient of the cocycles
Zk by the coboundaries Bk.

Since any linear map L : V → W between vector spaces induces a dual map
L′ : W ′ → V ′ between the dual spaces, any chain complex gives rise to a dual
cochain complex. For example, from the simplicial chain complex associated to
a simplicial complex, we obtain the simplicial cochain complex. Since the k-
dimensional simplices form a basis for Ck, a k-cochain is an element of Ck :=
C ′k, i.e., a function ω which assigns to each k-dimensional simplex a real number
ω(f) (extended to chains by linearity). The differential ∂k : Ck → Ck+1 is
defined by ∂k = ∂′k+1, i.e.,

(∂kω)g = ω(∂k+1g), ω ∈ Ck, g ∈ Ck+1.

This means that the matrix of the operator ∂k is the transpose of the oriented
incidence matrix which represents ∂k+1. For example, ∂0 applied to a vertex is
the sum of the edges incident on that vertex, each multiplied by 1 or−1 according
to whether the edge points into or out of the vertex. Of course, the information
contained in the simplicial cochain complex

0→ C0 ∂0

−→ C1 ∂1

−→ · · · ∂
n−1

−−−→ Cn → 0 (2.1)

is essentially the same as that contained in the simplicial chain complex. In par-
ticular, it can be shown that the cohomology space Hk is naturally isomorphic to
H′k, the dual of the corresponding homology space, and so its dimension is the
kth Betti number.

2.6 Example: The de Rham complex
We will have a lot more to say about the de Rham complex

0→ Λ0(Ω)
d0−→ Λ1(Ω)

d1−→ · · · d
n−1

−−−→ Λn(Ω)→ 0 (2.2)

associated to any n-dimensional domain or smooth manifold Ω. Here Λk(Ω) is
the space of (smooth) differential k-forms on Ω and the operator d is the exterior
derivative, as introduced by Élie Cartan [27]. We shall put off the introduction of
the language of differential forms until Chapter 6. For now we just describe the
case of Ω a domain in R3, for which the de Rham complex can be described in
the terminology of vector calculus.

The complex is then

0→ C∞(Ω)
grad−−−→ C∞(Ω;R3)

curl−−→ C∞(Ω;R3)
div−−→ C∞(Ω)→ 0. (2.3)
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The calculus identities curl gradφ = 0 and div curlu = 0 ensure that (2.3) is in-
deed a complex. Its cohomology spacesHkdR comprise the de Rham cohomology
of the domain.

If the domain Ω is triangulated by some simplicial complex S, there is an
interesting cochain map from the de Rham complex to the simplicial cochain
complex called the de Rham map. Namely, we associate to a function φ ∈ C∞(Ω)
the 0-cochain F 0φ determined by F 0φ(x) = φ(x) for each x ∈ ∆0(S). As we
shall see in Chapter 6 a differential k-form may be integrated on an oriented k-
dimensional manifold, and this is the simplest case of k = 0. This is extended
by linearity to arbitrary 0-chains, so F 0φ(

∑
cixi) =

∑
ciφ(xi). Similarly we

associate to a vector field ψ ∈ C∞(Ω;R3) the 1-cochain whose value on any
oriented edge e ∈ ∆1(S) is

F 1ψ(e) =

∫
e

ψ · t dse, e ∈ ∆1(S),

where the t denotes the unit vector tangent to the edge e directed according to
the orientation. The vector field ψ may be viewed as a differential 1-form, and it
has a trace on e which is a differential 1-form on the one-dimensional manifold
e and so may be integrated over it. The line integral above is the expression of
that integral in vector calculus terminology. A vector field in R3 may alternately
be viewed as a differential 2-form, in which case the integral of its trace over a
surface is defined and may be realized as

F 2ψ(f) =

∫
f

ψ · ndsf , f ∈ ∆2(S),

where now n is the unit normal to the face f , its direction determined by the
orientation of f according to the right-hand rule. Finally, a scalar function φ may
be thought of as a 3-form, leading to

F 3φ(T ) =

∫
T

φdx

for a positively oriented tetrahedron T ∈ ∆3(S). We have thus defined the
de Rham map connecting the de Rham complex (2.3) to the simplicial cochain
complex (2.1):

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0

0 C0 C1 C2 C3 0

grad

F 0

curl

F 1

div

F 2 F 3

∂0 ∂1 ∂2

(2.4)
The de Rham map is a cochain map, which is to say that this diagram commutes.
For example, let us verify that F 1 ◦ grad = ∂0 ◦ F 0. We must show that, for an
arbitrary smooth function φ, the 1-cochains F 1 gradφ and ∂0F 0φ coincide, i.e.,
that

F 1 gradφ([x0, x1]) = ∂0F 0φ([x0, x1])

for any oriented edge [x0, x1] in the complex. Letting t denote the unit vector
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(x1 − x0)/|x1 − x0|, we have

F 1 gradφ([x0, x1]) =

∫
[x0,x1]

gradφ · t (definition of F 1)

= φ(x1)− φ(x0) (fundamental theorem of calculus)

= F 0φ([x1]− [x0]) (definition of F 0)

= F 0φ(∂1[x0, x1]) (definition of ∂1)

= ∂0F 0φ([x0, x1]) (∂0 = ∂′1).

The commutativity of the other two cells in the diagram is proven in the same
way, using the Stokes theorem and the divergence theorem from vector calculus:∫

f

curlψ · n =

∫
∂f

ψ · t,
∫
T

divψ =

∫
∂T

ψ · n.

The de Rham complex which constitutes the first row of the diagram (2.4) is
very different from the simplicial cochain complex which is its second row. The
former is composed of infinite dimensional function spaces connected by differen-
tial operators, while the latter consists of finite dimensional spaces with operators
that are essentially combinatorial (multiplication by matrices whose entries are all
1, −1, or 0). However, the cohomology of the two complexes is identical. This
statement is a form of de Rham’s theorem.

Theorem 2.2 (de Rham). The map on cohomology induced by the de Rham
map is an isomorphism from the de Rham cohomology spaces onto the simplicial
cohomology spaces.

Remark 2.3. De Rham’s theorem as just stated equates de Rham cohomology,
which is constructed analytically using differential operators, with the more ge-
ometric simplicial cohomology, constructed from chains of simplices. Although
simplicial homology is in some sense the simplest and most easily computed ho-
mology theory, topologists often prefer singular homology for its greater gen-
erality and theoretical flexibility. In particular, simplicial homology is defined
only for spaces which can be triangulated (or are homeomorphic images of such
spaces), while singular homology, being built from chains of singular simplices
(arbitrary continuous images of simplices) is defined for any topological space.
An early, quite elementary, result in most expositions of homology is that the two
approaches give identical homology (or cohomology) spaces when both apply,
that is, for triangulated spaces. De Rham’s theorem, which is a deeper result, is
then usually stated as giving an isomorphism between de Rham cohomology and
singular cohomology on a smooth manifold.

De Rham’s theorem is a deep result. However, we shall see in Section 7.6 that
a version of it can be proven quite easily once we have assembled the tools of
FEEC.
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Box 2.1. Summary of Chapter 2 on homological algebra.

A chain complex is a sequence of vector spaces and operators

· · · → Vk+1
∂k+1−−−→ Vk

∂k−→ Vk−1 → · · ·

with successive operators composing to zero. It gives rise to three vector
spaces at each level k:

• Zk, the null space of the boundary operator ∂k, consisting of the cycles;
• Bk, the range of ∂k+1, the boundaries;
• Hk = Zk/Bk the homology space.

An important example is the simplicial chain complex associated to a
triangulation or more general simplicial complex. The dimensions of its
homology spaces are the Betti numbers of the underlying space.

A cochain complex has the indexing reversed,

· · · → V k−1 dk−1

−−−→ V k
dk−→ V k+1 → · · · ,

giving rise to cocyles, coboundaries, and cohomology.
The dual spaces and dual maps of a chain complex form a cochain com-

plex.
Another cochain complex is the de Rham complex which, on a three-

dimensional domain, can be written

0→ C∞(Ω)
grad−−−→ C∞(Ω;R3)

curl−−→ C∞(Ω;R3)
div−−→ C∞(Ω)→ 0.

The de Rham map is a cochain map from the de Rham complex to the
dual of the simplicial chain complex and, as such, induces a map on coho-
mology. De Rham’s theorem states that the induced map is an isomorphism.
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Chapter 3

Basic notions of
unbounded operators on
Hilbert spaces

Much of the modern theory of partial differential equations and of their numerical
discretization is most elegantly studied in the framework of Hilbert spaces and
operators acting on them. We assume that the reader is familiar with the basic
definitions and results concerning Hilbert spaces and bounded linear operators on
them. Here we focus on closed unbounded linear operators with an emphasis on
adjoints and duality. This is also a mature and well-developed theory, even if
less studied. Most of the results here can be found in numerous references, such
as [23, Chapter 2.6], [56, Chapter III, Section 5, and Chapter IV, Section 5.2],
or [71, Chapter II, Section 6, and Chapter VII], often in the greater generality
of Banach spaces or even more general topological vector spaces. However, for
our applications, the Hilbert space context suffices and, moreover, it allows for
a brief, but fairly self-contained, exposition. At the end of the chapter we return
to the differential operators which arose in the last chapter as differentials of the
de Rham complex and interpret them as closed unbounded operators on Hilbert
space and compute their adjoints. A summary of the key points is given in Box 3.1
at the end of this chapter.

3.1 Unbounded operators
When considering unbounded operators, one must allow for operators whose do-
main may not be the entire Hilbert space but only a subspace. Thus, by an un-
bounded operator T from a Hilbert space X to a Hilbert space Y , we mean a
linear operator mapping a subspace D(T ) of X , called the domain of T , into
Y . The operator T is not necessarily bounded and the domain D(T ) is not nec-
essarily a closed subspace. Such operators are called unbounded operators on
Hilbert space, even though the case of a bounded linear operator defined on all
of X is included. The more accurate term not-necessarily-everywhere-defined,
not-necessarily-bounded linear operators would be a bit unwieldy! We shall al-
most always be concerned with densely defined operators, meaning that the do-
main D(T ) is a dense subspace of X . A typical example to keep in mind is
X = L2(Ω) for some domain Ω ⊂ Rn, Y = L2(Ω;Rn), the domain D(T ) is
the Sobolev space H1(Ω), which is a dense subspace of L2(Ω), and the operator
T is the gradient. That is, Tφ = gradφ ∈ L2(Ω;Rn) for all φ ∈ H1(Ω). A
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variation is the operator T̃ with D(T̃ ) = H̊1(Ω), which is also dense in L2, again
with T̃ φ = gradφ, but with T̃ φ only defined for φ ∈ H̊1. Other possibilities
would be to define a gradient operator whose domain consists of C1 functions on
Ω̄, or C∞ functions, or C∞ functions with compact support inside Ω. Although
we might refer to any one of these operators as the gradient, they are different,
and it is important to always be clear about the domain. If we say that two un-
bounded operators S and T are equal, we mean both that D(S) = D(T ) and that
the actions of the operators coincide.

Two unbounded operators S and T from X to Y can be added to give an
operator S + T , with domain D(S + T ) = D(S) ∩D(T ). If S is an unbounded
operator X → Y and T an unbounded operator Y → Z, then we can similarly
define the composition T ◦ S with domain { v ∈ D(S) |Sv ∈ D(T ) }. One must
be careful, since the sum or composition of densely defined operators need not be
densely defined.

The null space of an unbounded operator T , the range of T , and the graph of
T are each defined in the obvious way:

N (T ) = {x ∈ D(T ) |Tx = 0 } ⊂ X,
R(T ) = {Tx |x ∈ D(T ) } ⊂ Y,

Γ(T ) = { (x, Tx) |x ∈ D(T ) } ⊂ X × Y.

The function v 7→ (v, Tv) is a one-to-one mapping from the domain of T onto
its graph. Applying the norm in X × Y to (v, Tv) defines a norm on D(T ). This
norm, called the graph norm on D(T ), is given by

‖v‖2D(T ) := ‖v‖2X + ‖Tv‖2Y , v ∈ D(T ),

and is associated to the graph inner product

〈v, w〉D(T ) := 〈v, w〉X + 〈Tv, Tw〉Y , v, w ∈ D(T ).

Obviously the graph norm is stronger than the restriction to T (D) of the X norm,
and commonly they are not equivalent. For example, in the example given above
of the gradient operator, the graph norm is the usual H1 norm, which is strictly
stronger than the L2 norm. We always have

‖Tv‖Y ≤ ‖v‖D(T ), v ∈ D(T ),

so the operator T is a bounded operator from D(T ) to Y when the former is
endowed with the graph norm. The graph norm makes D(T ) an inner product
space, or pre-Hilbert space, but it may not be complete.1

3.2 Closed operators
Many important properties of bounded linear operators extend to a much larger
class of unbounded operators, called closed. Banach’s closed graph theorem states
than an everywhere defined linear operator between Hilbert (or Banach) spaces is
bounded if and only if its graph is closed. This inspires the definition of a closed

1We could have instead defined the graph norm by ‖v‖D(T ) = ‖v‖X + ‖Tv‖Y without the
squares. This definition gives an equivalent norm, but it would no longer be associated to an inner
product.
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operator, which is any unbounded operator whose graph is closed in X × Y . In
other words, an unbounded operator T from X to Y is a closed linear operator if
and only if the following condition holds:

Whenever v1, v2, . . . ∈ D(T ) satisfy vn
X−→ x and Tvn

Y−→ y for
some x ∈ X and y ∈ Y , then x ∈ D(T ) and Tx = y.

The following proposition gives another, equivalent definition of a closed op-
erator.

Proposition 3.1. An unbounded operator T is closed if and only if its domain,
endowed with the graph norm, is a Hilbert space.

Proof. We must show that D(T ) is complete if and only if T is closed. Let
{vn}n∈N be a sequence of elements ofD(T ). To say the sequence is Cauchy with
respect to the graph norm means that it is Cauchy with respect to the X norm and
{Tvn} is Cauchy with respect to the Y norm. Since X and Y are complete, this
implies that vn

X−→ x and Tvn
Y−→ y for some x ∈ X , y ∈ Y . If T is closed, then

x ∈ D(T ) and Tx = y, so vn
D(T )−−−→ x. Thus D(T ) is complete.

Conversely, suppose D(T ) is complete with respect to the graph norm and
that vn

X−→ x and Tvn
Y−→ y. Then the sequence vn is Cauchy with respect to

the graph norm on D(T ), so vn
D(T )−−−→ v for some v ∈ D(T ), i.e., vn

X−→ v and
Tvn

Y−→ Tv. Thus x = v ∈ D(T ) and y = Tv = Tx, so T is closed.

3.3 The adjoint of an unbounded operator
Now suppose that T is any densely defined linear operator from X to Y . Then
we may define an unbounded linear operator from Y to X called the adjoint of T
and denoted by T ∗. To this end we consider, for any w ∈ Y , the linear mapping
D(T )→ R given by

v 7→ 〈w, Tv〉Y , v ∈ D(T ). (3.1)

The domain D(T ∗) of the adjoint is defined as the set of w ∈ Y such that the
linear functional (3.1) is bounded inX norm, i.e., for which there exists a constant
cw such that

|〈w, Tv〉Y | ≤ cw‖v‖X , v ∈ D(T ).

For any suchw ∈ D(T ∗) there is a unique extension of the map (3.1) to a bounded
linear functional from all of X to R. Moreover, by the Riesz representation theo-
rem, there then exists a unique element x ∈ X such that

〈w, Tv〉Y = 〈x, v〉X , v ∈ D(T ), (3.2)

and we set T ∗w = x. In short,

〈T ∗w, v〉X = 〈w, Tv〉Y , v ∈ D(T ),

and w ∈ D(T ∗) exactly when there exists an element of X (necessarily unique)
which, when taken for T ∗w, fulfills this equation.
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Many properties of the adjoint follow from a simple relation between the
graph of T and the graph of its adjoint T ∗. Since the latter lives in Y ×X rather
than X × Y , we define a variant of the graph of T ∗, the rotated graph, by

Γ̃(T ∗) = { (−x, y) | (y, x) ∈ Γ(T ∗) } = { (−T ∗w,w) |w ∈ D(T ∗) } ⊂ X × Y,

where the minus sign has been inserted to make the relationship more evident.
In fact, the rotated graph of T ∗ is simply Γ(T )⊥, the orthogonal complement in
X × Y of the graph Γ(T ).

Proposition 3.2. Let T be a densely defined unbounded operator. Then

Γ(T )⊥ = Γ̃(T ∗), (3.3)

Γ(T ) = Γ̃(T ∗)⊥. (3.4)

Proof. An element (x,w) of X × Y belongs to Γ(T )⊥ if and only if

〈x, v〉X + 〈w, Tv〉Y = 0, v ∈ D(T ),

which is exactly the condition (3.2) for w to belong to D(T ∗) with T ∗w = −x,
i.e., for (x,w) to belong to Γ̃(T ∗). This proves (3.3). Taking orthogonal comple-
ments then gives (3.4).

As an immediate application, we see that the adjoint T ∗ of a densely defined
unbounded operator T is always closed, whether T is closed or not. Moreover, the
original operator T is closed if and only if Γ(T ) = Γ̃(T ∗)⊥, since Γ(T ) = Γ(T )
exactly when T is closed.

As another application of Proposition 3.2, we show that the adjoint operator
of a closed densely defined operator is itself densely defined.

Proposition 3.3. If T is a closed densely defined unbounded operator from X to
Y , then T ∗ is a closed densely defined operator from Y to X .

Proof. To show that T ∗ is densely defined, we must prove that any y ∈ Y which
is orthogonal to D(T ∗) must vanish. Now

y ⊥ D(T ∗) ⇐⇒ (0, y) ∈ Γ̃(T ∗)⊥ = Γ(T ),

with the last equality coming from Proposition 3.2 and the assumption that T is
closed. Thus, if y ⊥ D(T ∗), then y = T0 and so indeed vanishes.

In view of this result, when T is a closed densely defined operator, then so
is T ∗, and we may define T ∗∗, which is again a closed densely defined operator
X → Y . In fact, T ∗∗ coincides with T .

Proposition 3.4. If T is a closed densely defined unbounded operator from X to
Y , then T ∗∗ = T .

Proof. Since T is closed, Γ(T ) = Γ̃(T ∗)⊥ and, similarly, Γ̃(T ∗) = Γ(T ∗∗)⊥.
Combining these we get Γ(T ) = Γ(T ∗∗)⊥⊥, which equals Γ(T ∗∗), since T ∗∗ is
closed. Since T and T ∗∗ have the same graphs, they are equal.
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If T is a closed operator, then its null space N (T ) is a closed subspace of
X . This follows directly from the definition of a closed operator. However, the
range of a closed linear operator may well not be closed, even in the case of a
bounded linear operator (consider, for example, the inclusion of H1 into L2).
The following theorem summarizes the relationship between the null spaces and
the ranges of T and T ∗. Its proof is another application of Proposition 3.2.

Theorem 3.5. Let T be a closed densely defined operator X to Y . Then

R(T )⊥ = N (T ∗), N (T )⊥ = R(T ∗), R(T ∗)⊥ = N (T ), N (T ∗)⊥ = R(T ).

Proof. We verify the third equation first:

z ∈ N (T ) ⇐⇒ (z, 0) ∈ Γ(T ) = Γ̃(T ∗)⊥

⇐⇒ 〈z, T ∗w〉X = 0 ∀w ∈ D(T ∗) ⇐⇒ z ∈ R(T ∗)⊥.

The third equation then implies the first equation by replacing T by T ∗. Taking
orthogonal complements of the first and third equations then gives the fourth and
second equations, respectively.

Although the range of a closed linear operator T may not be closed, if it is,
then so also is the range of T ∗ (and vice versa, since we can apply this result with
T replaced by T ∗). This is a consequence of Banach’s closed range theorem. A
proof may be found in the more general setting of closed operators on Banach
spaces, for example, in [71, Chapter VII.5]. For the convenience of the reader we
include a proof in the Hilbert space case here. First we state a simple lemma.

Lemma 3.6. Let T be a closed operator between Hilbert spaces X and Y and
suppose that there exists γ > 0 such that

‖Tv‖Y ≥ γ‖v‖X , v ∈ D(T ).

Then T has a closed range.

Proof. If {vn} is a sequence in D(T ) such that Tvn converges to some y in Y ,
we must show that y ∈ R(T ). The hypothesis implies that the sequence {vn}
is Cauchy and so converges to some x in X . Since T is closed, x ∈ D(T ) and
y = Tx ∈ R(T ).

Theorem 3.7 (closed range theorem). If the range of a closed densely defined
operator T from X to Y is closed in Y , then the range of T ∗ is closed in X .

Proof. Let W = R(T ), a closed subspace of Y , and let T̄ be the range re-
striction of T , i.e., the unbounded operator from X to W with the same domain
as T with T̄ v = Tv, v ∈ D(T ). Obviously T̄ is also a closed densely de-
fined operator between Hilbert spaces, and moreover it is a surjection. We shall
show that R(T̄ ∗) = R(T ∗). This follows from two observations. First, note that
D(T̄ ∗) = D(T ∗) ∩W and T̄ ∗ is the restriction of T ∗ to this space. This follows
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directly from the definition of the adjoint operator and the fact that T̄ v = Tv for
all v in D(T ) = D(T̄ ). Thus R(T̄ ∗) ⊂ R(T ∗). But W⊥ = N (T ∗). Therefore,
if y ∈ D(T ∗) and w is its orthogonal projection onto W , then w ∈ D(T̄ ∗) and
T̄ ∗w = T ∗y, showing thatR(T ∗) ⊂ R(T̄ ∗).

In view of this, it suffices to show that if T is a closed densely defined surjec-
tion, thenR(T ∗) is closed. We know that D(T ) is a Hilbert space when endowed
with the graph norm. Let Z be the orthogonal complement ofN (T ) in D(T ) and
let T̃ : Z → Y be the restriction of T . Then T̃ is a bounded linear operator which
is one-to-one and onto. It follows that it is invertible, so there exists a positive
constant c such that for any y ∈ Y there exists a unique z ∈ Z with Tz = y and
‖z‖X ≤ c‖y‖Y . Applying this for y ∈ D(T ∗) we have

‖y‖2Y = 〈y, Tz〉Y = 〈T ∗y, z〉X ≤ ‖T ∗y‖X‖z‖X ≤ c‖y‖Y ‖T ∗y‖X .

Thus
‖T ∗y‖X ≥ c−1‖y‖Y , y ∈ D(T ∗).

Now we apply the preceding lemma to T ∗ to conclude that R(T ∗) is
closed.

We conclude this section with some useful results for verifying that the range
of an operator is closed. First we show that if the range of a closed linear operator
is finite codimensional, then it is closed. A proof in the case of bounded operators
is given in [52, Lemma 19.1.1], and it extends easily to closed operators.

Theorem 3.8. Let T be a closed linear operator between Hilbert spaces X and
Y . If the quotient space Y /R(T ) is finite dimensional, then the range of T is
closed in Y .

Proof. First consider the case where T is a bounded linear operator from X to Y .
Restricting T to the orthogonal complement of its null space, we may assume that
T is injective. Let y1, . . . , yn ∈ Y be such that their cosets modulo R(T ) are a
basis for Y /R(T ). Then every element of Y may be written as r+c1y1+· · · cnyn
with r ∈ R(T ) and ci ∈ R in a unique way. Thus if we define T̃ : X × Rn → Y
by

T̃ (x, c1, . . . , cn) = Tx+ c1y1 + · · · cnyn,
then T̃ is a bounded linear operator which is one-to-one and onto and hence, by
Banach’s theorem, a homeomorphism. Since X × {0} is closed in X × Rn, it
follows thatR(T ) = T̃ (X × {0}) is closed in Y .

In the general case of a closed linear operator T from X to Y , we may view
T as a bounded linear operator from D(T ) to Y , and so, from the previous case,
if its range is finite codimensional, it is closed.

Our second criterion for closed range is based on compactness.

Theorem 3.9. Let T be a closed linear operator between Hilbert spaces X and
Y , and suppose that the inclusion of its domain into X is compact (where the
domain is given the graph norm). ThenR(T ) is closed in Y .

Proof. Given a sequence of elements xn ∈ D(T ) and y ∈ Y such that Txn → y
in Y , we must show that y ∈ R(T ). Without loss of generality we may take
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xn ∈ N (T )⊥. In this case, the sequence xn is bounded in X , as we now show
by contradiction. Indeed, if it were not, we could pass to a subsequence, which
we continue to denote xn, with ‖xn‖X → ∞. Defining wn = xn/‖xn‖X ∈
D(T )∩N (T )⊥ we would thus have a sequence with ‖wn‖X = 1 and Twn → 0.
Such a sequence is bounded in D(T ), and so, by compactness, we could pass to
a subsequence which converges in the norm of X to some w ∈ X . Since T is
closed, the resulting w would belong to D(T ) and satisfy Tw = 0, i.e., would
belong toN (T ). However, as the limit of the wn, w would also belong toN (T )⊥

and be of norm 1. These conditions are in clear contradiction.
Thus it suffices to show that for a bounded sequence of elements xn ∈ D(T )

with limTxn = y in Y , y belongs to R(T ). We again invoke the compactness
hypothesis to replace the sequence with a subsequence for which, in addition, xn
converges to some x in X . Since T is closed we have x ∈ D(T ) and Tx = y, as
desired.

3.4 Example: grad, curl, and div and their adjoints
In this section we consider the three vector calculus operators which enter the
de Rham complex, showing how to view them as closed unbounded operators on
Hilbert space, and deriving their basic properties in that framework.

Let Ω denote a bounded domain in Rn. We start by considering the un-
bounded operator from L2(Ω;Rn) to L2(Ω) with domain C∞0 (Ω;Rn) given by
φ 7→ − div φ for φ ∈ C∞0 (Ω;Rn). We shall write this operator as (−div, C∞0 )
to make clear its domain. Although it is not a closed operator, it is clearly densely
defined, so its adjoint (−div, C∞0 )∗ is a closed operator L2(Ω) → L2(Ω;Rn).
By definition, a real-valued function u on Ω belongs to the domain of this adjoint
if it belongs to L2(Ω) and there exists a vector field v in L2(Ω;Rn) for which

−
∫

Ω

udiv φdx =

∫
Ω

v · φdx, φ ∈ C∞0 (Ω;Rn).

But this equation is exactly the statement that the distributional gradient of u,
gradu, belongs to L2 (namely, gradu = v = (−div, C∞0 )∗u). Thus the domain
of (−div, C∞0 )∗ is the set of all L2 functions with distributional gradient in L2,
which is precisely the definition of the Sobolev space H1(Ω). We have shown
that

(−div, C∞0 )∗ = (grad, H1).

The operator (grad, H1) not only is closed, but it is evidently also densely defined
(its domain contains C∞0 , for example, which is already dense in L2). The fact
that it is closed establishes the completeness of H1.

We now reverse the roles of div and grad and consider the unbounded opera-
tor (− grad, C∞0 ) from L2(Ω) to L2(Ω;Rn). Reasoning just as above,

(− grad, C∞0 )∗ = (div, H(div)),

where the operator on the right-hand side is closed and densely defined. Its do-
main is the Hilbert space H(div,Ω), consisting of L2 vector fields with distribu-
tional divergence in L2.
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Our next goal is to compute the adjoints of each of the two operators (grad, H1)
and (div, H(div)) just derived. The key to this is the integration-by-parts formula∫

udivw dx+

∫
gradu · w dx =

∫
∂Ω

u|∂Ωw|∂Ω · nds. (3.5)

This certainly holds for u ∈ C1(Ω̄), w ∈ C1(Ω̄;Rn) and a smooth boundary,
but it is not clear that quantities like the trace of w on ∂Ω make sense for w only
belonging to H(div). So first we investigate that issue. The key result is given in
Theorem 3.12.

For this, and the remainder of the section, we suppose that Ω has a Lipschitz
boundary. We begin by recalling a few elementary facts about the Sobolev space
H1. First, the space C∞(Ω̄) is dense in H1(Ω) [41, Section 5.3, Theorem 2].
Second, the restriction operator C1(Ω̄) → L2(∂Ω) extends to a bounded trace
operator tr : H1(Ω) → L2(∂Ω) [41, Section 5.5, Theorem 1]. The range of the
trace operator is H1/2(∂Ω) and, in fact, this is one possible way to define that
space. In this approach, the norm in H1/2(∂Ω) is given by

‖g‖1/2,∂Ω = inf
tru=g

‖u‖1,Ω. (3.6)

Third, the kernel of the trace operator is the space H̊1(Ω), defined as the clo-
sure of C∞0 (Ω) in H1(Ω). See [41, Section 5.5, Theorem 2]. Knowing both the
range and the kernel of the trace operator acting on H1(Ω), we can use duality to
characterize the functionals on H1(Ω) which vanish on the kernel H̊1(Ω). The
following result is elementary.

Lemma 3.10. If γ : X → Y is a bounded linear surjection between normed
linear spaces with kernel Z, the dual map γ′ : Y ′ → X ′ is a bounded injection
with range equal to the annihilator of Z (defined as {L ∈ X ′ | L|Z ≡ 0 }). Thus,
for L in the annihilator there exists a unique g ∈ Y ′ such that

Lu = 〈g, γu〉, u ∈ X.

Applying this lemma with γ equal to the trace operator tr : H1(Ω) →
H1/2(∂Ω) and defining H−1/2(∂Ω) as the dual space of H1/2(∂Ω), we obtain
the following characterization.

Proposition 3.11. If L : H1(Ω) → R is a bounded linear functional which
annihilates H̊1(Ω), then there exists a unique g ∈ H−1/2(∂Ω) for which

Lu = 〈g, tru〉, u ∈ H1(Ω). (3.7)

Moreover, ‖g‖H−1/2(∂Ω) = ‖L‖H1(Ω)′ .

Proof. The existence of a unique g satisfying (3.7) comes directly from the
lemma. From (3.7) and (3.6), we have

|Lu| ≤ ‖g‖H−1/2(∂Ω)‖ tru‖H1/2(∂Ω) ≤ ‖g‖H−1/2(∂Ω)‖u‖H1(Ω),

so ‖L‖ ≤ ‖g‖H−1/2(∂Ω). For the reverse inequality, let f ∈ H1/2(∂Ω) be ar-
bitrary and choose u ∈ H1(Ω) such that tru = f and ‖u‖1 ≤ ‖f‖H1/2(∂Ω).
Then

〈g, f〉 = Lu ≤ ‖L‖ ‖u‖1 ≤ ‖L‖ ‖f‖H1/2(∂Ω).
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Next we apply this result to define the trace ofw ∈ H(div,Ω). The functional

Lw(u) =

∫
udivw dx+

∫
gradu · w dx, u ∈ H1(Ω),

is a bounded linear functional on H1 and, by the definition of the distributional
derivative, Lw(u) vanishes for u ∈ C∞0 (Ω) and hence, by density, for u ∈
H̊1(Ω). We may thus apply the proposition to obtain a unique γnw ∈ H−1/2(∂Ω)
for which∫

udivw dx+

∫
gradu · w dx = 〈γnw, tru〉, u ∈ H1(Ω), w ∈ H(div).

(3.8)
Moreover,

‖γnw‖−1/2,∂Ω = sup
u

∫
udivw dx+

∫
gradu · w dx

‖u‖1,Ω
≤ ‖w‖H(div).

To understand the meaning of γnw, we compare (3.8) with the integration-by-
parts formula (3.5). Fixingw ∈ C1(Ω̄;R3), note that, as a function of u ∈ C1(Ω̄),
each of the three integrals in (3.5) is bounded with respect to the H1 norm. The
density of smooth functions inH1 then implies (3.5) for all u ∈ H1(Ω). However,
γnw is uniquely determined by (3.8), so we have

γnw = w|∂Ω · n

for w ∈ C1(Ω̄;R3). We have established the following theorem.

Theorem 3.12. The operator w 7→ w|∂Ω · n on C1(Ω̄;R3) extends to a bounded
linear operator γn : H(div) → H−1/2(∂Ω). The extension satisfies formula
(3.8) for integration by parts and the bound ‖γnw‖−1/2,∂Ω ≤ ‖w‖H(div).

We are now able to compute the adjoint of the gradient operator with domain
H1. For this, define

H̊(div) = {w ∈ H(div) | γnw = 0 }.

Theorem 3.13. The adjoint of the unbounded operator (grad, H1) is the operator
(−div, H̊(div)).

Proof. A vector field w ∈ L2(Ω;Rn) is in the domain of the adjoint if and only
if there exists v ∈ L2(Ω) such that∫

w · gradu dx =

∫
vu dx, u ∈ H1(Ω).

In that case, clearly we must have w ∈ H(div) and v = −divw (by considering
u ∈ C∞0 ). Thus w belongs to the domain of the adjoint if and only if w ∈ H(div)
and ∫

w · gradu dx = −
∫

(divw)u dx, u ∈ H1(Ω).

Comparing with the definition (3.8) of γnw, we see that w belongs to the domain
of the adjoint if and only if γnw = 0.
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We next show that the normal trace operator maps H(div) not only into
H−1/2(∂Ω) but onto.

Theorem 3.14. The operator γn : H(div)→ H−1/2(∂Ω) is surjective.

Proof. Given g ∈ H−1/2(∂Ω), define u ∈ H1 by the Neumann problem∫
gradu · grad v dx+

∫
uv dx = 〈g, tr v〉, v ∈ H1.

Then −∆u + u = 0. Take w = gradu. Then divw = ∆u = u, and so
w ∈ H(div). We have∫

w · grad v dx+

∫
(divw)v dx = 〈g, tr v〉, v ∈ H1,

which shows that γnw = g.

Using this, we can argue exactly as in the proof of Theorem 3.13, to prove the
following result, which establishes the adjoint of the divergence operator.

Theorem 3.15. The adjoint of the unbounded operator (div, H(div)) is the op-
erator (− grad, H̊1).

Since T ∗∗ = T for a closed densely defined operator, from Theorems 3.13
and 3.15 we can read off two more adjoints.

Theorem 3.16.

(div, H̊(div))∗ = (− grad, H1), (grad, H̊1)∗ = (− div, H(div)).

Next we verify that all of these operators have closed range. For (div, H(div))
this is clear, since in fact divH(div) = L2, as can be seen by writing f ∈ L2

as ∆u = div gradu for some u ∈ H1. If
∫
f dx = 0, then we can choose u

satisfying the Neumann condition gradu · n = 0, and so f ∈ div H̊(div). Thus
the range div H̊(div) has codimension 1 in L2, and so this is closed as well, by
Theorem 3.8. The closed range theorem then implies that the adjoints of these
two maps, namely, (grad, H̊1) and (grad, H1), both have closed range as well.

Finally, we turn to the curl operator, assuming the domain Ω ⊂ R3. Most of
the arguments we applied above to grad and div apply to curl as well, but not all,
because neither the kernel nor the range of curl is finite codimensional. For the
curl, the relevant integration-by-parts formula is∫

v · curlu dx−
∫

curl v ·u dx =

∫
∂Ω

v|∂Ω×n ·u|∂Ω ds, u, v ∈ C1(Ω̄;R3),

(3.9)
where n is the unit outward normal (which is defined almost everywhere since the
boundary is Lipschitz). The space H(curl) is defined to be the space of vector
fields in L2(Ω;R3) whose curl taken in the sense of distributions also belongs to
L2(Ω;R3). Thus, a vector field u ∈ L2(Ω;R3) belongs to H(curl) if and only if
there exists a vector field v ∈ L2(Ω;R3) such that∫

Ω

u · curlw dx =

∫
Ω

v · w dx, w ∈ C∞0 (Ω;R3), (3.10)
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and, in this case, v = curlu. Thus, just as above,

(curl, C∞0 )∗ = (curl, H(curl)).

Being an adjoint, this last is a closed operator, which means that H(curl) is a
Hilbert space when endowed with the graph norm

‖u‖2H(curl) = ‖u‖2L2 + ‖ curlu‖2L2 .

Now we develop a trace for v ∈ H(curl). The map

u 7→
∫
v · curlu dx−

∫
curl v · u dx, u ∈ H1(Ω;R3),

is a bounded linear functional on H1(Ω;R3) which vanishes on C∞0 (Ω;R3) and
so, by density, on H̊1(Ω;R3). Therefore we can apply Proposition 3.11 to infer
the existence of a unique γτv ∈ H−1/2(∂Ω;R3) for which∫

v · curlu dx−
∫

curl v ·u dx = 〈γτv, tru〉, u ∈ H1(Ω;R3), v ∈ H(curl),

(3.11)
and to obtain the norm bound

‖γτv‖−1/2,∂Ω ≤ ‖v‖H(curl). (3.12)

Comparing with (3.9) we see that we have extended the tangential trace operator
γτv := v|∂Ω × n to a bounded linear map on H(curl) with range belonging to
the Sobolev space of H−1/2(∂Ω;R3) of vector fields on ∂Ω, and so we have
established the analogue of Theorem 3.12 for H(curl).

Theorem 3.17. The operator v 7→ v|∂Ω × n on C1(Ω̄;R3) extends to a bounded
linear operator γτ : H(curl) → H−1/2(∂Ω;R3). The extension satisfies the
integration-by-parts formula (3.11) and the bound (3.12).

Note, however, that the trace operator γτ is not onto H−1/2(∂Ω;R3), i.e.,
the analogue of Theorem 3.14 does not hold. For one thing, γτw is always a
tangential vector field. This is clear at least if v and ∂Ω are smooth, while the
precise way to define this in the case of a merely Lipschitz boundary is subtle.
There are further restrictions on the range of γτ as well. See [25, 26] for details.

Finally, we compute the adjoint of (curl, H(curl)). Ifw belongs to the domain
of the adjoint, then there exists v = (curl, H(curl))∗w ∈ L2(Ω;R3) with∫

w · curlu dx =

∫
v · u dx, u ∈ H(curl).

Such a w must belong to H(curl) and have curlw = v. Thus w belongs to the
domain of (curl, H(curl))∗ if and only if w ∈ H(curl) and∫

w · curlu dx =

∫
curlw · u dx, u ∈ H(curl).

It can be shown (by a mollification argument similar to that for H1) that smooth
functions are dense in H(curl). Thus we need only require that the last equation
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Box 3.1. Summary of Chapter 3 on operators on Hilbert spaces.

An (unbounded) operator from one Hilbert space X to another Y is a linear
operator mapping its domain D(T ), a subspace of X , into Y . The domain
need not be closed in X and the operator need not be bounded, but usually
we require that the operator be densely defined, i.e., that D(T ) is dense in
X .

An operator is closed if its graph is closed in X × Y or, equivalently,
if D(T ) is complete when furnished with the graph norm. An everywhere
defined operator is closed if and only if it is bounded.

A densely defined operator T from X to Y gives rise to an adjoint oper-
ator T ∗ from Y to X . The adjoint T ∗ is always closed. If T is closed, then
T ∗ is also densely defined, and, in this case, T ∗∗ = T .

The range of a closed, densely defined linear operator X → Y need not
be a closed subspace, but the range of T is closed in Y if and only if the
range of T ∗ is closed in X . If dimY/R(T ) <∞, then T has closed range.
If the inclusion D(T ) ⊂ X is compact, then T has closed range.

On a bounded domain in R3 with Lipschitz boundary, the operators grad,
curl, and div may be viewed as unbounded operators on L2 (scalars or vec-
tors), with domains H1, H(curl), H(div), respectively. They are densely
defined, closed, and have closed ranges. Their adjoints are −div, curl, and
− grad with domains H̊(div), H̊(curl), and H̊1, respectively.

hold for all u ∈ H1(Ω;R3). But then (3.11) implies that this holds if and only
if γτw = 0, and so we have established that the adjoint of (curl, H(curl)) is
(curl, H̊(curl)). Finally, we can take adjoints and get the reverse relation. These
results are summarized in the following theorem.

Theorem 3.18.

(curl, H(curl))∗ = (curl, H̊(curl)), (curl, H̊(curl))∗ = (curl, H(curl)),

where
H̊(curl) := {w ∈ H(curl) | γτw = 0 }.

In Section 4.3 we show that the range curlH(curl) is closed.
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Hilbert complexes

We have just seen that the differential operators entering the de Rham complex
can be viewed as closed unbounded operators between L2 spaces. In this way we
obtain a structure which combines the homological algebraic features of a cochain
complex, discussed in Chapter 2, with the functional analytic features of closed
unbounded operators on Hilbert space, discussed in Chapter 3. This structure is
called a Hilbert complex and was first promulgated by Brüning and Lesch [24]. It
is the structure underlying Hodge theory of Riemannian manifolds,2 and, despite
its simplicity, the main results of Hodge theory, for example, the identification
of cohomology with harmonic forms and the Hodge decomposition, follow eas-
ily in this framework. Associated to each Hilbert complex is a graded map, or
sequence of operators, called the abstract Hodge Laplacian of the complex. We
explore several different but equivalent formulations of the Hodge Laplacian and
demonstrate their well-posedness up to harmonic forms. The case of the de Rham
complex on a three-dimensional domain is treated in detail, and the results of the
chapter are summarized in Box 4.1 at the end of the chapter.

4.1 Hilbert complexes and their duals
4.1.1 Hilbert complexes

Definition 4.1. A Hilbert complex is a sequence of Hilbert spaces W k and a
sequence of closed densely defined linear operators dk from W k to W k+1 such
thatR(dk) ⊂ N (dk+1).

Note that a Hilbert complex is more than just a complex in which the spaces
are Hilbert. At each level, there are two Hilbert spaces: the base space W k and
the domain space, which we shall denote by V k. Since we assume that the dif-
ferentials dk are closed, the domain spaces V k are Hilbert spaces with the graph
norm

‖v‖2V k = ‖v‖2Wk + ‖dkv‖2Wk+1 .

2An indication of how natural is the notion of a Hilbert complex is that in the early drafts of [13]
my coauthors and I introduced this definition, before we discovered that it already occured in the
literature [24] with the very same name and definition.

33
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The operators dk may be viewed as bounded linear maps of V k into V k+1, and
so they form a bounded Hilbert complex—a cochain complex in which the spaces
are Hilbert spaces and the differentials are bounded linear operators—called the
domain complex:

0→ V 0 d−→ V 1 d−→ · · · d−→ V n → 0. (4.1)

However, the Hilbert complex (W,d) contains more information than its domain
complex (V, d). From the former you can construct the latter, but knowing only
the latter you cannot infer the spaces W k or the W k norm. Besides Hilbert
cochain complexes, just defined, we can, of course, also talk about Hilbert chain
complexes which differ only in that the indices decrease.

As we did previously for complexes, we denote the range and null space of the
differential by Bk = dk−1V k−1 and Zk = N (dk), the spaces of coboundaries
and cocycles. We have Bk ⊂ Zk and the quotients are the cohomology spaces
Hk = Zk/Bk. The cycle spaces are always closed, but the boundary spaces may
or may not be. A Hilbert complex is called closed if the range B is closed in
W for all k. This holds if and only if B is complete in the W norm. Since the
V norm on Z coincides with the W norm there, it is equivalent to require that
B is complete with respect to the V norm, or that B is closed in V . A Hilbert
complex is called Fredholm if the cohomology spaces are finite dimensional, i.e.,
the boundary spaces are finite codimensional inside the cycle spaces. Most of the
complexes we encounter will be Fredholm. In view of Theorem 3.8, a Fredholm
complex is closed.

For the few occasions when we work with Hilbert complexes which are not
closed, or not known to be closed, we also introduce the reduced cohomology
space Zk/B̄k, which is a Hilbert space. Of course, for a closed Hilbert complex
it coincides with the cohomology spaceHk.

4.1.2 The dual complex

If (W,d) is a Hilbert complex, then dk−1 is a closed densely defined operator
from W k−1 to W k, so its adjoint, which we denote by d∗k, is a closed densely
defined operator from W k to W k−1. We denote its domain by V ∗k , a dense subset
of W k which is, in general, quite different from V k. We set Z∗k = N (d∗k) and
B∗k = R(d∗k+1). Thus Theorem 3.5 gives

B⊥ = Z∗, Z⊥ = B̄∗, B∗⊥ = Z, Z∗⊥ = B̄.

Consequently,

B∗ ⊂ B̄∗ = Z⊥ ⊂ B⊥ = Z∗,

so

0→ V ∗n
d∗n−→ V ∗n−1

d∗n−1−−−→ · · · d
∗
1−→ V ∗0 → 0

is a chain complex, and (W,d∗) is a Hilbert complex. If the original Hilbert
complex (W,d) is closed, then the dual complex (W,d∗) is closed as well, by the
closed range theorem.
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4.2 Harmonic forms, the Hodge decomposition, and the
Poincaré inequality

Next we derive several simple, but crucial, consequences of the Hilbert space
structure. In this section, we assume that (W,d) is a Hilbert complex, which is
not necessarily closed.

4.2.1 Harmonic forms

Definition 4.2. An element v ∈ W k is called harmonic or a harmonic k-form if
both dv = 0 and d∗v = 0.

We denote the space of harmonic k-forms by Hk, so Hk = Zk ∩ Z∗k. By the
first assertion of Theorem 3.5, we may as well write

Hk = Zk ∩Bk,⊥, (4.2)

meaning that the harmonic forms are the cocycles which are orthogonal to co-
boundaries. If the coboundary space is not closed, we may close it and equiva-
lently say that Hk is the orthogonal complement of the closed subspace B̄k inside
the Hilbert space Zk. We may then canonically identify the quotient space, which
is the reduced cohomology space Zk/B̄k, with Hk, which is a subspace of W k.
Of course, for a closed Hilbert complex, we do not need to specify “reduced,” and
the result is simply

Hk ∼= Hk. (4.3)

Thus the harmonic forms give a concrete realization of the cohomology of the
complex as a closed subspace of the Hilbert space W k. This is illustrated in
Figure 4.1. The elements of the cohomology spaceHk are the equivalence classes

Figure 4.1. The space Bk of coboundaries is a subspace of the space Zk of
cocycles. The cohomology space consists of equivalence classes of cocycles, with the class
[z] of a cocycle z being the affine subspace through z parallel to Bk. Each cohomology
class [z] is represented by a unique element z0 belonging to Hk, which is its element of its
smallest norm.
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of elements of Zk modulo Bk. These provide a decomposition of Zk into closed
affine subspaces obtained from Bk by translation. Each such subspace contains
a distinguished element, namely, the unique element orthogonal to Bk, which
is also characterized as the unique element of the smallest norm. These are the
harmonic k-forms.

We may use harmonic forms to obtain a useful criterion for a Hilbert complex
to be Fredholm, i.e., for its homology spaces to be finite. The space V k ∩ V ∗k ⊂
W k is a Hilbert space when endowed with the norm

‖v‖2V ∩V ∗ = ‖v‖2V + ‖v‖2V ∗ = 2‖v‖2 + ‖dv‖2 + ‖d∗v‖2.

Here and below, we write ‖ · ‖V for the norm in each of the spaces V k, ‖ · ‖V ∗
for the norm in the spaces V ∗k , and simply ‖ · ‖ for the norm in the spaces W k.

Definition 4.3. A Hilbert complex is said to have the compactness property if the
inclusion V k ∩ V ∗k ⊂W k is compact for each k.

Theorem 4.4. If a Hilbert complex has the compactness property, then it is closed
and Fredholm.

Proof. We first check that d has closed range. Let T be the restriction of d to
D(T ) := V ∩Z⊥, viewed as an unbounded operator W →W . It is easy to check
that the range of T coincides with the range of d and, since d is a closed operator,
T is closed as well. Since Z⊥ = B̄∗ ⊂ Z∗ ⊂ V ∗, D(T ) ⊂ V ∩ V ∗ and the graph
norm on D(T ) is equivalent to the V ∩V ∗ norm. By Theorem 3.9, T , and thus d,
has closed range.

Next, we note that, on H ⊂ V ∩ V ∗, the V ∩ V ∗ norm is equivalent to the
W norm. Thus the closed unit ball in H is compact, which implies that H ∼= H is
finite dimensional, i.e., the complex is Fredholm.

4.2.2 Hodge decomposition

The Hilbert complex structure leads directly to the Hodge decomposition, a gen-
eralization of the Helmholtz decomposition of vector calculus.

Since the space of harmonic k-forms is the orthogonal complement of B̄k

within Zk, it follows immediately that

Zk = B̄k ⦹ Hk, (4.4)

where the symbol ⦹ indicates a sum which is orthogonal (note that in this context
we need not distinguish between orthogonality in W and orthogonality in V ).
Since Zk is a closed subspace of both W k and V k, we have

W k = Zk ⦹ Zk⊥ = Zk ⦹ B̄∗k, V k = Zk ⦹ Zk⊥V ,

where Zk⊥V = Zk⊥ ∩ V = B̄∗k ∩ V . Combining with (4.4) we obtain the Hodge
decomposition.
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Theorem 4.5 (Hodge decomposition). Any Hilbert complex gives rise to the
orthogonal decompositions

Zk=B∗⊥k︷ ︸︸ ︷ Zk⊥︷︸︸︷
W k = B̄k ⦹ Hk ⦹ B̄∗k︸︷︷︸

Z∗⊥k

︸ ︷︷ ︸
Z∗k=Bk⊥

(4.5)

and
V k = B̄k ⦹ Hk ⦹ Zk⊥V . (4.6)

For a closed Hilbert complex we may, of course, drop the bars over the bound-
ary spaces. In this case, the Hodge decomposition says that every element of W
has a unique decomposition into an element of the range of d, an element of the
range of d∗, and a harmonic form, and this decomposition is orthogonal.

4.2.3 Poincaré inequality

The final result we derive is the Poincaré inequality, for which it is necessary to
assume that the Hilbert complex is closed.

Theorem 4.6 (Poincaré inequality). Given a closed Hilbert complex, for each k,
there exists a constant cP such that

‖z‖V ≤ cP ‖dz‖, z ∈ Zk⊥V . (4.7)

Proof. Since the Hilbert complex is closed, Bk+1 is a Hilbert space. The operator
dk is thus a bounded linear isomorphism between the Hilbert spaces Zk⊥V and
Bk+1, and so it has a bounded inverse, which leads directly to (4.7).

4.3 Example: The L2 de Rham complex
The prototypical example of a Hilbert complex is the de Rham complex associated
to a Riemannian manifold. We continue to discuss the case of a domain Ω in R3,
which we shall assume to have a Lipschitz boundary. The base Hilbert spaces will
be W 0 = W 3 = L2(Ω), W 1 = W 2 = L2(Ω;R3). The operators are the ones
discussed in Section 3.4: d0 = grad, d1 = curl, d2 = div, with the domains taken
to be H1, H(curl), and H(div), respectively. We saw there that these are closed
operators, so we meet the criteria for a Hilbert complex. The domain complex,
consisting of the spaces V k, is

0→ H1 grad−−−→ H(curl)
curl−−→ H(div)

div−−→ L2 → 0. (4.8)

In view of the adjoints computed in Section 3.4, the domain complex of the dual
complex (consisting of the V ∗k ) is

0← L2 − div←−−− H̊(div)
curl←−− H̊(curl)

− grad←−−−− H̊1 ← 0. (4.9)
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An important fact is that the L2 de Rham complex satisfies the compactness
property, i.e., that V k ∩ V ∗k is compactly included in W k. For k = 0, we have
V 0 ∩ V ∗0 = H1 ∩ L2 = H1 which is indeed compact in W 0 = L2 by Rellich’s
theorem. The result for k = 3 is similar. For k = 1 and 2 the desired results are
thatH(curl)∩H̊(div) and H̊(curl)∩H(div) are compact inL2(Ω;R3). This was
proved, in the greater generality of Riemannian manifolds with Lipschitz bound-
ary, by Picard [62]. According to Theorem 4.4, the compactness property implies
that the de Rham complex is Fredholm: the operators have closed range, and the
harmonic form spaces are finite dimensional. In particular, we have established
that curlH(curl) is closed, as claimed at the end of Chapter 3. We now calcu-
late the spaces of harmonic forms and exhibit the Hodge decomposition for each
degree.

The space of harmonic 0-forms coincides with Z0, the null space of the gradi-
ent. This is the space of constants, or, if we allow domains with more than the one
connected component, the space of local constants. Its dimension is the number
b0 of connected components of Ω (the zeroth Betti number of the domain). Since
the space B0 = 0, the Hodge decomposition expresses L2 as the sum div H̊(div)
and the constant (or locally constant) functions.

The space of harmonic 1-forms is more complicated. It consists of the L2

vector fields p for which curl p = 0, div p = 0, and the normal trace γnp van-
ishes on ∂Ω. An elementary example of such a function is pictured on the left of
Figure 4.2, in which the domain is an annular cylinder. In cylindrical coordinates
the domain is given by a ≤ r ≤ b, c ≤ z ≤ d, for some 0 < a < b, c < d,
and the harmonic forms are simply the multiples of p = grad θ. On a general
domain dimH1 = b1, the first Betti number, which we defined in Section 2.3 and
which counts the number of tunnels through the domain. For a simply connected
domain, b1 = 0, and the Hodge decomposition is the classical Helmholtz decom-
position of a vector field into a gradient (which is irrotational, meaning curl-free)
and a curl (solenoidal, meaning divergence-free). For a general domain, we must

Figure 4.2. Left: Harmonic 1-form on an annular cylinder in R3. Right: Har-
monic 2-form on a spherical shell (half the shell has been cut away for visibility).
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also include the harmonic part:

L2(Ω;R3) = gradH1(Ω) ⦹ curl H̊(curl,Ω) ⦹ H1.

The space of harmonic 2-forms consists of vector fields which are again curl-
and divergence-free but, in this case, with vanishing tangential trace on the bound-
ary. An elementary example is given in spherical coordinates on the closed
spherical shell a < r < b by p = grad(1/r). See Figure 4.2. On a general
domain, dimH2 = b2, the number of voids in the domain. The Hodge decompo-
sition is again into gradients and curls, but the boundary conditions are different,
as is the space of harmonic forms:

L2(Ω;R3) = grad H̊1(Ω) ⦹ curlH(curl,Ω) ⦹ H2.

Finally, the space of harmonic 3-forms is simple: H3 = 0, since there are no
nonzero functions in H̊1 with vanishing gradient. Of course, B∗3 also vanishes,
so the Hodge decomposition is trivial.

4.4 The abstract Hodge Laplacian
Let (W,d) be a closed Hilbert complex. Associated to it is a graded operator from
W →W of degree 0 given byL = dd∗+d∗d. In the case of the de Rham complex
associated to a Riemannian manifold, this operator is called the Hodge Laplacian,
and we refer to it generally as the (abstract) Hodge Laplacian associated to the
complex. Specifically,

D(Lk) = {u ∈ V k ∩ V ∗k | du ∈ V ∗k+1, d
∗u ∈ V k−1 }, (4.10)

and

Lku = d∗k+1d
ku+ dk−1d∗ku = (dk)∗dku+ dk−1(dk−1)∗u, u ∈ D(Lk).

(4.11)
A major subject of FEEC is the numerical solution of the Hodge Laplace

equation Lku = f for given f ∈ W k. Whether this problem has a unique solu-
tion depends on whether the space Hk of harmonic forms vanishes. Indeed, we
now show that the null space of Lk is precisely Hk, explaining the terminology
harmonic. From (4.2) we see that Hk ⊂ D(Lk) and Lku = 0 for all u ∈ Hk.
Thus Hk ⊂ N (Lk). On the other hand, from the definition of L we have that

〈Lku, v〉 = 〈du, dv〉+ 〈d∗u, d∗v〉, u ∈ D(Lk), v ∈ V k ∩ V ∗k . (4.12)

Taking v = u, we get

‖du‖2 + ‖d∗u‖2 = 〈Lku, u〉, u ∈ D(Lk),

and so,
‖du‖2 + ‖d∗u‖2 = 0,

if u ∈ N (Lk). Thus, if u ∈ N (Lk), then du and d∗u vanish, and so u ∈ Hk.
This verifies that N (Lk) = Hk, i.e., that solutions of the Hodge Laplacian are
determined only up to addition of a harmonic form.

The harmonic forms also determine a necessary condition for the existence of
solutions. Taking the inner product of the equation Lku = f with q ∈ Hk and
using (4.12), we see that 〈f, q〉 = 0. Thus a necessary condition for the existence
of a solution is the orthogonality condition f ⊥ Hk. In fact, in Theorem 4.8
below we shall show that this condition is not only necessary but also sufficient
for existence of a solution.
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4.4.1 Three formulations of the Hodge Laplace problem

In order to formulate a problem which is solvable for any f ∈ W k, we make
use of the orthogonal projection PH of W k onto Hk. Then we can formulate the
following strong form of the Hodge Laplace equation, which we shall show is
well-posed.

Strong formulation

Given f ∈W k, find u ∈ D(Lk) such that

Lu = f − PHf, u ⊥ Hk. (4.13)

Note that if u is a solution to this problem, then

f = dd∗u+ PHf + d∗du. (4.14)

Clearly dd∗u ∈ B, PHf ∈ H, and d∗du ∈ B∗, so (4.14) is the Hodge decompo-
sition of f , i.e., dd∗u = PBf and d∗du = PB∗f .

We will also consider two weak formulations of this problem. The primal
formulation corresponds directly to the strong form.

Primal weak formulation

Given f ∈W k, find u ∈ V k ∩ V ∗k such that u ⊥ Hk and

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f − PHf, v〉, v ∈ V k ∩ V ∗k . (4.15)

For the mixed weak formulation, we introduce two new variables, σ = d∗u ∈
V k−1 and p = PHf ∈ Hk.

Mixed weak formulation

Given f ∈W k, find σ ∈ V k−1, u ∈ V k, and p ∈ Hk such that

〈σ, τ〉 − 〈u, dτ〉 = 0, τ ∈ V k−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, v ∈ V k,
〈u, q〉 = 0, q ∈ Hk.

(4.16)

An important observation is that the mixed weak formulation, unlike the other
two formulations, does not treat the operators d and d∗ symmetrically. Only the d
operator appears in this formulation, the terms involving d∗ being treated weakly.

Despite their different appearance, the three formulations are completely equiv-
alent.

Theorem 4.7 (equivalence of formulations). Let f ∈ W k. An element u ∈ W k

solves the strong formulation of the abstract Hodge Laplace problem if and only
if it solves the primal weak formulation. Moreover, in this case, if we set σ = d∗u
and p = PHf , then the triple (σ, u, p) solves the mixed weak formulation. Finally,
if some (σ, u, p) solves the mixed weak formulation, then u solves the other two
formulations of the problem, and σ = d∗u, p = PHf .
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Proof. First we show the equivalence of the strong formulation and the primal
weak formulation. If u satisfies the strong formulation, then certainly u ∈ V ∩V ∗
and satisfies the primal weak formulation. On the other hand, if u satisfies the
primal weak formulation and if u belongs to D(L), then it satisfies the strong
formulation. Therefore, we need to show that any u which satisfies the primal
weak formulation, and so a priori only belongs to V ∩ V ∗, actually belongs to
D(L) defined in (4.10), i.e., satisfies du ∈ V ∗ and d∗u ∈ V . The statement that
du ∈ V ∗ means that there exists a constant c such that

〈du, dv〉 ≤ c‖v‖, v ∈ V. (4.17)

Using the Hodge decomposition, we split v = v1 +v2 with v1 ∈ Z, v2 ∈ V ∩B∗.
Obviously,

〈du, dv1〉 = 0,

while

〈du, dv2〉 = 〈du, dv2〉+ 〈d∗u, d∗v2〉 = 〈f − PHf, v2〉 ≤ c‖v2‖ ≤ c‖v‖,

where c = ‖f − PHf‖. Adding these results gives (4.17) and shows that du ∈
V ∗. An analogous argument shows that d∗u ∈ V , and so we have proven that
u ∈ D(L) and so that a solution of the primal weak formulation is a strong
solution.

Next, suppose u solves the strong formulation, and set σ = d∗u, p = PHf .
Since u ∈ D(L), σ ∈ V . The first equation of the mixed formulation is a conse-
quence of the definition of σ. We have, from the Hodge Laplace equation, that

dσ + d∗du+ p = f,

and, taking the inner product with any v ∈ V , we obtain the second equation of
the mixed method. The third equation follows from the assumption that u ⊥ Hk.
This shows that (σ, u, p) solves the weak formulation.

Finally, if (σ, u, p) ∈ V × V × H solves the mixed weak formulation, then
the first equation implies u ∈ V ∗ and d∗u = σ, and the last equation implies that
u ⊥ H. Taking v ∈ H in the second equation shows that p = PHf . Finally, taking
v ∈ V ∩ V ∗ in the second equation we conclude that u solves the primal weak
formulation.

4.4.2 Well-posedness

Finally, we show that the abstract Hodge Laplace equation is well-posed once we
account for any harmonic forms.

Theorem 4.8 (well-posedness). For each f ∈ W k there exists a unique solution
u ∈ D(Lk) such that u ⊥ Hk and Lu = f − PHf . Moreover

‖u‖+ ‖du‖+ ‖d∗u‖+ ‖dd∗u‖+ ‖d∗du‖+ ‖p‖ ≤ c‖f‖.

The constant c entering this estimate depends only on the constant cP entering
the Poincaré inequality (Theorem 4.6).
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Proof. When a solution exists, the bounds on ‖dd∗u‖, ‖d∗du‖, and ‖p‖ are im-
mediate from the Hodge decomposition f = dd∗u + d∗du + p, so it suffices to
show that for any f ∈W a unique solution exists and satisfies

‖u‖V + ‖d∗u‖ ≤ c‖f‖.

Our proof is based on the mixed weak formulation. WritingX = V k−1×V k×Hk
for brevity, define a bounded bilinear form B : X × X → R by combining the
left-hand sides of the three equations defining the mixed formulation:

B(σ, u, p; τ, v, q) = 〈σ, τ〉 − 〈u, dτ〉 − 〈dσ, v〉 − 〈du, dv〉 − 〈p, v〉 − 〈u, q〉.
(4.18)

Note that B is symmetric. Also define a bounded linear functional F : X → R
by

F (τ, v, q) = 〈f, v〉. (4.19)

Then the mixed weak formulation has a standard form: find x ∈ X such that

B(x, y) = F (y), y ∈ X. (4.20)

Nečas’s generalization of the Lax–Milgram theorem [61, Theorem 3.1] tells us
when such a problem is well-posed. Well-posedness (for arbitrary F ∈ X ′) is
equivalent to the inf-sup condition

γ := inf
06=w∈X

sup
06=y∈X

B(w, y)

‖w‖X‖y‖X
> 0, (4.21)

in which case the solution x satisfies ‖x‖X ≤ γ−1‖F‖X′ . (A second inf-sup
condition with the roles of w and y reversed is generally required but in our case
is unnecessary, since B is symmetric.) The inf-sup condition is proven in the
following theorem.

Theorem 4.9. The bilinear form B defined by (4.18) satisfies the inf-sup condi-
tion (4.21) with γ bounded below by a constant depending only on the Poincaré
constant cP .

Proof. For any given (σ, u, p) ∈ V k−1 × V k × H we must exhibit (τ, v, q) ∈
V k−1 × V k × H, not identically zero, such that

B(σ, u, p; τ, v, q) ≥ γ(‖σ‖V + ‖u‖V + ‖p‖)(‖τ‖V + ‖v‖V + ‖q‖),

where γ depends only on cP . For this, we use the Hodge decomposition u =
uB + uH + uB∗ , where uB = PBu, uH = PHu, and uB∗ = PB∗u. Since
uB ∈ Bk, we may write uB = dρ with ρ ∈ Zk−1⊥. By the Poincaré inequality,

‖ρ‖V ≤ cP ‖uB‖. (4.22)

Then we define

τ = σ− 1

c2P
ρ ∈ V k−1, v = −u−dσ−p ∈ V k, q = −p+uH ∈ Hk. (4.23)
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From (4.22) and the orthogonality of the Hodge decomposition, we have

‖τ‖V + ‖v‖V + ‖q‖ ≤ C(‖σ‖V + ‖u‖V + ‖p‖). (4.24)

Plugging (4.23) into (4.18), we have

B(σ, u, p; τ, v, q) = ‖σ‖2+‖dσ‖2+‖du‖2+‖p‖2+‖uH‖2+
1

c2P
‖uB‖2−

1

c2P
〈σ, ρ〉.

We use the Cauchy–Schwarz inequality, the algebraic-geometric mean inequality,
and (4.22) to bound the final term:

〈σ, ρ〉 ≤ ‖σ‖‖ρ‖ ≤ c2P
2
‖σ‖2 +

1

2c2P
‖ρ‖2 ≤ c2P

2
‖σ‖2 +

1

2
‖uB‖2.

Thus

B(σ, u, p; τ, v, q) ≥ 1

2
‖σ‖2 + ‖dσ‖2 + ‖du‖2 + ‖p‖2 + ‖uH‖2 +

1

2c2P
‖uB‖2.

Now we apply the Poincaré inequality to uB∗ , for which we have duB∗ = du:

‖uB∗‖V ≤ cP ‖du‖.

We obtain

B(σ, u, p; τ, v, q)

≥ 1

2
‖σ‖2 + ‖dσ‖2 +

1

2
‖du‖2 + ‖p‖2 + ‖uH‖2 +

1

2c2P
‖uB‖2 +

1

2c2P
‖uB∗‖2

≥ η(‖σ‖2 + ‖dσ‖2 + ‖uB‖2 + ‖uH‖2 + ‖uB∗‖2 + ‖du‖2 + ‖p‖2)

= η(‖σ‖2V + ‖u‖2V + ‖p‖2),

where η = min(1/2, 1/2c2P ) depends only on cP . The inf-sup condition easily
follows from this bound and (4.24).

Remark 4.10. The inf-sup condition in Theorem 4.9 implies the well-posedness
of the mixed problem (4.20) for general F ∈ X ′, not only for F of the form
(4.19).

Having established well-posedness of the Hodge Laplacian, we denote by K
the solution operator. That is, for f ∈W , we defineKf ∈ D(L) by the equations
LKf = f − PHf , Kf ⊥ H. Written in terms of K, the solution to the mixed
formulation is given by σ = d∗Kf , u = Kf , p = PHf . Thus the Hodge
projections are PB = dd∗K, PB∗ = d∗dK, and

u = dd∗Ku+ PHu+ d∗dKu, u ∈W.

Remark 4.11. The reader may wonder why we chose to establish well-posedness
of the abstract Hodge Laplacian using the mixed formulation, rather than the pri-
mal weak formulation. After all, the bilinear form for the primal formulation
is coercive (by the Poincaré inequality) and hence we can apply the Riesz rep-
resentation theorem and dispense with the verification of the inf-sup condition.
The reason is that we are anticipating the discretization of the Hodge Laplacian,
which will be the subject of the next chapter. The discretization will be based on
the mixed formulation, which, as we shall see, turns out to be far more appropri-
ate for discretization than the primal formulation. The inf-sup condition for the
mixed bilinear form (and not only well-posedness for F of the form (4.19)) will
then be the key to the analysis of the discretization method.
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4.4.3 The B and B∗ problems

In this section, we examine the Hodge Laplace equation Lv = g when the data g
belongs to B or B∗. In the former case, g = df for some f ∈ V (if g ∈ V k, then
f ∈ V k−1). From the solution u of the Hodge Laplace equation

Lu = f − PHf (4.25)

with data f we obtain the solution toLv = g by setting v = du. This is reasonable
since, formally,

Lv = (dd∗ + d∗d)du = dd∗du = d(dd∗ + d∗d)u = d(f − PHf) = g.

This formal calculation is justified as long as v = du ∈ D(L). To see this,
note that, since u ∈ D(L), v = du ∈ V ∗ and v ∈ V . Moreover dv = 0 and
d∗v = d∗du = PB∗f = f −PZf ∈ V , since f ∈ V and Z ⊂ V . This shows that
v ∈ D(L), as claimed.

Thus, when the data g for the Hodge Laplacian belongs to B, the correspond-
ing solution v also belongs to B. But then the term d∗dv in the Hodge Laplacian
vanishes, so v satisfies another problem.

The B problem

Given g ∈ Bk, find v ∈ Bk such that dd∗v = g.

By definition, a solution to this problem must belong as well to D(dd∗) =
{ v ∈ V ∗k | d∗v ∈ V k−1 }. We have just seen that, for g ∈ Bk, if v solves the
Hodge Laplace problem with data g, then v solves the B problem. Conversely,
if v solves the B problem, then we have dv = 0, and so Lv = dd∗v = g, i.e.,
v solves the Hodge Laplace problem. From the well-posedness of the Hodge
Laplace problem, we obtain well-posedness of the B problem (but only for g ∈
Bk; otherwise there is no solution).

Theorem 4.12. If g ∈ Bk, then there is a unique solution v to the B problem with
data g and this solution coincides with the unique solution to the Hodge Laplace
problem with the same data.

Of course, we have the analogous result for d∗ as well: if f ∈ V ∗ and u the
corresponding solution to the Hodge Laplace problem, then v = d∗u ∈ D(L)
and is the solution to the Hodge Laplace problem with data g = d∗f . Moreover,
if g ∈ B∗, then it is also the unique solution to the following problem.

The B∗ problem

Given g ∈ B∗k, find v ∈ B∗k such that d∗dv = g.

4.5 Example: The Hodge Laplacian in RRR3

We now return to our running example, the de Rham complex on a domain with
Lipschitz boundary in R3. We saw in Section 4.3 that this forms a closed Hilbert
complex. Therefore, for each k = 0, 1, 2, 3, we obtain a Hodge Laplace problem
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associated to the complex, which is a well-posed boundary value problem in par-
tial differential equations. To interpret these problems we just have to interpret the
spaces V k and V ∗k and the operators dk and d∗k, for which we will have frequent
recourse to the domain complex (4.8) and the dual domain complex (4.9).

4.5.1 k = 0

Assuming that the domain is connected, the space H0 of harmonic forms consists
only of the constants and PHf = f̄ , the mean value of f on Ω. Since d∗0 = 0,
L0u = (dd∗ + d∗d)u = d∗du = − div gradu = −∆u, with domain

D(L) = {u ∈ H1(Ω) | gradu ∈ H̊(div,Ω) }
= {u ∈ H1(Ω) |∆u ∈ L2(Ω), ∂u/∂n = 0 on ∂Ω },

where ∆ denotes the ordinary Laplacian ∆ =
∑3
i=1 ∂

2/∂x2
i . Given f ∈ L2(Ω),

the strong formulation (4.13) then seeks u ∈ H1 such that

−∆u = f − f̄ in Ω,
∂u

∂n
= 0 on ∂Ω,

∫
u = 0. (4.26)

Thus the k = 0 Hodge Laplace problem associated to the de Rham complex
is just the usual Neumann problem for Poisson’s equation, the adjustment by f̄
being required to make the data f compatible with the homogeneous Neumann
boundary condition.

Next we turn to the primal and mixed weak formulations. Since V −1 = 0,
for k = 0, σ and τ vanish in the mixed weak formulation (4.16). Thus there is
no distinction between the two weak formulations for k = 0. They both seek
u ∈ H1 such that∫

gradu · grad v =

∫
(f − f̄)v, v ∈ H1,

∫
Ω

u = 0. (4.27)

We have seen in Theorem 4.7 that this problem is equivalent to the strongly for-
mulated problem (4.26). For concreteness, we now check directly that (4.27)
implies (4.26), the other direction being easier. Taking v ∈ C∞0 (Ω) in (4.27) we
see that

− div gradu = f − f̄ (4.28)

in the sense of distributions and so, since f ∈ L2, gradu belongs to H(div). We
may therefore apply the integration-by-parts formula (3.8) with w = gradu and
then apply (4.27) and (4.28) to get

〈γn(gradu), tr v〉 =

∫
(div gradu)v +

∫
gradu · grad v = 0, v ∈ H1.

Since tr v can be an arbitrary element of H1/2(∂Ω) we conclude that γn(gradu)
= 0, i.e., ∂u/∂n = 0 on the boundary. Notice that, in the weak formulation,
the boundary condition is imposed naturally, meaning that it is implied by the
equations via integration by parts rather than being imposed in the space in which
u is sought.

Turning to the B and B∗ problems, we do not find anything new, since B0 =
0. Therefore, the B problem does not arise for k = 0, while the B∗ problem is
essentially the full Hodge Laplacian.
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Summarizing the situation for k = 0, the Hodge Laplacian for 0-forms is
just the Neumann problem for the Poisson equation. The primal and mixed weak
formulations coincide in this case, being just the standard weak formulation for
the Neumann problem, in which the boundary condition is imposed naturally.

4.5.2 k = 1

The case k = 1 is more interesting. The space of harmonic forms H1 is a space of
vector fields whose dimension is b1, the first Betti number. The strong formulation
seeks u ∈ H(curl) ∩ H̊(div) with curlu ∈ H̊(curl) and div u ∈ H1 satisfying
the partial differential equation

curl curlu− grad div u = f − PHf in Ω. (4.29)

Note that the differential operator curl curl− grad div is the negative vector Lapla-
cian −~∆ in that curl curlu− grad div u = (−∆u1,−∆u2,−∆u3) for a smooth
vector field u = (u1, u2, u3).

The definition of the domain D(L1) implies the boundary conditions

u · n = 0, (curlu)× n = 0 on ∂Ω, (4.30)

and, of course, we have the side condition u ⊥ H1 to impose uniqueness. The
conditions (4.30) are sometimes referred to as magnetic boundary conditions, for
reasons that will become clearer when we discuss Maxwell’s equations in Sec-
tion 8.6.

The primal weak formulation seeks u ∈ H(curl) ∩ H̊(div) with

〈curlu, curl v〉+ 〈div u,div v〉 = 〈f −PHf, v〉, v ∈ H(curl)∩ H̊(div). (4.31)

Notice that, in this formulation, the boundary condition u · n = 0 is essential
(imposed in the space where u is sought), while the condition curlu × n = 0 is
natural.

By contrast, the mixed weak formulation seeks σ ∈ H1, u ∈ H(curl), p ∈
H1, without any imposed boundary conditions, satisfying∫

σ τ −
∫
u · grad τ = 0, τ ∈ H1,∫

gradσ · v +

∫
curlu · curl v +

∫
p · v =

∫
f · v, v ∈ H(curl),∫

u · q = 0, q ∈ H1.

(4.32)

The boundary conditions (4.30) are both natural in this formulation, arising from
the integration by parts in the first and second equations, respectively. Notice
that, in addition to the unknown vector field u, this formulation takes as a second
unknown the scalar function σ = −div u (and of course p = PHf ).

In the case f ∈ B1, i.e., f is a gradient, then the solution u is a gradient as
well, which we can express by saying that curlu = 0 and u ⊥ H1. Thus the B1

problem is to find u such that

− grad div u = f, curlu = 0 in Ω, u · n = 0 on ∂Ω, u ⊥ H1.
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From the abstract theory, we know that this problem has a unique solution for
f ∈ B1 which, moreover, can be computed by solving the full Hodge Laplacian
problem for that same f (e.g., via the mixed weak formulation). One application
of such a problem is toward solving the div-curl problem

div u = F, curlu = 0,

which can be done by taking f = gradF (with
∫
F = 0 required for compatibil-

ity with the boundary condition on u).
On the other hand, the B∗ problem arises when f ∈ B∗1, meaning f ∈

curl H̊(curl). Then u is determined by

curl curlu = f, div u = 0 in Ω, u · n = 0, curlu× n = 0 on ∂Ω, u ⊥ H1.

Such curl-curl problems arise in electromagnetics. Again, the solution may be
determined by solving the full Hodge Laplace problem.

4.5.3 k = 2

This case again leads to the vector Laplace equation (4.29), but with a different
set of boundary conditions (and different harmonic forms with dimH2 = b2).
The domain of L2 is the set of u ∈ H(div) ∩ H̊(curl) with div u ∈ H̊1 and
curlu ∈ H(curl). Thus we obtain electric boundary conditions:

u× n = 0, div u = 0 on ∂Ω.

The first of these conditions is essential in the primal variational formulation,
while the second is natural. Both are, of course, natural in the mixed weak for-
mulation, which seeks σ ∈ H(curl), u ∈ H(div), p ∈ H2 such that∫

σ · τ −
∫
u · curl τ = 0, τ ∈ H(curl),∫

curlσ · v +

∫
div u div v +

∫
p · v =

∫
f · v, v ∈ H(div),∫

u · q = 0, q ∈ H2.

(4.33)

Notice that this formulation is very different from the mixed weak formulation
(4.32) for k = 1. Here the additional field σ is a vector field, while it was a scalar
field for k = 1.

The B problem for k = 2 is

curl curlu = f, div u = 0 in Ω, u× n = 0, on ∂Ω, u ⊥ H2,

which has a unique solution if f ∈ curlH(curl). The B∗2 problem is

− grad div u = f, curlu = 0 in Ω, u× n = 0, div u = 0 on ∂Ω, u ⊥ H2,

solvable for f ∈ grad H̊1. Notice that the differential equations, but not the
boundary conditions, for the B2 problem coincide with those of the B∗1 problem
and those for the B∗2 problem coincide with those of the B1 problem.
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Table 4.1. The Hodge Laplace problem for the de Rham complex. σ is the
extra variable in mixed weak formulation. Underlined boundary conditions (the ones not
involving derivatives) are essential in the primal weak formulation, while the others are
natural. All the boundary conditions are natural in the mixed weak formulation.

k Lk σ Boundary conditions Harmonic forms

0 −∆ 0 Neumann: ∂u/∂n = 0 H0 (dim b0)

1 −~∆ − div u magnetic: u · n = 0, curlu× n = 0 H1 (dim b1)

2 −~∆ curlu electric: u× n = 0, div u = 0 H2 (dim b2)

3 −∆ − gradu Dirichlet: u = 0 H3 = 0

4.5.4 k = 3

Both B∗3 and H3 vanish. The domain of the LaplacianD(L3) = {u ∈ H̊1 |∆u ∈
L2 }, so the boundary value problem is just the Dirichlet problem for Poisson’s
equation:

−∆u = f in Ω, u = 0 on ∂Ω.

The primal weak formulation is the obvious one: find u ∈ H̊1 such that∫
gradu · grad v =

∫
f v, v ∈ H̊1.

The mixed weak formulation seeks σ ∈ H(div), u ∈ L2 such that∫
σ · τ −

∫
udiv τ = 0, τ ∈ H(div),

∫
div σ v =

∫
fv, v ∈ L2.

The Dirichlet condition is natural in the mixed formulation.
Table 4.1 collects key features of the Hodge Laplacian problems for the de Rham

complex.

4.5.5 The de Rham complex with boundary conditions and duality

We have just considered the application of the abstract theory to the L2 de Rham
complex, whose domain complex is given by (4.8). Instead, we may apply the
theory to the L2 de Rham complex with boundary conditions, by which we mean
the Hilbert complex whose base spaces remain L2 but whose domain complex is

0→ H̊1 grad−−−→ H̊(curl)
curl−−→ H̊(div)

div−−→ L2 → 0.

This Hilbert complex is essentially the dual complex to (4.8), i.e., (4.9), except
for some signs and for a change of indexing. Specifically, the index k space of
the de Rham complex with boundary conditions is the index 3 − k space of the
dual complex to the original de Rham complex. The dual complex to the de Rham
complex with boundary conditions is then

0← L2 − div←−−− H(div)
curl←−− H(curl)

− grad←−−−− H1 ← 0,

i.e., the original de Rham complex, except for signs and indexing.
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Table 4.2. The Hodge Laplace problem for the de Rham complex with boundary
conditions. All boundary conditions are essential for the mixed formulation and underlined
boundary conditions are essential for the primal formulation. See Table 4.1.

k Lk σ Boundary conditions Harmonic forms

0 −∆ 0 Dirichlet: u = 0 H̊0 = 0

1 −~∆ − div u electric: u× n = 0, div u = 0 H̊1 = H2 (dim b2)

2 −~∆ curlu magnetic: u · n = 0, curlu× n = 0 H̊2 = H1 (dim b1)

3 −∆ − gradu Neumann: ∂u/∂n = 0 H̊3 = H0 (dim b0)

If we write B̊k, Z̊k, and H̊k for the spaces of boundaries, cycles, and harmonic
forms of the complex with boundary conditions, then B̊k = B3−k and similarly
for Z and H. (The relation Hn−k = H̊k on an n-dimensional manifold is known as
Poincaré–Lefschetz duality. For manifolds without boundary it becomes Hn−k =
Hk, which is Poincaré duality.) It is easy to check that the strong formulation and
the primal weak formulation for the complex with boundary conditions coincide
with those for the ordinary de Rham complex, except for an index change, so
we obtain the same boundary value problems as above. The k = 0 problem, for
instance, is the Poisson equation with Dirichlet boundary conditions. The mixed
weak formulation for the problems with k > 0, however, brings in something
new. For k = 1, for example, we seek σ ∈ H̊1, u ∈ H̊(curl), p ∈ H̊1 = H2 such
that ∫

σ τ −
∫
u · grad τ = 0, τ ∈ H̊1,∫

gradσ · v +

∫
curlu · curl v +

∫
p · v =

∫
f · v, v ∈ H̊(curl).∫

u · q = 0, q ∈ H2.

This is a mixed formulation for the vector Laplacian with boundary conditions
div u = 0, u × n = 0. These are the same boundary conditions as for the k = 2
problem for the ordinary de Rham complex. However, the mixed method (4.33)
for that problem was altogether different, using a vector field for the auxiliary
variable σ rather than a scalar field, as here, and imposing the boundary conditions
naturally, rather than essentially as here.

A similar situation holds for k = 2 and k = 3, which we leave to the reader
to work out in detail. A summary is presented in Table 4.2.
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Box 4.1. Summary of Chapter 4 on Hilbert complexes.

A Hilbert complex is a sequence of Hilbert spaces W k and closed densely
defined operators dk from one to the next such that dk maps its domain into
the null space of dk+1. The Hilbert complex is called closed if the dk all
have closed range.

Setting V k = D(dk), we get the domain complex

0→ V 0 d−→ V 1 d−→ · · · d−→ V n → 0,

a cochain complex of Hilbert spaces and bounded linear operators.
We denote the cocycles and coboundaries as Zk and Bk and, for the dual

complex, by Z∗k and B∗k.
The Hodge Laplacian is the unbounded operator Lk from W k → W k

given by d∗d + dd∗ with the natural domain. Its kernel is the space Hk =
Zk ∩Z∗k of harmonic forms. For a closed Hilbert complex, Hk is isomorphic
to the cohomology spaceHk.

Any closed Hilbert complex gives rise to the orthogonal Hodge decom-
position

W k = Bk ⦹ Hk ⦹ Zk

and satisfies the Poincaré inequality

‖z‖V ≤ cP ‖dz‖, z ∈ Zk⊥V .

The Hodge Laplace problem

Lku = f − PHf, u ⊥ Hk,

has a unique solution in D(Lk) for any f ∈ W k. The solution may be
characterized as well by the primal weak formulation (4.15) or the mixed
weak formulation (4.16).



Chapter 5

Approximation of Hilbert
complexes

Our goal now is to design and analyze numerical methods for the approximate so-
lution of a Hodge Laplacian problem associated to some closed Hilbert complex.
We shall use Galerkin methods, i.e., we shall replace the trial and test spaces oc-
curing in the primal or mixed weak formulation by finite dimensional subspaces.
In practice, when the Hilbert complex is the de Rham complex or something sim-
ilar, the subspaces we consider will be finite element spaces.

To define the Hodge Laplace problem at some level k of the Hilbert complex,
we require only the operators dk−1 from W k−1 to W k with domain V k−1 and
the dk from W k to W k+1 with domain V k; cf. (4.11). Therefore, in the interest
of carrying no more baggage than necessary, in this chapter we do not require the
whole Hilbert complex (4.1) but only a short segment of it:

V k−1 d−→ V k
d−→ V k+1. (5.1)

We shall see that Galerkin discretization of the primal formulation is prob-
lematic and shall focus on Galerkin discretization of the mixed formulation. This
requires two compatible Galerkin subspaces, one for V k−1 and one for V k. The
main result of this chapter is to establish assumptions on the choice of subspaces,
which ensures consistency and stability of the Galerkin method, and to deduce
consequences from it. Box 5.1 summarizes the main results of the chapter.

5.1 Galerkin discretization of the primal formulation
A simple approach to discretization of the Hodge Laplacian would be the ap-
plication of Galerkin’s method to the primal weak formulation (4.15), i.e., re-
stricting the trial and test functions to some finite dimensional subspace Vh ⊂
V k ∩V ∗k ∩Hk⊥. However, this approach suffers from two serious deficiencies, as
we shall now show. First, we can anticipate some difficulty working with the con-
dition Vh ⊥ Hk, since in many problems, we do not know the space Hk explicitly
and may not even know its dimension. We will return to this issue in a moment.
Second, the primal approach may have difficulties even when there are no non-
vanishing harmonic forms. The difficulty here is that the space V k ∩ V ∗k is not a
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standard Sobolev space, and it may be difficult to design a finite element subspace
of it with good approximation properties. More precisely, the space may contain
vector fields which are too singular to belong to H1 or even to be approximated
arbitrarily closely by H1 vector fields. Such singular fields arise as solutions of
the Hodge Laplacian on domains with nonconvex corners and in other situations,
so this is a serious defect.

As a simple example, suppose that Ω is a nonconvex simply connected poly-
gon in the plane and consider the two-dimensional L2 de Rham complex, for
which the domain complex is

0→ H1(Ω)
grad−−−→ H(curl,Ω)

curl−−→ L2(Ω)→ 0

(here curlu = ∂u2/∂x1−∂u1/∂x2). Since the domain is simply connected there
are no harmonic 1-forms, and so the primal weak formulation (4.31) of the k = 1
Hodge Laplacian for this complex seeks u ∈ Y := H(curl) ∩ H̊(div) such that∫

Ω

[(curlu)(curl v) + (div u)(div v)] dx =

∫
Ω

f · v dx, v ∈ Y. (5.2)

LetH1
n = H1(Ω;R2)∩ H̊(div) denote the space ofH1 vector fields with vanish-

ing normal component on the boundary, which is a closed subspace ofH1(Ω;R2).
Clearly H1

n ⊂ Y . Moreover,3

‖ curlu‖2 + ‖div u‖2 = ‖ gradu‖2, u ∈ H1
n.

It follows that the restriction of the Y norm (the norm ofH(div)∩H(curl)) to
H1
n is equivalent to the fullH1 norm there. SinceH1

n is closed inH1, it is a closed
subspace of Y . Moreover, H1

n 6= Y . This follows from the fact that a generic so-
lution of the Neumann problem for Poisson’s equation on a nonconvex polygon
exhibits singular behavior near the reentrant corners, which precludes it belonging
to H2. Thus there exists φ ∈ H1(Ω) such that ∆φ ∈ L2(Ω) and ∂φ/∂n = 0 on
∂Ω, but φ /∈ H2(Ω). Setting u = gradφ we see that u ∈ Y but u /∈ H1. In fact,
this lack of H1 regularity is typical of solutions of (5.2). For any such solution,
we have infv∈H1

n
‖u − v‖Y = δu > 0, where δu is the distance of u from the

proper closed subspace H1
n. This tells us that if the subspaces Vh are contained in

H1
n, then the numerical solution uh ∈ Vh cannot converge to u. This is the case

when Vh is any subspace of Y which consists of piecewise polynomials with re-
spect to some triangulation. Indeed, the condition Vh ⊂ H(curl) implies that the
tangential components of any v ∈ Vh must be continuous across triangle bound-
aries, and the fact that Vh ⊂ H(div) implies that the normal components must
be continuous. Thus Vh consists of continuous piecewise polynomial functions,

3This identity follows from a more general one:
∫

curlu curl v dx +
∫

div udiv v dx =∫
gradu : grad v dx+

∑
e

∫
e

(
∂u·s
∂s

v · n− ∂u·n
∂s

v · s
)
ds, u, v ∈ H1(Ω;R2), where the sum

is over all the edges e of the polygon Ω and n and s are the (constant) normal and tangent vectors on
e. This is elementary for u, v ∈ C1(Ω̄;R2) (integration by parts). Each of the integrals appearing is
a bilinear form of u and v bounded with respect to the H1 norm, so we can extend by density. For
example, |

∫
e

∂u·s
∂s

v · n| ≤ ‖ ∂u·s
∂s
‖H−1/2(e)‖v · n‖H1/2(e) ≤ ‖u · s‖H1/2(e)‖v · n‖H1/2(e) ≤

‖u‖H1(Ω)‖v‖H1(Ω).
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Figure 5.1. Finite element solution to the Hodge Laplacian problem on an L-
shaped domain (with f = (1, 0)). The left figure is calculated with a mixed method which is
known to converge to the solution inL2. The right figure is based on the primal formulation
using 24,576 piecewise linear elements. The primal-based numerical solution entirely
misses the dominant behavior at the reentrant corner and produces a wholly inaccurate
solution.

and so Vh ⊂ H1
n. In short, a standard finite element method based on the primal

formulation does not generally converge to the solution u. This behavior is illus-
trated in Figure 5.1, which depicts a numerical analyst’s nightmare. The figure
on the right shows the numerical solution computed with what would seem to be
a natural discretization: the finite element method based on the primal weak for-
mulation, using continuous piecewise linear vector fields as trial functions. The
method converges, as the mesh is refined, to what might be taken to be the solu-
tion but is, in fact, an altogether different vector field. In three dimensions, the
situation is similar but worse, because then H1

n is a closed subspace of infinite
codimension. See [34] for an illuminating discussion.

We encountered this problem already in Chapter 1 when we computed the
eigenvalues of the vector Laplacian on a polygonal domain with a hole. Because
of the reentrant corners, the true eigenfunctions are singular, and the standard
finite element method cannot compute them accurately. This results in noncon-
vergence of the eigenvalues as well, as we saw in the example.

An independent difficulty with the primal formulation arises when there are
harmonic forms. The difficulty is that we usually cannot arrange that the harmonic
forms belong to the subspace Vh. The harmonic forms will generally be smooth
functions, but not polynomials. Therefore, if the space Vh is a finite element
space, consisting of piecewise polynomials, it will not contain the any nonzero
harmonic forms. The discrete problem, to find uh ∈ Vh such that

〈duh, dv〉+ 〈d∗uh, d∗v〉 = 〈f, v〉, v ∈ Vh,

therefore has a unique solution (the bilinear form on the left-hand side defines
an operator Vh → V ′h with zero kernel). Stated in other terms, the space of
discrete harmonic forms vanishes. Therefore, the side condition u ⊥ H is lost
on passage to the discrete level. The result, illustrated in Figure 5.2, is that the
discrete solution does not resemble the exact solution, even in order of magnitude.
Another nightmare!
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Figure 5.2. Approximation of the Hodge Laplacian problem on an annulus (f =
(0, x)). The true solution shown here on the left is an (accurate) approximation by a mixed
method. The standard Galerkin solution using continuous piecewise linear vector fields,
shown on the right, is totally different.

5.2 Mixed methods of discretization
5.2.1 The mixed Galerkin method

In view of the deficiencies of Galerkin methods based on the primal weak formu-
lation, we now turn to mixed methods, i.e., Galerkin methods based on the mixed
weak formulation. Here the situation is much better. Indeed, if the Galerkin
subspaces are carefully chosen, then a mixed method returns an accurate, sta-
ble, convergent approximation, avoiding both of the problems just discussed for
the primal formulation. To achieve this, we will impose three conditions on the
choice of Galerkin subspaces, and from these we will obtain a variety of results,
including stability and convergence.

Let V jh be a finite dimensional subspace of V j . This gives rise to spaces of
discrete cocycles and discrete coboundaries:

Zjh = { v ∈ V jh | dv = 0 } ⊂ Zj , Bj+1
h = { dv | v ∈ V jh } ⊂ Bj+1.

Given V k−1
h ⊂ V k−1 and V kh ⊂ V k, the associated space of discrete harmonic

forms is defined in analogy with (4.2) as

Hkh = { v ∈ Zkh | v ⊥ Bk
h }.

Using the spaces V k−1
h , V kh , and Hkh, we define the mixed discretization of the

Hodge Laplace problem, based on the mixed weak formulation (4.16) in the ob-
vious way. Namely, given f ∈W k, we seek σh ∈ V k−1

h , uh ∈ V kh , and ph ∈ Hkh
such that

〈σh, τ〉 − 〈uh, dτ〉 = 0, τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f, v〉, v ∈ V kh ,
〈uh, q〉 = 0, q ∈ Hkh.

(5.3)

Note that we generally do not expect that Hjh is contained in Hj . (In finite element
applications to the Hodge Laplacian, the former will consist of piecewise poly-
nomials and the latter of smooth nonpolynomial functions.) When Hjh * Hj , the
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mixed discretization (5.3) is not a standard Galerkin discretization of (4.16) but
rather a generalized Galerkin method. Specifically, the exact solution u of (4.16)
need not satisfy the final equation of (5.3). This is a consistency error, which
we will need to account for in our error analysis. In the language of finite ele-
ments, (5.3) is, in this case, a nonconforming method. Often, however, we have
Hkh = Hk = 0. In such cases, the mixed discretization is a conforming Galerkin
method.

The mixed method is well-defined in the sense that (5.3) has a unique solution,
no matter how the subspaces V k−1

h and V kh are chosen. To prove this, it suffices
to show that the only solution for f = 0 is σh = 0, uh = 0, ph = 0. Choosing
τ = σh, v = uh, and q = ph, and combining the equations, we get that σh = 0
and duh = 0. Thus uh ∈ Zh. Moreover, since σh = 0, the first equation implies
that uh ⊥ Bh. Thus uh ∈ Hh, and so the last equation implies that uh vanishes.
Finally, we take v = ph in the second equation and conclude that ph vanishes as
well.

Next we turn to the analysis of this mixed method. Although it is not used
in the method itself, for the analysis we require the specification of a third space,
V k+1
h ⊂ V k+1.

5.2.2 Three fundamental properties of the subspaces

An important realization arising from FEEC is that there are three properties
which the subspaces V jh should satisfy in order to guarantee that the mixed Galer-
kin method provides accurate approximation of the true solution. We now specify
these properties.

Approximation property

The first property we need for these spaces is the obviously necessary condition
that the subspaces used to approximate u and σ provide good approximation.
This can be quantified in various ways. For example, we might assume that for
j = k − 1 and k, we have a family of spaces V jh , indexed by h decreasing to 0,
and require that

lim
h→0

inf
v∈V jh

‖w − v‖V = 0, w ∈ V j . (5.4)

Or we might require that the best approximation error be O(hr) for some power
r for w belonging to some dense subspace of V j . Rather than pin down a spe-
cific requirement, we will make an appropriate approximation assumption when
needed.

Two other properties relate to the complex (5.1), and not just to the individual
spaces.

Subcomplex property

We require that dV k−1
h ⊂ V kh and dV kh ⊂ V

k+1
h or, in other terminology, that

V k−1
h

d−→ V kh
d−→ V k+1

h (5.5)

is a subcomplex of (5.1). The discrete complex (5.5) then is itself a Hilbert com-
plex. As the base spaces we choose W j

h = V jh , but with the W inner product,
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rather than the V inner product. (Of course all inner products are equivalent on
V jh since it is finite dimensionsal.) Being finite dimensional, (5.5) is a closed
Hilbert complex.

As a Hilbert complex in its own right, the discrete complex exhibits all the
structures discussed in the previous chapter. The discrete differential

djh : V jh → V j+1
h

is just the restriction of dj (for j = k − 1 or k). The kernel of djh is denoted by
Zjh and the range of dj−1

h by Bj
h. As for any complex,

Bj
h ⊂ Zjh.

The orthogonal complement of the former space inside the latter is the space of
discrete harmonic forms Hkh. Since the discrete differential djh is just a restriction
of dj , we have

Zjh ⊂ Zj , Bj
h ⊂ Bj .

However, it is generally not true that Hjh ⊂ Hj since elements of the latter space
must be orthogonal to all of Bj , not just to Bj

h.
The discrete differential dj−1

h has an adjoint operator d∗jh. Since dj−1
h is

bounded, its adjoint is everywhere defined, so the spaces V ∗jh coincide withW j
h =

V jh and
d∗jh : V jh → V j−1

h .

Unlike for the discrete exterior derivative itself, the discrete adjoint operator is
generally not the restriction of the continuous adjoint operator d∗j , and the null
spaces Z∗jh and ranges B∗jh cannot be expected to be contained in their continuous
counterparts.

The Hodge decomposition for the discrete complex, which is guaranteed to
exist by Theorem 4.5, is called the discrete Hodge decomposition:

V kh = Bk
h ⦹ Hkh ⦹B∗kh. (5.6)

Bounded cochain projections

Finally, we come to the third and most important assumption, which relates the
original complex (5.1) to the subcomplex (5.5). We assume that there exists a
bounded cochain projection πh from the former to the latter. That it is a projection
means that for each j, πjh is a linear map from V j onto V jh which restricts to the
identity on V jh . That it is a cochain projection means that the following diagram
commutes:

V k−1 V k V k+1

V k−1
h V kh V k+1

h

d

πk−1
h

d

πkh πk+1
h

d d

Finally, that πh is bounded could mean one of two things. It might refer to
boundedness in V norm: ‖πhv‖V ≤ c‖v‖V for all v ∈ V j . Alternatively, we
might require W -boundedness: ‖πhv‖ ≤ c‖v‖. Since πh is a cochain map, W -
boundedness implies V -boundedness:

‖πhv‖2V = ‖πhv‖2+‖dπhv‖2 = ‖πhv‖2+‖πhdv‖2 ≤ c‖v‖2+‖dv‖2 = c‖v‖2V ,
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where we used W -boundedness to obtain the inequality. For now we require only
the weaker assumption of V -boundedness, although this will change when we
consider improved estimates. In either case, if we are considering a family of
subcomplexes indexed by h, we will want the bounds to be uniform in h in the
sense that a single constant c works for all h.

A simple, but important, property of a bounded projection is that it provides
quasi-optimal approximation, in the sense that, up to a constant multiple, the ap-
proximation of an element by its projection is bounded by the best approximation
in the space. That is,

‖v − πhv‖V = inf
w∈V jh

‖(v − w)− πh(v − w)‖V ≤ c inf
w∈V jh

‖v − w‖V , v ∈ V j ,

(5.7)
with c = ‖I − πh‖L(V,V ) = ‖πh‖L(V,V ). (This last identity goes back to [38].
See also [69].) In the rest of this chapter, we derive a series of important further
conclusions from these three hypotheses.

5.2.3 Consistency, stability, and convergence of the mixed
method

The gap between H and Hh

First we show that the cohomology spaceHkh for the subcomplex (5.5) is isomor-
phic to that of the original complex (5.1).

Theorem 5.1 (isomorphism of cohomology). Assume that the complex (5.5) is
a finite dimensional subcomplex of the (5.1) which admits a V -bounded cochain
projection πh. In addition, assume the approximation property

‖q − πhq‖ < ‖q‖, 0 6= q ∈ Hk. (5.8)

Then πh induces an isomorphism fromHk ontoHkh.

Proof. As discussed in Section 2.4, the cochain map πh induces a map Hk →
Hkh. Since πh is a projection, the induced map on cohomology is a surjection
by Proposition 2.1. Hence, we need only show that it is an injection. Since Hk
consists of equivalence classes of elements of Zk modulo Bk, and Hkh consists
of equivalence classes of elements of Zkh modulo Bk

h, we need to prove that if
z ∈ Zk and πhz ∈ Bk

h, then z ∈ Bk. For z ∈ Zk the Hodge decomposition
takes the form z = q + b with q ∈ Hk and b ∈ Bk, so our goal is to show that q
vanishes. Since πh is a cochain map, πhb ∈ Bk

h, and we assumed that πhz ∈ Bk
h

as well, so πhq ∈ Bk
h ⊂ Bk. But q, being harmonic, is orthogonal to Bk, so

q ⊥ πhq, and, by the Pythagorean theorem,

‖q − πhq‖2 = ‖q‖2 + ‖πhq‖2 ≥ ‖q‖2. (5.9)

If q 6= 0, then (5.8) and (5.9) lead to ‖q‖ > ‖q‖, a contradiction, and we conclude
that q = 0 as desired.

Since the homology spaces are isomorphic to the spaces of harmonic forms on
both the continuous and the discrete levels, this result tells us that the continuous
and discrete harmonic form spaces, Hk and Hkh, are isomorphic. The next result
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shows not only that they are isomorphic but also that they are close in the sense
that any element of one of the spaces can be well-approximated by an element of
the other. This will enable us to control the consistency error coming from the
nonconformity of the mixed method when the two spaces are not equal.

Theorem 5.2 (gap between harmonic forms). Assume that the complex (5.5)
is a finite dimensional subcomplex of (5.1) which admits a V -bounded cochain
projection πh. Then

‖(I − PHh)q‖V ≤ ‖(I − πkh)q‖V , q ∈ Hk, (5.10)

‖(I − PH)q‖V ≤ ‖(I − πkh)PHq‖V , q ∈ Hkh. (5.11)

Proof. For q ∈ H, PHhq = PZhq, since Zh = Hh ⦹Bh and q ⊥ B ⊃ Bh. This
means that PHhq is the element of Zh closest to q as measured in the V norm. But
πhq also belongs to Zh, since πh is a cochain map. Therefore, (5.10) holds.

If q ∈ Hh ⊂ Zh ⊂ Z, the Hodge decomposition gives us q − PHq ∈ B, so
πh(q − PHq) ∈ Bh, and so is orthogonal to both the discrete harmonic form q
and the harmonic form PHq. Therefore

‖q − PHq‖V ≤ ‖q − PHq − πh(q − PHq)‖V = ‖(I − πh)PHq‖V .

The gap between two closed subspaces E and F of a Hilbert space V is de-
fined [56, Chapter IV, Section 2.1]

gap(E,F ) = max

(
sup
u∈E
‖u‖=1

inf
v∈F
‖u− v‖V , sup

v∈F
‖v‖=1

inf
u∈E
‖u− v‖V

)
. (5.12)

An equivalent expression is gap(E,F ) = ‖PE − PF ‖, where PE , PF : V →
V are the orthogonal projections onto E and F [56, footnote 1, p. 198]. From
Theorem 5.2, we immediately get an estimate of the gap between the spaces of
harmonic and discrete harmonic forms:

gap
(
H,Hh

)
≤ sup

q∈H
‖q‖=1

‖(I − πh)q‖V .

The discrete Poincaré inequality and stability

The stability of the mixed method (5.3) is measured by the norm of the discrete
solution operator f 7→ (σh, uh, ph). Since (5.3) is just the mixed weak formula-
tion of the abstract Hodge Laplacian problem associated to the discrete complex
(5.5), Theorems 4.7 and 4.8, which apply to any closed Hilbert complex, give the
estimate

‖σh‖V + ‖uh‖V + ‖ph‖ ≤ ch‖f‖, (5.13)

with the stability constant ch depending only on the constant in the Poincaré in-
equality for the discrete complex. Thus the key to stability is a bound on the
discrete Poincaré constant. This is the content of the next result, which gives such
a bound in terms of the Poincaré constant for the original complex and the bound
on the cochain projection.
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Theorem 5.3 (discrete Poincaré inequality). Assume that the complex (5.5)
is a finite dimensional subcomplex of (5.1) which admits a V -bounded cochain
projection πh. Then

‖v‖V ≤ cP ‖πkh‖ ‖dv‖V , v ∈ Zk⊥h ∩ V kh ,

where cP is the constant appearing in the Poincaré inequality (4.7) and ‖πkh‖
denotes the V k operator norm of πkh.

Proof. Given v ∈ Zk⊥h ∩V kh , define z ∈ Zk⊥ ∩V k by dz = dv. By Theorem 4.6,
‖z‖V ≤ cP ‖dv‖. Now, v − πhz ∈ V kh and dπhz = πhdz = πhdv = dv with
the three equalities coming from, first, the fact that πh is a cochain map, second,
the definition of z, and, third, the subcomplex property dV kh ⊂ V

k+1
h and the fact

that πk+1
h is a projection. Thus v−πhz ∈ Zkh and so is orthogonal to v. Therefore

‖v‖2V = 〈v, πkhz〉V + 〈v, v − πkhz〉V = 〈v, πkhz〉V ≤ ‖v‖V ‖πkh‖ ‖z‖V ,

so

‖v‖V ≤ ‖πkh‖ ‖z‖V ≤ ‖πkh‖cP ‖dv‖V .

As an immediate consequence of this result and Theorem 4.9, we obtain the
discrete inf-sup condition and the stability estimate.

Theorem 5.4. Assume that the complex (5.5) is a finite dimensional subcom-
plex of the (5.1) which admits a V -bounded cochain projection πh. Then the
inf-sup condition for the mixed bilinear form B, given in (4.18), over the sub-
space V k−1

h ×V kh ×Hkh holds, and the inf-sup constant γh can be bounded below
by a positive constant depending only on cP and ‖πkh‖. Consequently the stability
estimate (5.13) holds with a constant ch depending only on the same quantities.

Error estimates for the mixed method

In the numerical analysis of differential equations, error estimates are obtained
from the stability and consistency of the discretization scheme. In the present
case, stability comes from Theorem 5.4 and consistency comes from the assumed
approximation properties of the space V jh and from Theorem 5.2 on the gap be-
tween the spaces of continuous and discrete harmonic forms (the latter required in
the case Hkh is not contained in Hk, so the mixed method is nonconforming). The
following theorem gives the resulting error estimates. It was proven in the con-
crete case of the de Rham complex in [11, Theorem 7.4] and then in the case of
general Hilbert complexes (essentially with the same proof) in [13, Theorem 3.9].
We repeat this proof here.

Theorem 5.5 (basic error estimate for the mixed method). Assume that the
complex (5.5) is a finite dimensional subcomplex of (5.1) which admits a V -
bounded cochain projection πh. Let (σ, u, p) ∈ V k−1 × V k × Hk solve the
Hodge Laplace problem (4.16) and let (σh, uh, ph) ∈ V k−1

h ×V kh ×Hkh solve the
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discrete problem (5.3). Then

‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖

≤ C
(

inf
τ∈V k−1

h

‖σ−τ‖V + inf
v∈V kh

‖u−v‖V + inf
q∈V kh

‖p−q‖V +µ inf
v∈V kh

‖PBu−v‖V
)
,

where
µ = µkh = sup

r∈Hk
‖r‖=1

‖(I − πkh)r‖

and the constant C depends only on cP and ‖πkh‖.

Proof. With B defined as in (4.18), we first observe that (σ, u, p) satisfies

B(σ, u, p; τh, vh, qh) = 〈f, vh〉 − 〈u, qh〉, (τh, vh, qh) ∈ V k−1
h × V kh × Hkh.

Let τ , v, and q be the V -orthogonal projections of σ, u, and p into V k−1
h , V kh , and

Hkh, respectively. Then, for any (τh, vh, qh) ∈ V k−1
h × V kh × Hkh, we have

B(σh − τ, uh − v, ph − q; τh, vh, qh)

= B(σ − τ, u− v, p− q; τh, vh, qh) + 〈u, qh〉
= B(σ − τ, u− v, p− q; τh, vh, qh) + 〈PHhu, qh〉
≤ C(‖σ − τ‖V + ‖u− v‖V + ‖p− q‖+ ‖PHhu‖)(‖τh‖V + ‖vh‖V + ‖qh‖).

Theorem 5.4 then gives

‖σh − τ‖V + ‖uh − v‖V + ‖ph − q‖
≤ C(‖σ − τ‖V + ‖u− v‖V + ‖p− q‖+ ‖PHhu‖). (5.14)

Using (5.10) and the boundedness of the projection πh we have

‖p− q‖ ≤ ‖(I − πh)p‖ ≤ C inf
q∈V kh

‖p− q‖V . (5.15)

Next we show that
‖PHhu‖ ≤ µ‖(I − πh)uB‖V .

Now u ⊥ Hk, so u = uB + u⊥, with uB ∈ Bk and u⊥ ∈ Zk⊥. Since Hkh ⊂ Zk,
PHhu⊥ = 0, and since πhuB ∈ Bk

h, PHhπhuB = 0. Let q = PHhu/‖PHhu‖ ∈
Hkh. By Theorem 5.2, there exists r ∈ Hk (and so r ⊥ Bk) with ‖r‖ ≤ 1 and

‖q − r‖ ≤ ‖(I − πh)r‖ ≤ sup
r∈Hk
‖r‖=1

‖(I − πh)r‖.

Therefore

‖PHhu‖ = 〈uB − πhuB, q − r〉
≤ ‖(I − πh)uB‖ sup

r∈Hk
‖r‖=1

‖(I − πh)r‖ ≤ c µ inf
v∈V kh

‖PBu− v‖V ), (5.16)

since πh is a bounded projection. The theorem follows from (5.14)–(5.16) and
the triangle inequality.
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Theorem 5.5 is typically applied when we have a family of Galerkin sub-
spaces V jh indexed by h (usually a mesh size parameter), with uniformly bounded
cochain projections. Then the rate of the convergence depends only on approx-
imation properties of the spaces V k−1

h and V kh . It is important to note that the
third term on the right-hand side of the error estimate is the approximation for
p by the full space V kh , not just by Hkh. The final term on the right-hand side is
typically much smaller than the other terms. If there are no harmonic forms, it
is not present at all. Otherwise, it is the product of two terms, both of which are
determined by the approximation properties of V kh .

The left-hand side of the error estimate couples together the W norm of vari-
ous solution quantities: σ, dσ, u, du, and p. It is possible to get sharper estimates
by considering them individually. An analogous situation (actually a special case)
is the error estimate for the standard piecewise linear finite element method for
Poisson’s equation, which takes the form

‖u− uh‖H1 ≤ C inf
v∈Vh

‖u− v‖H1 ≤ Ch‖u‖H2 .

The left-hand side combines the L2 error of u with that of gradu and so gives
a suboptimal rate for the L2 error in u. If we apply the Aubin–Nitsche duality
argument, however, we can prove the sharper estimate ‖u− uh‖ ≤ Ch2‖u‖H2 .

As a simple example of such an improved error estimates for the mixed Hodge
Laplacian, consider the error in dσ measured in the norm of W k. From the rela-
tion between the mixed formulation and the Hodge decomposition, we have

dσh = PBh
f = PBh

PBf = PBh
dσ.

Since PBh
dσ is the best approximation of dσ from Bh and πhdσ is another ele-

ment of Bh, we have

‖dσ − dσh‖ = ‖dσ − PBh
dσ‖ ≤ ‖dσ − πhdσ‖.

Assuming that the πkh is W -bounded, we obtain

‖dσ − dσh‖ ≤ ‖πkh‖L(W,W ) inf
v∈V kh

‖dσ − v‖,

just as in (5.7). Thus, approximation of dσ by dσh is, up to a constant factor, as
good as the best approximation afforded by the subspace V kh where dσh lives.

Theorem 5.6 below, which is taken from [13], gives the full set of such im-
proved error estimates for the mixed method for the Hodge Laplacian. The theo-
rem requires not just that the Hilbert complex on the continuous level be closed
but rather that it satisfy the compactness property (see Definition 4.3), which is
a stronger assumption. Moreover, it requires that the discrete subcomplex admit
not just V -bounded cochain projections but W -bounded. The theorem is stated
in terms of the best approximation error in the W j norm by elements of V jh for
various quantities w ∈W j , for which we introduce the notation

E(w) = Ejh(w) = inf
v∈V jh

‖w − v‖, w ∈W j .

Finally, the statement of the theorem uses the notation

µ = µkh = ‖(I − πh)PH‖L(W,W ), δ = δkh = ‖(I − πh)K‖L(W,W ),

η = ηkh = max
j=k−1,k

[‖(I − πjh)d∗K‖L(W,W ), ‖(I − πj+1
h )dK‖L(W,W )],
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Box 5.1. Summary of Chapter 5 on approximation of Hilbert complexes.

If V k−1 d−→ V k
d−→ V k+1 is a segment of the domain complex of a closed

Hilbert complex, we approximate the associated Hodge Laplacian problem
by discretizing the mixed weak formulation via Galerkin’s method with fi-
nite dimensional subspaces V jh ⊂ V j .

The key requirements on the Galerkin subspaces are (1) they afford good
approximation, (2) they form a subcomplex (dV jh ⊂ V j+1

h ), and (3) they
admit a bounded cochain projection, i.e., bounded linear projections V j →
V jh which commute with the dj .

If these requirements are satisfied, then the discrete complex is itself a
Hilbert complex with the same cohomology, the space of discrete harmonic
forms is close to that of the true harmonic forms, and the Poincaré constant
for the discrete complex is bounded by the true Poincaré constant. It follows
that the Galerkin method is consistent and stable and converges with the
rate of the best approximation. Assuming also a compactness condition and
boundedness of the cochain projections in W norm, we further obtain opti-
mal order error estimates for each variable separately with sharp regularity
requirements.

of which the first already appeared in Theorem 5.5. The operatorK here is the so-
lution operator for the Hodge Laplacian defined just after Remark 4.10. Due to the
compactness property, K, dK, and d∗K are compact operators on W . Together
with an approximation property, which ensures that πh converges pointwise to the
identity on W as h→ 0, this implies that η, δ, µ→ 0 with h.

Theorem 5.6 (improved error estimates for the mixed method). Assume that
the Hilbert complex (5.1) satisfies the compactness property and that (5.5) is a
finite dimensional subcomplex which admits a W -bounded cochain projection
πh. Let (σ, u, p) ∈ V k−1 × V k × Hk solve the Hodge Laplace problem (4.16)
and let (σh, uh, ph) ∈ V k−1

h × V kh × Hkh solve the discrete problem (5.3). Then

‖d(σ − σh)‖ ≤ CE(dσ), (5.17)
‖σ − σh‖ ≤ C[E(σ) + ηE(dσ)], (5.18)
‖p− ph‖ ≤ C[E(p) + µE(dσ)], (5.19)

‖d(u− uh)‖ ≤ C(E(du) + η[E(dσ) + E(p)]), (5.20)
‖u− uh‖ ≤ C(E(u) + η[E(du) + E(σ)] (5.21)

+ (η2 + δ)[E(dσ) + E(p)] + µE(PBu)]),

where the constant C depends on the W -bounds on πk−1
h , πkh, and πk+1

h but
otherwise is independent of the choice of subcomplex.

The proof of this theorem is given in [13]. It requires several pages and will
not be repeated here.



Chapter 6

Basic notions of exterior
calculus

We have thus far studied Hilbert complexes in the abstract and mostly illustrated
the concepts via the de Rham complex on a domain in three dimensions. In that
example the complex has four spaces and three differential operators, which are
the vector calculus operators gradient, curl, and divergence, whose properties we
studied individually, employing very analogous arguments for each. In this sec-
ond part of the book, we will focus on the de Rham complex in its most natural
setting, on an n-dimensional manifold. The complex then has n + 1 spaces con-
nected by n distinct operators. Using the language of exterior calculus we can
introduce all these operators in a uniform way, obtaining a theory which is at
once more elegant, more general, and more insightful. In this chapter, we present
the relevant exterior calculus, culminating in the L2 de Rham complex on a Rie-
mannian manifold. Then, in the following chapter, we turn to the discretization of
the corresponding Hodge Laplace boundary value problems using finite elements.

6.1 Exterior algebra
The primary objects of study in exterior calculus are differential k-forms, which
we take up in the next section. These are functions whose values are alternating
multilinear forms, also called algebraic k-forms. The exterior calculus is naturally
concerned with the operations of differentiation and integration of these functions.
But first we establish the basic terminology and properties of the algebraic k-
forms which arise at each point, just as, before studying vector calculus, we must
first understand finite dimensional vector spaces. This is the subject of exterior
algebra, initiated by Grassman in the middle of the 19th century. Here, we briefly
review the definitions and main properties, all of which are elementary.

6.1.1 Multilinear forms

For a finite dimensional vector space V , and a nonnegative integer k, we consider
the vector space Link V consisting of all k-linear maps

ω :

k times︷ ︸︸ ︷
V × · · · × V → R.

63
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By convention, we understand Lin0 V to be the space of scalars R. If ω ∈ Linj V
and µ ∈ Link V , the tensor product ω ⊗ µ ∈ Linj+k V is given by

(ω ⊗ µ)(v1, . . . , vj+k) = ω(v1, . . . , vj)µ(vj+1, . . . , vj+k), v1, . . . , vj+k ∈ V.

From the definition, the space Lin1 V is just the dual space V ′. We refer to its
elements as either covectors or 1-forms. If we choose a basis u1, . . . , un of V
(n = dimV ), this induces a dual basis u1, . . . , un of V ′, defined by ui(uj) = δij .
A general element of Link V is determined by the value it assigns to each of the k-
tuples (uσ1

, . . . , uσk) with the σi integers between 1 and n. Thus dim Link V =
nk. The element of Link V which takes the k-tuple (uσ1 , . . . , uσk) to 1 and all
the other k-tuples (uτ1 , . . . , uτk) to 0 is simply uσ1 ⊗ · · · ⊗ uσk , and so the set of
all of these gives a basis for Link V .

The case V = Rn differs from the general case only in that there is a canonical
basis e1, . . . , en. As notation for the corresponding dual basis we use dx1, . . . , dxn.
Thus, dxi is simply the linear functional which assigns to each vector Rn its ith
component. The reason for the odd notation (dxi rather than, say, ei) will become
clear as we develop exterior calculus.

6.1.2 Alternating multilinear forms

Multilinear forms ω ∈ Link V that change sign under the interchange of two
variables are called skew-symmetric or alternating:

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk),

1 ≤ i < j ≤ n, v1, . . . , vk ∈ V.

In particular, an alternating form vanishes if any of its arguments is repeated. To
any multilinear form ω there is associated the alternating form which is its skew-
symmetric part:

(skwω)(v1, . . . , vk) =
1

k!

∑
σ∈Σk

sign(σ)ω(vσ1 , . . . , vσk),

where the sum is over all the permutations of the integers 1 to k. For example, if
ω ∈ Lin3 V , then

(skwω)(v1, v2, v3) =
1

6
[ω(v1, v2, v3) + ω(v2, v3, v1) + ω(v3, v1, v2)

− ω(v1, v3, v2)− ω(v3, v2, v1)− ω(v2, v1, v3)].

We define the space Altk V as the space of all skew-symmetric k-linear forms.
The spaces Alt0 V and Alt1 V coincide with Lin0 V and Lin1 V , i.e., are just the
space of scalars and the space of covectors, respectively. An element of Altk V
is determined by the value it assigns to each of the k-tuples (eσ1

, . . . , eσk) with
1 ≤ σ1 < · · · < σk ≤ n, so dim Altk V =

(
n
k

)
. For k > n, Altk V = 0.

The exterior product or wedge product of ω ∈ Altj V and µ ∈ Altk V is
given by

(ω ∧ µ)(v1, . . . , vj+k) =
∑
σ

sign(σ)ω(vσ1 , . . . , vσj )µ(vσj+1 , . . . , vσj+k),
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where the sum is over σ ∈ Σj+k for which σ1 < · · · < σj and σj+1 < · · · <
σj+k. Equivalently,

ω ∧ µ =

(
j + k

j

)
skw(ω ⊗ µ).

The exterior product satisfies the anticommutativity law

ω ∧ µ = (−)jkµ ∧ ω, ω ∈ Altj V, µ ∈ Altk V.

Let {ui} be a basis for V and {ui} the corresponding dual basis. For given
1 ≤ σ1 < · · · < σk ≤ n, the element of Altk V which takes the k-tuple
(uσ1

, . . . , uσk) to 1 and takes all the other k-tuples with increasing indices to
0 is

uσ1 ∧ · · · ∧ uσk . (6.1)

The set of all of such form a basis for Altk V , and so the general alternating k-
form on V is a linear combination of these. In particular, the general alternating
k-form on Rn can be written∑

1≤σ1<···<σk≤n

aσ dx
σ1 ∧ · · · ∧ dxσk

for a unique choice of coefficients aσ ∈ R.

6.1.3 Operations on alternating forms

Contraction

Besides the vector space operations on Altk V and the exterior product, there are
several other useful algebraic operations. Given ω ∈ Altk V with k ≥ 1 and
v ∈ V , the contraction of ω and v, also known as the interior product, is the
(k − 1)-form

ωyv(v1, . . . , vk−1) = ω(v, v1, . . . , vk−1).

(If k = 0, ωyv := 0.) Since ω is alternating, (ωyv)yv always vanishes. Moreover,
it is easy to check that contraction with a vector is an antiderivation in the sense
that

(ω ∧ η)yv = (ωyv) ∧ η + (−1)kω ∧ (ηyv), ω ∈ Altk V, η ∈ Altl V.

Inner product

If the vector space V is endowed with an inner product 〈 · , · 〉, then this induces
the Riesz isomorphism V to V ′ and so an inner product on V ′. An inner product
on Altk V is then defined by

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det

[(
〈ui, vj〉

)n
i,j=1

]
,

which extends to general elements of Altk V by bilinearity. If the ui form an
orthonormal basis for V , then the corresponding dual basis elements ui are or-
thonormal in V ′, as are the resulting basis functions (6.1) of Altk V .
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Volume form

When k is equal to the dimension n of V , the space Altn V is one-dimensional,
and so a basis consists of a single element. If the space V is endowed with both
an inner product and an orientation, then there is a canonical choice of basis
element. The ordered bases of a finite dimensional vector space V divide into
two classes according to whether the change-of-basis matrix connecting two of
them has a positive or negative determinant. We orient the vector space by des-
ignating the ordered bases of one class as the positively oriented ones. (In R3,
it is conventional to take as the positively oriented bases those which satisfy the
“right-hand rule.”) If ω ∈ Altn V , then the value of ω(u1, . . . , un) is the same for
any orthonormal positively oriented basis u1, . . . , un, and we determine a unique
element of Altn V by requiring this value to be 1. The resulting alternating n-
form is called the volume form on V , which we typically denote by vol. It may be
expressed in terms of the dual basis to any positively oriented orthonormal basis
as vol = u1 ∧ · · · ∧ un. On Rn, the canonical basis e1, . . . , en is orthonormal and
positively oriented, so

vol = dx1 ∧ · · · ∧ dxn.

Hodge star

We continue with an oriented inner product space V . Let ω ∈ Altk V for some
0 ≤ k ≤ n, and let µ ∈ Altn−k V . Then ω ∧ µ = c vol for some real number
c, and the map µ 7→ c is a linear functional on Altn−k. By the Riesz represen-
tation theorem it is given by the inner product of µ with some other element of
Altn−k V . That element depends on ω and is called the Hodge star or Hodge dual
of ω, denoted ?ω. The Hodge star is thus characterized by the relation

ω ∧ µ = 〈?ω, µ〉vol, ω ∈ Altk V, µ ∈ Altn−k V. (6.2)

For each k, we thus have a linear map ? : Altk V → Altn−k V . If we
choose a positively oriented orthonormal basis of 1-forms, u1, . . . , un, so vol =
u1 ∧ · · · ∧ un, we find that

?uσ1 ∧ · · · ∧ uσk = ±uτ1 ∧ · · · ∧ uτn−k

where σ and τ are increasing sequences which partition {1, . . . , n} and the sign
is that of the permutation (σ, τ). For example, in R3,

?dx1 = dx2 ∧ dx3, ?dx2 = −dx1 ∧ dx3, ?dx3 = dx1 ∧ dx2.

Note that ? is an isometry and ? ? ω = (−)k(n−k)ω, or, equivalently, if ω ∈
Altk V , then

? ? ω = ω in odd dimensions, ? ? ω = (−)kω in even dimensions.

Combining this with (6.2) gives an alternate characterization of the Hodge star:

ω ∧ ?ν = 〈ω, ν〉vol, ω, ν ∈ Altk V. (6.3)

Scalar and vector proxies

If V is an oriented inner product space of dimension n, then there is a natural
isomorphism of each of the spaces Alt0 V and Altn V onto the scalar space R,
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and of each of the spaces Alt1 V and Altn−1 V onto the vector space V . In this
way we can associate either a scalar proxy or a vector proxy to each member of
Altk V for k = 0, 1, n − 1, or n (and so for all cases if dimV ≤ 3). We now
describe these isomorphisms.

For any vector space V , Alt0 V is just the space R of scalars and the iso-
morphism is the identity. The inner product on V defines the isomorphism of
Alt1 V = V ′ onto V via the Riesz representation. The Hodge star then maps
Altn−1 V isomorphically to Alt1 V (which is isomorphic to V ) and similarly
maps Altn V to Alt0 V = R.

The case n = 2 is particular, since in that case we have two ways of associat-
ing a vector proxy with an alternating 1-form: either as a 1-form by applying the
Riesz map or as an (n−1)-form, that is, by applying first the Hodge star and then
the Riesz map. These do not coincide, since the Hodge star Alt1 V → Alt1 V is
not the identity map: it takes u1 to u2 and u2 to −u1. Therefore the two vector
proxies differ by a rotation through a right angle.

Pullback under linear maps

If L : V → W is a linear map between finite dimensional vector spaces, then
there is an obvious pullback operation L∗ : AltkW → Altk V given by

L∗ω(v1, . . . , vk) = ω(Lv1, . . . , Lvk). (6.4)

The pullback acts contravariantly: if K : W → X is another map, then (K ◦
L)∗ = L∗ ◦ K∗. It also respects the algebraic structure, including the exterior
product:

L∗(ω ∧ µ) = L∗ω ∧ L∗µ. (6.5)

In the case when V is a subspace of W and L is the inclusion, the pullback of
a k-form on W is its restriction to V × · · · × V . Assuming that W has an inner
product, we may pass to vector proxies to view the pullback Alt1W → Alt1 V
as a map from W → V , which is nothing other than the orthogonal projection.
Another example, is when W is an oriented inner product space of dimension
n and V an oriented subspace of dimension n − 1. In that case, we may use
proxies to view the pullback Altn−1W → Altn−1 V as a map from W → R.
Let us calculate this map. We start with a positive orthonormal basis u2, . . . , un
of V and prepend to it the unit normal u1 of V in W with the sign chosen so
that u1, . . . , un is positively oriented. Let u1, . . . , un denote the dual basis of
W ′. The pullback of u1 to V ′ vanishes, while the pullbacks v2, . . . , vn of the
remaining ui give the basis of V ′ dual to u2, . . . , un. Since pullback respects the
exterior product, it follows that

L∗(u2∧· · ·∧un) = v2∧· · ·∧vn = volV , L∗(u1∧u2∧· · ·∧ûi∧· · ·∧un) = 0.

Transferred to proxies, the pullback map L∗ thus becomes

u1 7→ 1, ui 7→ 0, i = 2, . . . , n.

This map is simply the inner product of a vector in W with the oriented unit
normal u1. To summarize, in terms of proxies,

• the pullback of a 1-form to a subspace is the orthogonal projection, and
• the pullback of an n − 1 form to a subspace of codimension 1 is the inner

product with the normal.
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Table 6.1. Exterior algebra of R3 in terms of scalar and vector proxy fields.

Proxies

Alt0 R3 = R c↔ c

Alt1 R3
∼=−→ R3 u1 dx1 + u2 dx2 + u3 dx3 ↔ u

Alt2 R3
∼=−→ R3 u1 dx2 ∧ dx3 − u2 dx1 ∧ dx3 + u3 dx1 ∧ dx2 ↔ u

Alt3 R3
∼=−→ R c↔ c dx1 ∧ dx2 ∧ dx3

Exterior product

∧ : Alt1 R3 ×Alt1 R3 → Alt2 R3 × : R3 × R3 → R3

∧ : Alt1 R3 ×Alt2 R3 → Alt3 R3 · : R3 × R3 → R

Contraction with a vector v ∈ R3

yv : Alt1 R3 → Alt0 R3 v · : R3 → R
yv : Alt2 R3 → Alt1 R3 v× : R3 → R3

yv : Alt3 R3 → Alt2 R3 v : R→ R3 (c 7→ cv)

Inner product

Inner product on Altk R3 Euclidean inner product on R or R3

Volume form

vol = dx1 ∧ dx2 ∧ dx3 (v1, v2, v3) 7→ det[v1|v2|v3]

Hodge star

? : Alt0 R3 → Alt3 R3 id : R→ R
? : Alt1 R3 → Alt2 R3 id : R3 → R3

? : Alt2 R3 → Alt1 R3 id : R3 → R3

? : Alt3 R3 → Alt0 R3 id : R→ R

Pullback by a linear map L : R3 → R3

L∗ : Alt0 R3 → Alt0 R3 id : R→ R
L∗ : Alt1 R3 → Alt1 R3 LT : R3 → R3

L∗ : Alt2 R3 → Alt2 R3 (detL)L−1 : R3 → R3

L∗ : Alt3 R3 → Alt3 R3 (detL) : R→ R (c 7→ cdetL)

Exterior algebra of RRR3

Since the spaces Alt0 Rn and Altn Rn may be identified with R and the spaces
Alt1 Rn and Altn−1 Rn with Rn, in the case of n = 3 (or fewer) dimensions,
all the operations of exterior algebra may be viewed as operations on scalars or
vectors. These operations are tabulated in Table 6.1, which is adapted from [11].
We remark that the matrix (detL)L−1 which shows up as the pullback of a 2-
form in the penultimate line of the table is the adjugate matrix of L, which is
defined (as the transpose of the cofactor matrix) even when L is singular.

6.2 Exterior calculus
The primary objects of study in vector calculus are functions Ω → R and vector
fields Ω → Rn, defined on a domain Ω ⊂ Rn. In exterior calculus on Rn, the
primary objects are differential k-forms which are functions Ω → Altk Rn. In
particular, the cases of functions and vector fields is included. Indeed, as we have
seen, there are two different but natural ways to think of the functions of vector
calculus as differential forms (either as 0-forms or n-forms), and similarly vector
fields may be identified with either 1-forms or (n − 1)-forms. This distinction,
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which is lost in vector calculus, turns out to be a strength of exterior calculus.
Maxwell referred to it when he wrote that “physical vector quantities may be
divided into two classes, in one of which the quantity is defined with reference to
a line, while in the other the quantity is defined with reference to an area” [58]. In
higher dimensions other types of fields arise. For example, a differential 2-form
in four dimensions is a field with six independent components (the number of
independent components in a 4× 4 skew-symmetric matrix).

Actually exterior calculus develops most naturally if we are more general,
permitting as the domain Ω any manifold (finite dimensional, with or without
boundary, and smooth enough that tangent spaces are defined), not just open sub-
sets in Rn. Much of the theory works in this degree of generality, depending
only on the differentiable structure of the domain. Other concepts require ad-
ditional structure: either an inner product (i.e., a Riemannian manifold), or an
orientation (an oriented manifold), or both, and some formulas simplify if we use
a preferred basis. Of course, a domain on Rn is endowed with all these things.
But it is enlightening to hold clearly in mind what structures are required for what
operations, as we shall do. From a practical point of view, even if we are only
interested in solving boundary value problems in Rn, we will need differential
forms not only on the domain where the differential equation is defined but also
on its boundary—which is a manifold, but not a domain in Euclidean space.

6.2.1 Differential forms

Let Ω be a manifold of dimension n. At each point x ∈ Ω, the tangent space TxΩ
is a vector space of dimension n, and the collection of all pairs (x, v) with x ∈ Ω
and v ∈ TxΩ defines the tangent bundle, which is a manifold of dimension 2n. A
section of this bundle is a function from Ω to its tangent bundle which assigns to
each x ∈ Ω a tangent vector vx ∈ TxΩ. That is, it is a tangent vector field.

Applying the exterior algebra constructions of the previous section, we may
define a bundle (the kth exterior power of the cotangent bundle) consisting of
pairs (x, µ) with µ ∈ Altk TxΩ. A differential k-form is a section of this bundle,
i.e., a function which assigns to each x ∈ Ω an element of Altk TxΩ. Thus ω
being a differential k-form means that

ωx(v1, . . . , vk) ∈ R ∀ x ∈ Ω, v1, . . . , vk ∈ TxΩ,

with the dependence on the vectors vi being multilinear and alternating. We will
usually require some degree of smoothness for the dependence on x, varying with
the context. In the case where Ω is indeed a subdomain of Rn, we may identify
all the tangent spaces with Rn, and so a differential k-form is just a function
Ω→ Altk Rn. It may be written as

ω =
∑

1≤σ1<···<σk≤n

aσ dx
σ1 ∧ · · · ∧ dxσk , (6.6)

with the coefficients aσ real-valued functions on Ω.
We write Λk(Ω), or just Λk, for the vector space of differential k-forms on

Ω when we do not need to emphasize the exact degree of smoothness expected.
When we do, we will precede the notation with a function space. For example,
CΛk denotes the space of continuous differential forms, C1Λk of continuously
differentiable forms, etc. We will introduce notation for spaces with different
specified levels of smoothness below.
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Exterior product, contraction, inner product, Hodge star, vector proxies

The algebraic operations on alternating multilinear forms discussed in the pre-
vious section can be applied to differential forms pointwise. For example, the
exterior product of ω ∈ Λj and µ ∈ Λk is a differential (j + k)-form given by

(ω ∧ µ)x = ωx ∧ µx.

Similarly, if v is a vector field on Ω and ω ∈ Λk(Ω), then ωyv is a differential
(k − 1)-form. In order to extend the operations that need an inner product, we
require the manifold Ω to be Riemannian, so that at each point x there is given
an inner product on TxΩ. The inner product should depend smoothly on x in the
sense that if vx and wx are smooth vector fields, then x 7→ 〈vx, wx〉TxΩ should
be a smooth function on Ω (the exact degree of smoothness again depending on
the context). Several of the algebraic operations also require an orientation of the
tangent spaces TxΩ and we suppose that these have been assigned at each point
in a consistent fashion. This requires that the manifold be orientable. It is not
possible, for example, on a Möbius strip. On an oriented Riemannian manifold,
there is a unique volume n-form, characterized by the fact that at each point x
it assigns the value 1 to each positively oriented orthonormal basis of TxΩ. The
Hodge star operator from Λk to Λn−k is then defined pointwise by (6.2), and we
can compute the inner product in L2Λk(Ω) by

〈ω, ν〉L2Λk =

∫
Ω

〈ω, ν〉vol =

∫
Ω

ω ∧ ?ν, ω, ν ∈ L2Λk(Ω).

Applying the vector proxies pointwise, we can identify differential 0-forms and
differential n-forms with real-valued functions on the manifold and identify dif-
ferential 1-forms and differential (n− 1)-forms with tangential vector fields.

Pullback under smooth maps and traces

If φ : M → N is a differentiable map between manifolds, its derivative φ′(x)
is a linear map of TxM to Tφ(x)N . If ω ∈ Λk(N), we may therefore define a
differential k-form on Ω by

(φ∗ω)x = φ′(x)∗ωφ(x), (6.7)

where, on the right-hand side, we are using the algebraic pullback defined by
(6.4). This defines the pullback φ∗ω ∈ Λk(M) of a differential form under a
smooth map. As in the algebraic case, pullback acts contravariantly and respects
the exterior product.

The pullback of the inclusion of a submanifold M into another manifold N is
called the trace operator, denoted tr : Λk(N) → Λk(M). In the case of 0-forms
it is just restriction of functions. The derivative of the inclusion at a point x ∈M
is the inclusion of TxM ⊂ TxN . This fact and our calculations at the end of
Section 6.1.3 provide formulas for the trace in terms of proxies in two important
cases. If w is a vector field on N corresponding to some 1-form ω ∈ Λ1(N), then
the vector field w̄ on M corresponding to trω ∈ Λ1(M) is given by

w̄(x) = πw(x), x ∈M,

where π = πTxM : TxN → TxM is the orthogonal projection. If instead
dimM = dimN − 1 and the vector field w corresponds to ω ∈ ΛdimN−1(N),
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then trω corresponds to the scalar function 〈w, n〉 on M , where n is the appro-
priately oriented unit normal to M in N .

In the case M = Rn−1, N = Rn, with the inclusion given by x 7→ (0, x),
we can write the corresponding trace operator in terms of coordinates. If ω is the
differential form given by (6.6), then

trω =
∑

{σ |σ1>1 }

(tr aσ) dxσ1 ∧ · · · ∧ dxσk . (6.8)

The trace operator appearing in the term tr aσ on the right-hand side is the 0-form
trace, which is just the restriction to Rn−1.

6.2.2 Exterior derivative

The exterior derivative, which maps Λk(Ω) to Λk+1(Ω), is the fundamental op-
erator of exterior calculus. It is simplest to define when Ω is a domain in Rn.
If ω is a smooth differential k-form, and v1, . . . , vk are k vectors in Rn, then
ωx(v1, . . . , vk) is a differentiable function of x, which is alternating multilinear
in the k vectors. If v0 is an additional vector, then we may apply ∂v0 := v0 ·grad,
the directional derivative in the direction v0, to this function, obtaining a quantity
which depends on x and all (k + 1)-vectors. The dependence on the vectors is
linear in each but is not alternating. To get a (k+ 1)-form we take the alternating
part. Multiplying this by k + 1 gives the exterior derivative dω:

(dω)x(v0, . . . , vk) =

k∑
j=0

(−)j∂vjωx(v0, . . . , v̂j , . . . , vk).

Written in terms of the standard coordinates on Rn, a general element of
Λk(Ω) can be written as

ω =
∑

1≤σ1<···<σk≤n

fσ dx
σ1 ∧ · · · ∧ dxσk ,

where the coefficients fσ are functions on Ω. Then

dω =
∑
σ

n∑
j=1

∂fσ
∂xj

dxj ∧ dxσ1 ∧ · · · ∧ dxσk . (6.9)

In the case k = 0, for example, we have the formula

df =
n∑
j=1

∂f

∂xj
dxj .

Identifying the 1-form on the right-hand side with a vector field, we see that the
exterior derivative on a 1-form on Rn is just the gradient operator. Similar con-
siderations show that the exterior derivative on an (n− 1)-form can be identified
with the divergence operator. In three dimensions, the exterior derivative on 1-
forms can be viewed as a mapping from vector fields to vector fields and is found
to be the curl operator. Thus, in this case the entire de Rham complex (2.2) can
be expressed in the terminology of vector calculus as in (2.3).
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An important property of the exterior derivative is that it is invariant under
pullback. If φ : Ω → M is a map from a subdomain of Rn to a subdomain of
Rm, and ω ∈ Λk(M), then φ∗ω ∈ Λk(Ω) and

dφ∗ω = φ∗dω. (6.10)

In the case where φ is a diffeomorphism between two domains of equal dimen-
sion, we conclude that

dω = (φ−1)∗dφ∗ω. (6.11)

We may use this formula to define dω whenM is a manifold rather than a domain
in Euclidean space. We choose any chart φ mapping some Ω ⊂ Rn onto an
open set of M and then use the formula (6.11) to define dω on that open subset.
Since M is covered by charts, in this way we define dω ∈ Λk(M). That the
definition does not depend on the choice of charts follows from (6.10). Moreover
this invariance under pullback holds for any smooth maps between manifolds.

Another essential property of the exterior derivative is that it is a differential
in the sense that d ◦ d = 0. It is enough to verify this on a domain in Rn, where
it follows easily from (6.9) thanks to the commutativity of partial derivatives.
Equally essential is the Leibniz rule

d(ω ∧ µ) = dω ∧ µ+ (−)kω ∧ dµ, ω ∈ Λk(Ω), µ ∈ Λj(Ω). (6.12)

It is worth emphasizing that the exterior derivative is defined without any
reference to an inner product (metric) or an orientation on the manifold. A
differential k-form on any manifold can be differentiated to give a differential
(k + 1)-form.

6.2.3 Integration of differential forms

A differential k-form can be integrated over an oriented k-dimensional manifold
to give a real number. Notice that the form degree and the manifold dimension
must be the same. No metric or measure is required on the manifold to define the
integral, and if they exist, then the integral is independent of them. However, the
orientation does matter. If we switch it, the sign of the integral changes.

To get a basic idea of how the integral is defined, consider a parallelepiped P
determined by a point x ∈ Rk and k linearly independent vectors v1, . . . , vk, as
in Figure 6.1(a). If ω is a constant k-form on P , then the integral of ω over P is
simply ωx(v1, . . . , vk). If ω is smooth, but not constant, then this will be a good
approximation of the integral if the parallelepiped is sufficiently small. Now any
manifold can be approximated arbitrarily well by a collection of small tangent
parallelopideds using coordinate charts, as illustrated in Figure 6.1(b). We then
get an approximate value for the integral by evaluating ω on each parallelogram
and adding ∫

Ω

ω ≈
∑
i

ωx(i)(v
(i)
1 , . . . , v(i)

n ),

where the x(i) and v(i)
j are the points and tangent vectors determining the paral-

lelograms. Passing to the limit we obtain
∫

Ω
ω.
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x

P(a)

(b)

Figure 6.1. (a) A parallelogram determined by a point and two tangent vectors
at the point. (b) A two-dimensional manifold can be approximated arbitrarily closely by a
collection of tangent parallelograms.

One easy consequence of the definition is that the integral is invariant under
orientation-preserving diffeomorphisms. That is, if φ : M → N is such a diffeo-
morphism of n-dimensional manifolds, then∫

M

φ∗ω =

∫
N

ω, ω ∈ Λn(N). (6.13)

In particular, we may use charts to reduce the computation of the integral over a
manifold to integrals over subdomains of Rn, and most of its properties can be
verified in this way. If Ω is such a domain, then an n-form on Ω can be written
f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn, and its integral is exactly what the notation∫

Ω

f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn

suggests (i.e., it equals the Lebesgue integral of the function f over Ω). More
generally, if Ω is an oriented Riemannian manifold, then

∫
Ω
fvol coincides with

the integral of f with respect to its associated Riemannian measure.
If ω is a k-form on an n-dimensional manifold Ω, and M is an oriented k-

dimensional submanifold of Ω, then the trace of ω on M is a k-form on a k-
dimensional manifold and so can be integrated over M . Technically, the result
should be written as

∫
M

trM ω, but frequently one just writes
∫
M
ω. For example,

suppose M is an oriented curve in some domain in Rn and ω is a 1-form on the
domain. We may view ω as a vector field, and then trM ω corresponds to the
tangential projection of the vector field onto the curve. Thus

∫
M
ω is the usual

line integral from vector calculus.

6.2.4 Stokes theorem and integration by parts

The capstone of exterior calculus is the Stokes theorem, a far-ranging generaliza-
tion of the fundamental theorem of calculus. Under relatively mild smoothness
requirements on the compact oriented n-dimensional manifold with boundary Ω
and the differential form ω it states that∫

Ω

dω =

∫
∂Ω

trω, ω ∈ Λn−1(Ω).



74 Chapter 6. Basic notions of exterior calculus

Again, the result is usually stated without writing the trace operator explicitly. The
boundary orientation is inherited from that of the manifold (namely, a positively
oriented basis for the tangent space of the boundary at some point is one which,
when prepended by the outward normal at the point, is positively oriented for Ω).

If we replace ω by ω ∧ µ in this equation and use the Leibniz rule (6.12) we
obtain an integration-by-parts formula:∫

Ω

dω∧µ = (−)k+1

∫
Ω

ω∧dµ+

∫
∂Ω

trω∧trµ, ω ∈ Λk(Ω), µ ∈ Λn−k−1(Ω),

(6.14)
valid for sufficiently smooth forms (we shall investigate the required smoothness
below). Using the Hodge star operator on the boundary, the boundary integral can
be written as the inner product 〈? trω, trµ〉L2Λn−k−1(∂Ω).

6.2.5 An example application

Before continuing, we use the exterior calculus framework to derive a result of
vector calculus that plays a large role in the development of mixed finite elements.
(See, e.g., [19, Lemma 2.1.6] for a statement of the result in two dimensions.) Let
p : Ω → R and v : Ω → R3 be scalar and vector fields on a domain Ω in R3,
and consider the inner product (p,div v)L2(Ω). Recognizing the divergence as
the exterior derivative of a 2-form, we let ν = v1 dx2 ∧ dx3 − v2 dx1 ∧ dx3 +
v3 dx1∧dx2 be the differential 2-form with vector proxy v. Then dν = (div v)vol
and (p,div v)L2(Ω) =

∫
Ω
p∧dν, where the integral on the right-hand side is in the

sense of differential forms. Next, we suppose that φ : Ω̂ → Ω is an orientation-
preserving diffeomorphism and apply invariance under pullback of the integral
(6.13), the exterior product (6.5), and the exterior derivative (6.10) to transform
the integral over Ω to one over Ω̂:∫

Ω

p ∧ dν =

∫
Ω̂

φ∗(p ∧ dν) =

∫
Ω̂

φ∗p ∧ φ∗dν =

∫
Ω̂

φ∗p ∧ dφ∗ν.

From the definition (6.7) for the pullback of a field and the formulas given at the
bottom of Table 6.1 for the pullback of a linear map, we see that φ∗p = p̂ := p◦φ
and the proxy field for φ∗ν is the vector field

v̂ = (detφ′)(φ′)−1(v ◦ φ) : Ω̂→ R3.

The vector field v̂ is called the Piola transform of v. We see that the Piola trans-
form arises naturally as the pullback on 2-forms and that, as a consequence, it
satisfies the crucial property

(p,div v)L2(Ω) = (p̂,div v̂)L2(Ω̂).

6.2.6 The L2 theory of differential forms

In this section we suppose that Ω is a smooth compact n-dimensional oriented
Riemannian manifold with or without boundary and we view the exterior deriva-
tives d = dk as closed densely defined unbounded operators from L2Λk(Ω) to
L2Λk+1(Ω) which fit together to create the L2 de Rham complex. We show that
the exterior derivative operators all have closed range and compute their adjoints.
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The techniques are completely parallel to those used in Section 3.4 for the special
case of a domain in R3.

Since we assume that an orientation and a Riemannian structure are given, the
Hodge star is well-defined. From (6.3), the L2 inner product of the two k-forms
is

〈ω, µ〉L2Λk =

∫
Ω

〈ω, µ〉vol =

∫
Ω

ω ∧ ?µ, ω, µ ∈ Λk(Ω).

We may drop the Λk from the subscript on the inner product or drop the subscript
altogether when there is little risk of confusion.

The codifferential operator is defined as δ = ± ? d?. The sign is determined
by requiring that δ = δk : Λk → Λk−1 satisfy

?δω = (−)kd ? ω, ω ∈ Λk.

If we set µ = ?ν in (6.14) and use this definition of δ, we get a second form of
the integration-by-parts formula:

〈dω, ν〉 = 〈ω, δν〉+

∫
∂Ω

trω ∧ tr ?ν, ω ∈ Λk, ν ∈ Λk+1.

This formula shows that δ is the formal adjoint of d, which explains the choice of
sign in its definition.

If ω ∈ L2Λk(Ω) and µ ∈ L2Λk+1(Ω), then the equation dω = µ has meaning
in the sense of distributions, namely, it means that

〈ω, δν〉 = 〈µ, ν〉, ν ∈ C∞0 Λk+1(Ω).

We then define HΛk(Ω) as the set of ω ∈ L2Λk(Ω) for which dω ∈ L2Λk+1(Ω),
i.e., such a µ ∈ L2Λk+1(Ω) exists. In other words, we define d as the adjoint
of the operator δ from L2Λk+1 to L2Λk with the domain of the latter taken as
C∞0 Λk+1(Ω). Being the adjoint of a densely defined operator, d so defined is a
closed operator. It is densely defined in L2Λk as well, since clearly C∞0 Λk(Ω)
is contained in HΛk(Ω) and dense in L2Λk(Ω). Since d is a first order linear
differential operator, we haveH1Λk(Ω) ⊂ HΛk(Ω) (when k = 0, they are equal,
both coinciding with the standard Sobolev space H1(Ω)). We will also use the
fact that C∞Λk(Ω̄) is dense in HΛk(Ω). This is proved via smoothing just as is
done for ordinary Sobolev spaces [41, Section 5.3.3].

The Hilbert spaces L2Λk(Ω) and the closed unbounded operators dk from
L2Λk(Ω) to L2Λk+1(Ω) with domains HΛk(Ω) form a Hilbert complex, the L2

de Rham complex on the manifold:

0→ L2Λ0(Ω)
(d0,HΛ0)−−−−−−→ L2Λ1(Ω)

(d1,HΛ1)−−−−−−→ · · · (dn−1,HΛn−1)−−−−−−−−−→ L2Λn(Ω)→ 0.

To obtain something less unwieldy, we may abbreviate this to

0→ L2Λ0 (d,HΛ)−−−−→ L2Λ1 (d,HΛ)−−−−→ · · · (d,HΛ)−−−−→ L2Λn → 0 (6.15)

or just give the domain complex

0→ HΛ0 d−→ HΛ1 d−→ · · · d−→ HΛn → 0. (6.16)

We now look to the integration-by-parts formula (6.14) and establish condi-
tions on ω and µ under which it is valid. It certainly holds for smooth ω and µ and
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therefore, by density, for ω ∈ H1Λk, µ ∈ H1Λn−k−1. In order to go further, we
now show that the trace operator extends to a bounded operator on HΛk(Ω) with
values in H−1/2Λk(∂Ω). Once this is accomplished, we can extend (6.14) to the
case when one of the forms belongs to HΛ and the other to H1Λ. (We cannot
allow both forms in HΛ unless at least one has vanishing trace, since otherwise
we cannot make sense of the boundary integral.)

By definition,

〈dω, ν〉 − 〈ω, δν〉 = 0, ω ∈ HΛk, ν ∈ C∞0 Λk+1.

Equivalently, after substituting µ = ?ν,∫
dω ∧ µ− (−)k+1

∫
ω ∧ dµ = 0, ω ∈ HΛk, µ ∈ C∞0 Λn−k−1.

For fixed ω ∈ HΛk, the left-hand side defines a bounded linear functional on
µ ∈ HΛn−k−1. Defining H̊Λn−k−1 as the closure of C∞0 Λn−k−1 in HΛn−k−1,
this equation then holds for all ω ∈ HΛk, µ ∈ H̊Λn−k−1.

To continue with the study of the trace map, we assume that the boundary
is Lipschitz in the sense that we can cover it with open sets U of Ω that can be
mapped by Lipschitz charts to a half ball B = {x ∈ Rn | |x| = 1, xn ≥ 0 }
with U ∩ ∂Ω mapping to B0 := B ∩ {xn = 0}. The spaces H1Λk(U) and
H1/2Λk(U ∩ ∂Ω) may then be defined as the pullbacks of the corresponding
spaces on B and B0, respectively, and the spaces H1Λk(Ω) and H1/2Λk(∂Ω) by
piecing together these spaces with a partition of unity.

Theorem 6.1. The trace map on k-forms maps H1Λk(Ω) onto H1/2Λk(∂Ω).

Proof. In light of the preceding discussion, it suffices to prove this when Ω is
the half ball B in Rn and we are computing the trace on B0. This follows from
the formula (6.8) for the trace and the surjectivity of the scalar trace H1(B) →
H1/2(B0).

Applying the duality Lemma 3.10 as in the proof of Lemma 3.11, we find
that the dual of the trace map is a bounded linear injection whose range is the
annihilator of the null space of the trace map, which gives the following corollary.

Corollary 6.2. If L : H1Λk(Ω) → R is a bounded linear functional for which
Lω = 0 whenever trω = 0, then there exists a unique g ∈ H−1/2Λk(∂Ω) such
that

Lω = 〈g, trω〉, ω ∈ H1Λk(Ω).

Moreover, ‖g‖H−1/2Λk(∂Ω) ≤ c‖L‖H1Λk(Ω)′ .

Lω =

∫
∂Ω

trω ∧ h, ω ∈ H1Λk(Ω).

For the last statement we have just taken h = ?g, where the Hodge star is on
the boundary (and the integral is meaningful by dense extension).
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Now, if µ ∈ HΛn−k−1 and ω ∈ H1Λk satisfies trω = 0, then we have∫
Ω

dω ∧ µ− (−)k
∫

Ω

ω ∧ dµ = 0.

(It is certainly so if µ ∈ H1Λn−k−1 and extends to µ ∈ HΛ by density.) There-
fore, for any such µ, we may apply the corollary to the functional

Lµω :=

∫
Ω

dω ∧ µ− (−)k
∫

Ω

ω ∧ dµ

and conclude that there exists a unique γµ ∈ H−1/2Λn−k−1(∂Ω) such that∫
Ω

dω ∧ µ− (−)k
∫

Ω

ω ∧ dµ =

∫
∂Ω

trω ∧ γµ, ω ∈ H1Λk.

Clearly γµ = trµ if µ is smooth, say, in H1Λn−k−1. In this way we have
extended the trace operator on H1Λn−k−1 to a bounded operator mapping

HΛn−k−1(Ω)→ H−1/2Λn−k−1(∂Ω).

Henceforth we shall denote the extended operator by tr rather than γ. We sum-
marize in the following theorem.

Theorem 6.3. The trace map on H1Λk(Ω) extends to a bounded linear operator
tr : HΛk(Ω) → H−1/2Λk(∂Ω). Moreover, we have an extended version of the
integration-by-parts formula:∫

Ω

dω ∧ µ = (−)k
∫

Ω

ω ∧ dµ+

∫
∂Ω

trµ ∧ trω, ω ∈ H1Λk, µ ∈ HΛn−k−1.

(6.17)

We close this chapter with a few more useful results.

Theorem 6.4. The space H̊Λk(Ω), defined as the closure of C∞0 Λk(Ω) in HΛk,
consists of all ω ∈ HΛk(Ω) such that trω = 0.

Proof. The proof proceeds via a partition of unity and flattening the boundary,
together with a direct construction in the case of traces from a half space, just as
for ordinary Sobolev spaces. See [41, Theorem 5.5.2].

The operators (dk, H̊Λk), i.e., the operator dk taken with this smaller space as
domain, leads to the de Rham complex with boundary conditions, another Hilbert
complex:

0→ L2Λ0 (d,H̊Λ)−−−−→ L2Λ1 (d,H̊Λ)−−−−→ · · · (d,H̊Λ)−−−−→ L2Λn → 0. (6.18)

The L2 theory of the operator δ can be obtained analogously to the treatment
just given for d. Alternatively, the properties of δ may be derived from those of d
via the Hodge star. We may view δ as a closed densely defined operator on L2Λk

with domain

H∗Λk(Ω) = {ω ∈ L2Λk | δω ∈ L2Λk−1 } = ?HΛn−k(Ω).
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By Theorem 6.3, the operator tr ? acts boundedly from

H∗Λk(Ω)→ H−1/2Λn−k(∂Ω).

The closure of C∞0 Λk in H∗Λk is

H̊∗Λk = {ω ∈ H∗Λk | tr ?ω = 0 }.

A different operator is obtained by taking this space as the domain of δ. The
following theorem summarizes the adjoints of these operators.

Theorem 6.5. The adjoint of

1. (d,HΛk) is (δ, H̊∗Λk+1);
2. (d, H̊Λk) is (δ,H∗Λk+1);
3. (δ,H∗Λk+1) is (d, H̊Λk);
4. (δ, H̊∗Λk+1) is (d,HΛk).

For each of the first two operators, we have corresponding Hilbert cochain
complexes, namely, the de Rham cochain complexes (6.15) and (6.18) without
and with boundary conditions, respectively. (The last two operators similarly
form Hilbert chain complexes that are essentially identical to the corresponding
de Rham complexes except for a change of indexing.) As a consequence of the
result of Picard, discussed in Section 4.3, each of these complexes satisfies the
compactness property, and so all the operators have closed range, and all the com-
plexes are Fredholm. Knowing the adjoints, we can write down the strong form
of the Hodge Laplace boundary value problem associated to the two complexes.
For each the differential equation is the Hodge Laplace equation

(dk−1δk + δk+1d
k)u = f

or, dropping sub- and superscripts, (dδ + δd)u = f . For the complex (6.15) the
boundary conditions, implied by the requirements that u and du must belong to
the domain d∗, are

tr ?u = 0, tr ?du = 0 on ∂Ω.

The interpretation of these boundary conditions in three dimensions was discussed
in Section 4.5 and summarized in Table 4.1. For k = 0, the case of the scalar
Laplacian, the first boundary condition is vacuous, while the second states that
(gradu) · n = 0, given Neumann boundary conditions. For k = 1, these are
magnetic boundary conditions and for k = 2 electric boundary conditions, and
for k = 3 they impose Dirichlet boundary conditions.

We can also consider the complex with boundary conditions (6.18). In this
case, the boundary conditions are essential, coming from the requirements that u
belong to H̊Λk and σ to H̊Λk−1:

tru = 0, tr δu = 0 on ∂Ω.

Their interpretation in three dimensions is summarized in Table 4.2.
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Box 6.1. Summary of Chapter 6 on exterior calculus.

For an n-dimensional vector space V , the space Altk V of alternating k-
linear forms on V has dimension

(
n
k

)
. It admits various algebraic operations:

• Wedge product: ∧ : Altk V ×Altj V → Altk+j V .
• Contraction: y : Altk V × V → Altk−1 V .
• Pullback L∗ : AltkW → Altk V induced by a linear map L : V →
W .
• Inner product on Altk V induced by one on V .
• Volume form, vol, a canonical unit norm element vol spanning Altn V

(requires inner product and orientation on V ).
• Hodge star, a canonical isometry ? : Altk V → Altn−k V (requires

inner product and orientation on V ).
• Proxies: Alt0 V and Altn V are canonically isomorphic to R, Alt1 V

and Altn−1 V are canonically isomorphic to V .

A differential k-form on a manifold assigns an element of Altk of the
tangent space to each point. All the operations above carry over to differen-
tial forms. In addition, a differential k-form ω admits an exterior derivative
dω, which is a differential (k + 1)-form. The exterior derivative satisfies
d ◦ d = 0 and the Leibniz rule:

d(ω ∧ µ) = dω ∧ µ+ (−)kω ∧ dµ, ω ∈ Λk(Ω), µ ∈ Λj(Ω).

A differential n-form may be integrated over an oriented n-dimensional
manifold and satisfies the Stokes theorem∫

Ω

dω =

∫
∂Ω

trω,

where the trace operator tr is the pullback of the inclusion ∂Ω ⊂ Ω.
On a smooth compact oriented Riemannian manifold with boundary, the

integration-by-parts formula (6.17) holds. There we may view the exterior
derivative as an unbounded operator L2Λk → L2Λk+1 with domain HΛk.
The L2 de Rham complex is a closed Hilbert complex with domain complex

0→ HΛ0 d−→ HΛ1 d−→ · · · d−→ HΛn → 0.

The adjoint complex has domain complex

0← H̊∗Λ0 δ←− H̊∗Λ1 δ←− · · · δ←− H̊∗Λn ← 0,

where δ = ±?d? is the codifferential. Alternatively, we may include bound-
ary conditions in the de Rham complex, whence they do not arise in the
adjoint.
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Chapter 7

Finite element
differential forms

Consider now a Lipschitz polyhedral domain Ω ⊂ Rn and its L2 de Rham com-
plex (6.15) with domain complex (6.16). For any k, the segment

HΛk−1(Ω)
d−→ HΛk(Ω)

d−→ HΛk+1(Ω) (7.1)

determines a Hodge Laplace boundary value problem involving the two exterior
derivatives and their adjoints, as discussed in Section 4.4. In Theorem 6.5 we
have identified the adjoint of (d,HΛk) as (δ, H̊∗Λk), so the strong form of the
k-form Hodge Laplace boundary value problem is

(δd+ dδ)u = f −P kHf in Ω, tr ?u = 0, tr ?du = 0 on ∂Ω, u ⊥ Hk, (7.2)

where Hk are the harmonic k-forms on Ω, determined by the differential equa-
tions dp = 0, δp = 0 and the boundary condition tr ?p = 0. In the case of three
dimensions, we have interpreted this problem, and related ones, in Section 4.5.
In Chapter 5 we derived the requirements needed for a successful discretization
of this problem using the mixed formulation and Galerkin’s method. For this we
need to construct Galerkin subspaces V k−1

h of HΛk−1(Ω) and V kh of HΛk(Ω).
The key requirements of these subspaces, besides from being efficiently imple-
mentable, are that they afford good approximation, form a subcomplex, and ad-
mit a bounded cochain projection. In that case, as shown in Chapter 5, the mixed
Galerkin method is consistent and stable and we obtain convergence with an op-
timal rate.

In this chapter, we shall obtain efficiently implementable Galerkin subspaces
of HΛk by constructing them as spaces of finite elements. The desired degree
of approximation will then be obtained by using a sufficiently fine mesh and/or
sufficiently high degree piecewise polynomial shape functions. The challenge is
to ensure that the spaces form a subcomplex admitting a bounded cochain projec-
tion.

Specifically, given any simplicial triangulation Th of Ω (in any number of
dimensions n ≥ 1), any form degree 0 ≤ k ≤ n, and any polynomial degree
r ≥ 1, we shall construct two finite element subspaces of HΛk(Ω), denoted

PrΛk(Th) and P−r Λk(Th).
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The former space uses as shape functions the complete space of polynomial k-
forms with degree at most r, while the latter uses a somewhat smaller space of
polynomials which, following [29], we refer to as trimmed. Then we show sev-
eral ways to select two such spaces, one for (k− 1)-forms, the other for k-forms,
to solve the Hodge Laplacian. These complete and trimmed families of finite
element spaces of differential forms can be viewed as the most canonical for dis-
cretization of the de Rham complex. This is one of the important conclusions of
FEEC.

The chapter is organized as follows. Before defining the complete and trimmed
spaces PrΛk(Th) and P−r Λk(Th) in Section 7.4, we establish some properties of
differential forms with polynomial coefficients in Sections 7.1–7.3. Then, in Sec-
tion 7.5, we show how these spaces may be combined into complexes which fulfill
the hypotheses required for the error analysis in Chapter 5, thus establishing a full
set of error bounds for our methods. In Section 7.7 we briefly describe analogous
results for finite elements based on meshes of boxes rather than simplices. Finally,
in Section 7.8, we relate the elements described in this chapter to various finite
elements in the literature.

Before proceeding, we make a brief remark on notation. The finite element
spaces PrΛk(Th) and P−r Λk(Th) which we will define in the next section consist
of piecewise polynomial differential k-forms defined over the domain Ω. We will
give a unified construction of the spaces, but each space depends on the polyno-
mial degree r ≥ 0, the form degree k between 0 and n = dim Ω, and the sim-
plicial mesh Th. We shall also use the notation PrΛk and P−r Λk for the spaces
of complete and trimmed polynomial (not piecewise polynomial) differential k-
forms of degree r that are used on each simplex to construct the finite element
spaces. These spaces of polynomials are defined for each n and for each r ≥ 0
and 0 ≤ k ≤ n. Finally, we write PrΛk(T ) and P−r Λk(T ) for the spaces of
restrictions of these polynomials to a single simplex T . Thus our notation is anal-
ogous to a common notation for standard Lagrange finite elements of degree r:
Pr(Th) for the finite element space, Pr for the space of polynomials of degree r,
and Pr(T ) for their restriction to an element.

7.1 The complete polynomial spaces of differential
forms

The spaces PrΛk(Th) and P−r Λk(Th) will be constructed through the usual pro-
cess of finite element assembly. In general, a finite element space is determined
by the specification of the triangulation Th, and for each element T ∈ Th:

• a finite dimensional space of shape functions V (T ) on T , and
• a set of degrees of freedom (DOFs) for V (T ) (i.e., a basis for its dual space),

with each DOF associated to a particular face of T .

The assembled finite element space is then defined to consist of all functions on
Ω whose restriction to each T belongs to the shape function space V (T ) and for
which the DOFs are single-valued (in the sense that when two elements share a
common face, the corresponding DOFs on the face take the same value).

In the present case, the shape function spaces will be spaces of differential k-
forms with polynomial coefficients. For PrΛk(Th), the choice of shape function



7.2. The Koszul complex 83

space V (T ) is an obvious one, namely, the complete polynomial space

PrΛk(T ) =

{ ∑
1≤σ1<···<σk≤n

pσ dx
σ | pσ ∈ Pr(T )

}

of a differential k-form with polynomial coefficients of degree at most r. Its
dimension is easily calculated:

dimPrΛk(T ) =

(
n

k

)
× dimPr(T ) =

(
n

k

)(
n+ r

n

)
=

(
r + n

r + k

)(
r + k

r

)
.

(7.3)
Note that dPrΛk ⊂ Pr−1Λk+1, i.e., the exterior derivative lowers the polynomial
degree at the same time as it raises the form degree. Therefore, for each r we have
a polynomial subcomplex of the de Rham complex:

0→ PrΛ0 d−→ Pr−1Λ1 d−→ · · · d−→ Pr−nΛn → 0.

(We understand PsΛk to be 0 if s < 0.) Moreover, as proved below in Corol-
lary 7.3, this complex is exact, except for the constant functions in PrΛ0, which
form the kernel of the first d. That is, if ω ∈ PsΛk for some k > 0 and dω = 0,
then ω = dµ for some µ ∈ Ps+1Λk−1. The proof of this fact will involve a very
valuable tool called the Koszul complex. The same tool will be used to define
DOFs and to define an alternative space of shape functions.

7.2 The Koszul complex
For x ∈ Ω ⊂ Rn, the tangent space TxΩ may be identified with Rn, so we obtain
a vector field by assigning to each point x ∈ Ω that same x, now viewed as a
vector in its tangent space. This identity vector field is display in Figure 7.1.

The Koszul differential κω = ωyid of a k-form ω is the (k−1)-form obtained
by contracting ω with the identity vector field. That is,

(κω)x(v1, . . . , vk−1) = ωx(x, v1, . . . , vk−1), x ∈ Ω, v1, . . . , vk−1 ∈ Rn,

where inside the parentheses on the right-hand side the point x is viewed as a
tangent vector. On 0-forms, κ is understood to be zero. Since ω(x, x, . . .) ≡ 0,
κ ◦κ = 0, so κ is indeed a differential. Note that

κ(dxi) = xi,

i.e., the Koszul differential of the basic 1-form dxi is the ith coordinate function.
Since κ is defined by contraction with a vector field, it satisfies a Leibniz rule:

κ(ω ∧ µ) = (κω) ∧ µ+ (−1)kω ∧ (κµ).

In particular, κ(fω) = f κω for any differential form ω and any function f , so,
for example, κ(f dxi) = f xi. These rules determine κ completely. For example,

κ(dxi ∧ dxj) = xi dxj − xj dxi,
κ(dxi ∧ dxj ∧ dxk) = xi dxj ∧ dxk − xj dxi ∧ dxk + xk dxi ∧ dxj .
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Figure 7.1. The identity vector field.

If we identify 1-forms with vector fields, then κ corresponds to the dot product of
the vector field with x (or, more properly, with the identity vector field). Applied
to 2-forms in three dimensions, κ is the cross product with x, and on 3-forms it is
the product of a scalar field with x to get a vector field.

The Koszul differential κ maps PrΛk to Pr+1Λk−1, increasing the polyno-
mial degree and decreasing the form degree, exactly the reverse of d. Thus both
κ d and d κ map PrΛk to itself. The following theorem points to an intimate rela-
tion between κ and d, called the homotopy formula. In it, we write HrΛk for the
k-forms with homogeneous polynomial coefficients of degree r.

Theorem 7.1.
(d κ+κ d)ω = (k + r)ω, ω ∈ HrΛk.

Proof. We prove this by induction on k, the case k = 0 being Euler’s identity
x ·grad p = r p for p a homogeneous polynomial of degree r. Thus it is enough to
prove the result for the (k+1)-form dxi∧ω assuming that it is true for ω ∈ HrΛk.
Using the Leibniz rules for κ and d and the identity d2 = 0, we have

d κ(dxi ∧ ω) = d(xiω − dxi ∧ κω) = dxi ∧ ω + xidω + dxi ∧ d κω

and
κ d(dxi ∧ ω) = −κ(dxi ∧ dω) = −xidω + dxi ∧ κ dω.

Therefore

(d κ+κ d)(dxi ∧ ω) = dxi ∧ ω + dxi ∧ (d κ+κ d)ω

= dxi ∧ ω + (k + r)dxi ∧ ω = (k + r + 1)dxi ∧ ω,

where we have invoked the inductive hypothesis to obtain the second equality.
This completes the proof.
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Remark 7.2. An alternative proof is based on Cartan’s homotopy formula of dif-
ferential geometry. See Theorem 3.1 of [11].

Corollary 7.3. The polynomial de Rham complex

PrΛ0 d−→ Pr−1Λ1 d−→ · · · d−→ Pr−nΛn → 0

and the Koszul complex

0→ Pr−nΛn
κ−→ Pr−n+1Λn−1 κ−→ · · · κ−→ PrΛ0

are both exact.

Note that we have left the 0 off from one end of each complex, since we would
not have exactness there.

Proof. We establish this for the homogeneous polynomial de Rham complex

HrΛ0 d−→ Hr−1Λ1 d−→ · · · d−→ Hr−nΛn → 0.

We can then just sum to get the result. We must show that if ω ∈ HsΛk and
dω = 0, then ω is in the range of d. Indeed,

ω = (s+ k)−1(d κ+κ d)ω = (s+ k)−1d κω.

A similar proof holds for the Koszul complex.

Another important consequence is a direct sum decomposition.

Corollary 7.4.
HrΛk = κHr−1Λk+1 ⊕ dHr+1Λk−1. (7.4)

Proof. By the homotopy formula, any element ofHrΛk belongs to κHr−1Λk+1+
dHr+1Λk−1. Moreover the intersection of these two spaces is zero, since if ω be-
longs to the intersection, then dω = 0, κω = 0, so ω = 0 by the homotopy
formula.

7.3 The trimmed polynomial spaces of differential forms
In view of the results just established, the complete space of polynomial k-forms
of degree r can be decomposed as

PrΛk = Pr−1Λk ⊕HrΛk = Pr−1Λk ⊕ κHr−1Λk+1 ⊕ dHr+1Λk−1.

If we drop the last summand, we get a space intermediate between Pr−1Λk and
PrΛk, the trimmed spaces of polynomial forms of degree r:

P−r Λk := Pr−1Λk + κHr−1Λk+1.

Note that P−r Λ0 = PrΛ0 and P−r Λn = Pr−1Λn, but for 0 < k < n, P−r Λk is
contained strictly between Pr−1Λk and PrΛk. One can compute the dimension
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of the dropped term dHr+1Λk−1 using the exactness of the Koszul complex and
induction (see [11, Theorem 3.3]). This gives a formula for the dimension of the
trimmed polynomial spaces:

dimP−r Λk =

(
r + n

r + k

)(
r + k − 1

k

)
.

Comparing with (7.3), we see that

dimP−r Λk =
r

r + k
dimPrΛk.

We have dP−r Λk ⊂ dPrΛk ⊂ Pr−1Λk+1 ⊂ P−r Λk. So we obtain another
polynomial de Rham complex in which the spaces are trimmed:

P−r Λ0 d−→ P−r Λ1 d−→ · · · d−→ P−r Λn → 0. (7.5)

Note that in this sequence, unlike in the polynomial de Rham complex of Corol-
lary 7.3, the degree r stays constant. This complex is also exact. To see this,
first note that if d κω = 0 for some differential form ω, then, by the homotopy
formula applied to κω, we have κω = 0. In short, d is injective on the range of
κ. It follows that

N (d|Pr−1Λk) = N (d|P−r Λk). (7.6)

Next, since PrΛk−1 = P−r Λk−1 + dHr+1Λk−2, we obtain

dPrΛk−1 = dP−r Λk−1. (7.7)

By the exactness of the full polynomial de Rham complex, the left-hand sides of
(7.6) and (7.7) are equal. Therefore, the right-hand sides are equal as well:

N (d|P−r Λk) = dP−r Λk−1.

This establishes the exactness of (7.5).

Remark 7.5. The Koszul differential was defined as the contraction of a differ-
ential form at each point x with the vector in TxRn obtained by translating the
vector in Rn ≡ T0Rn which points from the origin to x. Thus the Koszul differ-
ential depends on the choice of origin in Rn. However, one can check [13, p. 331]
that the polynomial space P−r Λk is unaffected by this choice. This observation is
significant, because it allows us to define the trimmed space P−r Λk not only on
Rn but on any affine subspace. It is then easy to see that if ω ∈ P−r Λk(Rn), then
the trace of ω on an affine subspace V belongs to P−r Λk(V ).

7.4 Finite element differential forms
We are now ready to define our finite element spaces. As shape functions we
use one of the complete polynomial spaces PrΛk(T ) or one of the trimmed poly-
nomial spaces P−r Λk(T ). An important observation is that the two spaces are
related and are best understood if treated together. Indeed, the DOFs for the com-
plete space involves the trimmed spaces on the faces and vice versa. Specifically,
the DOFs for ω ∈ PrΛk(T ) are

ω 7→
∫
f

(trf ω) ∧ µ, µ ∈ P−r+k−dΛ
d−k(f), f ∈ ∆d(T ), d ≥ k, (7.8)
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while those for ω ∈ P−r Λk(T ) are

ω 7→
∫
f

(trf ω) ∧ µ, µ ∈ Pr+k−d−1Λd−k(f), f ∈ ∆d(T ), d ≥ k. (7.9)

Note that each DOF is associated to a specific face f , of some dimension between
0 and n, of the simplex T (∆d(T ) denotes the set of all faces of T of dimension
d). The assembled finite element space is then determined by the requirement that
the DOFs are single-valued.

In order that the DOF specifications (7.8) and (7.9) well define finite element
spaces, we must verify unisolvence for each of them. This requires showing, first,
that the total number of DOFs we have associated to the shape function space is no
more than its dimension and, second, that if all the DOFs vanish for some ω in the
shape function space, then ω itself vanishes. This can be accomplished for both
choices of shape function spaces. Here we verify unisolvence for the trimmed
space P−r Λk(T ), for any polynomial degree r ≥ 1, any dimension n ≥ 1, and
any form degree 0 ≤ k ≤ n. The proof, which is based on the properties of the
Koszul differential, is taken directly from [6]. A very similar proof applies in the
case of the complete polynomial spaces.

The number of DOFs defined in (7.9) is∑
d≥k

#∆d(T ) dim[Pr+k−d−1Λd−k(Rd)] =
∑
d≥k

(
n+ 1

d+ 1

)(
r + k − 1

d

)(
d

d− k

)

=
∑
j≥0

(
n+ 1

j + k + 1

)(
r + k − 1

j + k

)(
j + k

j

)
.

Simplifying with the binomial identity(
a

b

)(
b

c

)
=

(
a

c

)(
a− c
a− b

)
(which is immediate from the definition of the binomial coefficients), and Van-
dermonde’s identity ∑

j≥0

(
a

b+ j

)(
c

j

)
=

(
a+ c

a− b

)
,

the right-hand side becomes(
r + n

r + k

)(
r + k − 1

k

)
= dimP−r Λk(T ),

as required.
It remains to show that if all the DOFs vanish for some ω ∈ P−r Λk(T ), then

ω vanishes. The proof proceeds by induction on the dimension n (the case n = 1
being easy). For any facet (face of codimension 1) f of T , trf ω belongs to
P−r Λk(f), and the DOFs for trf ω vanish, since they are among the DOFs for ω.
Therefore we can invoke the inductive hypothesis to conclude that trf ω vanishes
for all facets f , i.e., that ω ∈ P̊−r Λk(T ), the subspace of elements of P−r Λk(T )
whose traces vanish on the entire boundary. Since the trace operator commutes
with the exterior derivative (as does any pullback), we have that ν := dω ∈
P̊r−1Λk+1(T ). Moreover,∫

T

ν ∧ p = ±
∫
T

ω ∧ dp = 0, p ∈ Pr+k−nΛn−k−1(T ),
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where the first equality comes from integration by parts and the second from the
vanishing DOFs of ω. From this one can show, by a concrete construction based
on barycentric coordinates [6, Lemma 3.4], that ν = 0. Since ω ∈ P−r Λk and
dω = 0, it follows that ω ∈ Pr−1Λk, which, together with the vanishing of
its traces, means ω ∈ P̊r−1Λk. A second application of the construction of [6,
Lemma 3.4] shows that ω vanishes and completes the unisolvence proof.

Thus we have defined a family of spaces of polynomial differential k-forms
on each element T for use as shape functions, namely, the spaces PrΛk(T ) and
P−r Λk(T ), defined for each r ≥ 1. Moreover, for each of these spaces we have
specified a unisolvent set of DOFs. Together with the triangulation Th, each
such choice then determines a corresponding finite element space PrΛk(Th) or
P−r Λk(Th) of piecewise polynomial differential forms.

The DOFs defined in (7.8) and (7.9) have many nice properties, which are
reflected in properties of the assembled finite element spaces. In particular,

• the DOFs enforce exactly the continuity needed for the assembled finite
element function to belong to HΛk,

PrΛk(Th) = {ω ∈ HΛk(Ω) |ω|T ∈ PrΛk(T ) };

• the canonical projection operators Πk
r,h : CΛk(Ω̄) → PrΛk(Th) deter-

mined by the DOFs form a cochain map and similarly for the P− spaces
with their canonical projections Π−,kr,h .

The commutativity of the canonical projections with the exterior derivative can be
verified using the Stokes theorem. It is a crucial property: the main step toward
the construction of bounded cochain projections.

7.5 Properties of the finite element spaces
The approximation properties of the finite element spacesPrΛk(Th) andP−r Λk(Th)
(asymptotically, as the mesh size h tends to 0) can be established as is usual for
finite elements, using the fact that the canonical projection preserves polynomials
locally, and applying the Bramble–Hilbert lemma and scaling. This is carried out
in detail in [11, Theorem 5.3], where the following result is proved.

Theorem 7.6. Denote by Πh the canonical projection of Λk(Ω) onto either
PrΛk(Th) or P−r+1Λk(Th). Let 1 ≤ p ≤ ∞ and (n − k)/p < s ≤ r + 1. Then
Πh extends boundedly toW s

pΛk(Ω), and there exists a constant C independent of
h, such that

‖ω −Πhω‖LpΛk(Ω) ≤ Chs|ω|W s
pΛk(Ω), ω ∈W s

pΛk(Ω).

Note that the restriction s > (n − k)/p comes from the Sobolev embed-
ding theorem: it is what is required for functions in W s

p to having traces on k-
dimensional faces.

For a smooth k-form ω and the complete polynomial space PrΛk(Th), we
may take p = 2, s = r + 1 to obtain an L2 estimate of order r + 1:

‖ω −Πk
r,hω‖L2Λk ≤ Chr+1|ω|Hr+1Λk .
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For the trimmed polynomial spaceP−r Λk(Th), which contains the full polynomial
space Pr−1Λk(Th) but not PrΛk(Th), the order is reduced to r:

‖ω −Π−,kr,h ω‖L2Λk ≤ Chr|ω|HrΛk .

For the complete polynomial space, we have the cochain relation

dΠk
r,hω = Πk+1

r−1,hdω,

and so

‖d(ω −Πk
r,hω)‖L2Λk+1 = ‖dω −Πk+1

r−1,hdω‖L2Λk+1 ≤ Chr|dω|HrΛk+1 ,

a loss of one order of convergence for dω as compared to ω. For the trimmed
space the cochain relation is

dΠ−,kr,h ω = Π−,k+1
r,h dω,

so there is no loss of order:

‖d(ω −Π−,kr,h ω)‖L2Λk+1 ≤ Chr|dω|HrΛk+1 .

We are now ready to choose the pair of Galerkin subspaces V k−1
h , V kh . Two

obvious choices are

PrΛk−1(Th), Pr−1Λk(Th) and P−r Λk−1(Th), P−r Λk(Th),

using either complete polynomial spaces for both subspaces or trimmed spaces
for both. There are two other choices as well, which use one complete space and
one trimmed. We may reduce V k−1

h in the complete polynomial pair to obtain

P−r Λk−1(Th), Pr−1Λk(Th).

This does not change the range dV k−1
h and again the canonical projections com-

mute: dΠ−,kr,h = Πk
r−1,hd. Similarly, we may expand V k−1

h in the trimmed poly-
nomial pair to get

PrΛk−1(Th), P−r Λk(Th),

which, again, does not affect the range of d. Altogether, we obtain four possible
choices for each degree r:

V k−1
h =


PrΛk−1(Th)

or

P−r Λk−1(Th)

 , V kh =


P−r Λk(Th)

or

Pr−1Λk(Th) (if r > 1)

 . (7.10)

The L2 rates of approximation they achieve for the variables u ∈ Λk and σ =
δu ∈ Λk−1 are shown in Table 7.1. That these estimates hold not only for the
projection of σ and u but also for the Galerkin solution (when the true solution is
smooth) can be deduced from the improved error estimates of Theorem 5.6.

Of course, to obtain these results we need to fulfill the hypotheses of Theo-
rem 5.6. For this we have to specify a third space V k+1

h ⊂ HΛk+1. (This space
is not used in the Galerkin method but is required for theory.) For this we take

V k+1
h =

{
P−r Λk+1(Th) if V kh = P−r Λk(Th),

P−r−1Λk+1(Th) if V kh = Pr−1Λk(Th).
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Table 7.1. Rates of approximation for stable choices of Galerkin subspaces.

V k−1
h V k

h σ dσ u du

PrΛk−1 P−
r Λk r + 1 r r r

P−
r Λk−1 P−

r Λk r r r r
PrΛk−1 Pr−1Λk r + 1 r r r − 1

P−
r Λk−1 Pr−1Λk r r r r − 1

This defines the subcomplex (5.5) of the corresponding segment of the de Rham
complex, required by Theorem 5.6. The remaining hypothesis is that there exist
W -bounded cochain projections, i.e., bounded projection operators πjh : L2Λj →
V jh for j = k − 1, k, k + 1 which commute with d on its domain. We have al-
ready remarked that the canonical projections, defined through the DOFs, form a
cochain projection, that is, they commute with d on smooth enough forms. How-
ever, the canonical projection is not in general bounded on L2Λk, nor even on
HΛk. For example, Π0

1,h is the usual interpolant into the space of piecewise lin-
ear functions. It is not bounded on HΛ0 = H1 in more than one dimension,
because it depends on the point values at the vertices, and it is not L2 bounded
even in one dimension. However, there are several ways a bounded cochain pro-
jection can be constructed. One approach, which is presented in detail in [11,
Section 5.4], is to apply a mollifier before applying the canonical projection (fol-
lowing [28]), and then to correct the result to obtain a projection with the desired
properties (following [66]). This construction provides the desired W -bounded
cochain projections, and hence the error estimates of Theorems 5.5 and 5.6 hold.

We remark that there are various other properties one might desire from the
cochain projections which are not provided by the construction just recalled. For
example, one might want the construction to be local or one might ask that the
bounds be uniform in the degree r. For this reason, the construction of bounded
cochain projections remains an active research area [30, 43].

7.6 The Whitney forms P–
1 Λk and de Rham’s theorem

The lowest degree trimmed polynomial finite element space P−1 Λk(Th) is a sub-
space of HΛk(Ω). Its elements are called the Whitney k-forms. Its shape func-
tionsP−1 Λk = P0Λk+κP0Λk+1 form a subspace of the complete spaceP1Λk of
linear polynomial k-forms (a proper subspace if k > 0). Figure 7.2 shows element
diagrams representing the four spaces P−1 Λk, 0 ≤ k ≤ 3, in three dimensions.
Each element diagram shows a single simplex with a symbol placed on a face to
mark each DOF occuring there. Notice that the DOFs of the Whitney forms are
highly geometric: for the Whitney k-forms, there is precisely one DOF on each
k-dimensional subsimplex—namely, the integral of the trace over the faces—and
none on the faces of other dimensions. In fact, these spaces appeared in the book
[70] of Hassler Whitney in 1957, independently of finite elements.

As we have seen, the Whitney forms assemble to form a cochain complex:

0→ P−1 Λ0(Th)
d−→ P−1 Λ1(Th)

d−→ · · · d−→ P−1 Λ1(Th)→ 0, (7.11)

which is a discrete subcomplex of the L2 de Rham complex associated to the
triangulation Th. We also recall that the Whitney forms in P−1 Λk(Th) have
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Figure 7.2. DOFs for the Whitney forms in three dimensions.

well-defined traces on the k-faces. Indeed, that the traces on k-faces are single-
valued is part of the definition of the space.4 Therefore, the de Rham map F k,
which takes differential k-forms to k-cochains, is well-defined on the Whitney
forms:

F kφ(g) =

∫
g

trg φ, φ ∈ P−1 Λk(Th), g ∈ ∆k(Th).

Notice that the values F kφ(g) are just the DOFs of φ: they can be assigned ar-
bitrarily and uniquely determine an element of φ. This is just another way to say
that the de Rham map F k defines an isomorphism of spaceP−1 Λk(Th) of Whitney
k-forms onto the space Ck(Th) of simplicial k-cochains. The collection of these
isomorphisms, as we vary k, form a cochain map, as we already saw in Chapter 2.
In short, the de Rham map is a cochain isomorphism between the Whitney form
complex and the simplicial cochain complex.

We can use the Whitney forms to prove a version of de Rham’s theorem,
which we stated at the end of Chapter 2. The cohomology associated to the Whit-
ney form complex (7.11) is certainly isomorphic to the simplical cohomology.
Indeed, the complexes themselves, not just their cohomology, are isomorphic.
But now consider a bounded cochain projection, which we know exists, from the
L2 de Rham complex to the Whitney complex. By Theorem 5.1, this induces an
isomorphism of the de Rham cohomology onto the cohomology of the Whitney
complex, as long as the approximation property (5.8) holds. This is certainly true
if the mesh size is sufficiently small, which can always be obtained by refining
the mesh. But it is in fact true for any mesh, since the simplicial cohomology is
easily shown to be unchanged by refinement.

Remark 7.7. We have proven that the L2 de Rham cohomology is isomorphic
to the simplicial cohomology. De Rham’s theorem is more typically stated in
terms of the smooth de Rham cohomology, but this is not a significant difference,
since the smooth and L2 de Rham cohomology are themselves isomorphic via the
inclusion map, essentially due to elliptic regularity. See [24, Theorem 2.12]. More
significant is that the isomorphism we have given is induced by the smoothed
projection operators (bounded cochain projections), rather than by the de Rham
map, which is not defined on the full HΛk spaces.

7.7 Cubical elements
Although we have only discussed simplicial triangulations to this point, finite
element spaces based on meshes of n-dimensional boxes (products of intervals)

4In fact, the trace of a Whitney k-form on a k-face f is a constant k-form, since it belongs to
P−

1 Λk(f) and on a k-dimensional domain, P−
1 Λk reduces to P0Λk .
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are also popular. It turns out that there are two families of finite element spaces
on boxes which are in many ways parallel to the PrΛk and P−r Λk spaces on
simplices and which we summarize in this section.

The simpler of the two families is denoted by Q−r Λk. It is defined on an
arbitrary mesh of boxes Th in Rn and for every r > 0 and 0 ≤ k ≤ n. To
define the space, we need to supply shape functions and DOFs on an arbitrary
box T ⊂ Rn. This can be done using the appropriate notion of a tensor product
of chain complexes. Here we quickly recall the results, which are extracted from
[9], to which we refer for details.

Without loss of generality, we take T = In, where I = [0, 1]. Then the shape
function space is

Q−r Λk(In) =
⊕

1≤σ1<···<σk≤n

[
n⊗
i=1

Pr−δi,σ (I)

]
dxσ1 ∧ · · · ∧ dxσk ,

where

δi,σ =

{
1, i ∈ {σ1, . . . , σk},
0 otherwise.

In the case k = 0, this space is understood to be

Q−r Λ0(In) =
n⊗
i=1

Pr(I),

i.e., the space conventionally referred to as Qr(In). This definition makes sense
also if r = 0, so Q−0 Λ0(In) = Q0(In) = R is the space of constant functions.
For k > 0, Q−0 Λk(In) = 0. We also allow n = 0 in this definition, i.e., when
In reduces to a single point. We then understand Q−r Λ0(I0) to be the space R of
constants. It is easy to count the dimension of these spaces:

dimQ−r Λk(In) =

(
n

k

)
(r + 1)n−krk, 0 ≤ k ≤ n, r ≥ 0.

Finally we specify a set of DOFs for Q−r Λk(In) (r ≥ 1, 0 ≤ k ≤ n),

v 7→
∫
f

trf v(x) ∧ q(x), q ∈ Q−r−1Λd−k(f), (7.12)

for each face f of In of degree d ≥ k. As shown in [9] their unisolvence follows
from tensor product considerations. For each r ≥ 1, the resulting finite element
spaces combine to give a finite element de Rham subcomplex:

0→ Q−r Λ0(Th)
d−→ Q−r Λ1(Th)

d−→ · · · d−→ Q−r Λn(Th)→ 0.

Note that, like the PrΛk sequence, the polynomial degree remains constant across
the complex. Moreover, the canonical projections associated to the DOFs form a
cochain map.

The second family of cubical finite elements was derived in [7], using the
tools of FEEC. We refer to it as the serendipity family of finite element differential
forms and denote the finite element space by SrΛk. It has a somewhat compli-
cated definition of the shape functions. First we define the space of polynomial
differential formsHr,sΛk as the span of those monomials (x1)α1 · · · (xn)αn dxσ1∧
· · · ∧ dxσk which are
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(i) of polynomial degree r (i.e., α1 + · · ·+ αn = r),
(ii) are linear in at least s variables, not counting the variables xσi , i.e.,

#({αi = 1 } \ {σ1, . . . , σk}) ≥ s.

Then we take as shape function space the space of polynomial differential forms

SrΛk := PrΛk ⊕
⊕
s≥1

[κHr+s−1,sΛ
k+1 ⊕ d κHr+s,sΛk].

In contrast to this intricate definition of the shape functions, the DOFs for the
SrΛk family are mercifully simple. To a face f of dimension d we associate the
DOFs

u 7→
∫
f

(trf ω) ∧ µ, q ∈ Pr−2dΛ
d−k(f),

where the weighting functions are taken from ordinary full polynomial spaces,
but their degrees drop by two each time the dimension of the face increases by
one. In [7], we show that these DOFs are unisolvent, and the main properties
of the family are determined. In particular, it is shown that the assembled finite
element spaces combine into a de Rham subcomplex with commuting canonical
projections:

0→ SrΛ0(Th)
d−→ Sr−1Λ1(Th)

d−→ · · · d−→ Sr−nΛn(Th)→ 0.

Note that the polynomial degrees decrease as for the PrΛk family.
We remark that some additional families of cubical finite element differential

forms have been proposed at least in two or three dimensions, sharing many of the
same properties. In particular, we note the TNT element of Cockburn and Qiu [33]
and the trimmed serendipity family of Gillette and Kloefkorn [44]. Another re-
mark is that for all these cubical elements, including these discussed above, there
is a major loss of accuracy if the cube is mapped not to a box or a parallelepided
but to a more general shape (such as a convex quadrilateral in two dimensions,
or some sort of hexahedron in three dimensions). This effect, which becomes
more pronounced the larger the form degree of the elements, was studied in [9].
Some elements which avoid this have recently been constructed by Arbogast and
collaborators [3, 4].

7.8 Historical antecedents
We have defined the simplicial finite element spaces PrΛk(Th) and P−r Λk(Th)
in a systematic and unified fashion in any dimension n for every 0 ≤ k ≤ n and
r ≥ 1. In one, two, and three dimensions these spaces of finite element differential
forms may be identified via proxies with spaces of scalar- and vector-valued finite
element spaces. In this way, they unify a broad range of finite element methods,
developed relatively independently by many researchers over a period of many
decades.

In any number of dimensions, the spaces PrΛ0 and P−r Λ0 coincide with each
other and identify with the most classical finite element space, the Lagrange space
of continuous piecewise polynomials of degree at most r, going back in the case
r = 1 to Courant [36] in 1943. These are the most natural finite elements to
use to discretize the space H1. The spaces PrΛn and P−r+1Λn (note the change
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of index) also coincide with each other, and they identify with the larger space
of all piecewise polynomials of degree at most r, whether continuous or not, the
natural finite element discretization of L2. Such spaces are used in finite ele-
ment calculations in the discontinuous Galerkin method, initiated by Reed and
Hill [65] in 1973. The spaces P−r Λ1 in two dimensions identify with the fa-
mous space of Raviart and Thomas [64], introduced in 1975, to discretizeH(div).
That space was generalized in two different ways to three dimensions in 1980 by
Nédélec [59], once as a discretization of H(div), the other as a discretization
of H(curl). These correspond to the spaces P−r Λ1 and P−r Λ2 in three dimen-
sions, respectively. Finally, the two-dimensional space PrΛ1 identifies with the
Brezzi–Douglas–Marini space from 1985 and the three-dimensional spaces PrΛ1

and PrΛ2 with their generalization by Nédélec in 1986, referred to as the Nédélec
edge and face elements of the second kind. Thus, in n ≤ 3 dimensions, all these
spaces have appeared in the finite element literature. The FEEC treatment re-
vealed the unity among these spaces, which had arisen in diverse contexts. In
some cases, the most natural DOFs for the spaces were not known before the
development of FEEC.

It is also worth noting that some of these spaces of piecewise polynomial dif-
ferential forms appeared independently in the context of geometry. The spaces
P−1 Λk are highly geometric, having one DOF per k-simplex in the triangulation,
and so being isomorphic to the space of simplicial k-cochains. Indeed, these
spaces were constructed by Whitney in his 1957 book [70], decades before their
appearance as mixed finite elements. The connection to mixed finite elements
was pointed out much later yet, by Bossavit [20] in 1988. Further, the complete
polynomial spaces PrΛk associated to a triangulation make an appearance in the
topological work of Sullivan [67, 68] in the 1970s, a decade before their reinven-
tion as Brezzi–Douglas–Marini elements. In a largely overlooked conference pro-
ceedings from the early 1980s [17], Baker called these Sullivan–Whitney forms
and he analyzed the convergence of a discretization of an eigenvalue problem for
the Hodge Laplacian using them. A first unified treatment of the P−r Λk spaces
was made in a seminal paper of Hiptmair [50] in 1999. In the 2006 paper of
Arnold, Falk, and Winther [11] in which the term finite element exterior calculus
first appeared, the Koszul complex was first applied to finite elements, allowing a
major simplification and a unified treatment of both the P−r Λk and PrΛk spaces.

For the cubic finite element spaces, we briefly described the two families
Q−r Λk(Th) and SrΛk(Th). The former can be considered a tensor product ana-
logue of the P−r Λk(Th) spaces and had been derived alongside the correspond-
ing simplicial spaces. For example, in two dimensions the Q−r Λ1 spaces are the
quadrilateral Raviart–Thomas spaces from [64]. The SrΛk family is different in
that it was largely absent from the literature and its discovery was inspired by
FEEC. The elements for 0-forms, ordinary H1 finite elements, are well-known
in two dimensions. They are the popular serendipity finite elements. The con-
struction of SrΛ0 gives the systematic generalization of these elements to higher
dimensions. The Sr spaces for 1-forms and 2-forms in three and more dimensions
were likewise not previously known.
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Box 7.1. Summary of Chapter 7 on finite element differential forms.

Give an n-dimension simplicial triangulation Th for any n ≥ 1, any form de-
gree 0 ≤ k ≤ n, and any polynomial degree r ≥ 1, there are two canonical
spaces of finite element differential k-forms consisting of piecewise polyno-
mials of degree r or less, the complete polynomial space PrΛk(Th) and the
trimmed polynomial space P−r Λk(Th). Like any finite element spaces, these
can be specified by giving their shape functions and DOFs and showing that
these are unisolvent.

As the name suggests, the shape functions for the complete polynomial
space consist of all k-forms with coefficients which are polynomials of de-
gree at most r. The trimmed polynomial space restricts the coefficient poly-
nomials to a subspace of all polynomials of degree at most r but which
contains at least all polynomials of degree at most r − 1. It is precisely
defined in terms of the Koszul complex. In the case of 0-forms, the trimmed
space coincides with the complete polynomial space of the same degree,
while for the case of n-forms, it coincides with the complete polynomial
space of degree r−1. In all other cases, the trimmed space is not a complete
polynomial space. In the lowest order case r = 1, the trimmed spaces are
the spaces of Whitney forms.

The complete polynomial spaces with r decreasing as k increases com-
bine to form a subcomplex of the L2 de Rham complex with bounded
cochain projections. The trimmed polynomial spaces similarly form a
de Rham subcomplex, but with degree r constant.

Two such spaces, one for k-forms and one for (k− 1)-forms, either both
complete, both trimmed, or one of each, can be used to solve the k-form
Hodge Laplacian, as indicated in (7.10).

Similar families exist for cubical meshes rather than simplicial triangu-
lations.
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Chapter 8

Further directions and
applications

So far we have considered as our Hilbert complex the L2 de Rham complex on a
domain in Rn, so that the resulting operator is the Hodge Laplacian. For 0 ≤ k ≤
n, the segment (7.1) gives rise to the weak formulation: given f ∈ L2Λk, find
σ ∈ HΛk−1, u ∈ HΛk, and p ∈ Hk such that

〈σ, τ〉 − 〈u, dτ〉 = 0, τ ∈ HΛk−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, v ∈ HΛk,

〈u, q〉 = 0, q ∈ Hk,

(8.1)

for which the corresponding strong formulation is given in (7.2). We have shown
stability, consistency, and convergence for the Galerkin solution to this problem
using any of the four pairs of spaces in (7.10) and any polynomial degree r ≥
1. The corresponding rates of convergence, for smooth solutions, are shown in
Table 7.1.

In this chapter, we quickly survey some other problems that can be addressed
in the FEEC framework.

8.1 Eigenvalue problems
Besides the Hodge Laplacian source problem, we are often interested in solving
the associated eigenvalue problem

(δd+ dδ)u = λu,

together with boundary conditions, for λ ∈ R, u 6= 0. (Note that λ = 0 is an
eigenvalue if and only if there exist nonzero harmonic forms, and the harmonic
forms form the eigenspace associated to the zero eigenvalue.)

Setting σ = d∗u, we obtain the mixed weak formulation of the eigenvalue
problem: find λ ∈ R, σ ∈ HΛk−1, 0 6= u ∈ HΛk such that

〈σ, τ〉 − 〈u, dτ〉 = 0, τ ∈ HΛk−1,

〈dσ, v〉+ 〈du, dv〉 = λ〈u, v〉, v ∈ HΛk.

The finite element discretization is then clear. We replace the spaces HΛk−1 and
HΛk with a stable pair of spaces of finite element differential forms, V k−1

h and

97
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V kh , which we have derived for the source problem. This leads to a symmetric
sparse generalized matrix eigenvalue problem, which can be solved by a variety
of iterative eigensolvers, such as the Krylov–Schur method.

The convergence theory for eigenvalue problems is quite subtle. A good con-
vergence result must of course show that any of the (infinitely many) eigenvalues
of the continuous problem is approximated arbitrarily closely by an eigenvalue
of the discrete problem, if the mesh is sufficiently fine. It must also take into ac-
count multiplicity, so that an eigenvalue of the continuous problem of multiplicity
m is approximated by m eigenvalues of the discrete problem (counting their mul-
tiplicity, which will usually be different from m). It must also rule out spurious
eigenvalues, that is, show that the discrete eigenvalues do not accumulate, as the
mesh is refined, at any number which is not an eigenvalue of the continuous prob-
lem. The approximation of eigenvectors has to be stated particularly carefully in
the case of multiple eigenvalues.

Fortunately, the theory of convergence of Galerkin approximations to eigen-
value problems has been carefully developed and it applies to the case of the
Hodge Laplacian. The basic theory is due Babuška and Osborn [16]. An ex-
cellent exposition is in [18]. A brief discussion of its application to the Hodge
Laplacian eigenvalue problem is given in [11, Section 8] and [13, Section 3.6]
and so will not be repeated here. The main message is that the hypotheses of
the Babuška–Osborn theory can be deduced from the improved error estimates
of Theorem 5.6, and consequently whenever the hypotheses of that theorem—the
compactness property of the Hilbert complex and W -bounded cochain projec-
tors for the subcomplex of Galerkin spaces—are met, we obtain convergence of
the eigenvalues and eigenvectors. The convergence rates for the eigenvectors are
optimal (determined by the approximation properties of the spaces), and the con-
vergence rates for the eigenvalues are double those of the eigenvectors.

We have already seen an example of eigenvalue convergence for the Hodge
Laplacian (1.5) in Table 1.3 of the introduction. By contrast, Table 1.2 showed
that a naive method, not based on the mixed formulation, does not converge. In the
introduction, we also considered the Maxwell eigenvalue problem curl curlu =
λu. A naive method based on Lagrange elements led to erroneous results, with
the true spectrum either not recognizable from the computation or polluted by
persistent spurious eigenvalues, as shown in Table 1.4. Computations made with
the weak formulation, but using the lowest order Whitney 1-forms, shown in the
rows labeled FEEC in the table, converge nicely. This can be proven by relating
the Maxwell eigenvalue problem to the Hodge Laplacian eigenvalue problem.
The former arises as the B∗1 problem after a Hodge decomposition, and so the
convergence analysis for the Hodge Laplacian eigenvalue problem carries over to
the Maxwell problem. See [13, Section 3.6.1] for details.

8.2 Variable coefficients
Next we begin to move beyond the Hodge Laplacian. A simple variation is to
change the inner product on one or more of the base Hilbert spaces W k = L2Λk

from the standard L2 inner product to a weighted inner product:

〈ω, µ〉 =

∫
Ω

〈Aω, µ〉vol, ω, µ ∈ L2Λk(Ω).
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HereA is a function on Ω for whichA(x) is a symmetric positive definite operator
on Altk TxΩ for each x ∈ Ω (e.g., if Ω is a domain in Rn, A can be viewed as
a function from Ω to the space of symmetric positive definite matrices of size(
n
k

)
). Assuming an upper bound on A and a positive lower bound on its least

eigenvalue, the weighted inner product on W k is equivalent to the usual one, and
so the new Hilbert complex inherits all essential properties as the old, such as
having closed ranges. The abstract Hodge Laplacian of the complex, however, is
different. Leaving the general case to the reader, consider the simple example of
the final segment of the de Rham complex on a domain in Rn. We take as the
base spaces the weighted space L2Λn−1(Ω, A) described above, where A is an
n×n symmetric positive definite matrix-valued function, and leave the rest of the
complex untouched, so the relevant segment is

L2Λn−1(Ω, A)
(div,H(div))−−−−−−−−→ L2Λn(Ω)→ 0. (8.2)

The weak form of the abstract Hodge Laplace problem for this complex then seeks
σ ∈ H(div), u ∈ L2 such that

〈Aσ, τ〉 − 〈u, div τ〉 = 0, τ ∈ H(div),

〈div σ, v〉 = 〈f, v〉, v ∈ L2.

This is the standard weak formulation corresponding to the problem

Aσ + gradu = 0, div σ = f,

or, equivalently, −divC gradu = f , σ = −C gradu, where C = A−1, together
with the Dirichlet boundary condition u = 0 on ∂Ω which, in this weak formu-
lation, is a natural boundary condition. In short, this variable coefficient partial
differential operator is again the abstract Hodge Laplacian of a Hilbert complex,
albeit a slightly different Hilbert complex than the L2 de Rham complex. It may
be discretized with the same finite element spaces as in the case where A is the
identity, and the analysis carries over without additional considerations. Many
other elliptic partial differential equations with variable coefficients can be treated
in a similar fashion.

8.3 Lower order terms
A basic model problem arising in magnetostatics seeks a (vector proxy) 2-form
B for which

curl curlB = f, divB = 0 in Ω

for f given in the range of the curl, together with boundary conditions imposed
on B. The solution can be found by solving the Hodge Laplace equation

curl curlB − grad divB = f.

For time-harmonic problems, an additional zeroth order term occurs in this
equation, giving a perturbed Hodge Laplace equation

curl curlB − grad divB −m2B = f,
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where m is the wave number. In magnetohydrodynamics, there is an additional
first order advection term induced by the velocity vector field v, so in the static
case we have

curl curlB − grad divB − curl(v ×B) = f.

When such lower order terms occur, the differential operator acting on B cannot
be realized as the abstract Hodge Laplacian of any Hilbert complex. However,
it is not difficult to extend the mixed finite element methods we have studied
to obtain viable numerical methods for the Hodge Laplacian to such problems
with lower order terms. What is less clear is the convergence analysis for these
discretizations, since the analysis presented above does not directly apply to them.
In [14] we studied the convergence of the mixed methods of FEEC for differential
operators of the form

Lu = [(d+ l1)(δ + l2) + (δ + l3)(d+ l4) + l5],

which includes the most natural lower order perturbations of the Hodge Laplace
operator dδ+ δd. Here the li are operators which act as multipliers by smooth co-
efficient fields. For example, the zeroth order term occuring in the time-harmonic
problem is accounted for in l5, while the first order perturbation arising in the
magnetohydrodynamic problem is given by l2B = −v × B (the contraction of a
2-form with a vector field).

The analysis of [14] is quite involved, and we will only briefly summarize the
main results. It is possible, of course, that the operator L (including its boundary
conditions) admits a kernel, just as the ordinary Helmholtz operator −∆ + l may
have a kernel when l is negative. Suppose that this is not the case, i.e., 0 is
not an eigenvalue of L, and so the continuous problem is well-posed. Then the
finite element discretizations we have derived for the Hodge Laplacian, all four
possibilities given in (7.10), are stable for the perturbed operator L as well, at
least for sufficiently fine triangulations. The basic error estimates, as stated in
Theorem 5.5, therefore hold. The surprise comes when trying to establish the
improved error estimates of Theorem 5.6, which establish optimal L2 rates of
convergence for each of the quantities σ, dσ, u, and du. It turns out that for some
choices of the finite element spaces and some lower order terms (l1, . . . , l5) there
can be a loss of one convergence order for either σ or dσ or both. The results are
summarized in Table 8.1, which should be compared to Table 7.1 (the case when
all the li vanish). These rates were all established theoretically and verified as
sharp computationally in [14], to which we refer for details.

Table 8.1. L2 error rates for FEEC solution of the Hodge Laplacian.

V k−1
h V k

h σ dσ u du

PrΛk−1 P−
r Λk

r + 1 if l2 = l5 = 0,

r otherwise.
r r r

P−
r Λk−1 P−

r Λk r r r r

PrΛk−1 Pr−1Λk

r + 1 if l2 = l3 = l5 = 0,

r otherwise.

r if l3 = 0,

r − 1 otherwise.
r r − 1

P−
r Λk−1 Pr−1Λk r

r if l3 = 0,

r − 1 otherwise.
r r − 1
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8.4 Differential equations on manifolds
We have mostly taken our domain to be a bounded open set in Rn. However, the
Hodge Laplace problem is defined on any Riemannian manifold, with or with-
out boundary, with a unique solution up to appropriately defined harmonic forms.
FEEC may then be used to solve the Hodge Laplace problem on a manifold,
but this brings in substantial additional considerations. The solution of PDEs on
manifolds is an important area of research itself, even in the case of the Laplace–
Beltrami equation, which is another name for the 0-form Laplacian on a manifold.
In one common approach, the manifold is itself approximated by a polyhedral
(that is, piecewise flat) manifold or perhaps a higher order piecewise polynomial
approximation, and the PDE on the manifold related to a PDE on the approxi-
mate manifold, which is solved by finite elements. (The implementation of the
finite element method on a triangulated polyhedral manifold is straightforward,
at least when the manifold is embedded in Euclidean space.) See [39] for an
excellent survey on finite elements for such surface PDEs. For the treatment of
the Hodge Laplacian for k-forms on a manifold, with k > 0, a similar approach
can be used. However, the analysis of the errors requires a significant gener-
alization of the theory of approximation of Hilbert complexes as we presented
it in Chapter 5. Such a generalization, and its application to the Hodge Lapla-
cian on an embedded hypersurface in Euclidean space, is developed by Holst and
Stern in [51].

8.5 Parabolic and hyperbolic problems
Besides the Hodge Laplace equation (dδ + δd)u = f , FEEC can be used to
formulate and solve the related parabolic equation, which seeks a time-dependent
differential form u : [0, T ]→ Λk satisfying the Hodge heat equation

ut + (δd+ dδu) = f, (8.3)

together with the initial condition u(0) = u0 and, for instance, the natural bound-
ary conditions tr ?u = 0 and tr ?du = 0. As in the elliptic case, the weak formu-
lation introduces the auxiliary variable σ = δu and determines (σ, u) : [0, T ] →
HΛk−1 ×HΛk by

〈σ, τ〉 − 〈dτ, u〉 = 0, τ ∈ HΛk−1, t ∈ [0, T ],

〈ut, v〉+ 〈dσ, v〉+ 〈du, dv〉 = 〈f, v〉, v ∈ HΛk, t ∈ [0, T ],
(8.4)

together with the initial condition. Note that the equations in (8.4) must hold at
each time t. In comparison to (8.1), (8.4) includes an additional term involving
the time-derivative ut, but, unlike the elliptic case, even if there are harmonic
forms, they do not need to be explicitly accounted for in the weak formulation of
the parabolic problem.

The Hodge heat equation is discussed in the FEEC setting in [10, Theo-
rem 4.4]. There we show how the results we have obtained for the Hodge Lapla-
cian can be used together with the Hille–Yosida–Phillips theory to establish
well-posedness of the parabolic problem. The paper goes on to analyze the
Galerkin method, both semidiscrete and, using a simple time-stepping scheme,
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fully discrete. Optimal order error estimates are obtained based on an appropriate
elliptic projection, whose properties again follow from the elliptic case.

We can also consider the Hodge wave equation, which is a second order hy-
perbolic equation determining a time-dependent k-form u : [0, T ]→ Λk from the
differential equation

utt + (δd+ dδ)u = f. (8.5)

Of course, we now require two initial conditions, u(0) = u0 and ut(0) = v0.
To solve this problem we introduce three auxiliary variables: σ = δu, v = ut,
and β = du, time-dependent differential forms of order k − 1, k, and k + 1,
respectively. We may then derive the strong form equations

σt = δut = δv,

vt = utt = −(δd+ dδ)u+ f = −δβ − dσ + f,

βt = dut = dv,

or, in matrix form,

d

dt

σv
β

 =

 0 δ 0
−d 0 −δ
0 d 0

σv
β

+

0
f
0

 ,

which reveals the structure of a symmetric hyperbolic system (the key point being
that the matrix operator on the right-hand side is skew-symmetric). As initial data,
we set σ(0) = δu0, v(0) = v0, and β(0) = du0. Note that the original variable u
is not part of the system but can be obtained by integrating ut = v, i.e.,

u(t) = u0 +

∫ t

0

v(s) ds.

Turning now to the mixed weak formulation, it seeks (σ, v, β) : [0, T ] →
HΛk−1 ×HΛk ×HΛk+1 satisfying

〈σt, τ〉 − 〈v, dτ〉 = 0, τ ∈ HΛk−1, t ∈ [0, T ],

〈vt, w〉+ 〈dσ,w〉+ 〈β, dw〉 = 〈f, w〉, w ∈ HΛk, t ∈ [0, T ],

〈βt, γ〉 − 〈dv, γ〉 = 0, γ ∈ HΛk+1, t ∈ [0, T ].

(8.6)

The well-posedness of this formulation and the convergence of its Galerkin
solution are established in the Hilbert complex framework in [63, Chapter 4].
As for the parabolic problem, this is obtained using Hille–Yosida–Phillips theory,
which is particularly simple when, as here, the time-independent operator is skew-
symmetric. The same skew-symmetry leads immediately to energy conservation,
as well. Namely, taking the test functions (τ, w, γ) equal to the solution (σ, v, β)
at time t in the weak formulation, we see that

‖σ‖2L2 + ‖v‖2L2 + ‖β‖2L2

remains constant in time.
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8.6 Maxwell’s equations
In this section we show how to formulate Maxwell’s equations as, essentially, a
Hodge wave equation. The equations are, in traditional notation,

Dt − curlH = −j, (8.7)
Bt + curlE = 0, (8.8)

divB = 0, (8.9)
divD = q. (8.10)

We view the electric field E and the magnetizing field H as (vector proxies for)
1-forms and the magnetic field B and electric displacement D as 2-forms. Thus,
both the curl operators in the equations are the exterior derivative d1 and both
the divergence operators are d2. The current density j is thus a 2-form, and the
charge density q a 3-form. These equations are supplemented by the constitutive
equations

D = εE, B = µH,

where the permittivity ε and permeability µ are positive scalars or symmetric pos-
itive definite operators which may vary in space (but not time). Note that equation
D = εE has a clear meaning if we view both D and E as vector fields but less so
if we think of it as relating differential forms of different orders. Written correctly
in the language of differential forms, the equation is D = ?εE, where the Hodge
star operator ?ε is formed with respect to an ε-weighted inner product rather than
the usual unweighted L2Λk inner product.

We note that (8.7) and (8.10) imply a necessary compatibility condition on the
data, namely, that qt = −div j. In the notation of exterior calculus, this says that
qt = −dj or, weakly,∫

qt ∧ τ −
∫
j ∧ dτ = 0, τ ∈ H̊Λ0. (8.11)

The initial data we impose on E, D, B, and H must be compatible as well.
Obviously we must have

D(0) = εE(0), B(0) = µH(0),

and, from (8.9) and (8.10), we require

divB(0) = 0, divD(0) = q(0),

as well. Finally the Maxwell problem is completed with boundary conditions. For
simplicity, we take homogeneous electric (perfect conductor) conditions E×n =
0, B · n = 0, i.e., trE = 0 and trB = 0.

Our immediate goal is to write Maxwell’s equations in the form of the 1-form
Hodge wave equation. The unknown time-dependent 1-form, denoted by v in
(8.6), will be the electric field E. The unknown 2-form, denoted by β above, will
be the negative of the magnetic field B. The remaining dependent variable, the
0-form σ, will in fact turn out to vanish identically. It is a slack variable, whose
vanishing reflects the compatibility of the data q and j. (Our weak formulation
will be well-posed even when the data q and j are incompatible, but, in that case, σ
will not vanish, and E and B will not satisfy Maxwell’s equations.) As explained
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above, the variable coefficients ε and µ are handled by adjusting the inner product
we use on the spaces of L2 differential forms. For differential 1-forms we weight
the inner product by ε,

〈E,F 〉ε :=

∫
?εE ∧ F,

which is simply
∫
εE ·F dxwhen written in terms of the vector proxies. Similarly

for differential 2-forms we weight the inner product by µ−1. For the 0-forms we
may weight with an arbitrary positive function α.

We are now ready to write the Maxwell system in weak form. With σ ≡ 0,
we get from (8.7)–(8.10) that (σ,E,B) : [0, T ]→ H̊Λ0 × H̊Λ1 × H̊Λ2 satisfy

〈σt, τ〉α − 〈E, dτ〉ε =

∫
q ∧ τ, τ ∈ H̊Λ0, t ∈ [0, T ],

(8.12)

〈Et, F 〉ε + 〈dσ, F 〉ε − 〈B, dF 〉µ−1 = −
∫
j ∧ F, F ∈ H̊Λ1, t ∈ [0, T ],

(8.13)

〈Bt, C〉µ−1 + 〈dE,C〉µ−1 = 0, C ∈ H̊Λ2, t ∈ [0, T ],
(8.14)

with the initial conditions σ(0) = 0, E(0) = E0, B(0) = B0. After changing
variables from B to −B, this problem is exactly of the form of the Hodge wave
equation (8.6), except that the inner products are weighted, and the right-hand
side of the first equation need not vanish. The well-posedness of the problem can
then be established in the same way as for (8.6).

Let us show that, under the assumption of compatible data, the slack variable
σ vanishes and that, withD = ?εE andH = ?µ=1B, the quadruple (E,B,H,D)
satisfies Maxwell’s equations. To see that σ vanishes, we first note that it vanishes
at time t = 0 by assumption. Next, we evaluate (8.12) at time t = 0 and use the
fact that ?εE(0) = D(0) and dD(0) = q(0) to conclude that σt(0) = 0. Next,
we differentiate (8.12) in time and add it to (8.13), taking F = dτ in the latter.
Using the compatibility condition (8.11), we obtain

〈σtt, τ〉α + 〈dσ, dτ〉ε = 0, τ ∈ H̊Λ0, t ∈ [0, T ].

Taking τ = σt, we obtain that

d

dt
(‖σt‖2α + ‖dσ‖2ε) = 0.

Thus the quantity in parentheses is constant in time, and we have already seen that
it vanishes when t = 0. Therefore, σt vanishes, i.e., σ is constant in time, and so
it too must vanish.

Having established that σ vanishes, it is easy to see that (8.12)–(8.14) imply
the Maxwell equations. Equation (8.12) is a weak restatement of (8.10), (8.13) of
(8.7), and (8.14) of (8.8). Finally (8.9) follows from (8.8) since divB(0) = 0.

8.7 The Stokes equations
Recall the mixed weak formulation of the Neumann problem for the Poisson equa-
tion on a domain Ω in Rn. Given f ∈ L̂2, we seek u ∈ H̊(div,Ω), p ∈ L̂2(Ω)
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such that
〈u, v〉 − 〈p, div v〉 = 0, v ∈ H̊(div),

〈div u, q〉 = 〈f, q〉, q ∈ L̂2.
(8.15)

(The hat in L̂2 denotes the subspace orthogonal to constants, reflecting the fact
that f must have integral zero and that p is determined only up to an additive
constant. We could have also worked with L2 and added terms for the space of
harmonic forms, namely, the constants.) The problem (8.15) is the mixed weak
formulation of the Hodge Laplacian associated to the segment

H̊(div)
div−−→ L̂2(Ω)→ 0, (8.16)

taken from the end of the L2 de Rham complex with boundary conditions. This
formulation can be easily discretized using the finite element differential forms
developed in Chapter 7. We now compare this problem to the problem of Stokes
flow.

The equations of Stokes flow, written in strong form, seek a vector field u, the
velocity, and a scalar field p, the pressure, satisfying

−µ∆u+ grad p = f, div u = 0 in Ω.

Here µ is the dynamic viscosity, and the vector field f gives the imposed body
force density. A simple choice of boundary conditions is no-slip, meaning that
u = 0 on ∂Ω. More realistically we might take the no-slip condition on a portion
of the boundary and, on the remainder, the stress boundary condition 2µ ε(u)n−
pn = 0, stated in terms of the symmetric gradient ε(u) of u (the strain rate) and
the outward unit normal n.

Sticking with pure no-slip boundary conditions for simplicity, the weak for-
mulation seeks u ∈ H̊1(Ω;Rn), p ∈ L̂2(Ω) such that

b(u, v)− 〈p, div v〉 = 〈f, v〉, v ∈ H̊1(Ω;Rn),

〈div u, q〉 = 0, q ∈ L̂2(Ω).
(8.17)

The bilinear form b : H̊1(Ω;Rn)× H̊1(Ω;Rn)→ R in (8.17) is given by

b(u, v) = 2µ〈ε(u), ε(v)〉. (8.18)

Using the no-slip boundary conditions and the divergence-free condition div u =
0, we can simplify this to b(u, v) = µ〈gradu, grad v〉, but we prefer not to,
because when stress (or other) boundary conditions are imposed on part of the
boundary, this is no longer possible.

The formulation (8.17) shares the terms 〈p,div v〉 and 〈div u, q〉 with the
mixed weak formulation (8.15) of the Neumann problem. However, in (8.17),
u, v are sought in H̊1(Ω;Rn), while in (8.15), they are sought in H̊(div). This
suggests a slightly different complex:

H̊1(Ω;Rn)
div−−→ L̂2(Ω)→ 0. (8.19)

The complex (8.19) differs from (8.16) in that more smoothness is required in the
first space of the complex. To fully define the complex we must specify the base
spaces on which div operates as well as the domain spaces shown in (8.19). In
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fact, we consider (8.19) as a bounded Hilbert complex, so that the base spaces and
domain spaces coincide. As the inner product on the first space H̊1(Ω;Rn) we
use the bilinear form b, which is equivalent to the H1 inner product there. With
these choices we see that the weak formulation (8.17) is simply the mixed weak
formulation of the abstract Hodge Laplacian for the complex (8.19). The well-
posedness of this problem therefore follows from the general theory of Chapter 4,
as long as the Hilbert complex is closed and has no harmonic forms. In the present
case, this means that we require that the divergence operator map H̊1(Ω;Rn) onto
L̂2(Ω). This is a stronger statement than that div maps H̊(div,Ω) onto L̂2(Ω)
which we established easily in Section 3.4. The stronger result is widely used in
the analysis of the Stokes equations, with a variety of proofs available, applying
to domains with different degrees of generality. For an excellent discussion of the
different approaches and results, see [35, Section 2.2].

Applying the theory of Chapter 5, we obtain conditions for accurate Galerkin
discretization of (8.19). It is sufficient that the Galerkin subspaces Vh ⊂ H̊1(Ω;Rn)
and Sh ⊂ L2(Ω) satisfy the subcomplex property

div Vh ⊂ Sh (8.20)

and that there exist bounded cochain projections:

πV : H̊1(Ω;Rn)→ Vh, πS : L2(Ω)→ Sh, div πV v = πS div v.

It then follows from the FEEC theory, or by more elementary arguments, that the
Galerkin discretization is stable and satisfies the error estimate

‖u− uh‖1 + ‖p− ph‖0 ≤ c
(

inf
v∈Vh

‖u− v‖1 + inf
p∈Sh

‖p− q‖0
)
. (8.21)

Stokes element pairs that satisfy the subcomplex property div Vh ⊂ Sh have
an important additional property. The discrete velocity uh conserves mass, i.e.,
it exactly solves the continuity equation div uh = 0. This follows immediately
from the Galerkin equation

〈div uh, q〉 = 0

with q = div uh ∈ Sh. Mass conservation is a very desirable property for many
applications, particularly when treating nonlinear and/or time-dependent Navier–
Stokes equations. See the recent review [55] for an in-depth discussion of this
point. Classical Stokes element pairs (the MINI element, P2–P0, Taylor–Hood,
etc.), such as are discussed in [45] or [19, Chapter 8], do not satisfy the sub-
complex property. While they do satisfy the estimate (8.21), they are not mass
conservative.

The development of mass conservative elements has been an active research
area for the last decade or so. The primary approach is the development of finite
element subcomplexes of the segment (8.19) and of a longer complex of which
this forms a portion. In two dimensions, the full complex in question is

0→ H2(Ω)
curl−−→ H1(Ω;Rn)

div−−→ L2(Ω)→ 0,

where I have simplified by not imposing boundary conditions or suppressing the
harmonic forms. This Stokes complex is a smoothed version of the L2 de Rham
complex. Although the discretization of the Stokes equations requires only sub-
spaces of the last two nonzero spaces in the complex, in the construction and
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analysis of such subspaces it is often helpful to refer to the entire complex and
subcomplexes of it. This draws a connection between mass conservative finite
elements for the Stokes equations and finite element subspaces of H2(Ω), a chal-
lenging issue which has been long studied in finite elements. The first finite ele-
ment discretization of the two-dimensional Stokes complex was given by Mardal,
Tai, and Winther in 2002 [57]. However, this was a nonconforming discretization
so not a true subcomplex. In 2013, the first conforming finite element discretiza-
tion on general meshes was constructed by Guzmán and Neilan [49]. They used
low degree piecewise polynomials enriched by certain rational functions. The
same year Falk and Neilan [42] constructed a family of conforming piecewise
polynomial subcomplexes of the Stokes complex. Numerous other possible ele-
ment choices are possible as well. See [55, Figure 4.1] for more information.

The development of mass conservative Stokes elements in three dimensions
can similarly be based on the three-dimensional Stokes complex

0→ H2 grad−−−→ H1(curl)
curl−−→ H1(Ω;R3)

div−−→ L2 → 0,

whereH1(curl) consists of allH1 vector fields whose curls are againH1. Neilan
constructs a finite element subcomplex in [60]. Another approach, for special
mesh geometries, was recently developed by Guzmán, Fu, and Neilan [48].

8.8 Elasticity
Among the notable successes of the FEEC viewpoint has been the development
of stable mixed finite element methods for the equations of elasticity. In this case,
the relevant Hilbert complex is not the de Rham complex but rather some version
of the elasticity complex.

Let Ω be a domain in Rn occupied by an elastic body. The primary unknowns
in elasticity are the displacement field u : Ω → Rn and the stress field σ : Ω →
S := Rn×nsymm. In steady state, the stress field must satisfy the equilibrium condition

div σ = f,

where f : Ω→ Rn is the load vector field giving the imposed body force per unit
volume. Furthermore, the displacement and stress are related by the constitutive
equation

Aσ = ε u,

where ε denotes the infinitesimal strain operator, i.e., the symmetric part of the
gradient, and the compliance tensorA is a symmetric positive definite map S→ S,
possibly variable. The elastic boundary value problem is completed with suitable
boundary conditions, such as the displacement condition u = 0 on ∂Ω.

The divergence operator, div, acting rowwise, defines a closed operator from
L2 symmetric tensor fields (i.e., symmetric n× n matrix-valued functions) to L2

vector fields. Its domain is the space H(div,Ω;S) of L2 symmetric tensor fields
with divergence in L2. On the space of L2 symmetric tensor fields, we weight the
L2 inner product by the compliance tensor A, and so we obtain a segment of a
Hilbert complex

L2
A(Ω;S)

(div,H(div;S))−−−−−−−−−→ L2(Ω,Rn)→ 0. (8.22)
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This is altogether analogous to the complex (8.2), the difference being that here
the divergence operator maps symmetric tensor to vectors, rather than vectors
to scalars. The constraint of symmetry makes the elasticity system much more
difficult to discretize.

As we did for (8.2), we immediately obtain the weak form of the abstract
Hodge Laplace problem for this complex. It seeks σ ∈ H(div;S), u ∈ L2(Ω;Rn)
such that

〈Aσ, τ〉 − 〈u, div τ〉 = 0, τ ∈ H(div,Ω;S),

〈div σ, v〉 = 〈f, v〉, v ∈ L2(Ω;Rn).

Clearly, the first equation is a weak form of the constitutive equation and the
displacement boundary condition, while the second equation directly translates
the equilibrium condition. The next theorem asserts that the divergence operator
acting on symmetric tensors is in fact surjective. This implies that the Hilbert
complex (8.22) is closed and that there are no harmonic forms. It then follows
from the general theory of Chapter 4 that the mixed elasticity system is well-
posed.

Theorem 8.1. The divergence operator (acting rowwise) maps H(div,Ω;S) onto
L2(Ω,Rn).

In fact, we shall prove a stronger result. Analogous to the space S of symmet-
ric n × n tensor fields, let K denote the space of skew-symmetric n × n tensor
fields. The dimensions are dimS =

(
n+1

2

)
, dimK =

(
n
2

)
, respectively. As usual,

for any matrix τ ∈ Rn×n, skw τ ∈ K denotes its skew-symmetric part.

Theorem 8.2. Given f ∈ L2(Ω,Rn) and g ∈ L2(Ω,K), there exists τ ∈
H(div,Ω;Rn×n) such that

div τ = f, skw τ = g.

Theorem 8.1 follows from Theorem 8.2 by taking g = 0.

Proof. We shall only prove the result in n = 2 or 3 dimensions, with some
remarks on the general case given at the end of the proof.

The construction is based on two ingredients. First is the surjectivity of the
divergence acting on H1(Ω;Rn): given q ∈ L2(Ω) we can find v ∈ H1(Ω;Rn)
such that div v = q. In the preceding section, on the Stokes equations, we
discussed the more difficult result of surjectivity of the divergence acting on
H̊1(Ω;Rn). Without boundary conditions, the result is much easier. We can,
e.g., extend q by zero to a ball containing Ω, then solve the Dirichlet problem
with forcing term q on the ball to get an H2 function, and finally take v to be the
restriction to Ω of the gradient of the solution.

The second ingredient is an elementary calculus identity. Primarily for rea-
sons of notation, we present it separately in n = 2 dimensions and then in three
dimensions. For n = 2, the space K is one-dimensional. Thus we may state the
theorem in terms of a scalar function g belonging toL2(Ω), and we must show that
there exists τ such that div τ = f and asym τ = g, where asym τ := τ12 − τ21.
In the two-dimensional case, the elementary identity we require is that the asym-
metric part of the matrix curl of a two-dimensional vector field is the negative of
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its divergence. That is,

asym curlψ = −divψ, ψ ∈ H1(Ω;R2). (8.23)

(Here the curl operator is the two-dimensional vector curl applied to each scalar
component of ψ to give the rows of a 2 × 2 matrix.) The identity is expressed as
well by the commutativity of the following diagram:

H1(Ω;R2) L2(Ω;R2×2)

H1(Ω;R2) L2(Ω)

curl

id − asym

div

With these two ingredients in hand, we proceed to the construction. For arbi-
trary f ∈ L2(Ω;R2), we can find ρ ∈ H1(Ω;R2×2) such that

div ρ = f. (8.24)

Indeed, since no constraint on the symmetry of f is imposed, we can simply
define the two rows of ρ independently using the surjectivity of the divergence on
H1(Ω;R2). Next we form the scalar function −g + asym ρ and again apply the
surjectivity of the divergence to get a vector field ψ ∈ H1(Ω;R2) satisfying

divψ = −g + asym ρ. (8.25)

Note that the matrix curl of ψ belongs to L2 and is divergence-free and so belongs
to H(div,Ω;R2×2). Thus

τ := ρ+ curlψ ∈ H(div,Ω;R2×2).

Finally, from (8.24), (8.23), and (8.25), we get

div τ = div ρ = f, asym τ = asym ρ+ asym curlψ = asym ρ− divψ = g,

as desired. This proves Theorem 8.2 in the two-dimensional case.
In three dimensions, the space K is itself three-dimensional, i.e., K ∼= R3.

Thus we take g to be a 3-vector field and impose the constraint asym τ = g,
where now

asym τ = (τ23 − τ32, τ31 − τ13, τ12 − τ12).

We also need the operator S : R3×3 → R3×3 given by

Sρ = ρT − (Tr ρ)I,

where Tr denotes the matrix trace and I the 3 × 3 identity matrix. This operator
is invertible with

S−1µ = µT − 1

2
(Trµ)I.

The relevant identity in three dimensions can now be expressed as commutativity
of the diagram

H1(Ω;R3×3) L2(Ω;R3×3)

H1(Ω;R3×3) L2(Ω,R3)

curl

S − asym

div
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The argument then proceeds as in two dimensions. We define first ρ ∈ H1(Ω;R3×3)
then ψ ∈ H1(Ω;R3×3) such that

div ρ = f, divψ = −g + asym ρ,

and then set
τ = ρ+ curlS−1ψ.

Remark 8.3. To prove the above theorem in general dimension n, it is preferable
to view the spaces that enter the statement of the theorem and the proof, namely,
spaces of scalar-, vector-, and matrix-valued functions, as spaces of differential
forms. The differential forms which so arise are not scalar-valued but take values
in AltmRn for m = n − 1 or n − 2. Thus, for example, the space L2(Ω;Rn),
in which f is given, should actually be thought of as L2Λn(Ω)⊗Altn−1 Rn, the
space of L2 differential n-forms on Ω taking values in Altn−1 Rn. Recall that
Altn−1 Rn is canonically isomorphic to Rn (vector proxy) and that differential
n-forms can be viewed as simply scalar-valued functions (scalar proxy), so we
can indeed canonically identify an element of L2Λn(Ω) ⊗ Altn−1 Rn with an
Rn-valued L2 function on Ω. In a similar way we can make identifications of the
spaces in which g is given and in which ρ, ψ, and τ are defined. In this context,
it is possible to define analogues of the operators asym and S for general n and
establish the commuting diagram needed for the proof.

We now turn to discretization of the elasticity system, which, as we have seen,
is just the abstract Hodge Laplace problem for the complex (8.22). Thus, we
need to develop a finite element subcomplex of the spaces arising in (8.22), to be
used to discretize the stress and displacement, respectively. As mentioned above,
the symmetry constraint makes this quite difficult. It turns out to be useful to
extend the sequence (8.22) to a longer complex, just as (8.2) extends to become
the de Rham complex. In two dimensions this longer elasticity complex can be
written

0→ L2(Ω)
(curl curl,H2)−−−−−−−−→ L2(Ω;S)

(div,H(div,S))−−−−−−−−−→ L2(Ω,R2)→ 0, (8.26)

where, for simplicity, we drop the weighting coefficient A. Here the operator
curl curl is the composition of the vector-valued curl of a scalar function, fol-
lowed by the matrix-valued curl of a vector function. The resulting tensor field,

curl curlφ =

(
∂2φ/∂x2

2 −∂2φ/∂x2
2

−∂2φ/∂x2
2 ∂2φ/∂x2

1

)
,

is known in elasticity theory as the Airy stress function associated to a scalar
potential function φ.

In three dimensions, the elasticity complex is

0→ L2(Ω;R3)
(ε,H1(Ω;R3))−−−−−−−−→ L2(Ω;S)

curlT curl−−−−−−→ L2(Ω;S)
(div,H(div,S))−−−−−−−−−→ L2(Ω,R3)→ 0.

In this case the operator curlT curl, called the St. Venant operator or the incom-
patibility operator, is obtained by applying the curl to the rows of a symmetric
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3 × 3 matrix field, transposing, and again applying the curl (or, equivalently, by
applying the curl first to the rows and then to the columns). Its domain consists of
those L2 symmetric matrix fields with curlT curl also in L2. Note that the matrix
fields in its range are symmetric. An extensive analysis of this incompatibility
operator is given in [2].

If we interchange the diagonal elements and reverse the signs of the off-
diagonal elements of the Airy stress function (8.8), we obtain the Hessian of
φ. This indicates that discretization of the two-dimensional elasticity complex
is strongly related to H2 scalar finite elements. This observation helped guide
the way to the discovery of the first stable mixed finite elements for elasticity us-
ing polynomial trial functions in two dimensions. These were proposed in [15]
in 2002. Together with the classical Hermite quintic, or Argyris, finite element
subspace of H2, the stress and displacement elements form a finite element sub-
complex of (8.26). Since that work many alternatives and improvements have
been proposed. The elements of [15] were generalized to three dimensions, first
in the lowest degree case [1] and then for general degree [8]. More efficient el-
ements, applicable in any dimension, were developed in [53] and [54]. See the
latter reference for a more extensive survey of the relevant literature.

We mention briefly another approach to developing efficient mixed finite el-
ements for elasticity, namely, by imposing symmetry weakly (an idea that goes
back to the early days of finite elements [37]). In this approach we obtain a dif-
ferent mixed weak formulation, in which the stress field is sought in a space on
which symmetry is not imposed, but instead the symmetry is weakly imposed by
orthogonality of the skew-symmetric part of the stress to a Lagrange multiplier.
The resulting system may again be viewed as the abstract Hodge Laplacian of a
complex, but the relevant complex is now, instead of (8.2),

L2
A(Ω;Rn×n)

((div,skw),H(div;R2×2))−−−−−−−−−−−−−−−→ L2(Ω;Rn)× L2(Ω;K)→ 0.

Note that the differential is now composed of a pair of operators: it associates
to a matrix field both its divergence and its skew-symmetric part. We proved
above in Theorem 8.2 that this differential is surjective, and so again we obtain a
well-posed mixed formulation. This segment can again be extended to a longer
complex (the elasticity complex with weak symmetry). The discretization of this
complex can be accomplished with simpler elements than those needed for the
standard elasticity complex. Such elements were developed in three dimensions
in [12] and a variety of alternative elements have been proposed as well. See, for
example, [32], [46], and the work referenced in [47].
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adjoint, see operator, adjoint
Airy stress function, 111
algebra, homological, 11
anticommutativity, 65
assembly, finite element, 82

Betti number, 14
boundary, 12
boundary conditions

electric, 47
essential, 5
magnetic, 5
natural, 5
no-slip, 105
perfect conductor, 103

chain
boundary of, 13
simplicial, 13

chain projection, 15
coboundary, 16
cocycle, 16
codifferential, 75
coefficients, variable, 98
cohomology, 16

reduced, 34
compactness property, 36
complex

chain, 12
cochain, 16
de Rham, 16
dual, 16
elasticity, 107, 110
exact, 12
Hilbert, 33

approximation of, 51
closed, 34
dual, 34
Fredholm, 34

Koszul, 83
L2 de Rham, 37, 74
simplicial, 12

pure, 12
simplicial chain, 12
simplicial cochain, 16
Stokes, 106
tensor product, 92

compliance tensor, 107
contraction, 65, 70
cycle, 12

degree of freedom (DOF), 82
differential, 12

Koszul, 83
displacement, 107
DOF, see degree of freedom
duality, Poincaré–Lefschetz, 49

eigenvalue problem
Hodge Laplace, 97
Laplace, 3
Maxwell, 7
vector Laplace, 4

eigenvalue, spurious, 9
elasticity, 107

compliance tensor, 107
discretization, 110
displacement, 107
strain, 107
stress, 107
weak formulation, 108
weak symmetry, 111

equation
Hodge heat, 101
Hodge Laplace, 78
Hodge wave, 102
Laplace–Beltrami, 101
Maxwell’s, 103
Stokes, 104

exterior algebra, 63

exterior calculus, 68
exterior derivative, 71

adjoint of, 78
exterior product, 64, 70

finite element method, 2
finite element space

complete polynomial, 82
cubical, 91
serendipity, 92
trimmed polynomial, 85

finite elements, Lagrange, 2, 3
form

alternating, 64
differential, 69

finite element, 86
L2 theory, 74

multilinear, 63
Whitney, 90

Galerkin method, 2
gap, 58
grading, see vector space,

graded
graph norm, 22

harmonic form, 35
discrete, 54

Hille–Yosida–Phillips theory,
101, 102

Hodge decomposition, 36
Hodge star, 66, 70
homological algebra, 11
homology, 12
homotopy formula, 84

incompatibility operator, 110
integration by parts, 74
integration of differential forms,
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Laplacian
abstract Hodge, 39

well-posedness of, 41
Hodge, 39, 81
vector, 4

Leibniz rule, 72
for Koszul differential, 83

load vector, 2
lower order terms, 99

manifold
piecewise flat, 101
polyhedral, 101

manifolds, PDEs on, 101
map

chain, 15
de Rham, 17
graded, 11

mass conservation, 106
matrix, incidence, 16
Maxwell’s equations, 103

weak formulation, 104

operator
adjoint, 23
boundary, 12

closed, 22
densely defined, 21
domain of, 21
graph, 22
null space, 22
range, 22
unbounded, 21

Piola transform, 74
Poincaré inequality, 2, 37

discrete, 59
projection

bounded cochain, 56
canonical, 88

proxy, 66, 70
pullback, 67, 70

shape functions, 82
simplex, 12

boundary of, 13
face, 12
orientation, 13

St. Venant operator, 110
stiffness matrix, 2
Stokes equations, 104

weak formulation, 105

strain, 107
stress, 107
subcomplex, 12
subcomplex property, 55
subspace, graded, 12

theorem
closed graph, 22
closed range, 25
de Rham, 18, 91
Stokes, 73

trace operator
on differential forms, 70
on H(curl), 31
on H(div), 29
on H1, 28
on HΛ, 77

triangulation, 13

unisolvence, 87

vector space, graded, 11
volume form, 66

wedge product, 64, 70
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