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Preface

In recent years, the field of partial differential equation (PDE)-constrained optimization
has received a significant impulse with large research projects being funded by different
national and international agencies. A key ingredient for this success is related to the
wide applicability that the developed results have (e.g., in crystal growth, fluid flow, or
heat phenomena). In return, application problems gave rise to further deep theoretical
and numerical developments. In particular, the numerical treatment of such problems
has motivated the design of efficient computational methods in order to obtain optimal
solutions in a manageable amount of time.

Although some books on optimal control of PDEs have been edited in the past years,
they are mainly concentrated on theoretical aspects or on research-oriented results. At
the moment, there is a lack of student accessible texts describing the derivation of opti-
mality conditions and the application of numerical optimization techniques for the solu-
tion of PDE-constrained optimization problems. This text is devoted to fill that gap.

By presenting numerical optimization methods, their application to PDE-constrained
problems, the resulting algorithms and the corresponding MATLAB codes, we aim to
contribute to make the field of numerical PDE-constrained optimization accessible to
advanced undergraduate students, graduate students, and practitioners.

Moreover, recent results in the emerging field of nonsmooth numerical PDE-constrai-
ned optimization are also presented. Up to the author’s knowledge, such results are not
part of any monograph yet. We provide an overview on the derivation of optimality con-
ditions and on some solution algorithms for problems involving bound constraints, state
constraints, sparsity enhancing cost functionals, and variational inequality constraints.

After an introduction and some preliminaries on the theory and approximation of
partial differential equations, the theory of PDE-constrained optimization is presented.
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Existence of optimal solutions and optimality conditions are addressed. We use a general
framework that allows to treat both linear and nonlinear problems. First order optimality
conditions are presented by means of both a reduced approach and a Lagrange multi-
plier methodology. The derivation is also illustrated with several examples, including
linear and nonlinear ones. Also sufficient second-order conditions are developed and the
application to semilinear problems is explained.

The next part of the book is devoted to numerical optimization methods. Classical
methods (descent, Newton, quasi-Newton, sequential quadratic programming (SQP))
are presented in a general Hilbert-space framework and their application to the special
structure of PDE-constrained optimization problems explained. Convergence results are
presented explicitly for the PDE-constrained optimization structure. The algorithms are
carefully described and MATLAB codes, for representative problems, are included.

The box-constrained case is addressed thereafter. This chapter focuses on bound con-
straints on the design (or control) variables. First- and second-order optimality condi-
tions are derived for this special class of problems and solution techniques are stud-
ied. Projection methods are explained on basis of the general optimization algorithms
developed in Chap. 4. In addition, the nonsmooth framework of primal-dual and semis-
mooth Newton methods is introduced and developed. Convergence proofs, algorithms,
and MATLAB codes are included.

In the last chapter, some representative nonsmooth PDE-constrained optimization
problems are addressed. Problems with cost functionals involving the L1-norm, with
state constraints, or with variational inequality constraints are considered. Numerical
strategies for the solution of such problems are presented together with the correspond-
ing MATLAB codes.

This book is based on lectures given at the Humboldt-University of Berlin, at the
University of Hamburg, and at the first Escuela de Control y Optimización (ECOPT), a
summer school organized together by the Research Center on Mathematical Modeling
(MODEMAT) at EPN Quito and the Research Group on Analysis and Mathematical
Modeling Valparaı́so (AM2V) at USM Chile.
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Chapter 1

Introduction

1.1 Introductory Examples

1.1.1 Optimal Heating

Let Ω be a bounded three-dimensional domain with boundary Γ , which represents a
body that has to be heated. We may act along the boundary by setting a temperature
u = u(x) and, in that manner, change the temperature distribution inside the body. The
goal of the problem consists in getting as close as possible to a given desired temperature
distribution zd(x) in Ω .

Mathematically, the problem may be written as follows:

min J(y,u) =
1
2

∫
Ω
(y(x)− zd(x))

2 dx+
α
2

∫
Γ

u(x)2 ds,

subject to:

−Δy = 0 in Ω ,

∂y
∂n

= ρ(u− y) in Γ ,

⎫⎬
⎭ State equation

ua ≤ u(x)≤ ub, Control constraints

where ua,ub ∈ R such that ua ≤ ub. The control constraints are imposed if there is
a technological limitation on the maximum or minimum value of the temperature to
be controlled. The scalar α > 0 can be interpreted as a control cost, which, as a by-
product, leads to more regular solutions of the optimization problem. The function ρ(x)

© The Author(s) 2015 1
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2 1 Introduction

represents the heat transfer along the boundary. Quadratic objective functionals like
J(y,u) are known as tracking type costs.

The problem consists in finding an optimal control u(x) and its associated state y(x)
such that J(y,u) is minimized. This type of problems arise in several industrial control
processes (see, e.g., [30, 45]) and in the design of energy efficient buildings [31].

1.1.2 Optimal Flow Control

Steady laminar incompressible fluid flow in a three-dimensional bounded domain Ω is
modeled by the stationary Navier–Stokes equations:

− 1
Re

Δy+(y ·∇)y+∇p = f in Ω ,

divy = 0 in Ω ,

y = 0 on Γ ,

where y = y(x) stands for the velocity vector field at the position x, p = p(x) for the
pressure and f = f (x) for a body force. The nonlinear term corresponds to the convection
of the flow and is given by

(y ·∇)y =
3

∑
i=1

yi

⎛
⎝Diy1

Diy2

Diy3

⎞
⎠ .

The scalar coefficient Re > 0 stands for the Reynolds number, a dimensionless quantity
related to the apparent viscosity of the fluid. Existence of a solution to the stationary
Navier–Stokes equations can, in fact, be argued only if the Reynolds number is suffi-
ciently small so that the viscous term dominates the convective one.

The fluid flow may be controlled either by acting on the boundary (injection or suc-
tion) or by using a body force (e.g., gravitational, electromagnetic). If the aim is, for
instance, to minimize the vorticity of the fluid by acting on the boundary of the domain,
an optimization problem may be formulated in the following way:

minJ(y,u) =
1
2

∫
Ω
|curl y(x)|2 dx+

α
2
‖u‖2

U

subject to:

− 1
Re

Δy+(y ·∇)y+∇p = f in Ω ,
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divy = 0 in Ω ,

y = u on Γ ,

where U stands for the boundary control space. In order to preserve the incompressibility
of the fluid, the additional condition

∫
Γ u ·n ds = 0, with n the outward normal vector to

Ω , has to be imposed on the control.
Examples of flow control problems include the design of airfoils [21, 26], the active

control of separation [10], drag reduction [24], among others. Problems with control or
state constraints have also been studied in the last years [13, 14, 57]. For more details
on PDE-constrained optimization in the context of fluid flow, we refer to the monograph
[25] and the references therein.

1.1.3 A Least Squares Parameter Estimation Problem in Meteorology

Data assimilation techniques play a crucial role in numerical weather prediction (NWP),
making it possible to incorporate measurement information in the mathematical models
that describe the behavior of the atmosphere. As a consequence, the quality of the pre-
dictions significantly increases and a larger prediction time-window may be obtained.

Fig. 1.1 Prediction of the surface temperature distribution in Ecuador
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One of the widely used data assimilation methodologies is the so-called 4DVar. This
variational approach treats the assimilation problem as a PDE-constrained optimization
one, which can be stated in the following way:

minJ(y,u) =
1
2

n

∑
i=1

[H(y(ti))− zd(ti)]
T R−1

i [H(y(ti))− zd(ti)]

+
1
2
[u− yb(t0)]

T B−1[u− yb(t0)]

subject to:

y(t) = M(y(t0)), (system of PDEs)

y(t0) = u, (initial condition)

where zd are the observations obtained at different time steps ti, yb is the background
vector, H is the observation operator, and Ri and B are the so-called observation and
background error covariances, respectively.

The idea of 4DVar consists in solving the PDE-constrained optimization problem in
order to obtain an initial condition for the atmospheric dynamics, which is subsequently
used for the numerical simulations on a larger time-window. In this context, the use of
efficient methods for the solution of the PDE-constrained optimization problem becomes
crucial to obtain an operational procedure (see, e.g., [36]).

1.2 A Class of Finite-Dimensional Optimization Problems

We consider next a special class of finite-dimensional optimization problems, where the
variable to be optimized has the following separable structure:

x = (y,u) ∈ R
n,

where u ∈ R
l is a decision or control variable and y ∈ R

m is a state variable determined
by solving the (possibly nonlinear) equation

e(y,u) = 0, (1.1)

with e : Rn → R
m.
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We consider the optimization problem given by:

⎧⎪⎨
⎪⎩

min
(y,u)∈Rm×Uad

J(y,u)

subject to:
e(y,u) = 0,

(1.2)

with J and e twice continuously differentiable and Uad ⊂ R
l a nonempty convex set.

Existence of a solution to (1.2) can be obtained under suitable assumptions on J and e.
Let x = (y,u) be a local optimal solution to (1.2). We further assume that

ey(y,u) is a bijection. (1.3)

From the implicit function theorem (see, e.g., [12, p. 548]) we get the existence of a
unique (at least locally) y(u) such that

e(y(u),u) = 0 (1.4)

in a neighborhood of u, with the solution mapping y(u) also being twice continuously
differentiable.

If for each u ∈Uad there is a unique solution y(u) to (1.4), we may write the optimiza-
tion problem in reduced form as:

min
u∈Uad

f (u) = J(y(u),u). (1.5)

Theorem 1.1. Let ū be a local optimal solution for (1.5). Then it satisfies the following
variational inequality:

f ′(ū)(v− ū)≥ 0, for all v ∈Uad. (1.6)

Proof. Let v ∈Uad. From the convexity of Uad it follows that

tv+(1− t)ū = ū+ t(v− ū) ∈Uad, for all t ∈ [0,1].

Since ū is locally optimal,

f (ū+ t(v− ū))− f (ū)≥ 0, for t sufficiently small.

Dividing by t and passing to the limit we obtain:

f ′(ū)(v− ū) = lim
t→0

f (ū+ t(v− ū))− f (ū)
t

≥ 0. 	
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In the special case Uad = R
l , if u ∈ R

l is an optimal solution to (1.5), we then obtain
the necessary condition:

∇ f (u)�h = ∇yJ(y(u),u)�[y′(u)h]+∇uJ(y(u),u))�h = 0, (1.7)

for any h ∈ R
l .

Definition 1.1. An element p ∈ R
m is called the adjoint state related to u if it solves the

following adjoint equation:

ey(y(u),u)
�p = ∇yJ(y(u),u). (1.8)

Theorem 1.2. Let (y,u) be a local optimal solution to (1.2), with Uad = R
l , and assume

that (1.3) holds. Then there exists an adjoint state p ∈ R
m such that the following opti-

mality system holds:

e(y,u) = 0, (1.9a)

ey(y,u)
�p = ∇yJ(y,u), (1.9b)

eu(y,u)
�p = ∇uJ(y,u). (1.9c)

Proof. From the invertibility of ey(y,u) we obtain the existence of an adjoint state p ∈
R

m that solves (1.9b).
Since by the implicit function theorem the mapping y(u) is twice continuously differ-

entiable in a neighborhood of u, we may take derivatives in

e(y(ū), ū) = 0

and obtain that
ey(y(ū), ū)[y

′(ū)h]+ eu(y(ū), ū)h = 0, (1.10)

for any h ∈ R
l .

To obtain (1.9c) we compute the derivative of the reduced cost function in the follow-
ing way:

∇ f (u)�h = ∇yJ(y(u),u)�[y′(u)h]+∇uJ(y(u),u)�h

= (ey(y,u)
�p)�[y′(u)h]+∇uJ(y,u)�h

= p�(ey(y,u)[y
′(u)h])+∇uJ(y,u)�h

Thanks to equation (1.10), we then obtain that

∇ f (u)�h =−p�(eu(y,u)h)+∇uJ(y,u)�h

=−(eu(y,u)
�p)�h+∇uJ(y,u)�h
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which due to (1.7) yields
eu(y,u)

�p = ∇uJ(y,u). 	


Remark 1.1. From assumption (1.3) and proceeding as in the proof of Theorem 1.2 we
get a formula for the gradient of the reduced cost function given by:

∇ f (u) =−eu(y,u)
�p+∇uJ(y,u), (1.11)

where y and p are solutions to

e(y,u) = 0 and ey(y,u)
�p = ∇yJ(y,u),

respectively.

One frequent choice for Uad is given by so-called box constraints

Uad = {u ∈ R
l : ua ≤ u ≤ ub}, (1.12)

where ua, ub ∈ R
l satisfy ua ≤ ub componentwise. By rewriting (1.6), using (1.11), we

obtain that
(
−eu(ȳ, ū)

�p+∇uJ(ȳ, ū), ū
)
Rl

≤
(
−eu(ȳ, ū)

�p+∇uJ(ȳ, ū),u
)
Rl
, ∀u ∈Uad,

which implies that ū is solution of

min
u∈Uad

(
−eu(ȳ, ū)

�p+∇uJ(ȳ, ū),u
)
Rl

= min
u∈Uad

l

∑
i=1

(
−eu(ȳ, ū)

�p+∇uJ(ȳ, ū)
)

i
ui.

Thanks to the special structure of Uad and the independence of the ui’s, it then follows
that

(
−eu(ȳ, ū)

�p+∇uJ(ȳ, ū)
)

i
· ūi = min

ua,i≤ui≤ub,i

(
−eu(ȳ, ū)

�p+∇uJ(ȳ, ū)
)

i
·ui

for i = 1, . . . , l. Consequently,

ūi =

{
ub,i if

(
−eu(ȳ, ū)�p+∇uJ(ȳ, ū)

)
i < 0,

ua,i if
(
−eu(ȳ, ū)�p+∇uJ(ȳ, ū)

)
i > 0.

(1.13)

For the components where
(
−eu(ȳ, ū)�p+∇uJ(ȳ, ū)

)
i = 0, no additional information is

obtained.
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Let us now define the multipliers:

λa := max
(
0,−eu(ȳ, ū)�p+∇uJ(ȳ, ū)

)
,

λb :=
∣∣min

(
0,−eu(ȳ, ū)�p+∇uJ(ȳ, ū)

)∣∣ , (1.14)

where max, min, and | · | are considered componentwise. Then, from (1.13) it follows
that

λa ≥ 0, ua − ū ≤ 0, (λa,ua − ū)
Rl = 0,

λb ≥ 0, ū− ub ≤ 0, (λb, ū−ub)Rl = 0,

which is called a complementarity system. From (1.14) we then obtain that

λa −λb = ∇uJ(ȳ, ū)− eu(ȳ, ū)
�p,

which, together with the adjoint equation, implies the following theorem.

Theorem 1.3. Let (ȳ, ū) be an optimal solution for (1.2), with Uad given by (1.12), and
such that (1.3) holds. Then there exist multipliers p ∈ R

m and λa, λb ∈ R
l such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(ȳ, ū) = 0,

ey(ȳ, ū)T p = ∇yJ(ȳ, ū),

∇uJ(ȳ, ū)− eu(ȳ, ū)�p−λa+λb = 0,

λa ≥ 0, λb ≥ 0,

λ�
a (ua − ū) = λ�

b (ū− ub) = 0,

ua ≤ ū ≤ ub.

The last necessary conditions are known as Karush–Kuhn–Tucker (KKT) conditions
and constitute one of the cornerstones of nonlinear optimization theory.



Chapter 2

Basic Theory of Partial Differential Equations and
Their Discretization

In this chapter we present some basic elements of the analysis of partial differential equa-
tions, and of their numerical discretization by finite differences. Our aim is to introduce
some notions that enable the reader to follow the material developed in the subsequent
chapters. Both the analysis and the numerical solution of partial differential equations
(PDEs) are research areas by themselves, with a large amount of related literature. We
refer, for instance, to the books [9, 19] for the analysis of PDEs and to, e.g., [23, 52] for
their numerical approximation.

2.1 Notation and Lebesgue Spaces

Let X be a Banach space and let ‖·‖X be the associated norm. The topological dual of X
is denoted by X ′ and the duality pair is written as 〈·, ·〉X ′,X . If X is, in addition, a Hilbert
space, we denote by (·, ·)X its inner product.

The set of bounded linear operators from X to Y is denoted by L (X ,Y ) or by L (X)

if X = Y. The norm of a bounded linear operator T : X → Y is given by

‖T‖L (X ,Y ) := sup
v∈X ,‖v‖X=1

‖T v‖Y .

For T ∈ L (X ,Y ) we can also define an operator T ∗ ∈ L (Y ′,X ′), called the adjoint
operator of T , such that

〈w,T v〉Y ′,Y = 〈T ∗w,v〉X ′,X , for all v ∈ X , w ∈ Y ′

and ‖T‖L (X ,Y ) = ‖T ∗‖L (Y ′,X ′) .

© The Author(s) 2015 9
J. C. De los Reyes, Numerical PDE-Constrained Optimization,
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10 2 Basic Theory of Partial Differential Equations and Their Discretization

Definition 2.1. Let Ω be an open subset of RN and 1 ≤ p < ∞. The set of p-integrable
functions is defined by

Lp(Ω) = {u : Ω → R;u is measurable and
∫

Ω
|u|p dx < ∞},

and the following norm is used: ‖u‖Lp = (
∫

Ω |u(x)|p dx)
1
p .

Moreover, we also define the space

L∞(Ω) = {u : Ω → R;u is measurable and |u(x)| ≤C a.e. in Ω for some C > 0}

and endow it with the norm ‖u‖L∞ = inf{C : |u(x)| ≤C a.e. in Ω}.

Theorem 2.1 (Hölder). Let u ∈ Lp(Ω) and v ∈ Lq(Ω) with 1
p +

1
q = 1. Then uv ∈ L1(Ω)

and ∫
Ω
|uv| dx ≤ ‖u‖Lp ‖v‖Lq .

The spaces Lp(Ω) are Banach spaces for 1 ≤ p ≤ ∞ and reflexive for 1 < p < ∞. For
L2(Ω), a scalar product can be defined by

(u,v)L2 =
∫

Ω
uv dx

and a Hilbert space structure is also obtained.

2.2 Weak Derivatives and Sobolev Spaces

Next, we study a weak differentiability notion which is crucial for the definition of
Sobolev function spaces and for the variational study of PDEs.

Let Ω ⊂ R
N ,N = 2,3, be a bounded Lipschitz domain and consider functions y,v ∈

C1(Ω). Utilizing Green’s formula, we obtain the equivalence
∫

Ω
v(x)Diy(x) dx =

∫
Γ

v(x)y(x)ni(x) ds−
∫

Ω
y(x)Div(x) dx,

where ni(x) denotes the i-th component of the exterior normal vector to Ω at the point
x ∈ Γ and ds stands for the Lebesgue surface measure at the boundary Γ . If, in addition,
v = 0 on Γ , then ∫

Ω
y(x)Div(x)dx =−

∫
Ω

v(x)Diy(x)dx.
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More generally, if higher order derivatives are involved, we obtain the following formula:
∫

Ω
y(x)Dα v(x) dx = (−1)|α |

∫
Ω

v(x)Dα y(x) dx,

where α = (α1, . . . ,αN) is a multi-index and Dα denotes the differentiation operator with

respect to the multi-index, i.e., Dα = ∂ |α|
∂xα1 ···∂xαN , with |α|= ∑N

i=1 αi. The last equation is
the starting point for the definition of a weaker notion of differentiable function, which
takes advantage of the presence of the integral and the accompanying regular function
v(x).

Definition 2.2. Let L1
loc(Ω) denote the set of locally integrable functions on Ω , i.e., inte-

grable on any compact subset of Ω . Let y ∈ L1
loc(Ω) and α be a given multi-index. If

there exists a function w ∈ L1
loc(Ω) such that

∫
Ω

y(x)Dα v(x) dx = (−1)|α |
∫

Ω
w(x)v(x)dx,

for all v ∈C∞
0 (Ω), then w is called the derivative of y in the weak sense (or weak deriva-

tive), associated with α , and is denoted by w = Dα y.

Example 2.1. y(x) = |x| in Ω = (−1,1). The weak derivative of y(x) is given by

y′(x) = w(x) =

{
−1 if x ∈ (−1,0),

1 if x ∈ [0,1).

Indeed, for v ∈C∞
0 (−1,1),

∫ 1

−1
|x|v′(x)dx =

∫ 0

−1
(−x)v′(x)dx+

∫ 1

0
xv′(x)dx

=−xv(x)
∣∣∣0
−1

−
∫ 0

−1
(−1)v(x)+ xv(x)

∣∣∣1
0
−
∫ 1

0
v(x)dx

=−
∫ 1

−1
w(x)v(x)dx.

Note that the value of y′ at the point x = 0 is not important since the set {x = 0} has
zero measure.

Definition 2.3. Let 1 ≤ p < ∞ and k ∈N. The space of functions y ∈ Lp(Ω) whose weak
derivatives Dα y, for α : |α| ≤ k, exist and belong to Lp(Ω) is denoted by W k,p(Ω) and



12 2 Basic Theory of Partial Differential Equations and Their Discretization

is called Sobolev space. This space is endowed with the norm

‖y‖W k,p =

(
∑

|α |≤k

∫
Ω
|Dα y|p dx

)1/p

.

If p = ∞, the space W k,∞(Ω) is defined in a similar way, but endowed with the norm

‖y‖W k,∞ = max
|α |≤k

‖Dα y‖L∞ .

The spaces W k,p(Ω) constitute Banach spaces, reflexive for 1 < p <+∞. In the spe-
cial case p = 2 the Sobolev spaces are denoted by Hk(Ω) :=W k,2(Ω).

A frequently used space is

H1(Ω) = {y ∈ L2(Ω) : Diy ∈ L2(Ω), ∀i = 1, . . . ,N}

endowed with the norm

‖y‖H1 =

(∫
Ω
(y2 + |∇y|2)dx

)1/2

,

and the scalar product

(u,v)H1 =
∫

Ω
u · v dx+

∫
Ω

∇u ·∇v dx.

The space H1(Ω) constitutes a Hilbert space with the provided scalar product.

Definition 2.4. The closure of C∞
0 (Ω) in W k,p(Ω) is denoted by W k,p

0 (Ω). The resulting
space is endowed with the W k,p-norm and constitutes a closed subspace of W k,p(Ω).

Next, we summarize some important Sobolev spaces embedding results (see [12,
Sect. 6.6] for further details).

Theorem 2.2. Let Ω ⊂R
N be an open bounded set with Lipschitz continuous boundary.

Then the following continuous embeddings hold:

1. If p < N, W 1,p(Ω) ↪→ Lp∗(Ω), for 1
p∗ =

1
p −

1
N ,

2. If p = N, W 1,p(Ω) ↪→ Lq(Ω), for 1 ≤ q <+∞,

3. If p > N, W 1,p(Ω) ↪→C0,1−N/p(Ω).

Theorem 2.3 (Rellich–Kondrachov). Let Ω ⊂ R
N be an open bounded set with Lips-

chitz continuous boundary. Then the following compact embeddings hold:
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1. If p < N, W 1,p(Ω) ↪→ Lq(Ω), for all 1 ≤ q < p∗ with 1
p∗ =

1
p −

1
N ,

2. If p = N, W 1,p(Ω) ↪→ Lq(Ω), for all 1 ≤ q <+∞,

3. If p > N, W 1,p(Ω) ↪→C(Ω).

An important issue in PDEs is the value that the solution function takes at the bound-
ary. If the function is continuous on Ω , then its boundary value can be determined by
continuous extension. However, if the function is defined in an almost everywhere sense,
then its boundary value has no specific sense, since the boundary has zero measure. The
following result clarifies in which sense such a boundary value may hold (see [9, p. 315]
for further details).

Theorem 2.4. Let Ω be a bounded Lipschitz domain. There exists a bounded linear
operator τ : W 1,p(Ω)−→ Lp(Γ ) such that

(τy)(x) = y(x) a.e. on Γ ,

for each y ∈C(Ω).

Definition 2.5. The function τy is called the trace of y on Γ and τ is called the trace
operator.

If Ω is a bounded Lipschitz domain, then it holds that

W 1,p
0 (Ω) =

{
y ∈W 1,p(Ω) : τy = 0 a.e. on Γ

}
.

In particular, H1
0 (Ω) =

{
y ∈ H1(Ω) : τy = 0 a.e. on Γ

}
, which, thanks to the Poincaré

inequality, can be endowed with the norm

‖y‖H1
0

:=

(∫
Ω
|∇y|2 dx

)1/2

.

2.3 Elliptic Problems

2.3.1 Poisson Equation

Consider the following classical PDE:

{
−Δy = f in Ω ,

y = 0 on Γ .
(2.1)
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Existence of a unique solution y ∈ C2(Ω̄) can be obtained by classical methods (see
[19, Chap. 2]), under the assumption that the right hand side belongs to the space of
continuous functions. In practice, however, it usually happens that the function on the
right hand side has less regularity. To cope with that situation, an alternative (and weaker)
notion of solution may be introduced.

Assuming enough regularity of y and multiplying (2.1) with a test function v ∈
C∞

0 (Ω), we obtain the integral relation

−
∫

Ω
Δy v dx =

∫
Ω

f v dx,

which, using integration by parts, yields
∫

Ω
∇y ·∇v dx−

∫
Γ

v ∂ny ds =
∫

Ω
f v dx,

where ∂ny = ∇y ·n =
∂y
∂n

. Since v = 0 on Γ , it follows that

∫
Ω

∇y ·∇v dx =
∫

Ω
f v dx.

Since C∞
0 (Ω) is dense in H1

0 (Ω) and both terms in the previous equation are continuos
with respect to the H1

0 (Ω)-norm, then the equation holds for all v ∈ H1
0 (Ω).

Definition 2.6. A function y ∈ H1
0 (Ω) is called a weak solution for problem (2.1) if it

satisfies the following variational formulation:
∫

Ω
∇y ·∇v dx =

∫
Ω

f v dx, ∀v ∈ H1
0 (Ω). (2.2)

Existence of a unique solution to (2.2) can be proved by using the well-known Lax–
Milgram theorem, which is stated next.

Theorem 2.5 (Lax–Milgram). Let V be a Hilbert space and let a(·, ·) be a bilinear form
such that, for all y,v ∈V ,

|a(y,v)| ≤C‖y‖V‖v‖V , (2.3)

a(y,y)≥ κ‖y‖2
V , (2.4)

for some positive constants C and κ . Then, for every �∈V ′, there exists a unique solution
y ∈V to the variational equation

a(y,v) = 〈�,v〉V ′,V , for all v ∈V. (2.5)



2.3 Elliptic Problems 15

Moreover, there exists a constant c̃, independent of �, such that

‖y‖V ≤ c̃‖�‖V ′ . (2.6)

2.3.2 A General Linear Elliptic Problem

We consider the following general linear elliptic problem:

Ay+ c0y = f in Ω ,

∂nAy+αy = g on Γ1,

y = 0 on Γ0,

(2.7)

where A is an elliptic operator in divergence form:

Ay(x) =−
N

∑
i, j=1

D j(ai j(x)Diy(x)). (2.8)

The coefficients ai j ∈ L∞(Ω) satisfy the symmetry condition ai j(x) = a ji(x) and the
following ellipticity condition: ∃κ > 0 such that

N

∑
i, j=1

ai j(x)ξiξ j ≥ κ |ξ |2, ∀ξ ∈ R
n, for a.a. x ∈ Ω . (2.9)

The operator ∂nA stands for the conormal derivative, i.e.,

∂nAy(x) = ∇y(x)T nA(x),

with (nA)i(x) =∑N
j=1 ai j(x)n j(x). Additionally Γ =Γ0�Γ1 and c0 ∈ L∞(Ω), α ∈ L∞(Γ1),

f ∈ L2(Ω), g ∈ L2(Γ1).
By introducing the Hilbert space

V =

{
y ∈ H1(Ω) : y

∣∣∣
Γ0
= 0

}

and the bilinear form

a(y,v) :=
∫

Ω

N

∑
i, j=1

ai j Diy D jv dx+
∫

Ω
c0yv dx+

∫
Γ1

αyv ds, (2.10)
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the variational formulation of problem (2.7) is given in the following form: Find y ∈ V
such that

a(y,v) = ( f ,v)L2(Ω) + (g,v)L2(Γ1)
, ∀v ∈V.

Theorem 2.6. Let Ω be a bounded Lipschitz domain and c0 ∈ L∞(Ω), α ∈ L∞(Γ1) given
functions such that c0(x) ≥ 0 a.e. in Ω and α(x) ≥ 0 a.e. on Γ1, respectively. If one of
the following conditions holds:

i) |Γ0|> 0,

ii) Γ1 = Γ and
∫

Ω
c2

0(x)dx+
∫

Γ
α2(x)ds > 0,

then there exist a unique weak solution y ∈V to problem (2.7). Additionally, there exists
a constant cA > 0 such that

‖y‖H1 ≤ cA

(
‖ f‖L2(Ω) +‖g‖L2(Γ1)

)
.

Proof. The proof makes use of the Lax–Milgram theorem and Friedrichs’ inequality,
and is left as an exercise for the reader. 	


2.3.3 Nonlinear Equations of Monotone Type

An important class of nonlinear PDEs involve differential operators of monotone type.
Such is the case, for instance, of equations that arise as necessary conditions in the
minimization of energy functionals.

Let V be a separable, reflexive Banach space and consider the variational equation

〈A(y),v〉V ′,V = 〈�,v〉V ′,V , for all v ∈V, (2.11)

where � ∈V ′ and the operator A : V →V ′ satisfies the following properties.

Assumption 2.1.

i) A is monotone, i.e., for all u,v ∈V ,

〈A(u)−A(v),u− v〉V ′,V ≥ 0. (2.12)

ii) A is hemicontinuous, i.e., the function

t → 〈A(u+ tv),w〉V ′,V
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is continuous on the interval [0,1], for all u,v,w ∈V .
iii) A is coercive, i.e.,

lim
‖u‖V→∞

〈A(u),u〉V ′,V

‖u‖V
=+∞. (2.13)

Theorem 2.7 (Minty–Browder). Let � ∈ V ′ and A : V → V ′ be an operator satisfying
Assumption 2.1. Then there exists a solution to the variational equation (2.11). If A is
strictly monotone, then the solution is unique.

Proof. Since V is separable, there exists a basis {vi}∞
i=1 of linearly independent vectors,

dense in V . Introducing
Vn = span{v1, . . . ,vn},

we consider a solution yn ∈Vn of the equation

〈A(yn),v j〉V ′,V = 〈�,v j〉V ′,V , for j = 1. . . . ,n. (2.14)

By using the expression yn = ∑n
i=1 civi, problem (2.14) can be formulated as a system of

nonlinear equations in R
n.

Thanks to the properties of A, we may use Brouwer’s fixed point theorem (see, e.g.,
[12, p. 723]) and get existence of a solution to (2.14), with the additional bound:

‖yn‖V ≤C,

with C > 0 a constant independent of n.
From Assumption 2.1 it follows that A is locally bounded [12, p. 740], which implies

that there exist constants r > 0 and ρ > 0 such that

‖v‖V ≤ r ⇒ ‖A(v)‖V ≤ ρ .

Consequently, it follows that

〈A(yn),v〉V ′,V ≤ 〈A(yn),yn〉V ′,V −〈A(v),yn〉V ′,V + 〈A(v),v〉V ′,V

= 〈�,yn〉V ′,V −〈A(v),yn〉V ′,V + 〈A(v),v〉V ′,V

≤ ‖�‖V ′C+ρC+ρr,

for all n ≥ 1 and all ‖v‖V ≤ r, and, therefore, the sequence {A(yn)} is bounded in V ′.
Thanks to the reflexivity of the spaces and the boundedness of the sequences, there

exists a subsequence {ym}m∈N and limit points y ∈V and g ∈V ′ such that

ym ⇀ y weakly in V and A(ym)⇀ g weakly in V ′.
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For any k ≥ 1, we know that

〈A(ym),vk〉V ′,V = 〈�,vk〉V ′,V , for all m ≥ k.

Consequently,
〈g,vk〉V ′,V = lim

m→∞
〈A(ym),vk〉V ′,V = 〈�,vk〉V ′,V

and, since the latter holds for all k ≥ 1, we get that

〈g,v〉V ′,V = 〈�,v〉V ′,V , for all v ∈V.

Therefore, g = � in V ′. Additionally,

〈A(ym),ym〉V ′,V = 〈�,ym〉V ′,V → 〈�,y〉V ′,V , as m → ∞.

From the monotonicity of A,

〈A(ym)−A(v),ym − v〉V ′,V ≥ 0,∀v ∈V.

By passing to the limit, we then get that

〈l −A(v),y− v〉V ′,V ≥ 0,∀v ∈V.

Taking v = y− tw, with t > 0 and w ∈V , it then follows that

〈l −A(y− tw),w〉V ′,V ≥ 0,∀w ∈V.

Thanks to the hemicontinuity of A and taking the limit as t → 0, we finally get that

A(y) = � in V ′. 	


Example 2.2 (A semilinear equation). Let Ω ⊂ R
2 be a bounded Lipschitz domain,

u ∈ L2(Ω) and consider the following nonlinear boundary value problem:

−Δy+ y3 = u in Ω , (2.15a)

y = 0 on Γ . (2.15b)

Weak formulation of the PDE. Multiplying the state equation by a test function v ∈
C∞

0 (Ω) and integrating yields

∫
Ω
−Δyv dx+

∫
Ω

y3v dx =
∫

Ω
uv dx.
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Using integration by parts,
∫

Ω
∇y ·∇v dx+

∫
Ω

y3v dx =
∫

Ω
uv dx.

Since C∞
0 is dense in H1

0 (Ω) and all terms are continuous with respect to v in the
H1

0 (Ω) norm, we obtain the following variational formulation: Find y ∈ H1
0 (Ω) such

that ∫
Ω

∇y ·∇v dx+
∫

Ω
y3v dx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω).

Indeed, thanks to the embedding H1
0 (Ω) ↪→ Lp(Ω), for all 1 ≤ p < +∞, it follows

that y3 ∈ L2(Ω) and the second integral is well-defined.

Let us now define the operator A : H1
0 (Ω)→ H−1(Ω) by

〈A(y),v〉H−1,H1
0

:=
∫

Ω
∇y ·∇v dx+

∫
Ω

y3v dx, for all v ∈ H1
0 (Ω).

Monotonicity. Let v,w ∈ H1
0 (Ω),

〈A(v)−A(w),v−w〉H−1,H1
0
=
∫

Ω
|∇(v−w)|2 dx+

∫
Ω

v3(v−w)−w3(v−w) dx

= ‖v−w‖2
H1

0
+
∫

Ω
(v−w)2(v2 + vw+w2) dx.

Since v2 + vw+w2 ≥ 0 a.e. in Ω , it follows that

〈A(v)−A(w),v−w〉H−1,H1
0
≥ ‖v−w‖2

H1
0
,

which implies the strict monotonicity of A.

Coercivity. Let v ∈ H1
0 (Ω),

〈A(v),v〉H−1,H1
0
=
∫

Ω
|∇v|2 dx+

∫
Ω

v4 dx ≥ ‖v‖2
H1

0
,

which implies that

〈A(v),v〉H−1,H1
0

‖v‖H1
0

→+∞ as ‖v‖H1
0
→+∞.
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Hemicontinuity.

〈A(u+ tv),w〉H−1,H1
0
=
∫

Ω
∇(u+ tv) ∇w dx+

∫
Ω
(u+ tv)3w dx

=
∫

Ω
∇u ∇w+u3w dx+ t

∫
Ω

∇v ∇w+3u2vw dx

+ t2
∫

Ω
3uv2w dx+ t3

∫
Ω

v3w dx,

which is continuous with respect to t.

Hence, all conditions of the Minty–Browder theorem are satisfied and there exists
a unique solution y ∈ H1

0 (Ω) to the semilinear equation (2.15).

2.4 Discretization by Finite Differences

The basic idea of a finite difference discretization scheme consists in replacing the differ-
ential operators involved in the PDE with corresponding difference quotients involving
the solution at different spatial points. This procedure leads to a system of equations in
R

n, that can be solved with different numerical techniques.
For simplicity, let us start with the one-dimensional case and consider the interval

domain Ω = (0,1). The Poisson problem then becomes a boundary value ordinary dif-
ferential equation (ODE) given by

−y′′ = f in Ω , (2.16a)

y(0) = y(1) = 0. (2.16b)

Using a uniform spatial mesh, the discretization points are x j = jh, j = 0, . . .n, where
n ≥ 2 is an integer and h = 1/n is the mesh size step. The first derivative of the solution
y at the inner discretization points x j = h j, j = 1, . . . ,n− 1 can then be approximated
either by

forward differences:
y j+1 − y j

h
,

backward differences:
y j − y j−1

h
,

or centered differences:
y j+1 − y j−1

2h
,



2.4 Discretization by Finite Differences 21

where y j := y(x j), j = 0, . . . ,n. For the second derivative, by applying subsequently
forward and backward differences, the quotient

y j+1 −2y j + y j−1

h2

is obtained. The approximate solution to the boundary value problem (2.16), at the dis-
cretization points, then satisfies the following system of equations:

−y j+1 −2y j + y j−1

h2 = f (x j), j = 1, . . . ,n−1, (2.17)

with y0 = yn = 0.
By defining the vectors y = (y1, . . . ,yn−1)

T and f = ( f1, . . . , fn−1)
T , with fi := f (xi),

Eq. (2.17) can be written in the following matrix form:

Ah y = f, (2.18)

where Ah ∈ M(n−1) stands for the finite difference discretization matrix given by

Ah = h−2 tridiagn−1(−1,2,−1) = h−2

⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠ . (2.19)

The matrix Ah is symmetric and positive definite. Indeed,

wT Ahw = h−2

[
w2

1 +w2
n−1 +

n−1

∑
i=2

(wi −wi−1)
2

]
.

This implies, in particular, that (2.18) has a unique solution.
Consider now the two-dimensional bounded domain Ω = (0,1)2 ⊂ R

2. Our aim is
to find a solution to the Poisson problem:

{
−Δy = f in Ω ,

y = g on Γ ,
(2.20)

by using finite differences. Choosing the mesh size steps h= 1
n and k = 1

m , with n, m∈N,
for the horizontal and vertical components, respectively, we get the mesh:

Ω hk =
{
(x j

1,x
j
2) : xi

1 = ih, x j
2 = jh, i = 0, . . . ,n, j = 0, . . . ,m

}
.
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Fig. 2.1 Example of a grid with m = n = 4

Similarly to the one-dimensional case, but considering both spatial components, Eq.
(2.20) can then be approximated in the following way:

1

h2(−yi+1, j +2yi, j − yi−1, j)+
1

k2(−yi, j+1 +2yi, j − yi, j−1) = fi j, (2.21)

for i = 1, . . . ,n−1; j = 1, . . . ,m−1. Utilizing a horizontal–vertical lexicographic order
and taking n = m, the following block matrix is obtained:

Ah = h−2

⎛
⎜⎜⎜⎜⎝

B −I

−I B
. . .

. . .
. . . −I
−I B

⎞
⎟⎟⎟⎟⎠ ,

where I ∈ M(n−1) stands for the identity matrix and B ∈ M(n−1) is given by

B =

⎛
⎜⎜⎜⎜⎝

4 −1

−1 4
. . .

. . .
. . . −1
−1 4

⎞
⎟⎟⎟⎟⎠ .

The resulting discretization matrix Ah is also symmetric and positive definite in the mul-
tidimensional case. Moreover, it can be verified that such finite difference scheme is
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consistent of order 2 with respect to h, with an approximation error of order 2 as well
(see, e.g., [23, Chap. 2]).

Program: Finite Difference Matrix for the Laplace Operator

function [lap]=matrices(n,h)
d(n:n:nˆ2)=1;
d=d';
e=sparse(nˆ2,1);
e(1:n:(n-1)*n+1)=1;
b=ones(nˆ2,1);
a=[b,b-d,-4*b,b-e,b];
lap=-1/(hˆ2)*spdiags(a,[-n,-1,0,1,n],nˆ2,nˆ2);



Chapter 3

Theory of PDE-Constrained Optimization

3.1 Problem Statement and Existence of Solutions

Consider the following general optimization problem:

⎧⎪⎨
⎪⎩

min J(y,u),

subject to:

e(y,u) = 0,

(3.1)

where J : Y ×U −→ R, e : Y ×U −→W , and Y , U , W are reflexive Banach spaces. We
assume that there exists a unique solution y(u) to e(y,u) = 0 and refer to the operator

G : U −→ Y
u �−→ y(u) = G(u),

which assigns to each u ∈U the solution y(u) to

e(y(u),u) = 0 (3.2)

as solution or control-to-state operator.
Using this operator, we can write the optimization problem in reduced form as

min
u∈U

f (u) := J(y(u),u). (3.3)

Hereafter we assume that f : U −→ R is bounded from below.
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Definition 3.1. An element ū ∈ U is called a global solution to (3.3) if f (ū) ≤ f (u),
∀u ∈U. Further, ū is called a local solution if there exists a neighborhood V (ū) of ū in U
such that

f (ū)≤ f (u), ∀u ∈V (ū).

Definition 3.2. A functional h : U −→R is called weakly lower semicontinuous (w.l.s.c)
if for every weakly convergent sequence un ⇀ u in U it follows that

h(u)≤ liminf
n→∞

h(un).

Remark 3.1. If h is quasiconvex and continuous, then it is w.l.s.c (see [35, p. 15]). In
addition, every convex functional is also quasiconvex.

Theorem 3.1. If f : U −→ R is w.l.s.c and radially unbounded, i.e.,

lim
‖u‖U→∞

f (u) = +∞, (3.4)

then f has a global minimum.

Proof. Let {un}n∈N be a minimizing sequence, i.e., {un} ⊂U and

lim
n→∞

f (un) = inf
u∈U

f (u).

Thanks to (3.4) it follows that the sequence {un} is bounded. Since U is reflexive, there
exists a subsequence {unk}k∈N of {un} which converges weakly to a limit ū as k → ∞.
Due to the weakly lower semi continuity of f it follows that

f (ū)≤ liminf
k→∞

f (unk) = inf
u∈U

f (u).

Consequently, ū is a global minimum. 	


Example 3.1 (A linear–quadratic problem). Consider the following optimal heating
problem:

minJ(y,u) =
1
2
‖y− zd‖2

L2(Ω) +
α
2
‖u‖2

L2(Ω), (3.5a)

subject to:

−Δy = βu in Ω , (3.5b)

y = 0 on Γ , (3.5c)
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where Ω ⊂ R
N , N = 2,3, is a bounded Lipschitz domain, α > 0, zd ∈ L2(Ω) and

β ∈ L∞(Ω).
As control space we consider U = L2(Ω) and, thanks to Theorem 2.4, there exists,
for each u ∈ U , a unique weak solution for (3.5b)–(3.5c). The reduced functional
f : U −→ R satisfies

f (u) = J(y(u),u)≥ α
2
‖u‖2

L2

and, consequently, is bounded from below and fulfills (3.4). Moreover f is convex
and continuous, and, therefore, w.l.s.c. Consequently, there exists an optimal solution
for (3.5).

3.2 First Order Necessary Conditions

3.2.1 Differentiability in Banach Spaces

Let U , V be two real Banach spaces and F : U −→V a mapping from U to V .

Definition 3.3. If, for given elements u,h ∈U , the limit

δF(u)(h) := lim
t→0+

1
t
(F(u+ th)−F(u))

exists, then δF(u)(h) is called the directional derivative of F at u in direction h. If this
limit exists for all h ∈U , then F is called directionally differentiable at u.

Definition 3.4. If for some u ∈U and all h ∈U the limit

δF(u)(h) = lim
t→0

1
t
(F(u+ th)−F(u))

exists and δF(u) is a continuous linear mapping from U to V , then δF(u) is denoted by
F ′(u) and is called the Gâteaux derivative of F at u, and F is called Gâteaux differen-
tiable at u.
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u

δF(u)(h)

u+ th

F

Fig. 3.1 Illustration of a directionally differentiable function

Example 3.2.

a) Let U =C[0,1] and f : U −→ R be given through

f (u(·)) = cos(u(1)).

Let also h = h(x) be a function in C[0,1]. The directional derivative of f at u in
direction h is then given by

lim
t→0+

1
t
( f (u+ th)− f (u)) = lim

t→0+

1
t
(cos(u(1)+ th(1))− cos(u(1)))

=
d
dt

cos(u(1)+ th(1))
∣∣
t=0

=−sin(u(1)+ th(1))h(1)
∣∣
t=0

=−sin(u(1))h(1).

Therefore, δ f (u)(h) =−sin(u(1))h(1) and since δ f (u) is linear and continuous
with respect to h, f is Gâteaux differentiable with its derivative given by

f ′(u)h =−sin(u(1))h(1).

b) Let H be a Hilbert space with scalar product (·, ·)H and norm ‖·‖H . Let f : H −→
R be defined by

f (u) = ‖u‖2
H .
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The directional derivative of f at u in direction h is given by

lim
t→0+

1
t
( f (u+ th)− f (u)) = lim

t→0+

1
t
(‖u+ th‖2

H −‖u‖2
H)

= lim
t→0+

1
t
(2t(u,h)H + t2 ‖h‖2

H)

= 2(u,h)H .

Therefore δ f (u)(h) = 2(u,h)H , which is linear and continuous with respect to h.
Consequently, f is Gâteaux differentiable.

Definition 3.5. If F is Gâteaux differentiable at u ∈U and satisfies in addition that

lim
‖h‖U→0

‖F(u+h)−F(u)−F ′(u)h‖V

‖h‖U
= 0,

then F ′(u) is called the Fréchet derivative of F at u and F is called Fréchet differentiable.

Properties.

1. If F : U −→ V is Gâteaux differentiable and F ′ : U −→ L (U,V ) is also Gâteaux
differentiable, then F is called twice Gâteaux differentiable and we write

F ′′(u) ∈ L (U,L (U,V ))

for the second derivative of F at u.
2. If F is Fréchet differentiable at u ∈U , then it is also Gâteaux differentiable at u.
3. If F is Fréchet differentiable at u ∈U , then it is continuous at u.
4. Chain rule: Let F : U −→V and G : V −→ Z be Fréchet differentiable at u and F(u),

respectively. Then
E(u) = G(F(u))

is also Fréchet differentiable and its derivative is given by:

E ′(u) = G′(F(u))F ′(u).

Let C ⊂ U be a nonempty subset of a real normed space U and f : C ⊂ U −→ R a
given functional, bounded from below. Consider the following problem:

min
u∈C

f (u). (3.6)

Definition 3.6. For u ∈ C the direction v− u ∈ U is called admissible if there exists a
sequence {tn}n∈N, with 0 < tn → 0 as n → ∞, such that u+ tn(v−u)∈C for every n ∈N.
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Theorem 3.2. Suppose that ū∈C is a local minimum of (3.6) and that v− ū is an admis-
sible direction. If f is directionally differentiable at ū, in direction v− ū, then

δ f (ū)(v− ū)≥ 0.

Proof. Since ū ∈C is a local minimum and v− ū is feasible, for n sufficiently large we
get that ū+ tn(v− ū) ∈V (ū)∩C and

f (ū)≤ f (ū+ tn(v− ū)),

which implies that
1
tn
( f (ū+ tn(v− ū))− f (ū))≥ 0.

By taking the limit as n → ∞ on both sides,

δ f (ū)(v− ū)≥ 0. 	


Corollary 3.1. Let C = U and ū be a local optimal solution for (3.6). If f is Gâteaux
differentiable at ū, then

f ′(ū)h = 0, for all h ∈U.

Proof. Let h ∈U be arbitrary but fix. From Theorem 2.8 it follows, for v = h+ ū, that

f ′(ū)h ≥ 0

and, for v =−h+ ū, that
f ′(ū)(−h)≥ 0,

which implies the result. 	


3.2.2 Optimality Condition

Let us now turn to PDE-constrained optimization problems and recall problem (3.1):

⎧⎪⎨
⎪⎩

minJ(y,u),

subject to:

e(y,u) = 0.

We assume that J : Y × U −→ R and e : Y × U −→ W are continuously Fréchet
differentiable. Further, we assume that the partial derivative of e with respect to y at
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(ȳ, ū) satisfies the following condition:

ey (ȳ, ū) ∈ L (Y,W ) is a bijection. (3.7)

From (3.7), existence of a (locally) unique solution y(u) to the state equation e(y,u) = 0,
in a neighborhood of (ȳ, ū), follows from the implicit function theorem (see, e.g., [12,
p. 548]) and, moreover, the solution operator is also continuously Fréchet differentiable.

By taking the derivative, with respect to u, on both sides of the state equation

e(y(ū), ū) = 0,

we obtain
ey (y(ū), ū)y′(ū)h+ eu (y(ū), ū)h = 0, (3.8)

where y′(u)h denotes the derivative of the solution operator at u in direction h.
If ū∈U is a local optimal solution to (3.3), we obtain from Corollary 3.1 the following

necessary condition

f ′(ū)h = Jy (y(ū), ū) y′ (ū)h︸ ︷︷ ︸
=〈Jy(y(ū),ū),y′(ū)h〉Y ′,Y

+Ju (y(ū), ū))h = 0, (3.9)

for all h ∈U .
In order to make (3.9) more explicit we introduce the following definition.

Definition 3.7. An element p ∈W ′ is called the adjoint state related to ū if it solves the
following adjoint equation:

ey (y(ū), ū)
∗ p = Jy (y(ū), ū) , (3.10)

where ey (y(ū), ū)
∗ denotes the adjoint operator of ey (y(ū), ū).

Theorem 3.3. Let ū be a local optimal solution to (3.3) and y(ū) its associated state.
If (3.7) holds, then there exists an adjoint state p ∈W ′ such that the following system of
equations is satisfied:

e(y(ū), ū) = 0, (3.11a)

ey (y(ū), ū)
∗ p = Jy (y(ū), ū), (3.11b)

eu (y(ū), ū)
∗ p = Ju (y(ū), ū). (3.11c)

System (3.11) is called the optimality system for ū.
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Proof. From (3.7) the surjectivity of ey (y(ū), ū)
∗ follows (see, e.g., [9, p. 47]) and, there-

fore, there exists an adjoint state p ∈W ′ which solves (3.11b).
To obtain the result, we compute the derivative of the reduced cost functional as

follows:
f ′(ū)h = 〈Jy(y(ū), ū),y

′(ū)h〉Y ′,Y + Ju(y(ū), ū)h.

Using the adjoint equation we get that

f ′(ū)h = 〈ey(y(ū), ū)
∗p,y′(ū)h〉Y ′,Y + Ju(y(ū), ū)h

= 〈p,ey(y(ū), ū)y
′(ū)h〉W ′,W + Ju(y(ū), ū)h.

Finally, thanks to (3.8) and using the transpose of eu(ȳ, ū) we obtain

f ′(ū)h = 〈p,−eu(y(ū), ū)h〉W ′,W + Ju(y(ū), ū)h

=−〈eu(y(ū), ū)
∗p,h〉U ′,U + Ju(y(ū), ū)h. (3.12)

Consequently, from (3.9) it follows that

eu (y(ū), ū)
∗ p = Ju (y(ū), ū) in U ′. 	


Example 3.3. Consider again the heating problem given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minJ(y,u) = 1
2 ‖y− zd‖2

L2 + α
2 ‖u‖2

L2 ,

subject to:
−Δy = βu in Ω ,

y = 0 on Γ .

The variational formulation of the state equation is given by: Find y ∈ H1
0 (Ω) such

that ∫
Ω

∇y ·∇vdx =
∫

Ω
βuvdx, ∀v ∈ H1

0 (Ω).

Consequently, e : H1
0 (Ω)×L2(Ω)−→ H−1(Ω) is defined by

〈e(y,u),v〉H−1,H1
0
=
∫

Ω
∇y ·∇vdx−

∫
Ω

βuvdx

and its partial derivative with respect to y is given by

〈ey(y,u)w,v〉H−1,H1
0
=
∫

Ω
∇w ·∇vdx.
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For a given function ϕ ∈ H−1(Ω), equation

〈ey(y,u)w,v〉H−1,H1
0
=
∫

Ω
∇w ·∇vdx = 〈ϕ,v〉H−1,H1

0
,∀v ∈ H1

0 (Ω),

has a unique solution w ∈ H1
0 (Ω) and ‖w‖H1

0
≤ C‖ϕ‖H−1 for some constant C > 0

(Lax–Milgram Theorem). Consequently, (3.7) is satisfied.
In order to apply Theorem 3.3, we compute the remaining derivatives:

eu(y,u)h =−βh,

Jy(y,u) = y− zd ,

Ju(y,u) = αu.

The optimality system is then given through the following equations:
∫

Ω
∇y ·∇v dx =

∫
Ω

βuv dx, ∀v ∈ H1
0 (Ω),

∫
Ω

∇p ·∇v dx =
∫

Ω
(y− zd)v dx, ∀v ∈ H1

0 (Ω),

−β p = αu, a.e. in Ω ,

where we used that

〈
ey(y(ū))w,v

〉
H−1,H1

0
=
∫

Ω
∇w ·∇v dx =

∫
Ω

∇v ·∇w dx =
〈
w,ey(ȳ, ū)

∗v
〉

H1
0 ,H

−1

and, similarly,

(eu(ȳ, ū)h,φ)L2 =
∫

Ω
−βhφ dx =

∫
Ω
−hβφ dx = (h,eu(ȳ, ū)

∗φ)L2 .

3.3 Lagrangian Approach

It is also possible to derive the optimality system (3.11) by using the Lagrangian
approach. With such a procedure, a direct hint on what the adjoint equation looks like is
obtained.
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Consider again problem (3.3) with J : Y ×U −→ R and e : Y ×U −→ W . The
Lagrangian functional associated to (3.3) is given by

L : Y ×U ×W ′ −→ R

(y,u, p) �−→ L (y,u, p) = J(y,u)−〈p,e(y,u)〉W ′,W .

By differentiating L (y,u, p) with respect to y, in direction w, we obtain that

Lu(y,u, p)w = Jy(y,u)w−〈p,ey(y,u)w〉W ′,W

= Jy(y,u)w−〈ey(y,u)
∗p,w〉Y ′,Y .

Consequently, Eq. (3.11b) can also be expressed as

Ly(ȳ, ū, p) = 0.

In a similar manner, by taking the derivative of L (y,u, p) with respect to u, in direction
h, we obtain

Lu(y,u, p)h = Ju(y,u)h−〈p,eu(y,u)h〉W ′,W

= Ju(y,u)h−〈eu(y,u)
∗p,h〉U ′,U

and, therefore, Eq. (3.11c) can be written as

Lu(ȳ, ū, p) = 0.

Summarizing, the optimality system (3.11) can be written in the following way:

e(ȳ, ū) = 0, (3.13a)

Ly (ȳ, ū, p) = 0, (3.13b)

Lu (ȳ, ū, p) = 0. (3.13c)

Example 3.4 (The heating problem revisited).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minJ(y,u) =
1
2

∥∥y− zd
∥∥2

L2 +
α
2
‖u‖2

L2 ,

subject to:

−Δy = βu in Ω ,

y = 0 on Γ .
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In this case Y = H1
0 (Ω), U = L2(Ω), W = H−1(Ω) and

〈e(y,u),v〉H−1,H1
0
=
∫

Ω
∇y ·∇v dx−

∫
Ω

βuv dv = 0, ∀v ∈ H1
0 (Ω).

The Lagrangian is then defined by

L (y,u, p) = J(y,u)−〈p,e(y,u)〉W ′,W

=
1
2

∥∥y− zd
∥∥2

L2 +
α
2
‖u‖2

L2 −
∫

Ω
∇y ·∇pdx+

∫
Ω

βupdx.

Next, we obtain the derivatives of L with respect to y and u and set them equal to
zero. First, for the partial derivative with respect to y, we obtain

Ly(y,u, p)w = (y− zd ,w)L2 −
∫

Ω
∇w ·∇p dx

=
∫

Ω
(y− zd)wdx−

∫
Ω

∇p ·∇w dx = 0,

which implies that
∫

Ω
∇p ·∇w dx =

∫
Ω
(y− zd)wdx, ∀w ∈ H1

0 (Ω).

For the partial derivative with respect to u,

Lu(y,u, p)h = α(u,h)L2 +
∫

Ω
βhpdx

=
∫

Ω
αuh dx+

∫
Ω

β phdx = 0,

which implies that,
∫

Ω
αuhdx =−

∫
Ω

β phdx, ∀h ∈ L2(Ω)

and, therefore,
αu =−β p a.e. in Ω .

Altogether, we obtain the following optimality system:
∫

Ω
∇y ·∇v dx =

∫
Ω

βuvdx, ∀v ∈ H1
0 (Ω),
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∫
Ω

∇p ·∇w dx =
∫

Ω
(y− zd)wdx, ∀w ∈ H1

0 (Ω),

αu =−β p a.e. in Ω .

The Lagrangian approach is very helpful for complex nonlinear problems, where the
structure of the adjoint equation is not easy to predict a priori. In the next example a
prototypical semilinear problem is studied in depth. Although the Lagrangian approach
is easily applicable, it should be carefully justified.

Example 3.5 (Optimal control of a semilinear equation).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(y,u) =
1
2
‖y− zd‖2

L2 +
α
2
‖u‖2

L2 ,

subject to:

−Δy+ y3 = u in Ω ,

y = 0 on Γ .

Weak formulation of the PDE. As was studied in Example 2.2., the variational for-
mulation of the state equation is given in the following way: Find y ∈ H1

0 (Ω) such
that ∫

Ω
∇y ·∇v dx+

∫
Ω

y3v dx =
∫

Ω
uv dx, ∀v ∈ H1

0 (Ω).

Consequently, e : H1
0 (Ω)×L2(Ω)−→ H−1(Ω) is defined by

〈e(y,u),v〉H−1,H1
0
=
∫

Ω
∇y ·∇v dx+

∫
Ω

y3v dx−
∫

Ω
uv dx,

for all v ∈ H1
0 (Ω). By Minty–Browder’s theorem, there exists a unique solution to the

PDE.

Differentiability. Since y ∈ H1
0 (Ω) ↪→ L6(Ω) with continuous injection, we consider

the operator
N : L6(Ω) −→ L2(Ω)

y �−→ y3.

The Fréchet derivative of N is given by

N′(y)w = 3y2w.
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Indeed,

∥∥(y+w)3 − y3 −3y2w
∥∥

L2 =
∥∥3yw2 +w3

∥∥
L2

≤ 3‖y‖L6 ‖w‖2
L6 +‖w‖3

L6 = O
(
‖w‖2

L6

)

= o(‖w‖L6) .

Moreover,

∥∥(N′(y+w)−N′(y)
)

v
∥∥

L2 = 3
∥∥(y+w)2 − y2

∥∥
L2

= 3‖(2y+w)wv‖L2

= 3‖2y+w‖L6 ‖w‖L6 ‖v‖L6

⇒
∥∥N′(y+w)−N′(y)

∥∥
L (L6(Ω),L2(Ω))

→ 0 as ‖w‖L6 → 0,

which implies the continuity of the derivative.

Derivatives. The partial derivatives of e(y,u) are given by

〈ey(y,u)w,v〉H−1,H1
0
=
∫

Ω
∇w ·∇v dx+3

∫
Ω

y2wv dx,

〈eu(y,u)h,v〉H−1,H1
0
=−

∫
Ω

hv dx.

Lagrangian. The Lagrangian is defined by:

L (y,u, p) =
1
2
‖y− zd‖2

L2 +
α
2
‖u‖2

L2

−
∫

Ω
∇y ·∇p dx+

∫
Ω

y3 p dx+
∫

Ω
up dx.

Taking the partial derivative of the Lagrangian with respect to the state, we obtain
that:

Ly(y,u, p)w = (y− zd ,w)−
∫

Ω
∇w ·∇p dx−3

∫
Ω

y2wp dx

=
∫

Ω
(y− zd)w dx−

∫
Ω

∇p ·∇w dx−3
∫

Ω
y2 pw dx = 0,

which implies that
∫

Ω
∇p ·∇w dx+3

∫
Ω

y2 pw dx =
∫

Ω
(y− zd)w dx, ∀w ∈ H1

0 (Ω).
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On the other hand, taking the partial derivative with respect to u we get that:

Lu(y,u, p)h = α(u,h)L2 +
∫

Ω
hp dx = 0, ∀h ∈ L2(Ω)

⇒ αu+ p = 0 a.e. in Ω .

Optimality system.
∫

Ω
∇y ·∇v dx+

∫
Ω

y3v dx =
∫

Ω
uv dx, ∀v ∈ H1

0 (Ω),

∫
Ω

∇p ·∇w dx+3
∫

Ω
y2 pw dx =

∫
Ω
(y− zd)w dx, ∀w ∈ H1

0 (Ω),

αu+ p = 0 a.e. in Ω .

or, in strong form,
−Δy+ y3 = u in Ω ,

y = 0 on Γ ,

−Δ p+3y2 p = y− zd in Ω ,

p = 0 on Γ ,

αu+ p = 0 a.e. in Ω .

3.4 Second Order Sufficient Optimality Conditions

Within the theoretical framework developed so far, we can assure that if (ȳ, ū) is a local
optimal solution to (3.3) such that (3.7) holds, then (ȳ, ū) is also a stationary point, i.e., it
satisfies the optimality system (3.11). The following question arises: Is a stationary point
also an optimal solution for (3.3)? Second order optimality conditions target precisely
that question.

Consider again the general optimization problem (3.6)

min
u∈C

f (u),

where C ⊂U is a subset of a Banach space and f is a given functional.

Theorem 3.4. Let U be a Banach space and C ⊂ U a convex set. Let f : U −→ R be
twice continuously Fréchet differentiable in a neighborhood of ū ∈ U. If ū satisfies the
first order necessary condition

f ′(ū)(u− ū)≥ 0, ∀u ∈C, (3.14)
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and there exists some δ > 0 such that

f ′′(u)[h]2 ≥ δ ‖h‖2
U , ∀h ∈U, (3.15)

then there exist constants ε > 0 and σ > 0 such that

f (u)≥ f (ū)+σ ‖u− ū‖2
U ,

for all u ∈C : ‖u− ū‖U ≤ ε . Therefore, ū is a local minimum of f on C.

Proof. Since f is twice Fréchet differentiable, a Taylor expansion can be used. Conse-
quently, for some θ ∈ [0,1],

f (u) = f (ū)+ f ′(ū)(u− ū)+
1
2

f ′′(ū+θ(u− ū))[u− ū]2

≥ f (ū)+
1
2

f ′′(ū+θ(u− ū))[u− ū]2 by (3.14)

= f (ū)+
1
2

f ′′(ū)[u− ū]2 +
1
2

[
f ′′(ū+θ(u− ū))− f ′′(ū)

]
[u− ū]2.

Since f is twice continuously Fréchet differentiable, there exists some ε > 0 such that

‖u− ū‖ ≤ ε ⇒
∣∣[ f ′′(ū+θ(u− ū))− f ′′(ū)

]
[u− ū]2

∣∣≤ δ
2
‖u− ū‖2

U .

Consequently,

f (u)≥ f (ū)+
1
2

f ′′(ū)[u− ū]2 − δ
4
‖u− ū‖2

U

≥ f (ū)+
δ
4
‖u− ū‖2

U , by (3.15).

The result follows by choosing σ = δ
4 . 	


Condition (3.15) can be specified under additional properties of the optimization
problem. In the case of PDE-constrained optimization, the positivity condition (3.15)
is needed to hold for solutions of the linearized equation (3.8).

Theorem 3.5. Let J : Y ×U −→ R and e : Y ×U −→ W be twice continuously Fréchet
differentiable such that (3.7) holds. Let (ȳ, ū, p) be a solution to the optimality
system (3.11). If there exists some constant δ > 0 such that

L ′′
(y,u)[(w,h)]

2 ≥ δ ‖h‖2
U ,
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or, equivalently,

(w,h)

(
Jyy(ȳ, ū) Jyu(ȳ, ū)
Juy(ȳ, ū) Juu(ȳ, ū)

)(
w
h

)

−
〈

p,(w,h)

(
eyy(ȳ, ū) eyu(ȳ, ū)
euy(ȳ, ū) euu(ȳ, ū)

)(
w
h

)〉

W ′,W

≥ δ ‖h‖2
U , (3.16)

for all (w,h) ∈ Y ×U that satisfy the equation

ey(ȳ, ū)w+ eu(ȳ, ū)h = 0,

then there exist constants ε > 0 and σ > 0 such that

J(y,u)≥ J(ȳ, ū)+σ ‖u− ū‖2
U

for all u ∈U : ‖u− ū‖U ≤ ε .

Proof. First recall that

f ′(ū)h = 〈Jy(ȳ, ū),y
′(ū)h〉Y ′,Y + Ju(ȳ, ū)h.

The second derivative is then given by

f ′′(ū)[h]2 = Jyy(ȳ, ū)[y
′(ū)h]2 + 〈Jy(ȳ, ū),y

′′(ū)[h]2〉Y ′,Y

+ 〈Jyu(ȳ, ū)[y
′(ū)h],h〉U ′,U + 〈Juy(ȳ, ū)[h],y

′(ū)h〉Y ′,Y + Juu(ȳ, ū)[h]
2. (3.17)

On the other hand, by differentiating on both sides of the linearized equation (3.8) with
respect to u, in direction h, we obtain that

eyy(ȳ, ū)[y
′(ū)h]2 + ey(ȳ, ū)y

′′(ū)[h]2 + eyu(ȳ, ū)[y
′(ū)h,h]

+ eyy(ȳ, ū)[h,y
′(ū)h]+ euy(ȳ, ū)[h]

2 = 0.

Therefore, using (3.11b) and the previous equation,

〈Jy(ȳ, ū),y
′′(ū)[h]2〉Y ′,Y = 〈p,ey(ȳ, ū)y

′′(ū)[h]2〉W ′,W

= −〈p,eyy(ȳ, ū)[y
′(ū)h]2 + eyu(ȳ, ū)[y

′(ū)h,h]

+ euy(ȳ, ū)[h,y
′(ū)h]+ euu(ȳ, ū)[h]

2〉W ′,W.

Using the notation w := y′(ū)h,

(w h)

(
Jyy(ȳ, ū) Jyu(ȳ, ū)
Juy(ū, ȳ) Juu(ȳ, ū)

)(
w
h

)
= Jyy(ȳ, ū)[w]

2 + Jyu(ȳ, ū)[w,h]

+ Juy(ȳ, ū)[h,w]+ Juu(ȳ, ū)[h]
2,
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and similarly for the second derivatives of e. Consequently, we obtain that f ′′(ū)[h]2 ≥
δ ‖h‖2

U is equivalent to (3.16) and the result then follows from Theorem 3.4. 	


Example 3.6. Consider again the semilinear optimal control problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min J(y,u) =
1
2
‖y− zd‖2

L2 +
α
2
‖u‖2

L2 ,

subject to:∫
Ω

∇y ·∇v dx+
∫

Ω
y3v dx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω).

Recall that the first derivatives of e are given by

〈ey(y,u)w,v〉H−1,H1
0
=
∫

Ω
∇w ·∇v dx+3

∫
Ω

y2wv,

(eu(y,u)h,v)L2 =−
∫

Ω
hv dx,

and the second derivatives are given by

〈
eyy(y,u)[w]

2,v
〉

H−1,H1
0
= 6

∫
Ω

yw2vdx,

eyu(y,u) = 0, euy(y,u) = 0, euu(y,u) = 0.

For the quadratic cost functional we get:

Jyy(ȳ, ū)[w]2 = ‖w‖2
L2 , Jyu(y,u) = 0,

Juy(y,u) = 0, Juu(y,u)[h]2 = α ‖h‖2
L2.

Condition (3.16) is, therefore, equivalent to

‖w‖L2 +α ‖h‖L2 −6
∫

Ω
yw2 p dx ≥ δ ‖h‖2

L2 .

The sufficient optimality condition then holds if
∫

Ω
(1−6yp)w2 dx ≥ 0.



Chapter 4

Numerical Optimization Methods

Consider the general optimization problem:

min
u∈U

J(y(u),u), (4.1)

where U is a Hilbert space, y(·) is a partial differential equation (PDE) solution mapping
and f is sufficiently smooth. The main strategy of optimization methods consists in,
starting from an initial iterate u0 and using first and second order information of the cost
functional, moving along directions that lead to a decrease in the objective value. In this
respect, the main questions are: How to choose the directions? How far to move along
them?

In this chapter we present and analyze some infinite dimensional optimization
methods for the solution of problem (4.1). Once the infinite dimensional algorithm is
posed, the discretization of the partial differential equations is carried out. Such an
approach is known as optimize-then-discretize in contrast to the discretize-then-optimize
one, where the equations and the cost functional are first discretized and the problem is
then solved using large-scale optimization tools.

The advantages of the optimize-then-discretize approach rely on a better understand-
ing of the function space structure of the numerical algorithms. This can be of impor-
tance in problems where numerical difficulties may arise with direct discretization, as is
the case of problems with low regularity multipliers.

Compactness of the involved operators also plays an important role in the con-
vergence behavior of certain methods. The infinite dimensional Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method, for instance, converges locally with a superlinear
rate if, in addition to the standard hypotheses, the difference between the initial Hessian
approximation and the Hessian at the optimal solution is a compact operator.

© The Author(s) 2015 43
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Finally, a key concept in the framework of the optimize-then-discretize approach is
mesh independence. Shortly, mesh independence implies that the convergence behavior
(convergence rate and number of iterations) of an infinite dimensional method reflects
the behavior of properly discretized problems, when the mesh size step is sufficiently
small. Mesh independence turns out to be crucial for a robust behavior of the underlying
method regardless of the size of the used grid. The infinite dimensional convergence
theory for second order Newton type methods, for instance, enables to prove such a
mesh independence property.

4.1 Descent Methods

Consider the optimization problem (3.1) in its reduced form:

min
u∈U

f (u) := J(y(u),u), (4.2)

where U is a Hilbert space and f : U → R is continuously Fréchet differentiable.
The main idea of descent methods consists in finding, at a given iterate uk, a (descent)

direction dk such that

f (uk +αdk)< f (uk), for some α > 0, (4.3)

based on first order information. Indeed, considering a linear model of the cost functional

f (uk +αdk)≈ f (uk)+α(∇ f (uk),dk)U ,

where ∇ f (uk) denotes the Riesz representative of the derivative of f , a descent direction
may be chosen such that

dk = argmin
‖d‖U=1

(∇ f (uk),d)U . (4.4)

Theorem 4.1. Let f : U → R be continuously Fréchet differentiable and uk ∈ U such
that ∇ f (uk) �= 0. Then problem (4.4) has a unique solution given by

d̄ =− ∇ f (uk)

‖∇ f (uk)‖U
. (4.5)

Proof. From the Cauchy–Schwarz inequality, we get for d ∈U with ‖d‖U = 1:

(∇ f (uk),d)U ≥−‖∇ f (uk)‖U‖d‖U ≥−‖∇ f (uk)‖U .
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The equality is attained only if d =− ∇ f (uk)
‖∇ f (uk)‖U

. 	


Since f decreases most rapidly in the direction of −∇ f (uk), the natural choice:

dk =−∇ f (uk)

gives rise to the steepest descent method (also called gradient method). More generally,
the (gradient related) descent direction dk must satisfy the following condition:

−(∇ f (uk),dk)U ≥ η ‖∇ f (uk)‖U ‖dk‖U (4.6)

for a fixed η ∈ (0,1). Condition (4.6) is also referred to as angle condition.

θ

−∇ f (uk)

dk

cos(θ) =
(−∇ f (uk),dk)U
‖∇ f (uk)‖U ‖dk‖U

Fig. 4.1 Illustration of gradient related directions

Once the descent direction is determined, it is important to know how far to move in
such direction, i.e., which line search parameter αk > 0 should be used. The ideal choice
would be:

αk = argmin
α>0

{ f (uk +αdk)} . (4.7)

If such a minimization problem is easily solvable, one may choose αk as the smallest
positive root of the equation:

d
dα

f (uk +αdk) = 0.

The latter constitutes a necessary optimality condition for (4.7).
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∗∗∗ u2

u1

d1

f increasing

Moves along d1 until reaching

the point, where u1 +αd1

is tangent to a contour of f .

Fig. 4.2 Descent step with optimal line search parameter

Solving problem (4.7) may be too difficult in practice. Instead, the line search step
sizes are chosen according to different strategies. In general, the following properties are
required:

f (uk +αkdk)< f (uk), for all k = 1,2, . . . , (4.8)

f (uk +αkdk)− f (uk)
k→∞−−−→ 0 ⇒ (∇ f (uk),dk)U

‖dk‖U︸ ︷︷ ︸
= d

dα f

(
uk+α dk

‖dk‖

)

k→∞−−−→ 0. (4.9)

A globally convergent descent algorithm can then be defined through the following steps:

Algorithm 1
1: Choose u0 ∈U and set k = 0.
2: repeat
3: Choose a descent direction dk such that (4.6) holds.
4: Determine αk such that (4.8)– (4.9) hold.
5: Set uk+1 = uk +αkdk and k = k+1.
6: until stopping criteria.
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Theorem 4.2. Let f be continuously Fréchet differentiable and bounded from below. Let
{uk}, {dk}, and {αk} be sequences generated by Algorithm 1 with (4.6), (4.8), and (4.9)
holding. Then

lim
k→∞

∇ f (uk) = 0,

and every accumulation point of {uk} is a stationary point of f .

Proof. Since the sequence { f (uk)} is decreasing (thanks to (4.8)) and bounded from
below, it converges to some value f̄ . Consequently,

∣∣ f (uk +αkdk)− f (uk)
∣∣≤ ∣∣ f (uk +αkdk)− f̄

∣∣︸ ︷︷ ︸
k→∞−−−→0

+
∣∣ f̄ − f (uk)

∣∣︸ ︷︷ ︸
k→∞−−−→0

k→∞−−−→ 0,

which, by condition (4.9), implies that

lim
k→∞

(∇ f (uk),dk)U
‖dk‖U

= 0.

Thanks to (4.6)

0 ≤ η ‖∇ f (uk)‖U ≤ (−∇ f (uk),dk)U
‖dk‖U

k→∞−−−→ 0,

which implies that
lim
k→∞

∇ f (uk) = 0.

If ū is an accumulation point of {uk}, then the continuity of ∇ f implies that

∇ f (ū) = lim
k→∞

∇ f (uk) = 0. 	


A quite popular line search strategy is the Armijo rule with backtracking, which
consists in the following: Given a descent direction dk of f at uk, choose the largest
αk ∈

{
1, 1

2 ,
1
4 , . . .

}
such that

f (uk +αkdk)− f (uk)≤ γαk(∇ f (uk),dk)U ,

where γ ∈ (0,1) is a constant (typically γ = 10−4). Using the notation φ(α) = f (uk +

αdk), Armijo’s rule may also be written as

φ(α)≤ φ(0)+ γφ ′(0). (4.10)
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φ(0)

αk

φ(0)+ γφ ′(0)

φ(α)

Fig. 4.3 Illustration of Armijo’s rule

Lemma 4.1. Let ∇ f be uniformly continuous on the level set

Nρ
0 = {u+d : f (u)≤ f (u0),‖d‖U ≤ ρ},

for some ρ > 0. Then, for every ε > 0, there exists δ > 0 such that, for all uk ∈ U
satisfying f (uk)≤ f (u0) and all dk satisfying

(∇ f (uk),dk)U
‖dk‖U

≤−ε ,

there holds

f (uk +αdk)− f (uk)≤ γ α(∇ f (uk),dk)U , ∀α ∈
[

0,
δ

‖dk‖U

]
.

Proof. We refer to [30, p. 102]. 	


Proposition 4.1. Let ∇ f be uniformly continuous on Nρ
0 , for some ρ > 0. If the iterates

generated by Algorithm 1, with {αk} satisfying the Armijo rule, are such that

‖dk‖U ≥ −(∇ f (uk),dk)U
‖dk‖U

,

then {αk} satisfies (4.9).

Proof. Assume there exists an infinite set K and ε > 0 such that

f (uk +αkdk)− f (uk)
k→∞−−−→ 0,
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and
(∇ f (uk),dk)U

‖dk‖U
≤−ε , ∀k ∈ K.

Then

‖dk‖U ≥− (∇ f (uk),dk)U
‖dk‖U

≥ ε > 0, ∀k ∈ K.

From Lemma 4.1 there exists some δ > 0 such that

f (uk +αkdk)− f (uk)≤γδ
(∇ f (uk),dk)U

‖dk‖U

≤− γδε, ∀k ∈ K.

Consequently,
f (uk +αkdk)− f (uk) �−→ 0,

which contradicts the hypothesis. 	


An alternative line-search strategy is given by the Wolfe conditions:

f (uk +αkdk)− f (uk)≤ γαk (∇ f (uk),dk)U , (4.11)

(∇ f (uk +αkdk),dk)U ≥ β (∇ f (uk),dk)U , (4.12)

with 0 < γ < β < 1. Condition (4.11) is similar to the sufficient decrease condition in
Armijo’s rule, while condition (4.12) is known as the curvature condition and guarantees
that the slope of the function

φ(α) = f (uk +αdk)

is less negative at the chosen αk than at 0

dφ
dα

∣∣∣∣
αk

≥ β
dφ
dα

∣∣∣∣
0
.

Condition (4.12) is important in order to avoid very small values of α and ensures that
the next chosen αk is closer to a stationary point of problem (4.7).

A stronger version of the Wolfe conditions is obtained by replacing (4.12) with

|(∇ f (uk +αkdk),dk)U | ≤ β |(∇ f (uk),dk)U | , (4.13)

in order to guarantee that the chosen step αk actually lies in a neighborhood of a local
minimizer of φ(α).
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αk

φ ′(0)

βφ ′(0)

α

φ(α)

Fig. 4.4 Illustration of Wolfe’s condition (4.12)

In the case of the PDE-constrained optimization problem (3.1), since the derivative
of the cost functional is characterized by (see Theorem 3.3)

(∇ f (u),h)U =−〈eu(y(ū), ū)
∗p,h〉U ′,U + Ju(y(ū), ū)h, (4.14)

where p solves the adjoint equation (3.11b) and y the state equation (3.11a), the complete
steepest descent algorithm is given through the following steps:

Algorithm 2
1: Choose u0 ∈U and solve

e(y,u0) = 0, ey(y0,u0)
∗p = Jy(y0,u0),

to obtain (y0, p0). Set k = 0.
2: repeat
3: Choose the descent direction dk =−∇ f (uk) according to (4.14).
4: Determine αk such that (4.8)–(4.9) hold.
5: Set uk+1 = uk +αkdk and solve sequentially

e(y,uk+1) = 0, ey(yk+1,uk+1)
∗p = Jy(yk+1,uk+1),

to obtain (yk+1, pk+1). Set k = k+1.
6: until stopping criteria.

The verification of both Armijo’s and Wolfe’s rule requires the repetitive evaluation
of the cost functional. Since in the case of PDE-constrained optimization such evaluation
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involves the solution of a PDE, the studied line search strategies may become very costly
in practice.

Under the stronger requirement that ∇ f is Lipschitz continuous on Nρ
0 , for some

ρ > 0, with Lipschitz constant M > 0, an alternative line search condition for the steepest
descent method is given by

f (uk +αkdk)≤ f (uk)−
η2

2M
‖∇ f (uk)‖2 .

Typically, a constant parameter αk = α ∈ (0,1), for all k ≥ 0, is considered.

Example 4.1. For the linear quadratic problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minJ(y,u) = 1
2‖y− zd‖2

L2 +
α
2 ‖u‖2

L2 = f (u),

subject to:

−Δy = u in Ω ,

y = 0 on Γ .

we obtain the following characterization of the gradient:

∇ f (u) = αu+ p,

where p solves the adjoint equation

−Δ p = y− zd in Ω ,

p = 0 on Γ .

The general framework of descent methods allows several choices of directions dk. A
special class is given by directions of the following type:

dk =−H−1
k ∇ f (uk),

where {Hk}k∈N ⊂ L (U) satisfy

m‖v‖2
U ≤ (Hkv,v)U ≤ M ‖v‖2

U , for all v ∈U and all k = 1,2, . . . , (4.15)

for some constants 0<m<M independent of k. Condition (4.6) is then fulfilled for such
a family. Indeed,
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(−∇ f (uk),dk)U
‖∇ f (uk)‖U ‖dk‖U

=

(
−∇ f (uk),−H−1

k ∇ f (uk)
)

U

‖∇ f (uk)‖U

∥∥H−1
k ∇ f (uk)

∥∥
U

=

(
HkH−1

k ∇ f (uk),H
−1
k ∇ f (uk)

)
U∥∥HkH−1

k ∇ f (uk)
∥∥

U

∥∥H−1
k ∇ f (uk)

∥∥
U

≥
m
∥∥H−1

k ∇ f (uk)
∥∥2

U

M
∥∥H−1

k ∇ f (uk)
∥∥2

U

=
m
M

= η .

Remark 4.1. Although Theorem 4.2 provides a global convergence result, the local con-
vergence of first order descent methods is typically slow (see [37, p. 45] for further
details).

Program: Steepest Descent Method for Optimization of the Poisson Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Regularization parameter: ');

[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);

lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1);
res=1; iter=0; tol=1e-3;

while res >= tol
iter=iter+1
y=lap\u; %%%%% State equation %%%%%
p=lap\(y-z); %%%%% Adjoint solver %%%%%
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beta=armijolq(u,y,p,z,alpha,lap); %% Armijo line search %%
uprev=u;
u=u-beta*(p+alpha*u); %%%%% Gradient step %%%%%
res=l2norm(u-uprev)

end

Program: Armijo Line Search for the Linear-Quadratic Problem

function arm=armijolq(u,y,p,z,alpha,lap)
countarm=0;
gradcost=l2norm(p+alpha*u)ˆ2;
cost1=1/2*l2norm(y-z)ˆ2+alpha/2*l2norm(u)ˆ2;
beta=1; armijo=1e5;

while armijo > -1e-4*beta*gradcost
beta=1/2ˆ(countarm);
uinc=u-beta*(p+alpha*u);
yinc=lap\uinc;
cost2=1/2*l2norm(yinc-z)ˆ2+alpha/2*l2norm(uinc)ˆ2;
armijo=cost2-cost1;
countarm=countarm+1
end

arm=beta;

4.2 Newton’s Method

Another type of directions is obtained if, at each iteration, a quadratic model of the
cost functional f (uk + d) is minimized with respect to the direction d. Using Taylor’s
expansion, such a quadratic model is given by

q(d) = f (uk)+(∇ f (uk),d)U +
1
2
(∇2 f (uk)d,d)U , (4.16)

where ∇2 f (uk)d stands for the Riesz representative of f ′′(uk)d.
The minimizer dk to (4.16) then satisfies the first order optimality condition

∇ f (uk)+∇2 f (uk)dk = 0
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or, equivalently,
∇2 f (uk)dk =−∇ f (uk). (4.17)

In this manner, assuming invertibility of the second derivative, the direction

dk =−
(
∇2 f (uk)

)−1 ∇ f (uk) (4.18)

is obtained, which leads to the iteration

uk+1 = uk −
(
∇2 f (uk)

)−1 ∇ f (uk).

Equation (4.17) corresponds to the Newton iteration for the solution of the optimality
condition

∇ f (u) = 0.

If the second derivative of f at the iterates {uk} satisfies condition (4.15), convergence
of the Newton iterates

uk+1 = uk −αk
(
∇2 f (uk)

)−1 ∇ f (uk) (4.19)

is obtained, according to Theorem 4.2.
Condition (4.15), however, is very difficult to be verified at each Newton iterate.

Moreover, although ∇2 f is “positive” at the solution, it does not have to be so at each
iterate.

By observing that

(
∇2 f (uk)v,v

)
U =

(
∇2 f (ū)v,v

)
U +

([
∇2 f (uk)−∇2 f (ū)

]
v,v

)
U ,

an alternative condition is obtained by assuming “positivity” of ∇2 f (ū) at a solution ū
and Lipschitz continuity of ∇2 f in a neighborhood of ū.

Theorem 4.3. Let ū ∈U be a local optimal solution to problem (4.2) and let f be twice
continuously differentiable. Let ∇2 f be Lipschitz continuous in a neighborhood V (ū) of
ū and

(∇2 f (ū)d,d)U ≥ κ ‖h‖2
U, ∀h ∈U, (4.20)

for some constant κ > 0. Then there exists a constant δ > 0 such that, if ‖u0 − ū‖U < δ ,
then:

a) the Newton iterates
uk+1 = uk −

(
∇2 f (uk)

)−1 ∇ f (uk) (4.21)

converge to ū,
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b) there exists a constant C̄ > 0 such that

‖uk+1 − ū‖U ≤ C̄‖uk − ū‖2
U. (4.22)

Proof. Assuming that ∇ f (ū) = 0 and (for the moment) that ∇2 f (uk) is invertible for all
k, we obtain, from the iterates given by (4.21), the estimate

‖uk+1 − ū‖U =
∥∥∥uk −

(
∇2 f (uk)

)−1 ∇ f (uk)− ū
∥∥∥

U

=
∥∥∥(∇2 f (uk)

)−1 [∇2 f (uk)(uk − ū)−∇ f (uk)+∇ f (ū)
]∥∥∥

≤
∥∥∥(∇2 f (uk)

)−1
∥∥∥

L (U)

∥∥∇ f (ū)−∇ f (uk)+∇2 f (uk)(uk − ū)
∥∥

U .

From the mean value theorem we get that

∇ f (ū)−∇ f (uk) =

∫ 1

0
∇2 f (uk + t(ū−uk))dt (ū−uk),

which implies that

∥∥∇ f (ū)−∇ f (uk)+∇2 f (uk)(uk − ū)
∥∥

U

=

∥∥∥∥
∫ 1

0

[
∇2 f (uk + t(ū−uk))−∇2 f (uk)

]
dt (ū−uk)

∥∥∥∥
U

≤
∫ 1

0

∥∥∇2 f (uk + t(ū−uk))−∇2 f (uk)
∥∥

L (U)
dt ‖ū−uk‖U

≤
∫ 1

0
Lt ‖ū−uk‖U dt ‖ū−uk‖U

≤ L
2
‖ū−uk‖2

U ,

where L > 0 is the Lipschitz constant for ∇2 f on V (ū).
On the other hand, thanks to (4.20) there exists

(
∇2 f (ū)

)−1
. By choosing the constant

δ = 1

2L
∥∥∥(∇2 f (ū))

−1
∥∥∥

L (U)

, we get that

∥∥∇2 f (ū)−∇2 f (u0)
∥∥

L (u) ≤ L‖ū−u0‖U <
1

2
∥∥∥(∇2 f (ū))−1

∥∥∥
L (U)

,
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which, by the theorem on inverse operators, implies that ∇2 f (u0) is invertible (see, e.g.,
[3, p. 51]). Moreover,

∥∥∥(∇2 f (u0)
)−1

∥∥∥
L (U)

≤

∥∥∥(∇2 f (ū)
)−1

∥∥∥
L (U)

1−
∥∥∥(∇2 f (ū))−1

∥∥∥
L (U)

‖∇2 f (ū)−∇2 f (u0)‖L (U)

≤ 2
∥∥∥(∇2 f (ū)

)−1
∥∥∥

L (U)
.

Consequently,

‖u1 − ū‖U ≤
∥∥∥(∇2 f (u0)

)−1
∥∥∥

L (U)

L
2
‖u0 − ū‖2

U

≤
∥∥∥(∇2 f (ū)

)−1
∥∥∥

L (U)
L

1

2L
∥∥∥(∇2 f (ū))−1

∥∥∥
L (U)

‖u0 − ū‖U

≤ 1
2
‖u0 − ū‖U .

By induction we obtain the invertibility of ∇2 f (uk) and also that

‖uk − ū‖U < δ ⇒‖uk+1 − ū‖U ≤ 1
2
‖uk − ū‖U .

Therefore, the sequence {uk} converges toward ū as k → ∞. Additionally,
∥∥∥(∇2 f (uk)

)−1
∥∥∥

L (U)
≤ 2

∥∥∥(∇2 f (ū)
)−1

∥∥∥
L (U)

, for all k,

and, consequently,

‖uk+1 − ū‖U ≤ L
∥∥∥(∇2 f (ū)

)−1
∥∥∥

L (U)
‖ū−uk‖2

U.

Taking C̄ := L
∥∥∥(∇2 f (ū)

)−1
∥∥∥

L (U)
, the result follows. 	


The last result implies that the Newton method converges locally with quadratic rate.
Considering the special structure of the PDE-constrained optimization problems, the

convergence result for Newton’s method can be formulated as follows.

Theorem 4.4. Let (ȳ, ū) be a local optimal solution of the problem:

⎧⎪⎨
⎪⎩

min J(y,u)

subject to:

e(y,u) = 0,
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where J : Y ×U −→R and e : Y ×U −→W are twice continuously Fréchet differentiable
with Lipschitz continuous second derivatives. Further, assume that:

ey(y,u) is a bijection for all (y,u) in a neighborhood of (ȳ, ū).

If there exists a constant κ > 0 such that

L ′′
(y,u)(ȳ, ū, p)[(w,h)]2 ≥ κ ‖h‖2

U (4.23)

for all (w,h) ∈ Y ×U satisfying

ey(ȳ, ū)w+ eu(ȳ, ū)h = 0,

then the Newton iterates converge locally quadratically.

Before proving Theorem 4.4, let us take a closer look at the structure of the corre-
sponding Newton system. Similar to the proof of Theorem 3.5 we obtain that

f ′′(u)[h1,h2] = L ′′
(y,u)(y,u, p)[(w1,h1),(w2,h2)],

for all (wi,hi) ∈ Y ×U, i = 1,2, satisfying the linearized equation

e′(y,u)(wi,hi) = ey(y,u)wi + eu(y,u)hi = 0, (4.24)

where, in addition,
e(y,u) = 0 (4.25)

and
ey(y,u)

∗p = Jy(y,u). (4.26)

Since e′(y,u) : Y ×U →W is a continuous linear operator, it follows from the annihila-
tor’s lemma that

ker(e′(y,u))⊥ = range(e′(y,u)∗)

and, therefore, if for some (ϕ1,ϕ2) ∈ Y ′ ×U ′

L ′′
(y,u)(y,u, p)[(w1,h1),(w2,h2)] = 〈(ϕ1,ϕ2),(w2,h2)〉Y ′×U ′

for all (w2,h2) ∈ ker(e′(y,u)), then there exists an element ξ ∈ ker(e′(y,u)⊥) such that

L ′′
(y,u)(y,u, p)[(w1,h1)]+(ξ1,ξ2) = (ϕ1,ϕ2) in Y ′ ×U ′.

Moreover, there exists a unique π ∈W ′ such that

e′(y,u)∗π = ξ .
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Therefore, in a neighborhood of ū,

f ′′(u)h1 = φ ∈U ′

is equivalent to

〈L ′′
(y,u)(y,u, p)[(w1,h1)]+ e′(y,u)∗π,(v,h)〉Y ′×U ′ = 〈φ ,h〉U ′ , (4.27)

for all (v,h) ∈ Y ×U . By taking, in particular, the cases h = 0 and v = 0 we arrive at the
following system of equations:

(
L ′′

(y,u)(y,u, p) e′(y,u)∗

e′(y,u) 0

)⎛
⎝
(

w1

h1

)

π

⎞
⎠=

⎛
⎝ 0

φ
0

⎞
⎠ . (4.28)

Newton’s method ∇2 f (u)δu = −∇ f (u) for the PDE-constrained optimization problem
is then given through the following steps:

Algorithm 3
1: Choose u0 ∈V (ū) and solve

e(y,u0) = 0, ey(y0,u0)
∗p = Jy(y0,u0),

to obtain (y0, p0). Set k = 0.
2: repeat
3: Newton system: solve for (δy,δu,δπ ) ∈ Y ×U ×W ′

(
L ′′

(y,u)(yk,uk, pk) e′(yk,uk)
∗

e′(yk,uk) 0

)⎛
⎝
(

δy

δu

)

δπ

⎞
⎠=

⎛
⎝ 0

eu(y,u)∗p− Ju(yk,uk)

0

⎞
⎠ .

4: Set uk+1 = uk +δu and solve

e(y,uk+1) = 0, to obtain yk+1 ∈ Y,

ey(yk+1,uk+1)
∗p = Jy(yk+1,uk+1), to obtain pk+1 ∈W ′.

5: Set k = k+1.
6: until Stopping criteria.

Proof. (Theorem 4.4). We have already argued that if

∇2 f (u)δu =−∇ f (u)
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has a unique solution δu ∈ U , then there exists a unique π ∈ W ′ such that (4.28) holds.
Since condition (4.23) is equivalent to (4.20), the Newton iterates for the reduced prob-
lem are well defined and there exists a unique solution for system (4.28). 	


Program: Newton Method for the Optimization of a Semilinear Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Regularization parameter: ');
[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);

lap=matrices(n,h); %%%%% Laplacian %%%%%
u=sparse(nˆ2,1); %%%%% Initial control %%%%%
y=semilinear(lap,u); %%%%% Initial state %%%%%%

Y=spdiags(y,0,nˆ2,nˆ2);
p=(lap+3*Y.ˆ2)\(y-z); %%%%% Initial adjoint %%%%%
res=1; iter=0;
while res >= 1e-3

iter=iter+1
Y=spdiags(y,0,nˆ2,nˆ2); P=spdiags(p,0,nˆ2,nˆ2);

A=[speye(nˆ2)-6*Y.*P sparse(nˆ2,nˆ2) lap+3*Y.ˆ2
sparse(nˆ2,nˆ2) alpha*speye(nˆ2) -speye(nˆ2)
lap+3*Y.ˆ2 -speye(nˆ2) sparse(nˆ2,nˆ2)];

F=[sparse(nˆ2,1);-p-alpha*u;sparse(nˆ2,1)];

delta=A\F;
uprev=u;
u=u+delta(nˆ2+1:2*nˆ2); %%%%% Control update %%%%%
y=semilinear(lap,u); %%%%% State equation %%%%%
Y=spdiags(y,0,nˆ2,nˆ2);
p=(lap+3*Y.ˆ2)\(y-z); %%%%% Adjoint equation %%%%%
res=l2norm(u-uprev)

end
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4.3 Quasi-Newton Methods

For the numerical solution of the reduced problem (4.1), we have so far considered
descent directions of the type

dk =−H−1
k ∇ f (uk).

For the choice H−1
k = I (steepest descent) a globally convergent behaviour is obtained,

but possibly with a slow convergence rate. On the other hand, for H−1
k =

(
∇2 f (uk)

)−1

(Newton) a fast local convergence is obtained, but with additional computational effort
and without global convergence guarantee.

An alternative consists in considering operators Hk which approximate the second
derivative and lead to a fast convergence rate, but at the same time preserve the positivity
and lead to a globally convergent method.

As for finite dimensional problems, an alternative consists in approximating the sec-
ond derivative by using an operator Bk+1 ∈ L (U) that fulfills the secant equation:

Bk+1 (uk+1 −uk)︸ ︷︷ ︸
sk

= ∇ f (uk+1)−∇ f (uk)︸ ︷︷ ︸
zk

.

uk+1 uk

∇2 f (uk)
Bk+1

∇ f (u)

Fig. 4.5 Illustration of the secant equation

Since the operator Bk+1 is not uniquely determined from the secant equation, addi-
tional criteria are needed for the construction of the operators. If U =R

n, one possibility
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consists in choosing rank-2 updates of the form:

Bk+1 = Bk + γkwkwT
k +βkvkvT

k ,

as close as possible to the matrix Bk. Specifically, if Bk+1 is chosen as solution of:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
B

||W (B−1 −B−1
k )W ||F

subject to:

B = BT ,

Bsk = zk,

(4.29)

where ‖ · ‖F stands for the Frobenius norm and W is a positive definite matrix such that
W 2sk = zk, then the solution to problem (4.29) is given by the BFGS update:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
zkzT

k

zT
k sk

.

A generalization of the previous formula to Hilbert spaces yields:

Bk+1 = Bk −
Bksk ⊗Bksk

(Bksk,sk)U
+

zk ⊗ zk

(zk,sk)U
, (4.30)

where for w,z ∈U , the operator w⊗ z is defined by

(w⊗ z)(v) := (z,v)U w.

The complete BFGS algorithm, without line-search, is then given through the following
steps:

Algorithm 4
1: Choose u0 ∈U , B0 ∈ L (U) symmetric, set k = 0.
2: repeat
3: Solve Bkdk =−∇ f (uk).
4: Update uk+1 = uk +dk.
5: Compute ∇ f (uk+1).
6: Set sk = uk+1 −uk, zk = ∇ f (uk+1)−∇ f (uk).

7: Update Bk+1 = Bk −
Bksk ⊗Bksk

(Bksk,sk)U
+

zk ⊗ zk

(zk,sk)U
.

8: Set k = k+1.
9: until Stopping criteria.
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Similar to the descent algorithm, the BFGS requires only one solution of the state
equation and one solution of the adjoint equation.

Theorem 4.5. Let f be twice Fréchet differentiable and ∇2 f be Lipschitz continuous in
a neighborhood of ū, with bounded inverse. Let B0 be an initial positive operator. If
B0 −∇2 f (ū) is compact, then the BFGS iterates converge q-superlinearly to ū provided

‖u0 − ū‖U and
∥∥B0 −∇2 f (ū)

∥∥
L (U)

are sufficiently small.

Under the choice of an appropriate line search parameter that guarantees the satisfac-
tion of the curvature condition (zk,sk)U > 0, global convergence of the BFGS is obtained.
Typically, the Wolfe conditions are used for this purpose. As with Newton’s method, the
bounded inverse condition in Theorem 4.5 can be replaced by a convexity condition on
the second derivative.

Remark 4.2. The compactness condition on the operator B0 −∇2 f (ū) is necessary for
the superlinear convergence rate of the method [22, 39]. Indeed, an example in the space
of square summable sequences l2 is presented in [55], where only linear convergence of
the BFGS is obtained. In the example, the quadratic function f (x) = 1

2 xT x and the initial
sequence x0 = (2−0,2−1,2−2, . . .) are considered. Additionally, the following starting
infinite tridiagonal matrix is used:

B0 =

⎛
⎜⎜⎜⎜⎝

5 −2
−2 5 −2

−2 5
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

Remark 4.3. With the same hypotheses as in Theorem 4.5, a mesh independence result
for the BFGS can be obtained. Specifically, let Uh be a finite-dimensional Hilbert space
that approximates U , and uh ∈Uh be the solution to the discretized optimization problem:

min
uh∈Uh

fh(u
h).

Moreover, let the iteration indexes be defined by:

i(ε) := min{k ∈ N : ‖∇ f (uk)‖U ≤ ε},
ih(ε) := min{k ∈ N : ‖∇ fh(u

h
k)‖Uh ≤ ε}.
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If the discretization of the problem satisfies suitable conditions (see [38]) and the
assumptions of Theorem 4.5 hold, then for each ε > 0 there exists hε such that

i(ε)−1 ≤ ih(ε)≤ i(ε), for h ≤ hε . (4.31)

This means that the number of required iterations of both the infinite dimensional algo-
rithm and the discretized one differs at most by one, for h sufficiently small.

Example 4.2. ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min J(y,u) =
1
2

∫
Ω
|y− zd |2 +

α
2

∫
Ω

u2 dx ,

subject to:

−Δy+ y3 = u,

y
∣∣
Γ = 0.

Adjoint equation:

−Δ p+3y2 p = y− zd , in Ω ,

p = 0, on Γ .

Gradient of f :
∇ f (u) = αu+ p.

Using a finite differences discretization and the simple integration formula

(u,v)L2 ≈ h2uT v,

we get that
(w⊗ z)v = (z,v)L2w ≈ h2zT vw = h2wzT v,

where the bold notation stands for the discretized vector in R
m of a function u ∈

L2(Ω). The BFGS update is then given by:

Bk+1 = Bk −
h2Bksk(Bksk)

T

h2sT
k Bksk

+
h2zkzT

k

h2zT
k sk

= Bk −
BksksT

k Bk

sT
k Bksk

+
zkzT

k

zT
k sk

,

which coincides with the matrix update in R
m.
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If a finite element discretization is used, then

(u,v)L2 ≈ uT Mv,

where M stands for the mass matrix corresponding to the discretization of L2
h(Ω).

Therefore,
(w⊗ z)v ≈ (MT z)T vw = w(MT z)T v

and the BFGS update is the following:

Bk+1 = Bk −
Bksk(MT Bksk)

T

sT
k MBksk

+
zkzT

k M

sT
k Mzk

.

Program: BFGS Method for the Optimization of a Semilinear Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Tikhonov regularization parameter: ');
[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
%desiredstate=inline('x.*y','x','y');
desiredstate=inline('10*sin(5*x).*cos(4*y)','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);
lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1);
res=1; iter=0;
B=speye(nˆ2); %%%%% Initial BFGS-matrix %%%%%

while res >= 1e-3
iter=iter+1
y=semilinear(lap,u); %%%%% State equation %%%%%

Y=spdiags(y,0,nˆ2,nˆ2);
p=(lap+3*Y.ˆ2)\(y-z); %%%%% Adjoint solver %%%%%

%%%%% BFGS matrix %%%%%
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if iter >= 2
s=u-uprev;
t=B*s;
r=(p+alpha*u)-(pprev+alpha*uprev);
B=B-1/(s'*t)*kron(t',t)+1/(s'*r)*kron(r',r);
end

delta=-B\(p+alpha*u); %%%%% BFGS Direction %%%%%
uprev=u; pprev=p;
u=u+delta; %%%%% BFGS step (no line search)%%%%%
res=l2norm(u-uprev)

end

4.4 Sequential Quadratic Programming (SQP)

The Newton method studied previously provides a locally fast convergent approach
for the solution of PDE-constrained optimization problems. The computational cost of
Algorithm 3, however, appears to be high, since apart from the system in Step 3, many
solutions of the state and adjoint equations have to be computed.

By considering the problem from a different viewpoint, namely the numerical solu-
tion of the optimality system, the sequential quadratic programming approach provides
a locally quadratic convergent method for finding stationary points of PDE-constrained
optimization problems.

The starting point of the SQP method is indeed the optimality system given by (3.13)
or, equivalently, ⎧⎨

⎩
L ′

(y,u)(ȳ, ū, p) = 0,

−e(ȳ, ū) = 0.
(4.32)

By applying a Newton method for solving the previous system of equations, we obtain
the following linearized system:

(
L ′′

(y,u)(yk,uk, pk) −e′(yk,uk)
∗

−e′(yk,uk) 0

)⎛
⎝
(

δy

δu

)

δp

⎞
⎠=

⎛
⎝ ey(yk,uk)

∗pk − Jy(yk,uk)

eu(yk,uk)
∗pk − Ju(yk,uk)

e(yk,uk)

⎞
⎠ (4.33)

yk+1 = yk +δy, uk+1 = uk +δu, pk+1 = pk +δp.
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Note that system (4.33) corresponds to the necessary and sufficient optimality condition
of the following linear–quadratic problem:

⎧⎪⎪⎨
⎪⎪⎩

min
(δy,δu)

1
2
L ′′

(y,u)(yk,uk, pk)[(δy,δu)]
2 +L ′

(y,u)(yk,uk, pk)(δy,δu),

subject to:
ey(yk,uk)δy + eu(yk,uk)δu + e(yk,uk) = 0.

(4.34)

Indeed, if (yk,uk) ∈ V (ȳ, ū), where (ȳ, ū) is an optimal solution to the PDE-constrained
optimization problem such that e′(ȳ, ū) is surjective and

L ′′
(y,u)(ȳ, ū, p)[(w,h)]2 ≥ κ ‖h‖2

U ,

for some κ > 0, and the second derivatives of J and e are Lipschitz continuous, then by
proceeding as in the proof of Theorem 3.3, there exists δp ∈W ′ such that system (4.33)
holds.

System (4.33) is consequently well-posed and the SQP algorithm is given through the
following steps:

Algorithm 5
1: Choose (y0,u0, p0) ∈ Y ×U ×W ′.
2: repeat
3: System: solve for (δy,δu,δφ ) ∈ Y ×U ×W ′

(
L ′′

(y,u)(yk,uk, pk) −e′(yk,uk)
∗

−e′(yk,uk) 0

)⎛
⎝
(

δy

δu

)

δp

⎞
⎠=

⎛
⎝ ey(yk,uk)

∗pk − Jy(yk,uk)

eu(yk,uk)
∗pk − Jy(yk,uk)

e(yk,uk)

⎞
⎠ .

4: Set uk+1 = uk +δu, yk+1 = yk +δy, pk+1 = pk +δ p and k = k+1.
5: until Stopping criteria.

Remark 4.4. Since the SQP corresponds to the Newton method applied to the optimality
system, it is also known as Lagrange–Newton approach. Local quadratic convergence
of this approach can be proved similarly as for Newton’s method. Moreover, a mesh
independence principle can also be proved in this case if the discretization satisfies some
technical assumptions [1]. The result also holds if inequality constraints are included [2].
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Example 4.3. Consider the following semilinear problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min J(y,u) = 1
2

∫
Ω
|y− zd |2dx+

α
2
‖u‖2

L2

subject to:∫
Ω

∇y ·∇v dx+
∫

Ω
y3v dx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω).

By treating y an u independently, the following first and second derivatives of the
Lagrangian can be computed:

L ′
(y,u)(y,u, p)(δy,δu) =(y− zd ,δy)−

∫
Ω

∇p ·∇δy dx−3
∫

Ω
y2 ·δy · p dx

+α(u,δu)+
∫

Ω
pδu dx,

L ′′
(y,u)(y,u, p)[(δy,δu),(w,h)] =(δy,w)−6

∫
Ω

y ·δy ·w · p dx+α(δu,h).

Additionally, the action of the linearized equation operator and its adjoint are given
through the following expressions:

〈e′(y,u)(δy,δu),v〉W,W ′ =

∫
Ω

∇δy ·∇v dx+3
∫

Ω
y2δyvdx−

∫
Ω

δuv dx,

〈e′(y,u)∗δp,(w,h)〉Y ′×U ′ =
∫

Ω
∇δp ·∇w dx+3

∫
Ω

y2δp ·w dx−
∫

Ω
δph dx.

According to Algorithm 5, we shall solve the system

(
L ′′

(y,u)(yk,uk, pk) −e′(yk,uk)
∗

−e′(yk,uk) 0

)⎛
⎝
(

δy

δu

)

δp

⎞
⎠=

⎛
⎝ ey(yk,uk)

∗pk − Jy(yk,uk)

eu(yk,uk)
∗pk − Ju(yk,uk)

e(yk,uk)

⎞
⎠ ,

which, by taking the expressions explicitly, is equivalent to
∫

Ω
δyw dx−6

∫
Ω

yk pkδyw dx−
∫

Ω
∇δp ·∇w dx−3

∫
Ω

y2
kδpw dx

=
∫

Ω ∇pk ·∇w dx+3
∫

Ω y2
k pkw dx−

∫
Ω (yk − zd)w dx,

αδu +δ p =−pk −αuk,

−
∫

Ω
∇δy ·∇vdx−

∫
Ω

3y2
kδyvdx+

∫
Ω

δuvdx =
∫

Ω
∇yk ·∇vdx+

∫
Ω

y3
kvdx−

∫
Ω

ukvdx.
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Finally, we obtain the iteration system:

⎛
⎝ I −6Y P 0 −A−3Y 2

0 αI I
−A−3Y 2 I 0

⎞
⎠
⎛
⎝ δy

δu

δp

⎞
⎠=

⎛
⎝Apk +3Y 2 pk − yk + z

−pk −αuk

Ayk + y3
k −uk

⎞
⎠ .

Program: SQP Method for the Optimization of a Semilinear Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Regularization parameter: ');
[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);
lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1); y=sparse(nˆ2,1); p=sparse(nˆ2,1);
res=1; iter=0;

while res >= 1e-3
iter=iter+1

%%%%% SQP step %%%%%
Y=spdiags(y,0,nˆ2,nˆ2); P=spdiags(p,0,nˆ2,nˆ2);

A=[speye(nˆ2)-6*Y.*P sparse(nˆ2,nˆ2) -lap-3*Y.ˆ2
sparse(nˆ2,nˆ2) alpha*speye(nˆ2) speye(nˆ2)
-lap-3*Y.ˆ2 speye(nˆ2) sparse(nˆ2,nˆ2)];

F=[lap*p+3*Y.ˆ2*p-y+z;-p-alpha*u;lap*y+y.ˆ3-u];

delta=A\F;
uprev=u; yprev=y; pprev=p;
y=y+delta(1:nˆ2);
u=u+delta(nˆ2+1:2*nˆ2);
p=p+delta(2*nˆ2+1:3*nˆ2);
res=l2norm(u-uprev)+l2norm(y-yprev)+l2norm(p-pprev)

end



Chapter 5

Box-Constrained Problems

5.1 Problem Statement and Existence of Solutions

We consider the following type of optimization problems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min J(y,u),

subject to:

e(y,u) = 0,
u ∈Uad ,

(5.1)

where J : Y ×U −→ R, e : Y ×U −→W , with Y,U and W reflexive Banach spaces, and
Uad ⊂U is a closed, bounded, and convex set.

Further we assume that the state equation satisfies the following properties.

Assumption 5.1.

i) For each u ∈ Uad, there exists a unique solution y(u) ∈ Y to the state equation
e(y,u) = 0.

ii) The set of solutions {y(u)} is bounded in Y for u ∈Uad .

iii) If un ⇀ û weakly in U, then the corresponding states y(un)⇀ y(û) weakly in Y .

Theorem 5.1. Let J : Y ×U −→ R be bounded from below and weakly lower semicon-
tinuous (w.l.s.c.). Then there exists a global optimal solution for problem (5.1).

Proof. Since J is bounded from below, there exists a sequence {(yn,un)} ⊂ Tad :=
{(y,u) : u ∈Uad ,e(y,u) = 0} such that

lim
n→∞

J(yn,un) = inf
(y,u)∈Tad

J(y,u).

© The Author(s) 2015 69
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Since Uad is bounded and by Assumption 5.1 {y(u)} is also bounded in Y , we may
extract a subsequence {(ynk ,unk)}k∈N such that

(ynk ,unk)⇀ (ŷ, û) weakly in Y ×U.

Since Uad is convex and closed, it is weakly closed and therefore û ∈Uad . Moreover, by
Assumption 5.1 ŷ = y(û) is a solution of the equation

e(ŷ, û) = 0,

which implies that (ŷ, û) ∈ Tad . Since the functional J is w.l.s.c. it follows that

J(ŷ, û)≤ liminf
k→∞

J(ynk ,unk) = inf
(y,u)∈Tad

J(y,u).

Consequently, (ŷ, û) = (ȳ, ū) corresponds to an optimal solution to (5.1). 	


5.2 Optimality Conditions

Defining the solution operator

G : U −→ Y
u �−→ y(u) = G(u),

we can reformulate the optimization problem in reduced form as:

min
u∈Uad

f (u) = J(y(u),u). (5.2)

Hereafter we assume that J : Y ×U −→R and e : Y ×U −→W are continuously Fréchet
differentiable. From Theorem 3.2, if ū ∈Uad is a local optimal solution for (5.2), then it
satisfies the variational inequality

f ′(ū)(v− ū)≥ 0,

for all admissible directions v− ū. Since Uad is convex, the condition holds for all v ∈
Uad .

Assuming that ey(ȳ, ū) is a bijection and proceeding as in the proof of Theorem 3.3,
we obtain the existence of an adjoint state p ∈ W ′ such that the following optimality
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system holds:

e(ȳ, ū) = 0, (5.3a)

ey(ȳ, ū)
∗p = Jy(ȳ, ū), (5.3b)

〈Ju(ȳ, ū)− eu(ȳ, ū)
∗p,v− ū〉U ′,U ≥ 0, for all v ∈Uad . (5.3c)

Hereafter we will focus on the special case U = L2(Ω), and

Uad = {u ∈ L2(Ω) : ua ≤ u(x)≤ ub a.e in Ω}, (5.4)

with ua,ub ∈ R such that ua ≤ ub.
By identifying U with its dual, inequality (5.3c) can be written as

(Ju(ȳ, ū)− eu(ȳ, ū)
∗p,v− ū)U ≥ 0, ∀v ∈Uad . (5.5)

The box structure of the feasible set (5.4) allows to derive more detailed optimality
conditions, which are the basis of the solution algorithms presented in this chapter.

Proposition 5.1. Let U = L2(Ω) and Uad be defined by (5.4). Then inequality (5.5) is
satisfied if and only if, for almost every x ∈ Ω ,

(Ju(ȳ, ū)(x)− eu(ȳ, ū)
∗p(x))(v− ū(x))≥ 0, ∀v ∈ R : ua ≤ v ≤ ub. (5.6)

Proof. Let z(x) := Ju(ȳ, ū)(x)−eu(ȳ, ū)∗p(x). Since z∈ L2(Ω), then almost every x0 ∈Ω
is a Lebesgue point, i.e.,

lim
ρ→0+

1
|Bρ(x0)|

∫
Bρ (x0)

z(x)dx = z(x0).

For ρ sufficiently small, the ball Bρ(x0)⊂ Ω and the integral exists. Similarly, it follows
that almost every x0 ∈ Ω is a Lebesgue point of ū.

Let x0 ∈ Ω be a common Lebesgue point of z and ū and let v ∈ [ua,ub]. We define the
function

u(x) =

{
v if x ∈ Bρ(x0)

ū(x) elsewhere.

It follows that u ∈Uad and from inequality (5.5)

0 ≤ 1
|Bρ(x0)|

∫
Ω

z(x)(u(x)− ū(x))dx =
1

|Bρ(x0)|

∫
Bρ (x0)

z(x)(v− ū(x))dx.

By taking the limit as ρ → 0, it follows that

0 ≤ z(x0)(v− ū(x0))
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for almost all x0 ∈ Ω . 	


Lemma 5.1. Let U be a Hilbert space, C ⊂ U be a nonempty, closed, and convex set.
Then, for all ϕ ∈U and all c > 0, the following conditions are equivalent:

u ∈C and (ϕ,v−u)U ≥ 0, ∀v ∈C, (5.7)

u = P(u− cϕ), (5.8)

where P : U −→U denotes the projection onto C.

Proof. (5.7)⇒ (5.8): Let uc := u− cϕ . Then we have that

(uc −u,v−u)U =−c(ϕ,v−u)≤ 0, ∀v ∈C.

Consequently, u = P(uc).
(5.8)⇒ (5.7): Since u = P(uc) ∈C, it follows from the projection’s characterization

in Hilbert spaces that

(ϕ,v−u) =−1
c
(uc −u,v−u)≥ 0, ∀v ∈C. 	


By introducing the multiplier

λ := Ju(ȳ, ū)− eu(ȳ, ū)
∗p,

inequality (5.5) can be written as

ū = PUad (ū− cλ ).

Moreover, under the conditions of Proposition 5.1, inequality (5.6) can be written as

ū(x) = P[ua,ub](ū(x)− cλ (x)) a.e in Ω ,

where P[ua,ub] : R−→R denotes the projection onto the interval [ua,ub]. By decomposing
λ into its positive and negative parts, i.e.,

λ = λa −λb,

with λa(x) = max(0,λ (x)) and λb(x) = −min(0,λ (x)), inequality (5.6) can be written
as:

Ju(ȳ, ū)− eu(ȳ, ū)
∗p = λa −λb a .e. in Ω , (5.9a)
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λa(x)(v− ū(x))≥ 0 a .e. in Ω ,∀v ∈ [ua,ub], (5.9b)

λb(x)(v− ū(x))≤ 0 a .e. in Ω ,∀v ∈ [ua,ub], (5.9c)

λa(x)≥ 0, λb(x)≥ 0 a .e. in Ω , (5.9d)

ua ≤ ū ≤ ub a .e. in Ω . (5.9e)

By taking v = ua in (5.9b) and v = ub in (5.9c), we obtain from (5.9d) and (5.9e) that

λa(ua − ū) = λb(ub − ū) = 0 a .e. in Ω .

Consequently, inequality (5.6) is equivalent to the following complementarity problem:

ua ≤ ū(x)≤ ub a .e. in Ω , (5.10a)

λa(x)≥ 0, λb(x)≥ 0 a .e. in Ω , (5.10b)

λa(x)(ua − ū(x)) = λb(x)(ub − ū(x)) = 0 a .e. in Ω . (5.10c)

The alternative formulations of the variational inequality (5.6) as a projection formula or
as a complementarity system give rise to the development of different numerical strate-
gies for the solution of problem (5.1). This will be the subject of the next sections of this
chapter.

ub

ua

ū

λ
0

Fig. 5.1 Example of complementarity: the multiplier λ may take values different from 0 only on the
sectors where the control is active

Second order sufficient optimality conditions for problem (5.2) follow from Theo-
rem 3.4, if the condition

f ′′(ū)[h]2 ≥ δ ‖h‖2
U , ∀h ∈U, (5.11)
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holds for some δ > 0. Moreover, a similar result than Theorem 3.3 for (ȳ, ū, p) satisfying
the optimality system (5.3) may be obtained.

Condition (5.11) may be however too strong, since it involves all possible directions
h ∈ U . In the case U = L2(Ω) and Uad = {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. in Ω}, the
sufficient condition can be weakened by considering it on the cone of critical directions
defined by:

C(ū) =

{
v ∈ L2(Ω) :

v(x)≥ 0 if ū(x) = ua

v(x)≤ 0 if ū(x) = ub

}
.

ū+h, h �∈C(ū)

ū
ū+h, h ∈C(x̄)

ua

ub

Fig. 5.2 Example of critical cone directions

The second order sufficient condition (SSC) is then given by

L ′′
(y,u)(ȳ, ū)[(w,h)]

2 ≥ δ ‖h‖2
L2

for all (w,h) ∈ Y ×C(ū) that satisfy the equation

ey(ȳ, ū)w+ eu(ȳ, ū)h = 0.

Example 5.1. Consider the following quadratic problem in R
2:

min
x∈[0,1]2

f (x) = x2
1 +4x1x2 + x2

2.

The unique stationary point is given by the solution of the system

∇ f (x)T (y− x̄) =

(
2x1 +4x2

4x1 +2x2

)T

(y− x̄)≥ 0, ∀y ∈ [0,1]2
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which is given by x̄ =

(
0
0

)
. The Hessian is given by H =

(
2 4
4 2

)
, whose eigenvalues

are λ1 = −1, λ2 = 3. H is clearly not positive definite. However, if we define the
critical cone

C(x̄) =

{
v ∈ R

2 : vi

{
≥ 0 if x̄i = 0
≤ 0 if x̄i = 1

}
,

it can be easily verified that

(v1 v2)

(
2 4
4 2

)(
v1

v2

)
≥ ‖v‖2

R2 ,

for all v ∈C(x̄). Therefore, x̄ =

(
0
0

)
satisfies the (SSC).

Fig. 5.3 Quadratic form on [−1,1]2 (left) and restricted to the critical cone (right)

5.3 Projection Methods

The main idea of projection methods consists in making use of a descent direction com-
puted for the problem without bound constraints and then project the new iterate onto
the feasible set defined by the inequality constraints.

To be more specific, consider the reduced problem

min
u∈Uad

f (u). (5.12)

If we have some iterate uk and compute some direction dk, then the next iterate given by
the related projection method, will be:

uk+1 = PUad (uk +αkdk), (5.13)
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where PUad denotes the projection onto Uad and αk ∈ (0,1) is a line search parameter.
From equation (5.13) it can be observed that in order to make the update, a projection

has to be computed. This may not be easy in general. Moreover, a modified line search
strategy has to be implemented for the choice of αk.

The general projected descent algorithm is given through the following steps:

Algorithm 6 Projected descent method
1: Choose u0 ∈Uad and set k = 0.
2: repeat
3: Compute a direction dk for the problem on U.

4: Choose αk by a projected line search rule such that

f (PUad (uk +αkdk))< f (uk).

5: Set
uk+1 = PUad (uk +αkdk) and k = k+1.

6: until stopping criteria.

Proposition 5.2. Let U be a Hilbert space and let f : U −→ R be continuously Fréchet
differentiable on a neighborhood of the closed convex set Uad. Let uk ∈ Uad, dk =

−∇ f (uk) and assume that ∇ f is θ -order Hölder-continuous with modulus L > 0, for
some θ ∈ (0,1], on the set

{
(1− t)uk + tPUad (u

α
k ) : 0 ≤ t ≤ 1

}
,

where uα
k := uk −α∇ f (uk). Then there holds

f (PUad (u
α
k ))− f (uk)≤− 1

α
∥∥PUad (u

α
k )−uk

∥∥2
U +L

∥∥PUad (u
α
k )−uk

∥∥1+θ
U .

Proof. From the mean value theorem if follows that

f (PUad (u
α
k ))− f (uk) = (∇ f (vα

k ),PUad (u
α
k )−uk)U

= (∇ f (uk),PUad (u
α
k )−uk)U︸ ︷︷ ︸

a)

+(∇ f (vα
k )−∇ f (uk),PUad (u

α
k )−uk)︸ ︷︷ ︸

b)

for some vα
k = (1− t)uk + tPUad (u

α
k ).
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For the term a), we obtain:

(∇ f (uk),PUad (u
α
k )−uk)U =

1
α
(uk −uα

k ,PUad (u
α
k )−uk)U

=
1
α
(

=uk︷ ︸︸ ︷
PUad (uk)−PUad (u

α
k ),PUad (u

α
k )−PUad (uk))U

− 1
α
(uα

k −PUad (u
α
k ),PUad (u

α
k )−PUad (uk))U︸ ︷︷ ︸

≤0

≤− 1
α
∥∥PUad (u

α
k )−uk

∥∥2
U .

For the term b),

(∇ f (vα
k )−∇ f (uk),PUad (u

α
k )−uk)≤ ‖∇ f (vα

k )−∇ f (uk)‖U

∥∥PUad (u
α
k )−uk

∥∥
U

≤ L‖vα
k −uk‖θ

U

∥∥PUad (u
α
k )−uk

∥∥
U

≤ L
∥∥PUad (u

α
k )−uk

∥∥1+θ
U ,

since
∥∥vα

k −uk
∥∥

U ≤
∥∥PUad (u

α
k )−uk

∥∥
U . 	


It then follows from Proposition 5.2 that the projected gradient direction is a descent
direction for problem (5.12). A modified Armijo rule is given by: Choose the largest
αk ∈

{
1, 1

2 ,
1
4 , . . .

}
for which

f (PUad (uk −αk∇ f (uk)))− f (uk)≤− γ
αk

∥∥PUad (uk −αk∇ f (uk))−uk
∥∥2

U , (5.14)

where γ ∈ (0,1) is a given constant.
Thanks to Lemma 5.1, we can choose as stopping criteria

∥∥uk −PUad (uk −∇ f (uk))
∥∥

U < ε

for some 0 < ε � 1. In the case of PDE-constrained optimization problems we can
express the stopping criteria with help of the multiplier λ as

∥∥uk −PUad (uk − cλk)
∥∥

U < ε , for some c > 0.

Theorem 5.2. Let U be a Hilbert space, f : U −→ R be continuously Fréchet differen-
tiable and Uad ⊂U be nonempty, closed, and convex. Assume that f (uk) is bounded from
below for the iterates generated by the gradient projected method with line search (5.14).
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If for some θ > 0 and ρ > 0, ∇ f is θ -order Hölder continuous on

Nρ
0 = {u+d : f (u)≤ f (u0),‖d‖U ≤ ρ} ,

then
lim
k→∞

‖uk −PUad (uk −∇ f (uk))‖U = 0.

Proof. For the proof we refer to [30, p. 108]. 	


For the particular case U = L2(Ω) and Uad = {u∈ L2(Ω) : ua ≤ u(x)≤ ub a. e. in Ω},
the projection formula is given, thanks to Proposition 5.1, by

PUad (u)(x) = P[ua,ub]
(u(x)) = max(ua,min(u(x),ub)).

Remark 5.1. A mesh independence result for the projected gradient method is obtained
in [40] for ordinary differential equation (ODE) optimal control problems. In this case,
the iteration indexes are defined by:

i(ε) := min{k ∈ N : ‖uk −uk−1‖U ≤ ε},
ih(ε) := min{k ∈ N : ‖uh

k −uh
k−1‖Uh ≤ ε}.

Under suitable assumptions on the discretization, the result establishes that for all ε ,ρ >

0 there is hε ,ρ such that if h < hε ,ρ , then

i(ε +ρ)≤ ih(ε)≤ i(ε).

Remark 5.2. The application of projection methods considering other type of directions
dk =−H−1

k ∇ f (uk) is by no means standard. For Newton directions

dk =−(∇2 f (uk))
−1∇ f (uk),

for instance, the application of Algorithm 6 may not lead to descent in the objective
function. To solve this problem in R

m, the reduced Hessian

(∇2
R f (u))i j =

{
δi j if i ∈ A(u) or j ∈ A(u)

(∇2 f (u))i j otherwise

where A(u) denotes the set of active indexes, may be used instead of the full second
order matrix (see, e.g., [37]). In [41] an infinite-dimensional variant is proposed for
solving ODE control problems.
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Program: Projected Gradient Method for the Optimization of the Poisson Equa-
tion

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Tikhonov regularization parameter: ');
ua=input('Lower bound: '); ub=input('Upper bound: ');
Armijo=input('Line search (1=yes): ');
[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);

lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1); res=1; iter=0;

while res >= 1e-3
iter=iter+1
y=lap\u; %%%%% State equation %%%%%
p=lap\(y-z); %%%%% Adjoint solver %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Armijo line search
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
countarm=0;
beta=1;
gradcost=l2norm(max(ua,min(u-beta*(p+alpha*u),ub))-u);
cost1=1/2*l2norm(y-z)ˆ2+alpha/2*l2norm(u)ˆ2;

if Armijo==1
armijo=1e5;
while armijo > -1e-4/beta*gradcostˆ2
beta=1/2ˆ(countarm);

uinc=max(ua,min(u-beta*(p+alpha*u),ub));
yinc=lap\uinc;

cost2=1/2*l2norm(yinc-z)ˆ2+alpha/2*l2norm(uinc)ˆ2;
armijo=cost2-cost1;
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gradcost=l2norm(max(ua,min(u-beta*(p+alpha*u),ub))-u);
countarm=countarm+1
end

end
uprev=u;
%%%% Projected gradient step %%%%
u=max(ua,min(u-beta*(p+alpha*u),ub));
res=l2norm(u-uprev)

end

5.4 Primal Dual Active Set Algorithm (PDAS)

Consider the following optimization problem:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(y,u),

subject to:

e(y,u) = 0,

u ≤ ub a.e. in Ω ,

(5.15)

where U = L2(Ω). Since in this case ua = −∞, the optimality condition (5.9) can be
written in the following way:

ū(x) = P(−∞,ub](ū(x)− cλ (x)) a.e. in Ω , ∀c > 0, (5.16)

which, since λ (x) =−λb(x), implies that

ū(x)−P(−∞,ub]
(ū(x)+ cλb(x)) = 0 a.e. in Ω , ∀c > 0.

Thanks to (5.16),

λb(x) =
1
c
[ū(x)+ cλb(x)−min(ub, ū(x)+ cλb(x))]

=

{ 1
c (ū(x)+ cλb(x)−ub) if ub ≤ ū(x)+ cλb(x)
0 if not

=
1
c

max(0, ū(x)+ cλb(x)−ub).
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Altogether, we obtain the following optimality system:

e(ȳ, ū) = 0, (5.17a)

ey(ȳ, ū)
∗p = Jy(ȳ, ū), (5.17b)

eu(ȳ, ū)
∗p = Ju(ȳ, ū)+λb, (5.17c)

λb(x) = cmax(0, ū(x)+
1
c

λb(x)−ub), for all c > 0. (5.17d)

Let us define the active and inactive sets at the solution (ȳ, ū) by A = {x : ū(x) = ub}
and I = Ω \A, respectively. The main idea of the PDAS strategy consists in considering
equation (5.17d) in a iterative scheme:

λ k+1
b (x) = cmax(0,uk(x)+

1
c

λ k
b (x)−ub). (5.18)

Considering, in addition, the complementarity relations given by (5.10), Eq. (5.18) leads
to the following prediction of active and inactive sets at the next iteration:

Ak+1 =

{
x|uk(x)+

λ k
b (x)

c
> ub

}
, Ik+1 =

{
x|uk(x)+

λ k
b (x)

c
≤ ub

}
.

The complete algorithm is then given through the following steps:

Algorithm 7 Primal-dual active set method (PDAS)
1: Choose u0, y0 , λ 0

b and c > 0. Set k = 0.
2: repeat
3: Determine the following subsets of Ω :

Ak+1 =

{
x|uk(x)+

λ k
b (x)

c
> b

}
, Ik+1 = Ω \Ak+1.

4: Solve the following system:

(OS)k+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(yk+1,uk+1) = 0,

ey(yk+1,uk+1)
∗pk+1 = Jy(yk+1,uk+1),

uk+1 = ub, on Ak+1,

λ k+1
b = 0, on Ik+1,

eu(yk+1,uk+1)
∗pk+1 = Ju(yk+1,uk+1)+λ k+1

b .

and set k = k+1.
5: until stopping criteria.



82 5 Box-Constrained Problems

For the subsequent analysis of the PDAS algorithm we consider the following partic-
ular structure of the cost functional and the state equation:

J(y,u) = g(y)+
α
2
‖u‖2

L2 , e(y,u) = E(y)−u,

where E : Y −→ L2(Ω) is continuously differentiable, with E ′(ȳ) continuously invert-
ible, and g : Y → R is continuously differentiable. The system to be solved in each
primal–dual iteration is then given by:

E(yk+1) = uk+1, (5.19a)

E ′(yk+1)
∗pk+1 = gy(yk+1), (5.19b)

αuk+1 +λ k+1
b + pk+1 = 0 a.e. in Ω , (5.19c)

uk+1 = ub on Ak+1, (5.19d)

λk+1 = 0 on Ik+1. (5.19e)

Considering two consecutive iterates of the algorithm and choosing c=α , it follows that

E(yk+1)−E(yk) = uk+1 −uk =− 1
α

χIk+1(pk+1 − pk)+Rk,

where χC denotes the indicator function of a set C, and

Rk :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 on Ak ∩Ak+1,

ub +
1
α pk = ub −uk < 0 on Ik ∩Ak+1,

1
α λ k

b =− 1
α pk −ub ≤ 0 on Ak ∩ Ik+1,

0 on Ik ∩ Ik+1.

For the global convergence of the PDAS method we define the following merit func-
tional:

M(u,λb) = α2
∫

Ω
max(0,u−ub)

2dx+
∫

A+(u)
min(0,λb)

2dx,

where A+(u) = {x : u ≥ ub}.

Theorem 5.3. If there exists a constant ρ ∈ [0,α) such that

‖pk+1 − pk‖L2 < ρ
∥∥∥Rk

∥∥∥
L2

for every k = 1,2, . . . (5.20)

then
M(uk+1,λ k+1

b )≤ α−2ρ2M(uk,λ k
b )
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for every k = 1,2, . . .

Proof. From (5.19) it follows that

−λ k+1
b = λk+1 = pk+1 +αuk+1 on Ak+1,

uk+1 +
1
α

pk+1 = 0 on Ik+1,

which using the algorithm PDAS implies the following estimates:

On Ak+1=

{
x|uk +

λ k
b

α > ub

}
:

λk+1 = pk+1 − pk + pk +αub

= pk+1 − pk +

{
λk on Ak+1 ∩Ak,

α(ub −uk) on Ak+1 ∩ Ik.

Since λk(x)< α(uk(x)−ub) on Ak+1 and uk(x) = ub on Ak, it follows that λk(x)< 0 on
Ak+1∩Ak. In addition, since α(ub−uk)(x)< λ k

b (x) on Ak+1 and λ k
b (x) = 0 on Ik, we get

that α(ub −uk)(x)< 0 on Ak+1 ∩ Ik. Consequently,

λk+1(x) =−λ k+1
b (x)< pk+1(x)− pk(x) on Ak+1

⇒
∣∣min(0,λ k+1

b (x))
∣∣≤ |pk+1(x)− pk(x)| on Ak+1.

On Ik+1=

{
x|uk +

λ k
b

α ≤ ub

}
:

uk+1(x)−ub =
1
α
(−pk+1 + pk − pk)(x)−ub

=
1
α
(pk(x)− pk+1(x))+

{ 1
α λ k

b on Ik+1 ∩Ak,

uk −ub on Ik+1 ∩ Ik.

Since 1
α λ k

b (x)≤ ub −uk(x) on Ik+1 and ub = uk(x) on Ak, it follows that

1
α

λ k
b (x)≤ 0 on Ak ∩ Ik+1.

Also since uk(x)−ub ≤−λ k
b (x)
α on Ik+1 and λ k

b (x) = 0 on Ik, we get that

uk(x)−ub ≤ 0 on Ik ∩ Ik+1.
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Consequently,

uk+1(x)−ub ≤
1
α
(pk(x)− pk+1(x)) on Ik+1

⇒
∣∣max(0,uk+1(x)−ub)

∣∣≤ 1
α
|pk+1(x)− pk(x)| on Ik+1.

Since from (5.19) it also follows that

λ k+1
b (x) = 0 on Ik+1 and uk+1(x) = ub on Ak+1,

we obtain that

M(uk+1,λ k+1
b )≤ α2

∫
Ik+1

max(0,uk+1 −ub)
2dx+

∫
Ak+1

min(0,λ k+1
b )2 dx

≤
∫

Ω
|pk+1 − pk|2dx,

which, thanks to (5.20), yields

M(uk+1,λ k+1
b )< ρ2

∥∥∥Rk
∥∥∥2

U
. (5.21)

Additionally, from the structure of Rk, it follows that

|Rk(x)| ≤ max(0,uk(x)−ub) on Ak+1 ∩Ak,

|Rk(x)| ≤ 0 on Ak+1 ∩ Ik,

|Rk(x)| ≤ max(0,− 1
α

λ k
b ) =

1
α
|min(0,λ k

b )| on Ik+1 ∩Ak,

|Rk(x)| ≤ 0 on Ik+1 ∩ Ik.

Integrating over Ω we get that

∥∥∥Rk
∥∥∥2

L2
≤
∫

Ω
max(0,uk −ub)

2 +
1

α2

∫
Ak∩Ik+1

|min(0,λ k
b )|2

≤ α−2M(uk,λ k
b ). (5.22)

Consequently, from (5.21) and (5.22) the result follows. 	


Corollary 5.1. Under the hypothesis of Theorem 5.3, there exists (ȳ, ū, p,λb) ∈Y ×U ×
Y ×U such that

lim
k→∞

(yk,uk, pk,λ k
b ) = (ȳ, ū, p,λb)
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and (ȳ, ū, p,λb) satisfies the optimality system:

E(ȳ) = ū, (5.23a)

E ′(ȳ)∗p = gy(ȳ), (5.23b)

α ū+ p+λb = 0, (5.23c)

λb = max(0,λb +α(ū−ub)). (5.23d)

Proof. From equations (5.20) and (5.22) we obtain that

‖pk+1 − pk‖2
L2 <

(ρ
α

)2
M(uk,λ k

b ),

which, thanks to (5.21), implies that

‖pk+1 − pk‖L2 <
(ρ

α

)
ρ
∥∥∥Rk−1

∥∥∥
L2
,

and by induction

‖pk+1 − pk‖L2 <
(ρ

α

)k
ρ
∥∥R0

∥∥
L2 , for k = 1,2, . . .

Consequently, there exists some p ∈U such that

lim
k→∞

pk = p in U.

Since, for k ≥ 1,

Ak+1 = {x : −pk(x)> αub}, Ik+1 = {x : −pk(x)≤ αub},

it follows that

λ k+1
b =

{
−αub − pk+1 on Ak+1,

0 on Ik+1,

= max(0,−pk −αub)+ χAk+1 · (pk − pk+1).

Since pk+1− pk
k→∞−−−→ 0 and pk

k→∞−−−→ p, the continuity of the max function from L2(Ω)→
L2(Ω) implies that

lim
k→∞

λ k+1
b = λb = max(0,−p−αub).
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Finally, from the optimality condition

αuk+1 +λ k+1
b + pk+1 = 0,

there exists ū such that lim
k→∞

uk = ū. Thanks to the properties of the operator E : Y −→
L2(Ω), we may pass to the limit in the PDAS optimality system and obtain (5.23). 	


Remark 5.3.

1. If the operator E : Y −→ L2(Ω) is linear, then the condition

∥∥E−1
∥∥2

L (L2(Ω),Y ) < α

is sufficient for (5.20) to hold.
2. A frequently used stopping criteria for the PDAS algorithm is given by:

Ak+1 = Ak.

In the linear case, this choice is theoretically justified (see [6]).

5.5 Semismooth Newton Methods (SSN)

An alternative approach for the solution of system (5.17) consists in considering it as an
operator equation

F(x) = 0, (5.24)

where
F : X −→ Z

x �−→ F(x),

with X and Z Banach spaces. If F would be Fréchet differentiable, a classical Newton
type method could be used for solving (5.24). In the case of system (5.17), however,
the max function is not Fréchet differentiable and a standard Newton scheme cannot be
applied. The following question then arises: Is it possible to define a weaker differentia-
bility notion for such a function such that a Newton type iterative scheme can be stated?

Definition 5.1. Let D be an open subset of a Banach space X . The mapping F : D ⊂ X →
Z is called Newton differentiable on the open subset V ⊂ D if there exists a generalized
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derivative G : V → L (X ,Z) such that

lim
h→0

1
‖h‖X

‖F(x+h)−F(x)−G(x+h)h‖Z = 0, (5.25)

for every x ∈V.

Example 5.2. Consider the absolute value function

f = | · | : R −→ R

x �−→ |x|.

The function is not differentiable at 0. However, by using the generalized derivative

g(x) =

{
−1 if x < 0,
1 if x ≥ 0,

we obtain for the case x = 0 :

i) if h > 0 :
∣∣|x+h|− |x|− |h|

∣∣= 0,
ii) if h < 0 :

∣∣|x+h|− |x|+ |h|
∣∣= |− x−h− x+h|= 0.

Consequently,

lim
h→0

1
|h| | f (x+h)− f (x)−g(x+h)h|= 0

and | · | is Newton differentiable.

Theorem 5.4. Let x̄ be a solution to (5.24), with F Newton differentiable in an open
neighborhood V containing x̄. If

∥∥G(x)−1
∥∥

L (Z,X)
≤C, (5.26)

for some constant C > 0 and all x ∈V , then the semismooth Newton (SSN) iteration

xk+1 = xk −G(xk)
−1F(xk) (5.27)

converges superlinearly to x̄, provided that ‖x0 − x̄‖X is sufficiently small.

Proof. Considering that F(x̄) = 0 and the iterates given by (5.27) it follows that

‖xk+1 − x̄‖X =
∥∥xk −G(xk)

−1F(xk)− x̄
∥∥

X

=
∥∥G(xk)

−1(F(x̄)−F(xk)−G(xk)(x̄− xk))
∥∥

X

≤C‖F(xk)−F(x̄)−G(xk)(xk − x̄)‖Z . (5.28)
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Thanks to the Newton differentiability it then follows, for ρ = 1
2C , that there exists a ball

Bδ (x̄) such that if xk ∈ Bδ (x̄), then

‖xk+1 − x̄‖X ≤Cρ ‖xk − x̄‖X =
1
2
‖xk − x̄‖X .

Consequently, if ‖x0 − x̄‖X < δ then xk ∈ Bδ (x̄), ∀k ≥ 1, and

lim
k→∞

‖xk − x̄‖X = 0.

Moreover, from (5.28) and the Newton differentiability, we get that

lim
k→∞

‖xk+1 − x̄‖X

‖xk − x̄‖X
≤ lim

k→∞
C
‖F(xk)−F(x̄)−G(xk)(xk − x̄)‖Z

‖xk − x̄‖X
= 0,

which implies the superlinear convergence rate. 	

Proposition 5.3. The mapping max(0, ·) : Lq(Ω)−→ Lp(Ω) with 1≤ p< q≤∞ is New-
ton differentiable on Lq(Ω) with generalized derivative

Gmax : Lq(Ω)→ L (Lq(Ω),Lp(Ω))

given by:

Gmax(y)(x) =

{
1 if y(x)> 0,
0 if y(x)≤ 0.

Proof. For the detailed proof we refer to [34, p. 237]. 	


Considering system (5.23) with E ∈ L (Y,U), the system to be solved is given by

F(y,u, p,λb) =

⎛
⎜⎜⎝

Ey−u
E∗p−gy(y)
αu+ p+λb

λb −max(0,λb +α(u−ub))

⎞
⎟⎟⎠= 0

and its generalized derivative by

G(y,u, p,λb)[(δy,δu,δp,δλ )] =

⎛
⎜⎜⎝

Eδy −δu

E∗δp −gyy(y)δy

αδu +δp +δλ
δλ − χA(δλ +αδu)

⎞
⎟⎟⎠ ,

where χA stands for the indicator function of the active set

A = {x : λb +α(u−ub)≥ 0}.



5.5 Semismooth Newton Methods (SSN) 89

The Newton step is then given through the solution of the following system:

⎛
⎜⎜⎝

E −I 0 0
−gyy(y) 0 E∗ 0

0 αI I I
0 −αχA 0 χI

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δy

δu

δp

δλ

⎞
⎟⎟⎠=−

⎛
⎜⎜⎝

Ey−u
E∗p−gy(y)
αu+ p+λb

λb −max(0,λb +α(u−ub))

⎞
⎟⎟⎠ ,

where χI denotes the indicator function of the inactive set I = Ω\A.

Theorem 5.5. Consider system (5.23) with E ∈ L (Y,L2(Ω)) and g(y) = 1
2

∫
Ω |y −

zd |2 dx, where zd ∈ L2(Ω). Then the semismooth Newton method applied to (5.23) con-
verges locally superlinearly.

Proof. For the proof we refer the reader to [34, p. 242]. 	


Remark 5.4. An important feature of the SSN applied to (5.23) is that, in the linear case,
the iterates coincide with the ones of the PDAS algorithm.

Program: SSN Method for the Optimization of a Semilinear Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Regularization parameter: ');
[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);

ub=10*ones(nˆ2,1); %%%%% Upper bound %%%%%
lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1); y=sparse(nˆ2,1);
p=sparse(nˆ2,1); lam=sparse(nˆ2,1);
res=1; iter=0;

while res >= 1e-3
iter=iter+1
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%%%%% Semismooth Newton step %%%%%
Y=spdiags(y,0,nˆ2,nˆ2); P=spdiags(p,0,nˆ2,nˆ2);
Act=spdiags(spones(max(0,lam+alpha*(u-ub))),0,nˆ2,nˆ2);

A=[lap+3*Y.ˆ2 -speye(nˆ2) sparse(nˆ2,nˆ2) sparse(nˆ2,nˆ2)
-speye(nˆ2)+6*Y.*P sparse(nˆ2,nˆ2) lap+3*Y.ˆ2 sparse(nˆ2,nˆ2)
sparse(nˆ2,nˆ2) alpha*speye(nˆ2) speye(nˆ2) speye(nˆ2)
sparse(nˆ2,nˆ2) -alpha*Act sparse(nˆ2,nˆ2) speye(nˆ2)-Act];

F=[ -lap*y-y.ˆ3+u
-lap*p-3*Y.ˆ2*p+y-z
-p-alpha*u-lam
-lam+max(0,lam+alpha*(u-ub))];

delta=A\F;
uprev=u; yprev=y; pprev=p;
y=y+delta(1:nˆ2);
u=u+delta(nˆ2+1:2*nˆ2);
p=p+delta(2*nˆ2+1:3*nˆ2);
lam=lam+delta(3*nˆ2+1:4*nˆ2);
res=l2norm(u-uprev)+l2norm(y-yprev)+l2norm(p-pprev)

end



Chapter 6

Nonsmooth PDE-Constrained Optimization

6.1 Sparse L1-Optimization

Finite-dimensional optimization problems with cost functions involving the l1-norm of
the design variable are known for enhancing sparsity of the optimal solution. This has
important consequences in problems where a large amount of data is present, like speech
recognition, image restoration, or data classification (see, e.g., [53]).

In the context of PDE-constrained optimization, sparsity means that the infinite
dimensional design variable is localized in its domain of action, i.e., it takes zero value in
a large part of its domain. The function-space counterpart of the l1-norm is the Lebesgue
L1-norm, and the corresponding problem is formulated in the following way:

⎧⎪⎨
⎪⎩

min J(y,u)+β‖u‖L1 ,

subject to:

e(y,u) = 0,

(6.1)

where β > 0. The additional difficulties, compared to the problems treated in previous
sections, arise from the non-differentiability of the L1-norm.

By rewriting (6.1) in reduced form, we obtain the equivalent problem:

min
u∈U

J(y(u),u)+β‖u‖L1 . (6.2)

Although the reduced cost (6.2) is nonsmooth, it consists in the sum of a regular part
and a convex non-differentiable term. Thanks to this structure, optimality conditions can
still be established according to the following result.

© The Author(s) 2015 91
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Theorem 6.1. Let U be a Banach space, j1 : U →R Gâteaux differentiable and j2 : U →
R∪{+∞} convex and continuous. If ū ∈U is a local optimal solution to

min
u∈U

j1(u)+ j2(u), (6.3)

then it satisfies the following optimality condition:

j′1(ū)(v− ū)+ j2(v)− j2(ū)≥ 0, for all v ∈U. (6.4)

Proof. From the optimality of ū we know that

j1(ū)+ j2(ū)≤ j1(w)+ j2(w), for all w ∈ Bδ (ū).

Taking, for v ∈U and t > 0 sufficiently small, w = ū+ t(v− ū) ∈ Bδ (ū), it follows that

0 ≤ j1(ū+ t(v− ū))− j1(ū)+ j2(ū+ t(v− ū))− j2(ū)

≤ j1(ū+ t(v− ū))− j1(ū)+ t j2(v)+(1− t) j2(ū)− j2(ū).

Dividing by t and taking the limit on both sides we get

0 ≤ j1(ū+ t(v− ū))− j1(ū)
t

+ j2(v)− j2(ū),

which implies that
0 ≤ j′1(ū)(v− ū)+ j2(v)− j2(ū). 	


For the sake of readability, let us hereafter focus on the following tracking type cost
term

J(y,u) =
1
2

∫
Ω
|y− zd |2 dx+

α
2
‖u‖2

U ,

and the control space U = L2(Ω). From Theorem 6.1 an optimality condition for (6.2)
is given by the following variational inequality:

(y(ū)− zd ,y
′(ū)(v− ū))+α(ū,v− ū)+β‖v‖L1 −β‖ū‖L1 ≥ 0,∀v ∈U. (6.5)

Moreover, it can be proved (see, e.g., [20, pp. 70–71]) that the optimality condition (6.5)
is equivalent to the existence of a dual multiplier λ ∈U such that:

(y(ū)− zd ,y
′(ū)v)+(α ū+λ ,v) = 0, for all v ∈U (6.6a)

λ = β , in {x ∈ Ω : ū > 0} (6.6b)

|λ | ≤ β , in {x ∈ Ω : ū = 0} (6.6c)
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λ =−β , in {x ∈ Ω : ū < 0}. (6.6d)

Assuming bijectivity of ey(ȳ, ū) and proceeding as in Theorem 3.3, it can be justified that
there exists an adjoint state p ∈W ′ such that the following optimality system holds:

e(ȳ, ū) = 0, (6.7a)

ey(ȳ, ū)
∗p = ȳ− zd , (6.7b)

p+α ū+λ = 0, (6.7c)

λ = β , in {x ∈ Ω : ū > 0}, (6.7d)

|λ | ≤ β , in {x ∈ Ω : ū = 0}, (6.7e)

λ =−β , in {x ∈ Ω : ū < 0}. (6.7f)

By using the max and min functions, the last three equations of the optimality system
(6.7) can be reformulated in the following short way:

ū−max(0, ū+ c(λ −β ))−min(0, ū+ c(λ +β )) = 0, (6.8)

for all c > 0. This equivalence can be verified by inspection and its proof can be traced
back to [32].

Considering the first three equations of (6.7) and Eq. (6.8), a semismooth Newton
method for the solution of the optimality system can be stated. Taking into account the
generalized derivative of the max and min functions:

Gmax(v)(x) =

{
1 if v(x)> 0,
0 if v(x)≤ 0,

Gmin(v)(x) =

{
0 if v(x)≥ 0,
1 if v(x)< 0,

(6.9)

a Newton update for Eq. (6.8) is given by

δu − (χ{u+c(λ−β )>0}+ χ{u+c(λ+β )<0})(δu + cδλ )

=−u+max(0,u+ c(λ −β ))+min(0,u+ c(λ +β )), (6.10)

where χ{w>0} stands for the indicator function of the set {x : w(x)> 0}. With the choice
c = α−1, the complete algorithm is given next.
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Algorithm 8 Sparse optimization of a semilinear equation
1: Choose (y0,u0, p0,λ0) ∈ Y ×U ×W ′ ×U and set k = 0.
2: repeat
3: Set χA := χ{|αuk+λk |>β} and solve for (δy,δu,δp,δλ ) ∈ Y ×U ×W ′ ×U :

⎛
⎜⎝

L ′′
(y,u)(yk,uk, pk) −e′(yk,uk)

∗ 0

−e′(yk,uk) 0 0(
0 I − χA

)
0 −α−1χA

⎞
⎟⎠
⎛
⎜⎜⎝

(
δy

δu

)

δp

δλ

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

ey(yk,uk)
∗pk − Jy(yk,uk)

eu(yk,uk)
∗pk − Jy(yk,uk)

e(yk,uk)

−uk +max(0,uk +α−1(λk −β ))+min(0,uk +α−1(λk +β ))

⎞
⎟⎟⎠ .

4: Set uk+1 = uk +δu, yk+1 = yk +δy, pk+1 = pk +δp, λk+1 = λk +δλ and k = k+1.
5: until Stopping criteria.

Example 6.1. We consider the following semilinear optimal control problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(y,u) =
1
2
‖y− zd‖2

L2(Ω) +
α
2
‖u‖2

L2 +β‖u‖L1 ,

subject to:

−Δy+ y3 = u in Ω = (0,1)2,

y = 0 on Γ .

The computed controls are depicted in Fig. 6.1 both when no sparsity term is included
and when the L1-norm weight β is set equal to 0.008. The parameter α takes, in both
cases, the value 0.001. The sparse structure of the corresponding optimal control can
be clearly identified from the plot on the right.
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Fig. 6.1 Optimal control (β = 0) and sparse optimal control (β = 0.008)
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Program: Sparse Optimization of a Semilinear Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Regularization parameter: ');

[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('sin(2*pi*x).*sin(2*pi*y).*exp(2*x)/6','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);

b=0.008; %%%%% L1 weight %%%%%
lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1); y=sparse(nˆ2,1);
p=sparse(nˆ2,1); lam=sparse(nˆ2,1);
res=1; iter=0;

while res >= 1e-10
iter=iter+1

%%%%% Semismooth Newton step %%%%%
Y=spdiags(y,0,nˆ2,nˆ2); P=spdiags(p,0,nˆ2,nˆ2);
Act1=spdiags(spones(max(0,u+1/alpha*(lam-b))),0,nˆ2,nˆ2);
Act2=spdiags(spones(min(0,u+1/alpha*(lam+b))),0,nˆ2,nˆ2);
Act=Act1+Act2;

A=[lap+3*Y.ˆ2 -speye(nˆ2) sparse(nˆ2,nˆ2) sparse(nˆ2,nˆ2)
-speye(nˆ2)+6*Y.*P sparse(nˆ2,nˆ2) lap+3*Y.ˆ2 sparse(nˆ2,nˆ2)
sparse(nˆ2,nˆ2) alpha*speye(nˆ2) speye(nˆ2) speye(nˆ2)
sparse(nˆ2,nˆ2) speye(nˆ2)-Act sparse(nˆ2,nˆ2) -1/alpha*Act];

F=[ -lap*y-y.ˆ3+u
-lap*p-3*Y.ˆ2*p+y-z
-p-alpha*u-lam
-u+max(0,u+1/alpha*(lam-b))+min(0,u+1/alpha*(lam+b))];

delta=A\F;

uprev=u; yprev=y; pprev=p;
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y=y+delta(1:nˆ2);
u=u+delta(nˆ2+1:2*nˆ2);
p=p+delta(2*nˆ2+1:3*nˆ2);
lam=lam+delta(3*nˆ2+1:4*nˆ2);
res=l2norm(u-uprev)+l2norm(y-yprev)+l2norm(p-pprev)

end

6.2 Pointwise State Constraints

Although the action of the design variable u naturally imposes bounds on the state y, it is
sometimes important to restrict the maximum or minimum pointwise value that the state
variables can reach. Such is the case, for instance, of problems that involve heat transfer
in solid materials, where the temperature has to remain below a critical melting point
(see, e.g., [45]).

From a mathematical point of view, the presence of pointwise state constraints adds
several difficulties to the treatment of the optimization problems. Analytically, different
function spaces with low regularity functions have to be considered for the associated
multipliers (which are just regular Borel measures). Due to this fact, also alternative
approximation strategies have to be designed for the numerical solution of such prob-
lems.

A prototypical type of PDE-constrained optimization problem with pointwise state
constraints can be formulated in the following manner:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min J(y,u),

subject to:

Ay = u,
y(x)≤ yb a.e. in Ω ,

(6.11)

where A stands for a linear elliptic operator with sufficiently regular coefficients, Ω is
of class C 2 Y is a reflexive Banach space and J : Y × L2(Ω) −→ R is a tracking type
functional given by:

J(y,u) =
1
2

∫
Ω
|y− zd |2 dx+

α
2
‖u‖2

L2 .

In order to derive optimality conditions for problem (6.11), the following abstract
Lagrange multiplier theorem may be used (for the proof we refer to [11]).
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Theorem 6.2. Let U,Y be Banach spaces and K ⊂Y a convex set with nonempty interior.
Let ū ∈U be a local optimal solution of the problem

{
min J(u),

subject to: G(u) ∈ K,
(6.12)

where J : U → R and G : U → Y are Gâteaux differentiable mappings. If there exists
u0 ∈U such that

G(ū)+G′(ū)(u0 − ū) ∈ int(K),

then there exists a Lagrange multiplier μ ∈ Y ′ such that:

〈J′(ū)+G′(ū)∗μ ,u− ū〉U ′ ,U ≥ 0, for all u ∈ K, (6.13)

〈μ ,w−G(ū)〉Y ′,Y ≤ 0, for all w ∈Y. (6.14)

Since convex sets of the type {v ∈ Lp(Ω) : v ≤ yb a.e. in Ω} have empty interior (see,
e.g., [56, p. 326]), a stronger topology is required in order to apply the previous theorem.
A usual approach consists in considering the state y = G(u) in the space of continuous
functions, where the nonempty interior hypothesis is satisfied. However, this may be
the case only if some extra regularity of the state can be obtained from the governing
equation. This occurs, for instance, in elliptic problems under additional regularity of
the coefficients and the domain Ω .

Theorem 6.3. Let ū ∈ L2(Ω) be a local optimal solution to (6.11) and ȳ ∈ Y its asso-
ciated state. Assume that A ∈ L (Y,L2(Ω)) is bijective and that Y ↪→ C(Ω) with dense
and continuous injection. Then there exists u0 ∈ L2(Ω) such that ȳ+wu0−ū < yb a.e. in
Ω , where Awu0−ū = u0 − ū, and there exists p ∈ L2(Ω) solution of the adjoint equation

∫
Ω

pAw dx = 〈ϕ ,w〉M (Ω),C(Ω), for all w ∈ Y, (6.15)

for any ϕ ∈ M (Ω), the space of regular Borel measures. Moreover, there exist μ ∈
M (Ω) and p̄ ∈ L2(Ω) such that the following optimality system holds:

Aȳ = ū, (6.16a)∫
Ω

p̄Aw dx =
∫

Ω
(ȳ− zd)w dx+ 〈μ ,w〉M (Ω),C(Ω) for all w ∈ Y, (6.16b)

p̄+α ū = 0, (6.16c)

〈μ ,w− ȳ〉M (Ω),C(Ω) ≤ 0, for all w ∈ Y. (6.16d)
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Due to the poor regularity of the multipliers involved in (6.16), a Moreau–Yosida
regularization is frequently used for the numerical solution of the optimization problem.
This approach consists in penalizing the pointwise state constraints by means of the
C1-function

max(0, λ̂ + γ(y− yb))
2, with some fixed λ̂ ∈ L2(Ω),

yielding the following problem:

⎧⎪⎨
⎪⎩

min J(y,u)+ 1
2γ
∫

Ω max(0, λ̂ + γ(y− yb))
2 dx,

subject to:

Ay = u.

(6.17)

Existence of a solution to (6.17) can be argued in a similar manner as for the uncon-
strained problem. Moreover, a first-order optimality system may be derived using the
techniques of Chap. 3.

Theorem 6.4. Let (û, ŷ) be a local optimal solution to (6.17) and let λ̂ = 0. Then there
exists an adjoint state p ∈ L2(Ω) such that

Aŷ = û, (6.18a)

A∗p = ŷ− zd +μ , (6.18b)

p+α û = 0, (6.18c)

μ = max(0,γ(ŷ− yb)). (6.18d)

Proof. The existence of an adjoint state is obtained by following the lines of the proof
of Theorem 3.3. In what follows let us introduce the variable

μ := max(0,γ(ŷ− yb)) ∈ L2(Ω).

By computing the derivative of the reduced cost functional we obtain:

f ′(û)h = 〈Jy(y(û), û),y
′(û)h〉Y ′,Y + γ

∫
Ω

max(0, ŷ− yb)y
′(û)hdx+ Ju(y(û), û)h.

which, using the adjoint equation (6.18b), implies that

f ′(û)h = 〈A∗p,y′(û)h)〉Y ′,Y + Ju(y(û), û)h

= (p,Ay′(û)h)L2 + Ju(y(û), û)h
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Considering the linearized equation Ay′(û)h = h, we finally get that

f ′(û)h = (p,h)L2 + Ju(y(û), û)h (6.19)

and, therefore,
p+α û = 0 in L2(Ω).

	


The solutions so obtained yield a sequence {(yγ ,uγ)}γ>0 that approximates the solu-
tion to (6.11) in the following sense.

Theorem 6.5. The sequence {(yγ ,uγ)}γ>0 of solutions to (6.17) contains a subsequence
which converges strongly in Y ×L2(Ω) to an optimal solution (ȳ, ū) of (6.11).

Proof. Let (ȳ, ū) ∈ Y ×U be a solution to (6.11). From the properties of the regularized
cost functional we know that

Jγ(yγ ,uγ)≤ Jγ(ȳ, ū) = J(ȳ, ū). (6.20)

Consequently, since α > 0, the sequence {uγ}γ>0 is uniformly bounded in L2(Ω), which
implies that {yγ}γ>0 is uniformly bounded in Y. Therefore, there exists a subsequence,
denoted the same, such that yγ ⇀ ŷ weakly in Y and uγ ⇀ û weakly in L2(Ω).

Additionally, from (6.20) the term

1
2γ

∥∥max(0,γ(yγ − yb))
∥∥2

L2(Ω)
(6.21)

is uniformly bounded with respect to γ . Hence,

lim
γ→∞

∥∥max(0,yγ − yb)
∥∥

L2(Ω)
= 0.

Applying Fatou’s Lemma to the previous term we get that ŷ ≤ yb. Considering addition-
ally that

J(ŷ, û)≤ liminf
γ→∞

J(yγ ,uγ)≤ limsup
γ→∞

Jγ(yγ ,uγ)≤ J(ȳ, ū), (6.22)

we get that (ŷ, û) is solution of (6.11). Subsequently, we denote the optimal pair by (ȳ, ū).
To verify strong convergence, let us first note that, due to (6.22)

lim
γ→∞

∥∥yγ − zd
∥∥2

L2 +α
∥∥uγ

∥∥2
L2 = ‖ȳ− zd‖2

L2 +α ‖ū‖2
L2
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and, hence, uγ → ū strongly in L2(Ω). From the state equations it can be verified that the
difference yγ − ȳ satisfies the equation A(yγ − ȳ) = uγ − ū, which thanks to the bounded-
ness of A−1 implies that yγ → ȳ strongly in Y . 	


For the numerical solution of (6.18) the difficulty arises from the last nonsmooth
equation. Using again the generalized derivative of the max function given by (6.9), the
semismooth Newton step is given by

δμ − γχ{y>yb}δy =−μ +max(0,γ(y− yb)),

and the complete algorithm can be formulated as follows.

Algorithm 9 Moreau-Yosida
1: Choose (y0,u0, p0,μ0) ∈ Y ×L2(Ω)×W ′ ×L2(Ω).
2: repeat
3: Solve for (δy,δu,δp,δμ ) ∈ Y ×L2(Ω)×W ′ ×L2(Ω)

⎛
⎜⎝

L ′′
(y,u)(yk,uk, pk) −e′(yk,uk)

∗ 0

−e′(yk,uk) 0 0(
−γχ{yk>yb} 0

)
0 I

⎞
⎟⎠
⎛
⎜⎜⎝

(
δy

δu

)

δp

δμ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

ey(yk,uk)
∗pk − Jy(yk,uk)

eu(yk,uk)
∗pk − Jy(yk,uk)

−e(yk,uk)

−μk +max(0,γ(yk − yb))

⎞
⎟⎟⎠ .

4: Set uk+1 = uk +δu, yk+1 = yk +δy, pk+1 = pk +δp, μk+1 = μk +δμ and k = k+1.
5: until Stopping criteria.

Program: State-Constrained Optimal Control of a Semilinear Equation

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Tikhonov regularization parameter: ');
gama=1e4;

[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);
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yb=0.2*ones(nˆ2,1); %%%%% Upper bound %%%%%
lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1); y=sparse(nˆ2,1); p=sparse(nˆ2,1); mu=sparse(nˆ2,1);
res=1; iter=0;

while res >= 1e-3
iter=iter+1

%%%%% Semismooth Newton step %%%%%
Y=spdiags(y,0,nˆ2,nˆ2); P=spdiags(p,0,nˆ2,nˆ2);
Act=spdiags(spones(max(0,gama*(y-yb))),0,nˆ2,nˆ2);

A=[ lap+3*Y.ˆ2 -speye(nˆ2) sparse(nˆ2,nˆ2) sparse(nˆ2,nˆ2)
-speye(nˆ2)+6*Y.*P sparse(nˆ2,nˆ2) lap+3*Y.ˆ2 -speye(nˆ2)
sparse(nˆ2,nˆ2) alpha*speye(nˆ2) speye(nˆ2) sparse(nˆ2,nˆ2)
-gama*Act sparse(nˆ2,nˆ2) sparse(nˆ2,nˆ2) speye(nˆ2)];

F=[ -lap*y-y.ˆ3+u
-lap*p-3*Y.ˆ2*p+y-z+mu
-p-alpha*u
-mu+max(0,gama*(y-yb))];

delta=A\F;

uprev=u; yprev=y; pprev=p;
y=y+delta(1:nˆ2);
u=u+delta(nˆ2+1:2*nˆ2);
p=p+delta(2*nˆ2+1:3*nˆ2);
mu=mu+delta(3*nˆ2+1:4*nˆ2);
res=l2norm(u-uprev)+l2norm(y-yprev)+l2norm(p-pprev)

end

6.3 Variational Inequality Constraints

Another type of nonsmooth optimization problems occurs when the constraints are given
by so-called partial variational inequalities. An elliptic variational inequality problem
has the following form: Find y ∈ Y such that

a(y,v− y)+ j(v)− j(y)≥ 〈 f ,v− y〉Y ′,Y , for all v ∈ Y, (6.23)



102 6 Nonsmooth PDE-Constrained Optimization

where Y, U are Hilbert function spaces defined on a bounded domain Ω ⊂ R
N , a(·, ·) is

a continuous and coercive bilinear form, j : Y → R∪{∞} is a convex nondifferentiable
functional and f ∈ Y ′.

Inequalities of this type arise in contact mechanics, elastoplasticity, viscoplastic fluid
flow, among others (see, e.g., [18, 20]). If the convex functional j(·) corresponds to
the indicator functional of a convex set, the variational inequality has special structural
properties. Something similar occurs if the term has the form

j(y) =
∫

S
|Ky|ds,

with S ⊂ Ω̄ and K ∈ L (Y,(L2(S))m), for some m ≥ 1. Both cases will be considered in
the sequel.

The optimization of variational inequalities is closely related to the field of mathemat-
ical programming with equilibrium constraints (MPEC), which has received increasing
interest in the past years, both in finite-dimensions and in function spaces [15, 27, 28,
44, 49]. Due to the nondifferentiable structure of the constraints, the characterization of
solutions via optimality conditions becomes challenging, and the same extends to the
numerical solution of such problems.

A general tracking type distributed optimization problem can be formulated as fol-
lows:

⎧⎪⎨
⎪⎩

min J(y,u) = 1
2

∫
Ω |y− zd |2 dx+ α

2 ‖u‖2
U ,

subject to:

a(y,v− y)+ j(v)− j(y)≥ 〈u,v− y〉Y ′,Y , for all v ∈ Y.

(6.24)

For simplicity we restrict our attention to the cases where U = L2(Ω) and assume that
Y ↪→ L2(Ω) ↪→Y ′ with compact and continuous embeddings. Existence of a unique solu-
tion to (6.23) can be easily justified by the well-known Stampacchia’s theorem, while
existence of an optimal solution to (6.24) is shown in the following result.

Theorem 6.6. There exists an optimal solution for problem (6.24).

Proof. Since the cost functional is bounded from below, there exists a minimizing
sequence {(yn,un)}, i.e., J(yn,un) → infu J(y,u), where yn stands for the unique solu-
tion to

a(yn,v− yn)+ j(v)− j(yn)≥ 〈un,v− yn〉Y ′,Y , for all v ∈ Y . (6.25)

From the structure of the cost functional it also follows that {un} is bounded in U .
Additionally, it follows from (6.25) that {yn} is bounded in Y . Therefore, there exists a
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subsequence (denoted in the same way) such that

un ⇀ û weakly in U and yn ⇀ ŷ weakly in Y.

Due to the compact embedding L2(Ω) ↪→ Y ′ it then follows that

un → û strongly in Y ′.

From (6.25) we directly obtain that

a(yn,yn)−a(yn,v)+ j(yn)− j(v)−〈un,yn − v〉Y ′,Y ≤ 0, ∀v ∈ Y.

Thanks to the convexity and continuity of a(·, ·) and j(·) we may take the limit inferior
in the previous inequality and obtain that

a(ŷ, ŷ)−a(ŷ,v)+ j(ŷ)− j(v)−〈û, ŷ− v〉Y ′,Y ≤ 0, ∀v ∈ Y, (6.26)

which implies that ŷ solves (6.23) with û on the right hand side.
Thanks to the weakly lower semicontinuity of the cost functional we finally obtain

that
J(ŷ, û)≤ liminf

n→∞
J(y(un),un) = inf

u
J(y(u),u),

which implies the result. 	


6.3.1 Inequalities of the First Kind

If the non-differentiable term j(·) corresponds to the indicator functional of a convex set
of the type C := {v ∈ Y : v ≤ ψ a.e. in Ω}, with ψ ∈ Y : ψ ≥ 0 a.e. in Ω , the variational
inequality problem consists in finding y ∈C such that

a(y,v− y)≥ 〈u,v− y〉Y ′,Y , for all v ∈C. (6.27)

These type of inequalities are commonly known as obstacle type inequalities. For this
particular instance, additional properties can be investigated. For example, if the domain
is of class C 2, the state space Y = H1

0 (Ω) and the right hand side belongs to U = L2(Ω),
then there exists a unique solution y ∈ H2(Ω)∩H1

0 (Ω) to (6.27) (see, e.g., [4]). More-
over, there exists a slack multiplier λ ∈ L2(Ω) such that (6.27) can be equivalently writ-
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ten as the complementarity problem:

a(y,v)+(λ ,v)L2 = (u,v)L2 , for all v ∈ Y, (6.28a)

y ≤ ψ a.e., λ ≥ 0 a.e., (6.28b)

(λ ,y−ψ)L2 = 0. (6.28c)

The corresponding optimization problem can then be cast as a mathematical program
with complementarity constraints. The problem reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min J(y,u) = 1
2

∫
Ω |y− zd |2 dx+ α

2 ‖u‖2
L2 ,

subject to:

a(y,v)+(λ ,v)L2 = (u,v)L2 , for all v ∈ Y,

y ≤ ψ a.e., λ ≥ 0 a.e.,

(λ ,y−ψ)L2 = 0.

(6.29)

Due to the nonsmooth nature of the constraints, different type of stationary points
may be characterized for problem (6.29), in contrast to what happens in differentiable
optimization, where a single stationarity concept suffices.

Definition 6.1. A point ū ∈ U is called C(larke)-stationary for problem (6.29), if it sat-
isfies the following system:

a(y,v)+(λ ,v)L2 = (u,v)L2 , for all v ∈ Y, (6.30a)

y ≤ ψ, a.e. in Ω , (6.30b)

λ ≥ 0, a.e. in Ω , (6.30c)

(λ ,y−ψ)L2 = 0, (6.30d)

a(p,v)+ 〈ξ ,v〉Y ′,Y = (y− zd ,v)L2 , for all v ∈ Y (6.30e)

p+αu = 0, a.e. in Ω (6.30f)

〈ξ , p〉Y ′,Y ≥ 0, (6.30g)

p = 0, a.e. in I := {x : λ > 0} (6.30h)

and, additionally,

〈ξ ,φ〉Y ′,Y = 0, ∀φ ∈ Y : φ = 0 a.e. in {x : y = ψ}.

A point ū ∈U is called strong stationary, if it satisfies (6.30) and

p ≤ 0 a.e. in B,
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〈ξ ,φ〉Y ′,Y ≤ 0, ∀φ ∈ Y : φ ≥ 0 a.e. in B and φ = 0 a.e. in I ,

where B := {x : y = ψ ∧λ = 0} stands for the biactive set.

The derivation of optimality conditions for this type of problems is actually a cur-
rent topic of research. Regularization approaches as well as generalized differentiability
properties (directional, conical) of the solution map or elements of set valued analysis
have been explored with different outcomes, advantages, and disadvantages (see, e.g.,
[4, 5, 27, 28, 29, 42, 46, 50]).

Back to problem (6.29) and its numerical treatment, note that the last three comple-
mentarity relations can be formulated in reduced form as:

λ = max(0,λ + c(y−ψ)), for any c > 0. (6.31)

This reformulation enables the development of new algorithmic ideas for handling the
constraints. An immediate regularized version of (6.31) is obtained, for instance, if the
multiplier inside the max function is replaced by a function λ̄ ∈ L2(Ω) (possibly λ̄ = 0)
and c is considered as a regularization parameter γ , which may tend to infinity. If, in
addition, a local regularization of the max function is utilized in order to obtain a smooth
solution operator, then, instead of the governing variational inequality, the following
nonlinear PDE is obtained as constraint:

a(y,v)+(maxγ(0,γ(y−ψ)),v)L2 = (u,v)L2 , for all v ∈ Y, (6.32)

where maxγ is a C1-approximation of the max function given by

maxγ(0,x) :=

⎧⎪⎪⎨
⎪⎪⎩

x if x ≥ 1
2γ ,

γ
2

(
x+ 1

2γ

)2
if |x| ≤ 1

2γ ,

0 if x ≤− 1
2γ .

The resulting optimization problem reads as follows:

⎧⎪⎨
⎪⎩

min J(y,u) = 1
2

∫
Ω |y− zd |2 dx+ α

2 ‖u‖2
L2 ,

subject to:

a(y,v)+(maxγ(0,γ(y−ψ)),v)L2 = (u,v)L2 , for all v ∈ Y.

(6.33)



106 6 Nonsmooth PDE-Constrained Optimization

An optimality condition for problem (6.33) may be obtained using the techniques of
Chap. 3. The resulting optimality system is given as follows:

a(y,v)+ γ(maxγ(0,y−ψ),v)L2 = (u,v)L2 , for all v ∈ Y, (6.34a)

a(p,v)+ γ(signγ(y−ψ) p,v)L2 = (y− zd ,v)L2 , for all v ∈ Y, (6.34b)

αu+ p = 0, (6.34c)

where

signγ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≥ 1
2γ ,

γ
(

x+ 1
2γ

)
if |x| ≤ 1

2γ ,

0 if x ≤− 1
2γ .

In the next theorem convergence of the solutions of the regularized variational
inequalities toward the solution of (6.27) is established.

Theorem 6.7. Let y and yγ be solutions to (6.27) and (6.32), respectively, both with
u ∈ L2(Ω) on the right hand side. Then

yγ → y strongly in Y as γ →+∞.

Proof. Let us define the primitive function

Φγ(x) =
∫ x

0
maxγ(0,s)ds,

and consider the energy minimization problem

min
y∈Y

1
2

a(y,y)+
∫

Ω

1
γ

Φγ(γ(y−ψ))dx− (u,y)L2 . (6.35)

Equation (6.32) is a necessary and sufficient optimality condition for (6.35). Therefore,
yγ also solves (6.35) and, from the optimality, we get that

1
2

a(yγ ,yγ)+
1
γ

∫
Ω

Φγ(γ(yγ −ψ))dx− (u,yγ)≤
1
2

a(ψ,ψ)− (u,ψ).

Since the function in (6.35) is radially unbounded (see (3.4)), we get that {yγ} is bounded
in Y and, moreover,

κ
2
‖yγ‖2

Y +
1
γ

∫
Ω

Φγ(γ(yγ −ψ))dx ≤C,

for some constants κ > 0 and C > 0. Therefore, there exists a subsequence, denoted the
same, such that yγ ⇀ ỹ weakly in Y .



6.3 Variational Inequality Constraints 107

Since 0 ≤ max(0,x)≤ maxγ(0,x), it follows that

0 ≤ 1
2γ

∫
Ω
|max(0,γ(yγ −ψ))|2 dx ≤ 1

γ

∫
Ω

Φγ(γ(yγ −ψ))dx ≤C.

Consequently,
‖max(0,yγ −ψ)‖2

L2 → 0 as γ → ∞,

and, thanks to Fatou’s Lemma, |max(0, ỹ−ψ)|= 0.
Let λγ := maxγ(0,γ(yγ −ψ))≥ 0. It then follows that

(λγ ,yγ − y) = (λγ ,yγ −ψ)+(λγ ,

≥0︷ ︸︸ ︷
ψ − y)≥ 1

γ
(λγ ,γ(yγ −ψ))≥ 0. (6.36)

Taking the difference between (6.32) and (6.28a), with the test function v = yγ −y, leads
to the equation

a(yγ − y,yγ − y)+(λγ −λ ,yγ − y)L2 = 0. (6.37)

Using (6.36), the coercivity of the bilinear form, the complementarity relations (6.28b)–
(6.28c) and the feasibility of ỹ, we get that

0 ≤ κ‖yγ − y‖2
Y ≤ a(yγ − y,yγ − y)+(λγ ,yγ − y)

= (λ ,yγ − ỹ)L2 +(λ , ỹ−ψ)L2 +

=0︷ ︸︸ ︷
(λ ,ψ − y)L2

≤ (λ ,yγ − ỹ)L2 .

Taking the limit as γ → ∞ yields the result. 	


As a consequence of the previous result, the regularized optimal solutions, obtained
by solving (6.33), converge to the original solution of (6.29) in the following sense.

Theorem 6.8. Every sequence {uγ}γ>0 of solutions to (6.33) contains a subsequence
which converges strongly in U to an optimal solution ū ∈ U of (6.29). Moreover, if
(6.29) has a unique optimal solution, then the whole sequence converges strongly in U
towards ū, as γ → ∞.

Proof. Let ū denote an optimal solution for (6.29). From the structure of the cost func-
tional we obtain that

J(yγ ,uγ)≤ J(0,0)≤C0, for all γ > 0, (6.38)
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and, therefore, the sequence {uγ} is uniformly bounded in U . Consequently, there exists
a weakly convergent subsequence, which will be also denoted by {uγ}.

Let û be a weak accumulation point of {uγ}. Thanks to Theorem 6.7, yγ(uγ)→ y(uγ)

strongly in Y . Additionally, considering (6.27) with û and uγ on the right hand side,
respectively, and adding both inequalities, we get that

a(y(û)− y(uγ),y(û)− y(uγ))≤ (û−uγ ,y(û)− y(uγ)),

which, thanks to the ellipticity of a(·, ·), implies that y(uγ)→ y(û) strongly in Y . Conse-
quently,

yγ(uγ)→ y(û) strongly in Y.

Due to the weakly lower semicontinuity of the cost functional, we obtain that

J(y(û), û)≤ liminf
γ→∞

J(yγ(uγ),uγ)≤ liminf
γ→∞

J(yγ(ū), ū) = J(ȳ, ū)

and, therefore, (y(û), û) is an optimal solution to (6.29). From the last inequality it also
follows that

lim
γ→∞

‖uγ‖2
U = ‖ū‖2

U ,

which, together with the weak convergence uγ ⇀ ū, implies strong convergence in U .
If, in addition, the optimal solution is unique, convergence of whole sequence takes
place. 	


Remark 6.1. By passing to the limit in (6.34) an optimality system of C-type is obtained
for the limit point (see, e.g., [33]).

Since maxγ is continuously differentiable and signγ is a Newton differentiable func-
tion with derivative

sign′γ(x) =

{
γ if |x| ≤ 1

2γ ,

0 if not,

a semismooth Newton method may be used for solving system (6.34), yielding the fol-
lowing adjoint equation update:

a(δp,v)+ γ(signγ(y−ψ)δp,v)L2(Ω) + γ2
∫
|y−ψ|≤ 1

2γ

pδy v dx− (δy,v)L2(Ω)

=−a(p,v)− γ(signγ(y−ψ) p,v)L2(Ω) + (y− zd ,v)L2(Ω). (6.39)

The complete algorithm is given through the following steps:
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Algorithm 10 SSN–Optimization with VI constraints (first kind)
1: Choose (y0,u0, p0) ∈ Y ×U ×W ′.
2: repeat
3: Solve for (δy,δu,δp) ∈ Y ×U ×Y

⎛
⎜⎝

A+ γ signγ (yk −ψ) −I 0
γ2χ|yk−ψ |≤ 1

γ
p− I 0 A+ γ signγ (yk −ψ)

0 αI I

⎞
⎟⎠
⎛
⎝ δy

δu

δp

⎞
⎠

=−

⎛
⎝ Ayk + γmaxγ (0,yk −ψ)−uk

Apk + γ signγ (yk −ψ) pk − yk + zd

αuk + pk

⎞
⎠ .

4: Set uk+1 = uk +δu, yk+1 = yk +δy, pk+1 = pk +δp and k = k+1.
5: until Stopping criteria.

Program: Optimal Control of an Obstacle Problem

clear all;
n=input('Mesh points: '); h=1/(n+1);
alpha=input('Tikhonov regularization parameter: ');
gama=1e3;

[x1,y1]=meshgrid(h:h:1-h,h:h:1-h); %%%%% Coordinates %%%%%

%%%%% Desired state %%%%%
desiredstate=inline('x.*y','x','y');
z=feval(desiredstate,x1,y1); z=reshape(z,nˆ2,1);

yb=0.2*ones(nˆ2,1); %%%%% Upper obstacle bound %%%%%
lap=matrices(n,h); %%%%% Laplacian %%%%%

%%%%% Initialization %%%%%
u=sparse(nˆ2,1); y=sparse(nˆ2,1); p=sparse(nˆ2,1); mu=sparse(nˆ2,1);
res=1; iter=0;

while res >= 1e-3
iter=iter+1

%%%%% Semismooth Newton step %%%%%
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S=spdiags(signg(y-yb,gama),0,nˆ2,nˆ2); P=spdiags(p,0,nˆ2,nˆ2);
Act=spdiags(spones(max(1/(2*gama)-abs(y-yb),0)),0,nˆ2,nˆ2);

A=[ lap+gama*S -speye(nˆ2) sparse(nˆ2,nˆ2)
-speye(nˆ2)+gamaˆ2*Act*P sparse(nˆ2,nˆ2) lap+gama*S
sparse(nˆ2,nˆ2) alpha*speye(nˆ2) speye(nˆ2)];

F=[ -lap*y-gama*maxg(y-yb,gama)+u
-lap*p-gama*signg(y-yb,gama).*p+y-z
-p-alpha*u];

delta=A\F;

uprev=u; yprev=y; pprev=p;
y=y+delta(1:nˆ2);
u=u+delta(nˆ2+1:2*nˆ2);
p=p+delta(2*nˆ2+1:3*nˆ2);
res=l2norm(u-uprev)+l2norm(y-yprev)+l2norm(p-pprev)

end

6.3.2 Inequalities of the Second Kind

There are several problems where the variational inequality constraints do not have an
obstacle-type structure like (6.27), but are rather characterized by a so-called threshold
behavior. This means that a certain constitutive property is preserved until a quantity
surpasses a limit, from which on a different qualitative behavior takes place. This is the
case, for instance, of a body in frictional contact with a surface, where no tangential
movement occurs until the external forces are large enough so that the friction threshold
is surpassed and the displacement starts. Something similar occurs in elastoplasticity
or viscoplastic fluids, to name a few application examples (see [20] and the references
therein).

These inequalities are characterized by the presence of a non-differentiable term of
the form

j(y) =
∫

S
|Ky|ds,

where S ⊂ Ω̄ and K ∈L (Y,(L2(S))m), for some m ≥ 1, yielding the following problem:
Find y ∈ Y such that

a(y,v− y)+g
∫

S
|Kv|ds−g

∫
S
|Ky|ds ≥ 〈 f ,v− y〉Y ′,Y , for all v ∈ Y, (6.40)

where g > 0 stands for the threshold coefficient.
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Similar to variational inequalities of the first kind, existence of a multiplier q ∈
(L2(S))m can be proved by duality techniques (see, e.g., [20]) and an equivalent sys-
tem to (6.40) is given by:

a(y,v)+
∫

S
qKvds = 〈 f ,v〉Y ′,Y , for all v ∈ Y, (6.41a)

(q(x),Ky(x))Rm = g|Ky(x)|Rm , a.e. in S, (6.41b)

|q(x)| ≤ g, a.e. in S. (6.41c)

Note that, if Ky(x) = 0, no pointwise information about q(x) is obtained from (6.41).
For simplicity, let us hereafter focus on the special case S = Ω and K : Y → L2(Ω)

the canonical injection. A distributed type optimization problem may then be formulated
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min J(y,u) = 1
2

∫
Ω |y− zd |2 dx+ α

2 ‖u‖2
L2 ,

subject to:

a(y,v)+(q,v)L2 = (u,v)L2 , for all v ∈ Y,

q(x)y(x) = g|y(x)|, a.e. in Ω ,

|q(x)| ≤ g, a.e. in Ω .

(6.42)

Based on the behavior of the solution and its multipliers on the biactive set, also
different stationarity concepts arise in this case. The study of stationary points in this
context is actually a matter of current research (see [15, 17]).

Definition 6.2. A point ū ∈ L2(Ω) is called C(larke)-stationary for problem (6.42), if it
satisfies the following system:

a(y,v)+(q,v)L2 = (u,v)L2 , for all v ∈ Y, (6.43a)

q(x)y(x) = g|y(x)| a.e. in Ω , (6.43b)

|q(x)| ≤ g a.e. in Ω , (6.43c)

a(p,v)+ 〈ξ ,v〉Y ′,Y = (y− zd ,v)L2 , for all v ∈ Y (6.43d)

αu+ p = 0 a.e. in Ω (6.43e)

p = 0 a.e. in I := {x : |q(x)|< g}. (6.43f)

and, additionally,
〈ξ , p〉Y ′,Y ≥ 0, 〈ξ ,y〉Y ′,Y = 0. (6.44)

A point ū ∈U is called strong stationary, if it satisfies (6.43) and

〈ξ ,v〉Y ′,Y ≥ 0, ∀v ∈ Y : v(x) = 0 where |q(x)|< g and v(x)q(x)≥ 0 a.e. in B,
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p(x)q(x)≥ 0 a.e. in B,

where B := {x : y = 0∧|q|= g} stands for the biactive set.

Since the biactive set is typically small, one is tempted to ignore its importance. The
following simple example illustrates that optimal solutions may correspond to biactive
points in a significant number of cases.

Example 6.2. For u ∈ R, consider the finite-dimensional variational inequality

2y(v− y)+ |v|− |y| ≥ u(v− y), for all v ∈ R,

and its energy formulation

min
y

j(y) = {y2 + |y|−uy}. (6.45)

Analyzing by cases, for y ≥ 0 and y ≤ 0, we get the following:

For y ≥ 0: j(y) = y2 + (1− u)y and j′(y) = 2y+(1− u). Therefore, the solution is
given by

y =

{
1
2 (u−1) if u ≥ 1,

0 otherwise.

For y ≤ 0: j(y) = y2 − (1+ u)y and j′(y) = 2y− (1+ u). Thus, the solution is given
by

y =

{
1
2 (u+1) if u ≤−1,

0 otherwise.

Summarizing both cases, the solution to (6.45) is the following:

y =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (u−1) if u ≥ 1,

0 if u ∈ [−1,1],
1
2 (u+1) if u ≤−1.

Considering the cost function

J(y,u) =
1
2
(y−1)2 +

α
2

u2, α ∈ (0,1),
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and plotting the level curves, it can be observed that the minimum value will be
attained either at (0,0) or at some point (y(û), û) �= (0,1), depending on the value
of α . Consequently, the optimal solution is not biactive.

1

−1

1 2 3−1−2−3
biactive point: q = 1, y = 0

y(u)

y

u�

Fig. 6.2 Solution operator and contour lines of the cost function.

Considering a more general cost function:

J(y,u) =
1
2
(y−ξ1)

2 +
α
2
(u−ξ2)

2, α ∈ (0,1),

it can be verified that for ξ2 ≤−1 and ξ1 ≥ −2α(1+ξ2) the minimum is attained at
(ȳ, ū) = (0,−1), which is a biactive point.

Note that equations (6.43b)–(6.43c) can also be formulated as the inclusion q∈ ∂g|y|,
where ∂φ stands for the subdifferential of φ . For solving the problem numerically, the
subdifferential may be replaced by the following C1-approximation of it:

hγ(x) =

⎧⎪⎪⎨
⎪⎪⎩

g x
|x| if γ |x| ≥ g+ 1

2γ ,

x
|x| (g−

γ
2 (g− γ |x|+ 1

2γ )
2) if g− 1

2γ ≤ γ |x| ≤ g+ 1
2γ ,

γx if γ |x| ≤ g− 1
2γ ,

(6.46)

for γ sufficiently large.
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Proposition 6.1. The regularizing function hγ satisfies the following approximation
property: ∣∣∣∣hγ(x)−

gγx
max(g,γ |x|)

∣∣∣∣≤ 1
γ
, for all x ∈ R. (6.47)

Proof. If x is such that γ |x| ≤ g− 1
2γ or γ |x| ≥ g+ 1

2γ , the results is obvious. Let x be

such that g < γ |x| ≤ g+ 1
2γ . It then follows that max(g,γ |x|) = γ |x| and

∣∣∣∣hγ(x)−
gγx

max(g,γ |x|)

∣∣∣∣≤
∣∣∣∣γ2 (g− γ |x|+ 1

2γ
)2

∣∣∣∣≤ γ
2

(
1
2γ

)2

=
1
8γ

.

If x is such that g− 1
2γ ≤ γ |x| ≤ g, then

∣∣∣∣hγ(x)−
gγx

max(g,γ |x|)

∣∣∣∣≤
∣∣∣∣
(

g− γ
2
(g− γ |x|+ 1

2γ
)2
)

x
|x| − γx

∣∣∣∣
≤ |g− γ |x||+

∣∣∣∣γ2 (g− γ |x|+ 1
2γ

)2

∣∣∣∣
≤ 1

2γ
+

γ
2

(
1
γ

)2

=
1
γ
. 	


By using the function hγ , the following family of regularized equations is obtained:

a(y,v)+(q,v)L2(Ω) = (u,v)L2(Ω), for all v ∈ Y, (6.48a)

q = hγ(y) a.e. in Ω . (6.48b)

Existence of a unique solution to (6.48) follows from the monotonicity of hγ . In the next
theorem, convergence of the regularized solutions toward the original one is shown.

Theorem 6.9. Let y and yγ be solutions to (6.41) and (6.48), respectively, both with
u ∈ L2(Ω) on the right hand side. Then

yγ → y strongly in Y as γ →+∞.

Proof. Let ŷ denote the unique solution to the auxiliary problem:

a(ŷ,v)+(q̂,v) = (u,v)L2 , for all v ∈ Y, (6.49a)

q̂ = gγ
ŷ

max(g,γ |ŷ|) . (6.49b)
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Existence and uniqueness of a solution to (6.49) can be obtained by using Minty–
Browder’s theorem.

Taking the difference between the solutions to (6.41) and (6.48), and using the triangle
inequality, we obtain that

‖y− yγ‖Y ≤ ‖y− ŷ‖Y +‖ŷ− yγ‖Y . (6.50)

For the first term on the right hand side of (6.50) we take the difference between
(6.41a) and (6.49a), with v = y− ŷ. We obtain that

κ‖y− ŷ‖2
Y ≤ (q− q̂, ŷ− y), for some κ > 0. (6.51)

Analyzing the last term pointwisely, we get the following:

On Aγ := {x : γ |ŷ| ≥ g}, thanks to (6.41b)–(6.41c):

(q̂(x)−q(x))(y(x)− ŷ(x)) = g
ŷ(x)
|ŷ(x)|y(x)−q(x)y(x)−g|ŷ(x)|+q(x)ŷ(x)

≤ g|y(x)|−g|y(x)|−g|ŷ(x)|+g|ŷ(x)|= 0.

On Iγ := Ω\Aγ = {x : γ |ŷ|< g}, using (6.41b)–(6.41c) and the set’s definition:

(q̂(x)−q(x))(y(x)− ŷ(x)) = γ ŷ(x)y(x)− γ |ŷ(x)|2 −q(x)y(x)−q(x)ŷ(x)

≤ (g− γ |ŷ(x)|)|ŷ(x)|

≤ (g− γ |ŷ(x)|)g
γ
≤ g2

γ
.

Altogether we get that

(q− q̂, ŷ− y)L2 <
g2

γ
|Ω |, (6.52)

and, consequently,

‖y− ŷ‖Y ≤ C1√γ
, for some constant C1 > 0. (6.53)

For the second term on the right hand side of (6.50), by taking the difference between
(6.48) and (6.49), we obtain that

a(yγ − ŷ,yγ − ŷ)+
(
hγ(yγ)−hγ(ŷ),yγ − ŷ

)
L2 =−

(
hγ(ŷ)−

gγ ŷ
max(g,γ |ŷ|) ,yγ − ŷ

)
L2
.
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Using the coercivity of a(·, ·) and the monotonicity of hγ , we then get that

κ‖yγ − ŷ‖2
Y ≤−

(
hγ(yγ)−

gγ ŷ
max(g,γ |ŷ|) ,yγ − ŷ

)
L2
, for some κ > 0.

Thanks to (6.47), it follows that
∣∣∣∣
(

hγ(yγ)−
gγ ŷ

max(g,γ |ŷ|) ,yγ − ŷ

)
L2

∣∣∣∣≤ 1
γ

∫
Ω
|yγ − ŷ| dx,

which implies that

‖yγ − ŷ‖2
Y ≤ C2

γ
‖yγ − ŷ‖Y , (6.54)

for some C2 > 0. From (6.53) and (6.54), the result is obtained. 	


A family of regularized PDE-constrained optimization problems is also obtained by
using (6.48). The problems read as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(y,u) = 1
2

∫
Ω |y− zd |2 dx+ α

2 ‖u‖2
L2 ,

subject to:

a(y,v)+(q,v)L2 = (u,v)L2 , for all v ∈ Y,

q = hγ(y) a.e. in Ω .

(6.55)

Existence of an optimal solution for each regularized problem can be argued by classi-
cal techniques. Moreover, by using the techniques of Chap. 3, the following optimality
systems are obtained:

a(y,v)+(q,v)L2 = (u,v)L2 , for all v ∈ Y, (6.56a)

q = hγ(y) a.e. in Ω , (6.56b)

a(p,v)+(λγ ,v)L2 = (y− zd ,v)L2 , for all v ∈ Y, (6.56c)

λγ = h′γ(y)
∗p a.e. in Ω , (6.56d)

αu+ p = 0 a.e. in Ω . (6.56e)

Theorem 6.10. Every sequence {uγ}γ>0 of solutions to (6.55) contains a subsequence
which converges strongly in L2(Ω) to an optimal solution ū ∈ L2(Ω) of (6.42).

Proof. The proof is similar to the one of Theorem 6.8, with ū denoting an optimal solu-
tion for (6.42). From the structure of the cost functional it follows that {uγ} is uniformly
bounded in L2(Ω) and, therefore, there exists a weakly convergent subsequence {uγ}
and a limit point û such that uγ ⇀ û weakly in L2(Ω).
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Thanks to Theorem 6.9, yγ(uγ)→ y(uγ) strongly in Y . Moreover, from the structure
of the variational inequality, we get that

a(y(uγ),y(û)− y(uγ))+ j(y(û))− j(y(uγ))≥ (uγ ,y(û)− y(uγ))

and
a(y(û),y(uγ)− y(û))+ j(y(uγ))− j(y(û))≥ (û,y(uγ)− y(û)).

Adding both inequalities and using the ellipticity of the bilinear form, we get that:

‖y(uγ)− y(û)‖Y ≤C‖uγ − û‖Y ′ ,

for some constant C > 0. Altogether we proved that the regularized states yγ(uγ)→ y(û)
strongly in Y .

Thanks to the weakly lower semicontinuity of the cost functional, we obtain that
(y(û), û) is an optimal solution to (6.42) and, also that,

lim
γ→∞

‖uγ‖2
U = ‖ū‖2

U ,

which implies strong convergence. 	


Remark 6.2. By passing to the limit in the regularized systems (6.56), an optimality sys-
tem of C-type is obtained for any accumulation point of {uγ}γ>0 (see [15]).

The derivative of hγ(x) is given by the function

h′γ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if γ |x| ≥ g+ 1
2γ

γ2(g− γ |x|+ 1
2γ ) if g− 1

2γ ≤ γ |x| ≤ g+ 1
2γ

γ if γ |x| ≤ g− 1
2γ ,

(6.57)

which is piecewise continuous and semismooth. By replacing the multipliers qγ and
λγ in the state and adjoint equations, respectively, a generalized Newton step for both
equations is given by

a(δy,v)+(h′γ(yk)δy,v)L2 − (δu,v)L2 =−a(y,v)− (hγ(yk),v)L2 +(u,v)L2 , (6.58)

a(δp,v)+(h′γ(yk)δp,v)L2 +(h′′γ (yk)δy pk,v)L2 − (δy,v)L2

=−a(p,v)− (h′γ(yk) p,v)L2 +(y− zd ,v)L2 , (6.59)
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where

h′′γ (x) :=

{
−γ3 x

|x| if g− 1
2γ ≤ γ |x| ≤ g+ 1

2γ

0 elsewhere.
(6.60)

The complete algorithm is given next.

Algorithm 11 SSN–Optimization with VI constraints (second kind)
1: Choose (y0,u0, p0) ∈ Y ×U ×W ′.
2: repeat
3: Solve for (δy,δu,δφ ) ∈ Y ×U ×W ′

⎛
⎝ A+ h′γ (yk) −I 0

h′′γ (yk) p− I 0 A+h′γ (yk)

0 αI I

⎞
⎠
⎛
⎝ δy

δu

δp

⎞
⎠=−

⎛
⎝ Ayk +hγ (yk)−uk

Apk +h′γ (yk) pk − yk + zd

αuk + pk

⎞
⎠ .

4: Set uk+1 = uk +δu, yk+1 = yk +δy, pk+1 = pk +δp and k = k+1.
5: until Stopping criteria.

Remark 6.3. If the operator K in (6.40) is not the canonical injection, globalization strate-
gies may be needed for the semismooth Newton method to converge (see [16]).
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