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Fig. 1. Le�: The proposed pipeline ((a)–(f)) for solving a PDE problem on an infinite exterior domain � ⇢ R3. The method begins by representing the infinite
domain (a) by a bounded domain (b) via the inversion map. Factoring out an analytically known function (c), we numerically solve a specifically transformed
PDE (d) on the bounded domain. The solution to the original problem (e) is evaluated on the inverted domain as the product of the functions from (c) and (d).
The final solution (f) is obtained by inverting (e) back to the original infinite domain. Right: The acoustic wave governed by the Helmholtz equation on the
infinite 3D domain exterior to a vibrating Stanford Bunny, computed by our method. The solution is visualized as a height field over a 2D slice. (Note that the
image is not of water waves despite its resemblance.) For the first time, an infinite domain Helmholtz equation is computed on a grid without the aid of
artificial absorbing boundary conditions.

Solving partial di�erential equations (PDEs) on in�nite domains has been
a challenging task in physical simulations and geometry processing. We
introduce a general technique to transform a PDE problem on an unbounded
domain to a PDE problem on a bounded domain. Our method uses the Kelvin
Transform, which essentially inverts the distance from the origin. However,
naive application of this coordinate mapping can still result in a singularity at
the origin in the transformed domain. We show that by factoring the desired
solution into the product of an analytically known (asymptotic) component
and another function to solve for, the problem can be made continuous and
compact, with solutions signi�cantly more e�cient and well-conditioned
than traditional �nite element and Monte Carlo numerical PDE methods on
stretched coordinates. Speci�cally, we show that every Poisson or Laplace
equation on an in�nite domain is transformed to another Poisson (Laplace)
equation on a compact region. In other words, any existing Poisson solver
on a bounded domain is readily an in�nite domain Poisson solver after
being wrapped by our transformation. We demonstrate the integration
of our method with �nite di�erence and Monte Carlo PDE solvers, with
applications in the �uid pressure solve and simulating electromagnetism,
including visualizations of the solar magnetic �eld. Our transformation
technique also applies to the Helmholtz equation whose solutions oscillate
out to in�nity. After the transformation, the Helmholtz equation becomes a
tractable equation on a bounded domain without in�nite oscillation. To our
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knowledge, this is the �rst time that the Helmholtz equation on an in�nite
domain is solved on a bounded grid without requiring an arti�cial absorbing
boundary condition.

CCS Concepts: • Computing methodologies! Physical simulation; •
Mathematics of computing! Partial di�erential equations;Numer-
ical analysis.

Additional Key Words and Phrases: Kelvin transform, Möbius transform,
Poisson equation, Helmholtz equation, in�nite domain, Monte Carlo method

ACM Reference Format:
Mohammad Sina Nabizadeh, Ravi Ramamoorthi, and Albert Chern. 2021.
Kelvin Transformations for Simulations on In�nite Domains. ACM Trans.
Graph. 40, 4, Article 97 (August 2021), 15 pages. https://doi.org/10.1145/
3450626.3459809

1 INTRODUCTION
Solving partial di�erential equations (PDEs) on in�nite domains is a
common problem in physical simulations and geometry processing.
For example, simulating acoustic wave propagation often demands
solving a Helmholtz equation on an open space (Figure 1). Designing
an incompressible �ow around an obstacle immersed in a vast
ocean would involve a pressure solve—a Poisson equation—on the
entire unbounded domain (Figure 2). Inpainting or extrapolating a
function to the surrounding environment from a geometry usually
corresponds to a PDE problem on the in�nite domain (Figure 15).

Problems on unbounded domains pose a fundamentally di�erent
set of numerical challenges compared to those on compact domains.
This contrast is manifested by the fact that many numerical methods
do not directly apply to unbounded domains without special treat-
ments or compromises. For instance, solvers relying on discretizing
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the space require the domain to be truncated into a �nite size, in-
troducing arti�cial boundaries [Tsynkov 1998]. These boundaries
are imposed with conditions that either approximate the behavior
of the solution at in�nity, or match an outer regime simulation
[Stomakhin and Selle 2017] or analytic model (including absorbing
layers) [Bojsen-Hansen and Wojtan 2016]. Mesh-free methods may
also require special treatments in in�nite domains. For example,
Monte-Carlo-based PDE solvers [Sawhney and Crane 2020] for the
direct evaluation of the solution usually involve a random walk in
the domain, which converges much more slowly as the walker likely
wanders to in�nity.

In this paper, we introduce a technique to rewrite a PDE on
an in�nite domain as a PDE on a compact domain. After such a
transformation, standard numerical methods on compact domains
apply. We refer to this transformation as the Kelvin transform, since
it agrees with the historical Kelvin transform in the case of the
Laplace and Poisson equations [Kellogg 1953].

We demonstrate the Kelvin transform for the Laplace and Poisson
equations on in�nite domains, as these problems underpin the fun-
damental building blocks in 3D data processing and many physical
simulations such as �uids, electromagnetism, thermostatics and
gravitation. We also include examples of a generalized Kelvin trans-
form applied to the Helmholtz equation (Figure 1), which is the basis
for acoustic simulation. This demonstrates the possibility to compute
such oscillatory �elds on an outer domain without requiring any
arti�cial wave-absorbing boundary.

This paper contributes the following novel concepts and applica-
tions:

Preconditioning PDEs. As a classical trick, a PDE problem for a
function u(x) on an exterior domain can be written as a bounded
domain problem by a change of coordinates [Grosch and Orszag
1977]. One such example, as will be taken throughout this paper, is
the inversion map x 7! y = x/|x |2 (Figure 1 (b)). LetU (y) = u(x) =
u(y/|y |2) represent the value of u as a function on the bounded
inverted coordinates. (We will consistently use a small letter for
a function depending on the original coordinates x, and use its
capital counterpart for the same function but dependent on the
inverted coordinates y. See Table 1.) However, such a coordinate
stretching comes with a cost that the new PDE to solve forU (y) is
often singular around the point mapped to in�nity. The di�culty
from an in�nite domain persists in the form of singularities.
The key idea of this paper, detailed in Section 4, is to further

factorizeU (y) (Figure 1(e)) into
U (y) = G(y)V (y), (1)

where
(1) G(y) is analytically given and captures the asymptotic behav-

ior of the solution near the singularity (Figure 1(c)), while
(2) V (y) is the part to be solved numerically (Figure 1(d)).

It turns out that by factoring out G(y), the new PDE satis�ed by
V (y) has the singularity removed. We have therefore transformed
the problem into a regular PDE for V (y) on a genuinely compact
domain where standard numerical methods apply. Finally, we can
reconstruct the original function of interest U (y) by multiplying
V (y) with G(y).

Fig. 2. A laminar flow around a sea turtle,1 computed by a pressure projection
of a constant vector field on the infinite domain. Such a task is made possible
by the Kelvin transformation.

Note that for many existing PDE problems, the function G(y)
is known in advance from the mathematical physics literature for
the particular PDE problem. In this paper, we focus on Poisson
and Helmholtz equations, where the respective asymptotic form
and hence theirG’s are known explicitly. If the reader has another
speci�c problem, with a better physical understanding, an alternative
form of G may apply, leading to new compacti�ed PDEs for V (y).

While it is true that the Kelvin transform for the Poisson equation
has long been known [Thomson 1845; Kellogg 1953], and that the
factorization (1) is a standard analytical method in both areas of
ordinary di�erential equations (ODEs) [Bender and Orszag 2013,
Chapter 3.3] and high frequency perturbation theory [Bender and
Orszag 2013, Chapter 10], we have found no previous discussions
on these techniques applied to solving the exterior domain problem
in computer graphics or scienti�c computing.

Poisson Problems on Exterior Domains. Using the Kelvin transform,
every exterior domain Poisson problem for u(x) becomes a standard
Poisson problem forV (y) on a bounded domain. This means that one
can apply any favorite PDE solver for an interior domain problem,
such as a �nite di�erence method on a regular grid (Section 5.1). We
provide explicit formulae for how the two boundary value problems
correspond to each other.

Monte Carlo Method on In�nite Domains. As a discretization-free
method for solving the Laplace equation, the Monte Carlo method
relies on simulating random walks in the domain until exiting at
some boundary point [Muller 1956; Ermakov et al. 1989; Sawhney
and Crane 2020]. Such random walks are e�cient for an interior
domain problem. However, in an in�nite domain, most random
walkers wander o� to in�nity [Weisstein 2000] and thus one must
reseed the walker [Ermakov et al. 1989, §5.2] or apply a Russian
Roulette procedure [Sawhney and Crane 2020] to let most particles
self-decay, resulting in high variance and long sampling time. As
demonstrated in Section 5.2, the Kelvin transform turns the exterior
problem into an interior one, making the Monte Carlo method on
an exterior domain as e�cient as that on an interior domain.

Fluids and Sounds in Open Spaces. We provide two proof-of-
concept applications to physical simulations. One such application
is the pressure solve for �uids on unbounded domains. Since the
pressure projection boils down to a Poisson equation, our method
solving in�nite domain Poisson problems directly applies to the
pressure solve (Section 5.3.2, Figures 2 and 14). Another example we
13D model by chung_the_artist on Sketchfab platform.

ACM Trans. Graph., Vol. 40, No. 4, Article 97. Publication date: August 2021.



Kelvin Transformations for Simulations on Infinite Domains • 97:3

discuss (Section 6) is the wave-based acoustic simulation [James
2016], where one often needs to solve a Helmholtz equation in
an in�nite space. Note that since the solutions to the Helmholtz
equation oscillate out to in�nity, it has been generally believed that
such a system is not suitable for coordinate mapping [Grosch and
Orszag 1977; Givoli 1992]. By factoring out the correct factorG(y) in
(1), we transform the Helmholtz equation into a tractable equation
for V (y) on a bounded domain to be solved on a �nite resolution
grid (Figures 1 and 16). To our knowledge, this is the �rst time a
Helmholtz equation is solved on the entire in�nite domain using only
a �nite di�erence method without relying on absorbing boundary
conditions (perfectly matched layers).

2 RELATED WORK
The problem of numerically solving PDEs on an in�nite domain has
long been recognized in scienti�c computing and computer graphics.
Here, we mention a few general methods that tackle this problem.
For a comprehensive review, we also refer the readers to [Givoli
1992] and [Tsynkov 1998].

Boundary Integrals. An integral method may be employed to avoid
discretizing the in�nite domain. Assuming the fundamental solution
(Green’s function) to the PDE on the free space is known, one may
directly construct the solution on an in�nite domain by integrating
the Green’s function over the source. Integral methods have been
applied to surface reconstructions [Barill et al. 2018], water wave
animations [Schreck et al. 2019], and evaluation of �uid velocities
from vortex �laments [Weißmann and Pinkall 2010], vortex sheets
[Brochu et al. 2012; Da et al. 2015, 2016], vortex particles [Golas
et al. 2012; Zhang and Bridson 2014], or a vorticity �eld [Zhang et al.
2015], just to name a few. These integrations are straightforward in
a free space. When there is a domain boundary, one then uses the
integral kernel to reduce the volumetric PDE to a boundary integral
equation (BIE) [McLean 2000]. The boundary element method (BEM)
[Sauter and Schwab 2010; Kythe 2020] is the numerical method that
discretizes and solves the boundary value problem in a BIE form. In
particular, the di�erential equation in the domain (sparse 3D system)
is replaced by an integral equation over the boundary (dense 2D
system). This is attractive when discretizing the volumetric domain
is di�cult, making BEM one of the actively researched numerical
methods for in�nite domain problems. Applications of BEM include
acoustic transfers [James et al. 2006; Kirkup 2019], electromagnetic
scattering [Spindler 2016], di�usion processes [Claeys et al. 2017],
inhomogenenous PDEs [Partridge et al. 2012], etc. In �uid animations,
determining the vortex sheets on the surface in a vortex simulation
[Weißmann and Pinkall 2010; Golas et al. 2012] can also be classi�ed
as a BEM.
One caveat of the integral methods is that the large summation

alone is computationally expensive, besides the cost of BEM. A direct
evaluation of the solution on N nodes over a source ofM elements
takes O(NM) �ops [James et al. 2006; Zhang et al. 2015], which
can be more expensive than solving the volumetric sparse linear
system with a cost of O(N ) [Harari and Hughes 1992]. Therefore,
practical integral methods require more sophisticated summation
programs such as the fast multipole method [Greengard and Rokhlin

1987; Barill et al. 2018] and a mesh-assisted acceleration [Zhang and
Bridson 2014].

Domain Truncation. Instead of integrating Green’s functions, a
more general approach is to take the original PDE problem and
to truncate the in�nite domain into a �nite size. The newly intro-
duced truncation boundary requires a carefully designed boundary
condition such that the solution seamlessly continues beyond the
truncation. The boundary artifacts are less pronounced for the nat-
ural boundary conditions in the case of higher order elliptic PDEs
[Stein et al. 2018; Sato et al. 2018]. For a lower order PDE, such
as the pressure solve in �uid simulations, one approximates the
boundary condition by a Neumann boundary condition [Stomakhin
and Selle 2017], a Dirichlet boundary condition [Nielsen and Bridson
2011] or a value given by the pressure inferred from simulating a
reduced �uid simulation on the larger domain [Thürey et al. 2006;
Stomakhin and Selle 2017]. However, these boundary conditions do
not correspond to the true value of the pressure should the domain
be truly in�nite. The exact boundary condition for an in�nite domain
Poisson equation is a Dirichlet-to-Neumann (DtN) condition [Givoli
and Keller 1989]. However, imposing a DtN condition leads to a
more expensive and highly connected non-local system.
Oscillatory systems such as the Helmholtz equation and wave

equations are more sensitive to the choice of the boundary condition.
Absorbing boundary conditions (ABCs) [Engquist and Majda 1977]
and perfectly matched layers (PMLs) [Berenger 1994; Chern 2019] are
the suitable boundary conditions that reduce the re�ection waves.
These non-re�ecting boundary conditions have been applied to �uid
surface simulations [Söderström et al. 2010; Bojsen-Hansen and
Wojtan 2016] and wave-based acoustic synthesis [James 2016; Wang
et al. 2018] in an open space.

Coordinate Mappings. In the method of coordinate mapping or
stretching, one �nds a parameterization of the in�nite domain by a
curvilinear coordinate system with bounded coordinate values, and
re-expresses the PDE on the �nite coordinates. After this coordinate
transformation one discretizes the PDE on the bounded domain.
As investigated by Grosch and Orszag [1977], the method is useful
only if the solution vanishes rapidly at in�nity. They remark that
the solutions oscillating out to in�nity are not amenable to these
techniques. Our method transforms not only the domain but also the
variable function. The latter is the key to overcome the limitations
of coordinate mappings.

Kelvin Transform. The classical Kelvin transform was discovered
by William Thomson (Lord Kelvin) in 1845 [Thomson 1872]. It is
also known as the method of image. The Kelvin transform is usually
described as a symmetric property of the harmonic potential in
electrostatics under the spherical re�ection, i.e. the inversion map.
Kelvin transform has been a tool to generate harmonic functions on
domains with spherical boundaries [Kellogg 1953]. However, the
Kelvin transformation has only been applied numerically to domains
composed of spheres and circles [Reali et al. 1984; Gold 2020] and
has drawn little attention beyond that. The current paper shows
that Kelvin transformation works on arbitrary domains. Moreover, a
modi�ed Kelvin transform is able to turn an oscillatory solution on
an in�nite domain to a regular function on the inverted domain.
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3 BACKGROUND
The Kelvin transformation technique in this paper involves a change
of coordinates via an inversion. We use this section to review how a
PDE transforms under such a coordinate change as well as to estab-
lish the notations (Table 1). Note that a mere change of coordinates
to reformulate a PDE problem is called the method of coordinate
stretching [Grosch and Orszag 1977]. In this section we also remind
the readers of some caveats in a plain coordinate stretching method,
in order to demonstrate the importance of the additional key steps
in the Kelvin transforms explained in Section 4.

3.1 Change of Coordinates under the Inversion
Let � ⇢ R3 denote the in�nite domain on which our PDE problem
is de�ned. We assume that � is a domain exterior to some objects of
�nite sizes; that is, � is a proper subset of R3 (i.e. � ( R3) and R3 \�
is bounded (Figure 1(a)). Without loss of generality, we assume 0 < �
(which can be achieved by a translation).

To be concrete, consider the Poisson equation

�u(x) = r · ru(x) = f (x), x = (x1, x2, x3) 2 �. (2)

accompanied by the vanishing condition at in�nity

u(x)! 0, for |x| !1. (3)

Now, map the in�nite domain � ⇢ R3 to a �nite one �inv ⇢ R3
via a map � : �inv ! �. (A discrete analog is that the space is
discretized by an adaptive mesh, which is coarser near the in�nity.)
Such a parameterization of the unbounded domain � by a bounded
one �inv = ��1(�) can be accomplished by the inversion map

�(y) = y
|y|2 , y = (�1,�2,�3) 2 �inv ⇢ R3⇤, (4a)

��1(x) = x
|x|2 , x = (x1, x2, x3) 2 � ⇢ R3⇤. (4b)

Here, R3⇤ = R3 \ {0}. The coordinate origin, i.e. the center of the
inversion, can be chosen arbitrarily. In this paper, we pick the origin
manually as far away as possible from the boundary. Through the
inversion map, we pull the values of u and f back to the inverted
domain. For clarity, we use capital letters to denote the functions
dependent on the inverted coordinate y 2 �inv. In particular,U (y) =
u(�(y)) and F (y) = f (�(y)).

The corresponding equation forU (y) on the �nite inverted domain
is given by

r ·
✓

1
|y|2rU (y)

◆
=

1
|y|6 F (y), y = (�1,�2,�3) 2 �inv. (5)

When r is applied on functions on the (�1,�2,�3) coordinates (i.e.
functions with capital letters), we parse r = ( @

@�1 ,
@
@�2 ,

@
@�3 ), which

is the vector di�erential operator under the Euclidean metric on the
inverted space. See Appendix A for the derivation of (5).

3.2 Direct Approaches on Stretched Coordinates
Now (5) appears to be a PDE problem on a bounded domain. However,
di�culties persist when directly solving (5).

• After the change of coordinates, Eq. (5) is singular as y !
0 (which corresponds to in�nity in the original domain).
Even though �inv appears to be a bounded domain, it is

Table 1. Notations

Symbol De�nition/ assumption Meaning

R3⇤ R3⇤ = R3 \ {0} Space excluding the origin.

|x | = |(x1, x2, x3) | |x | =
q
x21 + x

2
2 + x

2
3 Euclidean distance to the origin.

� : R3⇤ ! R3⇤ �(y) = y/|y|2 Inversion map.
� ⇢ R3⇤ R3 \ � is bounded. Given exterior domain.
�inv ⇢ R3⇤ �inv = ��1(�) Inverted domain.
� ⇢ R3⇤
�inv ⇢ R3⇤

� = @�
�inv = ��1(�)

Boundary surfaces of the exterior and
inverted domains.

x = (x1, x2, x3)
y = (�1, �2, �3) x = �(y) 2 � Position vectors in the exterior and in-

verted domains.
f : � ! R
F : �inv ! R F (y) = f (�(y)) Functions on the exterior and the in-

verted domains.
n : �! R3
N : �inv ! R3

|n | = |N | = 1. Unit outward normals for the respective
domains.

rf
rF

( @f
@x1

,
@f
@x2

,
@f
@x3

)
( @F
@�1

, @F
@�2

, @F
@�3

)
The gradients of functions on the respec-
tive domains.

r · (f1, f2, f3)
r · (F1, F2, F3)

@f1
@x1
+

@f2
@x2
+

@f3
@x3

@F1
@�1
+

@F2
@�2
+

@F3
@�3

The divergences of vector �elds on the
respective domains.

�f
�F

@2f
@x21

+
@2f
@x22

+
@2f
@x23

@2F
@�21

+ @2F
@�22

+ @2F
@�23

The Laplacians of functions on the re-
spective domains.

u : � ! R
U : �inv ! R U (y) = u(�(y)) The solution to the PDE problem.

� : � ! R
G : �inv ! R G(y) = �(�(y))

A given function sharing the same
asymptotics with the PDE solution near
|x | !1 (y! 0).

� : � ! R
V : �inv ! R

u(x) = �(x)�(x)
U (y) = G(y)V (y)

The to-be-solved function satisfying the
Kelvin transformed PDE.

not compacti�ed since the point representing in�nity should
still be excluded from the domain. For (5), a point-boundary
conditionU |y=0 = 0 is required.

• u(x)

U (y)

The solution to (5) loses smooth-
ness near the origin. For exam-
ple, after the inversion, the har-
monic function u(x) = 1/|x | be-
comes U (y) = |y|, which has a
cone singularity at the origin (see
insets). This may lead to a drop
in the order of convergence if the
discretization method assumes a uniformly bounded Taylor
expansion for the solution (e.g. in a �nite di�erence method).

• u(x)

U (y)

Such a coordinate stretching
works only if the expected solu-
tionU is su�ciently well-behaved
at the origin [Grosch and Orszag
1977]. For equations that yield
oscillatory solutions, such as the
Helmholtz equation governing
acoustic waves, the inversion
yields an in�nite spatial frequency
around the origin, requiring an
in�nite numerical resolution to
resolve each wavefront. The insets show a radiating wave
u(x) = 1

|x | cos(|x|) and its inversionU (y) = |y| cos( 1
|y | ).

All of these limitations will be overcome by the strategy described
in the next section.
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4 OUR APPROACH
In the previous section, we see that expressing the PDE problem on a
stretched coordinate system (or likewise deriving a �nite di�erence
or �nite element scheme on an adaptive computational grid) yields a
singular PDE near the point of in�nity. We tackle this problem here.
We proceed with a “preconditioning” step to reformulate the

equation. We decompose the solution u(x) (orU (y)) into

u(x) = �(x)�(x), or U (y) = G(y)V (y), (6)

where
(i) �(x), or its inverted counterpart G(y) = �(�(y)), is analytically

derived (or guessed) and captures the asymptotic behavior of
the solution u near in�nity; and

(ii) the remaining quotient �(x), or V (y) = �(�(y)), is to be solved
numerically.

By performing this change of variables from U to V , we e�ectively
remove the singularity of the equation at the point representing
in�nity. The resulting equation for V (y) on the inverted domain
�inv extends to a genuinely compacti�ed domain �inv [ {0}.

4.1 Poisson Equation and the Classical Kelvin Transform
In the example of a Poisson equation (5), the asymptotic behavior
of U (y) is known to be U (y) ⇠ O(|y|) as y ! 0. In other words,
u(x) ⇠ O(1/|x |) as |x| ! 1 [Finn and Gilbarg 1957; Meyers 1963].
Therefore, for Poisson equations, we let G(y) = |y| in (6):

V (y) = 1
|y|U (y). (7)

Theorem 1. Written in terms of V (y), the exterior domain Poisson
problem (2) (or (5)) with condition (3) is equivalent to a Poisson equa-
tion with a standard Laplacian on a compact interior domain

�V = r · rV = 1
|y|5 F (y), y 2 �inv [ {0}. (8)

P����. See Appendix B. ⇤

In many scenarios the right-hand side F (y) vanishes in a neigh-
borhood of the origin, i.e. f (x) has bounded support. Hence, F (y)/|y |5
is usually a regular right-hand side throughout the domain.
We remark that (8) is a standard Poisson problem on a compact

domain for which any numerical method for the interior domain
problem applies. In practice, solving the Poisson equation or Laplace
equation (f = 0) on an exterior domain only requires a wrapper
Algorithm 1 around a Poisson solver on interior domains.

Algorithm 1 Poisson equation solver on an exterior domain

Input: Poisson problem (2), (3) on an in�nite domain, given a boundary
condition.

1: V  Solve the interior problem (8) with appropriate boundary condi-
tions for V (Section 4.1.1).

2: U (y) = |y |V (y).
3: u(x) = U ( x

|x|2 ).
Output: u(x).

n(x)

�

N(y)

�inv

Fig. 3. The convention of the boundary normal vectors. Normals n to the
boundary � of the exterior domain � point towards the origin (le�). Normals
N to the boundary �inv of the inverted domain �inv point away from the
origin (right).

4.1.1 Boundary Conditions. The Poisson problem (2) must be ac-
companied by a boundary condition on the surface � = @�. The
associated boundary condition for (8) is derived from the relation (7).
Let �inv = ��1(�) denote the boundary of �inv [ {0}. A Dirichlet
boundary condition for a given data p : �! R

u(x) = p(x), x 2 �, (9)

corresponds to a Dirichlet boundary condition for V :

V (y) = 1
|y|p(�(y)), y 2 �inv. (10)

ANeumann boundary condition for a givenNeumann dataq : �! R
n(x) · ru(x) = q(x), x 2 �, (11)

corresponds to a Robin boundary condition forV (see Appendix B.1)

N(y) · rV (y) + N(y) · y
|y|2 V (y) = 1

|y|3q(�(y)), y 2 �inv. (12)

Here n is the unit normal vector of � pointing away from � (pointing
towards the origin), and N is the unit outward normal vector of �inv
(pointing away from the origin), both normalized by the Euclidean
metric in the respective domains (Figure 3). Note that Robin boundary
conditions are straightforward to implement (Appendix C).

5 RESULTS AND APPLICATIONS
In this section, we show the advantages of applying Algorithm 1
whenwe solve the Poisson and Laplace equations on in�nite domains
in practice. Afterwards, in Section 6, we apply our method to the
Helmholtz equation which admits oscillatory solutions.

5.1 E�icient Grid- and Mesh-based Solver
In Algorithm 1, all that is required is to solve a Poisson or Laplace
equation (8) in the interior domain, which can be solved by a standard
�nite di�erence or �nite element method.

5.1.1 Finite Di�erence Method. Here we demonstrate a grid-based
�nite di�erence solution. The Laplacian is discretized into a 7-stencil
central di�erence

�V (y) ⇡
3’
i=1

�2V (y) +V (y + hei ) +V (y � hei )
h2

(13)

on each grid node y within �inv [ {0}. Here, h is the grid size, and
ei is the unit coordinate vector (for the inverted domain).

ACM Trans. Graph., Vol. 40, No. 4, Article 97. Publication date: August 2021.



97:6 • Mohammad Sina Nabizadeh, Ravi Ramamoorthi, and Albert Chern

min max

U (y)

�inv

V (y)

�inv [ {0}

u(x)

�

B

B

BB

Singularity

Fig. 4. Computing a harmonic function u(x) on the exterior 3D space � of
the bunny (bo�om) on a stretched coordinate via inversion is equivalent
to solving U (y) (top-le�) on the inverted domain �inv, which exhibits
a singularity at the origin. A�er Kelvin transform the singular factor is
removed, leaving us a regular Laplace problem for V (y) on a compact
domain �inv [ {0} (top-right). Both original and exterior domain functions
are visualized on a 2D slice at the same height.
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Fig. 5. A performance comparison for the example in Figure 4, between a
plain coordinate stretching method and our Kelvin transform method, both
discretized by the finite di�erence scheme. The computation was performed
on a 2.5 GHz �ad-Core Intel Core i7 processor. In a coordinate stretching
method, one solves the infinitely sti� system (5) for U (y). In the Kelvin
transform method, one only needs to solve a regular Laplace equation (8).

For the grid points near a Dirichlet boundary, one may apply a
ghost point method [Gibou et al. 2002] while maintaining symmetry
of the system matrix. For simplicity, in many graphics applications,
one may also just rasterize �inv so that all stencils lie either in the
interior or on the boundary. This grid rounding can give rise to an

min max

�inv

V (y)

�

u(x)
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ro
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Fig. 6. An exterior domain Laplace equation solved using the Kelvin trans-
form and the finite element method. The transformed function V (y) is
solved on the tetrahedralized inverted domain (le�), from which we obtain
the solution u(x) on the original domain (middle). A comparison with the
exact solution shows the expected convergence rate under mesh refinement
for both the Dirichlet and Neumann problem with rough boundary (right).

additional O(h) error. Still, this method has a lower error compared
to truncating the in�nite domain which would cause O(1) errors.
The Robin boundary condition (12) amounts to adding an addi-

tional diagonal matrix corresponding to the entries occupied by the
boundary surface (Appendix C).

Figure 4 shows a Dirichlet boundary value problem for the Laplace
equation on the in�nite domain exterior to the Stanford Bunny.2
We solve for V (y) (top-right) which satis�es the Laplace equation
(8) (F (y) = 0), and we evaluate the solutionU (y) (top-left) and u(x)
(bottom) respectively on the inverted and original domain.

We compare our method against a more traditional approach of
transforming only the coordinates, both discretized on the same grid.
In the traditional method, one solves (5) forU (y) on �inv with a point
constraintU (0) = 0. We note that solving (5) on a grid is equivalent to
solving the original equation discretized on a curvilinear coordinate,
which stretches to in�nity on the original domain (see the visible grid
in Figure 4, bottom). On the inverted domain, we seemore clearly that
the equation (5) is in�nitely sti� near y = 0. Namely, the equation
involves a general elliptic di�erential operator r · (� (y)rU (y)) with
a highly non-uniform value of � (y) (in fact � (y)!1 around y = 0).
This causes the system matrix to be ill-conditioned and leads to
slower performance using an iterative linear solver (e.g. conjugate
gradient solver). Figure 5 (right) shows that solving (8) in our method
is much more e�cient than solving the sti� system (5). Another issue
our method overcomes is that the solution U (y) to (5) is singular
(not di�erentiable) at y = 0 (Figure 4, top-left), causing a lower order
of convergence (Figure 5, left).

5.1.2 Finite element method. The transformed Poisson or Laplace
equation (8) can also be solved with a Finite Element Method (FEM).
The inverted domain is tessellated into a tetrahedral mesh that
conforms to the boundary, and the functionV (y) is approximated by
a piecewise linear function. The Laplace operator is discretized into
a sti�ness matrix [Crane 2019]. In Figure 6, using an exact solution
u(x) = (x21�x23 )/|x|5 (i.e.V (y) = (�21��23)) to the Laplace equation as
a reference, we set up a Dirichlet problem and a Neumann problem

2In this example, u(x) = 1
|x| cosh

⇣
3
p
2x1

|x|2
⌘
cos

⇣
3x2
|x|2

⌘
cos

⇣
3x3
|x|2

⌘
is taken as the refer-

ence solution.
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(i.e. Robin problem for V ). The method converges in O(h2) for the
Dirichlet problem and in O(h) for the Neumann problem, where h is
the average edge length. Note that the Neumann problem shows a
drop in the convergence rate due to the non-smooth boundary.

5.2 E�icient Monte Carlo Method on Exterior Domains
The paradigm of using the Monte Carlo method for solving PDEs
was recently introduced to geometry processing and simulations in
computer graphics [Sawhney and Crane 2020]. The main advantage
of the Monte Carlo method over the �nite di�erence or �nite ele-
ment methods is that there is no need to discretize the domain. In
the Monte Carlo method, the solution is evaluated upon query. In
particular, if we are interested in visualizing the solution on a lower
dimensional plane, then we only need to query the solution on the
plane. That is, we compute only as much as we see. The resolution
of the visualized solution can be as high as the screen to which
we wish to render. Such a resolution is much higher than what a
discrete 3D computation grid can a�ord.

Though no discretization is involved, PDE problems on an in�nite
domain still pose di�culties for Monte Carlo methods. Our method
fundamentally removes those di�culties by replacing the in�nite
domain PDE with a compact domain PDE.

5.2.1 The Walk-on-Spheres (WoS) Process. Let us look at a speci�c
Monte Carlo method, the Walk-on-Spheres (WoS) algorithm [Muller
1956; Sawhney and Crane 2020] for solving the Laplace equation
with a Dirichlet boundary condition(

�u(x) = 0, x 2 �,
u(x) = p(x), x 2 �.

(14)

The solution u(x0) at any x0 2 � is evaluated as the expected value
ofp(x) observed by a randomwalk starting at x0 when it �rst reaches
the boundary. Concretely, given x0 2 �, consider the WoS stochastic
process � = (x0, x1, x2, . . . , xm� ) ⇢ � characterized by
(i) the step vectors x1 � x0, x2 � x1, . . . are mutually independent;
(ii) given xi , the next random point xi+1 is uniformly distributed

over the spherical surface @Bri (xi ) of the largest ball centered
at xi that is contained in �, i.e. ri = dist(xi , �);

(iii) xm� is the �rst time dist(xm� , �) < � , for a small tolerance
� > 0.

Up to the tolerance, we regard the �nal point xm� as a point on �
(e.g. via a closest point projection). Let p(� ) B p(xm� ) denote the
boundary value p evaluated at the point as the path � reaches the
boundary. Then, the solution to (14) at x0 is given by an expectation

u(x0) = E[p(� )]. (15)

In practice, (15) is numerically computed by a sample average.
Each WoS path is e�cient to sample on a bounded domain [Sawh-

ney and Crane 2020] (empiricallym� ⇡ 15). However, on an in�nite
domain, there is a nontrivial probability that the random walk
� = (x0, x1, x2, . . .) will not terminate due to Pólya’s recurrence and
transience theorem in 3D [Weisstein 2000; Novak 2014].

5.2.2 Walk-on-Spheres with Russian Roule�e (WoS-RR). For theWoS
method on an in�nite domain, Sawhney and Crane [2020] adopted a
Russian Roulette (RR) procedure [Pharr et al. 2016, Section 13.7] to

(a)WoS-RR on an infinite domain (b)WoS-KT on the original domain

x0 x0

y0

�

�inv

(c) WoS-KT on the inverted domain

Fig. 7. Paths of the Walk-on-Spheres
process on an infinite domain (a) are
likely to diverge to infinity. In con-
trast, paths from the Walk-on-Spheres
process with Kelvin transform (b) are
a�racted towards the boundary and
eventually land on the boundary. This
is because they are the inverted image
of a standard Walk-on-Spheres path
on the inverted domain (c).

eliminate paths that wander too long. In the RR procedure, one �xes
a termination probability 0 < � < 1. At every step of the random
walk, with probability �, the walk is terminated. With this additional
decay process, the path � will almost surely have a �nite number of
stepsm� . If � is terminated before reaching the boundary, one sets
the evaluation p(� ) = 0. Under this WoS-RR process, we have

u(x0) = E
h

p(� )
(1��)m�

i
(16)

which is numerically computed by a sample average.
The drawback of the WoS-RR process is that the factor 1/(1��)m�

ampli�es the variance, leading to a slower convergence. Also, the
original issue that it takes more steps for a path to reach � in an
open space persists. Every e�ective sample costs more computation
time, compared to the WoS in the interior domain.

5.2.3 Walk-on-Spheres with Kelvin Transform (WoS-KT). The chal-
lenge in WoS on an in�nite domain is resolved by the Kelvin trans-
form. Using Algorithm 1, we only need to solve a Laplace equation in
the interior domain, which is computed by the WoS process without
the need for Russian Roulette.

Explicitly, for each point of query x0 2 �, we compute the inverted
point y0 = x0/|x0 |2 2 �inv. We then evaluate V (y0) which solves(

�V (y) = 0, y 2 �inv [ {0},
V (y) = P (y)

|y | , y 2 �inv,
(17)

by the classical WoS. Note that sampling this WoS process is as
e�cient as any WoS in a bounded domain. Finally, we evaluate

u(x0) = V (y0)|y0 |. (18)

Figure 7 shows that the WoS-KT e�ectively uses a random walk
process di�erent from the standard WoS on the original domain. For
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Fig. 8. Laplace equation solved with a Monte Carlo method together with
Kelvin transform (le�). The error plot (right) shows that the error decreases in
the expected rateO (1/pT ) under an increasing number of samples measured
in the total computation time T .

the classical WoS (top-left), xi+1 is sampled on a sphere centered at
xi . In WoS-KT, once again the standard WoS process is used, but
now on the inverted domain (bottom). Mapping this WoS path to
the original exterior domain (top-right), we see that xi+1 is sampled
(non-uniformly) on a sphere no longer centered at xi . The sphere
also does not necessarily enclose xi . E�ectively, the path gravitates
towards the boundary.

5.2.4 Numerical Examples and Comparisons. In Figures 8–11, we
compare our method (WoS-KT) against the WoS-RR with various
choices of termination probability �. The computation was per-
formed on a 2.3 GHz 8-Core Intel Core i9 processor. In each example,
u(x) is interpreted as an electric potential in an electrostatic setup.
The electric potential satis�es either the Laplace equation (14) in the
absence of electric charge in the domain (Figures 8–10), or otherwise
a Poisson equation (Figure 11). Every example consistently shows
that at an equal computational time, WoS-KT achieves about an
order of magnitude lower error than WoS-RR.
In Figure 8 we validate the WoS-RR and WoS-KT algorithms

by comparing the results against an exact solution u(x) = 1/|x | �
1/|x�(2,0,0) |, the potential of two opposite point charges. The Dirichlet
boundary is set on the {u = 1} and {u = �1} isosurfaces. The
numerical solution to the Laplace equation evaluated on a plane
(Figure 8, left) converges to the exact solution for both the WoS-RR
and WoS-KT algorithms as the sample size increases (Figure 8, right).
In Figure 9, we prescribe a patterned electric potential on the

dragon model as the Dirichlet boundary condition. The potential ex-
tends into a 3D harmonic function visualized on a 2D slice computed
by both methods.

With a similar setup, Figure 10 is another example. One computa-
tional task in Biochemistry is to �nd the electric potential around
a given molecule. We take the protein molecule 1CRN from the
protein data bank (PDB).3 We �rst convert the molecule data into
the so-called electrostatic potential map (EPM), which is the elec-
tric potential value de�ned over the van der Waals surface of the
molecule. This step is computed using the conventional software
Avogadro 1.2 [Hanwell et al. 2012]. We then extend the potential
to the surrounding 3D space by solving the Laplace equation. The
solution is evaluated on a 2D slice using the Monte Carlo method.

3http://doi.org/10.2210/pdb1CRN/pdb

In Figure 11, we solve an electrostatic potential around a point
charge located at s 2 � with charge c 2 R next to a �ddler crab
assigned with a prescribed potential. In this case u satis�es a Poisson
equation with Dirac-� right-hand side:(

�u(x) = c�s(x) x 2 �
u(x) = p(x) x 2 �,

(19)

which can be solved by WoS with a slight modi�cation [Sawhney
and Crane 2020, Section 4.2.2]. Note that the Kelvin transform of (19)
is once again a Poisson equation with a point source on a bounded
domain (

�V (y) = c
|s |�s/|s|2 (y), y 2 �inv [ {0}

V (y) = P (y)
|y | , y 2 �inv,

(20)

which we solve by WoS.

5.3 Physical and Geometric Systems on Infinite Domains
Here, we demonstrate three additional examples of solving Poisson
and Laplace problems on in�nite domains using the Kelvin transfor-
mation. These proof-of-concept examples may be integrated into
larger practical applications.

5.3.1 Magnetic Fields around a Star. A standard problem in compu-
tational solar physics is to compute the magnetic �eld in the space
around the sun [Priest 2014]. The magnetic �eld lines compose the
visually outstanding �brous texture in the solar corona, and hence
such a magnetic �eld is demanded not only in astronomy but also in
scienti�c [NASA Scienti�c Visualization Studio 2018] and cinematic
[CADENS 2015; Borkiewicz et al. 2019] visualizations.
The magnetic �ux data on the solar surface is called the magne-

togram (Figure 12, left), which is available from NASA Solar Dy-
namics Observatory [2020]. Hence, the problem is more speci�cally
a boundary value problem, where one extends the magnetogram
to a magnetic �eld over the 3D domain � exterior to the sun. One
simple model for this task is the Potential Field Source Surface
(PFSS) model [Altschuler and Newkirk 1969; Priest 2014, Sec. 3.3],
where one assumes that the magnetic �eld is divergence-free and
curl-free. Under this assumption, the magnetic vector �eld is the
gradient of a potential satisfying the Laplace equation (2) (f = 0).
The magnetogram is the Neumann data for the boundary condition
(11) of this harmonic potential.

Figure 12 (right) shows the resulting magnetic �eld in the entire
exterior domain computed by our Kelvin transformation method.
The computation involves a Laplace problem with a Robin boundary
condition (12) on the interior of a sphere, solved on a 1283 grid.
Note that the PFSS �eld computed in conventional softwares

[Freeland and Bentley 2000] often relies on truncating the domain
into a �nite region. This causes a distortion in the �eld lines near the
arti�cial boundary (Figure 13, left). In contrast, the �eld generated
by our method smoothly extends to the entire � (Figure 13, right).

5.3.2 Pressure Solves for Incompressible Flows. The pressure pro-
jection is a common routine in incompressible �uid simulations
[Bridson 2015]. Taking an arbitrary vector �eld b : � ! R3 as the
input (Figure 14, top-left), this method returns a unique velocity
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Fig. 9. A Laplace equation on the solution plane given the boundary potential data on the surface of the dragon is solved using the Monte Carlo method.
First, we run the Kelvin transform experiment to achieve 2% error, which takes about 40 minutes. Next, we run Russian Roule�e experiments with di�erent
termination probabilities in equal time. By extrapolation from the error plot, to achieve equal quality results from the Russian Roule�e experiments, they must
run for about 20 to 40 hours depending on the termination probability.
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Fig. 10. The 1CRN protein molecule figure captured from protein data bank (PDB) with potential values assigned according to its electrostatic potential map
(EPM). A Laplace equation on the solution plane given the boundary EPM data on the surface of the molecule is solved using the Monte Carlo method. First, we
run the Kelvin transform experiment to achieve 1% error, which takes about 15 minutes. Next, we run Russian Roule�e experiments with di�erent termination
probabilities in equal time. By extrapolation from the error plot, to achieve equal quality results from the Russian Roule�e experiments, they must run for about
2 to 10 hours depending on the termination probability.
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Fig. 11. A fiddler crab with negative potential equal to �1 statV is in close proximity to a point charge of +10 statC. Potential values are solved on the solution
plane and visualized as level sets using alternating colors. Without the crab, the color rings would be concentric around the point source. With the crab, as seen
here, the potential level set is forced to follow the crab’s shape. First, we run the Kelvin transform experiment to achieve 2% error, which takes about two hours.
Next, we run Russian Roule�e experiments with di�erent termination probabilities in equal time. For the Russian Roule�e experiments, we encounter many
samples where the denominators of (16) are too close to zero. Rejecting these samples can lead to biased results. This problem is not present in our method.
(Model courtesy Oliver Laric.)
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Magnetic �ux (G)

Fig. 12. Given the magnetic flux data over the surface of the Sun (le�), a
magnetic field is found in the unbounded exterior domain (right), computed
using a Kelvin transformation. We adopt the Potential Field Source Surface
(PFSS) model, where the magnetic field is the gradient of a harmonic
potential.

Fig. 13. A comparison between a domain truncation (le�) and our Kelvin
transform (right) approach to solve the PFSS magnetic extrapolation problem
(cf. Figure 12). A direct numerical method o�en requires truncating the
infinite domain into a bounded domain (le�), which distorts the field lines
into the normal direction of an artificial boundary. In contrast, using the
Kelvin transform technique, we obtain themagnetic field smoothly extending
in the infinite space without border (right).

vector �eld a : � ! R3 (Figure 14, bottom-left) of the form4

a(x) = b(x) � ru(x), u : � ! R, (21)

that satis�es the incompressibility conditions(
r · a(x) = 0, x 2 �
a(x) · n(x) = 0, x 2 � = @�.

(22)

This amounts to solving the Poisson equation
8>>><
>>>:

�u(x) = r · b(x), x 2 �
n(x) · ru(x) = n(x) · b(x), x 2 �
u(x)! 0 |x| !1.

(23)

Note that the domain � we consider in (23) is an in�nite domain,
which we solve using the Kelvin transform (Figure 2).

Figure 14 shows a pipeline for pressure projection performed on
the inverted domain. Let B(y) = d��1(b(x)) and A(y) = d��1(a(x))
(top-middle and bottom-middle) respectively be the input and output
vector �elds represented on �inv via the pushforward d��1. Call the

4We do not use a more conventional notation where velocities are denoted by u or v in
order to keep these letters for the variables subject to the Poisson equation.

a(x): vector �eld after pressure projection

b(x): vector �eld before pressure projection

A(y)

B(y) V (y)

y=��1(x)
B=d��1(b)

x=�(y)
a=d�(A)

inverted
domain

Fig. 14. Pressure projection on an infinite domain. Given an arbitrary vector
field b(x) around an obstacle such as the turtle (top-le�), the process produces
a vector field a(x) with the enforced divergence free constraint and no-
through boundary condition (bo�om-le�). First, we invert the domain as
well as the vector field (top-middle). The inset shows that the inverted
vector field B does not satisfy the no-through boundary condition. Next,
according to the Kevin transform, we solve the Poisson equation (25) in
the bounded inverted domain (top-right). Taking the solution V (y) and
using the formula (28), we assemble the vector field A(y) (bo�om-middle),
which is now tangent to the boundary (bo�om inset). Finally, by another
inversion the vector field a(x) is brought back to the original exterior domain
(bo�om-le�).

Poisson equation right-hand side f (x) = r · b(x), whose inverted
counterpart F (y) = f (�(y)) is given by (Appendix A.2)

F (y) = |y|6r ·
✓

1
|y|6 B(y)

◆
. (24)

Denote the Neumann data by q(x) = n(x) · b(x), Q(y) = q(�(y)).
Now, applying Algorithm 1 with (12), we solve the Poisson equation
with a Robin boundary condition for V (y) (Figure 14, top-right)

8>><
>>:
�V (y) = 1

|y |5 F (y), y 2 �inv [ {0}
N(y) · rV (y) + N(y)·y

|y |2 V (�) = Q (y)
|y |3 , y 2 �inv.

(25)

The solution is expected to be smooth across �inv [ {0} and it can
be approximated using a �nite di�erence method on a moderately
coarse grid. Finally, the pressure-projected velocity �eld is found by

A(y) = B(y) � |y|4rU (y). (26)

See Appendix A.1 for the gradient represented in the inverted
coordinates. However, numerically computing rU (y) on a discrete
grid is not ideal since U (y) is not smooth at y = 0. Alternatively,
one may express rU in terms of rV :

rU (y) = r (|y|V (y))

=
y
|y|V (y) + |y|rV (y), (27)

which turns (26) into

A(y) = B(y) �V (y)|y|3y + |y|5rV (y). (28)

Finally, we obtain a(x) (Figure 14, bottom-left) by a = d�(A).
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Fig. 15. Cross field visualized on the exterior of the le�ers using Monte
Carlo together with Kelvin transform. Blue and red points represent negative
and positive singularities, respectively.

Algorithm 2 Pressure solve on an in�nite domain �

Input: A vector �eld b on �, represented by B = d��1(b) on �inv.
1: De�ne F (y) and Q (y) by (24).
2: Solve the Robin boundary value problem (25) for V on �inv.
3: Compute A by (28).

Output: The divergence-free vector �eld a = d�(A) on �.

5.3.3 Direction Field Designs. Designing a smooth direction �eld
on a general domain has led to many applications in geometry
processing including quadrilateral meshing [Vaxman et al. 2016;
Viertel and Osting 2019], hexagonal meshing [Solomon et al. 2017]
and graphics vectorization [Bessmeltsev and Solomon 2019], just to
name a few. In Figure 15, we demonstrate a smooth cross �eld on an
in�nite domain � in the plane exterior to some letters. The cross
�eld is constrained to be tangent and normal to the boundary, and is
otherwise as smooth as possible. This process gives rise to emergent
singularities of the cross �eld, which sit at geometrically interesting
locations that sparsely summarize the concavity and convexity of
the nearby boundary.
Obtaining Figure 15 amounts to solving a Laplace equation. A

cross consists of four orthogonal directions� , i� ,�� ,�i� where
� = e

i� 2 C describes a direction in terms of its complex phase.
This quadruple of directions is uniquely described by a single com-
plex number u = �

4. Under this representation, a cross �eld is a
complex-valued function u : � ! C. To �nd a smooth cross �eld
that conforms to the boundary, we solve the Laplace equation with a
Dirichlet boundary condition foru. The in�nite domain is handled by
the Kelvin transformation. The Kelvin transformed Laplace equation
is numerically solved using the Monte Carlo method.
Note that the Kelvin transform we have discussed so far (Theo-

rem 1) applies to the 3D Poisson and Laplace equations. However, the
domain in Figure 15 is two dimensional, which takes a di�erent sub-
stitution rule from (7). In fact, in 2D, we have a simpler Kelvin trans-
form: �u(x) = 0 if and only if �U (y) = 0, where U (y) = u(y/|y |2).
This is known as the conformal invariance of the Laplace operator
on 2D. In Figure 15, we solve for a harmonic complex-valued func-
tionU (y) on the bounded domain �inv [ {0}, and, after inversion,
visualize the cross �eld on the original in�nite domain.

-0.5

0

0.5

u(x)

V (y) G(y) U (y)

⇥ =

Fig. 16. The Helmholtz equation solved on an infinite domain using our
method. The top-row shows the inverted domain. For this problem, once the
domain is inverted, the solution U (y) exhibits an infinite oscillation at the
origin. We factor out a known oscillatory portion G(y), and focus on solving
for the quotient V (y) governed by (35) (top-le�). Next, we evaluate U (y)
(top-right) by multiplying G(y) (top-middle) and V (y) (top-le�) together.
Finally, by inverting the domain back to the exterior, the solution to the
Helmholtz equation is found over the entire infinite domain (bo�om).

Algorithm 3 Direction �eld extrapolation on unbounded domain

Input: Normal vectors evaluated on the boundary as � = e i� .
1: Construct u = � 4.
2: Solve the interior problem �U (y) = 0 where U (y) = u(y/|y|2).

Output: u(x) = U ( x
|x|2 ).

6 HELMHOLTZ EQUATION ON EXTERIOR DOMAINS
So far, we have been solving the Poisson or the Laplace equation. In
this section, we consider an equation whose solution is oscillatory
all the way to in�nity as a challenging case for a coordinate mapping
approach. Take the Helmholtz equation

�u(x) + �2
u(x) = 0, x 2 � (29)

on the exterior domain �. This equation is the fundamental equation
in the physically-based acoustic simulation in computer graphics
[James 2016]. The equation governs the acoustic vibration mode in
an environment � at a constant frequency � 2 R>0. The function
u : � ! C encodes the amplitude and phase in its complex values.
A Dirichlet boundary condition

u(x) = p(x), x 2 � = @� (30)

describes wave sources with amplitudes and phases, as well as
obstacles for which p = 0. For the exterior domain problem, it is also
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necessary to impose the Sommerfeld radiating condition at in�nity:

x
|x| · ru(x) � i�u(x) = o

✓
1
|x|

◆
as |x| !1. (31)

The Sommerfeld radiating condition describes the asymptotic be-
havior of the solution as an outward traveling circular wave. This
condition eliminates background plane waves or inward traveling
circular waves, establishing the uniqueness of the PDE problem.

To capture the oscillatory behavior of u(x) near in�nity, we take

�(x) = 1
|x| e

i� |x |, G(y) = |y|e i �|y| , (32)

for our preconditioning strategy (6). In fact, (32) is the radially
symmetric solution to (29) that satis�es (31). This gives a generalized
Kelvin transform adaptive to the Helmholtz equation:

�(x) = |x|e�i� |x |
u(x), x 2 � (33)

or on the inverted domain,

V (y) = 1
|y| e
�i� 1

|y|U (y), y 2 �inv. (34)

Theorem 2. Under the change of variable (34), u : � ! C sats�es
the Helmholtz equation (29) with boundary conditions (30) and (31) if
and only if V : �inv [ {0}! C satis�es

�V (y) � 2i�
y
|y|3 · rV (y) = 0, y 2 �inv [ {0}. (35)

with boundary condition

V (y) = 1
|y| e
�i� 1

|y| P(y), y 2 �inv, (36)

where P(y) = p(y/|y |2).

P����. See Appendix D for the derivation. ⇤

Algorithm 4 Helmholtz equation solver on an exterior domain

Input: Helmholtz problem (29), (31) on an in�nite domain, given boundary
condition.

1: V  Solve the interior problem (35) with appropriate boundary condi-
tions (36).

2: U (y) = G(x)V (y), where G(x) is given by (32).
3: u(x) = U ( x

|x|2 ).
Output: u(x).

One thing to note is that the second term in (35) is a directional
derivative in a radial vector with an unbounded magnitude near the
origin. This is consistent with what we expect for the Helmholtz
equation. To see this, let us ignore for a moment the Sommerfeld
radiating condition. Then, the equation admits many oscillating
solutions, such as the plane waves, that do not radiate outward.
After transforming those waves to V (y) via (34), we obtain in�nite
oscillation frequency at the origin. The unboundedness of the second
coe�cient in (35) balances with the higher order derivative from the
�rst term. Among all possible solutions, the Sommerfeld-condition-
satisfying solution is the only one that is not in�nitely oscillatory at
the origin. Therefore, by including the origin as part of the domain in
(35) we have e�ectively imposed the Sommerfeld radiating condition.

Figure 1 (right) shows a solution u(x) to the Helmholtz equation
on the exterior of the Stanford Bunny. The boundary condition is
set as u(x) = �1, x 2 �. We visualize only the imaginary part of the
solution on a 2D slice as a height �eld. We use the �nite di�erence
method to discretize (35) on a 1283 grid, whose result is shown on
Figure 16 (top-left). By multiplying G(y) given by (32) (top-middle)
and our numerical solution V (y), we obtain the solution U (y) on
the inverted domain (top-right). Finally, we visualize the solution
u(x) = U (x/|x |2) on the original in�nite domain (bottom).

Note that, on the original do-
main, even though the compu-
tation grid is e�ectively much
coarser further away from the
Stanford Bunny, the high frequen-
cies in the solution u(x) persist
nevertheless. See the inset where the grid is shown. This is possible
since the subgrid frequencies are carried by �(x) = G(y).

7 CONCLUSION
We introduce themethod of Kelvin transformationwhich turns a PDE
problem on an in�nite domain to another PDE problem on a bounded
domain. Speci�cally, the Kelvin transformation turns every Poisson
problem on an exterior domain to another Poisson problem on an
interior domain. In other words, using the Kelvin transform, every
compact domain Poisson solver is readily an in�nite domain Poisson
solver. The integration of the Kelvin transformation with a grid-
based scheme and a Monte Carlo method are demonstrated. They are
shown to perform much more e�ciently than the previous attempts
without incorporating the Kelvin transform. The transformation
technique also applies beyond the Poisson problems.We demonstrate
solving the Helmholtz equation on an in�nite domain on a grid using
the generalized Kelvin transformation. This has previously been
regarded intractable without the aid of arti�cial wave-absorbing
boundary conditions. These equations are very common in computer
graphics and scienti�c computing.

Though the Kelvin transform technique is general, we have only
demonstrated it for the aforementioned equations. The change of
variable requires analyzing the asymptotic behavior at the singularity
for the inverted solution, which is usually di�erent for di�erent
problems. We do not have a general theory that guarantees the well-
posedness of the equation after the suitable Kelvin transformation.
These are interesting mathematical questions to study.

Our Kelvin transform method relies on factoring out a scalar
function G(y) which captures the behavior of the solution near the
origin of the inverted domain. It is therefore not obvious how to
generalize the Kelvin transform to PDEs of vector-valued functions
or tensor valued-functions such as in continuum mechanics. The
possible extensions to the theory are yet to be explored.

Nevertheless, the Kelvin transformation in the demonstrated cases
shows a wide range of applications. In many cases, there is no longer
a clear distinction between boundedness and unboundedness of
the problem. These notions have permeated the way we phrase a
PDE problem in numerical simulations as well as in their analysis.
We expect many new and exciting discoveries along the line of the
Kelvin transformations in the future.
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A VECTOR CALCULUS UNDER THE INVERSION
This appendix provides the derivation details for Section 3. Speci�-
cally, we give the change of coordinate formulas for the di�erential
operators under the inversion map

� : �inv ⇢ R3 ! � ⇢ R3, �(y) = y
|y |2 , ��1(x) = x

|x |2 . (37)

Its deformation gradient d� : Ty�inv � R3 ! Tx� � R3 is derived
by taking a variation of (37):5

d�( €y) = €y
|y |2 � 2

hy, €yi
|y |4 y = 1

|y |2
⇣
I � 2 yy

|

|y |2
⌘
€y, €y 2 Ty�inv. (38)

Note that d� is a scaled re�ection. In particular � is a conformal map.
That is, the deformation gradient d� scales all vectors €y, ẙ 2 Ty�inv
based at y isotropically

|d�( €y)| = � (y)| €y|, hd�( €y),d�(ẙ)i = � (y)2h€y, ẙi (39)

with the scaling factor � : �inv ! R>0 given by

� (y) = 1
|y |2 . (40)

With the conformality property, �inv can be thought of as a Rie-
mannian manifold equipped with another metric h·, ·i� induced by
�, which is a conformally changed metric from the Euclidean one:

h€y, ẙi� = � (y)2h€y, ẙi, €y, ẙ 2 Ty�inv. (41)

Writing the exterior domain PDEs in the �inv coordinate amounts
to expressing the di�erential operators, such as the gradient and
divergence, with respect to the induced metric h·, ·i� .

A.1 Gradient
The gradient grad� U of a functionU : �inv ! R is de�ned to agree
with the directional derivative hgrad� U , €yi� = dU ( €y) = hrU , €yi
for all vectors €y. Here r applied onU is the gradient with respect to
the Euclidean metric h·, ·i (see Table 1). Therefore,

(grad� U ) (y) = 1
� (y)2rU (y) = |y|4rU (y). (42)

Note that the pushforward of the gradient grad� U in the � -metric
agrees with the Euclidean gradient on the exterior domain:

(d� (grad� U )) (x) = ru(x), u(x) = U (��1(x)). (43)

5We use the variation €y as the notation for a general tangent vector based at y. We will
also use the symbol ẙ if a second tangent vector is involved.

A.1.1 Slope. The slope of a function U (y) along a certain direction
N 2 Ty�inv is the direction derivative hN� , grad� U i� along the
normalized vector N� = N/|N |� . If N is a Euclidean unit vector
|N| = 1, we have N� = �

�1N. By (41) and (42), the slope is given by

hN� , grad� U i� (y) = 1
� (y) hN,rU (y)i = |y|2hN,rU (y)i. (44)

Note that this slope measured in the � -metric agrees with the
Euclidean slope on the exterior domain

hN� , grad� U i� (y) = hn,rui(�(y)) (45)

where n = d�(N� ), which satis�es |n| = 1.

A.2 Divergence
The divergence div� W of a vector �eld W is de�ned to satisfy the
divergence theorem±

D (div� W) dµ� =
∞
@D hW,N

� i� dS
� (46)

for any volumetric regionD ⇢ �inv. Here dµ� = �
3
dµ is the volume

element, dS� = �
2
dS is the area element, and N� = �

�1N is the
normalized normal vector in the � -metric. Comparing (46), that is±

D (div
� W)� 3

dµ =
∞
@D �

2hW,��1Ni� 2
dS , with the Euclidean

divergence theorem
±

D (r ·W)dµ =
∞
@D hW,NidS , one arrives at

(div� W) (y) = 1
� (y)3r ·

�
� (y)3W(y)

�
= |y|6r ·

⇣
1
|y |6W(y)

⌘
. (47)

This divergence in the � -metric agrees with the Euclidean divergence
of the exterior domain:

(div� W) (y) = (r · d�(W)) (�(y)). (48)

A.3 Laplacian
Combining (42) and (47), the Laplacian ��U = div� (grad� U ) of a
functionU is given by

(��U )(y) = 1
� (y)3r · (� (y)rU (y)) = |y|6r ·

⇣
1
|y |2rU (y)

⌘
. (49)

By (43) and (48), this Laplacian ��U in the � -metric agrees with
the Euclidean Laplacian on the exterior domain:

(��U )(y) = (�u)(�(y)), u(x) = U (��1(y)). (50)

In particular, a Poisson equation on the exterior domain

(�u)(x) = f (x) (51)

translates into

(��U )(y) = F (y) (52)

forU (y) = u(�(y)) and F (y) = f (�(y)), and therefore

|y|6r ·
⇣

1
|y |2rU (y)

⌘
= F (y). (53)

B KELVIN TRANSFORM FOR THE POISSON EQUATION
This appendix is the proof for Theorem 1. Suppose the function
U (y) satis�es the exterior domain Poisson equation written in the
inverted domain �inv (Appendix A.3)

r ·
⇣

1
|y |2rU (y)

⌘
= 1

|y |6 F (y). (54)
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We derive the equation for V (y) under the classical Kelvin transfor-
mation (cf. (7))

U (y) = |y|V (y). (55)

With the substitution (55), the left-hand side of (54) becomes

r ·
⇣

1
|y |2r (|y|V )

⌘
= r ·

⇣
1
|y |2

⇣
y
|y |V + |y|rV

⌘⌘

= r ·
⇣

y
|y |3V +

1
|y |rV

⌘

(r · (y/|y |3) = 0 on �inv) =
y
|y|3 · rV � y

|y |3 · rV + 1
|y |r · rV

= 1
|y |�V , y 2 �inv (56)

Therefore, (54) is equivalent to

�V (y) = 1
|y |5 F (y), y 2 �inv. (57)

Note that the domain �inv is still a punctured domain that does not
contain the origin. This punctured domain can support singular
solutions such as those exhibiting V (y) ⇠ O(1/|y |) around the origin,
undoing the change of variables (55). By extending the domain to
�inv [ {0} we purposefully select solutions to (57) that are regular
across the origin. This is e�ectively imposing the condition (3).

Technically, we can extend the domain to �inv [ {0} by viewing
(57) in the weak sense and including the measure zero set {0}. This
is possible with an assumption of the decay rate of F around 0 on
the right-hand side. For example, |y|�5F (y) 2 L

2(�inv). In most
scenarios F is identically zero in a neighborhood of the origin.

B.1 Transformation of Neumann Boundary Conditions
Here we derive the boundary condition for V if the original Poisson
problem is imposed with a Neumann boundary condition (Sec-
tion 4.1.1). Let � = @� be the boundary on the exterior domain
with unit normal n. Let N = d��1(n)/|d��1(n) | be the unit normal
of the inverted boundary �inv = ��1(�). Here the conformality
of � ensures the orthogonality of N to �inv. By Appendix A.1.1, a
Neumann boundary condition n(x) · ru(x) = q(x), x 2 �, becomes

|y|2N(y) · rU (y) = q(�(y)), y 2 �inv. (58)

The substitution (55) yields

|y|2N · rU = |y|2N · r (|y|V ) = |y|2N · y
|y |V + |y|3N · rV

= N · y|y|V + |y|3N · rV . (59)

Hence (58) is equivalent to a Robin boundary condition for V :

N · rV + N·y
|y |2V =

1
|y |3q(�(y)), y 2 �inv. (60)

C ROBIN BOUNDARY CONDITION
In this appendix we describe how to impose a Robin boundary
condition for the Poisson equation (Section 5.1). Notice that the
Poisson equation with a Robin boundary condition(

�u(x) = f (x), x 2 �
n · ru(x) + a(x)u(x) = q(x), x 2 �

(61)

is the Euler–Lagrange equation for the critical point of the functionalØ
�

1
2 |ru |2 dV +

Ø
�

1
2au

2
dA +

Ø
� u f dV �

Ø
� qu dA. (62)

Let u denote an array representing a discretization of u. Then, the
corresponding discretization of the �rst two quadratic forms of
(62) are respectively 1

2u
|Lu and 1

2u
|Du, where L is the discrete

Laplacian (positive semi-de�nite), and D is essentially a diagonal
matrix with nonzero entries corresponding to the location on �
such that u|Du ⇡

Ø
� au

2
dA. Therefore, given an existing discrete

Laplacian L, one constructs eL = L + D,ef = f � q, and solves the
linear systemeLu = �ef .
D KELVIN TRANSFORM FOR THE HELMHOLTZ

EQUATION
This appendix is the proof for Theorem 2. Suppose u(x) satis�es the
exterior domain Helmholtz equation

�u(x) + �2
u(x) = 0, x 2 �, (63)

which translates into (Appendix A.3)

r ·
⇣

1
|y |2rU (y)

⌘
+ 1

|y |6�
2
U (y) = 0, y 2 �inv. (64)

In the following, we derive the equation satis�ed by the new variable
(34)

V (y) = 1
|y | e
� i�

|y| U (y), y 2 �inv. (65)

by substitutingU (y) = e

i�
|y| |y|V (y) in (64). We �rst calculate rU :

rU (y) = r
⇣
|y|e

i�
|y| V (y)

⌘

=
y
|y | e

i�
|y| V (y) � |y| i�y

|y |3 e
i�y
|y| V (y) + |y|e

i�
|y| rV (y)

= e

i�
|y|

h⇣
1 � i�

|y |
⌘

y
|y |V (y) + |y|rV (y)

i
. (66)

Hence, the expression 1
|y |2rU (y) in (64) becomes

rU (y)
|y |2 = e

i�
|y|

h⇣
1
|y |2 �

i�
|y |3

⌘
y
|y |V (y) + rV (y)

|y |
i
. (67)

Now, we compute the �rst term in (64)

r ·
⇣ rU (y)

|y |2
⌘
= �e

i�
|y| i�y

|y |3 ·
h⇣

1
|y |2 �

i�
|y |3

⌘
y
|y |V (y) + rV (y)

|y |
i

+ e
i�
|y|

⇣
� 2

|y |3 +
3i�
|y |4

⌘
V (y)

+
⇣

1
|y |2 �

i�
|y |3

⌘ ⇣
2
|y |V (y) + y

|y | · rV (y)
⌘

� y
|y |3 · rV (y) + �V (y)

|y |

�
. (68)

Here, we have used r · y
|y | =

2
|y | . Expanding (68) we arrive at

r ·
⇣ rU (y)

|y |2
⌘
= e

i�
|y|

⇣
� �2

|y |5V (y) � 2i�y
|y |4 · rV (y) + �V (y)

|y |
⌘
. (69)

Combining it with the second term in (64)
�2

|y |6U (y) = �2

|y |5 e
i�
|y| V (y), (70)

and removing the factor 1
|y | e

i�
|y| on every term, we obtain that Eq. (64)

is equivalent to

�V (y) � 2i� y
|y |3 · rV (y) = 0. (71)
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