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Motivation

 Goal: compute the sensitivity of objective function
o Terminal cost
o Running cost
subject to ODE (or DAE)
w.r.t. perturbation
o Purpose: given an initial state                 , want to know ascent directions

 Examples:
o Optimization and design
o Optimal control
o Neural networks

 Investigate geometric structure to utilize geometric integration to numerically 
integrate such problems in a structure-preserving manner
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Sensitivity Analysis for ODEs

 Terminal cost
 ODE                                  

o How does the cost change as we perturb by
 The direct method:  

o The variational equation

o The sensitivity is implicitly given by the change
induced by  

o Drawback: requires            integrations of the variational equations   
( is the dimension of the system)

 Prohibitively expensive when      is large
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Adjoint Sensitivity Analysis for ODEs

 The adjoint equation associated to the ODE 

 Given curves satisfying the variational and adjoint equations,

o Gives adjoint conservation law
 Set                                    , the sensitivity is 

o Requires only           backwards integrations or “backpropagations”
o Drawback: requires               integrations

(       is number of cost functions)
o Adjoint method advantageous when
o For example, in PDE-constrained optimization, the ODE arises as a semi-

discretization of a PDE and the number of cost functions is fixed, while      
increases as the semi-discretization is refined
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Adjoint Sensitivity Analysis for ODEs …

 Another example: backpropagation for training a neural network
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 Neural ODEs: Can view the 
sequence of layers of a neural 
network as a discretization of 
an ODE [6]

 The sensitivity of the cost 
with respect to the weights of 
the neural network obey a 
discretization of the adjoint 
equation



The Geometry of Adjoint ODE Systems

 The adjoint system                                  is a Hamiltonian system

 ODE                 specified by a vector field     over a manifold
 Define a Hamiltonian and use canonical symplectic form

o The adjoint system is given by Hamilton’s equations

o In coordinates,

o The adjoint system covers the original ODE
o Equivalently, the vector field     is a lift of the vector field    , the “cotangent lift”   

 In [1], we show that the adjoint conservation law arises from symplecticity of the 
Hamiltonian flow of the above system. This shows that symplectic integrators are 
suitable for adjoint sensitivity analysis.
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Variational Characterization of Adjoint ODE Systems

 In [1], we develop an intrinsic Type II variational principle for adjoint systems
 Action

 Goal: derive the adjoint system from a variational principle               
 Type I boundary conditions:  

o Do not make sense for adjoint systems, because they cover an ODE
 Type II boundary conditions:    

o For general Hamiltonian systems, Type II boundary conditions do not make 
intrinsic sense (cannot specify a covector without specifying the basepoint)

o However, it does make sense if the Hamiltonian systems covers an ODE, since 
we know to specify      at 

o Locally, every Hamiltonian system on a cotangent bundle which covers an ODE 
on the base manifold is an adjoint system 8



Variational Characterization of Adjoint ODE Systems …

 Type II variational characterization tells us:
o The boundary conditions used for adjoint 

sensitivity analysis make intrinsic sense

o Gives an intrinsic theoretical justification for 
the backpropagation used in adjoint sensitivity 
analysis. Particularly for optimization on
o Nonlinear spaces
o Infinite-dimensional spaces, e.g.,

o Can construct structure-preserving integrators 
for these systems using variational integrators
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Differential-Algebraic Equations

 Goal: compute sensitivities of cost functions for systems governed by DAEs
 Generalize adjoint systems to DAEs

 Dynamic and algebraic variables
 Let                                   be the pullback bundle of                        by 

and similarly for the cotangent bundle 
 Let                            be a vector bundle and       its dual
 A DAE is specified by sections
 Define the adjoint system as a presymplectic Hamiltonian system on   
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The Geometry of Adjoint DAE Systems

 Let       be the canonical symplectic form on             . Pull back this form by the 
sequence of maps                                                         to obtain a presymplectic form 

 Define the Hamiltonian

 The adjoint DAE system is the presymplectic Hamiltonian system
 In coordinates, 
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Index Reduction and the Presymplectic Constraint Algorithm

 Unlike the symplectic case, solutions are not everywhere defined
o Defined on a submanifold of

 Basic idea: constraints require that the vector field      lies on a constraint submanifold 
of     . In order for solutions, i.e., integral curves of     , to stay on the submanifold,     
must be tangent to the submanifold where it is defined. The process of obtaining this 
final constraint submanifold to which     is tangent is known as the presymplectic 
constraint algorithm 

 Related idea: for the base DAE, the index is the number of differentiations of the 
constraints needed to obtain an ODE
o For example, index 1:

o ODE in           if                   is invertible wherever
o Alternatively, by the implicit function theorem, 

 Question: can we relate the presymplectic constraint algorithm of the adjoint DAE 
system to the index of the base DAE? 12



Index Reduction and the Presymplectic Constraint Algorithm …

 Question: can we relate the presymplectic constraint algorithm of the adjoint DAE 
system to the index of the base DAE?

 In [1], we show that the presymplectic constraint algorithm for the adjoint DAE 
system terminates after the number of steps given by the index of the base DAE

 Furthermore, we show that index reduction and forming the adjoint system commute
o Reduce DAE; form adjoint ODE system
o Form adjoint DAE system; reduce through presymplectic constraint algorithm

 Can derive results for the adjoint DAE system using the reduced adjoint ODE system; 
e.g., the adjoint conservation law

o This conservation law can also be interpreted as presymplecticity
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Discretization of Adjoint DAE Systems
 We extend the Galerkin Hamiltonian variational integrator construction of Leok and 

Zhang [2] to the setting of presymplectic Hamiltonian systems
 The basic ingredients

o Finite-dimensional function space approximating curves on 
o Quadrature rule
o Enforce discrete Type II variational principle

 Using a function space which interpolates the quadrature nodes results in a 
constrained partitioned Runge–Kutta method
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Discretization of Adjoint DAE Systems …

 Integrator is presymplectic,
 Integrator is “natural”:  discretization, reduction, and forming the adjoint commute 
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Discretization of Adjoint DAE Systems …

 As a consequence of this naturality, we prove a variational error analysis result:

 Proof sketch: 
o Use naturality to relate the discretized adjoint DAE system to the discretized and 

reduced adjoint ODE system
o Subsequently, apply the variational error analysis result in the ODE case (Schmitt 

and Leok [3])
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Numerical Example

 As the adjoint conservation law arises from presymplecticity, perform a simple 
example to numerically illustrate that the aforementioned integrator is presymplectic 
(and hence, suitable for adjoint sensitivity analysis)

 As an academic example, we consider the planar pendulum, as an index 1 DAE: 
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Numerical Example …

 In terms of the notation we used for adjoint DAE systems: 
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Numerical Example …

 The corresponding adjoint DAE system is
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Numerical Example …

 Applying a presymplectic Galerkin Hamiltonian variational integrator (with one 
internal stage) to this system yields a first-order method (with                            ) 
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Numerical Example …

 For our numerical experiment, we apply the integrator to a collection of nearby initial 
positions                             and a collection of nearby final momenta  

 Preservation of the presymplectic form                                                   
o Area occupied by the collection of points                    is the same as the area 

occupied by the collection of points                    
o Area occupied by the collection of points                           is the same as the area 

occupied by the collection of points
 We compare the presymplectic method to the first-order method corresponding to 

using backward Euler in both position and momenta variables
 We take a large timestep               (roughly one-third of the period of the pendulum) to 

accentuate the difference between the two methods                   
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Numerical Example …
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Numerical Example …
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 Comparing the two methods for the Type II map
o The method using BE in both dynamical variables is implicit in position

and explicit in momenta
o The PGHVI method is implicit in position and implicit in momenta but 

linear in momenta (even when the DAE is nonlinear)
o Both methods need to numerically solve the generally nonlinear constraint 

and adjoint constraint equations for the same number of algebraic variable 
internal stages

 The added cost for presymplecticity is solving a linear system in the momenta 
variable, even when the DAE is nonlinear. For high-dimensional problems, 
this of course can be significant; however, for example, in training a neural 
network, viewed as a discrete neural ODE, a bottleneck in training time is 
computing accurate gradients via backpropagation. Without 
(pre)symplecticity, have to use higher-order methods for accuracy.



Future Directions: Adjoint Systems for Evolution PDEs
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 Example problem: PDE-constrained optimization

o Adjoint system arises as an extremization condition
 Questions:

o Characterize geometry of adjoint systems for evolution PDEs?
 e.g., infinite-dim. symplectic geometry, multisymplectic geometry

o What can this geometry tell us about constructing geometric numerical 
methods for such problems?
 Such problems require both temporal and spatial discretization
 Natural choices for spatial semi-discretization?
 Natural choice for temporal discretization?



Future Directions: Adjoint Systems for Evolution PDEs…
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 Approach: extend theory to evolution PDE viewed as infinite-dim. ODE
 Abstract semilinear evolution equation: 

 Define Hamiltonian and symplectic form on

 Adjoint system: 



Future Directions: Adjoint Systems for Evolution PDEs…
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 Discretization:
o Projection

o Semi-discrete symplectic form
o Form associated semi-discrete adjoint ODE system
o Integrate ODE system in time

 Many questions arise, e.g.,
o Convergence? solution curves, symplectic form
o Mild/weak solutions? Solutions with jumps (DG methods)?
o Naturality: discretize then optimize versus optimize then discretize?
o Constraints (PDAEs): infinite-dimensional presymplectic geometry?
o Applications? e.g., optimization, neural PDEs



Some References

[1] BT and M. Leok. Geometric Methods for Adjoint Systems. Journal of Nonlinear Science, submitted, 2022.

[2] M. Leok and J. Zhang. Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4):1497-1532, 
2011. 

[3] J. Schmitt and M. Leok. Properties of Hamiltonian variational integrators. IMA Journal of Numerical Analysis, 
36(2), 2017.

[4] J. M. Sanz-Serna. Symplectic Runge–Kutta schemes for adjoint equations, automatic differentiation, optimal 
control, and more. 58(1):3-33, 2016.

[5] BT and M. Leok. Multisymplectic Hamiltonian variational integrators. International Journal of Computer 
Mathematics (Special Issue on Geometric Numerical Integration, Twenty-Five Years Later), 99(1):113-157, 2022.

[6] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Ordinary Differential Equations.
Advances in Neural Information Processing Systems, 31, 2018.

27


