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Motivation

» (Goal: compute the sensitivity of objective function

o Terminal cost C(q(ty))

o Running cost f(ff L(q(t))dt

subject to ODE (or DAE) F(t,q(t),¢(t)) = 0,¢*(0) = ¢}

w.r.t. perturbation §g*(0)

o Purpose: given an initial state ¢’(0) = ¢, want to know ascent directions

= Examples:
o Optimization and design

o Optimal control

o Neural networks
» [nvestigate geometric structure to utilize geometric integration to numerically

integrate such problems in a structure-preserving manner




Sensitivity Analysis for ODEs

= Terminal cost C'(g(t¢))
= ODE ¢ = f(q),4(0) = qo

o How does the cost change as we perturb by §q
* The direct method:

o The variational equation

d

—0q(t) = Df(a(1))dq(t),  34(0) = dqo

o The sensitivity 1s implicitly given by the change
(VqCl(a(ty)),0q(ty)) induced by dqo
o Drawback: requires O(V) integrations of the variational equations
(V 1s the dimension of the system)
» Prohibitively expensive when [V is large




Adjoint Sensitivity Analysis for ODEs

* The adjoint equation associated to the ODE

p=—IDf(g)]"p

= (Given curves satisfying the variational and adjoint equations,

@)

d

—(p:9) = =([Df(9)]"p,0q) + (p, Df(g)d9) = 0

Gives adjoint conservation law (p(0),q(0)) = (p(ts),dq(ts))

= Set p(ty) = V4C(q(ty)), the sensitivity is (p(0), 5q(0))

©)
©)

Requires only O(1) backwards integrations or “backpropagations”
Drawback: requires O(N¢) integrations

(N¢ 1s number of cost functions)
Adjoint method advantageous when N >> Ng
For example, in PDE-constrained optimization, the ODE arises as a semi-
discretization of a PDE and the number of cost functions 1s fixed, while NV
increases as the semi-discretization is refined



Adjoint Sensitivity Analysis for ODE:s ...

= Another example: backpropagation for training a neural network

Input Hidden Layer Hidden Layer Output .

Layer Neuron Value Activation Value Layer =  Neural ODEs: Can view the
> - > > o -
X z =Wl a; = f(z)) y=x+ W2 sequence of layers of a neural

network as a discretization of
an ODE [6]

L1 = T + g(t, 4, W(t))

dx

= = glt,a (), W (1))

= The sensitivity of the cost
with respect to the weights of
the neural network obey a
discretization of the adjoint

equation

da™ | 9z ) oy~ / da™

oC _ oC dy* 9a™ oz
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The Geometry of Adjoint ODE Systems

q = [f(q),
p=—[Df(g)]"p
ODE ¢ = f(q) specified by a vector field f over a manifold M
Define a Hamiltonian and use canonical symplectic form

H:T*M —R, H(q,p)=(p,f(q), Q=dgAdpe A\*(T*"M)

o The adjoint system 1s given by Hamilton’s equations
(! fﬂ =dH

The adjoint system 1s a Hamiltonian system

o In coordinates,
¢=0H/0p= f(q),p=—-0H/0q=—[Df(q)]"p
o The adjoint system covers the original ODE
o Equivalently, the vector field f is a lift of the vector field f, the “cotangent lift
In [1], we show that the adjoint conservation law arises from symplecticity of the
Hamiltonian flow of the above system. This shows that symplectic integrators are
suitable for adjoint sensitivity analysis.
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Variational Characterization of Adjoint ODE Systems

In [1], we develop an intrinsic Type II variational principle for adjoint systems

Action = [Y (p,d) — H(q,p)) dt = [ (p, ¢ — f(q))dt

Goal: derive the adjomt system from a variational principle §S = 0
Type I boundary conditions:
q(0) = qo,q(ts) = 1 = 9¢(0) = 0,9q(ty) = 0
o Do not make sense for adjoint systems, because they cover an ODE
Type II boundary conditions:
q(0) = qo, p(ty) = pr => dq(0) = 0,0p(ts) =0
o For general Hamiltonian systems, Type II boundary conditions do not make
intrinsic sense (cannot specify a covector without specifying the basepoint)
o However, it does make sense 1f the Hamiltonian systems covers an ODE, since
we know to specify p; at g1 = ®¢;(qo)
o Locally, every Hamiltonian system on a cotangent bundle which covers an ODE
on the base manifold 1s an adjoint system




Variational Characterization of Adjoint ODE Systems ...

$, = time ¢t flow of f

= Type II variational characterization tells us: C:M-—R
o The boundary conditions used for adjoint
sensitivity analysis make intrinsic sense

q(0) = qo, p(ty) = dC(q(t
(0) = qo, p(ty) (a(ts)) a(tr)=e  a0) » PNz dCl,,

o Gives an intrinsic theoretical justification for
the backpropagation used in adjoint sensitivity
analysis. Particularly for optimization on

o Nonlinear spaces

o Infinite-dimensional spaces, e.g.,
q=Aqg
p=—Ap

o Can construct structure-preserving integrators
for these systems using variational integrators

e M

(th(qﬂ)




Differential-Algebraic Equations

Goal: compute sensitivities of cost functions for systems governed by DAEs
Generalize adjoint systems to DAEs ¢ = f(q,u),
0 = ¢(q, u)
Dynamic and algebraic variables g € Mg, u € M,
Let TM, — M, x M, be the pullback bundle of TM; — M, by My x M, — My
and similarly for the cotangent bundle
Let ® — M, x M, be a vector bundle and ®* its dual
A DAE is specified by sections f € T'(TMy), ¢ € T'(®)

Define the adjoint system as a presymplectic Hamiltonian system on T* M 4 ¢ ®*
(g,u,p,\) ET*M 3@ & —— (q,u,\) € &* i)

.

(g,u,p) € T*My » Mg x M, 3 (q,u) «— TM; 5 (q,u,v)

]

(g.p) € T*My » Mg > q < TM; 3 (q,v)




The Geometry of Adjoint DAE Systems

Let €2, be the canonical symplectic form on 7™ M, . Pull back this form by the

sequence of maps T*M ;& ®* — T*M 4 — T M, to obtain a presymplectic form
Qo =dgANdp e A*(T*My ® D)

Define the Hamiltonian H:T*M,® & — R.

H(q,u,p,\) = (p, f(q,u)) + (\, &(q,u))
The adjoint DAE system 1s the presymplectic Hamiltonian system ix {2y = dH
= |n coordinates,

OH ‘ .
G= o flq, ), +dynamical equation
b=~ =-IDq flg,u)]*p — [Dgd(q,w)]* N, <—adjoint of dynamical equation
OH : .
0= == o(q,u), +constraint equation
OH 5 & ; .
0=——— = —[Duf(q,u)]"p — [Duod(q,u)]*\. 4—adjoint of constraint equation 1]

ou




Index Reduction and the Presymplectic Constraint Algorithm

Unlike the symplectic case, solutions are not everywhere defined

o Defined on a submanifold of P = T*M ; & ®*
Basic i1dea: constraints require that the vector field X lies on a constraint submanifold
of P. In order for solutions, i.e., integral curves of X, to stay on the submanifold, X
must be tangent to the submanifold where it 1s defined. The process of obtaining this
final constraint submanifold to which X 1s tangent is known as the presymplectic
constraint algorithm
Related 1dea: for the base DAE, the index 1s the number of differentiations of the
constraints needed to obtain an ODE

o For example, index 1: ¢ = f(q,u),

0= Dy¢(q,u)q + Dud(q,u)t

o ODE in (g, %) if D,¢(q,u)1s invertible wherever ¢(q,u) = 0

o Alternatively, by the implicit function theorem, ¢ = f(q,u(q))
Question: can we relate the presymplectic constraint algorithm of the adjoint DAE
system to the index of the base DAE?



Index Reduction and the Presymplectic Constraint Algorithm ...

Question: can we relate the presymplectic constraint algorithm of the adjoint DAE
system to the index of the base DAE?
In [1], we show that the presymplectic constraint algorithm for the adjoint DAE
system terminates after the number of steps given by the index of the base DAE
Furthermore, we show that index reduction and forming the adjoint system commute

o Reduce DAE; form adjoint ODE system

o Form adjoint DAE system; reduce through presymplectic constraint algorithm
Can derive results for the adjoint DAE system using the reduced adjoint ODE system;
¢.g., the adjoint conservation law

(p(0),04(0)) = {p(ty),dq(ty))
o This conservation law can also be interpreted as presymplecticity
Qg =dgNdp



Discretization of Adjoint DAE Systems

= We extend the Galerkin Hamiltonian variational integrator construction of Leok and
Zhang [2] to the setting of presymplectic Hamiltonian systems

* The basic ingredients

o Finite-dimensional function space approximating curves on P

o Quadrature rule

o Enforce discrete Type II variational principle

» Using a function space which interpolates the quadrature nodes results in a
constrained partitioned Runge—Kutta method

@1 =q + Afzbif(Qi« T

Q' = qo + At Zﬂijf(Qj~ B,

/)
p1=p0— ALY bi ([Def(Q U P + (D@, UF)*AY)

P =pg— /_\tz aij ([Dgf(Q?, UN* P! + [Dydp(Q? , UT)*AY)
j
0=¢(Q",U"),
0 = [Duf(QF, UM]* P + [Dup(Q*, UY)|*AY,
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Discretization of Adjoint DAE Systems ...

» Integrator 1s presymplectic, (po,0qo) = (p1,0q1)
= Integrator 1s “natural”: discretization, reduction, and forming the adjoint commute

Reduce
Index 1 DAE * ODE
. . Discretize
Discretize
X Reduce N i
Discrete DAE * Discrete ODE
Adjoint Adjoint
Presymplectic Adjoint _ Reduce , Symplectic Adjoint
DAE System o ODE System o
Adjoint Adjoint
Discretize Discretize
Presymplectic Galerkin Symplectic Galerkin

Hamiltonian Variational Rednce  Hamiltonian Variational
Integrator Integrator




Discretization of Adjoint DAE Systems ...

= As a consequence of this naturality, we prove a variational error analysis result:

Proposition 3.4. Suppose the discrete generating function H;(qo,pl:At) for the presymplectic

variational integrator approximates the exact discrete generating function H;"E(qg. p1: At) to order
r, Le.,

H (q0,p1; At) = Hi " (g0, p1; At) + O(ALH),

and the Hamiltonian H is continuously differentiable, then the Type II map (qo,p1) v (q1,p0) and
the evolution map (qo,po) +— (q1,p1) are order-r accurate.

= Proof sketch:

o Use naturality to relate the discretized adjoint DAE system to the discretized and
reduced adjoint ODE system

o Subsequently, apply the variational error analysis result in the ODE case (Schmitt
and Leok [3])
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Numerical Example

= As the adjoint conservation law arises from presymplecticity, perform a simple
example to numerically illustrate that the aforementioned integrator is presymplectic
(and hence, suitable for adjoint sensitivity analysis)

= As an academic example, we consider the planar pendulum, as an index 1 DAE:

Yy

& = B,

Uy = px/m,
0=2z%+ y2 - 5=

0 = vz + vyy,

0 =m(v2 + -'1*5 ) — mgy + L*p.

Constraint Force o p 1_5 = (0, -mg) ]_ 7




Numerical Example ...

= In terms of the notation we used for adjoint DAE systems: ¢ = (z,v.), v = (y,vy, p)

f & H(g,u,p, \) = (p, f(g,w)) + (A, (g, w))
flg,u) = ,
Kp;r./m z? 4y — L°
Ve
( a® ol — L2 = (Pz Pv.) + (A1 A2 A3) Uz + Uyl
px
¢(g, u) = Vg + VyY m(v2 + 'US) —mgy + L?p

Km(vg - -vg) —magy + L?p Qo = dx N dpy + dvg N dpy,

( (200 0
0 1 |
Dqf(q,u) = ; Ded(q.u) = v, = ;
\P/m . \ 0 2mu,
(0 0 0 (o 0 0
Duf(‘]- u) = , Y
\0 0 x/m Dyd(q.u) = | w, Y 0

\—mg 2mu, i 18




Numerical Example ...

* The corresponding adjoint DAE system 1s

OH

q= Fri flg,u),
B OH * g
p= _a—q = —[Dqf(gq.u)]"p — [Dgd(q.u)]" A,
oH ,
0= 25 = ¢la,v),
OH
0= ———=—[Duf(g,w)]"p — [Dud(g, w)]" ).

d G Vg
2 Vg pxr/m
T
T 2z 0 A1
d | Pz 0 1 Pz \
—_— = —_— -_ l'.’E r 2
dt Do p/m 0 P,
— 0 2mu, A3
22 4y — 2
0= VT + UyY
171(1:3, + vg) —mgy + L?p
T 2y 0 0
o a9 B Pz
0 - + ’Uy y 0
0 0 z/m Do,

i 2
—-mg 2muvy, L



Numerical Example ...

= Applying a presymplectic Galerkin Hamiltonian variational integrator (with one
internal stage) to this system yields a first-order method (with m = g=L =1)

20



Numerical Example ...

= For our numerical experiment, we apply the integrator to a collection of nearby initial
positions qo = (xo, (v, )o) and a collection of nearby final momenta
P1 = ((pa:)la (pv;c)l)
= Preservation of the presymplectic form g = dx A dp, + dv, A dp,,,
o Area occupied by the collection of points (Zo, (Pz)o) is the same as the area
occupied by the collection of points (1, (Pz)1)
o Area occupied by the collection of points((v;)o, (pv, )o) 1S the same as the area
occupied by the collection of points((v, )1, (py, )1)
= We compare the presymplectic method to the first-order method corresponding to
using backward Euler in both position and momenta variables
= We take a large timestep A¢ = 2 (roughly one-third of the period of the pendulum) to
accentuate the difference between the two methods




Numerical Example ...

Evolution of (,. hase space by PGHVI-1
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FIGURE 1. (%, pz) phase space cross-section of PGHVI-1 applied to a distribution of initial conditions gg FIGURE 2. (vz,pu, ) phase space cross-section of PGHVI-1 applied to a distribution of initial conditions qo
and final momenta p; and final momenta py

Evolution of (¢, p,,) phase space by BE-1
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FIGURE 4. (vz, py, ) phase space cross-section of BE-1 applied to a distribution of initial conditions qo and
final momenta p1




Numerical Example ...

= Comparing the two methods for the Type I map (qo, P1) + (g1, Po)

o The method using BE 1n both dynamical variables 1s implicit in position
and explicit in momenta

o The PGHVI method 1s implicit in position and implicit in momenta but
linear in momenta (even when the DAE is nonlinear)

o Both methods need to numerically solve the generally nonlinear constraint
and adjoint constraint equations for the same number of algebraic variable
internal stages

* The added cost for presymplecticity 1s solving a linear system in the momenta
variable, even when the DAE 1s nonlinear. For high-dimensional problems,
this of course can be significant; however, for example, in training a neural
network, viewed as a discrete neural ODE, a bottleneck in training time is
computing accurate gradients via backpropagation. Without
(pre)symplecticity, have to use higher-order methods for accuracy.




Future Directions: Adjoint Systems for Evolution PDEs

= Example problem: PDE-constrained optimization

. (6| - 2 C2 r 2
mu%n[2 /Q(y(a:,tf) y(az,tf)) dx%—;/o /Qu(a:,t) da:dt}
s.t. Oy = Ay + f(y,u) on (0,t5) x Q+1.C. + B.C.

o Adjoint system arises as an extremization condition
" Questions:
o Characterize geometry of adjoint systems for evolution PDEs?
> e.g., infinite-dim. symplectic geometry, multisymplectic geometry
o What can this geometry tell us about constructing geometric numerical
methods for such problems?
» Such problems require both temporal and spatial discretization
» Natural choices for spatial semi-discretization?
» Natural choice for temporal discretization?




Future Directions: Adjoint Systems for Evolution PDEs. ..

* Approach: extend theory to evolution PDE viewed as infinite-dim. ODE

= Abstract semilinear evolution equation: g = Ay + f(y)
: A:D(A
X reflexive Banach space (A) C X - X
f: X=X

» Define Hamiltonian and symplectic formon 77X = X x X~
H:D(A) x D(A") = R, H(y,p)=(p, Ay + f(y)) n.x=x T, X=X
Q(yap) ) ((U19w1)7 (Ug,ﬂ)g)) — <’LU2,’01> _ (’lUl,Uz)

= Adjoint system: o =03, ()

y=Ay+ f(y), /%
p=—-A'p—[Df(y)]p X ”

® (resp. ) ~ CY semigroup
generated by A (resp. — A™) 25




Future Directions: Adjoint Systems for Evolution PDEs. ..

" Discretization:
o Projection o
Iy, : X — X} (finite-dim. space)
o Semi-discrete symplectic form Q;, = I1;*Q € A%(T* X},)
o Form associated semi-discrete adjoint ODE system
o Integrate ODE system in time
" Many questions arise, €.g.,
o Convergence? solution curves, symplectic form
o Mild/weak solutions? Solutions with jumps (DG methods)?
o Naturality: discretize then optimize versus optimize then discretize?
o Constraints (PDAESs): infinite-dimensional presymplectic geometry?
o Applications? e.g., optimization, neural PDEs




Some References

[1] BT and M. Leok. Geometric Methods for Adjoint Systems. Journal of Nonlinear Science, submitted, 2022.

[2] M. Leok and J. Zhang. Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4):1497-1532,
2011.

[3] J. Schmitt and M. Leok. Properties of Hamiltonian variational integrators. IMA Journal of Numerical Analysis,
36(2), 2017.

[4]J. M. Sanz-Serna. Symplectic Runge—Kutta schemes for adjoint equations, automatic differentiation, optimal
control, and more. 58(1):3-33, 2016.

[5] BT and M. Leok. Multisymplectic Hamiltonian variational integrators. International Journal of Computer
Mathematics (Special Issue on Geometric Numerical Integration, Twenty-Five Years Later), 99(1):113-157, 2022.

[6] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Ordinary Differential Equations.
Advances in Neural Information Processing Systems, 31, 2018.



