Read page 234 through 270.

1. We have the following theorem from Pappus of Alexandria c. 300 AD. Consider an area D and a line L. Assume that both D and L are in the same plane and that D is on one side of L. Then the volume generated by revolving D about L is equal to the area of D times the distanced traversed by the center of mass of D as D revolves about L.
(a) Use Pappus's theorem to find the volume of a torus generated by revolving a circular disk of radius r about a line that is a distance R from the center of the circle. It is assumed that $R>r$.
(b) Use Pappus' theorem to find the center of mass of

$$
D=\left\{(x, y): x \geq 0 \text { and } R^{2} \geq x^{2}+y^{2}\right\} .
$$

(Suggestion: Let the line be the x -axis. Check your work with calculus.)
2. What is the Almagest? (Use the index.) Who wrote it? Did it use the geocentric or heliocentric theory? What did Claudius Ptolemy's other work have to do with Columbus? (See pages 193-194.)
3. Page 233 \#6. Find a solution other than the one at the back of the text.
4. Page 233 \#9.
5. Page 233 \#12.
6. Page 266 \#6. (You might want to let T be the area of the triangle with legs a and b and with hypotenuse c , that is, $\mathrm{T}=\mathrm{ab} / 2$.)

