Discrepancy in modular arithmetic progressions

Yunkun Zhou

Feb 2021

Abstract

Celebrated theorems of Roth and of Matoušek and Spencer together show that the discrepancy of arithmetic progressions in the first n positive integers is $\Theta\left(n^{1 / 4}\right)$. We study the analogous problem in the \mathbb{Z}_{n} setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in \mathbb{Z}_{n} for all positive integer n. We further determine up to a constant factor the discrepancy of arithmetic progressions in \mathbb{Z}_{n} for many n. For example, if $n=p^{k}$ is a prime power, then the discrepancy of arithmetic progressions in \mathbb{Z}_{n} is $\Theta\left(n^{1 / 3+r_{k} /(6 k)}\right)$, where $r_{k} \in\{0,1,2\}$ is the remainder when k is divided by 3 . This solves a problem of Hebbinghaus and Srivastav. Joint work with Jacob Fox and Max Wenqiang Xu.

