Discrepancy in modular arithmetic progressions

Yunkun Zhou

Feb 2021

Abstract

Celebrated theorems of Roth and of Matoušek and Spencer together show that the discrepancy of arithmetic progressions in the first n positive integers is $\Theta(n^{1/4})$. We study the analogous problem in the \mathbb{Z}_n setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in \mathbb{Z}_n for all positive integer n. We further determine up to a constant factor the discrepancy of arithmetic progressions in \mathbb{Z}_n for all positive for many n. For example, if $n = p^k$ is a prime power, then the discrepancy of arithmetic progressions in \mathbb{Z}_n is $\Theta(n^{1/3+r_k/(6k)})$, where $r_k \in \{0, 1, 2\}$ is the remainder when k is divided by 3. This solves a problem of Hebbinghaus and Srivastav. Joint work with Jacob Fox and Max Wenqiang Xu.