Tangencies between disjoint regions in the plane

János Pach, Andrew Suk, Miroslav Treml

June 16, 2010

Problem

Definition

Two nonoverlapping Jordan regions in the plane are said to touch each other or to be tangent to each other if their boundaries have precisely one point in common and their interiors are disjoint.

Problem

Given two families \mathcal{R}, \mathcal{B} of closed Jordan regions, each consisting of n pairwise disjoint members, what is the maximum number tangencies between \mathcal{R} and \mathcal{B} ?

Can be superlinear. Below are two disjoint families of x-monotone curves with at least $\Omega(n \log n)$ tangencies.

Main Result

Theorem (Pach, Suk, Treml)

The number of tangencies between two families of convex bodies in the plane, each consisting of $n>2$ pairwise disjoint members, cannot exceed $8 n-16$.

Not far from being optimal. Below has $6 n(1-o(1))$ tangencies by taking n translates of each hexagon and arranging them in a lattice-like fashion.

Corollary (Pach, Suk, Treml)

Let \mathcal{C} be a family of n convex bodies in the plane which can be decomposed into k subfamilies consisting of pairwise disjoint bodies. Then that total number of tangencies between members in \mathcal{C} is $O(k n)$. This bound is tight up to a multiplicative constant.

Conjecture (Pach, Suk, Treml)

For every fixed integer $k>2$, the number of tangencies in any n-member family of convex bodies, no k of which are pairwise intersecting, is at most $O(k n)$.

Related conjectures

Conjecture (Erdős)

There exists a constant c such that any family of segments in the plane, no two of which share an endpoint and no three pairwise cross, can be decomposed into at most c subfamilies consisting of pairwise disjoint segments.

Conjecture (Fox and Pach '08)

For every k, there exists a c_{k} such that any family of convex bodies in the plane, no k of which are pairwise intersecting, can be decomposed into at most c_{k} subfamilies consisting of pairwise disjoint bodies.

Proof of the main theorem

We will prove something slightly stronger.

Theorem

Let $\mathcal{C}=\mathcal{R} \cup \mathcal{B}$ be a family of $n>5$ convex bodies in the plane, where \mathcal{R} and B are pairwise disjoint families, each consisting of pairwise disjoint bodies. Then the number of tangencies between the members of R and the members of B is at most $4 n-16$.

Sketch Proof. Induction on n.
BASE CASE. For $n=6$, we can have at most 8 tangencies since $K_{3,3}$ is not planar. I.e. we cannot have 3 red pairwise disjoint convex bodies all tangent to 3 blue pairwise disjoint convex bodies.

Now assume the theorem holds for all families of size smaller than n. Let m denote the number of tangencies. Each member in \mathcal{C} is tangent to at least five other members (otherwise we would be done by the induction hypothesis). Replace each member of C by the convex hull of all points of tangencies along its boundary.

Place a vertex at each point of tangency and at each intersection point betweeen the sides of the polygons to obtain the planar graph $G=(V, E)$.

By Euler's polyhedral formula, we have

$$
\sum_{v \in V}(d(v)-4)+\sum_{f \in F}(|f|-4)=4(|E|-|V|-|F|)=-8
$$

where F is the set of faces in G. Since G is 4 -regular, we have

$$
\sum_{f \in F}(|f|-4)=-8
$$

By defining

- $F(C)$ as the faces inside $C \in \mathcal{C}$,
- $F^{e x t} \subset F$ as the faces not inside any member of \mathcal{C},
- $F^{\text {int }-1}$ to be the set of faces inside exactly one member of \mathcal{C},
we have

$$
\sum_{f \in F^{\text {ext }}}(|f|-4)+\frac{1}{2} \sum_{C \in C} \sum_{f \in F(C)}(|f|-4)+\frac{1}{2} \sum_{f \in F^{\text {int }-1}}(|f|-4)=-8
$$

First Key Observation. If there's no segments in $C \in \mathcal{C}$, we have

$$
\sum_{f \in F(C)}(|f|-4)=|C|-4
$$

Each segment increases the number of faces by one, and adds four to the total number of sides of these faces. Therefore, for every
$\mathcal{C} \in \mathcal{C}$ (regardless of the number of segments inside)

$$
\sum_{f \in F(C)}(|f|-4)=|C|-4
$$

Therefore

$$
\frac{1}{2} \sum_{C \in C} \sum_{f \in F(C)}(|f|-4)=\frac{1}{2} \sum_{C \in C}|C|-4=\frac{1}{2}(2 m-4 n)=m-2 n .
$$

(Recall that m is the number of tangencies)

handling triangles

Second Key Observation. All triangles lie inside exactly one convex body at a vertex.

T_{3} set of triangle faces and t is the number of vertices adjacent to two triangles (double triangle vertices).

$$
\left|T_{3}\right| \leq m+t
$$

By convexity, each vertex adjacent to two triangles must be a vertex of an exterior face with at least six sides!

Since each exterior face f is incident to at most $|f| / 2$ double triangle vertices, we have

$$
t \leq \frac{1}{2} \sum_{f \in F_{6+}^{\text {ext }}}|f|
$$

Therefore we have

$$
\left|T_{3}\right| \leq m+\frac{1}{2} \sum_{f \in F_{6+}^{\text {ext }}}|f|
$$

Since we have a bound on the number of triangles, we have

$$
\sum_{f \in F_{\text {int }-1}}(|f|-4) \geq \sum_{f \in T_{3}}(|f|-4)=-\left|T_{3}\right| \geq-m-\frac{1}{2} \sum_{f \in F_{6+}^{\text {ext }}}|f|
$$

Summary

Recall we have by Euler's formula (and by the fact the G is 4-regular)

$$
\sum_{f \in F_{\text {ext }}}(|f|-4)+\frac{1}{2} \sum_{C \in C} \sum_{f \in F(C)}(|f|-4)+\frac{1}{2} \sum_{f \in F^{\text {int }-1}}(|f|-4)=-8
$$

Our first key observation

$$
\frac{1}{2} \sum_{C \in C} \sum_{f \in F(C)}(|f|-4)=m-2 n
$$

Our second key observation

$$
\sum_{f \in F_{\text {int }-1}}(|f|-4) \geq-m-\frac{1}{2} \sum_{f \in F_{6+}^{\text {ext }}}|f|
$$

Putting it all together

$$
\begin{aligned}
\sum_{f \in F_{\text {ext }}}(|f|-4)+\frac{1}{2} \sum_{C \in C} \sum_{f \in F(C)}(|f|-4)+\frac{1}{2} \sum_{f \in F^{\text {int }-1}}(|f|-4) & =-8 \\
\sum_{f \in F_{6+}^{\text {exx }}}(|f|-4)+(m-2 n)-\frac{1}{2}\left(m+\frac{1}{2} \sum_{f \in F_{6+}^{\text {ext }}}|f|\right) & \leq-8 \\
m / 2-2 n+\sum_{f \in F_{6+}^{\text {ext }}}\left(\frac{3}{4}|f|-4\right) & \leq-8 \\
m / 2-2 n & \leq-8
\end{aligned}
$$

Hence

$$
m \leq 4 n-16
$$

Regular vertices

Given a collection \mathcal{C} of n convex bodies in the plane. If the boundary of two members of \mathcal{C} intersect at most twice, then we call these intersection points regular (denote $R(\mathcal{C})$). Else they are called irregular (denoted $I(\mathcal{C})$).

Theorem (Ezra, Pach, Sharir)

$$
|R(\mathcal{C})| \leq O\left(n^{4 / 3+\epsilon}\right)
$$

for every $\epsilon>0$.

Theorem (Pach, Sharir)

$$
|R(\mathcal{C})| \leq O(|I(\mathcal{C})|+n)
$$

Theorem (Pach, Suk, Treml)

If \mathcal{C} can be decomposed into k subfamilies consisting of pairwise disjoint bodies,

$$
|R(\mathcal{C})| \leq O(k n)
$$

Other types of regions

Theorem (Pach, Suk, Treml)

The number of tangencies between two families of x-monotone curves in the plane, each consisting of $n>2$ pairwise disjoint members, is at most $O\left(n \log ^{2} n\right)$.

Theorem (Pinchasi and Ben-Dan)

The number of tangencies between two families of closed Jordan regions in the plane, each consisting of $n>2$ pairwise disjoint members, is at most $O\left(n^{3 / 2} \log n\right)$.

Last comment on the convex case: By a more careful discharging argument, one can improve the constant a bit (when two triangles are "close" to each other it gives rise to a large 6-face. When there are not a lot of triangles, not every vertex is adjacent to a triangle). THANK YOU

