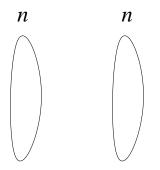
Density and Regularity theorems for semi-algebraic hypergraphs

Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

January 3, 2015

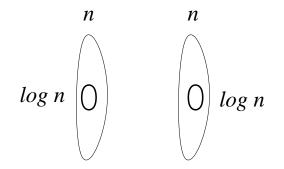
An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

Bipartite graph G, edge set E.



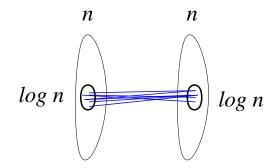
An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

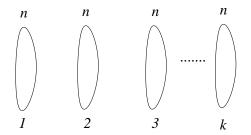
Bipartite graph G, edge set E.

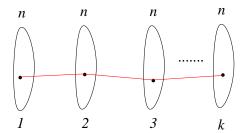


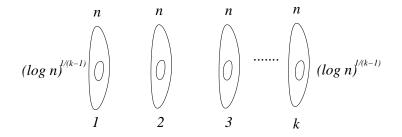
An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

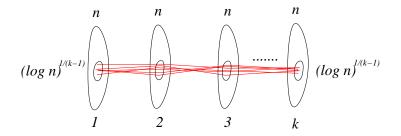
Bipartite graph G, edge set E.



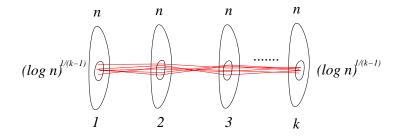








These results are tight.



In this talk: We can do much better if H is a semi-algebraic k-uniform hypergraph.

We say that H = (V, E) is a semi-algebraic k-uniform hypergraph in d-space if

$$V = \{n \text{ points in } \mathbb{R}^d\}$$

E defined by polynomials $f_1, ..., f_t$ and a Boolean formula Φ such that

$$(p_{i_1},...,p_{i_k})\in E$$

$$\Leftrightarrow \Phi(f_1(p_{i_1},...,p_{i_k}) \geq 0,...,f_t(p_{i_1},...,p_{i_k}) \geq 0) = \mathsf{yes}$$

 $x_i \in \mathbb{R}^d$

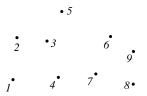
E has complexity (t, D)

- **(**) described by polynomials $f_1, ..., f_t$,
- and the degree of ALL kt d-variate polynomials
 f_i(x₁, ..., x_{k-1}, x_k), f_i(x₁, ..., x_{k-2}, x_{k-1}, x_k), ..., f_i(x₁, x₂, ..., x_k),
 for i = 1...t, is at most D.

Note. f_i has degree at most Dk.

$$V = \{n \text{ points in the plane}\},\$$

 $E = \{\text{triples having a clockwise orientation}\}.$
 $H = (V, E)$ semi-algebraic 3-uniform hypergraph in the plane
 $(d = 2)$

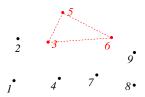


$$V = \{n \text{ points in the plane}\},\$$

$$E = \{\text{triples having a clockwise orientation}\}.$$

$$H = (V, E) \text{ semi-algebraic 3-uniform hypergraph in the plane}$$

$$(d = 2)$$

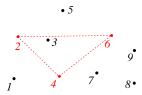


$$V = \{n \text{ points in the plane}\},\$$

$$E = \{\text{triples having a clockwise orientation}\}.$$

$$H = (V, E) \text{ semi-algebraic 3-uniform hypergraph in the plane}$$

$$(d = 2)$$

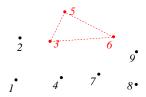


$$V = \{n \text{ points in the plane}\},\$$

$$E = \{\text{triples having a clockwise orientation}\}.$$

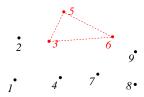
$$H = (V, E) \text{ semi-algebraic 3-uniform hypergraph in the plane}$$

$$(d = 2)$$

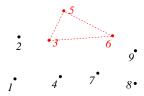


 $E = \{$ triples having a clockwise orientation $\}.$

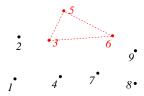
$$det \left(\begin{array}{rrr} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0.$$



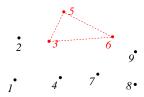
$$det \left(\begin{array}{rrr} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0.$$



$$det \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} > 0$$



$$det \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} > 0$$



$$det \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} > 0$$

E = (d + 1)-tuples with a positive orientation, complexity (t, D) = (1, 1).

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} > 0.$$

E = (d + 1)-tuples with a positive orientation, complexity (t, D) = (1, 1).

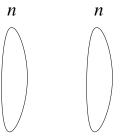
$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} > 0.$$

E = (d + 1)-tuples with a positive orientation, complexity (t, D) = (1, 1).

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} > 0.$$

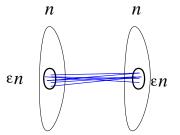
Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). Then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon n$ and either $(V'_1, V'_2) \subset E$ or $(V'_1, V'_2) \subset \overline{E}$, and $\epsilon = \epsilon(d, t, D)$.



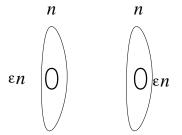
Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). Then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon n$ and either $(V'_1, V'_2) \subset E$ or $(V'_1, V'_2) \subset \overline{E}$, and $\epsilon = \epsilon(d, t, D)$.



Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). Then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon n$ and either $(V'_1, V'_2) \subset E$ or $(V'_1, V'_2) \subset \overline{E}$, and $\epsilon = \epsilon(d, t, D)$.

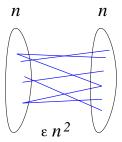


Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). If $|E| \ge \epsilon n^2$, then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(d, t, D), and $(V'_1, V'_2) \subset E$.

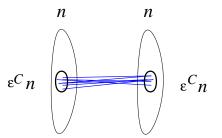


Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

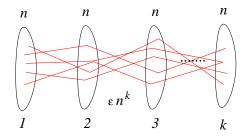
Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). If $|E| \ge \epsilon n^2$, then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(d, t, D), and $(V'_1, V'_2) \subset E$.



Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(k, d, t, D), and $(V'_1, ..., V'_k) \subset E$.



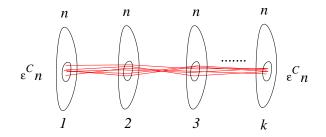
Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

Density and Regularity theorems for semi-algebraic hypergraph

Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(k, d, t, D), and $(V'_1, ..., V'_k) \subset E$.



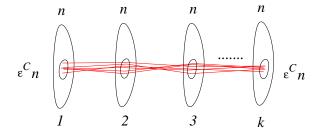
Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

Density and Regularity theorems for semi-algebraic hypergraph

Generalization

C(k, d, t, D): Dependency on uniformity k is very bad.

Bukh-Hubard: $C(k, d, t, D) \sim 2^{2^{k+d}}$, double exponential in k.



Bukh-Hubard: Set sizes decay triple exponentially in k

Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

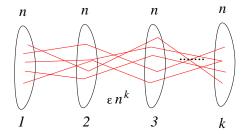
Density and Regularity theorems for semi-algebraic hypergraphs

New results

For simplicity, complexity (t, D) is fixed.

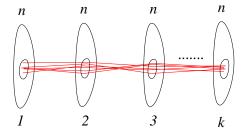
Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V'_1, ..., V'_k) \subset E$.



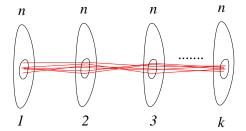
Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V'_1, ..., V'_k) \subset E$.



Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, 1). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d+1}}{2^{ckd \log d}}n$, and $(V'_1, ..., V'_k) \subset E$.

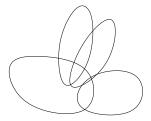


Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

such that all closed rainbow simplices contains q.

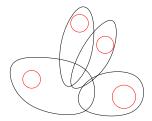


Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

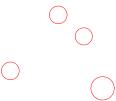
$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

such that all closed rainbow simplices contains q.



Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

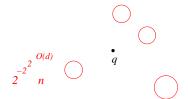


Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

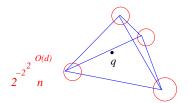
Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$



Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$



$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Fox, Pach, S., 2014)

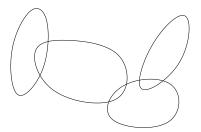
Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-O(d^2 \log d)} n,$$

Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

for all i.

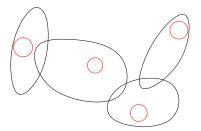


Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

Density and Regularity theorems for semi-algebraic hypergraph

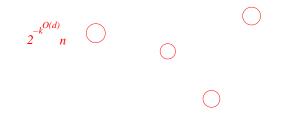
Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



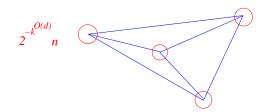
Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Fox, Pach, S., 2014)

Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n,$$

Regularity lemma: H = (P, E) semi-algebraic k-uniform hypergraph in \mathbb{R}^d .

Theorem (Fox, Pach, S., 2014)

For any $\epsilon > 0$, we can partition P into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

Usual regularity: almost all k-tuples of parts are "random". $M(\epsilon)$ is huge:

- Find more applications.
- Extend results to more complicated relations, i.e., Semi-Pfaffian, o-minimal, etc.

Thank you!

Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC) Density and Regularity theorems for semi-algebraic hypergraph