Semi-algebraic colorings of complete graphs

Andrew Suk (UC San Diego)

June 19, 2019

Summary of results

Joint work with Jacob Fox and János Pach

- Tight bound for multicolor Ramsey numbers for semi-algebraic graphs.
- 2 Efficient regularity lemma for multicolor semi-algebraic graphs.
- Tight bounds for generalized Ramsey numbers for semi-algebraic graphs.

Ramsey theory origins

Frank Ramsey, On a problem of formal logic (1930)

Paul Erdős and George Szekeres, A combinatorial problem in geometry (1935)

Ramsey theory origins

Issai Schur, Über die Kongruenz $x^m + y^m = z^m \mod p$ (1916)

Multicolor Ramsey numbers

Definition

For $m \ge 2$, The multicolor Ramsey number

$$r(\underbrace{3,\ldots,3}_{m \text{ times}})$$

is the minimum integer N such that for any m-coloring of the edges of K_N contains a monochromatic copy of K_3 .

$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$ $162 \le r(3,3,3,3,3) \le 307$ $2^m < r(3,\ldots,3) < m!$

m times

$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$ $162 \le r(3,3,3,3,3) \le 307$

$$2^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < m!$$

$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$ $162 \le r(3,3,3,3,3) \le 307$

$$2^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < m!$$

$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$
 $162 \le r(3,3,3,3,3) \le 307$

$$2^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < m!$$

Best known bounds

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Erdős prize problems

Problem (\$100)

Is the limit below finite or infinite?

$$\lim_{m\to\infty} \left(r(\underbrace{3,\ldots,3}_{m \text{ times}}) \right)^{1/m}$$

Problem (\$250)

Determine

$$\lim_{m\to\infty} \left(r(\underbrace{3,\ldots,3}_{m \text{ times}}) \right)^{1/n}$$

If we insist that the *m*-coloring is **semi-algebraic** with bounded complexity:

Theorem (Fox-Pach-S. 2019)

For
$$m \geq 2$$
,

$$r^{\text{semi}}(\underbrace{3,\ldots,3}_{m \text{ times}}) = 2^{\Theta(m)}.$$

 $V = \{A_1, ..., A_n\}$, n disks in the plane. $E = \{\text{pairs of disks that intersect}\}$.

 $V = \{A_1, ..., A_n\}$, n disks in the plane. $E = \{\text{pairs of disks that intersect}\}$.

 $V = \{A_1, ..., A_n\}$, n disks in the plane. $E = \{\text{pairs of disks that intersect}\}$.

 $V = \{A_1, ..., A_n\}$, n disks in the plane. $E = \{\text{pairs of disks that intersect}\}$.

 $A_i \rightarrow v_i = (x_i, y_i, r_i), A_j \rightarrow v_j = (x_j, y_j, r_j).$ A_i and A_j cross if and only if

$$-x_i^2 + 2x_ix_j - x_j^2 - y_i^2 + 2y_iy_j - y_j^2 + r_i^2 + 2r_ir_j + r_j^2 \ge 0.$$

 $V = \{A_1, ..., A_n\}$, n disks in the plane. $E = \{$ pairs of disks that intersect $\}$.

Graph G = (V, E), V = n points in \mathbb{R}^3 E defined by the polynomial

$$f(z_1,...,z_6) = -z_1^2 + 2z_1z_4 - z_4^2 - z_2^2 + 2z_2z_5 - z_5^2 + z_3^2 + 2z_3z_6 + z_6^2.$$

$$(v_i, v_j) \in E \Leftrightarrow f(v_i, v_j) \ge 0.$$

We say that G = (V, E) is a **semi-algebraic graph in** d-**space** if $V = \{n \text{ points in } \mathbb{R}^d\}$

E defined by polynomials $f_1,...,f_t$ and a Boolean formula Φ such that

$$(u, v) \in E$$

$$\Leftrightarrow \Phi(f_1(u,v) \geq 0,...,f_t(u,v) \geq 0) = \text{yes}$$

We say that H = (V, E) is a **semi-algebraic graph in** d-**space** if $V = \{n \text{ points in } \mathbb{R}^d\}$

E defined by polynomials $f_1,...,f_t$ and a Boolean formula Φ such that

$$(u, v) \in E$$

$$\Leftrightarrow \Phi(f_1(u,v) \geq 0,...,f_t(u,v) \geq 0) = \text{yes}$$

$$n \to \infty$$

E has bounded complexity: d = dimension, t, and $deg(f_i)$ is bounded by some constant. (say ≤ 1000).

Theorem (Fox-Pach-S. 2019)

For
$$m \geq 2$$
,

$$r^{semi}(\underbrace{3,\ldots,3}_{m \text{ times}}) = 2^{\Theta(m)}.$$

Theorem (Fox-Pach-S. 2019)

For $m \geq 2$,

$$N = r^{\text{semi}}(\underbrace{3, \dots, 3}_{m \text{ times}}) = 2^{\Theta(m)}.$$

V = N points in \mathbb{R}^d

$$\binom{V}{2} = E_1 \cup \cdots \cup E_m,$$

each E_i is semi-algebraic with bounded complexity, contains a monochromatic K_3 .

Theorem (Fox-Pach-S. 2019)

For fixed $p \ge 3$ and $m \ge 2$,

$$r^{\text{semi}}(\underbrace{p,\ldots,p}_{m \text{ times}}) = 2^{\Theta(m)}.$$

Theorem (Fox-Pach-S. 2019)

For fixed $p \ge 3$ and $m \ge 2$,

$$r^{semi}(\underbrace{p,\ldots,p}_{m \text{ times}}) = 2^{\Theta(m)}.$$

$$2^{m-1}$$
 2^{m-1} 0 1

Sketch of the proof:

$$r^{\text{semi}}(\underbrace{3,\ldots,3}) \leq 2^{cm}, \qquad c = c(d,t)$$

Induction on m. Base case is trivial so we can assume m is large.

$$N=2^{cm}$$
 $V=N$ points in \mathbb{R}^d $\binom{V}{2}=E_1\cup\cdots\cup E_m$.

Sketch of the proof:

Goal: $\exists v \in V$ such that $|N_i(v)| \ge \epsilon N$ for some i.

$$|N_i(v)| \ge \epsilon N > 2^{c(m-1)}.$$

Sketch of the proof:

Goal: $\exists v \in V$ such that $|N_i(v)| \ge \epsilon N$ for some i.

$$|N_i(v)| \ge \epsilon N > 2^{c(m-1)}.$$

Not true: We can only assume $|N_i(v)| \ge N/m$ by pigeonhole.

Consider the set system of neighborhoods: Ground set is V.

$$\mathcal{F} = \{N_i(v) : i \in [m], v \in V\}.$$

 ${\mathcal F}$ controls all of the edges.

Lemma

For \mathcal{F} and parameter r, there is a partition on $V = V_1 \cup \cdots \cup V_r$, $|V_i| = N/r$, such that for each part V_i , ALL but at most $O(|\mathcal{F}|/r^{1/d})$ vertices $v \in V \setminus V_i$ will be monochromatic to V_i

Lemma

For \mathcal{F} and parameter r, there is a partition on $V=V_1\cup\cdots\cup V_r$, $|V_i|=N/r$, such that for each part V_i , ALL but at most $O(|\mathcal{F}|/r^{1/d})$ vertices $v\in V\setminus V_i$ will be monochromatic to V_i

Lemma

For \mathcal{F} and parameter r, there is a partition on $V=V_1\cup\cdots\cup V_r$, $|V_i|=N/r$, such that for each part V_i , ALL but at most $O(|\mathcal{F}|/r^{1/d})$ vertices $v\in V\setminus V_i$ will be monochromatic to V_i

Lemma

For $\mathcal F$ and parameter r, there is a partition on $V=V_1\cup\cdots\cup V_r$, $|V_i|=N/r$, such that for each part V_i , ALL but at most $O(|\mathcal F|/r^{1/d})$ vertices $v\in V\setminus V_i$ will be monochromatic to V_i

Lemma

For \mathcal{F} and parameter r, there is a partition on $V=V_1\cup\cdots\cup V_r$, $|V_i|=N/r$, such that for each part V_i , ALL but at most $O(|\mathcal{F}|/r^{1/d})$ vertices $v\in V\setminus V_i$ will be monochromatic to V_i

Lemma

For $\mathcal F$ and parameter r, there is a partition on $V=V_1\cup\cdots\cup V_r$, $|V_i|=N/r$, such that for each part V_i , ALL but at most $O(|\mathcal F|/r^{1/d})$ vertices $v\in V\setminus V_i$ will be monochromatic to V_i

Start: Set $\mathcal{F}_1 = \mathcal{F}$. $|\mathcal{F}_1| \leq Nm$. Apply the partition lemma to \mathcal{F}_1 with parameter $r = m^{2d}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}.$

$$V =$$

Start: Set $\mathcal{F}_1 = \mathcal{F}$. $|\mathcal{F}_1| \leq Nm$. Apply the partition lemma to \mathcal{F}_1 with parameter $r = m^{2d}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}.$

Start: Set $\mathcal{F}_1 = \mathcal{F}$. $|\mathcal{F}_1| \leq Nm$. Apply the partition lemma to \mathcal{F}_1 with parameter $r = m^{2d}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}.$

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}.$

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}.$

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{m^{2d}}.$

Case 1: There are at least $\log m$ distinct colors between V_i and the "good" vertices.

$$|V_i| \ge \frac{N}{m^{2d}} > 2^{c(m - \log m)}$$

Case 2: There are fewer than $\log m$ colors between V_i and the "good" vertices.

Case 2: There are fewer than $\log m$ colors between V_i and the "good" vertices.

Case 2: There are fewer than $\log m$ colors between V_i and the "good" vertices.

$$\mathcal{F}_2 \subset \mathcal{F}_1$$
, $|\mathcal{F}_2| \leq N \log m$.

 \mathcal{F}_2 controls all but $o(N^2)$ edges.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

$$V = V_1 \cup \cdots \cup V_r$$
 $|V_i| = \frac{N}{r} = \frac{N}{\log^{2d} m}$.

Case 1: There are at least $\log \log m$ distinct colors between V_i and the good vertices.

$$|V_i| \geq \frac{N}{\log^{2d} m} > 2^{c(m - \log \log m)}.$$

Case 2: There are fewer than $\log \log m$ distinct colors between V_i and the good vertices.

Case 2: There are fewer than $\log \log m$ distinct colors between V_i and the good vertices.

Case 2: There are fewer than $\log \log m$ distinct colors between V_i and the good vertices.

 $\mathcal{F}_3 \subset \mathcal{F}_2, |\mathcal{F}_3| \leq N \log \log m$

 \mathcal{F}_3 controls all but $o(N^2)$ edges.

After repeating this argument log* m times:

Concluding remarks

- Find some applications in geometry.
- ② Goal: determine r(3, ..., 3).
- Up coming paper (joint work with Jacob Fox and János Pach):

$$r(\underbrace{3,\ldots,3}_{m \text{ times}}) = 2^{\Theta(m)}$$

for graphs with bounded VC-dimension

Thank you!