Disjoint edges in complete topological graphs

Andrew Suk

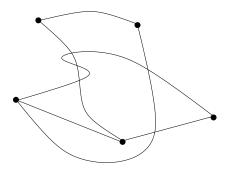
June 16, 2012

Andrew Suk Disjoint edges in complete topological graphs

Problem: Given a complete n-vertex simple topological graph G, what is the size of the largest subset of pairwise disjoint edges.

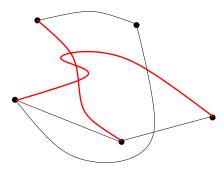
Definition

A *topological graph* is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is *simple* if every pair of its edges intersect at most once.



Definition

A *topological graph* is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is *simple* if every pair of its edges intersect at most once.



We will only consider *simple* topological graphs.

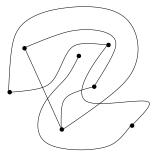
Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges, has at most n edges.

Theorem (Lovász, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges, has at most 2n edges.

Best known 1.43*n* by Fulek and Pach, 2010.



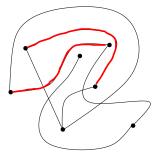
Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges, has at most n edges.

Theorem (Lovász, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges, has at most 2n edges.

Best known 1.43*n* by Fulek and Pach, 2010.



Generalization.

Theorem (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint edges, has at most $C_k n \log^{5k-10} n$ edges.

Conjecture to be at most O(n) (for fixed k). By solving for k in $C_k n \log^{5k-10} n = {n \choose 2}$.

Corollary (Pach and Tóth, 2005)

Every complete *n*-vertex simple topological graph has at least $\Omega(\log n / \log \log n)$ pairwise disjoint edges.

Conjecture (Pach and Tóth)

There exists a constant δ , such that every complete n-vertex simple topological graph has at least $\Omega(n^{\delta})$ pairwise disjoint edges.

Pairwise disjoint edges in complete *n*-vertex simple topological graphs:

- $\Omega(\log^{1/6} n)$, Pach, Solymosi, Tóth, 2001.
- **2** $\Omega(\log n / \log \log n)$, Pach and Tóth, 2005.
- **③** $\Omega(\log^{1+\epsilon} n)$, Fox and Sudakov, 2008.

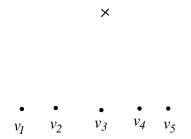
Note $\epsilon \approx 1/50$. All results are slightly stronger statements.

Main result

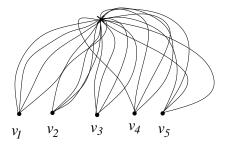
Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least $\Omega(n^{1/3})$ pairwise disjoint edges.

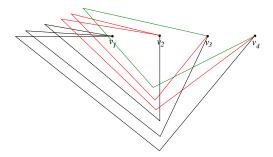
Clearly the simple condition is required.



Clearly the simple condition is required for this problem.



Clearly the simple condition is required for this problem.



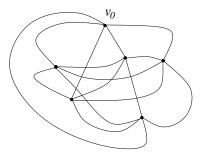
Definitions

Sketch of proof

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least $\Omega(n^{1/3})$ pairwise disjoint edges.

 K_{n+1}

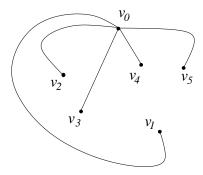


Sketch of proof

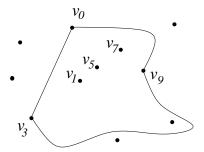
Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least $\Omega(n^{1/3})$ pairwise disjoint edges.

 K_{n+1}

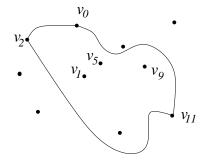


Define $\mathcal{F}_1 = \bigcup_{1 \le i < j \le n} \{S_{i,j}\}$, where $S_{i,j}$ is the set of vertices inside triangle v_0, v_i, v_j .



$$S_{3,9} = \{v_1, v_5, v_7\}$$

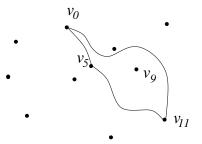
Define $\mathcal{F}_1 = \bigcup_{1 \le i < j \le n} \{S_{i,j}\}$, where $S_{i,j}$ is the set of vertices inside triangle v_0, v_i, v_j .



$$S_{3,9} = \{v_1, v_5, v_7\}, \ S_{2,11} = \{v_1, v_5, v_9\}$$

Definitions

Define $\mathcal{F}_1 = \bigcup_{1 \le i < j \le n} \{S_{i,j}\}$, where $S_{i,j}$ is the set of vertices inside triangle v_0, v_i, v_j .



$$S_{3,9} = \{v_1, v_5, v_7\}, S_{2,11} = \{v_1, v_5, v_9\}, S_{5,11} = \{v_9\}.$$

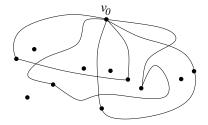
 \mathcal{F}_1 is not "complicated".

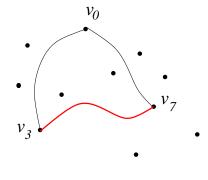
Lemma

Any *m* sets in \mathcal{F}_1 , S_1 , ..., S_m , partitions the ground set X into $O(m^2)$ equivalence classes.

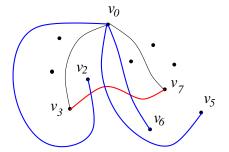
Vertices $x \sim y$, if both x, y belong to the exact same sets among $S_1, ..., S_m$. In other words, no set among $S_1, ..., S_m$ contains x and not y (and vice versa).

Proof: *m* triangles partitions the plane into $O(m^2)$ cells.

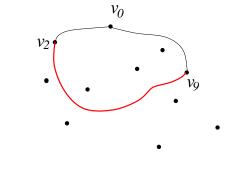




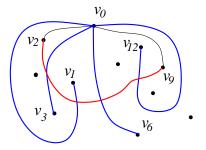
$$S'_{3,7} = ?$$



$$S'_{3,7} = \{v_2, v_6, v_5\}.$$



$$S'_{3,7} = \{v_2, v_6, v_5\}, S'_{2,9} = ?$$



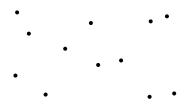
$$S'_{3,7} = \{v_2, v_6, v_5\}, S'_{2,9} = \{v_1, v_3, v_6, v_{12}\}.$$

Again, \mathcal{F}_2 is not "complicated". Set $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$. One can show

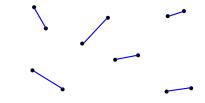
Lemma

Any *m* sets in \mathcal{F} partitions X into at most $O(m^3)$ equivalence classes.

Theorem (Matching theorem, Chazelle and Welzl, 1989)



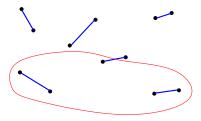
Theorem (Chazelle and Welzl, 1989)



$$M = \{(x_1, y_1), (x_2, y_2), \dots, (x_{n/2}, y_{n/2})\}.$$

Main tool

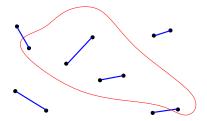
Theorem (Chazelle and Welzl, 1989)



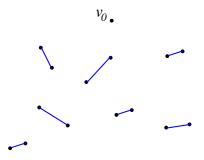
$$M = \{(x_1, y_1), (x_2, y_2), \dots, (x_{n/2}, y_{n/2})\}.$$

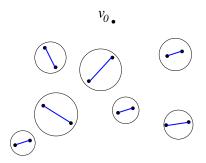
Main tool

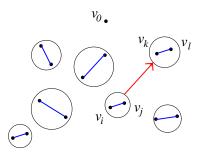
Theorem (Matching Lemma, Chazelle and Welzl 1989)

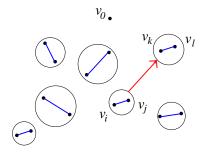


$$M = \{(x_1, y_1), (x_2, y_2), \dots, (x_{n/2}, y_{n/2})\}.$$



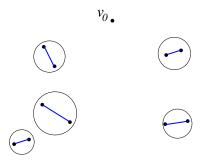




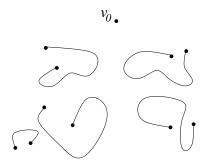


 $S_{i,j}$ and $S'_{i,j}$ stabs (in total) at most $O(n^{2/3})$ members in M = V(G). $|E(G)| \le O(n^{5/3})$.

 $|E(G)| \leq O(n^{5/3})$, by Turán, G contains an independent set of size $\Omega(n^{1/3})$.

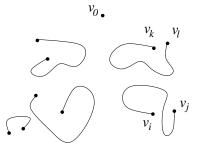


 $|E(G)| \leq O(n^{5/3})$, by Turán, G contains an independent set of size $\Omega(n^{1/3})$.



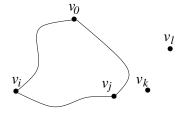
Claim!

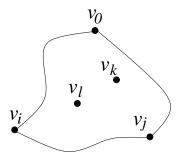
 $|E(G)| \leq O(n^{5/3})$, by Turán, G contains an independent set of size $\Omega(n^{1/3})$.



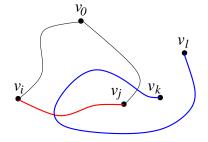
Claim!

Since $S_{i,j}$ does NOT stab $v_k v_l$



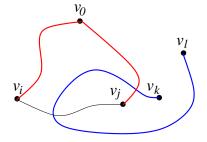


Definitions

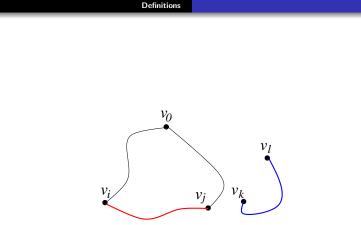


Assume edges cross.

Definitions

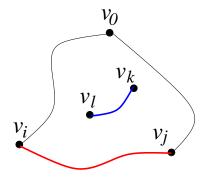


 $S'_{k,l}$ stabs $v_i v_j$, which is a contradiction.

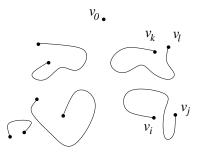


Two edges must be disjoint.

Same argument shows



 $\Omega(n^{1/3})$ pairwise disjoint edges in K_{n+1} .



Open Problems.

- Can the $\Omega(n^{1/3})$ bound be improved? Perhaps to $\Omega(n^{1/2})$?
- **2** Note that Géza Tóth show that $\pi_{\mathcal{F}}^*(m) = \Theta(m^3)$.
- Sest known upper bound construction: O(n) pairwise disjoint edges.
- Find Ω(n^δ) pairwise disjoint edges in dense simple topological graphs.

Thank you!