
Definitions

Disjoint edges in complete topological graphs

Andrew Suk

June 16, 2012

Andrew Suk Disjoint edges in complete topological graphs



Definitions

Problem: Given a complete n-vertex simple topological graph G ,
what is the size of the largest subset of pairwise disjoint edges.
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Definitions

Definition

A topological graph is a graph drawn in the plane with vertices
represented by points and edges represented by curves connecting
the corresponding points. A topological graph is simple if every
pair of its edges intersect at most once.
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Definitions

We will only consider simple topological graphs.
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Definitions

Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges,
has at most n edges.

Theorem (Lovász, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges,
has at most 2n edges.

Best known 1.43n by Fulek and Pach, 2010.
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Generalization.

Theorem (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint
edges, has at most Ckn log

5k−10 n edges.

Conjecture to be at most O(n) (for fixed k). By solving for k in
Ckn log

5k−10 n =
(

n
2

)

.

Corollary (Pach and Tóth, 2005)

Every complete n-vertex simple topological graph has at least
Ω(log n/ log log n) pairwise disjoint edges.
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Conjecture (Pach and Tóth)

There exists a constant δ, such that every complete n-vertex
simple topological graph has at least Ω(nδ) pairwise disjoint edges.
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History

Pairwise disjoint edges in complete n-vertex simple topological
graphs:

1 Ω(log1/6 n), Pach, Solymosi, Tóth, 2001.

2 Ω(log n/ log log n), Pach and Tóth, 2005.

3 Ω(log1+ǫ n), Fox and Sudakov, 2008.

Note ǫ ≈ 1/50. All results are slightly stronger statements.
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Main result

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least
Ω(n1/3) pairwise disjoint edges.
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Definitions

Clearly the simple condition is required.
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Definitions

Clearly the simple condition is required for this problem.
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Definitions

Sketch of proof

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least
Ω(n1/3) pairwise disjoint edges.

Kn+1
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Definitions

Sketch of proof

Theorem (Suk, 2011)

Every complete n-vertex simple topological graph has at least
Ω(n1/3) pairwise disjoint edges.

Kn+1
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Definitions

Define F1 =
⋃

1≤i<j≤n

{Si ,j}, where Si ,j is the set of vertices inside

triangle v0, vi , vj .
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S3,9 = {v1, v5, v7}
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Definitions

Define F1 =
⋃

1≤i<j≤n

{Si ,j}, where Si ,j is the set of vertices inside

triangle v0, vi , vj .
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v

v

2

11

S3,9 = {v1, v5, v7}, S2,11 = {v1, v5, v9}
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Definitions

Define F1 =
⋃

1≤i<j≤n

{Si ,j}, where Si ,j is the set of vertices inside

triangle v0, vi , vj .
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v11

S3,9 = {v1, v5, v7}, S2,11 = {v1, v5, v9}, S5,11 = {v9}.
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F1 is not ”complicated”.

Lemma

Any m sets in F1, S1, ...,Sm, partitions the ground set X into
O(m2) equivalence classes.

Vertices x ∼ y , if both x , y belong to the exact same sets among
S1, ...,Sm. In other words, no set among S1, ...,Sm contains x and
not y (and vice versa).
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Proof: m triangles partitions the plane into O(m2) cells.

v0
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Definitions

Define set system F2 =
⋃

1≤i<j≤n

{S ′
i ,j}, where vk ∈ S ′

i ,j if

topological edges v0vk and vivj cross.
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Definitions

Define set system F2 =
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1≤i<j≤n

{S ′
i ,j}, where vk ∈ S ′

i ,j if

topological edges v0vk and vivj cross.
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Definitions

Define set system F2 =
⋃

1≤i<j≤n

{S ′
i ,j}, where vk ∈ S ′

i ,j if

topological edges v0vk and vivj cross.
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Definitions

Define set system F2 =
⋃

1≤i<j≤n

{S ′
i ,j}, where vk ∈ S ′

i ,j if

topological edges v0vk and vivj cross.
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v1 v9

S ′
3,7 = {v2, v6, v5},S

′
2,9 = {v1, v3, v6, v12}.
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Definitions

Again, F2 is not ”complicated”. Set F = F1 ∪ F2. One can show

Lemma

Any m sets in F partitions X into at most O(m3) equivalence
classes.
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Main tool

Theorem (Matching theorem, Chazelle and Welzl, 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m3)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n2/3) members in M.
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Main tool

Theorem (Chazelle and Welzl, 1989)
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equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n2/3) members in M.
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Main tool

Theorem (Chazelle and Welzl, 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m3)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n2/3) members in M.
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Main tool

Theorem (Matching Lemma, Chazelle and Welzl 1989)

Let F be a set system on an n element point set X (n is even),
such that any m sets in F partitions X into at most O(m3)
equivalence classes. Then there exists a perfect matching M on X
such that each set in F stabs at most O(n2/3) members in M.
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Definitions

Auxiliary graph G , where V (G ) = M and vivj → vkvl if Si ,j or S
′
i ,j

stabs vkvl .
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Auxiliary graph G , where V (G ) = M and vivj → vkvl if Si ,j or S
′
i ,j

stabs vkvl .
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Definitions

Auxiliary graph G , where V (G ) = M and vivj → vkvl if Si ,j or S
′
i ,j

stabs vkvl .
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Si ,j and S ′
i ,j stabs (in total) at most O(n2/3) members in

M = V (G ). |E (G )| ≤ O(n5/3).
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|E (G )| ≤ O(n5/3), by Turán, G contains an independent set of
size Ω(n1/3).
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|E (G )| ≤ O(n5/3), by Turán, G contains an independent set of
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|E (G )| ≤ O(n5/3), by Turán, G contains an independent set of
size Ω(n1/3).
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Since Si ,j does NOT stab vkvl
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Assume edges cross.
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S ′
k,l stabs vivj , which is a contradiction.
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Two edges must be disjoint.
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Same argument shows
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Ω(n1/3) pairwise disjoint edges in Kn+1.
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Open Problems.

1 Can the Ω(n1/3) bound be improved? Perhaps to Ω(n1/2)?

2 Note that Géza Tóth show that π∗
F (m) = Θ(m3).

3 Best known upper bound construction: O(n) pairwise disjoint
edges.

4 Find Ω(nδ) pairwise disjoint edges in dense simple topological
graphs.
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Thank you!
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