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Drawings of the complete graph Kn

Question: Can we always find a “nice” planar subconfiguration?

Examples: noncrossing subgraph, plane edge,
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Drawings of the complete graph Kn

Question: Can we always find a “nice” planar subconfiguration?

Examples: noncrossing subgraph, plane edge, disjoint edges,
noncrossing path,...
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Drawings of the complete graph Kn

Question: Can we always find a “nice” planar subconfiguration?

Examples: noncrossing subgraph, plane edge, disjoint edges,
noncrossing path,....
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Drawings of Kn with many crossings
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Drawings of Kn with many crossings

Every pair of edges cross.
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Drawings of Kn with many crossings

Pach-Tóth 2010. Every pair of edges cross, every pair of edges
cross at most twice.
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Simple condition is necessary

Question: Can we always find a “nice” planar subconfiguration?

Every pair of edges cross at most once.
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Simple Topological Graph G = (V ,E )

V = points in the plane.

E = curves connecting the corresponding points (vertices).

Every pair of edges have at most 1 point in common.
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We will only consider simple topological graphs.
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Complete simple topological graphs

Question: Can we always find a “nice” planar subconfiguration?

Examples: noncrossing subgraph, plane edge, disjoint edges,
noncrossing path,...
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Complete simple topological graphs

Question: Can we always find a “nice” planar subconfiguration?

Examples: noncrossing subgraph, plane edge, disjoint edges,
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Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let F (n) be the maximum number of
plane edges in a complete n-vertex simple topological graph.
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Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let F (n) be the maximum number of
plane edges in a complete n-vertex simple topological graph.

Theorem (Ringel, 1963)

For n ≥ 4,F (n) = 2n − 2.
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Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let F (n) be the maximum number of
plane edges in a complete n-vertex simple topological graph.

n−1

Theorem (Ringel, 1963)

For n ≥ 4,F (n) = 2n − 2.
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Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let f (n) be the
minimum number of plane edges in a complete n-vertex simple
topological graph.
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Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let f (n) be the
minimum number of plane edges in a complete n-vertex simple
topological graph.

Theorem (Harborth and Mengersen, 1974)

f (3) = 3, f (4) = 4, f (5) = 4, f (6) = 3, f (7) = 2.
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Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let f (n) be the
minimum number of plane edges in a complete n-vertex simple
topological graph.

Theorem (Harborth and Mengersen, 1974)

f (3) = 3, f (4) = 4, f (5) = 4, f (6) = 3, f (7) = 2.

For n ≥ 8, f (n) = 0.
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Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let f (n) be the
minimum number of plane edges in a complete n-vertex simple
topological graph.

Theorem (Harborth and Mengersen, 1974)

f (3) = 3, f (4) = 4, f (5) = 4, f (6) = 3, f (7) = 2.

For n ≥ 8, f (n) = 0.

Theorem (Harborth and Mengersen, 1994)

There are complete n-vertex simple topological graphs such that

every edge crosses at least (34 + o(1))n other edges.
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Finding an edge that crosses few other edges

Peter Brass, William Moser, János Pach, 2005. Let h(n) be
the minimum integer such that every complete n-vertex simple
topological graph contains an edge that crosses at most h(n) other
edges.
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Finding an edge that crosses few other edges

Peter Brass, William Moser, János Pach, 2005. Let h(n) be
the minimum integer such that every complete n-vertex simple
topological graph contains an edge that crosses at most h(n) other
edges.

Conjecture (Brass, Moser, Pach, 2005)

h(n) = o(n2).

Informal definition. An edge is short if it crosses at most o(n2)
other edges.

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Short edges always exist in simple drawings of Kn

Theorem (Jan Kynčl, Pavel Valtr, 2009)

Ω(n3/2) < h(n) < O( n2

log1/4 n
).
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Short edges always exist in simple drawings of Kn

Theorem (Jan Kynčl, Pavel Valtr, 2009)

Ω(n3/2) < h(n) < O( n2

log1/4 n
).

Harborth-Mengersen. Ω(n) < h(n). Does not generalize to
dense simple topological graphs.
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Finding an edge that crosses few other edges

Theorem (S., 2023+)

h(n) = O(n7/4). That is, every complete n-vertex simple

topological graph contains an edge that crosses at most O(n7/4)
other edges.
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Finding an edge that crosses few other edges

Theorem (S., 2023+)

h(n) = O(n7/4). That is, every complete n-vertex simple

topological graph contains an edge that crosses at most O(n7/4)
other edges.

Ω(n3/2) < h(n) < O(n7/4)

Conjecture (Kynčl-Valtr 2009, S. 2023+)

h(n) = Θ(n3/2).

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Finding an edge that crosses few other edges

Theorem (S., 2023+)

h(n) = O(n7/4). That is, every complete n-vertex simple

topological graph contains an edge that crosses at most O(n7/4)
other edges.

Ω(n3/2) < h(n) < O(n7/4)

Conjecture (Kynčl-Valtr 2009, S. 2023+)

h(n) = Θ(n3/2).

Key ideas

1 VC-dimension theory

2 Minimality argument
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VC-dimension theory

Set system F ⊂ 2V , |V | = n.
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VC-dimension theory

Set system F ⊂ 2V , |V | = n.

Definition

A set S ⊂ V is shattered by F if for all X ⊂ S , there is an A ∈ F
such that S ∩ A = X .
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VC-dimension theory

Set system F ⊂ 2V , |V | = n.

Definition

The VC-dimension of F is the size of the largest subset S ⊂ V

that is shattered by F .
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A more useful parameter

Dual VC-dimension. Let F be a set-system on a ground set V ,
|V | = n.

Definition

The dual shatter function π∗

F
(m), is defined to be the maximum

number of equivalence classes on V , defined by m sets in F .
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A more useful parameter

Dual VC-dimension. Let F be a set-system on a ground set V ,
|V | = n.

Definition

The dual shatter function π∗

F
(m), is defined to be the maximum

number of equivalence classes on V , defined by m sets in F .

Given sets A1, . . . ,Am ∈ F , x , y ∈ V are equivalent if they both lie
in the same sets among A1, . . . ,Am.
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Stabbing

Let F be a set-system on a ground set V , |V | = n,
π∗

F
(m) = O(md ).
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Stabbing

Let F be a set-system on a ground set V , |V | = n,
π∗

F
(m) = O(md ).

Definition: A set A ∈ F stabs {x , y} if A contains exactly one of
the two vertices.
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Stabbing

Let F be a set-system on a ground set V , |V | = n,
π∗

F
(m) = O(md ).

Definition: A set A ∈ F stabs {x , y} if A contains exactly one of
the two vertices.

F =

x

y A
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Short edge lemma

Theorem (Chazelle-Welzl 1989)

F is a set system on a ground set V with π∗

F
(m) = O(md ). Then

there is a pair of vertices x , y ∈ V such that {x , y} is stabbed by

at most c |F|/n1/d .

F =
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Short edge lemma

Theorem (Chazelle-Welzl 1989)

F is a set system on a ground set V with π∗

F
(m) = O(md ). Then

there is a pair of vertices x , y ∈ V such that {x , y} is stabbed by

at most c |F|/n1/d .

F =

x

y

Together with an iterative re-weighting technique
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Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

F is a set system on a ground set V with π∗

F
(m) = O(md ). Then

there is a perfect matching M on V such that each set A ∈ F
stabs at most O(n1−1/d ) members in M.

F =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

F is a set system on a ground set V with π∗

F
(m) = O(md ). Then

there is a perfect matching M on V such that each set A ∈ F
stabs at most O(n1−1/d ) members in M.

F =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

F is a set system on a ground set V with π∗

F
(m) = O(md ). Then

there is a perfect matching M on V such that each set A ∈ F
stabs at most O(n1−1/d ) members in M.

F =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

F is a set system on a ground set V with π∗

F
(m) = O(md ). Then

there is a perfect matching M on V such that each set A ∈ F
stabs at most O(n1−1/d ) members in M.

F =

Combining Haussler’s packing lemma + iterative re-weighting +
triangle inequality
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Lemma

F is a set system on V with |V | = n and π∗

F
(m) = O(md ). Then

there is a subset X ⊂ V , |X | ≤ O(n1/2+1/(2d)), and a perfect

matching M on V \ X such that

1 Each {x , y} ∈ M is stabbed by at most O(|F|/n1/(2d)) sets.

2 Each A ∈ F , stabs at most O(n1−1/d ) members in M.

F =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Lemma

F is a set system on V with |V | = n and π∗

F
(m) = O(md ). Then

there is a subset X ⊂ V , |X | ≤ O(n1/2+1/(2d)), and a perfect

matching M on V \ X such that

1 Each {x , y} ∈ M is stabbed by at most O(|F|/n1/(2d)) sets.

2 Each A ∈ F , stabs at most O(n1−1/d ) members in M.

F =

X

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Lemma

F is a set system on V with |V | = n and π∗

F
(m) = O(md ). Then

there is a subset X ⊂ V , |X | ≤ O(n1/2+1/(2d)), and a perfect

matching M on V \ X such that

1 Each {x , y} ∈ M is stabbed by at most O(|F|/n1/(2d)) sets.

2 Each A ∈ F , stabs at most O(n1−1/d ) members in M.

F =

X

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Lemma

F is a set system on V with |V | = n and π∗

F
(m) = O(md ). Then

there is a subset X ⊂ V , |X | ≤ O(n1/2+1/(2d)), and a perfect

matching M on V \ X such that

1 Each {x , y} ∈ M is stabbed by at most O(|F|/n1/(2d)) sets.

2 Each A ∈ F , stabs at most O(n1−1/d ) members in M.

F =

X

x

y

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Lemma

F is a set system on V with |V | = n and π∗

F
(m) = O(md ). Then

there is a subset X ⊂ V , |X | ≤ O(n1/2+1/(2d)), and a perfect

matching M on V \ X such that

1 Each {x , y} ∈ M is stabbed by at most O(|F|/n1/(2d)) sets.

2 Each A ∈ F , stabs at most O(n1−1/d ) members in M.

F =

X

x

y

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Lemma

F is a set system on V with |V | = n and π∗

F
(m) = O(md ). Then

there is a subset X ⊂ V , |X | ≤ O(n1/2+1/(2d)), and a perfect

matching M on V \ X such that

1 Each {x , y} ∈ M is stabbed by at most O(|F|/n1/(2d)) sets.

2 Each A ∈ F , stabs at most O(n1−1/d ) members in M.

F =

X

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an

edge that crosses at most O(n7/4) other edges.

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an

edge that crosses at most O(n7/4) other edges.

Proof.

Kn =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an

edge that crosses at most O(n7/4) other edges.

Proof.

0v

Kn =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an

edge that crosses at most O(n7/4) other edges.

Proof.

0v

Kn =

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Proof of main result
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Proof. Ground set V = {v1, v2, . . . , vn−1}.
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Proof of main result
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Proof. Ground set V = {v1, v2, . . . , vn−1}.

Set system F =
⋃

i ,j
Ti ,j , Ti ,j = vertices inside triangle v0, vi , vj .

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Proof of main result
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6v

7v

Kn =

Proof. Ground set V = {v1, v2, . . . , vn−1}.

Set system F =
⋃

i ,j
Ti ,j , Ti ,j = vertices inside triangle v0, vi , vj .

Example: T3,4 = {v1, v6}.
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Apply the matching with low stabbing number lemma
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X

|X | = O(n3/4)
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Apply the matching with low stabbing number lemma
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j

|X | = O(n3/4)
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Apply the matching with low stabbing number lemma

0v

Kn =

X

v

v

i

j

|X | = O(n3/4),

at most O(n7/4) sets in F stab {vi , vj},
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Apply the matching with low stabbing number lemma

0v

Kn =

X

v

v

i

j

|X | = O(n3/4),

at most O(n7/4) sets in F stab {vi , vj},

Each set Ti ,j ∈ F stabs at most O(n1/2) matchings.
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Apply the matching with low stabbing number lemma

0v

Kn =

X

v

v

i

j

|X | = O(n3/4),

at most O(n7/4) sets in F stab {vi , vj},

Each set Ti ,j ∈ F stabs at most O(n1/2) matchings.
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Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Let {vx , vy} be the matching such that the triangle
Tx ,y = (v0, vx , vy ) contains the fewest matchings.
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Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Let {vx , vy} be the matching such that the triangle
Tx ,y = (v0, vx , vy ) contains the fewest matchings.
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Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Let {vx , vy} be the matching such that the triangle
Tx ,y = (v0, vx , vy ) contains the fewest matchings.
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Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Let {vx , vy} be the matching such that the triangle
Tx ,y = (v0, vx , vy ) contains the fewest matchings.

Note. At most O(n1/2) matchings stabs Tx ,y .
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Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Claim. Edge vxvy crosses at most O(n7/4) other edges.

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Claim. Edge vxvy crosses at most O(n7/4) other edges.

Cheat. |x − y | < n3/4.
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Apply the matching with low stabbing number lemma

0v

1v
2v v

3
4v

5v
6v

7v

Kn =

Claim. Edge vxvy crosses at most O(n7/4) other edges.

Cheat. |x − y | < n3/4.
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Apply the matching with low stabbing number lemma

0v

Kn =

X v
vx

y

Claim. Edge vxvy crosses at most O(n7/4) other edges.

Cheat. |x − y | < n3/4.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).

E2 edges with endpoint between vx ,vy . |E2| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).

E2 edges with endpoint between vx ,vy . |E2| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).

E2 edges with endpoint between vx ,vy . |E2| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.
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Counting edges crossing vxvy
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vx

y

Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.
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Counting edges crossing vxvy
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vx
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Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Observation. If vi , vj both lie outside (inside) of Tx ,y and vivj
crosses vxvy , then Ti ,j stabs {vx , vy}.

E3 remaining edges with both endpoints inside (outside) Tx ,y

and crossing vxvy . |E3| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).

E2 edges with endpoint between vx ,vy . |E2| = O(n7/4).

E3 both endpoints inside (outside) Tx ,y . |E3| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).

E2 edges with endpoint between vx ,vy . |E2| = O(n7/4).

E3 both endpoints inside (outside) Tx ,y . |E3| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

E0 edges incident to v0. |E0| < n.

E1 edges incident to X , |X | < O(n3/4). |E1| = O(n7/4).

E2 edges with endpoint between vx ,vy . |E2| = O(n7/4).

E3 both endpoints inside (outside) Tx ,y . |E3| = O(n7/4).

E4 rest of the edges that crosses vxvy .
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

Goal. |E4| = O(n7/4).
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. At least cn3/4 vertices
”enter” triangle Tx ,y .
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. At least cn3/4 vertices
”enter” triangle Tx ,y .
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. If |E4| > cn7/4. At
least cn3/4 vertices ”enter” triangle Tx ,y .

At most O(n1/2) matchings stabs Tx ,y .
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. If |E4| > cn7/4. At
least cn3/4 vertices ”enter” triangle Tx ,y .

At most O(n1/2) matchings stabs Tx ,y . Hence, many matchings lie
inside.
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Counting edges crossing vxvy
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vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. If |E4| > cn7/4. At
least cn3/4 vertices ”enter” triangle Tx ,y .

At most O(n1/2) matchings stabs Tx ,y . Hence, many matchings lie
inside.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. If |E4| > cn7/4. At
least cn3/4 vertices ”enter” triangle Tx ,y .

At most O(n1/2) matchings stabs Tx ,y . Hence, many matchings lie
inside.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Edges in E4.

For sake of contradiction. If |E4| > cn7/4. If |E4| > cn7/4. At
least cn3/4 vertices ”enter” triangle Tx ,y .

At most O(n1/2) matchings stabs Tx ,y . Hence, many matchings lie
inside.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

(c/2)n3/4 matchings inside of Tx ,y .

At most O(n7/4) triangles Ti ,j stabs {vx , vy}.

Moreover: At most O(n3/4) matching triangles Ti ,j stabs
{vx , vy}.
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

(c/4)n3/4 matching whose corresponding topological edge must lie
inside of triangle Tx ,y .

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Counting edges crossing vxvy

0v

Kn =

X v
vx

y

(c/4)n3/4 matching whose corresponding topological edge must lie
inside of triangle Tx ,y .
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

(c/4)n3/4 matching whose corresponding topological edge must lie
inside of triangle Tx ,y .

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Punchline. One triangle Ti ,j will not contain (c/10)n3/4

matchings from inside Tx ,y .
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Counting edges crossing vxvy

0v

Kn =

X v
vx

y

Punchline. One triangle Ti ,j will not contain (c/10)n3/4

matchings from inside Tx ,y .

At most O(n3/4) matchings lie inside Ti ,j and not in Tx ,y .
Contradiction. |E4| = O(n7/4).
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Putting it all together

0v

Kn =

X v
vx

y

Edge vxvy crosses at most

|E0|+ |E1|+ |E2|+ |E3|+ |E4| = O(n7/4)

other edges.
�.
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Open problems

Ω(n3/2) < h(n) < O(n7/4)

Conjecture (Kynčl-Valtr 2009, S. 2023+)

h(n) = Θ(n3/2).
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Open problem: Many pairwise disjoint edges

Theorem (Aichholzer-Garca-Tejel-Vogtenhuber-Weinberger 2022)

Every complete n-vertex simple topological graph contains

n1/2−o(1) pairwise disjoint edges.
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Open problem: Many pairwise disjoint edges

Theorem (Aichholzer-Garca-Tejel-Vogtenhuber-Weinberger 2022)

Every complete n-vertex simple topological graph contains

n1/2−o(1) pairwise disjoint edges.

Rafla 1988. Noncrossing Hamiltonian cycle
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Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains

noncrossing path of length Ω(n1/9).
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Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains

noncrossing path of length Ω(n1/9).

Previous best known bound. log n
log log n by Aichholzer et al.,

S.-Zeng.
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Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains

noncrossing path of length Ω(n1/9).
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Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains

noncrossing path of length Ω(n1/9).

Problem. Noncrossing cycle of length Ω(nǫ).

Andrew Suk (UC San Diego) Short edges in complete topological graphs



Density type problems

Conjecture

Every n-vertex simple topological graph with εn2 edges contains nδ

pairwise disjoint edges, where δ = δ(ε).
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Density type problems

Conjecture

Every n-vertex simple topological graph with εn2 edges contains nδ

pairwise disjoint edges, where δ = δ(ε).

Theorem (Fox-Pach-S., 2023+)

Every n-vertex simple topological graph with Ω(n2) edges contains
nc/ log log n pairwise disjoint edges.

Previous best known bound. (log n)1+1/100 by Fox and Sudakov.
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Thank you!
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