Short edges in complete topological graphs

Andrew Suk (UC San Diego)

November 9, 2023

Drawings of the complete graph K_{n}

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph,

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph,

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge,

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge,

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges,

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges,

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges, noncrossing path,...

Drawings of the complete graph K_{n}

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges, noncrossing path,....

Drawings of K_{n} with many crossings

Drawings of K_{n} with many crossings

Drawings of K_{n} with many crossings

Every pair of edges cross.

Drawings of K_{n} with many crossings

Pach-Tóth 2010. Every pair of edges cross, every pair of edges cross at most twice.

Simple condition is necessary

Question: Can we always find a "nice" planar subconfiguration? Every pair of edges cross at most once.

Simple Topological Graph $G=(V, E)$

$V=$ points in the plane.
$E=$ curves connecting the corresponding points (vertices).
Every pair of edges have at most 1 point in common.

We will only consider simple topological graphs.

Complete simple topological graphs

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges, noncrossing path,...

Complete simple topological graphs

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges, noncrossing path,...

Complete simple topological graphs

Question: Can we always find a "nice" planar subconfiguration?
Examples: noncrossing subgraph, plane edge, disjoint edges, noncrossing path,...

Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let $F(n)$ be the maximum number of plane edges in a complete n-vertex simple topological graph.

Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let $F(n)$ be the maximum number of plane edges in a complete n-vertex simple topological graph.

Theorem (Ringel, 1963)
For $n \geq 4, F(n)=2 n-2$.

Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let $F(n)$ be the maximum number of plane edges in a complete n-vertex simple topological graph.

Theorem (Ringel, 1963)

For $n \geq 4, F(n)=2 n-2$.

Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let $f(n)$ be the minimum number of plane edges in a complete n-vertex simple topological graph.

Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let $f(n)$ be the minimum number of plane edges in a complete n-vertex simple topological graph.

$$
\begin{aligned}
& \text { Theorem (Harborth and Mengersen, 1974) } \\
& f(3)=3, f(4)=4, f(5)=4, f(6)=3, f(7)=2 .
\end{aligned}
$$

Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let $f(n)$ be the minimum number of plane edges in a complete n-vertex simple topological graph.

Theorem (Harborth and Mengersen, 1974)
$f(3)=3, f(4)=4, f(5)=4, f(6)=3, f(7)=2$.
For $n \geq 8, f(n)=0$.

Plane edges in complete simple topological graphs

Heiko Harborth and Ingrid Mengersen, 1974. Let $f(n)$ be the minimum number of plane edges in a complete n-vertex simple topological graph.

Theorem (Harborth and Mengersen, 1974)
$f(3)=3, f(4)=4, f(5)=4, f(6)=3, f(7)=2$.
For $n \geq 8, f(n)=0$.

Theorem (Harborth and Mengersen, 1994)

There are complete n-vertex simple topological graphs such that every edge crosses at least $\left(\frac{3}{4}+o(1)\right) n$ other edges.

Finding an edge that crosses few other edges

Peter Brass, William Moser, János Pach, 2005. Let $h(n)$ be the minimum integer such that every complete n-vertex simple topological graph contains an edge that crosses at most $h(n)$ other edges.

Finding an edge that crosses few other edges

Peter Brass, William Moser, János Pach, 2005. Let $h(n)$ be the minimum integer such that every complete n-vertex simple topological graph contains an edge that crosses at most $h(n)$ other edges.

Conjecture (Brass, Moser, Pach, 2005)

$h(n)=o\left(n^{2}\right)$.
Informal definition. An edge is short if it crosses at most $o\left(n^{2}\right)$ other edges.

Short edges always exist in simple drawings of K_{n}

Theorem (Jan Kynčl, Pavel Valtr, 2009)

$$
\Omega\left(n^{3 / 2}\right)<h(n)<O\left(\frac{n^{2}}{\log ^{1 / 4} n}\right) .
$$

Short edges always exist in simple drawings of K_{n}

Theorem (Jan Kynčl, Pavel Valtr, 2009)
$\Omega\left(n^{3 / 2}\right)<h(n)<O\left(\frac{n^{2}}{\log ^{1 / 4} n}\right)$.
Harborth-Mengersen. $\Omega(n)<h(n)$.

Short edges always exist in simple drawings of K_{n}

Theorem (Jan Kynčl, Pavel Valtr, 2009)
$\Omega\left(n^{3 / 2}\right)<h(n)<O\left(\frac{n^{2}}{\log ^{1 / 4} n}\right)$.
Harborth-Mengersen. $\Omega(n)<h(n)$. Does not generalize to dense simple topological graphs.

$$
n / 4
$$

$$
n / 4
$$

Short edges always exist in simple drawings of K_{n}

Theorem (Jan Kynčl, Pavel Valtr, 2009)
$\Omega\left(n^{3 / 2}\right)<h(n)<O\left(\frac{n^{2}}{\log ^{1 / 4} n}\right)$.
Harborth-Mengersen. $\Omega(n)<h(n)$. Does not generalize to dense simple topological graphs.

Finding an edge that crosses few other edges

Theorem (S., 2023+)

$h(n)=O\left(n^{7 / 4}\right)$. That is, every complete n-vertex simple topological graph contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

Finding an edge that crosses few other edges

Theorem (S., 2023+)

$h(n)=O\left(n^{7 / 4}\right)$. That is, every complete n-vertex simple topological graph contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

$$
\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{7 / 4}\right)
$$

Conjecture (Kynčl-Valtr 2009, S. 2023+)
$h(n)=\Theta\left(n^{3 / 2}\right)$.

Finding an edge that crosses few other edges

Theorem (S., 2023+)

$h(n)=O\left(n^{7 / 4}\right)$. That is, every complete n-vertex simple topological graph contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

$$
\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{7 / 4}\right)
$$

Conjecture (Kynčl-Valtr 2009, S. 2023+)
$h(n)=\Theta\left(n^{3 / 2}\right)$.
Key ideas
(1) VC-dimension theory
(2) Minimality argument

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.
Definition
A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

A set $S \subset V$ is shattered by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A=X$.

VC-dimension theory

Set system $\mathcal{F} \subset 2^{V},|V|=n$.

Definition

The VC-dimension of \mathcal{F} is the size of the largest subset $S \subset V$ that is shattered by \mathcal{F}.

A more useful parameter

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, $|V|=n$.

Definition

The dual shatter function $\pi_{\mathcal{F}}^{*}(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F}.

A more useful parameter

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, $|V|=n$.

Definition

The dual shatter function $\pi_{\mathcal{F}}^{*}(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F}.

Given sets $A_{1}, \ldots, A_{m} \in \mathcal{F}, x, y \in V$ are equivalent if they both lie in the same sets among A_{1}, \ldots, A_{m}.

A more useful parameter

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, $|V|=n$.

Definition

The dual shatter function $\pi_{\mathcal{F}}^{*}(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F}.

Given sets $A_{1}, \ldots, A_{m} \in \mathcal{F}, x, y \in V$ are equivalent if they both lie in the same sets among A_{1}, \ldots, A_{m}.

A more useful parameter

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, $|V|=n$.

Definition

The dual shatter function $\pi_{\mathcal{F}}^{*}(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F}.

Given sets $A_{1}, \ldots, A_{m} \in \mathcal{F}, x, y \in V$ are equivalent if they both lie in the same sets among A_{1}, \ldots, A_{m}.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Definition: A set $A \in \mathcal{F}$ stabs $\{x, y\}$ if A contains exactly one of the two vertices.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Definition: A set $A \in \mathcal{F}$ stabs $\{x, y\}$ if A contains exactly one of the two vertices.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Definition: A set $A \in \mathcal{F}$ stabs $\{x, y\}$ if A contains exactly one of the two vertices.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Definition: A set $A \in \mathcal{F}$ stabs $\{x, y\}$ if A contains exactly one of the two vertices.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Definition: A set $A \in \mathcal{F}$ stabs $\{x, y\}$ if A contains exactly one of the two vertices.

Stabbing

Let \mathcal{F} be a set-system on a ground set $V,|V|=n$, $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$.

Definition: A set $A \in \mathcal{F}$ stabs $\{x, y\}$ if A contains exactly one of the two vertices.

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a pair of vertices $x, y \in V$ such that $\{x, y\}$ is stabbed by at most $c|\mathcal{F}| / n^{1 / d}$.

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a pair of vertices $x, y \in V$ such that $\{x, y\}$ is stabbed by at most $c|\mathcal{F}| / n^{1 / d}$.

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a pair of vertices $x, y \in V$ such that $\{x, y\}$ is stabbed by at most $c|\mathcal{F}| / n^{1 / d}$.

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a pair of vertices $x, y \in V$ such that $\{x, y\}$ is stabbed by at most $c|\mathcal{F}| / n^{1 / d}$.

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a pair of vertices $x, y \in V$ such that $\{x, y\}$ is stabbed by at most $c|\mathcal{F}| / n^{1 / d}$.

Together with an iterative re-weighting technique

Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Matching with low stabbing number

Theorem (Chazelle-Welzl 1989)

\mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Combining Haussler's packing lemma + iterative re-weighting + triangle inequality

Lemma

\mathcal{F} is a set system on V with $|V|=n$ and $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a subset $X \subset V,|X| \leq O\left(n^{1 / 2+1 /(2 d)}\right)$, and a perfect matching M on $V \backslash X$ such that
(1) Each $\{x, y\} \in M$ is stabbed by at most $O\left(|\mathcal{F}| / n^{1 /(2 d)}\right)$ sets.
(2) Each $A \in \mathcal{F}$, stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Lemma

\mathcal{F} is a set system on V with $|V|=n$ and $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a subset $X \subset V,|X| \leq O\left(n^{1 / 2+1 /(2 d)}\right)$, and a perfect matching M on $V \backslash X$ such that
(1) Each $\{x, y\} \in M$ is stabbed by at most $O\left(|\mathcal{F}| / n^{1 /(2 d)}\right)$ sets.
(2) Each $A \in \mathcal{F}$, stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Lemma

\mathcal{F} is a set system on V with $|V|=n$ and $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a subset $X \subset V,|X| \leq O\left(n^{1 / 2+1 /(2 d)}\right)$, and a perfect matching M on $V \backslash X$ such that
(1) Each $\{x, y\} \in M$ is stabbed by at most $O\left(|\mathcal{F}| / n^{1 /(2 d)}\right)$ sets.
(2) Each $A \in \mathcal{F}$, stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Lemma

\mathcal{F} is a set system on V with $|V|=n$ and $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a subset $X \subset V,|X| \leq O\left(n^{1 / 2+1 /(2 d)}\right)$, and a perfect matching M on $V \backslash X$ such that
(1) Each $\{x, y\} \in M$ is stabbed by at most $O\left(|\mathcal{F}| / n^{1 /(2 d)}\right)$ sets.
(2) Each $A \in \mathcal{F}$, stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Lemma

\mathcal{F} is a set system on V with $|V|=n$ and $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a subset $X \subset V,|X| \leq O\left(n^{1 / 2+1 /(2 d)}\right)$, and a perfect matching M on $V \backslash X$ such that
(1) Each $\{x, y\} \in M$ is stabbed by at most $O\left(|\mathcal{F}| / n^{1 /(2 d)}\right)$ sets.
(2) Each $A \in \mathcal{F}$, stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Lemma

\mathcal{F} is a set system on V with $|V|=n$ and $\pi_{\mathcal{F}}^{*}(m)=O\left(m^{d}\right)$. Then there is a subset $X \subset V,|X| \leq O\left(n^{1 / 2+1 /(2 d)}\right)$, and a perfect matching M on $V \backslash X$ such that
(1) Each $\{x, y\} \in M$ is stabbed by at most $O\left(|\mathcal{F}| / n^{1 /(2 d)}\right)$ sets.
(2) Each $A \in \mathcal{F}$, stabs at most $O\left(n^{1-1 / d}\right)$ members in M.

Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

Proof.

Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

Proof.

Proof of main result

Theorem (S., 2023+)

Every complete simple topological graph on n vertices contains an edge that crosses at most $O\left(n^{7 / 4}\right)$ other edges.

Proof.

Proof of main result

Proof of main result

Proof. Ground set $V=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.

Proof of main result

Proof. Ground set $V=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Set system $\mathcal{F}=\bigcup_{i, j} T_{i, j}, T_{i, j}=$ vertices inside triangle v_{0}, v_{i}, v_{j}.

Proof of main result

Proof. Ground set $V=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Set system $\mathcal{F}=\bigcup_{i, j} T_{i, j}, T_{i, j}=$ vertices inside triangle v_{0}, v_{i}, v_{j}.
Example: $T_{3,4}=\left\{v_{1}, v_{6}\right\}$.

Proof of main result

Set system $\mathcal{F}=\bigcup_{i, j} T_{i, j}$,

Proof of main result

Set system $\mathcal{F}=\bigcup_{i, j} T_{i, j},|\mathcal{F}|=\Theta\left(n^{2}\right)$,

Proof of main result

Set system $\mathcal{F}=\bigcup_{i, j} T_{i, j},|\mathcal{F}|=\Theta\left(n^{2}\right), \pi_{\mathcal{F}}^{*}(m)=O\left(m^{2}\right)$.

Proof of main result

Set system $\mathcal{F}=\bigcup_{i, j} T_{i, j},|\mathcal{F}|=\Theta\left(n^{2}\right), \pi_{\mathcal{F}}^{*}(m)=O\left(m^{2}\right)$.

Apply the matching with low stabbing number lemma

Apply the matching with low stabbing number lemma

$|X|=O\left(n^{3 / 4}\right)$

Apply the matching with low stabbing number lemma

$|X|=O\left(n^{3 / 4}\right)$

Apply the matching with low stabbing number lemma

$|X|=O\left(n^{3 / 4}\right)$

Apply the matching with low stabbing number lemma

$|X|=O\left(n^{3 / 4}\right)$,
at most $O\left(n^{7 / 4}\right)$ sets in \mathcal{F} stab $\left\{v_{i}, v_{j}\right\}$,

Apply the matching with low stabbing number lemma

$|X|=O\left(n^{3 / 4}\right)$,
at most $O\left(n^{7 / 4}\right)$ sets in \mathcal{F} stab $\left\{v_{i}, v_{j}\right\}$,
Each set $T_{i, j} \in \mathcal{F}$ stabs at most $O\left(n^{1 / 2}\right)$ matchings.

Apply the matching with low stabbing number lemma

$|X|=O\left(n^{3 / 4}\right)$,
at most $O\left(n^{7 / 4}\right)$ sets in \mathcal{F} stab $\left\{v_{i}, v_{j}\right\}$,
Each set $T_{i, j} \in \mathcal{F}$ stabs at most $O\left(n^{1 / 2}\right)$ matchings.

Apply the matching with low stabbing number lemma

Let $\left\{v_{x}, v_{y}\right\}$ be the matching such that the triangle $T_{x, y}=\left(v_{0}, v_{x}, v_{y}\right)$ contains the fewest matchings.

Apply the matching with low stabbing number lemma

Let $\left\{v_{x}, v_{y}\right\}$ be the matching such that the triangle $T_{x, y}=\left(v_{0}, v_{x}, v_{y}\right)$ contains the fewest matchings.

Apply the matching with low stabbing number lemma

Let $\left\{v_{x}, v_{y}\right\}$ be the matching such that the triangle $T_{x, y}=\left(v_{0}, v_{x}, v_{y}\right)$ contains the fewest matchings.

Apply the matching with low stabbing number lemma

Let $\left\{v_{x}, v_{y}\right\}$ be the matching such that the triangle $T_{x, y}=\left(v_{0}, v_{x}, v_{y}\right)$ contains the fewest matchings.
Note. At most $O\left(n^{1 / 2}\right)$ matchings stabs $T_{x, y}$.

Apply the matching with low stabbing number lemma

Claim. Edge $v_{x} v_{y}$ crosses at most $O\left(n^{7 / 4}\right)$ other edges.

Apply the matching with low stabbing number lemma

Claim. Edge $v_{x} v_{y}$ crosses at most $O\left(n^{7 / 4}\right)$ other edges.
Cheat. $|x-y|<n^{3 / 4}$.

Apply the matching with low stabbing number lemma

Claim. Edge $v_{x} v_{y}$ crosses at most $O\left(n^{7 / 4}\right)$ other edges.
Cheat. $|x-y|<n^{3 / 4}$.

Apply the matching with low stabbing number lemma

Claim. Edge $v_{x} v_{y}$ crosses at most $O\left(n^{7 / 4}\right)$ other edges.
Cheat. $|x-y|<n^{3 / 4}$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.
- E_{2} edges with endpoint between $v_{x}, v_{y} .\left|E_{2}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.
- E_{2} edges with endpoint between $v_{x}, v_{y} .\left|E_{2}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.
- E_{2} edges with endpoint between $v_{x}, v_{y} .\left|E_{2}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

Observation. If v_{i}, v_{j} both lie outside (inside) of $T_{x, y}$ and $v_{i} v_{j}$ crosses $v_{x} v_{y}$, then $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

- E_{3} remaining edges with both endpoints inside (outside) $T_{x, y}$ and crossing $v_{x} v_{y} .\left|E_{3}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.
- E_{2} edges with endpoint between $v_{x}, v_{y} .\left|E_{2}\right|=O\left(n^{7 / 4}\right)$.
- E_{3} both endpoints inside (outside) $T_{x, y} \cdot\left|E_{3}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.
- E_{2} edges with endpoint between $v_{x}, v_{y} .\left|E_{2}\right|=O\left(n^{7 / 4}\right)$.
- E_{3} both endpoints inside (outside) $T_{x, y} \cdot\left|E_{3}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

- E_{0} edges incident to $v_{0} .\left|E_{0}\right|<n$.
- E_{1} edges incident to $X,|X|<O\left(n^{3 / 4}\right)$. $\left|E_{1}\right|=O\left(n^{7 / 4}\right)$.
- E_{2} edges with endpoint between $v_{x}, v_{y} .\left|E_{2}\right|=O\left(n^{7 / 4}\right)$.
- E_{3} both endpoints inside (outside) $T_{x, y} \cdot\left|E_{3}\right|=O\left(n^{7 / 4}\right)$.
- E_{4} rest of the edges that crosses $v_{x} v_{y}$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
Goal. $\left|E_{4}\right|=O\left(n^{7 / 4}\right)$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.
At most $O\left(n^{1 / 2}\right)$ matchings stabs $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.
At most $O\left(n^{1 / 2}\right)$ matchings stabs $T_{x, y}$. Hence, many matchings lie inside.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.
At most $O\left(n^{1 / 2}\right)$ matchings stabs $T_{x, y}$. Hence, many matchings lie inside.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.
At most $O\left(n^{1 / 2}\right)$ matchings stabs $T_{x, y}$. Hence, many matchings lie inside.

Counting edges crossing $v_{x} v_{y}$

Edges in E_{4}.
For sake of contradiction. If $\left|E_{4}\right|>c n^{7 / 4}$. If $\left|E_{4}\right|>c n^{7 / 4}$. At least $c n^{3 / 4}$ vertices "enter" triangle $T_{x, y}$.
At most $O\left(n^{1 / 2}\right)$ matchings stabs $T_{x, y}$. Hence, many matchings lie inside.

Counting edges crossing $v_{x} v_{y}$

(c/2) $n^{3 / 4}$ matchings inside of $T_{x, y}$.
At most $O\left(n^{7 / 4}\right)$ triangles $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.
Moreover: At most $O\left(n^{3 / 4}\right)$ matching triangles $T_{i, j}$ stabs $\left\{v_{x}, v_{y}\right\}$.

Counting edges crossing $v_{x} v_{y}$

$(c / 4) n^{3 / 4}$ matching whose corresponding topological edge must lie inside of triangle $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

$(c / 4) n^{3 / 4}$ matching whose corresponding topological edge must lie inside of triangle $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

$(c / 4) n^{3 / 4}$ matching whose corresponding topological edge must lie inside of triangle $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

Punchline. One triangle $T_{i, j}$ will not contain ($\left.c / 10\right) n^{3 / 4}$ matchings from inside $T_{x, y}$.

Counting edges crossing $v_{x} v_{y}$

Punchline. One triangle $T_{i, j}$ will not contain $(c / 10) n^{3 / 4}$ matchings from inside $T_{x, y}$.
At most $O\left(n^{3 / 4}\right)$ matchings lie inside $T_{i, j}$ and not in $T_{x, y}$.
Contradiction. $\left|E_{4}\right|=O\left(n^{7 / 4}\right)$.

Putting it all together

Edge $v_{x} v_{y}$ crosses at most

$$
\left|E_{0}\right|+\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|+\left|E_{4}\right|=O\left(n^{7 / 4}\right)
$$

other edges.

Open problems

$$
\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{7 / 4}\right)
$$

Conjecture (Kynčl-Valtr 2009, S. 2023+)
$h(n)=\Theta\left(n^{3 / 2}\right)$.

Open problem: Many pairwise disjoint edges

Theorem (Aichholzer-Garca-Tejel-Vogtenhuber-Weinberger 2022)
Every complete n-vertex simple topological graph contains $n^{1 / 2-o(1)}$ pairwise disjoint edges.

Open problem: Many pairwise disjoint edges

Theorem (Aichholzer-Garca-Tejel-Vogtenhuber-Weinberger 2022)
Every complete n-vertex simple topological graph contains $n^{1 / 2-o(1)}$ pairwise disjoint edges.

Rafla 1988. Noncrossing Hamiltonian cycle

Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega\left(n^{1 / 9}\right)$.

Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega\left(n^{1 / 9}\right)$.

Previous best known bound. $\frac{\log n}{\log \log n}$ by Aichholzer et al., S.-Zeng.

Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega\left(n^{1 / 9}\right)$.

Open problem: Long noncrossing path

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega\left(n^{1 / 9}\right)$.

Problem. Noncrossing cycle of length $\Omega\left(n^{\epsilon}\right)$.

Density type problems

Conjecture

Every n-vertex simple topological graph with εn^{2} edges contains n^{δ} pairwise disjoint edges, where $\delta=\delta(\varepsilon)$.

Density type problems

Conjecture

Every n-vertex simple topological graph with εn^{2} edges contains n^{δ} pairwise disjoint edges, where $\delta=\delta(\varepsilon)$.

Theorem (Fox-Pach-S., 2023+)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges contains $n^{c / \log \log n}$ pairwise disjoint edges.

Previous best known bound. $(\log n)^{1+1 / 100}$ by Fox and Sudakov.

Thank you!

