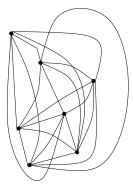
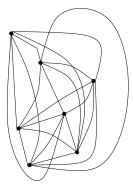
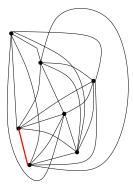

Short edges in complete topological graphs

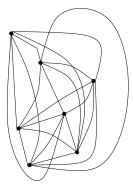
Andrew Suk (UC San Diego)

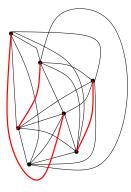

November 9, 2023

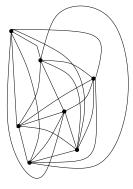
Andrew Suk (UC San Diego) Short edges in complete topological graphs

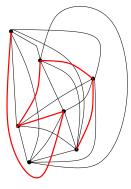

Question: Can we always find a "nice" planar subconfiguration?


Question: Can we always find a "nice" planar subconfiguration? **Examples:** noncrossing subgraph,

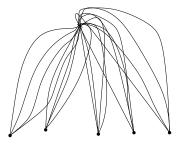

Question: Can we always find a "nice" planar subconfiguration? **Examples:** noncrossing subgraph,



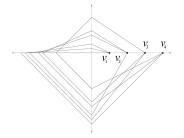

Question: Can we always find a "nice" planar subconfiguration? **Examples:** noncrossing subgraph, plane edge,



Question: Can we always find a "nice" planar subconfiguration? **Examples:** noncrossing subgraph, plane edge,

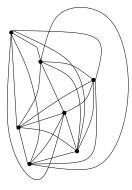


Andrew Suk (UC San Diego) Short edges in complete topological graphs


• •

.

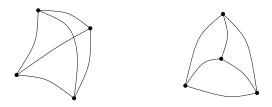
× • • • •



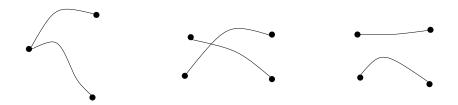
Every pair of edges cross.

Pach-Tóth 2010. Every pair of edges cross, every pair of edges cross at most twice.

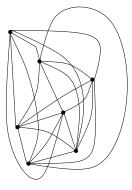
Simple condition is necessary

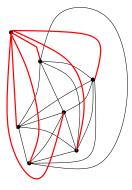


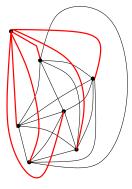
Question: Can we always find a "nice" planar subconfiguration? Every pair of edges cross at most once.


Simple Topological Graph G = (V, E)

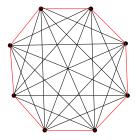
- V = points in the plane.
- E = curves connecting the corresponding points (vertices).


Every pair of edges have at most 1 point in common.

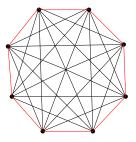

We will only consider simple topological graphs.


Complete simple topological graphs

Complete simple topological graphs



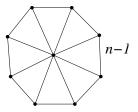
Complete simple topological graphs


Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let F(n) be the maximum number of plane edges in a complete *n*-vertex simple topological graph.

Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let F(n) be the maximum number of plane edges in a complete *n*-vertex simple topological graph.



Theorem (Ringel, 1963)

For $n \ge 4$, F(n) = 2n - 2.

Plane edges in complete simple topological graphs

Gerhard Ringel, 1963. Let F(n) be the maximum number of plane edges in a complete *n*-vertex simple topological graph.

Theorem (Ringel, 1963)

For $n \ge 4$, F(n) = 2n - 2.

Theorem (Harborth and Mengersen, 1974)

$$f(3) = 3, f(4) = 4, f(5) = 4, f(6) = 3, f(7) = 2.$$

Theorem (Harborth and Mengersen, 1974)

$$f(3) = 3, f(4) = 4, f(5) = 4, f(6) = 3, f(7) = 2.$$

For $n \ge 8$, f(n) = 0.

Theorem (Harborth and Mengersen, 1974)

$$f(3) = 3, f(4) = 4, f(5) = 4, f(6) = 3, f(7) = 2.$$

For $n \ge 8$, f(n) = 0.

Theorem (Harborth and Mengersen, 1994)

There are complete n-vertex simple topological graphs such that every edge crosses at least $(\frac{3}{4} + o(1))n$ other edges.

Peter Brass, William Moser, János Pach, 2005. Let h(n) be the minimum integer such that every complete *n*-vertex simple topological graph contains an edge that crosses at most h(n) other edges.

Peter Brass, William Moser, János Pach, 2005. Let h(n) be the minimum integer such that every complete *n*-vertex simple topological graph contains an edge that crosses at most h(n) other edges.

Conjecture (Brass, Moser, Pach, 2005)

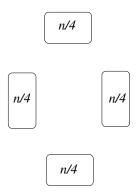
 $h(n)=o(n^2).$

Informal definition. An edge is <u>short</u> if it crosses at most $o(n^2)$ other edges.

Theorem (Jan Kynčl, Pavel Valtr, 2009)

$$\Omega(n^{3/2}) < h(n) < O(\frac{n^2}{\log^{1/4} n}).$$

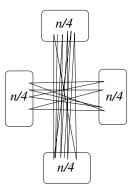
Theorem (Jan Kynčl, Pavel Valtr, 2009)


$$\Omega(n^{3/2}) < h(n) < O(\frac{n^2}{\log^{1/4} n}).$$

Harborth-Mengersen. $\Omega(n) < h(n)$.

Theorem (Jan Kynčl, Pavel Valtr, 2009)

 $\Omega(n^{3/2}) < h(n) < O(\frac{n^2}{\log^{1/4} n}).$


Harborth-Mengersen. $\Omega(n) < h(n)$. Does not generalize to dense simple topological graphs.

Theorem (Jan Kynčl, Pavel Valtr, 2009)

 $\Omega(n^{3/2}) < h(n) < O(\frac{n^2}{\log^{1/4} n}).$

Harborth-Mengersen. $\Omega(n) < h(n)$. Does not generalize to dense simple topological graphs.

Theorem (S., 2023+)

 $h(n) = O(n^{7/4})$. That is, every complete n-vertex simple topological graph contains an edge that crosses at most $O(n^{7/4})$ other edges.

Theorem (S., 2023+)

 $h(n) = O(n^{7/4})$. That is, every complete n-vertex simple topological graph contains an edge that crosses at most $O(n^{7/4})$ other edges.

$$\Omega(n^{3/2}) < h(n) < O(n^{7/4})$$

Conjecture (Kynčl-Valtr 2009, S. 2023+)

 $h(n) = \Theta(n^{3/2}).$

Theorem (S., 2023+)

 $h(n) = O(n^{7/4})$. That is, every complete n-vertex simple topological graph contains an edge that crosses at most $O(n^{7/4})$ other edges.

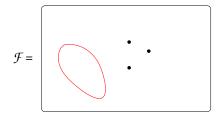
$$\Omega(n^{3/2}) < h(n) < O(n^{7/4})$$

Conjecture (Kynčl-Valtr 2009, S. 2023+)

 $h(n) = \Theta(n^{3/2}).$

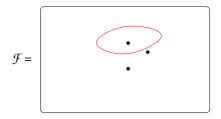
Key ideas

- VC-dimension theory
- Ø Minimality argument

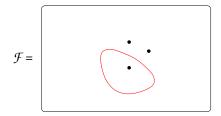

Set system $\mathcal{F} \subset 2^V$, |V| = n.

Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

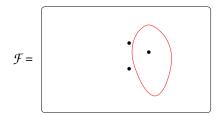
Definition


Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

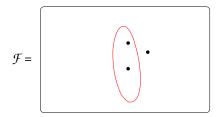
Definition


Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

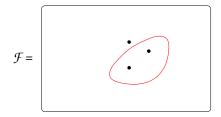
Definition


Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

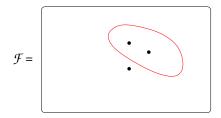
Definition


Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

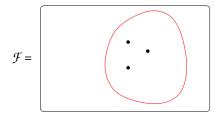
Definition


Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition

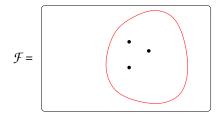

Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition


Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition

Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.


Definition

Set system $\mathcal{F} \subset 2^V$, |V| = n.

Definition

The **VC-dimension of** \mathcal{F} is the size of the largest subset $S \subset V$ that is shattered by \mathcal{F} .

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, |V| = n.

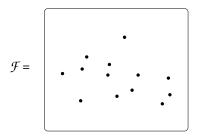
Definition

The dual shatter function $\pi_{\mathcal{F}}^*(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F} .

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, |V| = n.

Definition

The dual shatter function $\pi_{\mathcal{F}}^*(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F} .

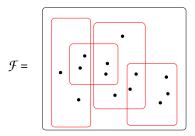

Given sets $A_1, \ldots, A_m \in \mathcal{F}$, $x, y \in V$ are <u>equivalent</u> if they both lie in the same sets among A_1, \ldots, A_m .

Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, |V| = n.

Definition

The dual shatter function $\pi_{\mathcal{F}}^*(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F} .

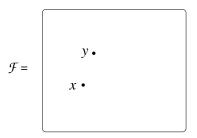
Given sets $A_1, \ldots, A_m \in \mathcal{F}$, $x, y \in V$ are <u>equivalent</u> if they both lie in the same sets among A_1, \ldots, A_m .

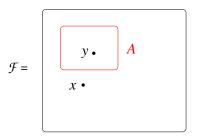


Dual VC-dimension. Let \mathcal{F} be a set-system on a ground set V, |V| = n.

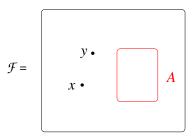
Definition

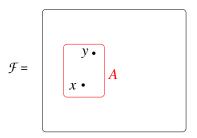
The dual shatter function $\pi_{\mathcal{F}}^*(m)$, is defined to be the maximum number of equivalence classes on V, defined by m sets in \mathcal{F} .

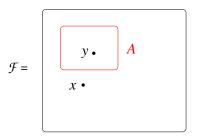

Given sets $A_1, \ldots, A_m \in \mathcal{F}$, $x, y \in V$ are <u>equivalent</u> if they both lie in the same sets among A_1, \ldots, A_m .

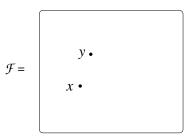

Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d).$

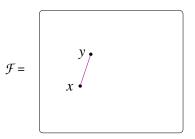
Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d)$.

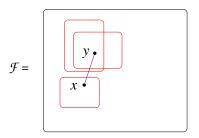

Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d)$.

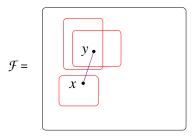

Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d).$


Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d)$.

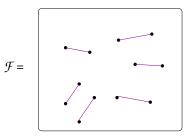

Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d).$



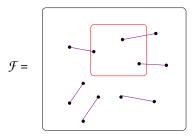

Let $\mathcal F$ be a set-system on a ground set V, |V| = n, $\pi^*_{\mathcal F}(m) = O(m^d).$

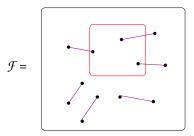


 \mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a pair of vertices $x, y \in V$ such that $\{x, y\}$ is stabbed by at most $c|\mathcal{F}|/n^{1/d}$.



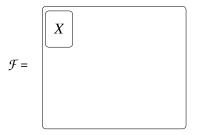
Together with an iterative re-weighting technique


 \mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O(n^{1-1/d})$ members in M.

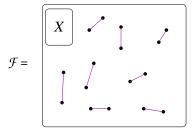

 \mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O(n^{1-1/d})$ members in M.

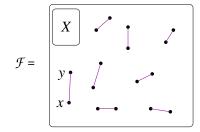
 \mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O(n^{1-1/d})$ members in M.


 \mathcal{F} is a set system on a ground set V with $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a perfect matching M on V such that each set $A \in \mathcal{F}$ stabs at most $O(n^{1-1/d})$ members in M.

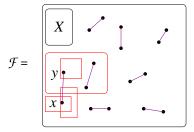

Combining Haussler's packing lemma + iterative re-weighting + triangle inequality

Andrew Suk (UC San Diego) Short edges in complete topological graphs


- Each $\{x, y\} \in M$ is stabbed by at most $O(|\mathcal{F}|/n^{1/(2d)})$ sets.
- 2 Each $A \in \mathcal{F}$, stabs at most $O(n^{1-1/d})$ members in M.

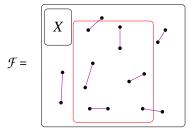

- Each $\{x, y\} \in M$ is stabbed by at most $O(|\mathcal{F}|/n^{1/(2d)})$ sets.
- 2 Each $A \in \mathcal{F}$, stabs at most $O(n^{1-1/d})$ members in M.

- Each $\{x, y\} \in M$ is stabbed by at most $O(|\mathcal{F}|/n^{1/(2d)})$ sets.
- 2 Each $A \in \mathcal{F}$, stabs at most $O(n^{1-1/d})$ members in M.


- Each $\{x, y\} \in M$ is stabbed by at most $O(|\mathcal{F}|/n^{1/(2d)})$ sets.
- 2 Each $A \in \mathcal{F}$, stabs at most $O(n^{1-1/d})$ members in M.

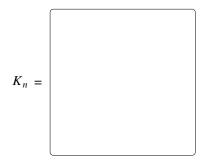
Lemma

 \mathcal{F} is a set system on V with |V| = n and $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a subset $X \subset V$, $|X| \leq O(n^{1/2+1/(2d)})$, and a perfect matching M on $V \setminus X$ such that

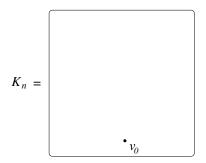

- Each $\{x, y\} \in M$ is stabbed by at most $O(|\mathcal{F}|/n^{1/(2d)})$ sets.
- 2 Each $A \in \mathcal{F}$, stabs at most $O(n^{1-1/d})$ members in M.

Lemma

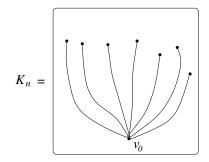
 \mathcal{F} is a set system on V with |V| = n and $\pi_{\mathcal{F}}^*(m) = O(m^d)$. Then there is a subset $X \subset V$, $|X| \leq O(n^{1/2+1/(2d)})$, and a perfect matching M on $V \setminus X$ such that

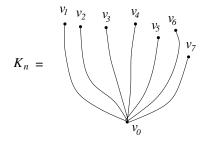

- Each $\{x, y\} \in M$ is stabbed by at most $O(|\mathcal{F}|/n^{1/(2d)})$ sets.
- 2 Each $A \in \mathcal{F}$, stabs at most $O(n^{1-1/d})$ members in M.

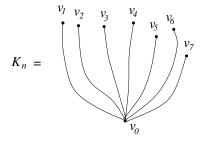
Every complete simple topological graph on n vertices contains an edge that crosses at most $O(n^{7/4})$ other edges.


Every complete simple topological graph on n vertices contains an edge that crosses at most $O(n^{7/4})$ other edges.

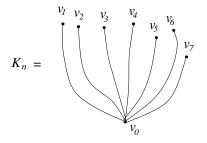
Proof.

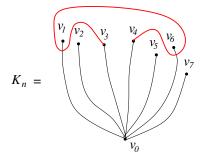

Every complete simple topological graph on n vertices contains an edge that crosses at most $O(n^{7/4})$ other edges.

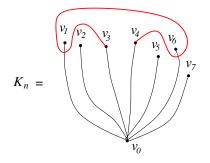

Proof.

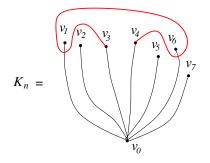


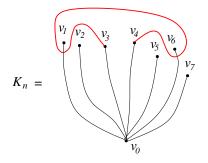
Every complete simple topological graph on n vertices contains an edge that crosses at most $O(n^{7/4})$ other edges.

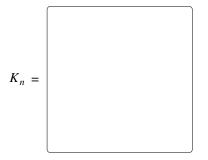

Proof.

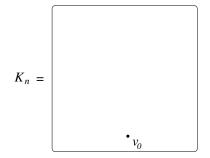


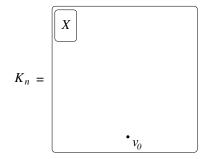

Proof. Ground set $V = \{v_1, v_2, ..., v_{n-1}\}.$


Proof. Ground set $V = \{v_1, v_2, \dots, v_{n-1}\}$. Set system $\mathcal{F} = \bigcup_{i,j} T_{i,j}, T_{i,j}$ = vertices inside triangle v_0, v_i, v_j .

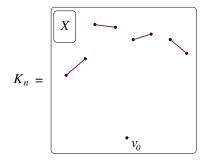

Proof. Ground set $V = \{v_1, v_2, \dots, v_{n-1}\}$. Set system $\mathcal{F} = \bigcup_{i,j} T_{i,j}$, $T_{i,j}$ = vertices inside triangle v_0, v_i, v_j . **Example:** $T_{3,4} = \{v_1, v_6\}$.


Set system $\mathcal{F} = \bigcup_{i,j} T_{i,j}$,

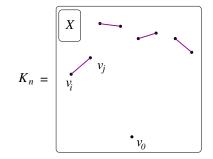

Set system $\mathcal{F} = \bigcup_{i,j} T_{i,j}, \ |\mathcal{F}| = \Theta(n^2),$

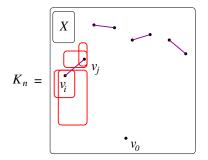


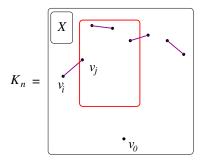
Set system
$$\mathcal{F} = \bigcup_{i,j} T_{i,j}$$
, $|\mathcal{F}| = \Theta(n^2)$, $\pi_{\mathcal{F}}^*(m) = O(m^2)$.

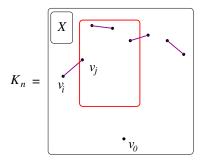


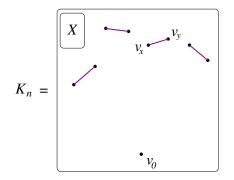
Set system
$$\mathcal{F} = \bigcup_{i,j} T_{i,j}$$
, $|\mathcal{F}| = \Theta(n^2)$, $\pi_{\mathcal{F}}^*(m) = O(m^2)$.

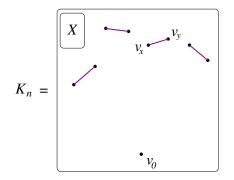


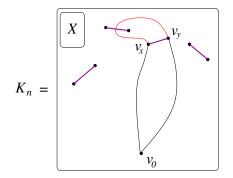

$$|X|=O(n^{3/4})$$


$$|X|=O(n^{3/4})$$

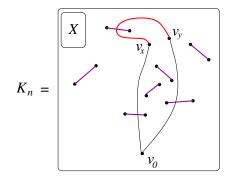

$$|X|=O(n^{3/4})$$

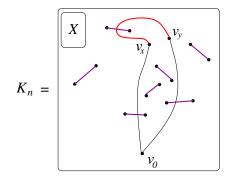

$$|X|=O(n^{3/4}),$$
at most $O(n^{7/4})$ sets in ${\cal F}$ stab $\{v_i,v_j\},$

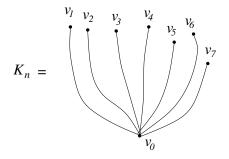

 $|X| = O(n^{3/4}),$ at most $O(n^{7/4})$ sets in \mathcal{F} stab $\{v_i, v_j\},$ Each set $T_{i,j} \in \mathcal{F}$ stabs at most $O(n^{1/2})$ matchings.

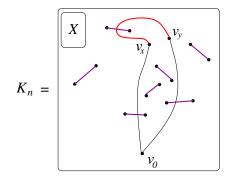

 $|X| = O(n^{3/4}),$ at most $O(n^{7/4})$ sets in \mathcal{F} stab $\{v_i, v_j\},$ Each set $T_{i,j} \in \mathcal{F}$ stabs at most $O(n^{1/2})$ matchings.

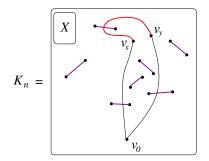
Let $\{v_x, v_y\}$ be the matching such that the triangle $T_{x,y} = (v_0, v_x, v_y)$ contains the fewest matchings.

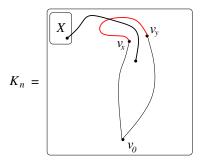

Let $\{v_x, v_y\}$ be the matching such that the triangle $T_{x,y} = (v_0, v_x, v_y)$ contains the fewest matchings.

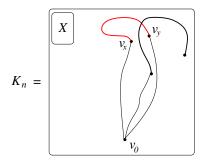

Let $\{v_x, v_y\}$ be the matching such that the triangle $T_{x,y} = (v_0, v_x, v_y)$ contains the fewest matchings.

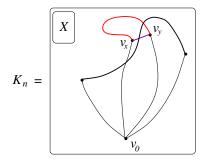

Let $\{v_x, v_y\}$ be the matching such that the triangle $T_{x,y} = (v_0, v_x, v_y)$ contains the fewest matchings. Note. At most $O(n^{1/2})$ matchings stabs $T_{x,y}$.

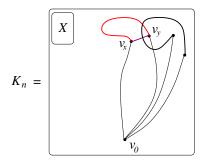

Claim. Edge $v_x v_y$ crosses at most $O(n^{7/4})$ other edges.

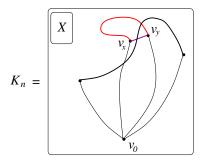

Claim. Edge $v_x v_y$ crosses at most $O(n^{7/4})$ other edges. **Cheat.** $|x - y| < n^{3/4}$.

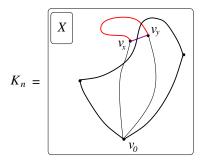

Claim. Edge $v_x v_y$ crosses at most $O(n^{7/4})$ other edges. **Cheat.** $|x - y| < n^{3/4}$.


Claim. Edge $v_x v_y$ crosses at most $O(n^{7/4})$ other edges. **Cheat.** $|x - y| < n^{3/4}$.

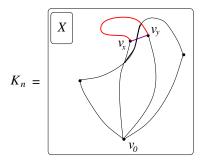

• E_0 edges incident to v_0 . $|E_0| < n$.

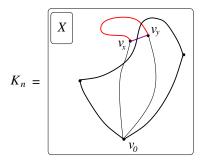

- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.

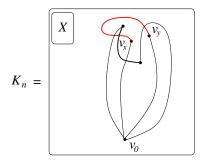

- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.
- E_2 edges with endpoint between v_x, v_y . $|E_2| = O(n^{7/4})$.

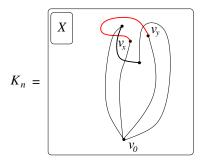

- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.
- E_2 edges with endpoint between v_x, v_y . $|E_2| = O(n^{7/4})$.

- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.
- E_2 edges with endpoint between v_x, v_y . $|E_2| = O(n^{7/4})$.

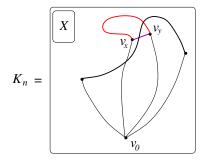

Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.


Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.

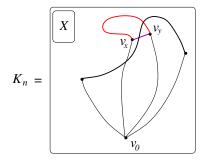

Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.


Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.

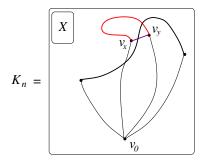
Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.

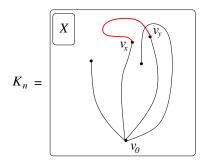


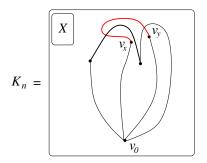
Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.

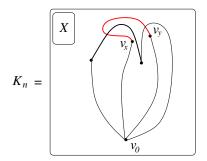


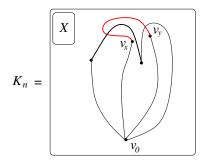
Observation. If v_i, v_j both lie outside (inside) of $T_{x,y}$ and $v_i v_j$ crosses $v_x v_y$, then $T_{i,j}$ stabs $\{v_x, v_y\}$.

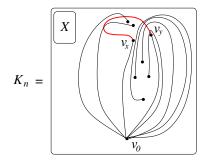

• E_3 remaining edges with both endpoints inside (outside) $T_{x,y}$ and crossing $v_x v_y$. $|E_3| = O(n^{7/4})$.


- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.
- E_2 edges with endpoint between v_x, v_y . $|E_2| = O(n^{7/4})$.
- E_3 both endpoints inside (outside) $T_{x,y}$. $|E_3| = O(n^{7/4})$.

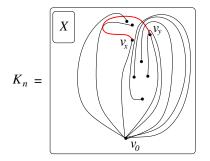

- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.
- E_2 edges with endpoint between v_x, v_y . $|E_2| = O(n^{7/4})$.
- E_3 both endpoints inside (outside) $T_{x,y}$. $|E_3| = O(n^{7/4})$.


- E_0 edges incident to v_0 . $|E_0| < n$.
- E_1 edges incident to X, $|X| < O(n^{3/4})$. $|E_1| = O(n^{7/4})$.
- E_2 edges with endpoint between v_x, v_y . $|E_2| = O(n^{7/4})$.
- E_3 both endpoints inside (outside) $T_{x,y}$. $|E_3| = O(n^{7/4})$.
- E_4 rest of the edges that crosses $v_x v_y$.

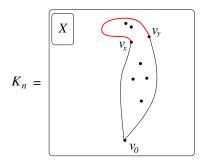

Edges in E₄.


Edges in E₄.

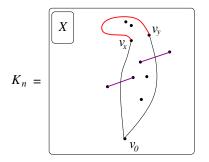
Edges in E_4 . Goal. $|E_4| = O(n^{7/4})$.



For sake of contradiction. If $|E_4| > cn^{7/4}$.



Edges in E₄.

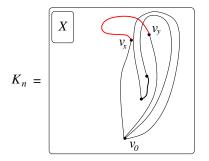

For sake of contradiction. If $|E_4| > cn^{7/4}$.

For sake of contradiction. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.

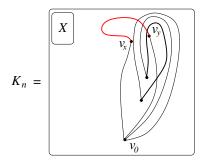

For sake of contradiction. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.

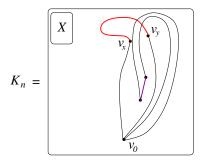

Edges in E₄.

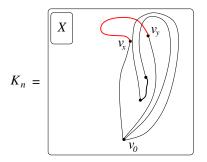
For sake of contradiction. If $|E_4| > cn^{7/4}$. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.

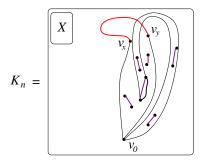

At most $O(n^{1/2})$ matchings stabs $T_{x,y}$.

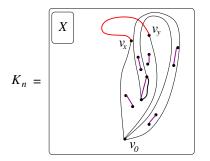

For sake of contradiction. If $|E_4| > cn^{7/4}$. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.

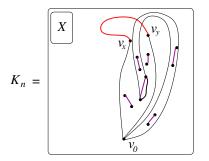

For sake of contradiction. If $|E_4| > cn^{7/4}$. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.


For sake of contradiction. If $|E_4| > cn^{7/4}$. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.

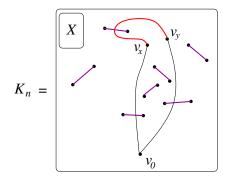

For sake of contradiction. If $|E_4| > cn^{7/4}$. If $|E_4| > cn^{7/4}$. At least $cn^{3/4}$ vertices "enter" triangle $T_{x,y}$.


 $(c/2)n^{3/4}$ matchings inside of $T_{x,y}$. At most $O(n^{7/4})$ triangles $T_{i,j}$ stabs $\{v_x, v_y\}$. Moreover: At most $O(n^{3/4})$ matching triangles $T_{i,j}$ stabs $\{v_x, v_y\}$.


 $(c/4)n^{3/4}$ matching whose corresponding topological edge must lie inside of triangle $T_{x,y}$.


 $(c/4)n^{3/4}$ matching whose corresponding topological edge must lie inside of triangle $T_{x,y}$.

 $(c/4)n^{3/4}$ matching whose corresponding topological edge must lie inside of triangle $T_{x,y}$.


Punchline. One triangle $T_{i,j}$ will not contain $(c/10)n^{3/4}$ matchings from inside $T_{x,y}$.

Punchline. One triangle $T_{i,j}$ will not contain $(c/10)n^{3/4}$ matchings from inside $T_{x,y}$.

At most $O(n^{3/4})$ matchings lie inside $T_{i,j}$ and not in $T_{x,y}$. Contradiction. $|E_4| = O(n^{7/4})$.

Putting it all together

Edge $v_x v_y$ crosses at most

$$|E_0| + |E_1| + |E_2| + |E_3| + |E_4| = O(n^{7/4})$$

other edges.

 \Box .

$$\Omega(n^{3/2}) < h(n) < O(n^{7/4})$$

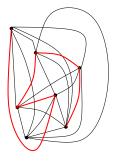
Conjecture (Kynčl-Valtr 2009, S. 2023+)

 $h(n) = \Theta(n^{3/2}).$

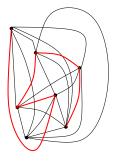
Open problem: Many pairwise disjoint edges

Theorem (Aichholzer-Garca-Tejel-Vogtenhuber-Weinberger 2022)

Every complete n-vertex simple topological graph contains $n^{1/2-o(1)}$ pairwise disjoint edges.

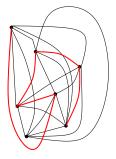

Open problem: Many pairwise disjoint edges

Theorem (Aichholzer-Garca-Tejel-Vogtenhuber-Weinberger 2022)

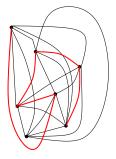

Every complete n-vertex simple topological graph contains $n^{1/2-o(1)}$ pairwise disjoint edges.

Rafla 1988. Noncrossing Hamiltonian cycle

Theorem (S. 2023+)


Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega(n^{1/9})$.

Theorem (S. 2023+)


Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega(n^{1/9})$.

Previous best known bound. $\frac{\log n}{\log \log n}$ by Aichholzer et al., S.-Zeng.

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega(n^{1/9})$.

Theorem (S. 2023+)

Every complete n-vertex simple topological graph contains noncrossing path of length $\Omega(n^{1/9})$.

Problem. Noncrossing cycle of length $\Omega(n^{\epsilon})$.

Conjecture

Every n-vertex simple topological graph with εn^2 edges contains n^{δ} pairwise disjoint edges, where $\delta = \delta(\varepsilon)$.

Conjecture

Every n-vertex simple topological graph with εn^2 edges contains n^{δ} pairwise disjoint edges, where $\delta = \delta(\varepsilon)$.

Theorem (Fox-Pach-S., 2023+)

Every n-vertex simple topological graph with $\Omega(n^2)$ edges contains $n^{c/\log \log n}$ pairwise disjoint edges.

Previous best known bound. $(\log n)^{1+1/100}$ by Fox and Sudakov.

Thank you!