Intersection patterns of pseudo-segments

Andrew Suk (UC San Diego)

February 20, 2024

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments

Every n-vertex planar graph has at most 3n - 6 edges.

Every n-vertex planar graph has at most 3n - 6 edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Every n-vertex planar graph has at most 3n - 6 edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Theorem (Appel-Haken, 1976)

Planar graphs are 4-colorable.

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments

Every n-vertex planar graph has at most 3n - 6 edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Theorem (Appel-Haken, 1976)

Planar graphs are 4-colorable.

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments

Definition: A graph is k-quasi-planar if it can be drawn in the plane with no k pairwise crossing edges.

Definition: A graph is k-quasi-planar if it can be drawn in the plane with no k pairwise crossing edges.

Conjecture (Folklore)

Conjecture (Folklore)

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

 k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).

Conjecture (Folklore)

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.

Conjecture (Folklore)

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.
- $k \ge 5$, $n(\frac{c \log n}{\log k})^{2 \log k 4}$, Fox-Pach-S. 2022.

Conjecture (Folklore)

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.
- $k \ge 5$, $n(\frac{c \log n}{\log k})^{2 \log k 4}$, Fox-Pach-S. 2022.
- Straight-line edges, $O(n \log n)$ Valtr 1997.

Definition: A thrackle is a graph drawn in the plane such that every pair of edges has exactly one point in common.

Definition: A thrackle is a graph drawn in the plane such that every pair of edges has exactly one point in common.

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

Conway's thrackle conjecture

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

• Lovász-Pach-Szegedy, 1997: $|E(G)| \leq 2n$.

Conway's thrackle conjecture

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

- Lovász-Pach-Szegedy, 1997: $|E(G)| \leq 2n$.
- Xu, 2021: $|E(G)| \le 1.393n$.

Conway's thrackle conjecture

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

- Lovász-Pach-Szegedy, 1997: $|E(G)| \leq 2n$.
- Xu, 2021: $|E(G)| \le 1.393n$.
- Straight-line edges, Erdős, $|E(G)| \leq n$.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

Drawing of K_n with every pair of edges crossing once or twice.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

Simple Drawing:

• Open for $k \geq 3$.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

- Open for $k \geq 3$.
- Pach-Tóth, 2005: $|E(G)| \le n(\log n)^{4k-8}$.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

- Open for $k \geq 3$.
- Pach-Tóth, 2005: $|E(G)| \le n(\log n)^{4k-8}$.
- Fox-Pach-S., 2024+: $|E(G)| \le n(\log n)^{O(\log k)}$.

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

- Open for $k \geq 3$.
- Pach-Tóth, 2005: |E(G)| ≤ n(log n)^{4k-8}.
- Fox-Pach-S., 2024+: $|E(G)| \le n(\log n)^{O(\log k)}$.
- Straight-line edges, Tóth 2000, $|E(G)| \le 2^9 k^2 n$.

General curves vs. Pseudo-segments vs. Segments

General curves vs. Pseudo-segments vs. Segments

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

 \mathcal{G}_n be the set of all labelled *n*-vertex intersection graphs of curves.

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

 G_n be the set of all labelled *n*-vertex intersection graphs of curves. \mathcal{P}_n be the set of all labelled *n*-vertex intersection graphs of pseudo-segments.

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

 \mathcal{G}_n be the set of all labelled *n*-vertex intersection graphs of curves.

 \mathcal{P}_n be the set of all labelled *n*-vertex intersection graphs of pseudo-segments.

 S_n be the set of all labelled *n*-vertex intersection graphs of segments.

General curves (string graphs)

 \mathcal{G}_n be the set of all labelled *n*-vertex string graphs.

$$|\mathcal{G}_n|=2^{\Theta(n^2)}.$$

General curves (string graphs)

 \mathcal{G}_n be the set of all labelled *n*-vertex string graphs.

$$|\mathcal{G}_n|=2^{\Theta(n^2)}.$$

String graphs have the Erdős-Hajnal property.

Theorem (Tomon, 2023)

Every n-vertex string graph contains a clique or independent set of size n^{ε} , where ε is an absolute constant.

\mathcal{S}_n be the set of all labelled *n*-vertex intersection graphs of segments.

 S_n be the set of all labelled *n*-vertex intersection graphs of segments.

Application of the Milnor-Thom theorem

Theorem (Pach-Solymosi, 2001) $|S_n| = 2^{O(n \log n)}.$ S_n be the set of all labelled *n*-vertex intersection graphs of segments.

Application of the Milnor-Thom theorem

Theorem (Pach-Solymosi, 2001) $|S_n| = 2^{O(n \log n)}.$

Segment intersection graphs have the strong Erdős-Hajnal property

Segments

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let G = (V, E) be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Segments

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let G = (V, E) be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let G = (V, E) be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let G = (V, E) be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

 $|\mathcal{S}_n| = 2^{\Theta(n \log n)}.$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

 $|\mathcal{S}_n| = 2^{\Theta(n \log n)}.$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir (2005), Sauermann (2021))

 $|\mathcal{S}_n| = 2^{\Theta(n \log n)}.$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir (2005), Sauermann (2021))

V =points in \mathbb{R}^d .

 $|\mathcal{S}_n| = 2^{\Theta(n \log n)}.$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir (2005), Sauermann (2021))

V =points in \mathbb{R}^d .

 $E = \{(u, v) : \Phi(f_1(u, v) \ge 0, \dots, f_t(u, v) \ge 0)\}$, where each f_i is a polynomial of bounded degree.

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$

$$|\mathcal{S}_n| = 2^{\Theta(n \log n)} \qquad \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Strong Erdős-Hajnal property

Erdős-Hajnal property

$$\mathcal{S}_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$

$$|\mathcal{S}_n| = 2^{\Theta(n \log n)} \qquad \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Strong Erdős-Hajnal property

Erdős-Hajnal property

Theorem (Fox, 2006)

 \mathcal{G}_n does not have the strong Erdős-Hajnal property.

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$

$$|\mathcal{S}_n| = 2^{\Theta(n \log n)} \qquad \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Theorem (Fox, 2006)

 \mathcal{G}_n does not have the strong Erdős-Hajnal property.

Applications: Need the Mighty Erdős-Hajnal property.

Definition

Definition

Definition

Definition

Definition

\mathcal{S}_n has the **mighty** Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let \mathcal{R} be a set of red segments in the plane, and \mathcal{B} be a set of blue segments in the plane. Then there are subsets $\mathcal{R}' \subset \mathcal{R}$ and $\mathcal{B}' \subset \mathcal{B}$, where $|\mathcal{R}'| \geq |\mathcal{R}|/330$ and $|\mathcal{B}'| \geq |\mathcal{B}|/330$, such that either red segment in \mathcal{R}' crosses every blue segment in \mathcal{B}' , or every red segment in \mathcal{R}' is disjoint to every blue segment in \mathcal{B}' .

\mathcal{S}_n has the **mighty** Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let \mathcal{R} be a set of red segments in the plane, and \mathcal{B} be a set of blue segments in the plane. Then there are subsets $\mathcal{R}' \subset \mathcal{R}$ and $\mathcal{B}' \subset \mathcal{B}$, where $|\mathcal{R}'| \geq |\mathcal{R}|/330$ and $|\mathcal{B}'| \geq |\mathcal{B}|/330$, such that either red segment in \mathcal{R}' crosses every blue segment in \mathcal{B}' , or every red segment in \mathcal{R}' is disjoint to every blue segment in \mathcal{B}' .

S_n has the **mighty** Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let \mathcal{R} be a set of red segments in the plane, and \mathcal{B} be a set of blue segments in the plane. Then there are subsets $\mathcal{R}' \subset \mathcal{R}$ and $\mathcal{B}' \subset \mathcal{B}$, where $|\mathcal{R}'| \geq |\mathcal{R}|/330$ and $|\mathcal{B}'| \geq |\mathcal{B}|/330$, such that either red segment in \mathcal{R}' crosses every blue segment in \mathcal{B}' , or every red segment in \mathcal{R}' is disjoint to every blue segment in \mathcal{B}' .

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$
$$|S_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

$$\begin{aligned} \mathcal{S}_n \subset \mathcal{P}_n \subset \mathcal{G}_n \\ |\mathcal{S}_n| &= 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)} \end{aligned}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Mighty Erdős-Hajnal property \neq strong Erdős-Hajnal property.

$$\mathcal{S}_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$

 $|\mathcal{S}_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Mighty Erdős-Hajnal property \neq strong Erdős-Hajnal property.

 $\mathcal{F} = \mathsf{family} \mathsf{ of bipartite graphs}.$

$$\mathcal{S}_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$

 $|\mathcal{S}_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Mighty Erdős-Hajnal property \neq strong Erdős-Hajnal property.

 $\mathcal{F} = family of bipartite graphs.$

Theorem (Fox-Pach-Tóth, 2010)

Intersection graphs of convex sets have the strong Erdős-Hajnal property, but not the **mighty** Erdős-Hajnal property.

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$
$$|S_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$
$$|S_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Theorem (Kynčl, 2007)

$$2^{\Omega(n \log n)} < |\mathcal{P}_n| < 2^{O(n^{3/2} \log n)}$$

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$
$$|S_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Theorem (Kynčl, 2007)

$$2^{\Omega(n\log n)} < |\mathcal{P}_n| < 2^{O(n^{3/2}\log n)}$$

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{mono}| \le |\mathcal{P}_n| \le 2^{O(n^{3/2}\log n)}$$

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$
$$|S_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Theorem (Kynčl, 2007)

$$2^{\Omega(n \log n)} < |\mathcal{P}_n| < 2^{O(n^{3/2} \log n)}$$

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{mono}| \le |\mathcal{P}_n| \le 2^{O(n^{3/2}\log n)}.$$

$$|\mathcal{P}_n^{mono}| \le 2^{n^{3/2-\varepsilon}}$$

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{mono}| \le |\mathcal{P}_n| \le 2^{O(n^{3/2} \log n)}$$

$$P = n^{1/3} \times n^{2/3}$$
 grid $L = n$ lines
 $|I(P,L)| = \Theta(n^{4/3})$

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{mono}| \le |\mathcal{P}_n| \le 2^{O(n^{3/2} \log n)}$$

$$P = n^{1/3} \times n^{2/3}$$
 grid $L = n$ lines
 $|I(P,L)| = \Theta(n^{4/3})$

Pseudo-Segments: New results

$$\begin{aligned} \mathcal{S}_n \subset \mathcal{P}_n \subset \mathcal{G}_n \\ |\mathcal{S}_n| &= 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)} \end{aligned}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{mono}| \le |\mathcal{P}_n| \le 2^{O(n^{3/2} \log n)}.$$

$$|\mathcal{P}_n^{mono}| \leq 2^{n^{3/2-\varepsilon}}$$

$$S_n \subset \mathcal{P}_n \subset \mathcal{G}_n$$
$$|S_n| = 2^{\Theta(n \log n)} \qquad |\mathcal{G}_n| = 2^{\Theta(n^2)}$$

Mighty Erdős-Hajnal property

Erdős-Hajnal property

Theorem (Fox-Pach-Tóth, 2010)

 \mathcal{P}_n has the strong Erdős-Hajnal property.

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

 $\mathcal{R} = n$ red curves, $\mathcal{B} = n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments.

 $\mathcal{R}' \subset \mathcal{R}, \ \mathcal{B}' \subset \mathcal{B} \ \text{of size } \Omega(n)$

New result

Theorem (Fox-Pach-S., 2024+)

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

 $\mathcal{R} = n$ red curves, $\mathcal{B} = n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments. $\mathcal{R}' \subset \mathcal{R}, \ \mathcal{B}' \subset \mathcal{B}$ of size $\Omega(n)$

New result

Theorem (Fox-Pach-S., 2024+)

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

 $\mathcal{R} = n$ red curves, $\mathcal{B} = n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments. $\mathcal{R}' \subset \mathcal{R}, \ \mathcal{B}' \subset \mathcal{B}$ of size $\Omega(n)$

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

Ideas of the proof.

 $\mathcal{R} = n$ red curves, $\mathcal{B} = n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments.

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

Ideas of the proof. $\mathcal{R}' \subset \mathcal{R}, \ \mathcal{B}' \subset \mathcal{B} = n \text{ of size } \Omega(n), \ \varepsilon\text{-homogeneous.}$

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

Ideas of the proof. $\mathcal{R}' \subset \mathcal{R}, \ \mathcal{B}' \subset \mathcal{B} = n \text{ of size } \Omega(n), \ \varepsilon\text{-homogeneous.}$

Theorem (Fox-Pach-S., 2024+)

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

Ideas of the proof. $\mathcal{R}' \subset \mathcal{R}, \ \mathcal{B}' \subset \mathcal{B} = n \text{ of size } \Omega(n), \ \varepsilon\text{-homogeneous.}$

Intersection graphs $G(\mathcal{R}')$ and $G(\mathcal{B}')$ has edge density less than ε or greater than $1 - \varepsilon$.

- Separator theorem.
- Strong Erdős-Hajnal property.

- Separator theorem.
- Strong Erdős-Hajnal property.

Case 2. $G(\mathcal{R}')$ has edge density at least $1 - \varepsilon$ and $G(\mathcal{B}')$ has edge density less than ε .

- Separator theorem.
- Strong Erdős-Hajnal property.

Case 2. $G(\mathcal{R}')$ has edge density at least $1 - \varepsilon$ and $G(\mathcal{B}')$ has edge density less than ε .

- Density increment argument.
- Extending to pseudolines.
- Outting Lemma.

• Separator theorem.

Strong Erdős-Hajnal property.

Case 2. $G(\mathcal{R}')$ has edge density at least $1 - \varepsilon$ and $G(\mathcal{B}')$ has edge density less than ε .

- Density increment argument.
- Extending to pseudolines.
- Outting Lemma.

Case 3. Both $G(\mathcal{R}')$ and $G(\mathcal{B}')$ have edge density at least $1 - \varepsilon$. Repeat the arguments in Case 2.

Applications

Theorem (Fox-Pach-S., 2024+)

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant c > 0 such that the following holds. Let \mathcal{R} be a collection of n red curves, and \mathcal{B} be a collection of n blue curves in the plane such that $\mathcal{R} \cup \mathcal{B}$ is a collection of pseudo-segments.

Applications

Theorem (Fox-Pach-S., 2024+)

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant c > 0 such that the following holds. Let \mathcal{R} be a collection of n red curves, and \mathcal{B} be a collection of n blue curves in the plane such that $\mathcal{R} \cup \mathcal{B}$ is a collection of pseudo-segments.

If there are at least δn² disjoint pairs in R × B, then there are subsets R' and B', each of size δ^cn, such that every red curve in R' is disjoint to every blue curve in B'.

Theorem (Fox-Pach-S., 2024+)

 \mathcal{P}_n has the **mighty** Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant c > 0 such that the following holds. Let \mathcal{R} be a collection of n red curves, and \mathcal{B} be a collection of n blue curves in the plane such that $\mathcal{R} \cup \mathcal{B}$ is a collection of pseudo-segments.

- If there are at least δn² disjoint pairs in R × B, then there are subsets R' and B', each of size δ^cn, such that every red curve in R' is disjoint to every blue curve in B'.
- If there are at least δn² crossing pairs in R × B, then there are subsets R' and B', each of size δ^c n, such that every red curve in R' is disjoint to every blue curve in B'.

- $\mathcal{R} = n$ red curves.
- $\mathcal{B} = n$ red curves.
- G = disjointness graph between \mathcal{R} and \mathcal{B} . $|E(G)| \ge \delta n^2$.

- $\mathcal{R} = n$ red curves.
- $\mathcal{B} = n$ red curves.
- G =disjointness graph between \mathcal{R} and \mathcal{B} . $|E(G)| \ge \delta n^2$.

- $\mathcal{R} = n$ red curves.
- $\mathcal{B} = n$ red curves.
- $G = \text{disjointness graph between } \mathcal{R} \text{ and } \mathcal{B}. |E(G)| \geq \delta n^2.$

- $\mathcal{R} = n$ red curves.
- $\mathcal{B} = n$ red curves.
- G =disjointness graph between \mathcal{R} and \mathcal{B} . $|E(G)| \ge \delta n^2$.

- $\mathcal{R} = n$ red curves.
- $\mathcal{B} = n$ red curves.
- G =disjointness graph between \mathcal{R} and \mathcal{B} . $|E(G)| \ge \delta n^2$.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least δn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\delta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least δn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\delta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G = (\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^2 edges. Then for any $\varepsilon > 0$, there are subsets \mathcal{R}' and \mathcal{B}' , each of size $\beta^{1/\varepsilon^2}n$, such that every subset $X \subset \mathcal{R}'$ and $Y \subset \mathcal{B}'$ of size at least $\varepsilon |\mathcal{R}'|$ and $\varepsilon |\mathcal{B}'|$ respectively contains an edge.

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k pairwise disjoint edges, then $|E(G)| = O_k(n)$.

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k pairwise disjoint edges, then $|E(G)| = O_k(n)$.

Previous bound: Pach-Tóth, 2005: $|E(G)| \le n(\log n)^{4k-8}$.

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k pairwise disjoint edges, then $|E(G)| = O_k(n)$.

Previous bound: Pach-Tóth, 2005: $|E(G)| \le n(\log n)^{4k-8}$.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| \le n(\log n)^{O(\log k)}$.

Conjecture (folklore)

If G is an n-vertex graph with $\Omega(n^2)$ edges, then any simple drawing of G in the plane contains $n^{O(1)}$ pairwise disjoint edges.

Conjecture (folklore)

If G is an n-vertex graph with $\Omega(n^2)$ edges, then any simple drawing of G in the plane contains $n^{O(1)}$ pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: $\log^{1+\varepsilon} n$ disjoint edges.

Conjecture (folklore)

If G is an n-vertex graph with $\Omega(n^2)$ edges, then any simple drawing of G in the plane contains $n^{O(1)}$ pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: $\log^{1+\varepsilon} n$ disjoint edges.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with $n^{1+\varepsilon}$ edges, then any simple drawing of G in the plane contains $n^{\frac{\varepsilon}{10 \log \log n}}$ pairwise disjoint edges.

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments

 $\label{eq:mighty} \begin{array}{l} \mathsf{Mighty} \ \mathsf{EH} \ \mathsf{property} \Leftrightarrow \mathsf{density} \ \mathsf{theorems} \Leftrightarrow \mathsf{strong} \ \mathsf{regularity} \\ \mathsf{lemma} \end{array}$

Theorem (Fox-Pach-S., 2024+)

 $\label{eq:mighty} \begin{array}{l} \mathsf{Mighty} \ \mathsf{EH} \ \mathsf{property} \Leftrightarrow \mathsf{density} \ \mathsf{theorems} \Leftrightarrow \mathsf{strong} \ \mathsf{regularity} \\ \mathsf{lemma} \end{array}$

Theorem (Fox-Pach-S., 2024+)

 $\label{eq:mighty} \begin{array}{l} \mathsf{Mighty} \ \mathsf{EH} \ \mathsf{property} \Leftrightarrow \mathsf{density} \ \mathsf{theorems} \Leftrightarrow \mathsf{strong} \ \mathsf{regularity} \\ \mathsf{lemma} \end{array}$

Theorem (Fox-Pach-S., 2024+)

 $\label{eq:mighty} \begin{array}{l} \mathsf{Mighty} \ \mathsf{EH} \ \mathsf{property} \Leftrightarrow \mathsf{density} \ \mathsf{theorems} \Leftrightarrow \mathsf{strong} \ \mathsf{regularity} \\ \mathsf{lemma} \end{array}$

Theorem (Fox-Pach-S., 2024+)

 $\label{eq:mighty} \begin{array}{l} \mathsf{Mighty} \ \mathsf{EH} \ \mathsf{property} \Leftrightarrow \mathsf{density} \ \mathsf{theorems} \Leftrightarrow \mathsf{strong} \ \mathsf{regularity} \\ \mathsf{lemma} \end{array}$

Theorem (Fox-Pach-S., 2024+)

Theorem (Fox-Pach-S., 2024+)

For every ε , there is a $K = K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_1, \ldots, V_K , such that for all but an ε fraction of pairs of parts (V_i, V_j) are complete or empty in G.

Theorem (Fox-Pach-S., 2024+)

For every ε , there is a $K = K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_1, \ldots, V_K , such that for all but an ε fraction of pairs of parts (V_i, V_j) are complete or empty in G.

Conjecture (Fox-Pach-S., 2024+)

 $K = (1/\varepsilon)^c$

Fox-Pach-S.: K is a tower of 2's of height $(1/\varepsilon)^c$

Open problems: k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| = O_k(n)$.

Open problems: Incidences between points and 2-intersecting curves

Theorem (Fox-Pach-S., 2024+)

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{mono}| \le |\mathcal{P}_n| \le 2^{O(n^{3/2} \log n)}.$$

$$P = n^{1/3} \times n^{2/3}$$
 grid $L = n$ lines
 $|I(P, L)| = \Theta(n^{4/3})$

Open problems: Incidences between points and 2-intersecting curves

Problem

What is the maximum number of incidences between n points and n 2-intersecting curves in the plane?

 $P = n^{1/3} \times n^{2/3}$ grid L = n lines $|I(P,L)| = \Theta(n^{4/3})$

Open problems: Incidences between points and 2-intersecting curves

Problem

What is the maximum number of incidences between n points and n 2-intersecting curves in the plane?

P = n points L = n 2-intersecting curves

Pach-Sharir, 1998

 $\Omega(n^{4/3}) \le |I(P,L)| = O(n^{7/5})$

Open problems: Incidences between points and *k*-intersecting curves

Problem

What is the maximum number of incidences between n points and n k-intersecting curves in the plane?

P = n points L = n k-intersecting curves

Pach-Sharir, 1998

$$\Omega(n^{4/3}) \le |I(P, L)| = O(n^{\frac{3k-2}{2k-1}})$$

Open problems: Incidences between points and *k*-intersecting curves

Problem

What is the maximum number of incidences between n points and n k-intersecting curves in the plane?

P = n points L = n k-intersecting curves

Pach-Sharir, 1998

$$\Omega(n^{4/3}) \le |I(P,L)| = O(n^{\frac{3k-2}{2k-1}})$$

Application:

$$2^{\Omega(n^{4/3})} < |\mathcal{P}_n^{(k)}| < 2^{O(n^{2-\varepsilon})}.$$

Thank you!