Intersection patterns of pseudo-segments

Andrew Suk (UC San Diego)

February 20, 2024

Planar graphs

Theorem (Euler, 1700s)

Every n-vertex planar graph has at most $3 n-6$ edges.

Planar graphs

Theorem (Euler, 1700s)

Every n-vertex planar graph has at most $3 n-6$ edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Planar graphs

Theorem (Euler, 1700s)

Every n-vertex planar graph has at most $3 n-6$ edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Theorem (Appel-Haken, 1976)

Planar graphs are 4-colorable.

Planar graphs

Theorem (Euler, 1700s)

Every n-vertex planar graph has at most $3 n-6$ edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Theorem (Appel-Haken, 1976)

Planar graphs are 4-colorable.

k-quasi-planar graphs

Definition: A graph is k-quasi-planar if it can be drawn in the plane with no k pairwise crossing edges.

k-quasi-planar graphs

Definition: A graph is k-quasi-planar if it can be drawn in the plane with no k pairwise crossing edges.

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

k-quasi-planar graphs

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

k-quasi-planar graphs

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).

k-quasi-planar graphs

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.

k-quasi-planar graphs

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.
- $k \geq 5, n\left(\frac{c \log n}{\log k}\right)^{2 \log k-4}$, Fox-Pach-S. 2022.

k-quasi-planar graphs

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.
- $k \geq 5, n\left(\frac{c \log n}{\log k}\right)^{2 \log k-4}$, Fox-Pach-S. 2022.
- Straight-line edges, $O(n \log n)$ Valtr 1997.

Conway's thrackle conjecture

Definition: A thrackle is a graph drawn in the plane such that every pair of edges has exactly one point in common.

Conway's thrackle conjecture

Definition: A thrackle is a graph drawn in the plane such that every pair of edges has exactly one point in common.

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

Conway's thrackle conjecture

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

- Lovász-Pach-Szegedy, 1997: $|E(G)| \leq 2 n$.

Conway's thrackle conjecture

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

- Lovász-Pach-Szegedy, 1997: $|E(G)| \leq 2 n$.
- Xu, 2021: $|E(G)| \leq 1.393 n$.

Conway's thrackle conjecture

Conjecture (Conway, 1960s, \$1000)

Every n-vertex thrackle has at most n edges.

- Lovász-Pach-Szegedy, 1997: $|E(G)| \leq 2 n$.
- Xu, 2021: $|E(G)| \leq 1.393 n$.
- Straight-line edges, Erdős, $|E(G)| \leq n$.

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Simple Drawing:

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Drawing of K_{n} with every pair of edges crossing once or twice.

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Simple Drawing:

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Simple Drawing:

- Open for $k \geq 3$.

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Simple Drawing:

- Open for $k \geq 3$.
- Pach-Tóth, 2005: $|E(G)| \leq n(\log n)^{4 k-8}$.

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Simple Drawing:

- Open for $k \geq 3$.
- Pach-Tóth, 2005: $|E(G)| \leq n(\log n)^{4 k-8}$.
- Fox-Pach-S., 2024+: $|E(G)| \leq n(\log n)^{O(\log k)}$.

k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Simple Drawing:

- Open for $k \geq 3$.
- Pach-Tóth, 2005: $|E(G)| \leq n(\log n)^{4 k-8}$.
- Fox-Pach-S., $2024+:|E(G)| \leq n(\log n)^{O(\log k)}$.
- Straight-line edges, Tóth 2000, $|E(G)| \leq 2^{9} k^{2} n$.

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

\mathcal{G}_{n} be the set of all labelled n-vertex intersection graphs of curves.

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

\mathcal{G}_{n} be the set of all labelled n-vertex intersection graphs of curves.
\mathcal{P}_{n} be the set of all labelled n-vertex intersection graphs of pseudo-segments.

Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

\mathcal{G}_{n} be the set of all labelled n-vertex intersection graphs of curves.
\mathcal{P}_{n} be the set of all labelled n-vertex intersection graphs of pseudo-segments.
\mathcal{S}_{n} be the set of all labelled n-vertex intersection graphs of segments.

General curves (string graphs)

\mathcal{G}_{n} be the set of all labelled n-vertex string graphs.

$$
\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)} .
$$

General curves (string graphs)

\mathcal{G}_{n} be the set of all labelled n-vertex string graphs.

$$
\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)} .
$$

String graphs have the Erdős-Hajnal property.

Theorem (Tomon, 2023)

Every n-vertex string graph contains a clique or independent set of size n^{ε}, where ε is an absolute constant.

Segments

\mathcal{S}_{n} be the set of all labelled n-vertex intersection graphs of segments.

Segments

\mathcal{S}_{n} be the set of all labelled n-vertex intersection graphs of segments.

Application of the Milnor-Thom theorem

> Theorem (Pach-Solymosi, 2001)
> $\left|\mathcal{S}_{n}\right|=2^{O(n \log n)}$.

Segments

\mathcal{S}_{n} be the set of all labelled n-vertex intersection graphs of segments.

Application of the Milnor-Thom theorem

> Theorem (Pach-Solymosi, 2001)
> $\left|\mathcal{S}_{n}\right|=2^{O(n \log n)}$.

Segment intersection graphs have the strong Erdős-Hajnal property

Segments

Segment intersection graphs have the strong Erdős-Hajnal property Theorem (Pach-Solymosi, 2001)
Let $G=(V, E)$ be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Segments

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let $G=(V, E)$ be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Segments

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let $G=(V, E)$ be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Segments

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let $G=(V, E)$ be an n-vertex intersection graph of a collection of segments in the plane. Then there are subsets $A, B \subset V$ of size $\Omega(n)$, such that either every segment in A crosses every segment in B, or every segment in A is disjoint to every segment in B.

Generalized to semi-algebraic graphs

> Theorem (Pach-Solymosi, 2001)
> $\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)}$.

Theorem (Pach-Solymosi, 2001)
Segment intersection graphs have the strong Erdös-Hajnal property.

Generalized to semi-algebraic graphs

Theorem (Pach-Solymosi, 2001)

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)}
$$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir (2005), Sauermann (2021))

Generalized to semi-algebraic graphs

Theorem (Pach-Solymosi, 2001)

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)}
$$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir (2005), Sauermann (2021))
$V=$ points in \mathbb{R}^{d}.

Generalized to semi-algebraic graphs

Theorem (Pach-Solymosi, 2001)

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)}
$$

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir (2005), Sauermann (2021))
$V=$ points in \mathbb{R}^{d}.
$E=\left\{(u, v): \Phi\left(f_{1}(u, v) \geq 0, \ldots, f_{t}(u, v) \geq 0\right)\right\}$, where each f_{i} is a polynomial of bounded degree.

Segments vs. Pseudo-Segments vs. General curves

$$
\mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n}
$$

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} \quad\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
$$

Strong Erdős-Hajnal property
Erdős-Hajnal property

Segments vs. Pseudo-Segments vs. General curves

$$
\mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n}
$$

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} \quad\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
$$

Strong Erdős-Hajnal property
Erdős-Hajnal property

Theorem (Fox, 2006)

\mathcal{G}_{n} does not have the strong Erdős-Hajnal property.

Segments vs. Pseudo-Segments vs. General curves

$$
\begin{gathered}
\mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} \quad\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{gathered}
$$

Mighty Erdős-Hajnal property

Theorem (Fox, 2006)

\mathcal{G}_{n} does not have the strong Erdős-Hajnal property.
Applications: Need the Mighty Erdős-Hajnal property.

The mighty Erdős-Hajnal property

Definition

\mathcal{F} has the mighty Erdős-Hajnal property if there is a constant $\varepsilon>0$ such that for every graph $G \in \mathcal{F}$ and every pair of disjoint subsets $A, B \subset V(G)$ there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right| \geq \varepsilon|A|$ and $\left|B^{\prime}\right| \geq \varepsilon|B|$ such that the bipartite graph between A and B in G is complete or empty.

The mighty Erdős-Hajnal property

Definition

\mathcal{F} has the mighty Erdős-Hajnal property if there is a constant $\varepsilon>0$ such that for every graph $G \in \mathcal{F}$ and every pair of disjoint subsets $A, B \subset V(G)$ there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right| \geq \varepsilon|A|$ and $\left|B^{\prime}\right| \geq \varepsilon|B|$ such that the bipartite graph between A and B in G is complete or empty.

The mighty Erdős-Hajnal property

Definition

\mathcal{F} has the mighty Erdős-Hajnal property if there is a constant $\varepsilon>0$ such that for every graph $G \in \mathcal{F}$ and every pair of disjoint subsets $A, B \subset V(G)$ there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right| \geq \varepsilon|A|$ and $\left|B^{\prime}\right| \geq \varepsilon|B|$ such that the bipartite graph between A and B in G is complete or empty.

The mighty Erdős-Hajnal property

Definition

\mathcal{F} has the mighty Erdős-Hajnal property if there is a constant $\varepsilon>0$ such that for every graph $G \in \mathcal{F}$ and every pair of disjoint subsets $A, B \subset V(G)$ there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right| \geq \varepsilon|A|$ and $\left|B^{\prime}\right| \geq \varepsilon|B|$ such that the bipartite graph between A and B in G is complete or empty.

The mighty Erdős-Hajnal property

Definition

\mathcal{F} has the mighty Erdős-Hajnal property if there is a constant $\varepsilon>0$ such that for every graph $G \in \mathcal{F}$ and every pair of disjoint subsets $A, B \subset V(G)$ there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right| \geq \varepsilon|A|$ and $\left|B^{\prime}\right| \geq \varepsilon|B|$ such that the bipartite graph between A and B in G is complete or empty.

Segments

\mathcal{S}_{n} has the mighty Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let \mathcal{R} be a set of red segments in the plane, and \mathcal{B} be a set of blue segments in the plane. Then there are subsets $\mathcal{R}^{\prime} \subset \mathcal{R}$ and $\mathcal{B}^{\prime} \subset \mathcal{B}$, where $\left|\mathcal{R}^{\prime}\right| \geq|\mathcal{R}| / 330$ and $\left|\mathcal{B}^{\prime}\right| \geq|\mathcal{B}| / 330$, such that either red segment in \mathcal{R}^{\prime} crosses every blue segment in \mathcal{B}^{\prime}, or every red segment in \mathcal{R}^{\prime} is disjoint to every blue segment in \mathcal{B}^{\prime}.

Segments

\mathcal{S}_{n} has the mighty Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let \mathcal{R} be a set of red segments in the plane, and \mathcal{B} be a set of blue segments in the plane. Then there are subsets $\mathcal{R}^{\prime} \subset \mathcal{R}$ and $\mathcal{B}^{\prime} \subset \mathcal{B}$, where $\left|\mathcal{R}^{\prime}\right| \geq|\mathcal{R}| / 330$ and $\left|\mathcal{B}^{\prime}\right| \geq|\mathcal{B}| / 330$, such that either red segment in \mathcal{R}^{\prime} crosses every blue segment in \mathcal{B}^{\prime}, or every red segment in \mathcal{R}^{\prime} is disjoint to every blue segment in \mathcal{B}^{\prime}.

Segments

\mathcal{S}_{n} has the mighty Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let \mathcal{R} be a set of red segments in the plane, and \mathcal{B} be a set of blue segments in the plane. Then there are subsets $\mathcal{R}^{\prime} \subset \mathcal{R}$ and $\mathcal{B}^{\prime} \subset \mathcal{B}$, where $\left|\mathcal{R}^{\prime}\right| \geq|\mathcal{R}| / 330$ and $\left|\mathcal{B}^{\prime}\right| \geq|\mathcal{B}| / 330$, such that either red segment in \mathcal{R}^{\prime} crosses every blue segment in \mathcal{B}^{\prime}, or every red segment in \mathcal{R}^{\prime} is disjoint to every blue segment in \mathcal{B}^{\prime}.

Segments vs. Pseudo-Segments vs. General curves

$$
\begin{aligned}
\mathcal{S}_{n} & \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} & \left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property

Segments vs. Pseudo-Segments vs. General curves

$$
\begin{aligned}
\mathcal{S}_{n} & \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} & \left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property
Mighty Erdős-Hajnal property \neq strong Erdős-Hajnal property.

Segments vs. Pseudo-Segments vs. General curves

$$
\begin{aligned}
\mathcal{S}_{n} & \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} & \left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property
Mighty Erdős-Hajnal property \neq strong Erdős-Hajnal property.
$\mathcal{F}=$ family of bipartite graphs.
$G=$

Segments vs. Pseudo-Segments vs. General curves

$$
\begin{aligned}
& \mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
& \left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} \quad\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property
Mighty Erdős-Hajnal property \neq strong Erdős-Hajnal property.
$\mathcal{F}=$ family of bipartite graphs.

Theorem (Fox-Pach-Tóth, 2010)

Intersection graphs of convex sets have the strong Erdős-Hajnal property, but not the mighty Erdős-Hajnal property.

Pseudo-Segments: Old results

$$
\begin{aligned}
\mathcal{S}_{n} & \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} & \left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property

Pseudo-Segments: Old results

$$
\begin{aligned}
\mathcal{S}_{n} & \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} & \left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property

Theorem (Kynčl, 2007)

$$
2^{\Omega(n \log n)}<\left|\mathcal{P}_{n}\right|<2^{O\left(n^{3 / 2} \log n\right)}
$$

Pseudo-Segments: Old results

$$
\mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n}
$$

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)}
$$

$$
\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property

Theorem (Kynčl, 2007)

$$
2^{\Omega(n \log n)}<\left|\mathcal{P}_{n}\right|<2^{O\left(n^{3 / 2} \log n\right)}
$$

Theorem (Fox-Pach-S., 2024+)

$$
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq\left|\mathcal{P}_{n}\right| \leq 2^{O\left(n^{3 / 2} \log n\right)}
$$

Pseudo-Segments: Old results

$$
\mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n}
$$

$$
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)}
$$

$$
\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property

Theorem (Kynčl, 2007)

$$
2^{\Omega(n \log n)}<\left|\mathcal{P}_{n}\right|<2^{O\left(n^{3 / 2} \log n\right)}
$$

Theorem (Fox-Pach-S., 2024+)

$$
\begin{gathered}
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq\left|\mathcal{P}_{n}\right| \leq 2^{O\left(n^{3 / 2} \log n\right)} . \\
\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq 2^{n^{3 / 2-\varepsilon}}
\end{gathered}
$$

Point-line incidences

Theorem (Fox-Pach-S., 2024+)

$$
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq\left|\mathcal{P}_{n}\right| \leq 2^{O\left(n^{3 / 2} \log n\right)} .
$$

$P=n^{1 / 3} \times n^{2 / 3}$ grid $\quad L=n$ lines
$|I(P, L)|=\Theta\left(n^{4 / 3}\right)$

Point-line incidences

Theorem (Fox-Pach-S., 2024+)

$$
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq\left|\mathcal{P}_{n}\right| \leq 2^{O\left(n^{3 / 2} \log n\right)} .
$$

$P=n^{1 / 3} \times n^{2 / 3}$ grid $\quad L=n$ lines
$|I(P, L)|=\Theta\left(n^{4 / 3}\right)$

Pseudo-Segments: New results

$$
\begin{gathered}
\mathcal{S}_{n} \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} \quad\left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{gathered}
$$

Mighty Erdős-Hajnal property

$$
\begin{aligned}
& \text { Theorem (Fox-Pach-S., 2024+) } \\
& \qquad \begin{array}{c}
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq\left|\mathcal{P}_{n}\right| \leq 2^{O\left(n^{3 / 2} \log n\right)} . \\
\\
\qquad\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq 2^{n^{3 / 2-\varepsilon}} .
\end{array}
\end{aligned}
$$

Pseudo-Segments: Old result

$$
\begin{aligned}
\mathcal{S}_{n} & \subset \mathcal{P}_{n} \subset \mathcal{G}_{n} \\
\left|\mathcal{S}_{n}\right|=2^{\Theta(n \log n)} & \left|\mathcal{G}_{n}\right|=2^{\Theta\left(n^{2}\right)}
\end{aligned}
$$

Mighty Erdős-Hajnal property
Erdős-Hajnal property

Theorem (Fox-Pach-Tóth, 2010)
\mathcal{P}_{n} has the strong Erdős-Hajnal property.

New result

Theorem (Fox-Pach-S., 2024+)
 \mathcal{P}_{n} has the mighty Erdős-Hajnal property.

New result

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.
$\mathcal{R}=n$ red curves, $\mathcal{B}=n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments.
$\mathcal{R}^{\prime} \subset \mathcal{R}, \mathcal{B}^{\prime} \subset \mathcal{B}$ of size $\Omega(n)$

New result

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.
$\mathcal{R}=n$ red curves, $\mathcal{B}=n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments.
$\mathcal{R}^{\prime} \subset \mathcal{R}, \mathcal{B}^{\prime} \subset \mathcal{B}$ of size $\Omega(n)$

New result

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.
$\mathcal{R}=n$ red curves, $\mathcal{B}=n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments.
$\mathcal{R}^{\prime} \subset \mathcal{R}, \mathcal{B}^{\prime} \subset \mathcal{B}$ of size $\Omega(n)$

New result

Theorem (Fox-Pach-S., 2024+)
 \mathcal{P}_{n} has the mighty Erdős-Hajnal property.

Ideas of the proof.
$\mathcal{R}=n$ red curves, $\mathcal{B}=n$ blue curves, $\mathcal{R} \cup \mathcal{B}$ pseudo-segments.

New result

Theorem (Fox-Pach-S., 2024+)
 \mathcal{P}_{n} has the mighty Erdős-Hajnal property.

Ideas of the proof.
$\mathcal{R}^{\prime} \subset \mathcal{R}, \mathcal{B}^{\prime} \subset \mathcal{B}=n$ of size $\Omega(n), \varepsilon$-homogeneous.

New result

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.

Ideas of the proof.
$\mathcal{R}^{\prime} \subset \mathcal{R}, \mathcal{B}^{\prime} \subset \mathcal{B}=n$ of size $\Omega(n), \varepsilon$-homogeneous.

New result

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.

Ideas of the proof.
$\mathcal{R}^{\prime} \subset \mathcal{R}, \mathcal{B}^{\prime} \subset \mathcal{B}=n$ of size $\Omega(n), \varepsilon$-homogeneous.

Intersection graphs $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ has edge density less than ε or greater than $1-\varepsilon$.

Case 1. Both $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ have edge density less than ε.

Case 1. Both $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ have edge density less than ε.
(1) Separator theorem.
(2) Strong Erdős-Hajnal property.

New result

Case 1. Both $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ have edge density less than ε.
(1) Separator theorem.
(2) Strong Erdős-Hajnal property.

Case 2. $G\left(\mathcal{R}^{\prime}\right)$ has edge density at least $1-\varepsilon$ and $G\left(\mathcal{B}^{\prime}\right)$ has edge density less than ε.

New result

$$
B^{\prime}
$$

Case 1. Both $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ have edge density less than ε.
(1) Separator theorem.
(2) Strong Erdős-Hajnal property.

Case 2. $G\left(\mathcal{R}^{\prime}\right)$ has edge density at least $1-\varepsilon$ and $G\left(\mathcal{B}^{\prime}\right)$ has edge density less than ε.
(1) Density increment argument.
(2) Extending to pseudolines.
(3) Cutting Lemma.

New result

$$
B^{\prime}
$$

Case 1. Both $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ have edge density less than ε.
(1) Separator theorem.
(2) Strong Erdős-Hajnal property.

Case 2. $G\left(\mathcal{R}^{\prime}\right)$ has edge density at least $1-\varepsilon$ and $G\left(\mathcal{B}^{\prime}\right)$ has edge density less than ε.
(1) Density increment argument.
(2) Extending to pseudolines.
(3) Cutting Lemma.

Case 3. Both $G\left(\mathcal{R}^{\prime}\right)$ and $G\left(\mathcal{B}^{\prime}\right)$ have edge density at least $1-\varepsilon$. Repeat the arguments in Case 2.

Applications

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant $c>0$ such that the following holds. Let \mathcal{R} be a collection of n red curves, and \mathcal{B} be a collection of n blue curves in the plane such that $\mathcal{R} \cup \mathcal{B}$ is a collection of pseudo-segments.

Applications

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant $c>0$ such that the following holds. Let \mathcal{R} be a collection of n red curves, and \mathcal{B} be a collection of n blue curves in the plane such that $\mathcal{R} \cup \mathcal{B}$ is a collection of pseudo-segments.
(1) If there are at least δn^{2} disjoint pairs in $\mathcal{R} \times \mathcal{B}$, then there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\delta^{c} n$, such that every red curve in \mathcal{R}^{\prime} is disjoint to every blue curve in \mathcal{B}^{\prime}.

Applications

Theorem (Fox-Pach-S., 2024+)

\mathcal{P}_{n} has the mighty Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant $c>0$ such that the following holds. Let \mathcal{R} be a collection of n red curves, and \mathcal{B} be a collection of n blue curves in the plane such that $\mathcal{R} \cup \mathcal{B}$ is a collection of pseudo-segments.
(1) If there are at least δn^{2} disjoint pairs in $\mathcal{R} \times \mathcal{B}$, then there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\delta^{c} n$, such that every red curve in \mathcal{R}^{\prime} is disjoint to every blue curve in \mathcal{B}^{\prime}.
(2) If there are at least δn^{2} crossing pairs in $\mathcal{R} \times \mathcal{B}$, then there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\delta^{c} n$, such that every red curve in \mathcal{R}^{\prime} is disjoint to every blue curve in \mathcal{B}^{\prime}.

Mighty EH property \Rightarrow Density theorems

$\mathcal{R}=n$ red curves.
$\mathcal{B}=n$ red curves.
$G=$ disjointness graph between \mathcal{R} and $\mathcal{B} .|E(G)| \geq \delta n^{2}$.

Mighty EH property \Rightarrow Density theorems

$\mathcal{R}=n$ red curves.
$\mathcal{B}=n$ red curves.
$G=$ disjointness graph between \mathcal{R} and $\mathcal{B} .|E(G)| \geq \delta n^{2}$.

Mighty EH property \Rightarrow Density theorems

$\mathcal{R}=n$ red curves.
$\mathcal{B}=n$ red curves.
$G=$ disjointness graph between \mathcal{R} and $\mathcal{B} .|E(G)| \geq \delta n^{2}$.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

$\mathcal{R}=n$ red curves.
$\mathcal{B}=n$ red curves.
$G=$ disjointness graph between \mathcal{R} and $\mathcal{B} .|E(G)| \geq \delta n^{2}$.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

$\mathcal{R}=n$ red curves.
$\mathcal{B}=n$ red curves.
$G=$ disjointness graph between \mathcal{R} and $\mathcal{B} .|E(G)| \geq \delta n^{2}$.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least δn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\delta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least δn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\delta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Mighty EH property \Rightarrow Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let $G=(\mathcal{R} \cup \mathcal{B}, E)$ be a bipartite graph with at least βn^{2} edges. Then for any $\varepsilon>0$, there are subsets \mathcal{R}^{\prime} and \mathcal{B}^{\prime}, each of size $\beta^{1 / \varepsilon^{2}} n$, such that every subset $X \subset \mathcal{R}^{\prime}$ and $Y \subset \mathcal{B}^{\prime}$ of size at least $\varepsilon\left|\mathcal{R}^{\prime}\right|$ and $\varepsilon\left|\mathcal{B}^{\prime}\right|$ respectively contains an edge.

$(\alpha, \beta) \in E(G)$ if α and β are disjoint.

Application of the density theorems

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Application of the density theorems

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Previous bound: Pach-Tóth, 2005: $|E(G)| \leq n(\log n)^{4 k-8}$.

Application of the density theorems

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Previous bound: Pach-Tóth, 2005: $|E(G)| \leq n(\log n)^{4 k-8}$.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)| \leq n(\log n)^{O(\log k)}$.

Application of the density theorems

Conjecture (folklore)

If G is an n-vertex graph with $\Omega\left(n^{2}\right)$ edges, then any simple drawing of G in the plane contains $n^{O(1)}$ pairwise disjoint edges.

Application of the density theorems

Conjecture (folklore)

If G is an n-vertex graph with $\Omega\left(n^{2}\right)$ edges, then any simple drawing of G in the plane contains $n^{O(1)}$ pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: $\log ^{1+\varepsilon} n$ disjoint edges.

Application of the density theorems

Conjecture (folklore)

If G is an n-vertex graph with $\Omega\left(n^{2}\right)$ edges, then any simple drawing of G in the plane contains $n^{O(1)}$ pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: $\log ^{1+\varepsilon} n$ disjoint edges.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with $n_{\varepsilon}^{1+\varepsilon}$ edges, then any simple drawing of G in the plane contains $n^{\overline{10 \log ^{\log n}}}$ pairwise disjoint edges.

A new regularity lemma for pseudo-segments

Mighty EH property \Leftrightarrow density theorems \Leftrightarrow strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

A new regularity lemma for pseudo-segments

Mighty EH property \Leftrightarrow density theorems \Leftrightarrow strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

A new regularity lemma for pseudo-segments

Mighty EH property \Leftrightarrow density theorems \Leftrightarrow strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

A new regularity lemma for pseudo-segments

Mighty EH property \Leftrightarrow density theorems \Leftrightarrow strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

A new regularity lemma for pseudo-segments

Mighty EH property \Leftrightarrow density theorems \Leftrightarrow strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

Open problems: Polynomial strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

Open problems: Polynomial strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a $K=K(\varepsilon)$, such that every intersection graph of pseudo-segments in the plane has an equipartition on its vertex set into K parts, V_{1}, \ldots, V_{K}, such that for all but an ε fraction of pairs of parts $\left(V_{i}, V_{j}\right)$ are complete or empty in G.

Conjecture (Fox-Pach-S., 2024+)
$K=(1 / \varepsilon)^{c}$

Fox-Pach-S.: K is a tower of 2 's of height $(1 / \varepsilon)^{c}$

Open problems: k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with no k-pairwise disjoint edges, then $|E(G)|=O_{k}(n)$.

Open problems: Incidences between points and 2-intersecting curves

Theorem (Fox-Pach-S., 2024+)

$$
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{\text {mono }}\right| \leq\left|\mathcal{P}_{n}\right| \leq 2^{O\left(n^{3 / 2} \log n\right)} .
$$

$P=n^{1 / 3} \times n^{2 / 3}$ grid $\quad L=n$ lines
$|I(P, L)|=\Theta\left(n^{4 / 3}\right)$

Open problems: Incidences between points and 2-intersecting curves

Problem

What is the maximum number of incidences between n points and n 2-intersecting curves in the plane?
$P=n^{1 / 3} \times n^{2 / 3}$ grid $\quad L=n$ lines
$|I(P, L)|=\Theta\left(n^{4 / 3}\right)$

Open problems: Incidences between points and 2-intersecting curves

Problem

What is the maximum number of incidences between n points and n 2-intersecting curves in the plane?
$P=n$ points $\quad L=n$ 2-intersecting curves
Pach-Sharir, 1998
$\Omega\left(n^{4 / 3}\right) \leq|I(P, L)|=O\left(n^{7 / 5}\right)$

Open problems: Incidences between points and k-intersecting curves

Problem

What is the maximum number of incidences between n points and $n k$-intersecting curves in the plane?
$P=n$ points $\quad L=n k$-intersecting curves
Pach-Sharir, 1998
$\Omega\left(n^{4 / 3}\right) \leq|I(P, L)|=O\left(n^{\frac{3 k-2}{2 k-1}}\right)$

Open problems: Incidences between points and k-intersecting curves

Problem

What is the maximum number of incidences between n points and $n k$-intersecting curves in the plane?
$P=n$ points $\quad L=n k$-intersecting curves
Pach-Sharir, 1998
$\Omega\left(n^{4 / 3}\right) \leq|I(P, L)|=O\left(n^{\frac{3 k-2}{2 k-1}}\right)$
Application:

$$
2^{\Omega\left(n^{4 / 3}\right)}<\left|\mathcal{P}_{n}^{(k)}\right|<2^{O\left(n^{2-\varepsilon}\right)}
$$

Thank you!

