Ramsey Theory Workshop

University of California, San Diego, February 18-20 2023

Organizers D. Mubayi, A. Suk, J. Verstraete

OPEN PROBLEM SESSION

OPEN PROBLEMS

Problem 1.

D. Mubayi

Given a graph F and a real $x \in[0,1]$, let $I(F, x)$ be the maximum proportion of induced copies of F in a (large) graph with edge density x.

Problems: For each of the following, is there a graph F such that

1. There is a real x such that $I(F, x)=\operatorname{rand}(F, x)$, where $\operatorname{rand}(F, x)$ is the expected number of induced copies of F in the random graph with density x ?
2. $\quad I(F, x)$ has at least two global maxima ?
3. There is a nontrivial interval J such that $I(F, x)=\sup I(F, x)$ for all $x \in J$?
4. $\quad I(F, x)$ has a nontrivial local maximum (minimum)?

Problem 2.

This conjecture comes out of some joint work with MingYang Deng and Yufei Zhao.
Let $s(k ; r)$ be the largest N such that there exists an r-coloring $\phi: \mathbb{Z} / N \mathbb{Z} \rightarrow[r]$ with no symmetrically-colored $2 k$-APs. A $2 k$-AP $a, a+d, a+2 d, \ldots, a+(2 k-1) d$ with $d \neq 0$ is symmetrically-colored if $\phi(a+i d)=\phi(a+(2 k-i-1) d)$ for all $0 \leq i<k$.

For each $k \geq 2$, prove that there exists some r such that $s(k ; r)>r^{k}$. (This is known for $k=2,3,4$ and open in general.) A harder question is to prove for each fixed $k \geq 2$, that $s(k ; r)$ grows superpolynomially in r, i.e., $s(k ; r) \geq r^{\omega_{k ; r \rightarrow \infty}(1)}$.

Problem 3.

C. Toth

A lattice polytope P is the convex hull of a finite set $S \subset \mathbb{Z}^{d}$ for $d \in \mathbb{N}$. Andrews (1963) proved that for every $d \in \mathbb{N}$, every lattice polytope of volume V in d-space has at most $O\left(V^{\frac{d-1}{d+1}}\right)$ faces, and this bound is the best possible; see also Barany and Pach (1992) and Barany and Vershik (1992).

A facet F of a lattice polytope P is t-rich if F contains more than t lattice points, for $t \in \mathbb{N}$, that is, $\left|F \cap \mathbb{Z}^{d}\right|>t$. For $d \geq 2$ let $f(d)>0$ denote the largest real such that for all $t \geq 1$ every d-dimensional lattice polytope of volume V has

$$
O\left(\left(\frac{V}{t^{f(d)}}\right)^{\frac{d-1}{d+1}}\right)
$$

t-rich facets. It is not difficult to see that $f(2)=2$. Determine $f(d)$ for $d \geq 3$.

Problem 4.

S. Spiro

Given two graphs K, H, define $r_{K}(H)$ to be the minimum number of copies of K that a graph G can have such that any 2 -coloring of G contains a monochromatic copy of H. For example, when $K=K_{1}$ this is the usual Ramsey number, and when $K=K_{2}$ this is the size Ramsey number. The general question is to try and generalize bounds for size Ramsey numbers to other K, e.g. when K is a clique or complete bipartite graph. In particular, is it true that $r_{K_{s}}\left(K_{t}\right)=\binom{r\left(K_{t}\right)}{s}$ for all $s \leq t$ (which is known to hold when $s=2$)?

Problem 5.

J. Verstraete

Let G be a graph with n vertices and independence number $o(n)$ as $n \rightarrow \infty$. Does G contain a 3-regular subgraph? If G has independence number $o\left(n / \log ^{*} n\right)$ then indeed G has a 3regular subgraph. This is a consequence of the following result of Pyber, Rödl and Szemerédi (1991) (more recently, Janzer and Sudakov), who proved the following:

Theorem 1 Let $d \geq 1$ and let G be a graph of average degree at least $2^{10} d$ and maximum degree at most $2^{10 d}$. Then G has a 3-regular subgraph.

Indeed, if G is an n-vertex graph of average degree d then G contains at most $n / 2$ vertices of degree at least $4 d$. Therefore G has an induced subgraph with at least $n / 2$ vertices and maximum degree at most $4 d$. By the theorem, this has a 3 -regular subgraph unless the average degree is $O(\log d)$, and it suffices to repeat the argument if d is roughly $\log ^{*} n$ to get a large independent set. This is a Ramsey version of the Turán problem asking for the maximum number of edges in an n-vertex graph with no 3 -regular subgraph. The latter was solved by Janzer and Sudakov recently, who showed the answer is $\Theta(n \log \log n)$. If F is the family of all 3-regular graphs, then our problem is asking whether $r\left(K_{n}, F\right)=O(n)$, and the above argument gives $r\left(K_{n}, F\right)=O\left(n \log ^{*} n\right)$.

Problem 6.

Does there exists a constant $c>0$ such that in any red-blue-edge-coloring of K_{n}, either there is a red triangle or a blue $K_{s, t}$ where $s \geq n^{c}$ and $t \geq c n$? It is know that there is a blue $K_{s, t}$ with $s \geq(\log n) / \log \log n$ and t linear in n, but even $s=\log n$ is not known. In other words, is there a constant $c>0$ such that

$$
r\left(K_{3}, K_{n^{c}, n}\right)=O(n) ?
$$

This is a toy version of a more general problem which is related to the Erdős-Hajnal conjecture.

Problem 7.

D. Conlon

An interesting problem of Horn, Milans and Rödl [2] asks whether for every d there exists D such that, for every graph H with maximum degree at most d, there is a graph G with maximum degree at most D with the property that every two-colouring of the edges of G contains a monochromatic copy of H. Such a result is known for some families of graphs, like blowups of trees [2], but seems likely to be false in general. However, just as for size Ramsey numbers [1], the question of whether such a result holds for grid graphs is an interesting test case. This was raised in [2], but it would already be interesting to prove that we can take G to have maximum degree $n^{o(1)}$ when H is the $n \times n$ grid.
[1] D. Conlon, R. Nenadov and M. Trujićc, On the size-Ramsey number of grids, to appear in Combin. Probab. Comput.
[2] P. Horn, K. G. Milans and V. Rödl, Degree Ramsey numbers of closed blowups of trees, Electron. J. Combin. 21 (2014), Paper 2.5, 6 pp.

