Problems on generalizing planar graphs and thrackles

Andrew Suk, UIC

June 15, 2015

Definition

A topological graph is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is simple if every pair of its edges intersect at most once.

Definition

A topological graph is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is simple if every pair of its edges intersect at most once.

Special Case 2

G is a simple topological graph

Classic results

Planar graphs:

Theorem (Euler)

Every n-vertex simple topological graph with no two crossing edges has at most $3 n-6$ edges.

Dual
Thrackles:
Conjecture (Conway)
Every n-vertex simple topological graph with no two disjoint edges has at most n edges.

Classic results

Planar graphs:

Theorem (Euler)

Every n-vertex simple topological graph with no two crossing edges has at most $3 n-6$ edges.

Dual

Thrackles:

Theorem (Lovász, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges, has at most $2 n$ edges.

Best known $1.43 n$ by Fulek and Pach, 2010.

Relaxing planarity/thrackle condition

k-quasi-planar graphs

Conjecture

Every n-vertex simple topological graph with no k pairwise crossing edges has at most $O(n)$ edges.

Dual
k-quasi-thrackles

Conjecture (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint edges, has at most $O(n)$ edges.

Relaxing planarity/thrackle condition

k-quasi-planar graphs

Conjecture

Every n-vertex simple topological graph with no k pairwise crossing edges has at most $O(n)$ edges.

Proven: for $k=3,4$. Open: for $k \geq 5$ Dual
k-quasi-thrackles

Conjecture (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint edges, has at most $O(n)$ edges.

Open: for $k \geq 3$

Best known bounds

k-quasi-planar graphs

Conjecture

Every n-vertex simple topological graph with no k pairwise crossing edges has at most $O(n)$ edges.

Best bound: $O(n \log n)$ for $k \geq 5$ (S. and Walczak 2012)
Dual
k-quasi-thrackles

Conjecture (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint edges, has at most $O(n)$ edges.

Best bound: $O\left(n \log ^{4 k-8} n\right)$ for $k \geq 3$ (Pach and Tóth, 2005)

A coloring problem

k-quasi-planar graphs

Conjecture

Every n-vertex simple topological graph with no k pairwise crossing edges has at most $O(n)$ edges.

Best bound: $O(n \log n)$ for $k \geq 5$ (S. and Walczak 2012)
$G=(V, E) k$-quasi-planar graph.

E is a family of $|E(G)|$ curves in the plane, no k pairwise intersecting.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Color the curves such that each color class consists of pairwise disjoint curves.

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

One of the color classes has at least $|E(G)| / c_{k}$ curves (edges).

Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

$$
\frac{|E(G)|}{c_{k}} \leq 3 n-6
$$

Conjecture (Coloring conjecture, FALSE)

Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Conjecture is False!

Theorem (Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter, Walczak, 2012)

For infinite values n, there exists a family F of n segments in the plane, no three members pairwise cross, and $\chi(F)>\Omega(\log \log n)$.

Conjecture (Coloring conjecture, FALSE)
 Let F be a family of curves in the plane such that no k members pairwise intersect. Then $\chi(F) \leq c_{k}$.

Conjecture true under extra conditions?

Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members pairwise intersect. Furthermore, suppose
(1) F is simple,
(2) there is a curve β that intersects every member in F exactly once,
then $\chi(F) \leq c_{k}$.

Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members pairwise intersect. Furthermore, suppose
(1) F is simple,
(2) there is a curve β that intersects every member in F exactly once,
then $\chi(F) \leq c_{k}$.

Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members pairwise intersect. Furthermore, suppose
(1) F is simple,
(2) there is a curve β that intersects every member in F exactly once,
then $\chi(F) \leq c_{k}$.
(1) Coloring intersection graphs of arcwise connected sets in the plane, Lason, Micek, Pawlik and Walczak 2013.
(2) Coloring intersection graphs of x-monotone curves in the plane, Suk 2012.
(3) On bounding the chromatic number of L-graphs, McGuinness 1996.

Application of coloring result.

Corollary (Suk and Walczak, 2013)

For fixed $k>1$, let G be a simple n-vertex k-quasi planar graph. If G contains an edge that crosses every other edge, then $|E(G)| \leq O(n)$.

Lemma (Fox, Pach, Suk, 2012)

Let G be a simple topological graph on n vertices. Then there are subgraphs $G_{1}, G_{2}, \ldots, G_{m} \subset G$ such that

$$
\frac{|E(G)|}{c \log n} \leq \sum_{i=1}^{m}\left|E\left(G_{i}\right)\right|
$$

every edge in G_{i} is disjoint to every edge in $G_{j} . G_{i}$ has an edge that crosses every other edge in G_{i}.

Let $n_{i}=\left|V\left(G_{i}\right)\right|$.

- $\left|E\left(G_{i}\right)\right| \leq c_{k} n_{i}$, Suk and Walczak 2013.

$$
\frac{|E(G)|}{c \log n} \leq \sum_{i=1}^{m}\left|E\left(G_{i}\right)\right| \leq \sum_{i=1}^{m} c_{k} n_{i}=c_{k}\left(n_{1}+n_{2}+\cdots+n_{m}\right)=c_{k} n
$$

Disjoint edges

k-quasi-thrackles

Conjecture (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint edges, has at most $O(n)$ edges.

Conjecture

Let F be a family of curves in the plane such that no k pairwise are disjoint. Then $\chi(\bar{F}) \leq c_{k}$.

OPEN

Disjoint edges

$F=$ family of curves no k pairwise crossing.

Disjoint edges

$F=$ family of curves no k pairwise crossing.

Disjoint edges

$F=$ family of curves no k pairwise crossing. Still no k pairwise crossing (did not introduce crossing pairs).

Not true if F had no k pairwise disjoint members (new disjoint pairs can be introduced).

Disjoint edges

k-quasi-thrackles

Conjecture (Pach and Tóth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint edges, has at most $O(n)$ edges.

Conjecture

Let F be a family of curves in the plane such that no k pairwise are disjoint. Then $\chi(\bar{F}) \leq c_{k}$.

OPEN

Coloring theorem for disjoint curves

> Theorem (Pach and Törőcsik, 1994)
> Let F be family of segments in the plane such that no k members are pairwise disjoint. Then $\chi(\bar{F}) \leq c k^{4}$.

Partial orders

Disjoint edges can be compared by one of four partial orders:

Partial orders

Example

Partial orders

Example

Partial orders

Example

Partial orders

Example

$<_{2}$

Partial orders

Example

Generalizes

Theorem (Pach and Töröcsik, 1994)
 Let F be family of x-monotone curves in the plane such that no k members are pairwise disjoint. Then $\chi(\bar{F}) \leq c k^{4}$.

General curves

No (clear) partial ordering for general curves

Back to the classic results

Planar graphs:

Theorem (Euler)

Every n-vertex simple topological graph with no two crossing edges has at most $3 n-6$ edges.

Dual

Thrackles:

Theorem (Lovász, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges, has at most $2 n$ edges.

Best known $1.43 n$ by Fulek and Pach, 2010.

Another generalization

Planar graphs:

Theorem (Fox and Pach)

Let G be an n-vertex simple topological graph with k edges crossing another set of k edges. Then G has at most $O(n)$ edges.

Dual

Thrackles:

Theorem (Ruiz-Vargas, S., Tóth, 2014)

Let G be an n-vertex simple topological graph with k edges disjoint to another set of k edges. Then G has at most $O(n)$ edges.

A stronger result

Theorem (Fox and Pach)

Let F be a simple family of n curves in the plane. If the
 the intersection graph is at most $O(n)$.

Dual

Problem

Let F be a simple family of n curves in the plane. If the non-intersection graph of F is $K_{k, k}-f r e e$, then the number of edges in the non-intersection graph is at most $O(n)$.

OPEN

Dense graphs

Theorem (Fox and Pach, 2008)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges, has n^{ϵ} pairwise crossing edges.

Dual

Problem

Every n-vertex simple topological graph $\Omega\left(n^{2}\right)$ edges, has n^{ϵ} pairwise disjoint edges.

OPEN. Best known result: $\log ^{1+\delta} n$ (Fox and Sudakov 2006).

Dense graphs

Theorem (Fox and Pach, 2008)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges, has n^{ϵ} pairwise crossing edges.

Dual

Problem

Every n-vertex simple topological graph $\Omega\left(n^{2}\right)$ edges, has n^{ϵ} pairwise disjoint edges.

OPEN. True for complete graphs: $\Omega\left(n^{1 / 3}\right)$ (S. 2011, Fulek and Ruiz-Vargas 2013).

Thank you!

