A Ramsey-type result for geometric k-hypergraphs

Dhruv Mubayi and Andrew Suk

September 21, 2013

Old theorems in Ramsey Theory

For *k*-uniform hypergraphs.

Definition

We define the Ramsey number $R_k(n)$ to be the minimum integer N such that any N-vertex k-uniform hypergraph H contains either a clique or an independent set of size n.

Theorem (Ramsey 1930)

For all k, n, the Ramsey number $R_k(n)$ is finite.

Estimate $R_k(n)$, k fixed and $n \to \infty$.

Known estimates

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$2^{n/2} \le R_2(n) \le 2^{2n}.$$

Theorem (Erdős-Rado 1952, Erdős-Hajnal 1960's)

$$2^{cn^2} \leq R_3(n) \leq 2^{2^{c'n}}$$
.

$$\operatorname{twr}_{k-1}(cn^2) \le R_k(n) \le \operatorname{twr}_k(c'n).$$

Tower function $\operatorname{twr}_i(x)$ is given by $\operatorname{twr}_1(x) = x$ and $\operatorname{twr}_{i+1}(x) = 2^{\operatorname{twr}_i(x)}$.

Erdős conjecture: $R_3(n) = 2^{2^{\Theta(n)}}$ (offered \$500).

Problem (Esther Klein 1930's)

Given an integer n, does there exist a number ES(n), such that any set of at least ES(n) points in the plane in general position, contains n members in convex position?

Problem (Esther Klein 1930's)

Given an integer n, does there exist a number ES(n), such that any set of at least ES(n) points in the plane in general position, contains n members in convex position?

Theorem (Erdős-Szekeres 1935)

$$2^{n-2} + 1 \le ES(n) \le {2n-4 \choose n-2} + 1 = O(4^n/\sqrt{n}).$$

Main Problem (Mubayi and Suk): Combine the Ramsey problem on graphs (*k*-uniform hypergraphs) and the Erdős-Szekeres problem on finding points in convex position.

Fits nicely in the **Theory of Geometric Graphs**.

We define the geometric Ramsey number $R^{geo}(n) = R_2^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric graph whose edges are colored with two colors, must contain a complete monochromatic convex geometric graph on n vertices.

We define the geometric Ramsey number $R^{geo}(n) = R_2^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric graph whose edges are colored with two colors, must contain a complete monochromatic convex geometric graph on n vertices.

We define the geometric Ramsey number $R^{geo}(n) = R_2^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric graph whose edges are colored with two colors, must contain a complete monochromatic convex geometric graph on n vertices.

We define the geometric Ramsey number $R^{geo}(n) = R_2^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric graph whose edges are colored with two colors, must contain a complete monochromatic convex geometric graph on n vertices.

Problem: Estimate $R^{geo}(n)$.

Geometric *k*-hypergraphs in the plane.

Definition (Mubayi and Suk)

We define $R_k^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric k-hypergraph whose edges are colored with two colors, must contain a complete monochromatic convex geometric k-hypergraph on n vertices.

Geometric *k*-hypergraphs in the plane.

Definition (Mubayi and Suk)

We define $R_k^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric k-hypergraph whose edges are colored with two colors, must contain a complete monochromatic convex geometric k-hypergraph on n vertices.

Problem: Estimate $R_{\nu}^{geo}(n)$.

Geometric *k*-hypergraphs in the plane.

Definition (Mubayi and Suk)

We define $R_k^{geo}(n)$ to be the minimum integer N such that any N-vertex complete geometric k-hypergraph whose edges are colored with two colors, must contain a complete monochromatic convex geometric k-hypergraph on n vertices.

Trivial bounds on $R_k^{geo}(n)$?

Geometric graphs, k = 2

Trivial upper and lower bounds on $R^{geo}(n)$.

Lower bound: $R^{geo}(n) \ge \max\{R(n), ES(n)\} \ge 2^{n-2} + 1$.

Upper bound: $R^{geo}(n) \leq ES(R(n)) \leq 2^{2^{O(n)}}$.

$$2^{n-1} + 1 \le R^{geo}(n) \le 2^{2^{O(n)}}$$
.

$$2^{n-1} + 1 \le R^{geo}(n) \le 2^{2^{O(n)}}$$
.

Similar arguments for geometric k-hypergraphs ($k \ge 3$) shows double exponential difference

$$2^{\Omega(n^2)} \le R_3^{geo}(n) \le 2^{2^{2^{O(n)}}}$$

$$2^{2^{\Omega(n^2)}} \leq R_4^{geo}(n) \leq 2^{2^{2^{2^{O(n)}}}}$$

$$\operatorname{twr}_{k-1}(\Omega(n^2)) \le R_k^{geo}(n) \le \operatorname{twr}_{k+1}(O(n)).$$

Theorem (Mubayi and Suk 2013)

For geometric graphs, we have

$$4^n < R^{geo}(n) < 2^{O(n^2 \log n)}$$
.

For geometric 3-hypergraphs, we have

$$R_3^{geo}(n)=2^{2^{\Theta(n)}}.$$

For geometric k-hypergraphs, $k \ge 4$, we have

$$\operatorname{twr}_{k-1}(\Omega(n^2)) < R_k^{geo}(n) < \operatorname{twr}_k(O(n)).$$

Recall Ramsey numbers for graphs: $R_2(n) = 2^{\Theta(n)}$, 3-hypergraphs: $2^{\Omega(n^2)} < R_3(n) < 2^{2^{O(n)}}$. (\$500 problem) k-hypergraphs: $\operatorname{twr}_{k-1}(\Omega(n^2)) < R_k(n) < \operatorname{twr}_k(O(n))$.

Geometric graphs: G = (V, E) complete geometric graph on with $N = 2^{10n^2 \log n}$ vertices.

Geometric graphs: G = (V, E) complete geometric graph on with $N = 2^{10n^2 \log n}$ vertices. Let $\chi : E \to \{red, blue\}$.

Geometric graphs: G = (V, E) complete geometric graph on with $N = 2^{10n^2 \log n}$ vertices. Let $\chi : E \to \{red, blue\}$.

Geometric graphs: G = (V, E) complete geometric graph on with $N = 2^{10n^2 \log n}$ vertices. Let $\chi : E \to \{red, blue\}$.

1) Points $p_1, ..., p_{2n^2}$ are ordered from left to right.

2) for every pair of vertices p_i and p_j , where i < j, all points $p \in \{p_k : k > j\}$ lie above (below) the line $l = p_i p_j$.

2) for every pair of vertices p_i and p_j , where i < j, all points $p \in \{p_k : k > j\}$ lie above (below) the line $l = p_i p_j$.

2) for every pair of vertices p_i and p_j , where i < j, all points $p \in \{p_k : k > j\}$ lie above (below) the line $l = p_i p_j$.

3) for any vertex p_i , all pairs (p_i, p) where $p \in \{p_j : j > i\}$ have the same color.

3) for any vertex p_i , all pairs (p_i, p) where $p \in \{p_j : j > i\}$ have the same color.

3) for any vertex p_i , all pairs (p_i, p) where $p \in \{p_j : j > i\}$ have the same color.

Greedy algorithm.

Greedy algorithm.

$$G = \begin{bmatrix} \bullet \\ p_I \end{bmatrix}$$

Greedy algorithm. $S_1 = V \setminus \{p_1\}$

$$\begin{array}{ccc}
\bullet & \bullet \\
p_1 & p_2
\end{array}$$

$$\begin{array}{ccc}
\bullet & \bullet \\
p_1 & p_2
\end{array}$$
 $\begin{array}{ccc}
S_4 \\
\bullet \\
p_3
\end{array}$

$$|V| = 2^{10n^2 \log n}$$

.

•

•

$$p_1 \ P_2 \ P_3$$

$$p_4 p_5 \dots p_{2n^2-1} p_{2n^2}$$

 $p_4 p_5 \dots p_{2n^2-1} p_{2n^2}$

 p_1 p_2 p_3

$$p_1$$
 p_2 p_3 p_4 p_5 $\cdots p_{n^2-1}$ p_{n^2}

Half of the points form a monochromatic clique (of size n^2). Say $p_1, ..., p_{n^2}$.

Obtained a monochromatic convex geometric graph on n vertices.

Theorem (Mubayi and Suk 2013)

For geometric graphs, we have

$$4^n < R^{geo}(n) < 2^{O(n^2 \log n)}$$
.

For geometric 3-hypergraphs, we have

$$R_3^{geo}(n)=2^{2^{\Theta(n)}}.$$

For geometric k-hypergraphs, $k \ge 4$, we have

$$\operatorname{twr}_{k-1}(\Omega(n^2)) < R_k^{geo}(n) < \operatorname{twr}_k(O(n)).$$

Problems:

- $R^{geo}(n) = 2^{\Theta(n)}$?
- 2 Close the gap for $R_k^{geo}(n)$.

Thank you!