Density-type theorems for semi-algebraic hypergraphs

Jacob Fox, Janos Pach, Andrew Suk

March 21, 2014

An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

Bipartite graph G, edge set E.

An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

Bipartite graph G, edge set E.

An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

Bipartite graph G, edge set E.

k-partite k-uniform hypergraph H, edge set E.

These results are tight.

k-partite k-uniform hypergraph H, edge set E.

In this talk: We can do much better if H is a semi-algebraic k-uniform hypergraph.

k-partite k-uniform hypergraph H, edge set E.

Semi-algebraic hypergraphs: $V = \{\text{simple geometric objects in } \mathbb{R}^d\}$, $E = \{\text{simple relation on } k \text{ tuples of } V\}$.

 $A_i \to p_i = (x_i, y_i, r_i), A_j \to p_j = (x_j, y_j, r_j).$ A_i and A_j cross if and only if

$$-x_i^2 + 2x_ix_j - x_i^2 - y_i^2 + 2y_iy_j - y_i^2 + r_i^2 + 2r_ir_j + r_i^2 \ge 0.$$

Graph G = (V, E), V = n points in \mathbb{R}^3 E defined by the polynomial

$$f(z_1,...,z_6) = -z_1^2 + 2z_1z_4 - z_4^2 - z_2^2 + 2z_2z_5 - z_5^2 + z_3^2 + 2z_3z_6 + z_6^2.$$

$$(p_i, p_i) \in E \Leftrightarrow f(p_i, p_i) \ge 0.$$

More examples of semi-algebraic hypergraphs

Examples

- $V = \{n \text{ circles in } \mathbb{R}^3\}$ $E = \{\text{pairs that are linked}\}.$
- ② $V = \{n \text{ hyperplanes in } \mathbb{R}^d \text{ in general position} \},$ $E = \{d \text{-tuples whose intersection point is above the hyperplane } x_d = 0\}.$

More examples of semi-algebraic hypergraphs

Examples

- $V = \{n \text{ circles in } \mathbb{R}^3\} \to n \text{ points in higher dimensions.}$ $E = \{\text{pairs that are linked}\} \to \text{polynomials } f_1, ..., f_t.$
- $V = \{n \text{ hyperplanes in } \mathbb{R}^d \text{ in general position}\} \to n \text{ points in higher dimensions,}$

 $E = \{d\text{-tuples} \text{ whose intersection point is above the hyperplane } x_d = 0\} \rightarrow \text{polynomials } f_1, ..., f_t.$

We say that H = (V, E) is a semi-algebraic k-uniform hypergraph in d-space if

 $V = \{n \text{ points in } \mathbb{R}^d\}$

E defined by polynomials $f_1,...,f_t$ and a Boolean formula Φ such that

$$(p_{i_1},...,p_{i_k})\in E$$

$$\Leftrightarrow \Phi(f_1(p_{i_1},...,p_{i_k}) \geq 0,...,f_t(p_{i_1},...,p_{i_k}) \geq 0) = \text{yes}$$

3-uniform hypergraph $H=(V,E),\ V=\{p_1,...,p_n\}$ points in \mathbb{R}^d .

Relation $E\subset {V\choose 3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

 $(p_1, p_2, p_3) \in E$ depends on $f(p_1, p_2, p_3) \to \{+, -, 0\}$.

•

3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d .

Relation $E\subset {V\choose 3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

 $(p_1, p_2, p_3) \in E$ depends on $f(p_1, p_2, p_3) \to \{+, -, 0\}.$

3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d .

Relation $E \subset \binom{V}{3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

Zero set $f(p_1, p_2, x_3) = 0$, surface in \mathbb{R}^d .

3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d .

Relation $E \subset \binom{V}{3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

Zero set $f(p_1, p_2, x_3) = 0$, surface in \mathbb{R}^d .

3-uniform hypergraph $H=(V,E),\ V=\{p_1,...,p_n\}$ points in \mathbb{R}^d . Relation $E\subset \binom{V}{3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

Zero set $f(p_1, p_2, x_3) = 0$, surface in \mathbb{R}^d .

E has complexity (t, D), degree of $f(p_1, p_2, x_3) \leq D$.

Complexity of relation E

$$x_i \in \mathbb{R}^d$$

E has complexity (t, D)

- described by polynomials $f_1, ..., f_t$,
- ② and the degree of ALL kt d-variate polynomials $f_i(x_1,...,x_{k-1},x_k), f_i(x_1,...,x_{k-2},x_{k-1},x_k),...,f_i(x_1,x_2,...,x_k),$ for i=1...t, is at most D.

Note. f_i has degree at most Dk.

Motivation: Orientations and order-types

Our motivation, E is related to order-types and orientations.

$$f(p_1, p_2, x_3)$$
 is linear.

E has complexity (t, D) = (t, 1).

```
V = \{n \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}. H = (V, E) \text{ semi-algebraic 3-uniform hypergraph in the plane}\ (d = 2)
```



```
E = \{ \text{triples having a clockwise orientation} \}. H = (V, E) semi-algebraic 3-uniform hypergraph in the plane (d = 2)
```

 $V = \{n \text{ points in the plane}\},\$

 $V = \{n \text{ points in the plane}\},\$ $E = \{\text{triples having a clockwise orientation}\}.$ H = (V, E) semi-algebraic 3-uniform hypergraph in the plane (d = 2)

 $V = \{n \text{ points in the plane}\},\$

 $E = \{ \text{triples having a clockwise orientation} \}.$

H = (V, E) semi-algebraic 3-uniform hypergraph in the plane (d = 2)

 $E = \{ \text{triples having a clockwise orientation} \}.$

$$\det \left(\begin{array}{ccc} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0.$$

$$\det\left(\begin{array}{ccc} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array}\right) > 0.$$

$$\det \left(\begin{array}{ccc} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0$$

$$\det \left(\begin{array}{ccc} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0$$

$$\det \left(\begin{array}{ccc} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0$$

Example in higher dimensions

$$E = (d + 1)$$
-tuples with a positive orientation, complexity $(t, D) = (1, 1)$.

$$\det \left(egin{array}{cccc} 1 & 1 & \cdots & 1 \ | & | & \cdots & | \ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \ | & | & \cdots & | \ \end{array}
ight) > 0.$$

Example in higher dimensions

$$E = (d + 1)$$
-tuples with a positive orientation, complexity $(t, D) = (1, 1)$.

$$\det \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ | & p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{array} \right) > 0.$$

Example in higher dimensions

$$E = (d + 1)$$
-tuples with a positive orientation, complexity $(t, D) = (1, 1)$.

$$\det \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{array} \right) > 0.$$

Previous results

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$ and E has complexity (t,D). Then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon n$ and either $(V_1',V_2')\subset E$ or $(V_1',V_2')\subset \overline{E}$, and $\epsilon=\epsilon(d,t,D)$.

Previous results

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$ and E has complexity (t,D). Then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon n$ and either $(V_1',V_2')\subset E$ or $(V_1',V_2')\subset \overline{E}$, and $\epsilon=\epsilon(d,t,D)$.

Previous results

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$ and E has complexity (t,D). Then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon n$ and either $(V_1',V_2')\subset E$ or $(V_1',V_2')\subset \overline{E}$, and $\epsilon=\epsilon(d,t,D)$.

Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$ and E has complexity (t,D). If $|E|\geq \epsilon n^2$, then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon^C n$ where C=C(d,t,D), and $(V_1',V_2')\subset E$.

Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$ and E has complexity (t,D). If $|E|\geq \epsilon n^2$, then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon^C n$ where C=C(d,t,D), and $(V_1',V_2')\subset E$.

Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V_1', ..., V_k' \subset V$ such that $|V_i'| \ge \epsilon^C n$ where C = C(k, d, t, D), and $(V_1', ..., V_k') \subset E$.

Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V_1', ..., V_k' \subset V$ such that $|V_i'| \ge \epsilon^C n$ where C = C(k, d, t, D), and $(V_1', ..., V_k') \subset E$.

Generalization

C(k, d, t, D): Dependency on uniformity k is very bad.

Fox, Gromov, Lafforgue, Naor, Pach: $C(k,d,t,D) \sim 2^{2^{k-2^2}}$ (tower-type)

Bukh-Hubard: $C(k, d, t, D) \sim 2^{2^{k+d}}$, double exponential in k.

Bukh-Hubard: Set sizes decay triple exponentially in k

New results

For simplicity, complexity (t, D) is fixed.

Theorem (Fox, Pach, Suk, 2013+)

Let $H=(V_1,...,V_k,E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1|=\cdots=|V_k|=n$ and E has complexity (t,D). If $|E|\geq \epsilon n^k$, then there are subsets $V_1',...,V_k'\subset V$ such that $|V_i'|\geq \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V_1',...,V_k')\subset E$.

New results

Theorem (Fox, Pach, Suk, 2013+)

Let $H=(V_1,...,V_k,E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1|=\cdots=|V_k|=n$ and E has complexity (t,D). If $|E|\geq \epsilon n^k$, then there are subsets $V_1',...,V_k'\subset V$ such that $|V_i'|\geq \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V_1',...,V_k')\subset E$.

New results, D=1

Theorem (Fox, Pach, Suk, 2013+)

Let $H=(V_1,...,V_k,E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1|=\cdots=|V_k|=n$ and E has complexity (t,1). If $|E|\geq \epsilon n^k$, then there are subsets $V_1',...,V_k'\subset V$ such that $|V_i'|\geq \frac{\epsilon^{d+1}}{2ckd\log d}n$, and $(V_1',...,V_k')\subset E$.

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

Theorem (Fox, Pach, Suk, 2013+)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-O(d^3 \log d)} n,$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n$$

Theorem (Bárány and Valtr, 1998)

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Fox, Pach, Suk, 2013+)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n,$$

Sketch proof of Same-type lemma

Theorem (Fox, Pach, Suk, 2013+)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n,$$

for all i.

Sketch proof.

Sketch proof of Same-type lemma

Theorem (Fox, Pach, Suk, 2013+)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n,$$

for all i.

Sketch proof.

Goodman-Pollack: Number of different order-types of k-element point sets in d dimensions is at most $k^{O(d^2k)}$.

There exists an order type π , such that at least $k^{-O(d^2k)}n^k$ (rainbow) k-tuples have order type π .

k-partite k-uniform semi-algebraic hypergraph $H = (P_1, ..., P_k, E)$ in d-space

 $E = \{k - \text{tuples with order type } \pi\}. \ |E| \ge k^{-O(d^2k)} n^k.$

Complexity of E?

To check if $(p_1, ..., p_k)$ has order π , just check the orientation of each (d+1)-tuple. For each $p_{i_1}, ..., p_{i_{d+1}}$

$$\det \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{array} \right) \rightarrow \{+,-\}.$$

Hence we need to check $t=\binom{k}{d+1}$ polynomial inequalities. Complexity of E is $(t,D)=(\binom{k}{d+1},1)$.

k-partite k-uniform semi-algebraic hypergraph $H = (P_1, ..., P_k, E)$ in d-space.

$$\epsilon = k^{-O(d^2k)}, \ t = {k \choose d+1}, D = 1$$

k-partite k-uniform semi-algebraic hypergraph $H = (P_1, ..., P_k, E)$ in d-space.

$$\epsilon=k^{-O(d^2k)},\ t={k\choose d+1},D=1$$

$$|P_i'|\geq 2^{-O(d^3k\log k)}n,$$

Theorem (Fox, Pach, Suk, 2013+)

Let $H=(V_1,...,V_k,E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1|=\cdots=|V_k|=n$ and E has complexity (t,D)=(1,1). If $|E|\geq \epsilon n^k$, then there are subsets $V_1',...,V_k'\subset V$ such that $|V_i'|\geq \frac{\epsilon^{d+1}}{2^{ckd\log d}}n$, and $(V_1',...,V_k')\subset E$.

Proof. Induction on k. E depends on $f(\mathbb{R}^d, \mathbb{R}^d, ..., \mathbb{R}^d) \geq 0$.

$$V_0 = V_2 \times V_3 \times \cdots \times V_k \subset \mathbb{R}^{(k-1)d}$$
. $|V_0| = n^{k-1}$.

Bipartite graph $G=(V_1,V_0,E)$, E depends on $f(\mathbb{R}^d,\mathbb{R}^{(d-1)k})\geq 0$.

 $V_1 \subset \mathbb{R}^d$.

For each $p \in V_0 \subset \mathbb{R}^{(d-1)k}$

For each $p \in V_0 \subset \mathbb{R}^{(d-1)k}$, hyperplane $f(\mathbb{R}^d, p) = 0$ in \mathbb{R}^d .

 $p' \in V_0 \subset \mathbb{R}^{(d-1)k}$, hyperplane $f(\mathbb{R}^d, p') = 0$ in \mathbb{R}^d .

 $H = \{n^{k-1} \text{ hyperplanes in } \mathbb{R}^d\}.$

Cutting Lemma (Chazelle, Friedman 1990). For r > 0, Subdivide \mathbb{R}^d into at most $2^{10d \log d} r^d$ simplices, such that at most n^{k-1}/r hyperplanes from H crosses each cell.

At most $\frac{n^{k-1}}{r}$ hyperplanes crosses Δ . $f(\mathbb{R}^d, p) = 0$

Most hyperplanes $f(\mathbb{R}^d, p) = 0$ do not cross Δ .

If hyperplane $f(\mathbb{R}^d, p) = 0$ does not cross Δ , then sign pattern does not change.

If hyperplane $f(\mathbb{R}^d, p) = 0$ does not cross Δ , then sign pattern does not change.

Divided \mathbb{R}^d into $2^{10d\log d}r^d$ cells, on average a cell has $\frac{n}{2^{10d\log d}r^d}$ points.

If a cell has fewer than $\frac{n}{2^{10d\log d}r^d}(\epsilon/2)$ points, DELETE all edges emanating out of it. Still have a $(\epsilon/2)n^k$ edges

Cells with edges has at least $\frac{n}{2^{10d \log d} r^d} (\epsilon/2)$ points. Still have a $(\epsilon/2) n^k$ edges

Each "big" cell gives rise to a certain number of vertices in V_0 that is adjacent to all points in it.

Each "big" cell gives rise to a certain number of vertices in V_0 that is adjacent to all points in it.

Each "big" cell gives rise to a certain number of vertices in V_0 that is adjacent to all points in it.

Since $|E'| \ge (\epsilon/2)n^k$ edges,

Set $r \sim 8/\epsilon$, at least $\frac{\epsilon}{8} n^{k-1}$ vertices in V_0 adjacent to all vertices in Δ .

For $r \sim 8/\epsilon$. At least $(\epsilon/2) \frac{n}{2^{10d \log d} r^d} = \frac{\epsilon^{d+1}}{2^{cd \log d}} n$ points inside Δ .

E' are k-1 tuples adjacent to all vertices in Δ , and that gives rise to a hyperplane $f(R^d, p) = 0$ that does not cross Δ .

 $E' \to f(p, \mathbb{R}^{(k-1)d}) \ge 0$, and if hyperplane $f(\mathbb{R}^d, p_2, ..., p_k) = 0$ crosses Δ .

Find desired parts $V'_1, ..., V'_k$

$$|V_i'| \ge \frac{\epsilon^{d+1}}{2^{ckd\log d}} n$$

Found a complete k-partite k-uniform hypergraph.

Find desired parts $V'_1, ..., V'_k$

$$|V_i'| \ge \frac{\epsilon^{d+1}}{2^{ckd\log d}} n$$

Regularity lemma: H = (P, E) semi-algebraic k-uniform hypergraph in \mathbb{R}^d .

Theorem (Fox, Pach, Suk, 2013+)

For any $\epsilon > 0$, we can partition P into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

Usual regularity: almost all k-tuples of parts are " ${\bf random}$ ". $M(\epsilon)$ is huge:

- k = 2, $M(\epsilon) \le tower(1/\epsilon) = 2^{2^{2^{-1/2}}}$
- k = 3, $M(\epsilon) \le wowzer(1/\epsilon) = tower(tower(...(tower(2))))$
- k = 4, $M(\epsilon) \le wowzer(wowzer(...(wowzer(2))))$.

Future work and open problems

- Find more applications.
- Extend results to more complicated relations, i.e., Semi-Pfaffian, o-minimal, etc.

Thank you!