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The Szemerédi-Trotter Theorem

P = n points in the plane.

L = m lines in the plane.

I (P , L) = {(p, ℓ) ∈ P × L : p ∈ ℓ}.
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The Szemerédi-Trotter Theorem

P = n points in the plane.

L = m lines in the plane.

Theorem (Szemerédi-Trotter 1983)

|I (P , L)| ≤ O(m2/3n2/3 +m + n).
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The Szemerédi-Trotter Theorem

P = n points in the plane.

L = n lines in the plane.

Theorem (Szemerédi-Trotter 1983)

|I (P , L)| ≤ O(n4/3).
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The Szemerédi-Trotter Theorem

P = n points in the plane.

L = n lines in the plane.

n1/3

n2/3
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The Szemerédi-Trotter Theorem

P = n1/3 × n2/3 grid.

L = n lines in the plane.

n1/3

n2/3
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The Szemerédi-Trotter Theorem

P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ {1, ..., ⌊n
1/3

2 ⌋} and b ∈ {1, ..., ⌊n
2/3

2 ⌋}

n1/3

n2/3

|I (P , L)| = Θ(n4/3)
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The Szemerédi-Trotter Theorem

P = n points in the plane L = n lines in the plane.

Theorem (Szemerédi-Trotter 1983)

|I (P , L)| ≤ O(n4/3).

Variations:

1 Points and Curves in R
2

2 Points and lines in R
d

3 Points and hyperplanes in R
d

Applicitions:

1 Sums versus Products

2 Distinct Distances
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Old Question of Erdős

P = n points in the plane L = n lines in the plane.

|I (P , L)| ≥ Ω(n4/3)

Does (P , L) show any kind of structure?
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Old Question of Erdős

P = n points in the plane L = n lines in the plane.

|I (P , L)| ≥ Ω(n4/3)

Does (P , L) show any kind of structure?

Does (P , L) show any kind of grid structure?
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Turán-type problem

Let (P0, L0) be a fixed point-line configuration.

=
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Turán-type problem

Let (P0, L0) be a fixed point-line configuration.

=
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Turán-type problem

Let (P0, L0) be a fixed point-line configuration.

=

P = n points in the plane. L = n lines in the plane.

How large can |I (P , L)| be if (P , L) does not contain (P0, L0) as
subconfiguration?
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Research problems in Discrete Geometry, Brass, Moser,

Pach

Let (P0, L0) be a fixed point-line configuration

Conjecture (Solymosi)

Any set of n points and n lines in the plane that does not contain

(P0, L0) as a subconfiguration, determines at most o(n4/3)
incidences.
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C6 = 1-subdivision of K3

=   = 
 0 0(P , L  )

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane does not contain

(P0, L0) as a subconfiguration, determines o(n4/3) incidences.
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C6 = 1-subdivision of K3

=   = 
 0 0(P , L  )

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane that does not contain

a 1-subdivision of Kk in its incidence graph, determines o(n4/3)
incidences.
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Forbidding k × k-grid

   = 
 0 0(P , L  )

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain

(P0, L0) as a subconfiguration, determines O(n
4
3
−

1
9k−6 ) incidences.
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1-subdivision of Kk ,k

   = 
 0 0(P , L  )

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain

(P0, L0) as a subconfiguration, determines O(n
4
3
−

1
9k−6 ) incidences.
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Bounds

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain

k × k-grid subconfiguration, determines O(n
4
3
−

1
9k−6 ) incidences.

In the other direction

Theorem (S.-Tomon 2021)

For k ≥ 3, there is a set of n points and n lines in the plane that

does not contain a k × k grid, and determines at least

Ω(n
4
3
−

4
3(k−2) ) incidences.
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Forbidding Even Cycles

=   = 
 0 0(P , L  )

=
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Old results

Let ex(n,C2k) denote the maximum number of edges in an
n-vertex graph that is C2k -free.

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed k ≥ 2, ex(n,C2k ) = O(n1+
1
k ).

Tight for C4,C6,C10 (Benson 1966).

Theorem (Lazebnik, Ustimenko and Woldar 1995)

For even k, ex(n,C2k ) = Ω(n1+
2

3k−2 ).

For odd k, ex(n,C2k) = Ω(n1+
2

3k−3 ).
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Point-line configurations without cycles

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed k ≥ 2, ex(n,C2k ) = O(n1+
1
k ).

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph

is C2k -free, determines o(n1+
1
k ) incidences.
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Point-line configurations without cycles

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed k ≥ 2, ex(n,C2k ) = O(n1+
1
k ).

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph

is C2k -free, determines o(n1+
1
k ) incidences.

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane, whose incidence graph

is C6-free, determines o(n4/3) incidences.
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Point-line configurations without cycles

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph

is C2k -free, determines o(n1+
1
k ) incidences.

Theorem (S.-Tomon 2021)

For every positive integer k ≥ 2, there exists a set of n points and

n lines in the plane whose incidence graph is C2k -free, and

determines at least n1+
1
2k
−o(1) incidences.
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Construction

Theorem (S.-Tomon 2021)

For every positive integer k ≥ 2, there exists a set of n points and

n lines in the plane whose incidence graph is C2k -free, and

determines at least n1+
1
2k
−o(1) incidences.

Proof. Standard Construction.

n1/3

n2/3
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Proof. Standard Construction.
P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

n1/3

n2/3

|I (P , L)| = Θ(n4/3)
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Proof. Standard Construction.
P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

n1/3

n2/3

|I (P , L)| = Θ(n4/3) #C2k < n2k
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Proof. Standard Construction.
P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

n1/3

n2/3

|I (P , L)| = Θ(n4/3) #C2k < nk+o(1)
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Proof. Standard Construction.
P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

n1/3

n2/3

|I (P , L)| = Θ(n4/3) #C2k < n2k/3+o(1)
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Key Lemma

Lemma

Let p, p′ ∈ P be distinct vertices. The number of “common

neighbors” of p and p′ is at most n
1
3
+o(1).

n1/3

n2/3
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Key Lemma

Lemma

Let p, p′ ∈ P be distinct vertices. The number of “common

neighbors” of p and p′ is at most n
1
3
+o(1).

n1/3

n2/3

p

p’
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Key Lemma

Lemma

Let p, p′ ∈ P be distinct vertices. The number of “common

neighbors” of p and p′ is at most n
1
3
+o(1).

n1/3

n2/3

p

p’

q
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Key Lemma

Lemma

Let p, p′ ∈ P be distinct vertices. The number of “common

neighbors” of p and p′ is at most n
1
3
+o(1).

n1/3

n2/3

p

p’

q
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Key Lemma

Proof.

n1/3

n2/3

p

p’

(0,0)

(a,b)

(u,v)
q

Fix p = (0, 0) and p′ = (a, b).

How many choices do we have for q = (u, v)?
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Key Lemma

Proof.

n1/3

n2/3

p

p’

(0,0)

(a,b)

q
(u,v)

Fix p = (0, 0) and p′ = (a, b).

How many choices do we have for q = (u, v)?
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Key Lemma

Proof.

n1/3

n2/3

p

p’

(0,0)

(a,b)

q
(u,v)

Fix p = (0, 0) and p′ = (a, b).

How many choices do we have for q = (u, v)? Claim. n1/3+o(1).
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Key Lemma

Proof.

n1/3

n2/3

p

p’

(0,0)

(a,b)

q
(u,v)

We will determine q by slope t = u

v
and x-coordinate u.
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Key Lemma

Proof.

n1/3

n2/3

p

p’

(0,0)

(a,b)

q
(u,v)

t

Fix slope t ∈ [n
1/3

2 ]. How many choices for u? Claim. no(1).
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Key Lemma

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

Fix a, b, t.

p

p’

(0,0)

(a,b) (v−b)

(u−a)

t

(u,v)
q

(# of choices for u) = (# of choices for (u − a)).
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Key Lemma

Fix a, b, t. t = v

u

p

p’

(0,0)

(a,b) (v−b)

(u−a)

t

(u,v)
q

v − b = t(u − a) + (ta − b).
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Key Lemma

Fix a, b, t. t = v

u

p

p’

(0,0)

(a,b) (v−b)

(u−a)

t

(u,v)
q

v − b = t(u − a) + (ta − b).

v − b

u − a
= t +

ta − b

u − a
.

Andrew Suk (UC San Diego) Turán-type problems for point-line incidences



Key Lemma

Fix a, b, t. t = v

u

p

p’

(0,0)

(a,b) (v−b)

(u−a)

t

(u,v)
q

v − b

u − a
= t +

ta − b

u − a
.

(# of choices for (u − a)) ≤ (# of divisors of (ta − b))

Andrew Suk (UC San Diego) Turán-type problems for point-line incidences



Key Lemma

(# of choices for (u − a)) ≤ (# of divisors of (ta − b))

Lemma

For N > 1, the number of distinct divisors of N is

N
Θ( 1

log log N
) = No(1).

ta − b ≤ n2/3

(# of divisors of (ta − b)) ≤ no(1).
�
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Standard Construction

P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

n1/3

n2/3

p

p’

q
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Standard Construction

Lemma

Let p, p′ ∈ P be distinct vertices. The number of “common

neighbors” of p and p′ is at most n
1
3
+o(1).

n1/3

n2/3

p

p’

q
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Standard Construction

P = n1/3 × n2/3 grid.

L : y = mx + b, m ∈ [n
1/3

2 ] and b ∈ [n
2/3

2 ]

|I (P , L)| = Θ(n4/3)

Lemma

There are at most n
2k
3
+o(1) copies of C2k in the incidence graph.

Andrew Suk (UC San Diego) Turán-type problems for point-line incidences



Standard Construction

n1/3

n2/3

p

p’

q

=

P L

Lemma

There are at most n
2k
3
+o(1) copies of C2k in the incidence graph.
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Standard Construction

n1/3

n2/3

p

p’

q

=

P L

# C2k ≤
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Standard Construction

n1/3

n2/3

p

p’

q

=

P L

C2k

# C2k ≤
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Standard Construction

n1/3

n2/3

p

p’

q

=

P L

C2k

# C2k ≤
(

nk/2
)
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Standard Construction

n1/3

n2/3

p

p’

q

=

P L

C2k

p’

p

# C2k ≤
(

nk/2
)
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Standard Construction

n1/3

n2/3

p

p’ =

P L

C2k

p’

p

q

q

# C2k ≤
(

nk/2
)(

n1/3+o(1)
)
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Standard Construction

n1/3

n2/3

p

p’ =

P L

C2k

p’

p

q

q

# C2k ≤
(

nk/2
)(

n1/3+o(1)
)
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Standard Construction

n1/3

n2/3

p

p’ =

P L

C2k

p’

p

q

q

# C2k ≤
(

nk/2
)(

n1/3+o(1)
)k/2

= n2k/3+o(1) .
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Probabilistic argument

|P | = n, |L| = n, |I (P , L)| = Θ(n4/3), # C2k ≤ n2k/3+o(1) .
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Probabilistic argument

|P | = n, |L| = n, |I (P , L)| = Θ(n4/3), # C2k ≤ n2k/3+o(1) .

Pick each point and line with probability q = n
−2k+3
6k−3

−o(1)

E[# points/lines] = nq = N

E[# C2k ] = n2k/3+o(1)q2k ≤ N/8.

Delete 1 point from each cycle.

E[# incidences] =

(

qn1/3

2

)

(qn

2

)

=≥ N1+ 1
2k
−o(1)
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Lower bounds

Theorem (S.-Tomon 2021)

For every positive integer k ≥ 2, there exists a set of n points and

n lines in the plane whose incidence graph is C2k -free, and

determines at least n1+
1
2k
−o(1) incidences.
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Lower bounds

Theorem (S.-Tomon 2021)

For every positive integer k ≥ 2, there exists a set of n points and

n lines in the plane whose incidence graph is C2k -free, and

determines at least n1+
1
2k
−o(1) incidences.

Theorem (S.-Tomon 2021)

For k ≥ 3, there is a set of n points and n lines in the plane that

does not contain a k × k grid, and determines at least

Ω(n
4
3
−

4
3(k−2) ) incidences.
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Application: Hasse diagrams

Poset (P ,≺)

Definition. Hasse Diagram G = (V ,E )

V = P

E = (x , y) such that x ≺ y and 6 ∃z ∈ P such that x ≺ z ≺ y .

Example: P = {∅, {1}, {2}, {3}, {1, 2}, {1, 2, 3}}, ≺ = ⊂.

{2}{1} {3}

{1,2}

{1,2,3}
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?

Fact. Hasse diagrams are K3-free

Theorem (Ajtai-Komlos-Szemeredi 1980)

Every n-vertex Hasse diagram G satisfies χ(G ) ≤ c
√

n

log n
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(log n).
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(log n).

Theorem (Bollobás 1977)

There are Hasse diagrams G on n vertices with girth k and

χ(G ) ≥ Ω( log n
log log n ).
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(log n).

Theorem (Bollobás 1977)

There are Hasse diagrams G on n vertices with girth k and

χ(G ) ≥ Ω( log n
log log n ).

Theorem (Pach-Tomon 2019)

There are Hasse diagrams G on n vertices with girth k and

χ(G ) ≥ Ω(log n).
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies χ(G ) ≤ logc n
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Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can χ(G ) be?

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies χ(G ) ≤ logc n

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies χ(G ) ≤ no(1)
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New results

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(n1/4).

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and

χ(G ) ≥ n
1

2k−4
−o(1)

.
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Ordered graphs

G =

1 nn−1432 ...
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Ordered graphs

G =

1 nn−1432 ...
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Ordered graphs

Definition. Ordered cycle of length k , C ord

k

i3i2 i6i1 i5i4

G =
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Ordered graphs

Definition. Ordered cycle of length k , C ord

k

i3i2 i6i1 i5i4

G =
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Ordered graphs and Hasse diagrams

Lemma

G is a Hasse diagram if and only if it can be represented as an

ordered graph with no ordered cycle.

i3i2 i6i1 i5i4

G =
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Lemma

G is a Hasse diagram if and only if it can be represented as an

ordered graph with no ordered cycle.
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Lemma

G is a Hasse diagram if and only if it can be represented as an

ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(n1/4).
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Lemma

G is a Hasse diagram if and only if it can be represented as an

ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(n1/4).

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles,

and χ(G ) ≥ Ω(n1/4).
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Lemma

G is a Hasse diagram if and only if it can be represented as an

ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(n1/4).

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles,

and χ(G ) ≥ Ω(n1/4).

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles,

and α(G ) ≤ O(n3/4).
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Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles,

and α(G ) ≤ O(n3/4).

Proof. Standard point-line construction, |P | = n, |L| = n,

|I (P , L)| = Ω(n4/3) Rotate.

n1/3

n2/3
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Define G = (V ,E ), where V = I (P , L), |V | = cn4/3.
(p, ℓ) < (p′, ℓ′) if

1 x(p) < x(p′)

2 or p = p′, s(ℓ) < s(ℓ′)

G =

(p,l)

l

p

p’

l’

(p’,l’)

Andrew Suk (UC San Diego) Turán-type problems for point-line incidences



Define G = (V ,E ), where V = I (P , L), |V | = cn4/3.
(p, ℓ) < (p′, ℓ′) if

1 x(p) < x(p′)

2 or p = p′, s(ℓ) < s(ℓ′)

G =

(p,l)

l

p

(p’,l’)

l’
p’
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Define G = (V ,E ), where V = I (P , L), |V | = cn4/3.
(p, ℓ) < (p′, ℓ′) if

1 x(p) < x(p′)

2 or p = p′, s(ℓ) < s(ℓ′)

G =

(p,l)

l

p

(p’,l’)

p’

l’
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(p, ℓ)(p′, ℓ′) is an edge if

x(p) < x(p′) and s(ℓ) < s(ℓ′)and p′ ∈ ℓ

G =

(p,l) (p’,l’)

p
p’

l
l’
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G is an ordered graph with no ordered cycle.

G =

pl
l’

(p,l) (p’,l’) (p’’,l’’)

p’

l’’

p’’
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G is an ordered graph with no ordered cycle.

G =

l’

(p,l) (p’,l’) (p’’,l’’)

p’

pl

p’’

l’’
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G is an ordered graph with no ordered cycle. |V (G )| = cn4/3 = N

Claim. α(G ) ≤ O(n) = O(N3/4).

G =

1 432 ... N−1N
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G is an ordered graph with no ordered cycle. |V (G )| = cn4/3 = N

Claim. α(G ) ≤ O(n) = O(N3/4).

G =

432 ... N−1N1
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G is an ordered graph with no ordered cycle. |V (G )| = cn4/3 = N

Claim. α(G ) ≤ O(n) = O(N3/4).

p
2

p
1

p
n

l1
l2

ln

.

. .
.

P L
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G is an ordered graph with no ordered cycle. |V (G )| = cn4/3 = N

Claim. α(G ) ≤ O(n) = O(N3/4).

p
2

p
1

p
1p

n

l1
l2

ln

.

. .
.

P L

=

l2

p
n

ln
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G is an ordered graph with no ordered cycle. |V (G )| = cn4/3 = N

Claim. α(G ) ≤ O(n) = O(N3/4).

p
2

p
1

p
1p

n

l1
l2

ln

.

. .
.

P L

=

l2

p
n

ln

�
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Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with χ(G ) ≥ Ω(n
1
4 ).
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High girth and high chromatic number

Theorem (S.-Tomon)

For every positive integer k ≥ 2, there exists a set of n points and

n lines in the plane whose incidence graph is C2k -free, and

determines at least n1+
1
2k
−o(1) incidences.

Same argument

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and

χ(G ) ≥ n
1

2k−4
−o(1)

.
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High girth and high chromatic number

Theorem (S.-Tomon)

For every positive integer k ≥ 2, there exists a set of n points and

n lines in the plane whose incidence graph is C2k -free, and

determines at least n1+
1
2k
−o(1) incidences.

Same argument

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and

χ(G ) ≥ n
1

2k−4
−o(1)

.

Theorem (S.-Tomon 2021)

There is a set of n curves in the plane, whose disjointness graph G

has girth k, χ(G ) ≥ n
1

2k−4
−o(1)
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Conclusion

Theorem (Erdős, Bondy-Simonovitz)

For fixed k ≥ 2, ex(n,C2k ) = O(n1+
1
k ).

Theorem (Solymosi)

Any set of n lines and n points that does not contain C6 in its

incidence graph, determines o(n4/3) incidences.

Questions

1 Polynomial improvement?

2 Maximum number of incidences C8-free incidence graphs?

3 Other configurations?
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Thank you!

Andrew Suk (UC San Diego) Turán-type problems for point-line incidences


