Turán-type problems for point-line incidences

Andrew Suk (UC San Diego)

June 8, 2021

The Szemerédi-Trotter Theorem

$P=n$ points in the plane.
$L=m$ lines in the plane.

$$
I(P, L)=\{(p, \ell) \in P \times L: p \in \ell\}
$$

The Szemerédi-Trotter Theorem

$P=n$ points in the plane.
$L=m$ lines in the plane.

$$
I(P, L)=\{(p, \ell) \in P \times L: p \in \ell\}
$$

The Szemerédi-Trotter Theorem

$P=n$ points in the plane.
$L=m$ lines in the plane.

Theorem (Szemerédi-Trotter 1983)

$$
|I(P, L)| \leq O\left(m^{2 / 3} n^{2 / 3}+m+n\right)
$$

The Szemerédi-Trotter Theorem
$P=n$ points in the plane.
$L=n$ lines in the plane.

Theorem (Szemerédi-Trotter 1983)

$$
|I(P, L)| \leq O\left(n^{4 / 3}\right)
$$

The Szemerédi-Trotter Theorem

$P=n$ points in the plane.
$L=n$ lines in the plane.

The Szemerédi-Trotter Theorem

$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L=n$ lines in the plane.

The Szemerédi-Trotter Theorem
$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left\{1, \ldots,\left\lfloor\frac{n^{1 / 3}}{2}\right\rfloor\right\}$ and $b \in\left\{1, \ldots,\left\lfloor\frac{n^{2 / 3}}{2}\right\rfloor\right\}$

$$
|I(P, L)|=\Theta\left(n^{4 / 3}\right)
$$

The Szemerédi-Trotter Theorem

$P=n$ points in the plane $\quad L=n$ lines in the plane.

Theorem (Szemerédi-Trotter 1983)

$$
|I(P, L)| \leq O\left(n^{4 / 3}\right) .
$$

Variations:

(1) Points and Curves in \mathbb{R}^{2}
(2) Points and lines in \mathbb{R}^{d}
(3) Points and hyperplanes in \mathbb{R}^{d}

Applicitions:
(1) Sums versus Products
(2) Distinct Distances

Old Question of Erdős

$P=n$ points in the plane $\quad L=n$ lines in the plane.

$$
|I(P, L)| \geq \Omega\left(n^{4 / 3}\right)
$$

Does (P, L) show any kind of structure?

Old Question of Erdős

$P=n$ points in the plane $\quad L=n$ lines in the plane.

$$
|I(P, L)| \geq \Omega\left(n^{4 / 3}\right)
$$

Does (P, L) show any kind of structure?
Does (P, L) show any kind of grid structure?

Turán-type problem

Let $\left(P_{0}, L_{0}\right)$ be a fixed point-line configuration.

Turán-type problem

Let $\left(P_{0}, L_{0}\right)$ be a fixed point-line configuration.

Turán-type problem

Let $\left(P_{0}, L_{0}\right)$ be a fixed point-line configuration.

$P=n$ points in the plane.
$L=n$ lines in the plane.
How large can $|I(P, L)|$ be if (P, L) does not contain $\left(P_{0}, L_{0}\right)$ as subconfiguration?

Research problems in Discrete Geometry, Brass, Moser, Pach

Let $\left(P_{0}, L_{0}\right)$ be a fixed point-line configuration

Conjecture (Solymosi)

Any set of n points and n lines in the plane that does not contain $\left(P_{0}, L_{0}\right)$ as a subconfiguration, determines at most $o\left(n^{4 / 3}\right)$ incidences.

$C_{6}=1$-subdivision of K_{3}

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane does not contain $\left(P_{0}, L_{0}\right)$ as a subconfiguration, determines $o\left(n^{4 / 3}\right)$ incidences.

$C_{6}=1$-subdivision of K_{3}

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane that does not contain a 1-subdivision of K_{k} in its incidence graph, determines o($\left.n^{4 / 3}\right)$ incidences.

Forbidding $k \times k$-grid

$$
\left(P_{0}, L_{0}\right)=
$$

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain $\left(P_{0}, L_{0}\right)$ as a subconfiguration, determines $O\left(n^{\frac{4}{3}-\frac{1}{9 k-6}}\right)$ incidences.

1-subdivision of $K_{k, k}$

$$
\left(P_{0}, L_{0}\right)=
$$

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain (P_{0}, L_{0}) as a subconfiguration, determines $O\left(n^{\frac{4}{3}-\frac{1}{9 k-6}}\right)$ incidences.

1-subdivision of $K_{k, k}$

$$
\left(P_{0}, L_{0}\right)=
$$

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain (P_{0}, L_{0}) as a subconfiguration, determines $O\left(n^{\frac{4}{3}-\frac{1}{9 k-6}}\right)$ incidences.

1-subdivision of $K_{k, k}$

$$
\left(P_{0}, L_{0}\right)=
$$

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain (P_{0}, L_{0}) as a subconfiguration, determines $O\left(n^{\frac{4}{3}-\frac{1}{9 k-6}}\right)$ incidences.

Bounds

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain $k \times k$-grid subconfiguration, determines $O\left(n^{\frac{4}{3}-\frac{1}{9 k-6}}\right)$ incidences.

In the other direction

Theorem (S.-Tomon 2021)

For $k \geq 3$, there is a set of n points and n lines in the plane that does not contain a $k \times k$ grid, and determines at least $\Omega\left(n^{\frac{4}{3}-\frac{4}{3(k-2)}}\right)$ incidences.

Forbidding Even Cycles

Old results

Let ex $\left(n, C_{2 k}\right)$ denote the maximum number of edges in an n-vertex graph that is $C_{2 k}$-free.

Theorem (Erdős, Bondy-Simonovitz 1938,1974)
For fixed $k \geq 2$, ex $\left(n, C_{2 k}\right)=O\left(n^{1+\frac{1}{k}}\right)$.

Tight for C_{4}, C_{6}, C_{10} (Benson 1966).
Theorem (Lazebnik, Ustimenko and Woldar 1995)
For even k, ex $\left(n, C_{2 k}\right)=\Omega\left(n^{1+\frac{2}{3 k-2}}\right)$.
For odd k, ex $\left(n, C_{2 k}\right)=\Omega\left(n^{1+\frac{2}{3 k-3}}\right)$.

Point-line configurations without cycles

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed $k \geq 2$, ex $\left(n, C_{2 k}\right)=O\left(n^{1+\frac{1}{k}}\right)$.

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph is $C_{2 k}$-free, determines o($n^{1+\frac{1}{k}}$) incidences.

Point-line configurations without cycles

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed $k \geq 2$, ex $\left(n, C_{2 k}\right)=O\left(n^{1+\frac{1}{k}}\right)$.

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph is $C_{2 k}$-free, determines o($n^{1+\frac{1}{k}}$) incidences.

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane, whose incidence graph is C_{6}-free, determines o $\left(n^{4 / 3}\right)$ incidences.

Point-line configurations without cycles

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph is $C_{2 k}$-free, determines o $\left(n^{1+\frac{1}{k}}\right)$ incidences.

Theorem (S.-Tomon 2021)

For every positive integer $k \geq 2$, there exists a set of n points and n lines in the plane whose incidence graph is $C_{2 k}$-free, and determines at least $n^{1+\frac{1}{2 k}-o(1)}$ incidences.

Construction

Theorem (S.-Tomon 2021)

For every positive integer $k \geq 2$, there exists a set of n points and n lines in the plane whose incidence graph is $C_{2 k}-f r e e$, and determines at least $n^{1+\frac{1}{2 k}-o(1)}$ incidences.

Proof. Standard Construction.

Proof. Standard Construction.

$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

$$
|I(P, L)|=\Theta\left(n^{4 / 3}\right)
$$

Proof. Standard Construction.

$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

$$
|I(P, L)|=\Theta\left(n^{4 / 3}\right) \quad \# C_{2 k}<n^{2 k}
$$

Proof. Standard Construction.

$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

$$
|I(P, L)|=\Theta\left(n^{4 / 3}\right) \quad \# C_{2 k}<n^{k+o(1)}
$$

Proof. Standard Construction.

$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

$$
|I(P, L)|=\Theta\left(n^{4 / 3}\right) \quad \# C_{2 k}<n^{2 k / 3+o(1)}
$$

Key Lemma

Lemma

Let $p, p^{\prime} \in P$ be distinct vertices. The number of "common neighbors" of p and p^{\prime} is at most $n^{\frac{1}{3}+o(1)}$.

Key Lemma

Lemma

Let $p, p^{\prime} \in P$ be distinct vertices. The number of "common neighbors" of p and p^{\prime} is at most $n^{\frac{1}{3}+o(1)}$.

Key Lemma

Lemma

Let $p, p^{\prime} \in P$ be distinct vertices. The number of "common neighbors" of p and p^{\prime} is at most $n^{\frac{1}{3}+o(1)}$.

Key Lemma

Lemma

Let $p, p^{\prime} \in P$ be distinct vertices. The number of "common neighbors" of p and p^{\prime} is at most $n^{\frac{1}{3}+o(1)}$.

Key Lemma

Proof.

Fix $p=(0,0)$ and $p^{\prime}=(a, b)$.
How many choices do we have for $q=(u, v)$?

Key Lemma

Proof.

Fix $p=(0,0)$ and $p^{\prime}=(a, b)$.
How many choices do we have for $q=(u, v)$?

Key Lemma

Proof.

Fix $p=(0,0)$ and $p^{\prime}=(a, b)$.
How many choices do we have for $q=(u, v)$? Claim. $n^{1 / 3+o(1)}$.

Key Lemma

Proof.

We will determine q by slope $t=\frac{u}{v}$ and x-coordinate u.

Key Lemma

Proof.

Fix slope $t \in\left[\frac{n^{1 / 3}}{2}\right]$. How many choices for u ? Claim. $n^{o(1)}$.

$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

Fix a, b, t.

$(\#$ of choices for $u)=(\#$ of choices for $(u-a))$.

Fix $a, b, t . t=\frac{v}{u}$

$$
v-b=t(u-a)+(t a-b) .
$$

Fix $a, b, t . t=\frac{v}{u}$

$$
\begin{gathered}
v-b=t(u-a)+(t a-b) . \\
\frac{v-b}{u-a}=t+\frac{t a-b}{u-a} .
\end{gathered}
$$

Key Lemma

Fix $a, b, t . t=\frac{v}{u}$

$$
\frac{v-b}{u-a}=t+\frac{t a-b}{u-a} .
$$

(\# of choices for $(u-a)) \leq(\#$ of divisors of $(t a-b)$)

Key Lemma

(\# of choices for $(u-a)) \leq(\#$ of divisors of $(t a-b)$)

Lemma

For $N>1$, the number of distinct divisors of N is $N^{\Theta(\overline{\log \log N})}=N^{0(1)}$.
$t a-b \leq n^{2 / 3}$
(\# of divisors of $(t a-b)) \leq n^{o(1)}$.
$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

Standard Construction

Lemma

Let $p, p^{\prime} \in P$ be distinct vertices. The number of "common neighbors" of p and p^{\prime} is at most $n^{\frac{1}{3}+o(1)}$.

$P=n^{1 / 3} \times n^{2 / 3}$ grid.
$L: y=m x+b, m \in\left[\frac{n^{1 / 3}}{2}\right]$ and $b \in\left[\frac{n^{2 / 3}}{2}\right]$

$$
|I(P, L)|=\Theta\left(n^{4 / 3}\right)
$$

Lemma

There are at most $n^{\frac{2 k}{3}+o(1)}$ copies of $C_{2 k}$ in the incidence graph.

Lemma

There are at most $n^{\frac{2 k}{3}+o(1)}$ copies of $C_{2 k}$ in the incidence graph.

$$
\# C_{2 k} \leq
$$

$$
\# C_{2 k} \leq
$$

$$
\# C_{2 k} \leq\left(n^{k / 2}\right)
$$

$$
\# C_{2 k} \leq\left(n^{k / 2}\right)
$$

Probabilistic argument

$$
|P|=n,|L|=n,|I(P, L)|=\Theta\left(n^{4 / 3}\right), \# C_{2 k} \leq n^{2 k / 3+o(1)} .
$$

Probabilistic argument

$|P|=n,|L|=n,|I(P, L)|=\Theta\left(n^{4 / 3}\right), \# C_{2 k} \leq n^{2 k / 3+o(1)}$.
Pick each point and line with probability $q=n^{\frac{-2 k+3}{6 k-3}-o(1)}$

$$
\begin{gathered}
\mathbb{E}[\# \text { points/lines }]=n q=N \\
\mathbb{E}\left[\# C_{2 k}\right]=n^{2 k / 3+o(1)} q^{2 k} \leq N / 8
\end{gathered}
$$

Delete 1 point from each cycle.

$$
\mathbb{E}[\# \text { incidences }]=\left(\frac{q n^{1 / 3}}{2}\right)\left(\frac{q n}{2}\right)=\geq N^{1+\frac{1}{2 k}-o(1)}
$$

Lower bounds

Theorem (S.-Tomon 2021)

For every positive integer $k \geq 2$, there exists a set of n points and n lines in the plane whose incidence graph is $C_{2 k}$-free, and determines at least $n^{1+\frac{1}{2 k}-o(1)}$ incidences.

Lower bounds

Theorem (S.-Tomon 2021)

For every positive integer $k \geq 2$, there exists a set of n points and n lines in the plane whose incidence graph is $C_{2 k}$-free, and determines at least $n^{1+\frac{1}{2 k}-o(1)}$ incidences.

Theorem (S.-Tomon 2021)

For $k \geq 3$, there is a set of n points and n lines in the plane that does not contain a $k \times k$ grid, and determines at least $\Omega\left(n^{\left.\frac{4}{3}-\frac{4}{3(k-2)}\right)}\right.$ incidences.

Application: Hasse diagrams

Poset (P, \prec)
Definition. Hasse Diagram $G=(V, E)$
$V=P$
$E=(x, y)$ such that $x \prec y$ and $\nexists z \in P$ such that $x \prec z \prec y$.
Example: $P=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,2,3\}\}, \prec=\subset$.

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Fact. Hasse diagrams are K_{3}-free

Theorem (Ajtai-Komlos-Szemeredi 1980)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq c \sqrt{\frac{n}{\log n}}$

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega(\log n)$.

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega(\log n)$.

Theorem (Bollobás 1977)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \geq \Omega\left(\frac{\log n}{\log \log n}\right)$.

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

```
Theorem (Erdős-Hajnal 1964)
There are Hasse diagrams G on n vertices with \chi(G)\geq\Omega(log n).
```


Theorem (Bollobás 1977)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \geq \Omega\left(\frac{\log n}{\log \log n}\right)$.

Theorem (Pach-Tomon 2019)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \geq \Omega(\log n)$.

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq \log ^{c} n$

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq \log ^{c} n$

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq n^{\circ(1)}$

New results

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega\left(n^{1 / 4}\right)$.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \geq n^{\frac{1}{2 k-4}-o(1)}$.

Ordered graphs

Ordered graphs

$G=$

Ordered graphs

Definition. Ordered cycle of length $k, C_{k}^{\text {ord }}$

Ordered graphs

Definition. Ordered cycle of length $k, C_{k}^{\text {ord }}$

Ordered graphs and Hasse diagrams

Lemma

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

$$
G=
$$

Lemma
G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Lemma
G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega\left(n^{1 / 4}\right)$.

Lemma

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega\left(n^{1 / 4}\right)$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\chi(G) \geq \Omega\left(n^{1 / 4}\right)$.

Lemma

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega\left(n^{1 / 4}\right)$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\chi(G) \geq \Omega\left(n^{1 / 4}\right)$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\alpha(G) \leq O\left(n^{3 / 4}\right)$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\alpha(G) \leq O\left(n^{3 / 4}\right)$.

Proof. Standard point-line construction, $|P|=n,|L|=n$,

$$
|I(P, L)|=\Omega\left(n^{4 / 3}\right) \quad \text { Rotate }
$$

Define $G=(V, E)$, where $V=I(P, L),|V|=c n^{4 / 3}$.
$(p, \ell)<\left(p^{\prime}, \ell^{\prime}\right)$ if
(1) $x(p)<x\left(p^{\prime}\right)$
(2) or $p=p^{\prime}, s(\ell)<s\left(\ell^{\prime}\right)$

$G=$

Define $G=(V, E)$, where $V=I(P, L),|V|=c n^{4 / 3}$. $(p, \ell)<\left(p^{\prime}, \ell^{\prime}\right)$ if
(1) $x(p)<x\left(p^{\prime}\right)$
(2) or $p=p^{\prime}, s(\ell)<s\left(\ell^{\prime}\right)$

$G=$

$$
(p, l) \quad\left(p^{\prime}, l^{\prime}\right)
$$

Define $G=(V, E)$, where $V=I(P, L),|V|=c n^{4 / 3}$.
$(p, \ell)<\left(p^{\prime}, \ell^{\prime}\right)$ if
(1) $x(p)<x\left(p^{\prime}\right)$
(2) or $p=p^{\prime}, s(\ell)<s\left(\ell^{\prime}\right)$

$(p, \ell)\left(p^{\prime}, \ell^{\prime}\right)$ is an edge if

$$
x(p)<x\left(p^{\prime}\right) \quad \text { and } \quad s(\ell)<s\left(\ell^{\prime}\right) \text { and } \quad p^{\prime} \in \ell
$$

$G=$

G is an ordered graph with no ordered cycle.

$$
l ’ \prime
$$

$G=$

G is an ordered graph with no ordered cycle.

$$
l^{\prime \prime}
$$

$G=$

G is an ordered graph with no ordered cycle. $|V(G)|=c n^{4 / 3}=N$
Claim. $\alpha(G) \leq O(n)=O\left(N^{3 / 4}\right)$.

$$
G=\quad \left\lvert\, \begin{array}{lllllll}
& 0 & 0 & & & \\
1 & 2 & 3 & 4 & \cdots & N-1 N
\end{array}\right.
$$

G is an ordered graph with no ordered cycle. $|V(G)|=c n^{4 / 3}=N$
Claim. $\alpha(G) \leq O(n)=O\left(N^{3 / 4}\right)$.

G is an ordered graph with no ordered cycle. $|V(G)|=c n^{4 / 3}=N$ Claim. $\alpha(G) \leq O(n)=O\left(N^{3 / 4}\right)$.

G is an ordered graph with no ordered cycle. $|V(G)|=c n^{4 / 3}=N$
Claim. $\alpha(G) \leq O(n)=O\left(N^{3 / 4}\right)$.

G is an ordered graph with no ordered cycle. $|V(G)|=c n^{4 / 3}=N$ Claim. $\alpha(G) \leq O(n)=O\left(N^{3 / 4}\right)$.

Theorem (S.-Tomon 2021)
 There are Hasse diagrams G on n vertices with $\chi(G) \geq \Omega\left(n^{\frac{1}{4}}\right)$.

High girth and high chromatic number

Theorem (S.-Tomon)

For every positive integer $k \geq 2$, there exists a set of n points and n lines in the plane whose incidence graph is $C_{2 k}$-free, and determines at least $n^{1+\frac{1}{2 k}-o(1)}$ incidences.

Same argument

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \geq n^{\frac{1}{2 k-4}-o(1)}$.

High girth and high chromatic number

Theorem (S.-Tomon)

For every positive integer $k \geq 2$, there exists a set of n points and n lines in the plane whose incidence graph is $C_{2 k}$-free, and determines at least $n^{1+\frac{1}{2 k}-o(1)}$ incidences.

Same argument

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \geq n^{\frac{1}{2 k-4}-o(1)}$.

Theorem (S.-Tomon 2021)

There is a set of n curves in the plane, whose disjointness graph G has girth $k, \chi(G) \geq n^{\frac{1}{2 k-4}-o(1)}$

Conclusion

Theorem (Erdős, Bondy-Simonovitz)

For fixed $k \geq 2$, ex $\left(n, C_{2 k}\right)=O\left(n^{1+\frac{1}{k}}\right)$.

Theorem (Solymosi)

Any set of n lines and n points that does not contain C_{6} in its incidence graph, determines $o\left(n^{4 / 3}\right)$ incidences.

Questions

(1) Polynomial improvement?
(2) Maximum number of incidences C_{8}-free incidence graphs?
(3) Other configurations?

Thank you!

