Turán-type problems for point-line incidences

Andrew Suk (UC San Diego)

June 8, 2021

Andrew Suk (UC San Diego) Turán-type problems for point-line incidences

- P = n points in the plane.
- L = m lines in the plane.

$$I(P,L) = \{(p,\ell) \in P \times L : p \in \ell\}.$$

- P = n points in the plane.
- L = m lines in the plane.

$$I(P,L) = \{(p,\ell) \in P \times L : p \in \ell\}.$$

- P = n points in the plane.
- L = m lines in the plane.

Theorem (Szemerédi-Trotter 1983)

$$|I(P,L)| \leq O(m^{2/3}n^{2/3} + m + n).$$

- P = n points in the plane.
- L = n lines in the plane.

Theorem (Szemerédi-Trotter 1983)

 $|I(P,L)| \leq O(n^{4/3}).$

- P = n points in the plane.
- L = n lines in the plane.

$$P = n^{1/3} \times n^{2/3}$$
 grid.

L = n lines in the plane.

a /a

1 10

$$P = n^{1/3} \times n^{2/3}$$
 grid.
 $L : y = mx + b, m \in \{1, ..., \lfloor \frac{n^{1/3}}{2} \rfloor\}$ and $b \in \{1, ..., \lfloor \frac{n^{2/3}}{2} \rfloor\}$

$$|I(P,L)| = \Theta(n^{4/3})$$

P = n points in the plane L = n lines in the plane.

Theorem (Szemerédi-Trotter 1983)

 $|I(P,L)| \leq O(n^{4/3}).$

Variations:

- $\textcircled{0} \quad \text{Points and Curves in } \mathbb{R}^2$
- **2** Points and lines in \mathbb{R}^d
- **③** Points and hyperplanes in \mathbb{R}^d

Applicitions:

- Sums versus Products
- Oistinct Distances

P = n points in the plane L = n lines in the plane.

 $|I(P,L)| \geq \Omega(n^{4/3})$

Does (P, L) show any kind of structure?

P = n points in the plane L = n lines in the plane.

$$|I(P,L)| \geq \Omega(n^{4/3})$$

Does (P, L) show any kind of structure? Does (P, L) show any kind of **grid** structure? Let (P_0, L_0) be a fixed point-line configuration.

Let (P_0, L_0) be a fixed point-line configuration.

Let (P_0, L_0) be a fixed point-line configuration.

P = n points in the plane. L = n lines in the plane. How large can |I(P, L)| be if (P, L) does not contain (P_0, L_0) as subconfiguration?

Let (P_0, L_0) be a fixed point-line configuration

Conjecture (Solymosi)

Any set of n points and n lines in the plane that does not contain (P_0, L_0) as a subconfiguration, determines at most $o(n^{4/3})$ incidences.

$C_6 = 1$ -subdivision of K_3

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane does not contain (P_0, L_0) as a subconfiguration, determines $o(n^{4/3})$ incidences.

$C_6 = 1$ -subdivision of K_3

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane that does not contain a 1-subdivision of K_k in its incidence graph, determines $o(n^{4/3})$ incidences.

Forbidding $k \times k$ -grid

Theorem (Mirzaei-S. 2020)

1-subdivision of $K_{k,k}$

Theorem (Mirzaei-S. 2020)

1-subdivision of $K_{k,k}$

Theorem (Mirzaei-S. 2020)

1-subdivision of $K_{k,k}$

Theorem (Mirzaei-S. 2020)

Theorem (Mirzaei-S. 2020)

Any set of n points and n lines in the plane that does not contain $k \times k$ -grid subconfiguration, determines $O(n^{\frac{4}{3}-\frac{1}{9k-6}})$ incidences.

In the other direction

Theorem (S.-Tomon 2021)

For $k \ge 3$, there is a set of n points and n lines in the plane that does not contain a $k \times k$ grid, and determines at least $\Omega(n^{\frac{4}{3}-\frac{4}{3(k-2)}})$ incidences.

Forbidding Even Cycles

Let $e_X(n, C_{2k})$ denote the maximum number of edges in an *n*-vertex graph that is C_{2k} -free.

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed $k \ge 2$, $ex(n, C_{2k}) = O(n^{1+\frac{1}{k}})$.

Tight for C_4 , C_6 , C_{10} (Benson 1966).

Theorem (Lazebnik, Ustimenko and Woldar 1995)

For even k, $ex(n, C_{2k}) = \Omega(n^{1+\frac{2}{3k-2}}).$

For odd k,
$$ex(n, C_{2k}) = \Omega(n^{1+\frac{2}{3k-3}}).$$

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed $k \ge 2$, $ex(n, C_{2k}) = O(n^{1+\frac{1}{k}})$.

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph is C_{2k} -free, determines $o(n^{1+\frac{1}{k}})$ incidences.

Theorem (Erdős, Bondy-Simonovitz 1938,1974)

For fixed $k \ge 2$, $ex(n, C_{2k}) = O(n^{1+\frac{1}{k}})$.

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph is C_{2k} -free, determines $o(n^{1+\frac{1}{k}})$ incidences.

Theorem (Solymosi 2006)

Any set of n points and n lines in the plane, whose incidence graph is C_6 -free, determines $o(n^{4/3})$ incidences.

Conjecture (Mirzaei-S.-Verstraëte 2020)

Any set of n points and n lines in the plane, whose incidence graph is C_{2k} -free, determines $o(n^{1+\frac{1}{k}})$ incidences.

Theorem (S.-Tomon 2021)

For every positive integer $k \ge 2$, there exists a set of n points and n lines in the plane whose incidence graph is C_{2k} -free, and determines at least $n^{1+\frac{1}{2k}-o(1)}$ incidences.

Construction

Theorem (S.-Tomon 2021)

For every positive integer $k \ge 2$, there exists a set of n points and n lines in the plane whose incidence graph is C_{2k} -free, and determines at least $n^{1+\frac{1}{2k}-o(1)}$ incidences.

Proof. Standard Construction.

$$|I(P,L)| = \Theta(n^{4/3})$$

$$|I(P,L)| = \Theta(n^{4/3}) \qquad \#C_{2k} < n^{2k}$$

$$|I(P,L)| = \Theta(n^{4/3}) \qquad \#C_{2k} < n^{k+o(1)}$$

$$|I(P,L)| = \Theta(n^{4/3}) \qquad \#C_{2k} < n^{2k/3 + o(1)}$$

Lemma

Lemma

Lemma

Lemma

Fix p = (0, 0) and p' = (a, b).

How many choices do we have for q = (u, v)?

Fix p = (0, 0) and p' = (a, b).

How many choices do we have for q = (u, v)?

Fix p = (0, 0) and p' = (a, b).

How many choices do we have for q = (u, v)? Claim. $n^{1/3+o(1)}$.

We will determine q by slope $t = \frac{u}{v}$ and x-coordinate u.

Fix slope $t \in [\frac{n^{1/3}}{2}]$. How many choices for *u*? **Claim.** $n^{o(1)}$.

$$L: y = mx + b$$
, $m \in \left[\frac{n^{1/3}}{2}\right]$ and $b \in \left[\frac{n^{2/3}}{2}\right]$
Fix a, b, t .

(# of choices for
$$u$$
) = (# of choices for $(u - a)$).

Fix
$$a, b, t$$
. $t = \frac{v}{u}$

$$v-b=t(u-a)+(ta-b).$$

$$v-b=t(u-a)+(ta-b).$$

$$\frac{v-b}{u-a}=t+\frac{ta-b}{u-a}.$$

$$(\# \text{ of choices for } (u - a)) \leq (\# \text{ of divisors of } (ta - b))$$

Lemma

For N > 1, the number of distinct divisors of N is $N^{\Theta(\frac{1}{\log \log N})} = N^{o(1)}$.

 $ta - b \le n^{2/3}$ (# of divisors of $(ta - b)) \le n^{o(1)}$.

 \square

Lemma

Let $p, p' \in P$ be distinct vertices. The number of "common neighbors" of p and p' is at most $n^{\frac{1}{3}+o(1)}$.

$$P = n^{1/3} \times n^{2/3}$$
 grid.
 $L : y = mx + b, m \in \left[\frac{n^{1/3}}{2}\right]$ and $b \in \left[\frac{n^{2/3}}{2}\right]$
 $|I(P, L)| = \Theta(n^{4/3})$

Lemma

There are at most $n^{\frac{2k}{3}+o(1)}$ copies of C_{2k} in the incidence graph.

Lemma

There are at most $n^{\frac{2k}{3}+o(1)}$ copies of C_{2k} in the incidence graph.

 $\# C_{2k} \leq$

 $\# C_{2k} \leq$

$$\# C_{2k} \leq \left(n^{k/2}\right) \left(n^{1/3+o(1)}\right)$$

$$C_{2k} \leq \left(n^{k/2}\right) \left(n^{1/3+o(1)}\right)^{k/2} = n^{2k/3+o(1)}.$$

$$|P| = n, |L| = n, |I(P, L)| = \Theta(n^{4/3}), \# C_{2k} \le n^{2k/3 + o(1)}.$$

$$|P| = n$$
, $|L| = n$, $|I(P, L)| = \Theta(n^{4/3})$, $\# C_{2k} \le n^{2k/3+o(1)}$.
Pick each point and line with probability $q = n^{\frac{-2k+3}{6k-3}-o(1)}$

$$\mathbb{E}[\# \text{ points/lines}] = nq = N$$

$$\mathbb{E}[\# C_{2k}] = n^{2k/3 + o(1)}q^{2k} \le N/8.$$

Delete 1 point from each cycle.

$$\mathbb{E}[\# \text{ incidences}] = \left(\frac{qn^{1/3}}{2}\right) \left(\frac{qn}{2}\right) = \geq N^{1 + \frac{1}{2k} - o(1)}$$

Theorem (S.-Tomon 2021)

For every positive integer $k \ge 2$, there exists a set of n points and n lines in the plane whose incidence graph is C_{2k} -free, and determines at least $n^{1+\frac{1}{2k}-o(1)}$ incidences.

Theorem (S.-Tomon 2021)

For every positive integer $k \ge 2$, there exists a set of n points and n lines in the plane whose incidence graph is C_{2k} -free, and determines at least $n^{1+\frac{1}{2k}-o(1)}$ incidences.

Theorem (S.-Tomon 2021)

For $k \ge 3$, there is a set of n points and n lines in the plane that does not contain a $k \times k$ grid, and determines at least $\Omega(n^{\frac{4}{3}-\frac{4}{3(k-2)}})$ incidences.

Application: Hasse diagrams

Poset (P, \prec)

Definition. Hasse Diagram G = (V, E)

V = P

E = (x, y) such that $x \prec y$ and $\not\exists z \in P$ such that $x \prec z \prec y$.

Example: $P = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 2, 3\}\}, \prec = \subset.$

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Fact. Hasse diagrams are K_3 -free

Theorem (Ajtai-Komlos-Szemeredi 1980)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq c_{\sqrt{\log n}}$

Coloring Hasse diagrams

Problem

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(\log n)$.

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(\log n)$.

Theorem (Bollobás 1977)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \ge \Omega(\frac{\log n}{\log \log n}).$

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Theorem (Erdős-Hajnal 1964)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(\log n)$.

Theorem (Bollobás 1977)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \ge \Omega(\frac{\log n}{\log \log n}).$

Theorem (Pach-Tomon 2019)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \ge \Omega(\log n)$.

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq \log^{c} n$

Given a Hasse diagram G on n vertices, how large can $\chi(G)$ be?

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq \log^{c} n$

Conjecture (Folklore)

Every n-vertex Hasse diagram G satisfies $\chi(G) \leq n^{o(1)}$

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(n^{1/4})$.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \ge n^{\frac{1}{2k-4}-o(1)}$.

Definition. Ordered cycle of length k, C_k^{ord}

Definition. Ordered cycle of length k, C_k^{ord}

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(n^{1/4})$.

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(n^{1/4})$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\chi(G) \ge \Omega(n^{1/4})$.

G is a Hasse diagram if and only if it can be represented as an ordered graph with no ordered cycle.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(n^{1/4})$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\chi(G) \ge \Omega(n^{1/4})$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\alpha(G) \leq O(n^{3/4})$.

Theorem (S.-Tomon 2021)

There is an ordered graph G on n vertices with no ordered cycles, and $\alpha(G) \leq O(n^{3/4})$.

Proof. Standard point-line construction, |P| = n, |L| = n,

$$|I(P,L)| = \Omega(n^{4/3})$$
 Rotate.

Define
$$G = (V, E)$$
, where $V = I(P, L)$, $|V| = cn^{4/3}$.
 $(p, \ell) < (p', \ell')$ if
 $(p, \ell) < x(p')$
 $(p) < x(p')$
 $(p) < p' = p', s(\ell) < s(\ell')$

Define
$$G = (V, E)$$
, where $V = I(P, L)$, $|V| = cn^{4/3}$
 $(p, \ell) < (p', \ell')$ if
 $(p, \ell) < x(p')$
 $(p, \ell) < x(p')$
 $(p, \ell) < x(p')$
 $(p, \ell) < x(\ell) < x(\ell')$

Define
$$G = (V, E)$$
, where $V = I(P, L)$, $|V| = cn^{4/3}$.
 $(p, \ell) < (p', \ell')$ if
 $(p, \ell) < x(p')$
 $(p, \ell) < x(p')$

G is an ordered graph with no ordered cycle.

G is an ordered graph with no ordered cycle.

G is an ordered graph with no ordered cycle. $|V(G)| = cn^{4/3} = N$ Claim. $\alpha(G) \le O(n) = O(N^{3/4})$.

G is an ordered graph with no ordered cycle. $|V(G)| = cn^{4/3} = N$ Claim. $\alpha(G) \le O(n) = O(N^{3/4})$.

G is an ordered graph with no ordered cycle. $|V(G)| = cn^{4/3} = N$ Claim. $\alpha(G) \leq O(n) = O(N^{3/4})$.

G is an ordered graph with no ordered cycle. $|V(G)| = cn^{4/3} = N$ Claim. $\alpha(G) \leq O(n) = O(N^{3/4})$.

G is an ordered graph with no ordered cycle. $|V(G)| = cn^{4/3} = N$ Claim. $\alpha(G) \leq O(n) = O(N^{3/4})$.

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with $\chi(G) \ge \Omega(n^{\frac{1}{4}})$.

Theorem (S.-Tomon)

For every positive integer $k \ge 2$, there exists a set of n points and n lines in the plane whose incidence graph is C_{2k} -free, and determines at least $n^{1+\frac{1}{2k}-o(1)}$ incidences.

Same argument

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \ge n^{\frac{1}{2k-4}-o(1)}$.

Theorem (S.-Tomon)

For every positive integer $k \ge 2$, there exists a set of n points and n lines in the plane whose incidence graph is C_{2k} -free, and determines at least $n^{1+\frac{1}{2k}-o(1)}$ incidences.

Same argument

Theorem (S.-Tomon 2021)

There are Hasse diagrams G on n vertices with girth k and $\chi(G) \ge n^{\frac{1}{2k-4}-o(1)}$.

Theorem (S.-Tomon 2021)

There is a set of n curves in the plane, whose disjointness graph G has girth k, $\chi(G) \ge n^{\frac{1}{2k-4}-o(1)}$

Theorem (Erdős, Bondy-Simonovitz)

For fixed
$$k \ge 2$$
, $ex(n, C_{2k}) = O(n^{1+\frac{1}{k}})$.

Theorem (Solymosi)

Any set of n lines and n points that does not contain C_6 in its incidence graph, determines $o(n^{4/3})$ incidences.

Questions

- Polynomial improvement?
- **2** Maximum number of incidences C_8 -free incidence graphs?
- Other configurations?

Thank you!