Approximating the rectilinear crossing number

Jacob Fox, János Pach, Andrew Suk

September 17, 2016

Crossing numbers

Crossing number $\operatorname{cr}(G)=$ minimum number of crossing pairs of edges over all drawings of G.

Rectilinear crossing number $\overline{\operatorname{cr}}(G)=$ minimum number of crossing pairs of edges over all straight-line drawings of G

$$
\operatorname{cr}(G) \leq \overline{\operatorname{cr}}(G)
$$

Theorem (Fáry 1948)

$\operatorname{cr}(G)=0$ if and only if $\overline{\operatorname{cr}}(G)=0$.

Theorem (Bienstock and Dean 1993)

There is a sequence of graphs $G_{1}, G_{2}, \ldots, G_{m}, \ldots$ such that

$$
\operatorname{cr}\left(G_{m}\right)=4 \quad \overline{\operatorname{cr}}\left(G_{m}\right) \geq m
$$

Rectilinear crossing number

Computing $\overline{\operatorname{cr}}(G)$ is NP-hard (Bienstock 1991)
Open problem: Determine the asymptotic value of $\overline{\operatorname{cr}}\left(K_{n}\right)$.
Theorem (Ábrego et al. 2012 and Fabila-Monroy and López 2014)

$$
0.379972\binom{n}{4}<\overline{\operatorname{cr}}\left(K_{n}\right)<0.380473\binom{n}{4}
$$

Main result: approximating $\overline{\operatorname{cr}(G)}$

Theorem (Fox, Pach, S. 2016)

There is a deterministic $n^{2+o(1)}$-time algorithm for constructing a straight-line drawing of any n-vertex graph G in the plane with

$$
\overline{\operatorname{cr}}(G)+\frac{c n^{4}}{(\log \log n)^{c^{\prime}}}
$$

crossing pairs of edges.

Crossing Lemma

Lemma (Ajtai, Chvátal, Newborn, Szemerédi 1982 and Leighton 1983)

Let G be a graph on n vertices and e edges. Then

$$
\overline{\operatorname{cr}}(G) \geq \frac{e^{3}}{64 n^{2}}-4 n
$$

Dense graph: $|E(G)| \geq \epsilon n^{2}$, we have $\overline{\operatorname{cr}}(G)=\alpha n^{4}+o\left(n^{4}\right)$.

A $(1+o(1))$-approximation for dense graphs

Theorem (Fox, Pach, Suk 2016)

There is a deterministic $n^{2+o(1)}$-time algorithm for constructing a straight-line drawing of any n-vertex graph G with $|E(G)|>\epsilon n^{2}$, such that the drawing has at most

$$
\overline{\operatorname{cr}}(G)+o(\overline{\operatorname{cr}}(G))
$$

crossing pairs of edges.

Generalization to weighted graphs

Edge weighted graphs. $G=(V, E), w_{G}: E \rightarrow[0,1]$.
For a fixed drawing \mathcal{D}, the weighted number of crossings is

$$
\sum_{\left(e, e^{\prime}\right) \in X_{D}} w_{G}(e) \cdot w_{G}\left(e^{\prime}\right)
$$

Example: $0.5+0.3=0.8$

Generalization to weighted graphs

Edge weighted graphs. $G=(V, E), w_{G}: E \rightarrow[0,1]$. (each weight uses at most $O(\log n)$ bits)
For a fixed drawing \mathcal{D}, the weighted number of crossings is

$$
\sum_{\left(e, e^{\prime}\right) \in X_{D}} w_{G}(e) \cdot w_{G}\left(e^{\prime}\right)
$$

Example: $0.5+0.3=0.8$

Rectilinear crossing number of edge-weighted graphs

$$
\overline{\operatorname{cr}}(G)=\min _{\mathcal{D}} \sum_{\left(e, e^{\prime}\right) \in X_{\mathcal{D}}} w_{G}(e) \cdot w_{G}\left(e^{\prime}\right)
$$

If G is not weighted,

$$
\begin{aligned}
& w_{G}(e)=1 \text { if } e \in E(G) \\
& w_{G}(e)=0 \text { if } e \notin E(G) .
\end{aligned}
$$

Theorem (Frieze-Kannan 1999)

For any $\epsilon>0$, every graph $G=(V, E)$ has a equitable vertex partition $V=V_{1} \cup \cdots \cup V_{K}, 1 / \epsilon<K<2^{c \epsilon^{-2}}$, such that for all disjoint subsets $S, T \subset V(G)$

$$
\left|e(S, T)-\sum_{1 \leq i, j \leq K} e\left(V_{i}, V_{j}\right) \frac{\left|S \cap V_{i}\right|\left|T \cap V_{j}\right|}{(n / K)^{2}}\right|<\epsilon n^{2}
$$

Theorem (Frieze-Kannan 1999)

For any $\epsilon>0$, every graph $G=(V, E)$ has a equitable vertex partition $V=V_{1} \cup \cdots \cup V_{K}, 1 / \epsilon<K<2^{c \epsilon^{-2}}$, such that for all disjoint subsets $S, T \subset V(G)$

$$
\left|e(S, T)-\sum_{1 \leq i, j \leq K} e\left(V_{i}, V_{j}\right) \frac{\left|S \cap V_{i} \| T \cap V_{j}\right|}{(n / K)^{2}}\right|<\epsilon n^{2}
$$

Theorem (Frieze-Kannan 1999)

For any $\epsilon>0$, every graph $G=(V, E)$ has a equitable vertex partition $V=V_{1} \cup \cdots \cup V_{K}, 1 / \epsilon<K<2^{c \epsilon^{-2}}$, such that for all disjoint subsets $S, T \subset V(G)$

$$
\left|e(S, T)-\sum_{1 \leq i, j \leq K} e\left(V_{i}, V_{j}\right) \frac{\left|S \cap V_{i} \| T \cap V_{j}\right|}{(n / K)^{2}}\right|<\epsilon n^{2}
$$

Theorem (Frieze-Kannan 1999)

For any $\epsilon>0$, every graph $G=(V, E)$ has a equitable vertex partition $V=V_{1} \cup \cdots \cup V_{K}, 1 / \epsilon<K<2^{c \epsilon^{-2}}$, such that for all disjoint subsets $S, T \subset V(G)$

$$
\left|e(S, T)-\sum_{1 \leq i, j \leq K} e\left(V_{i}, V_{j}\right) \frac{\left|S \cap V_{i} \| T \cap V_{j}\right|}{(n / K)^{2}}\right|<\epsilon n^{2}
$$

Theorem (Frieze-Kannan 1999)

For any $\epsilon>0$, every graph $G=(V, E)$ has a equitable vertex partition $V=V_{1} \cup \cdots \cup V_{K}, 1 / \epsilon<K<2^{c \epsilon^{-2}}$, such that for all disjoint subsets $S, T \subset V(G)$

$$
\left|e(S, T)-\sum_{1 \leq i, j \leq K} e\left(V_{i}, V_{j}\right) \frac{\left|S \cap V_{i}\right|\left|T \cap V_{j}\right|}{(n / K)^{2}}\right|<\epsilon n^{2}
$$

Theorem (Dellamonica et al. 2015)

There is a determinist $2^{2^{\epsilon^{-c}}} n^{2}$-time algorithm for computing such a partition.

Given a Frieze-Kannan regular partition $\mathcal{P}: V=V_{1} \cup \cdots \cup V_{K}$:

Given a Frieze-Kannan regular partition $\mathcal{P}: V=V_{1} \cup \cdots \cup V_{K}$:

$$
G_{P}=\begin{array}{|ccc|}
\hline V_{1} & \begin{array}{|cc|}
\hline V_{2} & V_{3} \\
V_{4} \\
V_{5} & V_{6} \\
\ldots & V_{K} \\
\hline
\end{array}
\end{array}
$$

$w_{G_{\mathcal{P}}}(u v)=0$ if $u, v \in V_{i}$,
$w_{G_{\mathcal{P}}}(u v)=\frac{e_{G}\left(V_{i}, V_{j}\right)}{(n / K)^{2}}$ if $u \in V_{i}, v \in V_{j}$

Given a Frieze-Kannan regular partition $\mathcal{P}: V=V_{1} \cup \cdots \cup V_{K}$:

$w_{G_{\mathcal{P}}}(u v)=0$ if $u, v \in V_{i}$,
$w_{G_{\mathcal{P}}}(u v)=\frac{e_{G}\left(V_{i}, V_{j}\right)}{(n / K)^{2}}$ if $u \in V_{i}, v \in V_{j}$
$G \approx G_{\mathcal{P}}:$ For $S, T \subset V,\left|e_{G}(S, T)-e_{G_{\mathcal{P}}}(S, T)\right|<\epsilon n^{2}$.

$\overline{\mathrm{cr}}(G)$ versus $\overline{\operatorname{cr}}\left(G_{P}\right)$

Using the regularity lemma for same-type transversals (Fox-Pach-S.) Key Lemma

Lemma (Fox, Pach, S. 2016)

$$
\left|\overline{\operatorname{cr}}(G)-\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)\right|<\epsilon^{\frac{1}{4 C}} n^{4}
$$

Defining G / \mathcal{P}

Given a Frieze-Kannan regular partition $\mathcal{P}: V=V_{1} \cup \cdots \cup V_{K}$:

Defining G / \mathcal{P}

Given a Frieze-Kannan regular partition $\mathcal{P}: V=V_{1} \cup \cdots \cup V_{K}$:

$V(G / \mathcal{P})=\{1,2, \ldots, K\}$
$w_{G / \mathcal{P}}(i j)=\frac{e_{G}\left(V_{i}, V_{j}\right)}{(n / K)^{2}}$ if $u \in V_{i}, v \in V_{j}$

Defining G / \mathcal{P}

Given a Frieze-Kannan regular partition $\mathcal{P}: V=V_{1} \cup \cdots \cup V_{K}$:

$V(G / \mathcal{P})=\{1,2, \ldots, K\}$
$w_{G / \mathcal{P}}(i j)=\frac{e_{G}\left(V_{i}, V_{j}\right)}{(n / K)^{2}}$ if $u \in V_{i}, v \in V_{j}$

$G_{\mathcal{P}}$ is an (n / K)-blow up of G / \mathcal{P}.

Simple Lemma

Lemma

$$
\left(\frac{n}{K}\right)^{4} \overline{\operatorname{cr}}(G / P) \leq \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)
$$

Proof. Consider a drawing of $G_{\mathcal{P}}$ with $\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)$ weighted crossings.

Simple Lemma

Lemma

$$
\left(\frac{n}{K}\right)^{4} \overline{\operatorname{cr}}(G / P) \leq \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)
$$

Proof. Consider a drawing of $G_{\mathcal{P}}$ with $\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)$ weighted crossings.

at least $\overline{\operatorname{cr}}(G / \mathcal{P})$ weighted crossings.

Simple Lemma

Lemma

$$
\left(\frac{n}{K}\right)^{4} \overline{\operatorname{cr}}(G / P) \leq \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)
$$

Proof. Consider a drawing of $G_{\mathcal{P}}$ with $\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)$ weighted crossings.

G / P
Summing over all $(n / K)^{K}$ drawings gives a total of $\geq(n / K)^{K} \overline{\operatorname{cr}(G / \mathcal{P})}$.

Simple Lemma

Lemma

$$
\left(\frac{n}{K}\right)^{4} \overline{\operatorname{cr}}(G / P) \leq \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)
$$

Proof. Consider a drawing of $G_{\mathcal{P}}$ with $\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)$ weighted crossings.

G / P

Each fixed crossing with be counted $(n / K)^{K-4}$ times, giving $(n / K)^{K-4} \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right) \geq(n / K)^{K} \overline{\operatorname{cr}}(G / \mathcal{P})$

The algorithm

Input: $G=(V, E)$.

1) Set $\epsilon=(\log \log n)^{-1 / 2 c}$
2) Compute the Frieze-Kannan vertex partition on $V=V_{1} \cup \cdots \cup V_{K}, K \leq 2^{\epsilon^{-c}}=2^{\sqrt{\log \log n}}$. Done in $n^{2+o(1)}$-time.
3) Find a straight-line drawing of G / \mathcal{P} with $\overline{\mathrm{cr}}(G / \mathcal{P})$ weighted pairs of crossing edges. Done in $2^{O\left(K^{3}\right)}=n^{o(1)}$ time.

$$
G / P=
$$

The algorithm

Input: $G=(V, E)$.

1) Set $\epsilon=(\log \log n)^{-1 / 2 c}$
2) Compute the Frieze-Kannan vertex partition on $V=V_{1} \cup \cdots \cup V_{K}, K \leq 2^{\epsilon^{-c}}=2^{\sqrt{\log \log n}}$. Done in $n^{2+o(1)}$-time.
3) Find a straight-line drawing of G / \mathcal{P} with $\overline{\operatorname{cr}}(G / \mathcal{P})$ weighted pairs of crossing edges. Done in $2^{O\left(K^{3}\right)}=n^{o(1)}$ time.

The algorithm

4) Place all vertices from V_{i} inside circle C_{i}. Done in $O(n)$-time.

The algorithm

4) Place all vertices from V_{i} inside circle C_{i}. Done in $O(n)$-time.

The algorithm

4) Place all vertices from V_{i} inside circle C_{i}. Done in $O(n)$-time.
5) Draw all remaining edges. Done in $O\left(n^{2}\right)$-time.

6) Return: drawing of G. Total running time: $O\left(n^{2+o(1)}\right)$

Number of crossings in the drawing

X denote the set of pairs of crossing edges.

Number of crossings in the drawing

X denote the set of pairs of crossing edges.

Number of crossings in the drawing

Simple Lemma: $\left(\frac{n}{K}\right)^{4} \overline{\operatorname{cr}}(G / P) \leq \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)$.

$$
|X| \leq\left(\frac{n}{K}\right)^{4} \overline{\operatorname{cr}}(G / P)+\frac{n^{4}}{2 K} \leq \overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right)+\frac{n^{4}}{2 K}
$$

Key Lemma: $\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right) \leq \overline{\operatorname{cr}}(G)+\epsilon^{1 / 4 C} n^{4}$

$$
\begin{aligned}
& |X| \leq \overline{\operatorname{cr}}(G)+\epsilon^{1 / 4 C} n^{4}+\frac{n^{4}}{2 K} \\
& |X| \leq \overline{\operatorname{cr}}(G)+\frac{n^{4}}{(\log \log n)^{c^{\prime}}}
\end{aligned}
$$

Open problem: Generalize to from $\overline{\mathrm{cr}}$ to cr

Suffices to generalize the key lemma.
Key Lemma: $\overline{\operatorname{cr}}\left(G_{\mathcal{P}}\right) \leq \overline{\operatorname{cr}}(G)+\epsilon^{1 / 4 C} n^{4}$
Open problem: $\operatorname{cr}\left(G_{\mathcal{P}}\right) \leq \operatorname{cr}(G)+\epsilon^{1 / 4 C} n^{4}$

Thank you!

