Density (Ramsey) theorems for intersection graphs of t-monotone curves

Andrew Suk

September 17, 2012

Definition

A topological graph is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is simple if every pair of its edges intersect at most once.

Definition

A topological graph is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is simple if every pair of its edges intersect at most once.

We will only consider simple topological graphs.

Three conjectures in topological graph theory.

conjecture 1: Thrackle conjecture.

Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges, has at most n edges.

Fulek and Pach 2010: $|E(G)| \leq 1.43 n$.

Three conjectures in topological graph theory.

conjecture 1: Thrackle conjecture.

Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges, has at most n edges.

Fulek and Pach 2010: $|E(G)| \leq 1.43 n$.
If edges are segments: Yes, Erdős.
If edges are x-monotone: Yes, Pach and Sterling 2011.

Three conjectures in topological graph theory.

conjecture 2: Extremal problem (generalization):

Conjecture (Pach and Tóth 2005, sparse graphs)

Every n-vertex simple topological graph with no k pairwise disjoint edges has at most $c_{k} n$ edges.

Pach and Tóth 2005: $|E(G)| \leq n \log ^{4 k-8} n$.

Three conjectures in topological graph theory.

conjecture 2: Extremal problem (generalization):

Conjecture (Pach and Tóth 2005, sparse graphs)

Every n-vertex simple topological graph with no k pairwise disjoint edges has at most $c_{k} n$ edges.

Pach and Tóth 2005: $|E(G)| \leq n \log ^{4 k-8} n$.
If edges are segments: Yes, Pach and Töröcsik 1993.
If edges are x-monotone: Yes, Pach and Töröcsik 1993.

Three conjectures in topological graph theory.

conjecture 3: Disjoint edges in dense graphs:

Conjecture (Pach and Tóth 2005, dense graphs)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges, has n^{δ} pairwise disjoint edges.

Fox and Sudakov 2008: $\Omega\left(\log ^{1.02} n\right)$ pairwise disjoint edges.

Three conjectures in topological graph theory.

conjecture 3: Disjoint edges in dense graphs:

Conjecture (Pach and Tóth 2005, dense graphs)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges, has n^{δ} pairwise disjoint edges.

Fox and Sudakov 2008: $\Omega\left(\log ^{1.02} n\right)$ pairwise disjoint edges.
If edges are segments: Yes, Pach and Töröcsik 1993.
If edges are x-monotone: Yes, Pach and Töröcsik 1993.

Three conjectures in topological graph theory.

conjecture 3: Disjoint edges in dense graphs:

Conjecture (Pach and Tóth 2005, dense graphs)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges, has n^{δ} pairwise disjoint edges.

Fox and Sudakov 2008: $\Omega\left(\log ^{1.02} n\right)$ pairwise disjoint edges.
If edges are segments: Yes, Pach and Töröcsik 1993.
If edges are x-monotone: Yes, Pach and Töröcsik 1993.
Note: Every complete n-vertex simple topological graph has $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint edges, Suk 2011.

All solved for x-monotone curves, but all are still open for 2-monotone curves.

Conjecture (Trackle)

Every n-vertex simple topological graph with no two disjoint edges, has at most n edges.

Conjecture (Sparse problem)

Every n-vertex simple topological graph with no k pairwise disjoint edges has at most $c_{k} n$ edges.

Conjecture (dense problem)

Every n-vertex simple topological graph with $\Omega\left(n^{2}\right)$ edges, has n^{δ} pairwise disjoint edges.

Definition

A curve γ is t-monotone if its interior has at most $t-1$ vertical tangent points. 1 -monotone $=x$-monotone.

Example: 4-monotone

Definition

A curve γ is t-monotone its interior has $t-1$ vertical tangent points. 1-monotone $=x$-monotone.

Example: 4-monotone

Results

Pach and Tóth's problem:

Theorem (Suk 2012)

Let G be an n-vertex simple topological graph with edges drawn as t-monotone curves. If G has no k pairwise disjoint edges, then $|E(G)| \leq n(\log n)^{c_{t} \log k}$.

Recall Pach and Tóth's bound of $n(\log n)^{4 k-8}$ for general curves.

Results

Corollary (Suk 2012)

Let G be an n-vertex simple topological graph with edges drawn as t-monotone curves. If $|E(G)| \geq \Omega\left(n^{2}\right)$, then G contains $n^{\delta_{t} / \log \log n}$ pairwise disjoint edges.

Fox and Sudakov showed $\log ^{1.02} n$ pairwise disjoint edges in the general case.

Conjecture

Every n-vertex simple topological graph with at least $\Omega\left(n^{2}\right)$ edges, has n^{δ} pairwise disjoint edges.

Theorem (Suk 2012)

Let G be an n-vertex simple topological graph with edges drawn as t-monotone curves. If G has no k pairwise disjoint edges, then $|E(G)| \leq n(\log n)^{c_{t} \log k}$.

Ramsey type result

Theorem (Two color, Suk 2012)

Let R be a family of n red t-monotone curves in the plane, and let B be a family of n blue t-monotone curves in the plane, such that $R \cup B$ is simple. Then there exist subfamilies $R^{\prime} \subset R$ and $B^{\prime} \subset B$ such that $\left|R^{\prime}\right|,\left|B^{\prime}\right| \geq \epsilon n$, and either
(1) every red curve in R^{\prime} intersects every blue curve in B^{\prime}, or
(2) every red curve in R^{\prime} is disjoint to every blue curve in B^{\prime}.

Ramsey type result

Theorem (Two color)

Let R be a simple family of n red t-monotone curves in the plane, and let B be a simple family of n blue t-monotone curves in the plane, such that $R \cup B$ is simple. Then there exist subfamilies $R^{\prime} \subset R$ and $B^{\prime} \subset B$ such that $\left|R^{\prime}\right|,\left|B^{\prime}\right| \geq \epsilon n$, and either
(1) every red curve in R^{\prime} intersects every blue curve in B^{\prime}, or
(2) every red curve in R^{\prime} is disjoint to every blue curve in B^{\prime}.
(1) For segments, Pach and Solymosi 2001.
(2) Semi-algebraic sets in \mathbb{R}^{d}, Alon et al. 2005.
(3) Definable sets belonging to some fixed definable family of sets in an o-minimal structure, Basu 2010.

All previous results assumed some type of bounded/fixed complexity.

Two color theorem + Szemerédi's regularity lemma \Rightarrow density theorem \Rightarrow

Theorem (Suk 2012)

Let G be an n-vertex simple topological graph with edges drawn as t-monotone curves. If G has no k pairwise disjoint edges, then $|E(G)| \leq n(\log n)^{c_{t} \log k}$.

Theorem (Two color)

Let R be a simple family of n red t-monotone curves in the plane, and let B be a simple family of n blue t-monotone curves in the plane, such that $R \cup B$ is simple. Then there exist subfamilies $R^{\prime} \subset R$ and $B^{\prime} \subset B$ such that $\left|R^{\prime}\right|,\left|B^{\prime}\right| \geq \epsilon n$, and either
(1) every red curve in R^{\prime} intersects every blue curve in B^{\prime}, or
(2) every red curve in R^{\prime} is disjoint to every blue curve in B^{\prime}.

Proof:

Theorem (Two color)

Let R be a simple family of n red t-monotone curves in the plane, and let B be a simple family of n blue t-monotone curves in the plane, such that $R \cup B$ is simple. Then there exist subfamilies $R^{\prime} \subset R$ and $B^{\prime} \subset B$ such that $\left|R^{\prime}\right|,\left|B^{\prime}\right| \geq \epsilon n$, and either
(1) every red curve in R^{\prime} intersects every blue curve in B^{\prime}, or
(2) every red curve in R^{\prime} is disjoint to every blue curve in B^{\prime}.

Proof:

Theorem (Two color)

Let R be a simple family of n red t-monotone curves in the plane, and let B be a simple family of n blue t-monotone curves in the plane, such that $R \cup B$ is simple. Then there exist subfamilies $R^{\prime} \subset R$ and $B^{\prime} \subset B$ such that $\left|R^{\prime}\right|,\left|B^{\prime}\right| \geq \epsilon n$, and either
(1) every red curve in R^{\prime} intersects every blue curve in B^{\prime}, or
(2) every red curve in R^{\prime} is disjoint to every blue curve in B^{\prime}.

Proof:

Select a random sample of c blue curves, for large constant c.

Trapezoid decomposition of \mathbb{R}^{2} : Draw a vertical line through each endpoint and through each vertical tangent point.

At most c_{t}^{2} number of cells. With high probability, each cell will intersect at most $n / 2$ blue curves!

Trapezoid decomposition of \mathbb{R}^{2} : Draw a vertical line through each endpoint and through each vertical tangent point.

At most c_{t}^{2} number of cells. With high probability, each cell will intersect at most $n / 2$ blue curves!

Trapezoid decomposition of \mathbb{R}^{2} : Draw a vertical line through each endpoint and through each vertical tangent point.

At most c_{t}^{2} number of cells. With high probability, each cell will intersect at most $n / 2$ blue curves!

By pigeonhole, there exists a cell with at least ϵn number of "left-endpoints", and $n / 2$ blue curves is disjoint to this cell.

Look at the remaining red and blue curves.

We have ϵn red curves, and ϵn blue curves remaining.

Do it again for the remaining right-endpoints and the remaining blue curves.

Do it again for the remaining right-endpoints and the remaining blue curves.

In the end, we have δn red curves, and two regions R_{1} and R_{2} that contains the endpoint of these red curves.

And no blue curves intersects the interior of R_{1} and R_{2}.

Do this whole process again with the endpoints of the blue curves to get regions R_{3} and R_{4}.

Endpoints of the blue curves lie inside R_{3} and R_{4}, and all red curves are disjoint to the interior of R_{3} and R_{4}.

Apply a case analysis/Jordan curve argument to find:

End of "proof".

Open problem

t-monotone condition only used for the trapezoid decomposition.

Problem

Given an n-point set P and family F of n simple curves, such that no point lies on any curve in F, does there exist a region R that contain ϵ points, and the interior of R is disjoint to ϵn curves from F ?

Open problem

t-monotone condition only used for the trapezoid decomposition.

Problem

Given an n-point set P and family F of n simple curves, such that no point lies on any curve in F, does there exist a region R that contain ϵ points, and the interior of R is disjoint to ϵn curves from F ?

Problem (2-monotone thrackle)

Let G be an n-vertex simple topological graph with edges drawn as 2-monotone curves. If G does not contain 2 disjoint edges, then $|E(G)| \leq n$?

Problem (2-monotone color)

Given a simple family F of 2-monotone curves in the plane with no 3 pairwise disjoint members, $\chi(\bar{F}) \leq c$ for some constant c ?

Problem (2-monotone thrackle)

Let G be an n-vertex simple topological graph with edges drawn as 2-monotone curves. If G does not contain 2 disjoint edges, then $|E(G)| \leq n$?

Problem (2-monotone color)

Given a simple family F of 2-monotone curves in the plane with no 3 pairwise disjoint members, $\chi(\bar{F}) \leq c$ for some constant c ?

Note: Color problem is true for segments/ x-monotone curves.

Thank you!

