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Theorem

(Erdős-Szekeres 1935) For any positive integer n, there exists an
integer ES(n), such that any set of at least ES(n) points in the
plane such that no three are collinear contains n members in
convex position. Moreover

2n−2 + 1 ≤ ES(n) ≤
(

2n − 4

n − 2

)

+ 1 = O(4n/
√

n).
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(Erdős-Szekeres 1935) For any positive integer n, there exists an
integer ES(n), such that any set of at least ES(n) points in the
plane such that no three are collinear contains n members in
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(c) 4-cup.
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(d) 4-cap.
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Theorem

(Erdős-Szekeres 1935) For any positive integers k and l , there
exists an integer f (k, l), such that any set of at least f (k, l) points
in the plane such that no three are collinear contains either a k-cup
or an l-cap. Moreover

f (k, l) =

(

k + l − 4

k − 2

)

+ 1
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Proof is very combinatorial. The only geometric fact used was the
following: Order the points from left to right {p1, ..., pN}
transitive property: If (p1, p2, p3) is a cap (cup), and (p2, p3, p4)
is a cap (cup), then p1, p2, p3, p4 is a 4-cap (4-cup).
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transitive property:
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Generalizing to convex bodies

Definition

A family C of convex bodies (compact convex sets) in the plane is
said to be in convex position if none of its members is contained in
the convex hull of the union of the others. We say that C is in
general position if every three members are in convex position.
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Theorem

(Bisztriczky and Fejes Tóth 1989) For any positive integer n, there
exists an integer D(n), such that every family of at least D(n)
disjoint convex bodies in the plane in general position contains n
members in convex position. Moreover

2n−2 + 1 ≤ D(n) ≤ 222n

.

They conjectured D(n) = ES(n).
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D(n) was later improved:

Theorem

(Pach and Tóth 1998) D(n) ≤
(

2n−4
n−2

)2
+ 1 = O(16n)

Theorem

(Hubard, Montejano, Mora, S. 2010)
D(n) ≤ (

(2n−5
n−2

)

+ 1)
(2n−4

n−2

)

+ 1
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Definition

We say that a family of convex bodies in the plane is noncrossing if
any two members share at most two boundary points.
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Theorem

(Pach and Tóth 2000) For any positive integer n, there exists an
integer N(n), such that any family of at least N(n) noncrossing
convex bodies in the plane in general position contains n members
in convex position. Moreover

2n−2 + 1 ≤ N(n) ≤ 222n

.
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Theorem

(Pach and Tóth 2000) For any positive integer n, there exists an
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2n−2 + 1 ≤ N(n) ≤ 222n

.
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Note: We cannot drop the noncrossing assumption. Pach and Tóth
gave a construction of n pairwise crossing rectangles that which
are in general position, but no four of them are in convex position

1 2
3 4
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N(n) was later improved

Theorem

(Hubard, Montejano, Mora, S. 2010)

N(n) ≤ 22n

Proof introduces order types for convex bodies. Our result:

Theorem

(Fox, Pach, Sudakov, S.)

2n−2 + 1 ≤ N(n) ≤ nn2
= 2cn2 log n.
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Order types of convex bodies

Given an ordering on C, (Ci ,Cj ,Ck) (i < j < k) has a clockwise
(counterclockwise) orientation if there exist distinct points
pi ∈ Ci , pj ∈ Cj , pk ∈ Ck such that they lie on the boundary of
conv(Ci ∪ Cj ∪ Ck) and appear there in clockwise
(counterclockwise) order. For i < j < k

Cj

iC

Ck

iC

Cj

Ck

Cj
iC

Ck
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Theorem

(Hubard, Montejano, Mora, S. 2010) A family C of noncrossing
convex sets is in covex position if and only if there exists an
ordering on the member of C such that every triple has a clockwise
orientation.

Which implies N(n) ≤ 22cn
by Ramsey Theory.
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However clockwise and counter clockwise orientations defined
above does not satisfy the transitive property.
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Strong orientations

Order the member of C from ”left to right” according to their ”left
endpoint”.
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Strong orientations

Order the member of C from ”left to right” according to their ”left
endpoint”.
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Given the ordering as above, for i < j < k, (Ci ,Cj ,Ck) is said to
have a strong-clockwise (strong-counterclockwise) orientation if
there exist points pj ∈ Cj , pk ∈ Ck such that, starting at the left
endpoint p∗

i of Ci , the triple (p∗

i , pj , pk) appears in clockwise
(counterclockwise) order along the boundary of conv(Ci ∪Cj ∪Ck).

Cj

iC

Ck

iC

Cj

Ck
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(Ci ,Cj ,Ck) has both strong orientations if it has both a
strong-clockwise and a strong-counterclockwise orientation.

Cj
iC

Ck

Note that the following only has a strong clockwise orientation.

3C

C2

C1
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Theorem

(Fox, Pach, Sudakov, S.) transitive property: If (C1,C2,C3) and
(C2,C3,C4) have only a strong clockwise (strongcounter
clockwise) orientation, then (C1,C3,C4) and (C1,C2,C4) must also
only have strong clockwise (counter clockwise) orientations.

3C

C2

C1

C4
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Jacob Fox, János Pach, Benny Sudakov, Andrew Suk Erdős-Szekeres-type theorems for monotone paths and convex b



History

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If (C1,C2,C3) and
(C2,C3,C4) have both-strong orientations, then (C1,C3,C4) and
(C1,C2,C4) must also have both-strong-orientations.

C1

C2
C3 C4
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Combinatorial encoding.
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Combinatorial encoding.
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History

Find bodies in convex position by looking for a path and applying
the transitive property.
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By the transitive property, every triple has a strong clockwise
orientation. Hence by the previous theorem, C1, ...,C6 is in convex
position.
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History

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph H = ([N],E ), a monotone
3-path of length n are edges
(v1, v2, v3), (v2, v3, v4), (v3, v4, v5), ..., (vn−2, vn−1, vn).
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In general, for an ordered k-uniform hypergraph H = ([N],E ), a
monotone k-path of length n are edges
(v1, v2, ..., vk), (v2, v3, ..., vk+1)...., (vn−k+1 , ..., vn).
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Jacob Fox, János Pach, Benny Sudakov, Andrew Suk Erdős-Szekeres-type theorems for monotone paths and convex b



History

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph H = ([N],E ), a monotone
3-path of length n are edges
(v1, v2, v3), (v2, v3, v4), (v3, v4, v5), ..., (vn−2, vn−1, vn).

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

v1 v2
v3 v4 v5 vn........

In general, for an ordered k-uniform hypergraph H = ([N],E ), a
monotone k-path of length n are edges
(v1, v2, ..., vk), (v2, v3, ..., vk+1)...., (vn−k+1 , ..., vn).
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Ordered hypergraphs

Definition

Let Nk(q, n) denote the smallest integer N such that every q
coloring on the k-tuples of [N] contains a monochromatic path of
length n.

N2(q, n) = (n − 1)q + 1 by Dilworth’s theorem.
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History

N3(2, n) =
(2n−4

n−2

)

+ 1 by the Erdős-Szekeres cups-caps (red-blue)
argument.
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+ 1 by the Erdős-Szekeres cups-caps (red-blue)
argument.

���� ���� ���� ���� ���� ���� ���� ����
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For more colors.

Theorem

(Fox, Pach, Sudakov, S.) For q ≥ 3, we have

2(n/q)q−1 ≤ N3(q, n) ≤ nnq−1
,

Therefore for the noncrossing convex bodies problem:

N(n) ≤ N3(3, n) ≤ nn2
= 2cn2 log n
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History

Proof of N3(q, n) ≤ N2(n
q−1, n) ≤ nnq−1

:

1 Set N = N2(n
q−1, n)

2 χ :
([N]

3

)

→ [q] be q-coloring on the triples of [N].

3 Then define φ :
([N]

2

)

→ [n]q−1 as follows. We color

(i , j) ∈
(

[N]
2

)

with color (a1, a2, ..., aq−1) where at denotes the
length of the longest t-colored 3-path ending with vertices i , j .
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Jacob Fox, János Pach, Benny Sudakov, Andrew Suk Erdős-Szekeres-type theorems for monotone paths and convex b



History

Proof of N3(q, n) ≤ N2(n
q−1, n) ≤ nnq−1

:

1 Set N = N2(n
q−1, n)

2 χ :
(

[N]
3

)

→ [q] be q-coloring on the triples of [N].

3 Then define φ :
(

[N]
2

)

→ [n]q−1 as follows. We color

(i , j) ∈
([N]

2

)

with color (a1, a2, ..., aq−1) where at denotes the
length of the longest t-colored 3-path ending with vertices i , j .

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����������������������������������������������������������������������������������������

i j
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Jacob Fox, János Pach, Benny Sudakov, Andrew Suk Erdős-Szekeres-type theorems for monotone paths and convex b



History

Proof of N3(q, n) ≤ N2(n
q−1, n) ≤ nnq−1

:

1 Set N = N2(n
q−1, n)

2 χ :
(

[N]
3

)

→ [q] be q-coloring on the triples of [N].

3 Then define φ :
(

[N]
2

)

→ [n]q−1 as follows. We color

(i , j) ∈
([N]

2

)

with color (a1, a2, ..., aq−1) where at denotes the
length of the longest t-colored 3-path ending with vertices i , j .

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����������������������������������������������������������������������������������������

i j

6( ,
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Proof of N3(q, n) ≤ N2(n
q−1, n) ≤ nnq−1

:

1 Set N = N2(n
q−1, n)

2 χ :
([N]

3

)

→ [q] be q-coloring on the triples of [N].

3 Then define φ :
(

[N]
2

)

→ [n]q−1 as follows. We color

(i , j) ∈
([N]

2

)

with color (a1, a2, ..., aq−1) where at denotes the
length of the longest t-colored 3-path ending with vertices i , j .
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By definition of N2(n
q−1, n), there is monochromatic 2-path on

vertices v1 < v2 < ... < vn with color (a∗1, ..., a
∗

q−1).
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Claim: (v1, ..., vn) is a monochromatic 3-path (with color q)!
Indeed, Assume (vi , vi+1, vi+2) has color j 6= q.

1 Longest jth-colored 3-path ending with vertices (vi , vj ) must
be shorter than the longest jth-colored 3-path ending with
vertices (vj+1, vj+2).

2 Contradicts φ(vi , vi+1) = φ(vi+1, vi+2).

3 Hence (vi , vi+1, vi+2) must have color q for all i .
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Jacob Fox, János Pach, Benny Sudakov, Andrew Suk Erdős-Szekeres-type theorems for monotone paths and convex b



History

Claim: (v1, ..., vn) is a monochromatic 3-path (with color q)!
Indeed, Assume (vi , vi+1, vi+2) has color j 6= q.

1 Longest jth-colored 3-path ending with vertices (vi , vj ) must
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The upper bound proof can easily be generalized to show

Nk(q, n) ≤ Nk−1((n − k + 1)q−1, n)

Using the stepping-up approach we have

Theorem

(Fox, Pach, Sudakov, S.) Define t1(x) = x and ti+1(x) = 2ti (x).
Then for k ≥ 4 we have

tk−1(cn
q−1) ≤ Nk(q, n) ≤ tk−1(c

′nq−1 log n).
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Another upper bound on N3(q, n)

Consider the following game played by two players, Builder and
Painter.

1 vertex vt+1 is revealed.

2 Builder decides whether to draw the edge (vi , vt+1) for i ≤ t.
item If Builder draws an edge, Painter must immediately color
it one of q colors.
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Jacob Fox, János Pach, Benny Sudakov, Andrew Suk Erdős-Szekeres-type theorems for monotone paths and convex b



History

Another upper bound on N3(q, n)

Consider the following game played by two players, Builder and
Painter.

1 vertex vt+1 is revealed.

2 Builder decides whether to draw the edge (vi , vt+1) for i ≤ t.
item If Builder draws an edge, Painter must immediately color
it one of q colors.

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

v1 v2 vt−1 vt
vt+1

.....
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The vertex online Ramsey number V2(q, n) is the minimum
number of edges builder has to draw to guarantee a
monochromatic path of length n. Clearly V2(q, n) ≤

((n−1)q+1
2

)

.

Theorem

(Fox, Pach, Sudakov, S.) We have

V2(q, n) ≤ q2nq log n

Theorem

(Fox, Pach, Sudakov, S.) We have

N3(q, n) ≤ qV2(q,n) + 1 = qq2nq log n

For q = 3, the formula above implies N3(3, n) ≤ 2cn3 log n (Not as
strong as the previous bound 2c′n2 log n). A weaker upper bound,
but gives us an algorithm of finding a monochromatic 3-path of
length n.
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Summary

1 Points (Tóth and Valtr 2005):

2n−1 + 1 ≤ ES(n) ≤
(

2n − 5

n − 2

)

+ 1 = O(4n/
√

n).

2 Disjoint convex bodies (Hubard, Montejano, Mora, S. 2010):

2n−1 + 1 ≤ D(n) ≤ (

(

2n − 5

n − 2

)

+ 1)

(

2n − 4

n − 2

)

+ 1 = O(16n).

3 Noncrossing convex bodies (Fox, Pach, Sudakov, S.):

2n−1 + 1 ≤ N(n) ≤ nn2
= 2O(n2 log n).

Problem

ES(n) = D(n) = N(n)?
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Thank you!
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