Erdős-Szekeres-type theorems for monotone paths and convex bodies

Jacob Fox, János Pach, Benny Sudakov, Andrew Suk

November 24, 2010

History

Theorem

(Erdős-Szekeres 1935) For any positive integer n, there exists an integer $E S(n)$, such that any set of at least $E S(n)$ points in the plane such that no three are collinear contains n members in convex position. Moreover

$$
2^{n-2}+1 \leq E S(n) \leq\binom{ 2 n-4}{n-2}+1=O\left(4^{n} / \sqrt{n}\right) .
$$

History

Theorem

(Erdős-Szekeres 1935) For any positive integer n, there exists an integer $E S(n)$, such that any set of at least $E S(n)$ points in the plane such that no three are collinear contains n members in convex position. Moreover

$$
2^{n-2}+1 \leq E S(n) \leq\binom{ 2 n-4}{n-2}+1=O\left(4^{n} / \sqrt{n}\right)
$$

(c) 4-cup.
(d) 4-cap.

Theorem

(Erdős-Szekeres 1935) For any positive integers k and l, there exists an integer $f(k, l)$, such that any set of at least $f(k, l)$ points in the plane such that no three are collinear contains either a k-cup or an I-cap. Moreover

$$
f(k, I)=\binom{k+l-4}{k-2}+1
$$

Proof is very combinatorial. The only geometric fact used was the following: Order the points from left to right $\left\{p_{1}, \ldots, p_{N}\right\}$ transitive property: If (p_{1}, p_{2}, p_{3}) is a cap (cup), and (p_{2}, p_{3}, p_{4}) is a cap (cup), then $p_{1}, p_{2}, p_{3}, p_{4}$ is a 4 -cap (4-cup).

Proof is very combinatorial. The only geometric fact used was the following: Order the points from left to right $\left\{p_{1}, \ldots, p_{N}\right\}$ transitive property: If (p_{1}, p_{2}, p_{3}) is a cap (cup), and (p_{2}, p_{3}, p_{4}) is a cap (cup), then $p_{1}, p_{2}, p_{3}, p_{4}$ is a 4 -cap (4-cup).

Proof is very combinatorial. The only geometric fact used was the following: Order the points from left to right $\left\{p_{1}, \ldots, p_{N}\right\}$ transitive property: If (p_{1}, p_{2}, p_{3}) is a cap (cup), and (p_{2}, p_{3}, p_{4}) is a cap (cup), then $p_{1}, p_{2}, p_{3}, p_{4}$ is a 4 -cap (4-cup).

Proof is very combinatorial. The only geometric fact used was the following: Order the points from left to right $\left\{p_{1}, \ldots, p_{N}\right\}$ transitive property: If $\left(p_{1}, p_{2}, p_{3}\right)$ is a cap (cup), and (p_{2}, p_{3}, p_{4}) is a cap (cup), then $p_{1}, p_{2}, p_{3}, p_{4}$ is a 4 -cap (4-cup).

Proof is very combinatorial. The only geometric fact used was the following: Order the points from left to right $\left\{p_{1}, \ldots, p_{N}\right\}$ transitive property: If (p_{1}, p_{2}, p_{3}) is a cap (cup), and (p_{2}, p_{3}, p_{4}) is a cap (cup), then $p_{1}, p_{2}, p_{3}, p_{4}$ is a 4 -cap (4-cup).

transitive property:

Generalizing to convex bodies

Definition

A family \mathcal{C} of convex bodies (compact convex sets) in the plane is said to be in convex position if none of its members is contained in the convex hull of the union of the others. We say that \mathcal{C} is in general position if every three members are in convex position.

Theorem

(Bisztriczky and Fejes Tóth 1989) For any positive integer n, there exists an integer $D(n)$, such that every family of at least $D(n)$ disjoint convex bodies in the plane in general position contains n members in convex position. Moreover

$$
2^{n-2}+1 \leq D(n) \leq 2^{2^{2^{n}}}
$$

They conjectured $D(n)=E S(n)$.

Theorem

(Bisztriczky and Fejes Tóth 1989) For any positive integer n, there exists an integer $D(n)$, such that every family of at least $D(n)$ disjoint convex bodies in the plane in general position contains n members in convex position. Moreover

$$
2^{n-2}+1 \leq D(n) \leq 2^{2^{2^{n}}}
$$

They conjectured $D(n)=E S(n)$.
$D(n)$ was later improved:

Theorem

(Pach and Tóth 1998) $D(n) \leq\binom{ 2 n-4}{n-2}^{2}+1=O\left(16^{n}\right)$

Theorem

(Hubard, Montejano, Mora, S. 2010) $D(n) \leq\left(\binom{2 n-5}{n-2}+1\right)\binom{2 n-4}{n-2}+1$

Definition

We say that a family of convex bodies in the plane is noncrossing if any two members share at most two boundary points.

Theorem

(Pach and Tóth 2000) For any positive integer n, there exists an integer $N(n)$, such that any family of at least $N(n)$ noncrossing convex bodies in the plane in general position contains n members in convex position. Moreover

$$
2^{n-2}+1 \leq N(n) \leq 2^{2^{2^{n}}} .
$$

Theorem

(Pach and Tóth 2000) For any positive integer n, there exists an integer $N(n)$, such that any family of at least $N(n)$ noncrossing convex bodies in the plane in general position contains n members in convex position. Moreover

$$
2^{n-2}+1 \leq N(n) \leq 2^{2^{2^{n}}}
$$

Note: We cannot drop the noncrossing assumption. Pach and Tóth gave a construction of n pairwise crossing rectangles that which are in general position, but no four of them are in convex position

Note: We cannot drop the noncrossing assumption. Pach and Tóth gave a construction of n pairwise crossing rectangles that which are in general position, but no four of them are in convex position

Note: We cannot drop the noncrossing assumption. Pach and Tóth gave a construction of n pairwise crossing rectangles that which are in general position, but no four of them are in convex position

$N(n)$ was later improved

Theorem

(Hubard, Montejano, Mora, S. 2010)

$$
N(n) \leq 2^{2^{n}}
$$

Proof introduces order types for convex bodies. Our result:

Theorem

(Fox, Pach, Sudakov, S.)

$$
2^{n-2}+1 \leq N(n) \leq n^{n^{2}}=2^{c n^{2} \log n} .
$$

Order types of convex bodies

Given an ordering on $\mathcal{C},\left(C_{i}, C_{j}, C_{k}\right)(i<j<k)$ has a clockwise (counterclockwise) orientation if there exist distinct points $p_{i} \in C_{i}, p_{j} \in C_{j}, p_{k} \in C_{k}$ such that they lie on the boundary of $\operatorname{conv}\left(C_{i} \cup C_{j} \cup C_{k}\right)$ and appear there in clockwise (counterclockwise) order. For $i<j<k$

Order types of convex bodies

Given an ordering on $\mathcal{C},\left(C_{i}, C_{j}, C_{k}\right)(i<j<k)$ has a clockwise (counterclockwise) orientation if there exist distinct points $p_{i} \in C_{i}, p_{j} \in C_{j}, p_{k} \in C_{k}$ such that they lie on the boundary of $\operatorname{conv}\left(C_{i} \cup C_{j} \cup C_{k}\right)$ and appear there in clockwise (counterclockwise) order. For $i<j<k$

Theorem

(Hubard, Montejano, Mora, S. 2010) A family \mathcal{C} of noncrossing convex sets is in covex position if and only if there exists an ordering on the member of \mathcal{C} such that every triple has a clockwise orientation.

Which implies $N(n) \leq 2^{2^{c n}}$ by Ramsey Theory.

Theorem

(Hubard, Montejano, Mora, S. 2010) A family \mathcal{C} of noncrossing convex sets is in covex position if and only if there exists an ordering on the member of \mathcal{C} such that every triple has a clockwise orientation.

Which implies $N(n) \leq 2^{2^{c n}}$ by Ramsey Theory.

Theorem

(Hubard, Montejano, Mora, S. 2010) A family \mathcal{C} of noncrossing convex sets is in covex position if and only if there exists an ordering on the member of \mathcal{C} such that every triple has a clockwise orientation.

Which implies $N(n) \leq 2^{2^{c n}}$ by Ramsey Theory.

Theorem

(Hubard, Montejano, Mora, S. 2010) A family \mathcal{C} of noncrossing convex sets is in covex position if and only if there exists an ordering on the member of \mathcal{C} such that every triple has a clockwise orientation.

Which implies $N(n) \leq 2^{2^{c n}}$ by Ramsey Theory.

Theorem

(Hubard, Montejano, Mora, S. 2010) A family \mathcal{C} of noncrossing convex sets is in covex position if and only if there exists an ordering on the member of \mathcal{C} such that every triple has a clockwise orientation.

Which implies $N(n) \leq 2^{2^{c n}}$ by Ramsey Theory.

Theorem

(Hubard, Montejano, Mora, S. 2010) A family \mathcal{C} of noncrossing convex sets is in covex position if and only if there exists an ordering on the member of \mathcal{C} such that every triple has a clockwise orientation.

Which implies $N(n) \leq 2^{2^{c n}}$ by Ramsey Theory.

However clockwise and counter clockwise orientations defined above does not satisfy the transitive property.

However clockwise and counter clockwise orientations defined above does not satisfy the transitive property.

However clockwise and counter clockwise orientations defined above does not satisfy the transitive property.

Strong orientations

Order the member of \mathcal{C} from "left to right" according to their "left endpoint".

Strong orientations

Order the member of \mathcal{C} from "left to right" according to their "left endpoint".

Given the ordering as above, for $i<j<k,\left(C_{i}, C_{j}, C_{k}\right)$ is said to have a strong-clockwise (strong-counterclockwise) orientation if there exist points $p_{j} \in C_{j}, p_{k} \in C_{k}$ such that, starting at the left endpoint p_{i}^{*} of C_{i}, the triple (p_{i}^{*}, p_{j}, p_{k}) appears in clockwise (counterclockwise) order along the boundary of $\operatorname{conv}\left(C_{i} \cup C_{j} \cup C_{k}\right)$.

Given the ordering as above, for $i<j<k,\left(C_{i}, C_{j}, C_{k}\right)$ is said to have a strong-clockwise (strong-counterclockwise) orientation if there exist points $p_{j} \in C_{j}, p_{k} \in C_{k}$ such that, starting at the left endpoint p_{i}^{*} of C_{i}, the triple (p_{i}^{*}, p_{j}, p_{k}) appears in clockwise (counterclockwise) order along the boundary of $\operatorname{conv}\left(C_{i} \cup C_{j} \cup C_{k}\right)$.

(C_{i}, C_{j}, C_{k}) has both strong orientations if it has both a strong-clockwise and a strong-counterclockwise orientation.

Note that the following only has a strong clockwise orientation.

(C_{i}, C_{j}, C_{k}) has both strong orientations if it has both a strong-clockwise and a strong-counterclockwise orientation.

Note that the following only has a strong clockwise orientation.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have only a strong clockwise (strongcounter clockwise) orientation, then $\left(C_{1}, C_{3}, C_{4}\right)$ and $\left(C_{1}, C_{2}, C_{4}\right)$ must also only have strong clockwise (counter clockwise) orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have only a strong clockwise (strongcounter clockwise) orientation, then $\left(C_{1}, C_{3}, C_{4}\right)$ and $\left(C_{1}, C_{2}, C_{4}\right)$ must also only have strong clockwise (counter clockwise) orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have only a strong clockwise (strongcounter clockwise) orientation, then $\left(C_{1}, C_{3}, C_{4}\right)$ and $\left(C_{1}, C_{2}, C_{4}\right)$ must also only have strong clockwise (counter clockwise) orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have only a strong clockwise (strongcounter clockwise) orientation, then $\left(C_{1}, C_{3}, C_{4}\right)$ and $\left(C_{1}, C_{2}, C_{4}\right)$ must also only have strong clockwise (counter clockwise) orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have both-strong orientations, then $\left(C_{1}, C_{3}, C_{4}\right)$ and (C_{1}, C_{2}, C_{4}) must also have both-strong-orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have both-strong orientations, then $\left(C_{1}, C_{3}, C_{4}\right)$ and (C_{1}, C_{2}, C_{4}) must also have both-strong-orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have both-strong orientations, then $\left(C_{1}, C_{3}, C_{4}\right)$ and $\left(C_{1}, C_{2}, C_{4}\right)$ must also have both-strong-orientations.

Theorem

(Fox, Pach, Sudakov, S.) transitive property: If $\left(C_{1}, C_{2}, C_{3}\right)$ and $\left(C_{2}, C_{3}, C_{4}\right)$ have both-strong orientations, then $\left(C_{1}, C_{3}, C_{4}\right)$ and (C_{1}, C_{2}, C_{4}) must also have both-strong-orientations.

Combinatorial encoding.

Find bodies in convex position by looking for a path and applying the transitive property.

Find bodies in convex position by looking for a path and applying the transitive property.

Find bodies in convex position by looking for a path and applying the transitive property.

Find bodies in convex position by looking for a path and applying the transitive property.

Find bodies in convex position by looking for a path and applying the transitive property.

Find bodies in convex position by looking for a path and applying the transitive property.

By the transitive property, every triple has a strong clockwise orientation. Hence by the previous theorem, C_{1}, \ldots, C_{6} is in convex position.

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph $H=([N], E)$, a monotone 3-path of length n are edges
$\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{n-2}, v_{n-1}, v_{n}\right)$.

In general, for an ordered k-uniform hypergraph $H=([N], E)$, a monotone k-path of length n are edges
$\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{2}, v_{3}, \ldots, v_{k+1}\right) \ldots,\left(v_{n-k+1}, \ldots, v_{n}\right)$.

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph $H=([N], E)$, a monotone 3-path of length n are edges
$\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{n-2}, v_{n-1}, v_{n}\right)$.

In general, for an ordered k-uniform hypergraph $H=([N], E)$, a monotone k-path of length n are edges
$\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{2}, v_{3}, \ldots, v_{k+1}\right) \ldots,\left(v_{n-k+1}, \ldots, v_{n}\right)$.

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph $H=([N], E)$, a monotone 3-path of length n are edges
$\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{n-2}, v_{n-1}, v_{n}\right)$.

In general, for an ordered k-uniform hypergraph $H=([N], E)$, a monotone k-path of length n are edges
$\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{2}, v_{3}, \ldots, v_{k+1}\right) \ldots,\left(v_{n-k+1}, \ldots, v_{n}\right)$.

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph $H=([N], E)$, a monotone 3-path of length n are edges
$\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{n-2}, v_{n-1}, v_{n}\right)$.

In general, for an ordered k-uniform hypergraph $H=([N], E)$, a monotone k-path of length n are edges
$\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{2}, v_{3}, \ldots, v_{k+1}\right) \ldots,\left(v_{n-k+1}, \ldots, v_{n}\right)$.

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph $H=([N], E)$, a monotone 3-path of length n are edges
$\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{n-2}, v_{n-1}, v_{n}\right)$.

In general, for an ordered k-uniform hypergraph $H=([N], E)$, a monotone k-path of length n are edges
$\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{2}, v_{3}, \ldots, v_{k+1}\right) \ldots,\left(v_{n-k+1}, \ldots, v_{n}\right)$.

Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph $H=([N], E)$, a monotone 3-path of length n are edges
$\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{n-2}, v_{n-1}, v_{n}\right)$.

In general, for an ordered k-uniform hypergraph $H=([N], E)$, a monotone k-path of length n are edges
$\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{2}, v_{3}, \ldots, v_{k+1}\right) \ldots,\left(v_{n-k+1}, \ldots, v_{n}\right)$.

Ordered hypergraphs

Definition

Let $N_{k}(q, n)$ denote the smallest integer N such that every q coloring on the k-tuples of $[N]$ contains a monochromatic path of length n.

$$
N_{2}(q, n)=(n-1)^{q}+1 \text { by Dilworth's theorem. }
$$

Ordered hypergraphs

Definition

Let $N_{k}(q, n)$ denote the smallest integer N such that every q coloring on the k-tuples of $[N]$ contains a monochromatic path of length n.

$$
N_{2}(q, n)=(n-1)^{q}+1 \text { by Dilworth's theorem. }
$$

Ordered hypergraphs

Definition

Let $N_{k}(q, n)$ denote the smallest integer N such that every q coloring on the k-tuples of $[N]$ contains a monochromatic path of length n.

$$
N_{2}(q, n)=(n-1)^{q}+1 \text { by Dilworth's theorem. }
$$

Ordered hypergraphs

Definition

Let $N_{k}(q, n)$ denote the smallest integer N such that every q coloring on the k-tuples of $[N]$ contains a monochromatic path of length n.
$N_{2}(q, n)=(n-1)^{q}+1$ by Dilworth's theorem.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue)

 argument.
$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

$N_{3}(2, n)=\binom{2 n-4}{n-2}+1$ by the Erdős-Szekeres cups-caps (red-blue) argument.

For more colors.

Theorem

(Fox, Pach, Sudakov, S.) For $q \geq 3$, we have

$$
2^{(n / q)^{q-1}} \leq N_{3}(q, n) \leq n^{n^{q-1}},
$$

Therefore for the noncrossing convex bodies problem:

$$
N(n) \leq N_{3}(3, n) \leq n^{n^{2}}=2^{c n^{2} \log n}
$$

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color $(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:

(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color $(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color $(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color $(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

Proof of $N_{3}(q, n) \leq N_{2}\left(n^{q-1}, n\right) \leq n^{n^{q-1}}$:
(1) Set $N=N_{2}\left(n^{q-1}, n\right)$
(2) $\chi:\binom{[N]}{3} \rightarrow[q]$ be q-coloring on the triples of $[N]$.
(3) Then define $\phi:\binom{[N]}{2} \rightarrow[n]^{q-1}$ as follows. We color
$(i, j) \in\binom{[N]}{2}$ with color $\left(a_{1}, a_{2}, \ldots, a_{q-1}\right)$ where a_{t} denotes the length of the longest t-colored 3 -path ending with vertices i, j.

By definition of $N_{2}\left(n^{q-1}, n\right)$, there is monochromatic 2-path on vertices $v_{1}<v_{2}<\ldots<v_{n}$ with color $\left(a_{1}^{*}, \ldots, a_{q-1}^{*}\right)$.

Claim: $\left(v_{1}, \ldots, v_{n}\right)$ is a monochromatic 3-path (with color q)! Indeed, Assume (v_{i}, v_{i+1}, v_{i+2}) has color $j \neq q$.
(1) Longest j th-colored 3-path ending with vertices $\left(v_{i}, v_{j}\right)$ must be shorter than the longest j th-colored 3 -path ending with vertices $\left(v_{j+1}, v_{j+2}\right)$.
(2) Contradicts $\phi\left(v_{i}, v_{i+1}\right)=\phi\left(v_{i+1}, v_{i+2}\right)$.
(3) Hence $\left(v_{i}, v_{i+1}, v_{i+2}\right)$ must have color q for all i.

$$
\left(a_{1}^{*}, . ., a_{j}^{*}, \ldots, a_{q-1}^{*}\right)
$$

Claim: $\left(v_{1}, \ldots, v_{n}\right)$ is a monochromatic 3-path (with color q)! Indeed, Assume (v_{i}, v_{i+1}, v_{i+2}) has color $j \neq q$.
(1) Longest jth-colored 3-path ending with vertices (v_{i}, v_{j}) must be shorter than the longest j th-colored 3-path ending with vertices $\left(v_{j+1}, v_{j+2}\right)$.
(2) Contradicts $\phi\left(v_{i}, v_{i+1}\right)=\phi\left(v_{i+1}, v_{i+2}\right)$.
(3) Hence $\left(v_{i}, v_{i+1}, v_{i+2}\right)$ must have color q for all i.

The upper bound proof can easily be generalized to show

$$
N_{k}(q, n) \leq N_{k-1}\left((n-k+1)^{q-1}, n\right)
$$

Using the stepping-up approach we have

Theorem

(Fox, Pach, Sudakov, S.) Define $t_{1}(x)=x$ and $t_{i+1}(x)=2^{t_{i}(x)}$. Then for $k \geq 4$ we have

$$
t_{k-1}\left(c n^{q-1}\right) \leq N_{k}(q, n) \leq t_{k-1}\left(c^{\prime} n^{q-1} \log n\right) .
$$

Another upper bound on $N_{3}(q, n)$

Consider the following game played by two players, Builder and Painter.
(1) vertex v_{t+1} is revealed.
(2) Builder decides whether to draw the edge $\left(v_{i}, v_{t+1}\right)$ for $i \leq t$. item If Builder draws an edge, Painter must immediately color it one of q colors.

Another upper bound on $N_{3}(q, n)$

Consider the following game played by two players, Builder and Painter.
(1) vertex v_{t+1} is revealed.
(2) Builder decides whether to draw the edge $\left(v_{i}, v_{t+1}\right)$ for $i \leq t$. item If Builder draws an edge, Painter must immediately color it one of q colors.

Another upper bound on $N_{3}(q, n)$

Consider the following game played by two players, Builder and Painter.
(1) vertex v_{t+1} is revealed.
(2) Builder decides whether to draw the edge $\left(v_{i}, v_{t+1}\right)$ for $i \leq t$. item If Builder draws an edge, Painter must immediately color it one of q colors.

Another upper bound on $N_{3}(q, n)$

Consider the following game played by two players, Builder and Painter.
(1) vertex v_{t+1} is revealed.
(2) Builder decides whether to draw the edge $\left(v_{i}, v_{t+1}\right)$ for $i \leq t$. item If Builder draws an edge, Painter must immediately color it one of q colors.

Another upper bound on $N_{3}(q, n)$

Consider the following game played by two players, Builder and Painter.
(1) vertex v_{t+1} is revealed.
(2) Builder decides whether to draw the edge $\left(v_{i}, v_{t+1}\right)$ for $i \leq t$. item If Builder draws an edge, Painter must immediately color it one of q colors.

The vertex online Ramsey number $V_{2}(q, n)$ is the minimum number of edges builder has to draw to guarantee a monochromatic path of length n. Clearly $V_{2}(q, n) \leq\binom{n-1)^{q}+1}{2}$.

Theorem

(Fox, Pach, Sudakov, S.) We have

$$
V_{2}(q, n) \leq q^{2} n^{q} \log n
$$

Theorem

(Fox, Pach, Sudakov, S.) We have

$$
N_{3}(q, n) \leq q^{V_{2}(q, n)}+1=q^{q^{2} n^{q} \log n}
$$

For $q=3$, the formula above implies $N_{3}(3, n) \leq 2^{c n^{3} \log n}$ (Not as strong as the previous bound $2^{c^{\prime} n^{2} \log n}$). A weaker upper bound, but gives us an algorithm of finding a monochromatic 3-path of length n.

Summary

(1) Points (Tóth and Valtr 2005):

$$
2^{n-1}+1 \leq E S(n) \leq\binom{ 2 n-5}{n-2}+1=O\left(4^{n} / \sqrt{n}\right)
$$

(2) Disjoint convex bodies (Hubard, Montejano, Mora, S. 2010):

$$
2^{n-1}+1 \leq D(n) \leq\left(\binom{2 n-5}{n-2}+1\right)\binom{2 n-4}{n-2}+1=O\left(16^{n}\right)
$$

(3) Noncrossing convex bodies (Fox, Pach, Sudakov, S.):

$$
2^{n-1}+1 \leq N(n) \leq n^{n^{2}}=2^{O\left(n^{2} \log n\right)}
$$

Problem

$$
E S(n)=D(n)=N(n) ?
$$

Thank you!

