Bounded VC-dimension implies the Schur-Erdos conjecture

Andrew Suk (UC San Diego)

June 24, 2020

Andrew Suk (UC San Diego) Bounded VC-dimension implies the Schur-Erdos conjecture

Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition

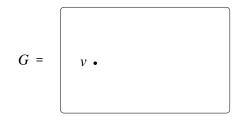
A set $S \subset V$ is **shattered** by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A = X$.

Definition

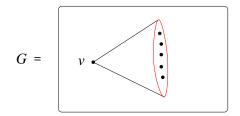
The **VC-dimension of** \mathcal{F} is the size of the largest subset $S \subset V$ that is shattered by \mathcal{F} .

$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$

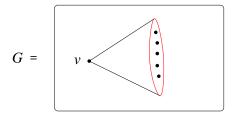
$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$



$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$



$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$



Definition

The VC-dimension of G is the VC-dimension of \mathcal{F} .

Andrew Suk (UC San Diego) Bounded VC-dimension implies the Schur-Erdos conjecture

Intersection graphs of segments in the plane.

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .
- **Semi-algebraic graphs** with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - E = defined by bounded degree polynomial inequalities.

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .
- **Semi-algebraic graphs** with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - E = defined by bounded degree polynomial inequalities.
- Intersection graph of pseudo-segments in the plane.

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .
- **Semi-algebraic graphs** with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - E = defined by bounded degree polynomial inequalities.
- Intersection graph of pseudo-segments in the plane.

Problem

Can we substantially improve some of the classical theorems in extremal graph theory for graphs with bounded VC-dimension?

Ramsey's Theorem. Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.

2 Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.

Szemerédi's regularity lemma.

- Ramsey's Theorem. Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.
 - Semi-algebraic graphs: Improve to n^c.
- **2** Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.
 - **Semi-algebraic graphs:** Improve to $O(n^{3/2-\varepsilon})$.
- Szemerédi's regularity lemma.
 - Semi-algebraic graphs: Quantitative and qualitative improvements.

Classical theorems

- Ramsey's Theorem. Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.
 - Semi-algebraic graphs: Improve to n^c.
- Turán's Theorem. Every K_{2,2}-free graph on *n* vertices has at most cn^{3/2} edges.
 - Semi-algebraic graphs: Improve to $O(n^{3/2-\varepsilon})$.
- Szemerédi's regularity lemma.
 - Semi-algebraic graphs: Quantitative and qualitative improvements.

Problem

Can we improve these classical results for graphs with bounded VC-dimension?

An application of the Milnor-Thom theorem:

Theorem

There are at most $2^{cn \log n}$ semi-algebraic graphs on n vertices and with complexity at most d, where c = c(d).

Theorem (Anthony, Brightwell, Cooper 1995)

There are at least $2^{n^{2-\varepsilon}}$ graphs with VC-dimension at most d on n vertices, where $\varepsilon = \varepsilon(d)$.

- **2** Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.
 - Semi-algebraic graphs: Improve to $O(n^{3/2-\varepsilon})$.

- **2** Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.
 - Semi-algebraic graphs. Improve to $O(n^{3/2-\varepsilon})$.
 - **Bounded VC-dimension.** No improvement. There are $K_{2,2}$ -free graphs on *n* vertices with $\Omega(n^{3/2})$ edges.

In joint work with Jacob Fox and János Pach

• We establish tight bounds for multicolor Ramsey numbers for graphs with bounded VC-dimension.

Definition

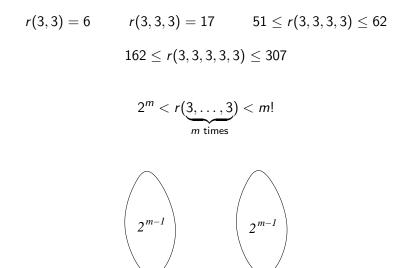
For $m \ge 2$, The multicolor Ramsey number

is the minimum integer N such that for any *m*-coloring of the edges of K_N contains a monochromatic copy of K_3 .

$$r(3,3) = 6 \qquad r(3,3,3) = 17 \qquad 51 \le r(3,3,3,3) \le 62$$
$$162 \le r(3,3,3,3,3) \le 307$$
$$2^m \le r(3,\ldots,3) \le m!$$

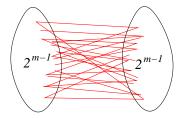
m times

Known results

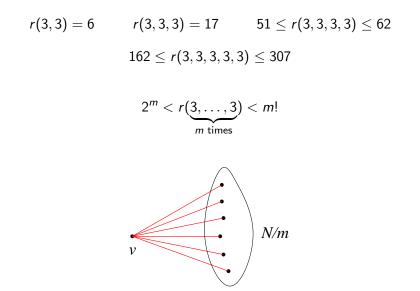


Known results

$$r(3,3) = 6 \qquad r(3,3,3) = 17 \qquad 51 \le r(3,3,3,3) \le 62$$
$$162 \le r(3,3,3,3,3) \le 307$$
$$2^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < m!$$



Known results



Lower bound: Fredricksen-Sweet, Abbot-Moser. Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Lower bound: Fredricksen-Sweet, Abbot-Moser. Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < 2^{O(m \log m)}$$

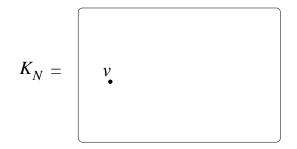
Conjecture (Schur-Erdős) $r(\underbrace{3,\ldots,3}_{m \text{ times}}) = 2^{\Theta(m)}.$

Bounded VC-dimension setting

Color all edges of K_N with m colors.

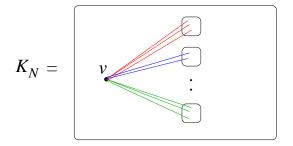
Bounded VC-dimension setting

Color all edges of K_N with m colors.



Bounded VC-dimension setting

Color all edges of K_N with m colors.

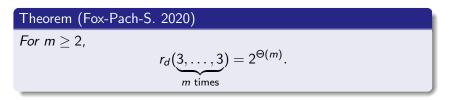


Notation: $N_i(v) = \{u \in V : \chi(uv) = i\}.$

If we insist that the *m*-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).



If we insist that the m-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).

Theorem (Fox-Pach-S. 2020) For fixed $p \ge 3$ and $m \ge 2$, $r_d(\underbrace{p, \dots, p}_{m \text{ times}}) = 2^{\Theta(m)}$.

If we insist that the m-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).

Theorem (Fox-Pach-S. 2020) For fixed $p \ge 3$ and $m \ge 2$, $r_d(\underbrace{p, \dots, p}_{m \text{ times}}) = 2^{\Theta(m)}$.

$$r_d(\underbrace{3,\ldots,3}_{m \text{ times}}) \le 2^{cm}, \qquad c = c(d)$$

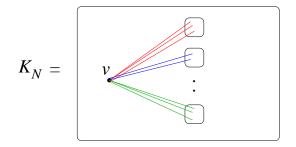
Idea: We will use induction on *m*. Set $N = 2^{cm}$ and let *V* be an *N*-element vertex set.

 $\chi: \binom{V}{2} \to \{1, 2, \dots, m\} \text{ and } \mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$

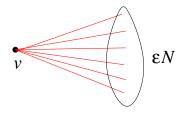
$$r_d(\underbrace{3,\ldots,3}_{m \text{ times}}) \le 2^{cm}, \qquad c = c(d)$$

Idea: We will use induction on *m*. Set $N = 2^{cm}$ and let *V* be an *N*-element vertex set.

 $\chi: \binom{V}{2} \to \{1, 2, \dots, m\} \text{ and } \mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$



Goal: $\exists v \in V$ such that $|N_i(v)| \ge \epsilon N$ for some *i*.

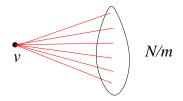


$$|N_i(\mathbf{v})| \geq \epsilon N > 2^{c(m-1)}.$$

Goal: $\exists v \in V$ such that $|N_i(v)| \ge \epsilon N$ for some *i*.

$$|N_i(v)| \geq \epsilon N > 2^{c(m-1)}.$$

Not true: We can only assume $|N_i(v)| \ge N/m$ by pigeonhole.



Crossing pairs of vertices

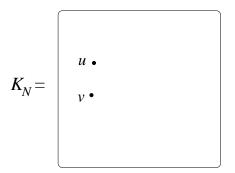
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$

Crossing: Let $A \in \mathcal{F}$ and $u, v \in V$. Then A crosses $\{u, v\}$ if it contains one but not the other.

Crossing pairs of vertices

 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$

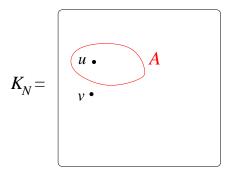
Crossing: Let $A \in \mathcal{F}$ and $u, v \in V$. Then A crosses $\{u, v\}$ if it contains one but not the other.



Crossing pairs of vertices

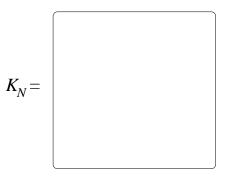
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$

Crossing: Let $A \in \mathcal{F}$ and $u, v \in V$. Then A crosses $\{u, v\}$ if it contains one but not the other.



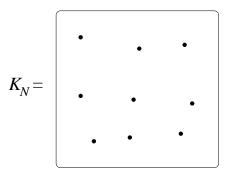
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

Lemma



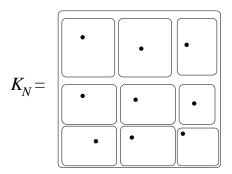
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

Lemma



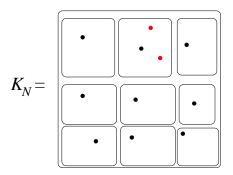
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

Lemma



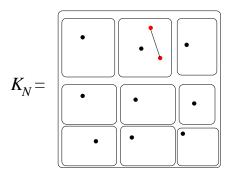
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

Lemma



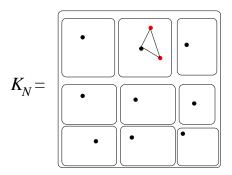
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

Lemma



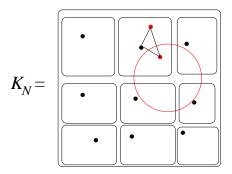
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

Lemma

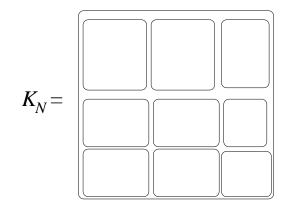


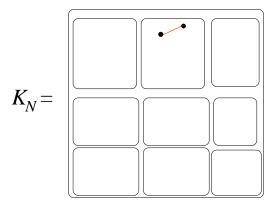
$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$$

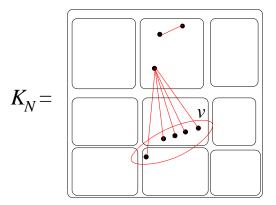
Lemma

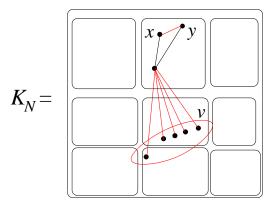


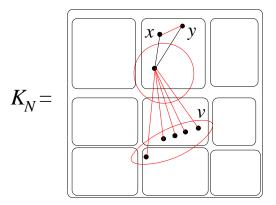
Key observation:

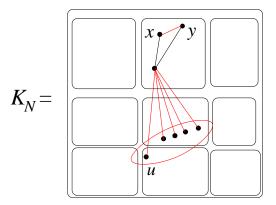


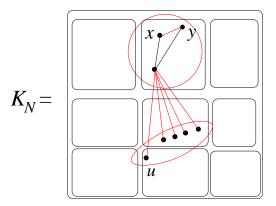


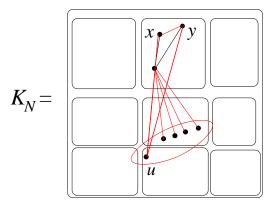




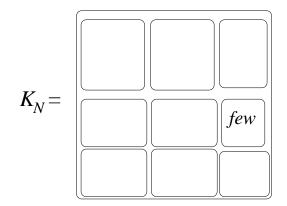




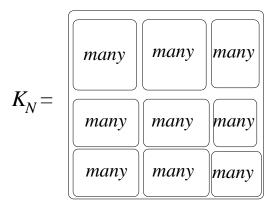


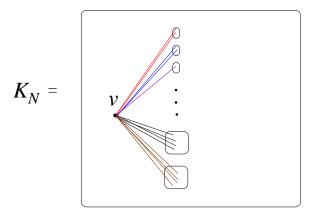


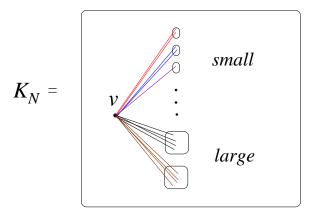
Case 1. If a part is missing many colors, we are done by induction.

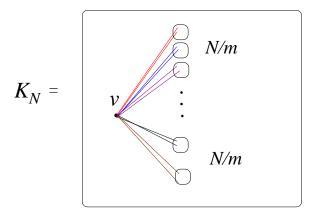


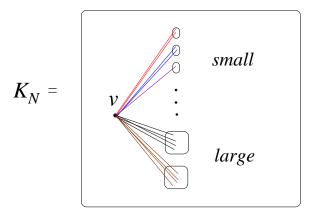
Case 2. Each part has many distinct colors

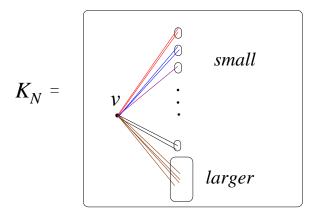




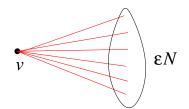








Goal: Find a vertex with large degree with respect to one color class.



Erdős-Hajnal conjecture:

Problem

Given a graph with bounded VC-dimension, does it contain a clique or independent set of size n^{ε} ?

• Best known bound is $e^{(\log n)^{1-o(1)}}$, where $o(1) \approx \frac{\log d}{\log \log n}$ (Fox-Pach-S.).

Thank you!